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Minimal genus and simpli�ed classes in
rational manifolds

Josef G. Dorfmeister

Abstract. This note studies the minimal genus problem for classes which
are equivalent, via the geometric di�eomorphism group, to a simpli�ed class
in ℂP2#kℂP2. It is shown that the orbit structure for primitive classes is ba-
sically determined by the self-intersection number. Making use of this result,
an upper bound for the minimal genus for each orbit is determined and it is
shown that for k large enough, then genus stabilizes at either 0 or 1.
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1. Introduction
The minimal genus problem asks what the smallest possible genus of a

smoothly embedded connected surface representing the classA ∈ H2(M,ℤ) in
a given smoothmanifoldM is. In this note, this problem is studied for classes of
M = ℂP2#kℂP2 whose orbit under the action of the geometric automorphism
group D(M) contains a simpli�ed class.
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The homology of a smooth oriented four manifoldM comes endowed with
a symmetric bilinear form Q ∶ H2(M,ℤ) × H2(M,ℤ) → ℤ. Orientation pre-
serving di�eomorphisms of M act by automorphisms on H2(M,ℤ) and these
preserve the form Q. To study the minimal genus problem, it is natural to ask,
for a classA ∈ H2(M,ℤ), what do the orbitsOA under this geometric automor-
phism group D(M) look like? What can be said aboutH2(M,ℤ)∕D(M)?

These questions are studied for rational manifoldsM = ℂP2#kℂP2 (k ≥ 2),
which have second homology H2(M,ℤ) ≃ ℤk+1 and Q = diag(1, −1, ..., −1).
In this manifold, the questions above can be viewed from a variety of aspects.
Aside from the geometric view stated above, the pair (H2(M,ℤ), Q) form a lat-
tice, hence results from this area as well as on quadratic forms can be applied.
Moreover, there exists a Kac-Moody algebra with Q as its generalized Cartan
matrix and with root lattice H2(M,ℤ). These structures are reviewed in Sec-
tion 2.

In the following, for a class A ∈ H2(M,ℤ), the notation A2 = Q(A,A) = n
will be used. For classes with A2 ≥ −2, results by Kac ([11], 5.11) describe the
orbit structure of the D(M)-action completely for 3 ≤ k ≤ 10 and some results
are known if n ≥ −16, see Section 2. For classes with A2 < −16 no systematic
results are known to the author.

Themain result of this note is the following, for de�nitions of terms used see
Section 2.

Theorem 1.1. LetM = ℂP2#kℂP2 (k ≥ 3) andA ∈ H2(M,ℤ)withA2 = −n <
0. Assume that A is primitive and the D(M)-orbit OA of A contains a simpli�ed
class. Then for each (k, n), n > 0, the following is true.

(1) If A is ordinary, then OA is the unique primitive ordinary orbit.
(2) If n ≡4 k − 1 and A is characteristic, then OA is the unique primitive

characteristic orbit.

For k = 2, this is known to be false by an example of C.T.C. Wall, see [25].
In Section 7, Wall’s example is put into a broader context and the existence of
multiple orbits is related to binary quadratic forms of inde�nite type.

It is possible to determine a representative for each primitive orbit, see Cor.
3.2. Thismakes it possible to determine theminimal genus in the ordinary case.

Lemma 1.2. Let M = ℂP2#kℂP2 (k ≥ 3) and A ∈ H2(M,ℤ) with A2 < 0.
Assume that A is primitive ordinary and the D(M)-orbit OA of A contains a sim-
pli�ed class. Then it has minimal genus gA = 0. Moreover, for each class there
exists a complex orientation-compatible structure on M such that the curve can
be chosen holomorphic and a symplectic orientation-compatible structure onM
such that the curve is symplectic.

If A is primitive characteristic this is a bit more complicated. In particular,
the minimal genus can only be determined for su�ciently many blow-ups, a
stabilization-type result.
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Lemma 1.3. Let M = ℂP2#kℂP2 (k ≥ 3) and A ∈ H2(M,ℤ) with A2 < 0.
Assume that A is primitive characteristic, A2 = −(8
 + k − 1) (
 > 0) and the
D(M)-orbit OA of A contains a simpli�ed class.

(1) If 1 ≤ k ≤ 2
 − 1, then the minimal genus of any embedded surface
representing A is bounded above by 2
 − k.

(2) If 
 is odd and k ≥ 2
 − 1, then the minimal genus of any embedded
surface representing A is 1.

(3) If 
 is even and k ≥ 2
, then the minimal genus of any embedded surface
representing A is 0.

The outline of the paper is as follows. Section 2 introduces notation and basic
de�nitions. Section 3 reduces the question in k ≥ 4 to a question in k = 3. The
core of this note is the proof of Theorem 1.1 in the case k = 3. This begins in
Section 4, where it is shown that all classes A = (a, b, c, d) with A2 = −n < 0
and |a − d| = 1 or 2 are equivalent under the D(M)-action (Theorem 4.3).
Section 5 relates this equivalence to a class with di�erence |a−d| = 1 or 2 to an
appropriate system of Diophantine equations (Theorem 5.1). Finally, Section
6 proves that this system has a solution over the integers. This then completes
the proof of Theorem 1.1. Section 7 consider the case k = 2 and places the
example ofWall into a broader context. Theminimal genus result are described
in Section 8.
Acknowledgements: The author would like to thank Tian-Jun Li for useful sug-
gestions to improve this paper.

2. Notation
Let M = ℂP2#kℂP2 (k ≥ 2). In this note, the standard basis for H2(M,ℤ)

is given by {H, E1, .., Ek} with H2 = Q(H,H) = 1 and E2i = Q(Ei, Ei) = −1. In
this basis, a class will be denoted A = aH −

∑
i biEi = (a, b1, ..., bk).

H2(M,ℤ) can be viewed from three di�erent viewpoints with corresponding
automorphism (sub)groups:

(1) The homology of the manifoldM. The geometric automorphism group
is given by

D(M) = {� ∈ Aut(H2(M,ℤ)) ∶ � = f∗ for some f ∈ Di�+(M)}. (1)
(2) An integer lattice Lwith quadratic formQ together with the orthogonal

group O(L) of lattice automorphisms preserving Q.
(3) ([29]) The latticeH2(M,ℤ) is the root lattice of a Kac-Moody algebra, Q

is the generalized Cartanmatrix, and theWeyl groupW is the subgroup
of O(L) generated by re�ections on classes with Q(x, x) ∈ {−1,−2}. A
re�ection of B on the class A is given by

rA(B) = B −
2Q(A, B)

A2 A.

Note that for k ≤ 9 this is a hyperbolic Kac-Moody algebra.
Clearly, D(M) ⊂ O(L). More is true if k ≤ 9:
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Theorem 2.1 ([8],[17], [29]). If k ≤ 9, thenW = D(M) = O(L). If k ≥ 10, then
D(M) is a proper subgroup ofW.

The generators of these groups will be of interest in the following sections.
For this reason, consider the following maps with regard to the standard basis.

∙ TH : Re�ection on the class H. This has the e�ect of a sign change on
theH-coordinate.

∙ Ti: Re�ection on the class Ei. This has the e�ect of a sign change on the
Ei-coordinate.

∙ Tij: Re�ection on the class Ei −Ej. This has the e�ect of interchanging
the elements Ei and Ej.

∙ (k = 2) Re�ection on the classH − E1 − E2:

S =
⎛
⎜
⎝

3 −2 −2
2 −1 −2
2 −2 −1

⎞
⎟
⎠

∙ (k = 3) Re�ection on the classH − E1 − E2 − E3:

R =
⎛
⎜
⎜
⎝

2 −1 −1 −1
1 0 −1 −1
1 −1 0 −1
1 −1 −1 0

⎞
⎟
⎟
⎠

Observe that RTiR is the map S applied to the class A with the bi term
ignored.

∙ (k ≥ 4) R acts only on the components (H, Ei, Ej, Ek), acting by identity
on the remaining terms, i.e. there is a family of operators Rijk generated
by R.

