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Generalization of the excess area and its
geometric interpretation
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Abstract. The image area of the unit disk under (z⋅ℎ)(z) exceeds the image
area under the holomorphic function ℎ(z). In his book, Hermitian Analysis,
J. D’Angelo precisely determines how this excess image area of the unit disk,
Area

(
(z ⋅ ℎ)(D)

)
− Area

(
ℎ(D)

)
, grows. In our work, we replace the multi-

plier zwith a �nite Blaschke product and observe that the excess area growth
is a solution for the Dirichlet problem on the unit disk. We replace holomor-
phic functions with harmonic ones in the formulation and observe a new
identity. Furthermore, we show that the excess area growth idea can also be
implemented to some other domains conformal to the unit disk.
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1. Introduction
The Lusin’s Area Integral formulation states that for ℎ holomorphic and

ℎ′ ≠ 0 on Ω ⊆ ℂ one can observe Area(ℎ(Ω)) = ∫Ω
||||ℎ
′(z)||||

2 dA(z). It is an
essential tool in studying the boundary behaviors of complex maps, see [11,
Section 5.1]. If ℎ ∶ Ω → ℂ is m-to-one the above area formula still holds, [5].
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In general, themultiplicity varies frompoint to point for a complex valued func-
tion. However, for a complex analytic function, multiplicity is locally constant,
[1]. This property provides the convenience to justify the de�nition of area of
ℎ(Ω) by breaking Ω into subsets on which ℎ has constant multiplicity, [5].

On D, since |z| < 1, |zℎ(z)| = |z||ℎ(z)| ≤ |ℎ(z)|. However, the area of
the image of D under zℎ exceeds the area of the image of D under ℎ, unless ℎ
is identically zero, see [5, proofs of Proposition 4.2 and Corollary 4.2]. In fact,
for certain holomorphic functions ℎ on D, one can explain and determine the
area growth precisely by using the relationship between the L2-norm of ℎ and
the l2-norm of the Taylor coe�cients of ℎ as �∑∞

n=0 |ℎn|
2, or by calculating it

through a geometric argument on the unit circle as 1
2
∫ 2�0 |ℎ(ei�)|2d�.

Let L2(Ω) be the space of square integrable functions onΩ, with inner prod-
uct

⟨
f, g

⟩
L2(Ω) = ∫Ω f(z)g(z)dA(z). LetW1(Ω) (Sobolev space) be the space of

u ∈ L2(Ω) such that )u
)z

∈ L2(Ω). The inner product for W1(Ω) is de�ned as
⟨
f, g

⟩
W1(Ω) =

⟨
f, g

⟩
L2(Ω)+

⟨
)f∕)z, )g∕)z

⟩
L2(Ω), for an elementary introduction

to Sobolev spaces see [5, Section 8 and the rest of Chapter 3] or [8, Chapter 6].
LetO(Ω) denotes the space of holomorphic functions onΩ, L2a(Ω) be the space
of square integrable holomorphic functions onΩ, known as Bergman space on
Ω, andW1

a(Ω) be the space of f ∈ L2a(Ω) such that )f
)z
∈ L2a(Ω). The subspaces

L2a(Ω),W1
a(Ω), andW1(Ω) are closed in L2(Ω), see [4, p. 70-71] or [10, Chapter

14].
For ℎ ∶ Ω → ℂ holomorphic function de�ne A(ℎ) ∶= Area(ℎ(Ω)), and note

that Area(ℎ(Ω)) =‖‖‖‖ℎ
′‖‖‖‖
2
L2(Ω) for ℎ ∈ W1

a(Ω).
A twice di�erentiable function u(x, y) is known as harmonic if ∆u(x, y) =

)2u(x,y)
)x2

+ )2u(x,y)
)y2

= 0. They are continuous solutions to the Laplace equation. A
twice di�erentiable function u(x, y) is known as subharmonic if ∆u(x, y) ≥ 0.
Formore on harmonic and subharmonic functions see for example [10, Chapter
7].

A Finite Blaschke product is a special function used for manipulating ze-
ros on the unit disk. It is of the form

B(z) = ei�
n∏

j=1
(faj (z))

mj ,

wheremj is the multiplicity of the zero aj ∈ D, ei� is a point on the unit circle,
and faj (z) =

z−aj
1−ajz

is known as Blaschke factor.

Some properties of a �nite Blaschke product and a Blaschke factor are that
B, faj ∈ O(D), B and faj map bD to bD, faj is a one-to-one, so B is (∑n

j=1mj)-
to-one on D, and f−1aj = f−aj . For more on the interesting properties of a �nite
Blaschke Product and their use see the book [6] and the survey [9].
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In the computations of this work we use di�erential forms notation, dz =
dx + idy and dz = dx − idy. For ℎ ∈ C1(Ω), we write )ℎ for )ℎ

)z
dz and )ℎ for

)ℎ
)z
dz. If ℎ is a holomorphic function on Ω, )ℎ = 0 and dℎ = () + ))ℎ = )ℎ =

)ℎ
)z
dz = ℎ′dz.
The area form on the complex plane is

dx ∧ dy = (−1)
2i dz ∧ dz = i

2dz ∧ dz.

The area di�erence between the image of the area of the unit disk under zℎ
andunderℎ ∈ W1

a(D), Area
(
zℎ(D)

)
−Area

(
ℎ(D)

)
, is geometrically interpreted

as the average value of the module-square of ℎ on the unit circle times �, see
Theorem 1.1.