Observe that THT1T2T3 = −id, Tti = Ti, Ttij = Tij, St = T1T2ST1T2 and
Rt = T1T2T3RT1T2T3 (⋅t denotes the transpose.).

Lemma 2.2 ([25], [19], [29]). W is generated byTi , Tij andR. D(M) is generated
by these operators and TH .

De�nition 2.3. Two classes A, B ∈ H2(M,ℤ) are called D(M)-equivalent if
there is a � ∈ D(M) such that �(A) = B. Denote by OA the orbit of the class
A under the action of D(M).

Homology classes in rational manifolds under D(M)-action exhibit two spe-
cial classes. The �rst, reduced, arise as the elements of the fundamental cham-
ber C, see [11] and [25] . The second are simpli�ed classes, which form the
counterpart to the reduced classes, see [18].

De�nition 2.4. Let A ∈ H2(M,ℤ).
(1) A class A = (a, b1, ..., bk) is called reduced if a ≥ 0, b1 ≥ ... ≥ bk ≥ 0

and
(a) a ≥ b1 (k = 1),
(b) a ≥ b1 + b2 (k = 2) or
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(c) a ≥ b1 + b2 + b3 (k ≥ 3)
(2) A class A = (a, b1, ..., bk) is called simpli�ed if a ≥ 0, b1 ≥ ... ≥ bk ≥ 0

and
(a) 2a ≤ b1 + b2 (k = 2) or
(b) 3a ≤ b1 + b2 + b3 (k ≥ 3)

It is not hard to see that if k ≤ 9 and A2 < 0, then A may be equivalent
to a simpli�ed class, but not a reduced one. For k ≥ 10, A2 < 0, A may be
equivalent to either type. For each �xed value A2 = −n, the set of simpli�ed
classes is always �nite.

Lemma 2.5 ([15], [18], [29]). Let M = ℂP2#kℂP2 and A ∈ H2(M,ℤ) with
A ≠ 0.

(1) A is D(M)-equivalent to a reduced or simpli�ed class.
(2) Each orbit OA contains either a simpli�ed class or a reduced class, never

both.
(3) IfA isD(M)-equivalent to a reduced class, then this is the unique reduced

class in OA.

This lemma implies that to understand orbits containing reduced classes, it
su�ces to study reduced classes as generators of the orbits. In the simpli�ed
case, each orbit may contain many such classes and thus a list of simpli�ed
classes does not enumerate the orbits. It is shown in [29], that each orbit con-
tains aminimal simpli�ed class. However, it is not clear how to decide if a given
simpli�ed class is minimal in its orbit or how to list only theminimal simpli�ed
classes.

Denote for n ∈ ℤ the set

Zn = {A ∈ H2(M,ℤ) | A2 = n}.

The following summarizes known results for the structure of Zn∕D(M).

(1) Reduced Classes : The collection of all reduced classes (when k ≥ 10
this will also include classeswithA2 < 0) forms the fundamental cham-
ber C of the Kac-Moody algebra generated by the root latticeH2(M,ℤ).
The action of theWeyl groupW on this fundamental chamber produces
the Tits coneX andC is a fundamental domain for this action ([11], 3.12
and 5.10). The structure of Zn∕D(M) is then given by Lemma 2.5.

(2) n ∈ {0, −1, −2}, 3 ≤ k ≤ 10: Example 5.11 in [11] shows that in this
case Theorem 1.1 holds. In fact, this result can be extended with the aid
of simpli�ed classes, see below. See also [18]. In particular, for n = 0
the following is true.

Lemma 2.6 ([11], Cor 5.11; [15]). LetM = ℂP2#kℂP2, k ∈ {2, 3}, and
assume that A ∈ H2(M,ℤ) satis�es A2 = 0. Then A is either 0 or D(M)-
equivalent to the class a(H − E1), a ∈ ℤ.
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(3) n = −16, k = 2: Wall [25] showed that there are two primitive ordinary
classes with distinct orbits. In Section 7, this example will be presented
and a more general result shown to be true. See also Prop.1, [18].

(4) 0 > n ≥ −16, 2 ≤ k ≤ 9: The main results in [18] addresses the case
for k = 3 and these results are then extended to 4 ≤ k ≤ 9 proving a
version of Theorem 1.1. The case of k = 2 is a combined result of [26],
[14] and [18].

De�nition 2.7. (1) A class A ∈ H2(M,ℤ) is called characteristic if Q(A, B) ≡2
Q(B, B) for all B ∈ H2(M,ℤ). It is called ordinary if it is not characteristic.
(2) A class A ∈ H2(M,ℤ) is called divisible if A = dB for some d ∈ ℤ. A class is
primitive if it is not divisible.

The condition Q(A, B) ≡2 Q(B, B) implies that inM = ℂP2#kℂP2 each a, bi
is odd.

These considerations lead to the following decomposition: �x (k, n) and con-
sider the D(M)-orbits in Zn forM = ℂP2#kℂP2.

(1) Reduced Orbits: Each orbit contains a single reduced class. This class
may be primitive, characteristic or divisible. For �xed n there may be
more than one orbit, evenwhen restricted to primitive non-characteristic
classes.

(2) Simpli�ed Orbits: Each orbit contains at least one simpli�ed class.
(a) Orbits of Divisible Classes: Only if n is divisible by a square will

such orbits exist. Moreover, if n = p2�, then the structure of these
orbits inZn∕D(M)will be determined by the structure ofZ�∕D(M).

(b) Primitive Characteristic Orbits: All classes in these orbits have
purely odd entries. These can be considered rare as for �xed k they
only occur for n = 8
 + k − 1, 
 ∈ ℕ.

(c) PrimitiveOrdinaryOrbits: The remaining primitive andnon - char-
acteristic classes form the last set of orbits.

In this paper, the focus will be on simpli�ed classes, especially in k = 2 and
k = 3. The constructions in the following sections are generally valid also for
reduced classes in k = 3, but they are of little signi�cance for k ≥ 4 in contrast
to the simpli�ed case. Moreover, it will be assumed throughout that the class
A is primitive.

The action of D(M) on a class is almost parity preserving, as the following
lemma shows.

Lemma 2.8. Let n = 4� + i, � ∈ ℤ and assume A is primitive with A2 = n.
Abbreviate even=e and odd=o and list the parities of a and bi in order a, b1, b2, b3
by a 4-tuple of e’s and o’s.

(1) i = 1: A has parities oeee or eooo.
(2) i = 2: A has parities eeoo or oooo.
(3) i = 3: A has parities eeeo or oooe.
(4) i = 4: A has parity ooee.
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Moreover, the action byD(M) preserves the parities if i = 2, 4 and, if i = 1, 3, may
swap them.

Proof. Clearly any elementary transformation does not change any of the par-
ities. With regard to the map R, consider the case i = 1:

ã = 2a − b1 − b2 − b3 and b̃i = a − bj − bk.

If one b∗ is odd, then ã is odd and two of the b̃∗ are odd, the other even. If two
of b∗ are even, then ã is even, two of the b∗ are even and the remaining one is
odd. So the map R interchanges the two possible parity-tuples for i = 1.

The other cases are similar. �

3. The case k ≥ 4
The aim of the next sections is to prove the following result.

Lemma 3.1. Let k = 3 and A2 = −n < 0, n ∈ ℕ, be a primitive class. Then
(1) If A is ordinary, then A is D(M)-equivalent to either (�, � + 1, 0, 0) (n =

2� + 1 odd) or (� − 1, �, 1, 0) (n = 2� even).
(2) If n = 4� + 2 and A is characteristic, then A is D(M)-equivalent to (� −

1, � + 1, 1, 1)

Assuming this result holds, the proof of Theorem 1.1 can be completed for
k ≥ 4. Assume A is primitive ordinary with a simpli�ed class in OA. As-
sume further that A = (a, b1, ..., bk) is simpli�ed, then 3a ≤ b1 + b2 + b3
and hence the class (a, b1, b2, b3) satis�es a2 − b21 − b22 − b23 < 0. Thus by
Lemma 3.1, this part can be reduced to (ã, b̃1, b̃2, 0) while keeping the remain-
der (b4, .., bk) unchanged. Thus,A is equivalent to a class (ã, b̃1, .., b̃k−1, 0). The
class Ã = (ã, b̃1, .., b̃k−1) still satis�es Ã2 = −n and OÃ, viewed as an orbit for
k−1, still contains a simpli�ed class in k−1 terms. If not then, by Lemma 2.5, it
would contain a reduced class, and so too wouldOA, in violation of Lemma 2.5.
Hence, an inductive argument completes the proof of Theorem 1.1 for primitive
ordinary classes under the assumption that Lemma 3.1 holds.