When ℎ extends continuously to the circle, let Sℎ to represent its restriction
to the unit circle. Then, for ℎ ∈ W1

a(D), we have ℎ(z) =
∑∞

n=0 ℎnz
n on D and

‖Sℎ‖2L2(bD) =
1
2� ∫

2�

0
|ℎ(ei�)|2d� = 1

2�

∞∑

n=0
|ℎn|2 ∫

2�

0
|ein�|2d� =

∞∑

n=0
|ℎn|2.

The measure used on the unit circle is the normalized one: d�
2�
.

Theorem 1.1 ([5]). Let Sℎ be the restriction of ℎ to the unit circle for ℎ ∈ W1
a(D).

Then Sℎ is square integrable on the unit circle and
‖‖‖‖‖‖‖‖
)(zℎ)
)z

‖‖‖‖‖‖‖‖

2

L2(D)
−

‖‖‖‖‖‖‖
)ℎ
)z

‖‖‖‖‖‖‖

2

L2(D)
= �‖Sℎ‖2L2(bD) , for ℎ ∈ W1

a(D). (1)

Theorem 1.1 in [5, Chapter 4, Section 2] is proved with two di�erent ap-
proaches. One is by using the inner points of the domain. More speci�cally,
by utilizing the relationship between the L2-norm of ℎ and the l2-norm of the
Taylor coe�cients of ℎ. The second approach uses Stokes’ Theorem to move
the calculations from the inner points of the unit disk to the unit circle. The
geometric approach requires ℎ ∈ W1

a(D) to be also one time continuously dif-
ferentiable on the unit circle.

In this paper, we study the concept of excess area growth formulated in The-
orem 1.1. In section 2, we present one of the main results Theorem 2.1, pre-
cisely determining how the excess area grows when the multiplier z in (1) is re-
placed with a function f, holomorphic on a neighborhood of the closure of the
unit disk, mapping the unit circle to itself. Then, applying the modi�ed excess
area growth formulation, we observe that the excess area growth generatedwith
the multiplier function f is comparable to that generated with the function z.
Moreover, we include another result, Theorem 2.7, on the unit disk, by keeping
themultiplier function as zwe replace holomorphic functions ℎ ∈ W1

a(D)with
harmonic functions u ∈ W1(D) in the area di�erence identity (1). We observe
that the excess area growth with holomorphic functions ℎ,‖Sℎ‖2L2(D), is a part
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of the new identity (14). In section 3, we provide the proof of Theorem 2.1. We
manage to use D’Angelo’s geometric approach. We also provide an argument
about how one can deduce the result to only ℎ ∈ W1

a(D) from ℎ ∈ W1
a(D)with

the extra smoothness requirement on the unit circle, Lemma 3.1. In section 4,
we present the proof of Theorem 2.7. In the proof, to show that a harmonic
function u ∈ W1(D) is a real part of a holomorphic function ℎ ∈ W1

a(D) we
make use of the observation that if g ∈ C1(D) and ∇g ∈ L2(D) then g ∈ L2(D),
see Lemma 4.1. In Section 5, we move the area di�erence formulation (1) onto
suitable domains conformal to the unit disk. In the last section, we propose a
future direction in this context.

2. Main results with some observations
In Theorem 2.1, we precisely determine how the excess area growswithmul-

tiplier function f holomorphic on a neighborhood of the closed unit disk that
maps the unit circle to the unit circle. Such a function f can always be repre-
sented with a Finite Blaschke Product, [6, Lemma 3.2] and [9]. This represen-
tation brings convenience into the calculations. Inspired by D’Angelo’s work
in [5] we use a similar geometric argument to prove our main result; we make
use of Stokes’ Theorem to move the calculations from D to bD. However, mov-
ing the calculations from the unit disk to the unit circle requires ℎ′ to extend
continuously to the circle for ℎ ∈ W1

a(D). In the proof, we use a standard lim-
iting argument Lemma 3.1 to infer the result for ℎ ∈ W1

a(D) from the work
when ℎ ∈ W1

a(D) is having a continuous �rst derivative on the unit circle, see
section 3.

Theorem 2.1. For ℎ ∈ W1
a(D) and f holomorphic on a neighborhood ofD such

that f(bD) = bD

A(fℎ) − A(ℎ) =
‖‖‖‖‖‖‖‖
)(fℎ)
)z

‖‖‖‖‖‖‖‖

2

L2(D)
−
‖‖‖‖‖‖‖
)ℎ
)z

‖‖‖‖‖‖‖

2

L2(D)
(2)

= �
n∑

j=1
mj

⎛
⎜
⎝

1
2� ∫

2�

0

||||||ℎ
(
f−aj (e

i�)
)||||||
2
d�

⎞
⎟
⎠

= �
n∑

j=1
mj

‖‖‖‖‖Sℎ(f−aj )
‖‖‖‖‖
2

L2(bD)

where aj are zeros off inD,mj is themultiplicity of the zero aj ∈ D, andfaj (z) =
z−aj
1−ajz

is the Blaschke factor with zero at aj .

A simple outcome from Theorem 2.1 is as follows.
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Corollary 2.2. For ℎ ∈ W1
a(D) and 0 ≤ m ≤ n

A(znℎ) − A(zmℎ) = �(n − m)
⎛
⎜
⎝

1
2� ∫

2�

0

|||||ℎ(e
i�)|||||

2
d�

⎞
⎟
⎠

= �(n − m)‖Sℎ‖2L2(bD)
Proof. For ℎ ∈ W1

a(D) and 0 ≤ m ≤ n we consider A(znℎ) − A(zmℎ) as
A(zn−m(zmℎ)) − A(zmℎ) which, by (2) in Theorem 2.1, is equal to

�(n − m)
⎛
⎜
⎝

1
2� ∫

2�

0

|||||e
im�ℎ(ei�)|||||

2
d�

⎞
⎟
⎠
= �(n − m)

⎛
⎜
⎝

1
2� ∫

2�

0

|||||ℎ(e
i�)|||||

2
d�

⎞
⎟
⎠

= �(n − m)‖Sℎ‖2L2(bD) .
Note that we use z for f0(z), that is, z is the Blaschke factor with zero at a = 0,
and so ei� = f0(ei�). �

Corollary 2.2 also follows from D’Angelo’s Theorem 1.1 by an induction ar-
gument.

One observation that comes from Theorem 2.1 is that the excess area growth
generated with multiplier function Blaschke factor fw(z) =

z−w
1−wz

becomes a
solution of the Dirichlet problem on the unit disk.

Corollary 2.3. If ℎ ∈ W1
a(D) ∩ C(D) and the multiplier function is a Blaschke

factor fw(z) =
z−w
1−wz

then

�(w) ∶= A(fwℎ) − A(ℎ) =

⎧
⎪
⎨
⎪
⎩

1
2
∫ 2�0 |ℎ(ei�)|2 1−|w|2

|ei�−w|2
d� if w ∈ D

�|ℎ(w)|2 if w ∈ bD.

Thus, �(w) is continuous on D and harmonic on D.

Proof. By using Theorem 2.1 with a multiplier fw(z) =
z−w
1−wz

for w ∈ D we
have

A(fwℎ) − A(ℎ) = �‖Sℎ(f−w)‖
2
L2(bD) = � 1

2� ∫
2�

0
|ℎ(f−w(ei�))|2d�. (3)

First, alter the integral in (3) with � = ei� and d� = iei�d� for 0 ≤ � ≤ 2� as

‖Sℎ(f−w)‖
2
D =

1
2� ∫

2�

0
|ℎ(f−w(ei�))|2d� =

1
2�i ∫

2�

0

|ℎ(f−w(ei�))|2

ei�
iei�d�

= 1
2�i ∫

bD

|ℎ(f−w(�))|2

�
d�. (4)
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Note that fw is a (one-to-one) holomorphic map on a neighborhood of D and
fw(bD) = bD. We make a change of coordinates with � = fw(�) and d� =
)fw(�)
)�

d� in the integral at (4) to obtain

1
2�i ∫

f−1w (bD)=bD

|ℎ(f−w(fw(�)))|2

fw(�)
)fw(�)
)�

d�. (5)

)fw(�)
)�

= 1−|w|2

(1−w�)2
, so for � ∈ bD we have

1
fw(�)

⋅ )fw(�)
)�

= 1 − w�
� − w

⋅ 1 − |w|2
(1 − w�)2

= 1
� − w

⋅ 1 − |w|2
1 − w�

= �
1 − w�

⋅ 1 − |w|2
1 − w�

= � ⋅ 1 − |w|2

|1 − w�|2
= � ⋅ 1 − |w|2

|� − w|2
.

Thus the integral at (5) becomes

1
2�i ∫

bD

|ℎ(�)|2� ⋅ 1 − |w|2
|� − w|2

d� = 1
2�i ∫

2�

0
|ℎ(ei�)|2e−i� 1 − |w|2

|ei� − w|2
iei�d�

= 1
2� ∫

2�

0
|ℎ(ei�)|2 1 − |w|2

|ei� − w|2
d�. (6)

The last integral at (6) provides another representation for the excess area growth
generated with multiplier function Blaschke factor fw,

A(fwℎ) − A(ℎ) = �‖Sℎ(f−w)‖
2
D = � ∫

2�

0
|ℎ(ei�)|2 12�

1 − |w|2
|ei� − w|2

d�. (7)

The expression
1
2�

1 − |w|2
|ei� − w|2

in (7) is known as the Poisson kernel for the unit disk. It is used to calculate
a harmonic function on the disk from its boundary values, that is, from its val-
ues on the circle that bounds the disk. Then use the solution of the Dirichlet
Problem for the unit disk, [10], to obtain the result. �

Remark 2.4. FromCorollary 2.3we know�(w) ∶= A(fwℎ)−A(ℎ) is a harmonic
function on D. Thus, one can use the properties of harmonic functions on the
unit disk to interpret the excess area growth generated by a Balschke factor
with its zero in the unit disk. For example, by the Mean Value Property for
harmonic functions, for D(a, r) ⊂ D, one can say that the excess area value,
�(a), generated by a Blaschke factor fa with its zero at the center of a disk
D(a, r), deduces from the extra area values, �(a + rei�), generated by Blaschke
factors fa+rei� with zeros on the circle bD(a, r).
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Another observation is a Harnack type inequality relating the excess area
values A(f�ℎ) − A(ℎ) generated by a Blaschke factor f� with a zero � ∈ D at
two points, w and 0 in D.