Similarly, assume thatA is primitive characteristic. Then n = 4�+k−1 and,
ifA is simpli�ed, a brief calculation shows that � ≥ 0 and even. Thus, n ≥ k−1.
As before, if OA contains a characteristic class, then A is equivalent by Lemma
3.1 to a class (ã, b̃1, .., b̃k−2, 1, 1). The class Ã = (ã, b̃1, .., b̃k−2) is characteristic,
satis�es Ã2 = −n + 2 ≤ −k + 3 < 0 and OÃ, viewed as an orbit for k − 2,
still contains a simpli�ed class in k − 2 terms. Hence, an inductive argument
completes the proof of Theorem 1.1 for primitive characteristic classes under
the assumption that Lemma 3.1 holds.

The inductive argument given above allows for an explicit description of a
representative of each orbit, similar to Lemma 3.1.

Corollary 3.2. Let k ≥ 3, A2 = −n < 0, n ∈ ℕ, be a primitive class and assume
OA contains a simpli�ed class.
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(1) IfA is ordinary, thenA isD(M)-equivalent to either (�, � + 1, 0, ..., 0) (n =
2� + 1 odd) or (� − 1, �, 1, 0, .., 0) (n = 2� even).

(2) If n = 8
 + k − 1 and A is characteristic, then A is D(M)-equivalent to
(2
 − 1, 2
 + 1, 1, ..., 1)

It is now possible to describe a fundamental domain for the D(M)-action on
Zn:

(1) If n is square free and n ≠ 8
 + k − 1, then any class in Zn is primitive
ordinary. Thus, Zn∕D(M) is in bijection with the set of reduced classes
of square n and, if n < 0, additionally a single class fromCor. 3.2. These
generate all of the orbits of the D(M) action.

(2) If n is square free and n = 8
+k−1, then an additional simpli�ed orbit
appears, generated by the characteristic class in Cor. 3.2.

(3) If n is not square free, then in addition to the classes described previ-
ously, for each factor n = p2ñ, all the ñ orbits would also appear.

4. Reduction to a di�erence
This section will begin the study of negative orbits OA for k = 3. Through

an explicit family of operators inD(M), the equivalence of two classesA1, A2 ∈
Z−n for n > 0 will be reduced to the study of the di�erences |a − bi|. For ease
of notation, this, and subsequent sections, will write A = (a, b, c, d) and focus
on the di�erence |a−d|. The elementary transformations su�ce to reorganize
any class so that the di�erence of interest is in the d-slot.

Lemma 4.1. Let � ∈ ℤ, then

M(�) ∶= T�12(RT1T2)
� =

⎛
⎜
⎜
⎝

1 + �2 � � −�2
� 1 0 −�
� 0 1 −�
�2 � � 1 − �2

⎞
⎟
⎟
⎠

Proof. For � = 0, this is the identity and for � = 1, by matrix multiplication:

T12RT1T2 =
⎛
⎜
⎜
⎝

2 1 1 −1
1 1 0 −1
1 0 1 −1
1 1 1 0

⎞
⎟
⎟
⎠

.

Now proceed by induction:

T�+112 (RT1T2)�+1 = T12M(�)RT1T2 =

= T12

⎛
⎜
⎜
⎝

�2 + 2� + 2 � + 1 � + 1 −�2 − 2� − 1
� + 1 0 1 −� − 1
� + 1 1 0 −� − 1

�2 + 2� + 1 � + 1 � + 1 −�2 − 2�

⎞
⎟
⎟
⎠

=
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=
⎛
⎜
⎜
⎝

1 + (� + 1)2 � + 1 � + 1 −(� + 1)2
� + 1 1 0 −� − 1
� + 1 0 1 −� − 1
(� + 1)2 � + 1 � + 1 1 − (� + 1)2

⎞
⎟
⎟
⎠

If � < 0, then observe that

(RT1T2)−1 = T2T1R and T12T1T2 = T1T2T12
and hence,

T�12(RT1T2)
� = T1T2

[
T|�|
12 (RT1T2)

|�|
]
T1T2.

�

Remark: This family of maps can also be found in the proof of Lemma 3.3,
[29].

Lemma 4.2. Let (�, �) ∈ ℤ2, then

R(�, �) ∶= M(�)T1M(�) =
⎛
⎜
⎜
⎝

1 + �2 + �2 � − � � + � −�2
� − � −1 0 � − �
� + � 0 1 −� − �
�2 + �2 � − � � + � 1 − �2 − �2

⎞
⎟
⎟
⎠

Proof. This is obtained by matrix multiplication using the above lemma. �

For a given class (a, b, c, d), this map acts as

R(�, �)(a, b, c, d) = (a(�, �), b(�, �), c(�, �), d(�, �))

where
a(�, �) = a + (�2 + �2)(a − d) + �(b + c) + �(−b + c),

b(�, �) = −b + (� − �)(a − d),
c(�, �) = c + (� + �)(a − d),

d(�, �) = d + (�2 + �2)(a − d) + �(b + c) + �(−b + c).
The map R(�, �) preserves a − d.

The functionsa(�, �) andd(�, �)describe paraboloids, hence admit a unique
maximum or minimum. This extremal point is at

(�0, �0) = ( b − c
2(a − d)

, − b + c
2(a − d)

)

and takes values b(�0, �0) = c(�0, �0) = 0,

a(�0, �0) =
−n

2(a − d)
+ a − d

2 and d(�0, �0) = a(�0, �0) − (a − d)

These values only depend on n and a − d, hence for all classes which have the
same |a − d|, the magnitude of these values are identical. In particular, note
that if A has a − d > 0, then, using elementary transformations, (−a, b, c, −d)
has ã − d̃ = −a+d < 0. Thus the sign of a−d is not relevant, one can consider
either a − d or −(a − d) as is convenient for the situation at hand.
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Clearly there is no guarantee that �0, �0 ∈ ℤ, however there is an integer
point nearby. The following theorem shows that this nearby point can be sig-
ni�cant.

Theorem 4.3. Let k = 3 and A2 = −n.
(1) All classes with |a − d| = 1 are D(M)-equivalent.
(2) If n ≡4 2, all characteristic classes with |a − d| = 2 areD(M)-equivalent.

Proof. Assume that by applying elementary transformations, the class (a, b, c, d)
satis�es a − d = −1 or −2.

If a − d = −1, then consider two cases:
(1) If b+ c is even, then �0, �0 ∈ ℤ and from above it shows that each class

is equivalent to the class
(n−1

2
, 0, 0, n+1

2

)
.

(2) If b + c is odd, then �0, �0 ∈
1
2
ℤ, hence the closest integer points lie

at ± 1
2
from (�0, �0). Due to the symmetry properties of the paraboloid,

the value of a(�, �) and d(�, �) are the same at all four points and the
values of b(�, �) and c(�, �) di�er by signs and permutations. So the
value only needs to be calculated at one point. Calculating the value
shows each class in this case is equivalent to

(n−2
2
, 1, 0, n

2

)
.

Note that by Lemma 2.8, each case produces a vector in ℤ4.
Now consider the case a − d = −2. Then �0 =

b+c
4
, �0 = −b−c

4
. As A is

characteristic, n = 4� + 2, � ≥ 0 even, and each entry in A is odd. Moreover,
one of b + c and b − c is divisible by 4, the other only by 2. Hence, the nearest
integer point to (�0, �0) is either (�0, �0 +

1
2
) or (�0 +

1
2
, �0). In either case, the

values of b(�, �) and c(�, �) will be 1, 1, the value for a = � − 1. Thus, each
characteristic class with |a − d| = 2 is equivalent to (� − 1, 1, 1, � + 1).

�

This result explains the origin of the classes which appear in Lemma 3.1.
Remark: Denote k = |a − d|. It can be shown, that if k2 ≤ n, any class is

equivalent to a similar class as in the previous theorem. Such terminal classes
(a, b, c, d) are characterized by the properties a, b, c, d ≥ 0, b ≥ c, b+c ≤ k and
d = a + k. However, if k ≥ 4, then these terminal classes may not be unique.

The goal in the following is to show that a given class is equivalent to one
with |a − d| = 1 or, if A is characteristic, to |a − d| = 2. For this reason, de�ne

∆ = { 1 A is ordinary,
2 A is characteristic.

5. Equivalence to Diophantine equation
Let vt = (1, 0, 0, −1), then

vtA = a − d.
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Thus, to test if a given class A has a di�erence that has value ∆, it is necessary
to test in this fashion against all images of v under elementary transformations.
In particular, to test whether OA contains a class with a − d = ∆, consider all
numbers of the form

(Ev)tLA
with E any product of elementary transformations and L ∈ D(M). This can be
written as

(LtEv)tA
where LtE ∈ D(M) by the comments preceding Lemma 2.2. Thus, to determine
if OA contains a class with di�erence ∆, it su�ces by Lemma 2.6 to �nd a class
ṽ with square 0 such that

ṽtA = ∆.
Conversely, once such a class ṽ has been found, there exists an element L ∈
D(M) such that Lṽ = v, again by Lemma 2.6. Hence

∆ = ṽtA = (Lv)tA = vtLtA

and thus the element LtA ∈ OA has di�erence ∆.
If ∆ = 1, then ṽ is primitive. If ∆ = 2, then it is not possible for this equation

to have a non-primitive solution, as any non-primitive solution would imply
that there is a solution to the equation vt ⋅ A = 1, which is not possible in the
characteristic case.

Theorem 5.1. Let M = ℂP2#3ℂP2 and A = (a, b, c, d) ∈ H2(M,ℤ). The
following are equivalent:

(1) A is D(M)-equivalent to a class with di�erence ∆.
(2) The system of Diophantine equations

z2 = x2 + y2 + w2, az − bx − cy − dw = ∆

has a solution ṽt = (z, x, y, w) ∈ ℤ4.
(3) The integral quaternary quadratic form f(�, �, �, �) given by

F =
⎛
⎜
⎜
⎝

a − b 0 −c −d
0 a − b −d c
−c −d a + b 0
−d c 0 a + b

⎞
⎟
⎟
⎠

represents ∆ or −∆ over the integers.

Proof. The equivalence of (1) and (2) has been argued above.
The �rst equation in the Diophantine system in (2) produces Pythagorean

quadruples. Any solution to z2 = x2 + y2 +w2 with gcd(x, y, w) = 1 and z > 0
can be written as

z = �2 + �2 + �2 + �2, x = �2 + �2 − �2 − �2,

y = 2(�� − ��), and w = 2(�� + ��).
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Note that the restriction gcd(x, y, w) = 1 ensures that the class is not divisible,
so is natural in this setting. Replacing (z, x, y, w) by these expressions in az −
bx − cy − dw leads to f(�, �, �, �).

Any solution to the Diophantine system in (2) for∆with z < 0 also produces
a solution to the corresponding equation for−∆ butwith z > 0. Thus, a solution
with z > 0 is always possible for ±∆, if a solution exists at all.

Conversely, any integer representations of ±∆ by the form f lead to classes
(z, x, y, w) with z > 0 satisfying az − bx − cy − dw = ±∆.

�

The goal is now to show that this form represents ∆ in the integers. Note
that det f = n2, hence is always a perfect square and thus does not �t into most
general results on quadratic forms (see [10]).

Until now, it was not relevant ifA2 was positive or not. However, the follow-
ing Lemma shows the distinction that now occurs with regards to the de�nite-
ness of f and the sign of A2.

Lemma 5.2. Let A be a primitive class with A2 ≠ 0. If OA is a simpli�ed orbit,
then f is an inde�nite form. If OA is a reduced orbit, then f is de�nite.

Proof. If OA is a simpli�ed orbit, then for a simpli�ed class a−b (correspond-
ing to pairingwith (1, −1, 0, 0))must be negativewhile the pairingwith (1, 1, 0, 0)
is positive. Hence, the form is inde�nite.

If OA is reduced, then A2 > 0 when k = 3. The set of classes of positive
square

P = {A ∈ H2(M,ℤ) | A2 > 0}

has two connected components. The Light Cone Lemma, essentially a corollary
of the Cauchy-Schwartz inequality, states, that ifA and B both lie in the closure
of the same component of P, then eitherA ⋅B > 0 or they are multiples of each
other with A2 = 0. If A and B lie in distinct components, then either A ⋅ B < 0
or they are multiples of each other with A2 = 0. Thus, if A2 > 0, then the
pairing with a class vt = (z, x, y, w) with v2 = 0 and z > 0 will always have
�xed sign. This then implies that f is de�nite.

�

6. Existence of solutions
The key result that will be applied in this section is the following:

Theorem 6.1 ([5], Ch. 9, Th. 1.5). Let f be a regular (i.e. det f ≠ 0) inde�nite
integral form in k ≥ 4 variables and let m ≠ 0 be an integer. Suppose that m is
represented by f over all ℤp, p prime. Thenm is represented by f over ℤ.

Clearly, as f is inde�nite and continuous over the reals, it has a real solution
form = ∆ as there exist di�erences in OA greater than ∆.
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Assume that p > 2 is a prime dividing n. If p ̸ |a − b, then a − b is a p-adic
unit and through p-adic row and column operations F becomes

⎛
⎜
⎜
⎝

a − b 0 0 0
0 a − b 0 0
0 0 ∗ ∗
0 0 ∗ ∗

⎞
⎟
⎟
⎠

Hence, F diagonalizes over ℤp with a unimodular component of rank at least
2. Thus, ifA is ordinary, it represents both 1 and -1 (see [5], Ch. 8, Lemma 3.4).
If A is characteristic, then 2|a − b, so after factoring out a common factor of 2
the matrix is still unimodular, hence f represents both 2 and −2.

If p ̸ |a − b or p ̸ |a + b, then due to the symmetry of F, the argument above
works. Assume that p|a − b, a + b. Then p|a, b. Assume that p also divides
one of c or d. Then it in fact divides both and A is a divisible class.

Thus, p ̸ |c or d. Assume p ̸ |d, then clearly the same holds for a ± d.
Diagonalizing F under the assumption that p ̸ |d, but p|a ± b, as described in
[7], Ch. 15, 4.4, means that a − b is replaced by a − b − 2d + a + b = 2(a − d),
which is not p-divisible. Now replace a − b by a − d in the original argument
above to see that f represents ±∆.

Thus, f represents both ∆ and−∆ inℤp for p ≥ 3. (p was assumed to divide
n, clearly if p ̸ |n, then the f represents ∆ and −∆ as it is unimodular overℤp.)

Consider now the case p = 2 and let A be ordinary. By Lemma 2.8, it is
always possible to choose a − b to be odd. Assume this has been done. Then F
can again be put in the form

⎛
⎜
⎜
⎝

a − b 0 0 0
0 a − b 0 0
0 0 ∗ ∗
0 0 ∗ ∗

⎞
⎟
⎟
⎠

If n is odd, then the argument given in [10] to prove the odd case of Theorem 1
applies here and f represents 1 and -1 in ℤ2.