Corollary 2.5. If ℎ ∈ W1
a(D) ∩ C(D) and the multiplier function is a Blaschke

factor fw(z) =
z−w
1−wz

,

1 − |w|
1 + |w| ⋅ (A(zℎ) − A(ℎ)) ≤ A(fwℎ) − A(ℎ) ≤ 1 + |w|

1 − |w| ⋅ (A(zℎ) − A(ℎ)) (8)

The inequality (8) also works for any two points w and w′ in D. Moreover, for f

equal to a�nite Blaschke product ei� ∏n
j=1 (

z−aj
1−ajz

)
mj

, wheremj is themultiplicity

of the zeroaj ∈ Dand ei� is a point on the unit circle, (8) can be further formulated
as

⎛
⎜
⎝

n∑

j=1
mj

1 − |aj|
1 + |aj|

⎞
⎟
⎠
⋅ (A(zℎ) − A(ℎ)) ≤ A(fℎ) − A(ℎ) (9)

≤
⎛
⎜
⎝

n∑

j=1
mj

1 + |aj|
1 − |aj|

⎞
⎟
⎠
⋅ (A(zℎ) − A(ℎ)).

Proof. The inequality at (8) follows from triangle inequality and reversed tri-
angle inequality applied on the Poisson kernel’s denominator in the integral at
(7).

As for the second inequality (9) with

f(z) = ei�
n∏

j=1

(
f−aj

)mj
= ei�

n∏

j=1

⎛
⎜
⎝

z − aj
1 − ajz

⎞
⎟
⎠

mj

,

we use Theorem 2.1, so for ℎ ∈ W1
a(D) we have

A(fℎ) − A(ℎ) = �
n∑

j=1
mj

‖‖‖‖‖Sℎ(f−aj )
‖‖‖‖‖
2

L2(bD)
. (10)

Combining (10) with (8) will give us (9). That is, rewrite (8) as

1 − |aj|
1 + |aj|

⋅‖Sℎ‖2L2(bD) ≤
‖‖‖‖‖Sℎ(f−aj )

‖‖‖‖‖
2

L2(bD)
≤
1 + |aj|
1 − |aj|

⋅‖Sℎ‖2L2(bD) .
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Multiply each side of the inequality by mj and then sum the entire inequality
from j = 1 to j = n to obtain

⎛
⎜
⎝

n∑

j=1
mj

1 − |aj|
1 + |aj|

⎞
⎟
⎠
⋅‖Sℎ‖2L2(bD) ≤

n∑

j=1
mj

‖‖‖‖‖Sℎ(f−aj )
‖‖‖‖‖
2

L2(bD)

≤
⎛
⎜
⎝

n∑

j=1
mj

1 + |aj|
1 − |aj|

⎞
⎟
⎠
⋅‖Sℎ‖2L2(bD) ,

which is,

⎛
⎜
⎝

n∑

j=1
mj

1 − |aj|
1 + |aj|

⎞
⎟
⎠
⋅ (A(zℎ) − A(ℎ)) ≤ (A(fℎ) − A(ℎ))

≤
⎛
⎜
⎝

n∑

j=1
mj

1 + |aj|
1 − |aj|

⎞
⎟
⎠
⋅ (A(zℎ) − A(ℎ)).

�

The following observation is connected to the di�erence between �|ℎ(�)|2
and the excess area value, generated by a Blaschke factor f� , being a subhar-
monic function (for �) on the closure of the unit disk.

Corollary 2.6. Let ℎ ∈ W1
a(D) ∩ C(D) and fa(z) =

z−a
1−az

with a ∈ D. Then

A(faℎ) − A(ℎ) ≥ �|ℎ(a)|2. (11)

Moreover, for f holomorphic on a neighborhood of D such that f(bD) = bD, we
have

A(fℎ) − A(ℎ) ≥ �
n∑

j=1
mj|ℎ(aj)|2. (12)

Proof. By the equation (7) in the proof of Corolarry 2.3 for w ∈ D we have

A(fwℎ) − A(ℎ) = �
⎛
⎜
⎝
∫

2�

0
|ℎ(ei�)|2 ( 1

2�
1 − |w|2
|ei� − w|2

) d�
⎞
⎟
⎠
.

Moreover, by Corollary 2.3 we know that �(w) ∶= A(fwℎ) − A(ℎ) is harmonic
when w ∈ D and �(w) = �|ℎ(w)|2 continuous when w ∈ bD. Furthermore,
�|ℎ(w)|2 is a subharmonic function on D.