If n is even, then nothing can be said about the lower right rank 2 component
of the form above. However, the split o� rank 2 part corresponds to g(x1, x2) =
u(x21 + x22) where u is a 2-adic unit. We now show that either u(x21 + x22) = 1
or u(x21 + x22) = −1 always has a solution. The unit can be written as u =
1 + � ⋅ 2 + � ⋅ 4 + u8, with �, � ∈ {0, 1} and 8|u8. For u, there are four possible
combinations of these initial terms:

(1) 1: In this case, setting x1 = 1 and x2 = 0, g(1, 0) ≡8 1.
(2) 1 + 2: Set x1 = 1 and x2 = 2, then g(1, 2) ≡8 −1.
(3) 1 + 2 + 4: In this case, setting x1 = 1 and x2 = 0, g(1, 0) ≡8 −1.
(4) 1 + 4 : Set x1 = 1 and x2 = 2, then g(1, 2) ≡8 1.

Applying Hensel’s Lemma (see [23], Ch. II, Cor 3) to g shows that f represents
1 or −1 in ℤ2. Theorem 6.1 now leads to the following.
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Lemma 6.2. Let A be primitive ordinary with A2 = −n < 0 and k = 3. Then
the quaternary quadratic form f of Theorem 5.1 represents either 1 or -1.

Consider now the case p = 2 and let A be characteristic. Lemma 2.8 shows
that n = 4k + 2, in particular 2|n, but 4 ̸ |n. Then a ± b is even, c, d odd. Thus,
the reduction process for F leads to the block matrix

⎛
⎜
⎜
⎝

a − b −d 0 0
−d a + b 0 0
0 0 ∗ ∗
0 0 ∗ ∗

⎞
⎟
⎟
⎠

.

In particular, over ℤ2, F does not have an orthogonal basis. Thus, recalling
that det f = n2, F splits as one of the following ([20], 93:11):

�Hi ⊕ 2�Hj or �Hi ⊕ 2� ⊕ 2�.

Here �, �, � ∈ ℤ2 are units, i, j ∈ {1, 2},

H1 = (0 1
1 0) andH2 = (2 1

1 2) .

In each case, the form represents 2 and−2. As before, Theorem 6.1 leads to the
following.

Lemma 6.3. Let A be primitive characteristic with A2 = −n < 0 and k = 3.
Then the quaternary quadratic form f of Theorem 5.1 represents either 2 or -2.

This completes the proof of Lemma 3.1 and thus also Theorem 1.1.

7. The case k = 2
Thus far, the case with k = 2 has been largely ignored, mostly because it is

known that Theorem 1.1 does not hold in this setting. Wall [25] showed that
the classes (1, 4, 1) and (3, 4, 3) lie in distinct orbits. The argument looks at
the orthogonal complement of the two vectors and �nds that each contains a
unique vector of self-intersection 1, one ordinary and one characteristic. Hence
no map in D(M) takes these into each other.

In the following, it is shown that whenever n ≥ 16 is a perfect square there
will be distinct ordinary and characteristic orbits.

As before, consider a family of transformations:

S(�)(a, bj, bk) = (STj)�(a, bj, bk) =

= (a + 2�2(a − bk) + 2�bj, bk + 2�2(a − bk) + 2�bj, bj + 2�(a − bk)).
Note that R(�, �) is essentially this map, mapping bi to−bi. Thus this family of
maps in k = 2 is present in k = 3 along the lines bi(�, �) = const in the map
R(�, �). This parabola has its vertex at �0 = − bj

2(a−bk)
. If a − bk = −∆, then

there is again a unique terminal class.
It follows, that once again there is an equivalence for square freem:
(1) A = (a, b, c) is D(M)-equivalent to a class with di�erencem.
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(2) The system of Diophantine equations

z2 = x2 + y2, az − bx − cy = m

has a solution (z, x, y) ∈ ℤ3.
For Pythagorean triples one has a general description, plugging this in here

leads to the equivalent binary quadratic form for A = (a, b, c)

f(�, �) = (a − c)�2 − 2b�� + (a + c)�2.

The discriminant of this form is D = 4b2 − 4(a − c)(a + c) = −4A2. Thus the
form is inde�nite ifA2 < 0, and de�nite ifA2 > 0. If n = �2, then the following
is true:

Theorem 7.1 ([4], Theorem 1.3.1). Let f be an integral binary quadratic form.
Then the following statements are equivalent:

(1) The discriminant of f is a perfect square.
(2) The form f is a product of two integral binary forms.
(3) There is (�, �) ∈ ℤ2 with (�, �) ≠ (0, 0) and f(�, �) = 0.

Thus, the last point means that there exists a class in the orbit of OA with
di�erence 0. This has the form (a, �, a). Using the map S(t), one can ensure
that a ≤ �.

Note that f is dependent on the order of b, c, yet the discriminant is not.
Thus consider the forms associated to (a, �, a) and (a, a, �) separately. In each
case, the Theorem implies that f factors over ℤ. The results are

(a, �, a) → f1(�, �) = 2y(−�� + a�)

and
(a, a, �) → f2(�, �) = (� − �)[(a − �)� − (a + �)�]

IfA is ordinary, then f1 = 1 has no solution in the integers. For f2, �−� = ±1,
which, after considering all permutations, only leads to the solution a = � − 1.
Thus only the class (� −1, �, � −1) has an orbit with di�erence 1. Note that this
is precisely the class (3, 4, 3) of Wall.

Assuming thatA is characteristic, �must be odd. Then f1 = ±2 implies that
y = ±1 and a = � − 1, which is even. From f2 = ±2 it follows that a = � − 2.
So only one of the characteristic orbits contains a class with di�erence of 2.

Lemma 7.2. Assume n ≥ 16 is a perfect square and A is primitive. Then there
exist at least two distinct D(M)-orbits of primitive ordinary classes and, if they
exist, at least two distinct D(M)-orbits of primitive characteristic classes.

If n is not a perfect square, the situation becomesmoremuddled. On the one
side there is the D(M) action. On the other, binary quadratic forms also admit
a group action and a classi�cation up to equivalence, see [4] for details. In fact,
writing (a, b, c) for the homology class and [a − c, −2b, a + c] for the binary
quadratic form, S(�)(a, b, c) leads to a family of forms

[a − c, −2(b + 2�(a − c)), a + c + 4�2(a − c) + 4�b].
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On the other side, the group generated by

T = (1 1
0 1)

acts on forms. This action on the form [a − c, −2b, a + c] produces

[a − c, −2b + 2�(a − c), a + c − 2b� + �2(a − c)]

These are remarkably similar, in fact if � = −2� they coincide. However, for
odd � there does not appear to be a corresponding D(M) action.

Under the action of elementary transformations, (a, b, c) and (a, c, b) are
equivalent. However, the equivalence of forms has no action that appears to
take [a − c, −2b, a + c] to [a − b,−2c, a + b].

Due to this non-alignment of equivalences and the work needed to check if
a form represents ∆ over the integers (see Ch. 6, [4]), there does not appear to
be any appreciable advantage of this method over simply calculating all simpli-
�ed classes and manually checking for equivalence whenever n is not a perfect
square.

8. Minimal genus
The minimal genus is the smallest possible genus gA of a smooth represen-

tative of the class A ∈ H2(M,ℤ). If A has minimal genus gA, then every class
D(M)-equivalent to A does as well. Therefore, it is possible to determine the
minimal genus for certain simpli�ed orbits using Theorem 1.1 and Cor. 3.2,.

8.1. Primitive ordinary classes. In the primitive ordinary case, the classes
(�, �+1) and (�−1, �) are both represented by complex or symplectic curves for
some choice of complex or symplectic structure on ℂP2#ℂP2. Note that these
structures can be chosen to be compatible with the orientation of ℂP2#ℂP2.

Now perform blow-ups (in the correct category) at appropriate points on
or away from these curves. By Corollary 1.2, [22], these curves minimize the
genus in their class. Hence the classes (�, � + 1, 0, ..., 0) (n = 2� + 1 odd) or
(� − 1, �, 1, 0, .., 0) (n = 2� even) both have minimal genus gA = 0. This com-
pletes the proof of Lemma 1.2.

Observe that these classes are equivalent to the class (−a,−(a + 1), 1, ..., 1),
compare with the results in Section 4, [28] and Section 3, [6].

Remark: Using results on symplectic genus in [17], it is easy to see that no
divisible ordinary class is represented by a symplectic surface.

8.2. Primitive characteristic classes. Cor. 3.2 shows that every primitive
characteristic class with a simpli�ed class in OA is equivalent to (2
 − 1, 2
 +
1, 1, ..., 1) for 
 ≥ 0. The minimal genus in two cases is well known: If 
 = 0,
the minimal genus is 0; when 
 = 1, the minimal genus is 1. Hence, assume in
the following that 
 ≥ 2.

Lemma 8.1. Let A = (2
 − 1, 2
 + 1, 1, ..., 1) ∈ ℂP2#kℂP2.
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(1) If 1 ≤ k ≤ 2
 − 1, then the minimal genus of any embedded surface
representing A is bounded above by 2
 − k.

(2) If 
 is odd and k ≥ 2
 − 1, then the minimal genus of any embedded
surface representing A is 1.

(3) If 
 is even and k ≥ 2
, then the minimal genus of any embedded surface
representing A is 0.

Proof. Consider �rst the class (2
+�, 2
+�+2) ∈ H2(ℂP2#ℂP2, ℤ). Applying
Theorem 2, [16], see also [22], the minimal genus of this class is

1
2((2
 + � + 1)(2
 + �) − (2
 + �)(2
 + � − 1)) = 2
 + �

The minimal genus is realized by a non-singular holomorphic curve for some
complex structure on ℂP2#ℂP2 which is not orientation-compatible with the
standard orientation.

Hence, if k = 1 and � = −1, the classA = (2
−1, 2
+1) hasminimal genus
2
 − 1.

Assume that 2 ≤ k ≤ 2
 − 1. For k = 2, the class (2
 − 1, 2
 + 1, 1) is D(M)-
equivalent to (2
 − 3, 2
 − 1, 3) via the map S(1)(2
 − 1, 1, 2
 + 1). This class is
representable by an embedded curve with genus 2
 − 2 obtained by connected
sum of a torus in the class 3E2 and the curve of genus 2
 − 3 in ℂP2#ℂP2.

Themap S(1) = R(1, 1), as remarked in Section 7, hence repeated application
of this map to replace the 1’s by 3’s while reducing the leading term as much as
possible shows that

(2
 − 1, 2
 + 1, 1, ..., 1
⏟⏟⏟
k−1

) ≃ (2
 − 3, 2
 − 1, 3, 1, ...., 1
⏟⏟⏟
k−2

) ≃

(2
 − 5, 2
 − 3, 3, 3, 1, ..., 1
⏟⏟⏟
k−3

) ≃ ... ≃ (2(
 − k + 1) − 1, 2(
 − k + 1) + 1, 3, ..., 3
⏟⏟⏟
k−1

) =

= (2(
 − k) + 1, 2(
 − k) + 3, 3, ..., 3
⏟⏟⏟
k−1

),

which has an embedded representative of genus 2
 − 2k + 1 + k − 1 = 2
 − k
generated by connected sums of k−1 tori with the representative of (2(
−k)+
1, 2(
 − k) + 3). Thus, for k ≤ 
 the result is proven.

Note that if k = 
, the class thus obtained is (1, 3, ..., 3), hence the class A is
representable by k-tubed tori and the minimal genus is bounded above by 
.

In what follows, Theorem 1.1 will be applied repeatedly without explicit ref-
erence, it allows us to determine an equivalent class to A simply by numerical
calculation. In order to produce examples for k > 
, a construction by Acosta
[1] (see also [12], [2]) is repeated and expanded.

∙ Consider the class (1, 3) ∈ H2(ℂP2#ℂP2, ℤ). Represent the class H ∈
ℂP2 by two lines and one line with opposite orientation. These three
lines can be chosen to meet transitively in three distinct points, two
with negative intersection, one with positive intersection. Smooth the
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negative points to produce an immersed sphere with a single positive
self-intersection. The class 3E ∈ ℂP2 is represented by three lines, all
meeting transitively in three distinct negative points. Smoothing one
of these and connect summing the resulting curve with the curve in
ℂP2 at the two singular points with opposite orientation produces an
immersed sphere with a single negative self-intersection representing
the class (1, 3) ∈ H2(ℂP2#ℂP2, ℤ).

∙ Acosta performs a similar construction to produce a representative of
(1, 3) ∈ H2(ℂP2#ℂP2, ℤ) consisting of two spheres, intersecting in a
positive and a negative point. Either by changing orientation on the am-
bient manifold or by mimicking this construction, it can be shown that
the class (1, 3) ∈ H2(ℂP2#ℂP2, ℤ) is also represented by two spheres
meeting in two points, one positive and one negative.

These two exampleswill form the building blocks of the constructions fork > 
.
If 
 < k ≤ 2
 − 1, then A ≃ (1, 3, ..., 3

⏟⏟⏟



, 1, ..., 1
⏟⏟⏟
k−


). Reorganize this as

(1, 3, 1, 3, ..., 1, 3
⏟⎴⎴⏟⎴⎴⏟
k−
−1 pairs

, 3, .., 3
⏟⏟⏟
2
−k−1

)

and produce an embedded representative as follows: The �rst (1, 3)-pair is rep-
resented by an immersed spherewith a single negative intersection point. Form
the connected sum at this intersection point with the positive intersection point
of the representative of the secondpair (1, 3)which is formedout of two spheres.
This again produces an immersed spherewith a single negative self-intersection
point, but now representing the class (1, 3, 1, 3) ∈ H2(ℂP2#3ℂP2, ℤ). Continue
this procedure until an immersed sphere with a single negative intersection
point using all of the k − 
 − 1 pairs above has been produced. Smoothing the
intersection point produces an embedded torus. The remaining (3, ..., 3) have
minimal genus (see [21]) 2
 − k − 1. Thus forming the connected sum of these
two curves produces an embedded curve representingA of genus 2
−k. When
k = 2
 − 1, this produces a torus. This completes the proof for k ≤ 2
 − 1.

Assume now that k > 2
−1. A classical result of Kervaire andMilnor ([12],
[2]) states that for a characteristic class A to be representable by a sphere, it
must hold that

A2 ≡16 �.

This implies, that if 
 is odd, then the minimal genus is at least 1. Thus, in this
case, when k ≥ 2
 − 1 this minimal genus is achieved.
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Finally, assume that 
 is even and k > 2
 − 1. Then the minimal genus is
either 0 or 1. The class A ≃ (1, 3, ..., 3

⏟⏟⏟



, 1, ..., 1
⏟⏟⏟
k−


) can now be reorganized as

(1, 3, 1, 3, ..., 1, 3
⏟⎴⎴⏟⎴⎴⏟

−1 pairs

, 1, .., 1
⏟⏟⏟
k−2
+1

).

The class (3, 1, 3, ..., 1, 3) ∈ H2(#2
−1ℂP2, ℤ) can be represented by an embed-
ded torus by connect summing along opposite oriented intersection points of
the two sphere representatives of (1, 3), ultimately producing a representative
consisting of two spheres intersecting in two points, one positive and one nega-
tive, but now representing the class (1, 3, ..., 1, 3). This can be connect summed
with a representative of the class 3E1which is an immersed spherewith a single
negative self-intersection point to produce a curve which can be smoothed to
make an embedded torus.

This class has self-intersection −9
 − 
 + 1 = −8
 − 2
 + 1 ≡16 −2
 +
1 = �. Thus a result of Yasuhara (Connecting Lemma III, [27]) states that the
class (1, 3, 1, 3, ..., 1, 3, 1) ∈ H2(ℂP2#2
ℂP2, ℤ) is represented by an embedded
sphere.

�

This result can be viewed as a stabilization result, eventually every charac-
teristic class will have the smallest possible minimal genus.