Consider the following function  (w) ∶= �|ℎ(w)|2 − �(w) for w ∈ D. The
function  (w) is a subharmonic function on D: |ℎ(w)|2 is subharmonic on D
and �(w) is harmonic on D. For w ∈ bD we have �(w) = �|ℎ(w)|2, so  ≡ 0
on bD and

∆ (w) = �∆|ℎ(w)|2 − ∆�(w) ≥ 0.
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In the next step, we use the Maximum Value Property for the subharmonic
functions: Themaximum value of a subharmonic function is attained only at the
boundary of the domain unless the function is constant. This tells us that the
function  (w) ≤ 0 for w ∈ D, that is,

�|ℎ(w)|2 ≤ �(w), ∀w ∈ D (13)

which is (11).
Moreover, if f is a holomorphic function on a neighborhood of D such that

f(bD) = bD, that is, f is a �nite Blaschke product, see [6, Lemma 3.2] or [9],
and then by Theorem 2.1 we obtain (12). �

By replacing holomorphic functions with functions harmonic on D in the
area di�erence formulation (1), we lose the ’area’ meaning, but another inter-
esting identity emerges (14). In the identity (14) we observe the excess area
growth with holomorphic functions‖Sℎ‖2L2(D) as a part of the harmonic func-
tions’ identity.
Theorem 2.7. For u ∈ W1(D) and harmonic on D, there is ℎ ∈ W1

a(D) such
that u = ℜ(ℎ) and the following identity holds

‖‖‖‖‖‖‖‖
)(zu)
)z

‖‖‖‖‖‖‖‖

2

L2(D)
−
‖‖‖‖‖‖‖
)u
)z

‖‖‖‖‖‖‖

2

L2(D)
(14)

= 1
4

⎛
⎜
⎜
⎝

�
⎛
⎜
⎝

1
2� ∫

2�

0
|ℎ(ei�)|2d�

⎞
⎟
⎠
+ 2�ℜ(ℎ2(0)) +‖ℎ‖2L2(D)

⎞
⎟
⎟
⎠

= 1
4
(
�‖Sℎ‖2L2(bD) + 2�ℜ(ℎ2(0)) +‖ℎ‖2L2(D)

)
.

3. Proof of Theorem 2.1
The proof of Theorem 2.1 goes on the lines of the argument with a geomet-

ric approach for Theorem 1.1 in [5], using Stokes’ Theorem to move the com-
putations from the unit disk to the unit circle. The following Lemma 3.1 is
a standard analysis argument that allows deducing the result in Theorem 2.1
for ℎ ∈ W1

a(D) from calculations forW1
a-functions ℎ on D with derivative, ℎ′,

continuous on the closure of the unit disk.

Lemma3.1. Letℎ ∈ W1(D), ℎj(z) ∶= ℎ ( z
1+1∕j

)and S is the restriction operator
to the unit circle. Then

lim
j→∞

‖‖‖‖‖Sℎj − Sℎ‖‖‖‖‖L2(bD) = 0.

Proof of the Lemma 3.1. Let ℎ ∈ W1
a(D), for every " > 0 there is a large

enough disc D(0, r) ⊂ D (with 0 < r < 1) and j0 ∈ ℕ such that

‖ℎ‖W1
a(D∖D(0,r))

< "
(1 + 1∕j0)2

, (15)



GENERALIZATION OF THE EXCESS AREA 1239

which also gives

‖‖‖‖‖ℎj
‖‖‖‖‖W1

a(D∖D(0,r))
< " for all j ≥ j0. (16)

Let’s show how (16) is obtained.

‖‖‖‖‖ℎj
‖‖‖‖‖
2

W1
a(D∖D(0,r))

= ∫
D∖D(0,r)

||||||||||
ℎ ( z

1 + 1∕j)
||||||||||

2

dxdy

+ ∫
D∖D(0,r)

||||||||||

)
)zℎ ( z

1 + 1∕j)
||||||||||

2

dxdy.

We do change of coordinates z = F−1(�) = (1 + 1∕j)�. Then

dxdy =
||||||||
)
)�
F−1(�)

||||||||

2

d�d�, )
)z =

1
)
)�
F−1(�)

)
)�
,

so

= ∫
D(0, 1

1+1∕j
)∖D(0, r

1+1∕j
)

||||ℎ
(
�
)||||
2 (1 + 1∕j)2d�d�

+ ∫
D(0, 1

1+1∕j
)∖D(0, r

1+1∕j
)

||||||||
)
)�
ℎ
(
�
)||||||||

2

d�d�

≤ ∫
D∖D(0,r)

||||ℎ
(
�
)||||
2(1 + 1∕j)2d�d� + ∫

D∖D(0,r)

||||||||
)
)�
ℎ
(
�
)||||||||

2

d�d�

≤ (1 + 1∕j0)2‖ℎ‖
2
W1

a(D∖D(0,r))
< ".

To prove the lemma, �rst, we show that ℎj converges to ℎ inW1-norm onD.
In this step we also use (15) and (16). Then we make use of Trace theorem, [8,
Theorem 6.47].

Thus, let’s show that limj→∞
‖‖‖‖‖ℎj − ℎ‖‖‖‖‖W1

a(D)
= 0: To make use of (15) and

(16) conveniently we split theW1-norm onD toW1-norm onD∖D(0, r) and on
D(0, r).

‖‖‖‖‖ℎj − ℎ‖‖‖‖‖
2

W1
a(D)

=‖‖‖‖‖ℎj − ℎ‖‖‖‖‖
2

W1
a(D(0,r))

+‖‖‖‖‖ℎj − ℎ‖‖‖‖‖
2

W1
a(D∖D(0,r))

(17)

The �rst term on the right hand side of (17) can bemade as small as it is needed:
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For z ∈ D(0, r) and j, k ∈ ℕ let 
jk(t) ∶=
z
1+j

t + (1 − t) z
1+k

for 0 ≤ t ≤ 1,
then we have

|||||ℎj (z) − ℎk (z)
||||| =

||||||||||
ℎ ( z

1 + 1∕j)
− ℎ ( z

1 + 1∕k)
||||||||||

=
||||||ℎ

(

jk(1)

)
− ℎ

(

jk(0)

)|||||| =
||||||||||
∫

1

0
ℎ′(
jk(t))
′jk(t)dt

||||||||||

≤ C ∫
1

0
|
′jk(t)|dt = C

||||||||
z

1 + 1∕j
− z
1 + 1∕k

||||||||

≤ rC
||||||||

1
1 + 1∕j

− 1
1 + 1∕k

||||||||

≤ rC
||||||||
1
k −

1
j

||||||||
→ 0 as k, j → ∞.