Remark:
(1) It seems plausible that theminimal genus is in fact 2
−k for k ≤ 2
−1.
(2) The minimal genus of characteristic classes can be estimated from be-

low using results in [1],[3] and [9]: If n = 8
+k−1 , then gA ≥ 
−k+2.
In particular, if A is to be represented by a sphere, then 
 must be even
and thus

k ≥ 
 + 2 = 2(� + 1).
For example, as 
 ≥ 2, this gives the following estimates


 = 2 ∶ k ≥ 4; 
 = 4 ∶ k ≥ 6; and 
 = 6 ∶ k ≥ 8

under the restriction that k ≤ 9. Applying Lemma 8.1, this leaves a gap
of classes for which no determination can be made:


 = 2 ∶ k = 4; 
 = 4 ∶ 6 ≤ k ≤ 8; and 
 = 6 ∶ k ≥ 8

References
[1] Acosta, Daniel J. A Furuta-like inequality for Spin orbifolds and theminimal genus prob-

lem. Topology Appl. 114 (2001), no. 1, 91–106. MR1830326 (2002m:57034), Zbl 0983.57027,
doi: 10.1016/S0166-8641(00)00030-4. 1188, 1190

[2] Boardman, J. Michael. Some embeddings of 2-spheres in 4-manifolds. Proc. Cambridge
Philos. Soc. 60 (1964), 354–356. MR0160241 (28 #3455), Zbl 0127.39102. 1188, 1189

http://www.ams.org/mathscinet-getitem?mr=1830326
http://www.emis.de/cgi-bin/MATH-item?0983.57027
http://dx.doi.org/10.1016/S0166-8641(00)00030-4
http://www.ams.org/mathscinet-getitem?mr=0160241
http://www.emis.de/cgi-bin/MATH-item?0127.39102


MINIMAL GENUS AND SIMPLIFIED CLASSES IN RATIONAL MANIFOLDS 1191

[3] Bryan, Jim. Seiberg–Witten theory and ℤ∕2p actions on spin 4-manifolds.Math. Res. Lett.
5 (1998), no. 1-2, 165–183. MR1617929 (99f:57036), Zbl 1002.57065, arXiv:dg-ga/9704010,
doi: 10.4310/MRL.1998.v5.n2.a3. 1190

[4] Buchmann, Johannes; Vollmer, Ulrich. Binary quadratic forms. An algorithmic ap-
proach. Algorithms and Computation in Mathematics, 20. Springer, Berlin, 2007. xiv+318
pp. ISBN: 978-3-540-46367-2; 3-540-46367-4. MR2300780 (2008b:11046), Zbl 1125.11028,
doi: 10.1007/978-3-540-46368-9. 1186, 1187

[5] Cassels, J. W. S. Rational quadratic forms. London Mathematical Society Monographs,
13. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978.
xvi+413 pp. ISBN: 0-12-163260-1. MR0522835 (80m:10019), Zbl 0395.10029. 1183, 1184

[6] Chen, Weimin. Finite group actions on symplectic Calabi–Yau 4-manifolds with b1 > 0. J.
Gökova Geom. Topol. GGT 14 (2020), 1–54. MR4206325, Zbl 1475.57025, arXiv:2002.12849.
1187

[7] Conway, John H.; Sloane, Neil J. A. Sphere packings, lattices and groups. Third edi-
tion. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A.
M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. Grundlehren der Mathematischen
Wissenschaften, 290. Springer-Verlag, New York, 1999. lxxiv+703 pp. ISBN: 0-387-98585-9.
MR1662447 (2000b:11077), Zbl 0915.52003, doi: 10.1007/978-1-4757-6568-7. 1184

[8] Friedman, Robert; Morgan, JohnW. On the di�eomorphism types of certain algebraic
surfaces. II. J. Di�erential Geom. 27 (1988), no. 3, 371–398. MR0940111 (89d:57047), Zbl
0669.57017, doi: 10.4310/jdg/1214442001. 1175

[9] Hamilton, Mark J. D. Homology classes of negative square and embedded surfaces in 4-
manifolds. Bull. Lond. Math. Soc. 45 (2013), no. 6, 1221–1226. MR3138489, Zbl 1306.57021,
arXiv:1301.3733, doi: 10.1112/blms/bdt050. 1190

[10] James, Donald G. Orthogonal decompositions of inde�nite quadratic forms. Quadratic
forms and real algebraic geometry (Corvallis, OR, 1986).RockyMountain J.Math. 19 (1989),
no. 3, 735–740. MR1043245 (91b:11032), Zbl 0705.11016, doi: 10.1216/RMJ-1989-19-3-735.
1183, 1184

[11] Kac, Victor G. In�nite-dimensional Lie algebras. Third edition. Cambridge University
Press, Cambridge, 1990. xxii+400 pp. ISBN: 0-521-37215-1; 0-521-46693-8. MR1104219
(92k:17038), Zbl 0716.17022, doi: 10.1017/CBO9780511626234. 1173, 1175, 1176

[12] Kervaire, Michel A.; Milnor, John W. On 2-spheres in 4-manifolds. Proc. Nat.
Acad. Sci. U.S.A. 47 (1961), 1651–1657. MR0133134 (24 #A2968), Zbl 0107.40303,
doi: 10.1073/pnas.47.10.1651. 1188, 1189

[13] Kikuchi, Kazunori. Representing positive homology classes of ℂP2#2ℂP2 and
ℂP2#3ℂP2. Proc. Amer. Math. Soc. 117 (1993), no. 3, 861–869. MR1131036 (93d:57065), Zbl
0778.57012, doi: 10.2307/2159157.

[14] Lawson, Terry. Smooth embeddings of 2-spheres in 4-manifolds. Exposition. Math. 10
(1992), no. 4, 289–309. MR1184697 (93m:57041), Zbl 0764.57020. 1177

[15] Li, Bang-He. Representing nonnegative homology classes ofℂP2#nℂP2 byminimal genus
smooth embeddings. Trans. Amer. Math. Soc. 352 (2000), no. 9, 4155–4169. MR1637082
(2000m:57052), Zbl 0947.57034, doi: 10.1090/S0002-9947-99-02422-8. 1176

[16] Li, Bang-He; Li, Tian-Jun. Minimal genus smooth embeddings in S2×S2 andℂP2#nℂP2
with n ≤ 8. Topology 37 (1998), no. 3, 575–594. MR1604887 (99b:57059), Zbl 0899.57022,
doi: 10.1016/S0040-9383(97)00042-6. 1188

[17] Li, Bang-He; Li, Tian-Jun. Symplectic genus, minimal genus and di�eomorphisms.
Asian J. Math. 6 (2002), no. 1, 123–144. MR1902650 (2003c:57027), Zbl 1008.57024,
arXiv:math/0108227, doi: 10.4310/AJM.2002.v6.n1.a7. 1175, 1187

[18] Li, Bang-He; Li, Tian-Jun. Smooth minimal genera for small negative classes in

ℂℙ2#nℂℙ
2
with n ≤ 9. Topology Appl. 132 (2003), no. 1, 1-15. MR1989595 (2004e:57036),