Thus, ℎj(z) is uniformly Cauchy on D(0, r) which implies that ℎj(z) converges
to ℎ(z) uniformly on D(0, r).

Note also that, by Cauchy estimate
|||||||
)
)zℎj (z) −

)
)zℎk (z)

|||||||
≤ 1
r sup
z∈D(0,r)

|||||ℎj (z) − ℎk (z)
||||| .

The right hand side goes to 0 as j and k go to∞, since D(0, r) ⊂ D is compact,
so that ℎj converges uniformly on D(0, r). Thus )

)z
ℎj is also uniformly Cauchy

(Cauchy in the uniform norm) onD(0, r), as it su�ces to conclude that )
)z
ℎj (z)

converges to )
)z
ℎ (z) uniformly on D(0, r). Thus, choose J so large that for all

j ≥ J we have
‖‖‖‖‖ℎj − ℎ‖‖‖‖‖

2

W1
a(D(0,r))

(18)

= ∫
D(0,r)

|||||ℎj(z) − ℎ(z)|||||
2
+ ∫

D(0,r)

|||||||
)
)zℎj(z) −

)
)zℎ(z)

|||||||

2

≤ �r2"2 + �r"2

The second term on the right had side of (17) can be estimated from above by
using the triangle inequality,

≤‖‖‖‖‖ℎj − ℎ‖‖‖‖‖
2

W1
a(D(0,r))

+‖‖‖‖‖ℎj
‖‖‖‖‖
2

W1
a(D∖D(0,r))

+‖ℎ‖2W1
a(D∖D(0,r))

. (19)

By the choice of D(0, r), the last two norms are dominated by "2 and "2

(1+j0)4
,

respectively, see (16) and (15). By the choice of J, the �rst norm is dominated
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by �r2"2 + �r"2. Altogether

‖‖‖‖‖ℎj − ℎ‖‖‖‖‖
2

W1
a(D)

≤ �r2"2 + �r"2 + "2 + "2
(1 + j0)4

,

so
‖‖‖‖‖ℎj − ℎ‖‖‖‖‖W1

a(D)
→ 0 as j → ∞. (20)

Now, the restriction operator S maps W1(D) to W1∕2(bD) ⊂ L2(bD), see [8,
Theorem 6.47]. Thus, S ∶ W1(D) → L2(bD) is a bounded operator, that is,

‖‖‖‖‖Sℎj
‖‖‖‖‖L2(bD) ≤

‖‖‖‖‖ℎj
‖‖‖‖‖W1(D)

(21)

Thus, by (20) and (21) we obtain

lim
j→∞

‖‖‖‖‖Sℎj − Sℎ‖‖‖‖‖L2(bD) ≤ lim
j→∞

‖‖‖‖‖ℎj − ℎ‖‖‖‖‖W1(D)
= 0.

This complies the proof of Lemma 3.1. �

Note that if a function f is complex analytic on a neighborhood of D, map-
ping bD to bD and with no zeros on the inner points of the unit disk, then f is a
constant. An argument for proving this is as follows: Assume f is not constant,
with no zeros on the unit disk. Then, functions f and 1∕f would be complex

analytic on the unit disk. ByMaximumModulus Principlewe observe
|||||||
1

f(z)

|||||||
≤ 1

and |f(z)| ≤ 1 onD, which implies that fmaps the unit disk to the unit circle.
This outcome contradicts the Open Mapping Theorem, so f is constant.

Proof of Theorem 2.1. If f is holomorphic on D and maps bD to bD, then f
can be represented with a Finite Blaschke Product, f = B, [6, Lemma 3.2].

For any ℎ ∈ W1
a(D) we have

A(Bℎ) − A(ℎ) =‖‖‖‖(Bℎ)
′‖‖‖‖
2
L2(D) −

‖‖‖‖ℎ
′‖‖‖‖
2
L2(D) (22)

=
⟨
)(Bℎ), )(Bℎ)

⟩
L2(D) −

⟨
)ℎ, )ℎ

⟩
L2(D)

= i
2 ∫D

)(Bℎ) ∧ )(Bℎ) − i
2 ∫D

)ℎ ∧ )ℎ

Note that )(Bℎ) ∧ )(Bℎ) = () + )) ((Bℎ))(Bℎ)) = d ((Bℎ))(Bℎ)). Similarly,

)ℎ∧)ℎ = () +))
(
ℎ)ℎ

)
= d

(
ℎ)ℎ

)
. Then, we can write the above integrals are



1242 HALEY K. BAMBICO, MEHMET ÇELIK, SARAH T. GROSS AND FRANCIS HALL

equal to

i
2 ∫D

)(Bℎ) ∧ )(Bℎ) − i
2 ∫D

)ℎ ∧ )ℎ = i2 ∫D
d ((Bℎ))(Bℎ)) − i

2 ∫D
d
(
ℎ)ℎ

)

= i2 ∫D
d ((Bℎ))(Bℎ) − ℎ)ℎ)

= i2 ∫D
d
(
B|ℎ|2)B

)
(23)

+ i
2 ∫D

d((|B|2 − 1)ℎ)ℎ).

Now, we want to use Stokes’ Theorem on (23), but ℎ ∈ W1
a(D) is not de�ned

on the unit circle, so we will use a standard limiting argument. Let’s dilate

ℎ ∈ W1
a(D) as ℎj(z) ∶= ℎ ( z

1+1∕j
). ℎj is holomorphic on a neighborhood of D

and so it is smooth on the boundary of the unit disk. From this point on, we
will work with ℎj instead of ℎ. Then, in the end, we will take the limit of ℎj in
W1-norm on D as j goes to in�nity.

Then the two integrals in (23) are modi�ed as

i
2 ∫D

d
(
B|ℎj|2)B

)
+ i
2 ∫D

d((|B|2 − 1)ℎj)ℎj). (24)

By using Stokes’ Theoremwemove the integration from the diskD to the circle
bD, so the two integrals in (24) become

i
2 ∫bD

B|ℎj|2)B +
i
2 ∫bD

(|B|2 − 1)ℎj)ℎj. (25)

The second integral in (25) is vanishing due to |B(z)| = 1 for z ∈ {|z|2 = 1}.
Thus, we are left only with the �rst integral

i
2 ∫bD

B(z)|ℎj(z)|2)B(z). (26)

By induction it su�ces to present the case for B(z) = fa1(z) ⋅ fa2(z). The
computation for any �nite Blaschke product will be the same. Thus, B′(z) =
f′a1(z) ⋅ fa2(z) + fa1(z) ⋅ f

′
a2(z) and the last integral (26) becomes

i
2∫
bD

B(z)|ℎj(z)|2B′(z)dz

= i
2∫
bD

fa1(z) ⋅ fa2(z)|ℎj(z)|
2 (f′a1(z) ⋅ fa2(z) + fa1(z) ⋅ f

′
a2(z)) dz.
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At this point, we do a change of coordinates with w = fa1(z) and obtain

= i
2 ∫
fa1 (bD)=bD

fa1(f
−1
a1 (w)) ⋅ fa2(f

−1
a1 (w)) (27)

⋅ |ℎj(f−1a1 (w))|
2f′a1(f

−1
a1 (w)) ⋅ fa2(f

−1
a1 (w))

)f−1a1 (w)
)w dw

+ i2 ∫
fa1 (bD)=bD

fa1(f
−1
a1 (w)) ⋅ fa2(f

−1
a1 (w))

⋅ |ℎj(f−1a1 (w))|
2fa1(f

−1
a1 (w)) ⋅ f

′
a2(f

−1
a1 (w))

)f−1a1 (w)
)w dw.

Note that in the �rst integral at (27)wehave the term
)(fa1 (f

−1
a1 (w)))
)z

which cancels

with
)f−1a1 (w)
)w

, that is,

)(fa1(f
−1
a1 (w)))
)z ⋅

)f−1a1 (w)
)w =

)(fa1(f
−1
a1 (w)))

)w = )w
)w = 1.

After the simpli�cations in both integrals at (27) we arrive at

= i2∫
bD

w ⋅ |fa2(f
−1
a1 (w))|

2|ℎj(f−1a1 (w))|
2dw (28)

+ i
2∫
bD

ww ⋅ fa2(f
−1
a1 (w))|ℎj(f

−1
a1 (w))|

2f′a2(f
−1
a1 (w)) ⋅

)f−1a1 (w)
)w dw.

For further simpli�cation in (28) we observe |fa2(f
−1
a1 (w))|

2 = 1 for w ∈ bD.

Moreover, the last two factors in the second integral in (28),f′a2(f
−1
a1 (w))⋅

)f−1a1 (w)
)w

,

resulted from
)
(
fa2 (f

−1
a1 (w))

)

)w
by applying the chain rule:

)
(
fa2◦f

−1
a1

)
(w)

)w =
)
(
fa2(f

−1
a1 (w))

)

)w =
)fa2(f

−1
a1 (w))
)z ⋅

)f−1a1 (w)
)w

= f′a2(f
−1
a1 (w)) ⋅

)f−1a1 (w)
)w .
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Thus, we rewrite (28) as

= i
2∫
bD

w|ℎj(f−1a1 (w))|
2dw (29)

+ i
2∫
bD

fa2(f
−1
a1 (w))|ℎj(f

−1
a1 (w))|

2
)
(
fa2◦f

−1
a1 (w)

)

)w dw.

The �rst integral in (29) is equal to �‖‖‖‖‖Sℎj(f
−1
a1 )

‖‖‖‖‖
2

L2(bD)
, but the second inte-

gral needs more work. Thus, we make another change of coordinates � =
fa2◦f

−1
a1 (w) = fa2(f

−1
a1 (w)) (note that w = (fa2◦f

−1
a1 )

−1(�) = fa1◦f
−1
a2 (�) =

fa1(f
−1
a2 (�))) on the second integral in (29) and obtain

i
2 ∫
fa2 (f

−1
a1 (bD))=bD

fa2 (f
−1
a1

(
fa1(f

−1
a2 (�))

)
) ⋅

||||||ℎ(f
−1
a1

(
fa1(f

−1
a2 (�))

)
)
||||||
2

(30)

⋅
) (fa2 (f

−1
a1

(
fa1(f

−1
a2 (�))

)
))

)w ⋅
)
(
fa1(f

−1
a2 (�))

)

)�
d�.