Zbl 1028.57033, doi: 10.1016/S0166-8641(02)00357-7. 1175, 1176, 1177

http://www.ams.org/mathscinet-getitem?mr=1617929
http://www.emis.de/cgi-bin/MATH-item?1002.57065
http://arXiv.org/abs/dg-ga/9704010
http://dx.doi.org/10.4310/MRL.1998.v5.n2.a3
http://www.ams.org/mathscinet-getitem?mr=2300780
http://www.emis.de/cgi-bin/MATH-item?1125.11028
http://dx.doi.org/10.1007/978-3-540-46368-9
http://www.ams.org/mathscinet-getitem?mr=0522835
http://www.emis.de/cgi-bin/MATH-item?0395.10029
http://www.ams.org/mathscinet-getitem?mr=4206325
http://www.emis.de/cgi-bin/MATH-item?1475.57025
http://arXiv.org/abs/2002.12849
http://www.ams.org/mathscinet-getitem?mr=1662447
http://www.emis.de/cgi-bin/MATH-item?0915.52003
http://dx.doi.org/10.1007/978-1-4757-6568-7
http://www.ams.org/mathscinet-getitem?mr=0940111
http://www.emis.de/cgi-bin/MATH-item?0669.57017
http://www.emis.de/cgi-bin/MATH-item?0669.57017
http://dx.doi.org/10.4310/jdg/1214442001
http://www.ams.org/mathscinet-getitem?mr=3138489
http://www.emis.de/cgi-bin/MATH-item?1306.57021
http://arXiv.org/abs/1301.3733
http://dx.doi.org/10.1112/blms/bdt050
http://www.ams.org/mathscinet-getitem?mr=1043245
http://www.emis.de/cgi-bin/MATH-item?0705.11016
http://dx.doi.org/10.1216/RMJ-1989-19-3-735
http://www.ams.org/mathscinet-getitem?mr=1104219
http://www.emis.de/cgi-bin/MATH-item?0716.17022
http://dx.doi.org/10.1017/CBO9780511626234
http://www.ams.org/mathscinet-getitem?mr=0133134
http://www.emis.de/cgi-bin/MATH-item?0107.40303
http://dx.doi.org/10.1073/pnas.47.10.1651
http://www.ams.org/mathscinet-getitem?mr=1131036
http://www.emis.de/cgi-bin/MATH-item?0778.57012
http://www.emis.de/cgi-bin/MATH-item?0778.57012
http://dx.doi.org/10.2307/2159157
http://www.ams.org/mathscinet-getitem?mr=1184697
http://www.emis.de/cgi-bin/MATH-item?0764.57020
http://www.ams.org/mathscinet-getitem?mr=1637082
http://www.emis.de/cgi-bin/MATH-item?0947.57034
http://dx.doi.org/10.1090/S0002-9947-99-02422-8
http://www.ams.org/mathscinet-getitem?mr=1604887
http://www.emis.de/cgi-bin/MATH-item?0899.57022
http://dx.doi.org/10.1016/S0040-9383(97)00042-6
http://www.ams.org/mathscinet-getitem?mr=1902650
http://www.emis.de/cgi-bin/MATH-item?1008.57024
http://arXiv.org/abs/math/0108227
http://dx.doi.org/10.4310/AJM.2002.v6.n1.a7
http://www.ams.org/mathscinet-getitem?mr=1989595
http://www.emis.de/cgi-bin/MATH-item?1028.57033
http://dx.doi.org/10.1016/S0166-8641(02)00357-7


1192 JOSEF G. DORFMEISTER

[19] Li, Bang-He; Li, Tian-Jun. On the di�eomorphism groups of rational and ruled 4-
manifolds. J. Math. Kyoto Univ. 46 (2006), no. 3, 583–593. MR2311360 (2008e:57032), Zbl
1139.57032, doi: 10.1215/kjm/1250281750. 1175

[20] O’Meara, O. T. Introduction to quadratic forms. Die Grundlehren der mathematischen
Wissenschaften, Band 117. Academic Press, Inc., Publishers, New York; Springer-Verlag,
Berlin-Göttingen-Heidelberg, 1963. xi+342 pp.MR0152507 (27 #2485), Zbl 0107.03301. 1185

[21] Rohlin, Vladimir A. Two-dimensional submanifolds of four-dimensional manifolds.
Funkcional. Anal. i Priložen. 5 (1971), no. 1, 48–60.MR0298684 (45 #7733), Zbl 0268.57019,
doi: 10.1007/BF01075846. 1189

[22] Ruberman, Daniel. The minimal genus of an embedded surface of non-negative square
in a rational surface. Turkish J. Math. 20 (1996), no. 1, 129–133. MR1392668 (97k:57036),
Zbl 0870.57025. 1187, 1188

[23] Serre, Jean-Pierre A course in arithmetic. Graduate Texts in Mathematics, 7. Springer-
Verlag, New York-Heidelberg, 1973. viii+115 pp. MR0344216 (49 #8956), Zbl 0256.12001.
1184

[24] Spira, Robert. The Diophantine equation x2 + y2 + z2 = m2. Amer. Math. Monthly 69
(1962), 360–364. MR0139574 (25 #3006), Zbl 0105.03602, doi: 10.2307/2312125.

[25] Wall, C. T. C. On the orthogonal groups of unimodular quadratic forms. II. J. Reine Angew.
Math. 213 (1963/64), 122–136. MR0155798 (27 #5732), Zbl 0135.08802. 1173, 1175, 1177,
1185

[26] Wall, C. T. C. Di�eomorphisms of 4-manifolds. J. London Math. Soc. 39 (1964), 131–140.
MR0163323 (29 #626), Zbl 0121.18101, doi: 10.1112/jlms/s1-39.1.131. 1177

[27] Yasuhara, Akira. Connecting lemmas and representing homology classes of simply con-
nected 4-manifolds. Tokyo J. Math. 19 (1996), no. 1, 245–261. MR1391941 (97g:57027), Zbl
0865.57034, doi: 10.3836/tjm/1270043232. 1190

[28] Zhang, Weiyi. The curve cone of almost complex 4-manifolds. Proc. Lond. Math.
Soc. (3) 115 (2017), no. 6, 1227–1275. MR3741851, Zbl 1393.32011, arXiv:1501.06744,
doi: 10.1112/plms.12062. 1187

[29] Zhao, Xu’an; Gao, Hongzhu; Qiu, Huaidong. The minimal genus problem in ra-
tional surfaces ℂP2#nℂP2. Sci. China Ser. A 49 (2006), no. 9, 1275–1283. MR2284210
(2007j:14066), Zbl 1112.57009, doi: 10.1007/s11425-006-2019-z. 1174, 1175, 1176, 1180

(Josef G. Dorfmeister) Department of Mathematics, North Dakota State University,
Fargo, ND 58102, USA
josef.dorfmeister@ndsu.edu

This paper is available via http://nyjm.albany.edu/j/2022/28-50.html.

http://www.ams.org/mathscinet-getitem?mr=2311360
http://www.emis.de/cgi-bin/MATH-item?1139.57032
http://www.emis.de/cgi-bin/MATH-item?1139.57032
http://dx.doi.org/10.1215/kjm/1250281750
http://www.ams.org/mathscinet-getitem?mr=0152507
http://www.emis.de/cgi-bin/MATH-item?0107.03301
http://www.ams.org/mathscinet-getitem?mr=0298684
http://www.emis.de/cgi-bin/MATH-item?0268.57019
http://dx.doi.org/10.1007/BF01075846
http://www.ams.org/mathscinet-getitem?mr=1392668
http://www.emis.de/cgi-bin/MATH-item?0870.57025
http://www.ams.org/mathscinet-getitem?mr=0344216
http://www.emis.de/cgi-bin/MATH-item?0256.12001
http://www.ams.org/mathscinet-getitem?mr=0139574
http://www.emis.de/cgi-bin/MATH-item?0105.03602
http://dx.doi.org/10.2307/2312125
http://www.ams.org/mathscinet-getitem?mr=0155798
http://www.emis.de/cgi-bin/MATH-item?0135.08802
http://www.ams.org/mathscinet-getitem?mr=0163323
http://www.emis.de/cgi-bin/MATH-item?0121.18101
http://dx.doi.org/10.1112/jlms/s1-39.1.131
http://www.ams.org/mathscinet-getitem?mr=1391941
http://www.emis.de/cgi-bin/MATH-item?0865.57034
http://www.emis.de/cgi-bin/MATH-item?0865.57034
http://dx.doi.org/10.3836/tjm/1270043232
http://www.ams.org/mathscinet-getitem?mr=3741851
http://www.emis.de/cgi-bin/MATH-item?1393.32011
http://arXiv.org/abs/1501.06744
http://dx.doi.org/10.1112/plms.12062
http://www.ams.org/mathscinet-getitem?mr=2284210
http://www.emis.de/cgi-bin/MATH-item?1112.57009
http://dx.doi.org/10.1007/s11425-006-2019-z
mailto:josef.dorfmeister@ndsu.edu
http://nyjm.albany.edu/j/2022/28-50.html

	1. Introduction
	2. Notation
	3. The case k4
	4. Reduction to a difference
	5. Equivalence to Diophantine equation
	6. Existence of solutions
	7. The case k=2
	8. Minimal genus
	8.1.  Primitive ordinary classes
	8.2.  Primitive characteristic classes

	References