Note that in the integral (30) the factor
)(fa2(f

−1
a1

(
fa1 (f

−1
a2 (�))

)
))

)w
= )�

)w
cancels with

the factor
)
(
fa1 (f

−1
a2 (�))

)

)�
= )w

)�
.

After the simpli�cations, we obtain that the above integral in (30) is equal to

i
2∫
bD

� |||||ℎj(f
−1
a2 (�))

|||||
2
d� = �‖‖‖‖‖Sℎj(f

−1
a2 )

‖‖‖‖‖
2

L2(bD)
(31)

Thus, (29) becomes equal to

�‖‖‖‖‖Sℎj(f
−1
a1 )

‖‖‖‖‖
2

L2(bD)
+ �‖‖‖‖‖Sℎj(f

−1
a2 )

‖‖‖‖‖
2

L2(bD)
. (32)

Based on the above calculations, if B(z) = ei� ∏n
k=1(fak ,"(z))

mk then the inte-
gral in (26) by induction is equal to

�
n∑

k=1
mj

‖‖‖‖‖Sℎj(f
−1
ak )

‖‖‖‖‖
2

L2(bD)
. (33)

That is, the area di�erence at (22) is equal to the �nite sum at (33), with ℎj’s
which are holomorphic on D and smooth up to the unit circle. However, by



GENERALIZATION OF THE EXCESS AREA 1245

Lemma 3.1 we conclude that the equality also holds for ℎ ∈ W1
a, that is,

A(Bℎ) − A(ℎ) = �
n∑

k=1
mj

‖‖‖‖‖Sℎ(f
−1
ak )

‖‖‖‖‖
2

L2(bD)
for ℎ ∈ W1

a(D).

�

4. Proof of Theorem 2.7
The calculations in the proof are on theunit disk, which is a simply-connected

domain. Thus, we make use of the observation that on a simply connected do-
main, every harmonic function is the real part of a holomorphic function, [10,
Lemma 7.1.2]. Moreover, the following lemma is used in the proof of Theorem
2.7 to obtain ℎ ∈ W1

a(D).
Lemma 4.1. Let f ∈ C1(D) and ∇f ∈ L2(D). Then f ∈ L2(D).
Proof. x = r cos(�) and y = r sin(�).

|||||||
)
)rf(r, �)

|||||||
=

||||||||
)f
)x

)x
)r +

)f
)y

)y
)r

||||||||
= ||||fx ⋅ cos(�) + fy ⋅ sin(�)

||||
= ||||∇xyf(r, �) ⋅ (cos(�), sin(�))

||||
≤‖‖‖‖∇xyf(r, �)

‖‖‖‖
‖‖‖‖∇xyf(r, �)

‖‖‖‖ represents the pointwise-norm of ∇xyf(r, �).
Now, we apply the Fundamental Theorem of Calculus on f(r, �) only on its

r variable. We have

f(r, �) = f(0, �) + ∫
r

0

)
)sf(s, �)ds

⇒ |f(r, �)| ≤ |f(0, �)| + ∫
1

0

‖‖‖‖∇xyf(s, �)
‖‖‖‖ ds.

Then, let’s consider the squared-terms

|f(r, �)|2 ≤ 2|f(0, �)|2 + 2
⎛
⎜
⎝
∫

1

0

‖‖‖‖∇xyf(s, �)
‖‖‖‖ ds

⎞
⎟
⎠

2

(34)

≤ 2|f(0)|2 + 2 ∫
1

0

‖‖‖‖∇xyf(s, �)
‖‖‖‖
2 ds

Note that since f(z) is continuous at z = 0 we have |f(0, �)| = |f(0)|. We
used Cauchy-Schwartz Inequality on the last integral. We take integral of both
sides of the inequality at (34) with respect to r and �.

∫
D
|f(r, �)|2drd� ≤ 4�|f(0)|2 + 2 ∫

1

0
∫

1

0
∫

2�

0

‖‖‖‖∇xyf(s, �)
‖‖‖‖
2 d�dsdr (35)
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On the triple integral on the right-hand side, we can drop the outermost integral
because the result out of the two-innermost integrals is a constant, and the third
integral does not add anything to the outcome.

∫
D
|f(r, �)|2drd� ≤ 4�|f(0)|2 + 2 ∫

2�

0
∫

1

0

‖‖‖‖∇xyf(r, �)
‖‖‖‖
2 drd�. (36)

Let’s rewrite the inequality (36) in z variable

∫
D
|f(z)|2 1|z|dxdy ≤ 4�|f(0)|2 + 2 ∫

D

‖‖‖‖∇xyf(z)
‖‖‖‖
2 1
|z|dxdy. (37)

Note that we have |z| on the denominator, and it will go under the squared-
norm as

√
|z| and we will have f(z)

√
|z|

in the integrand as square-integrable. That
is,

‖f‖2L2(D) ≤
‖‖‖‖‖‖‖‖‖‖

f(z)
√
|z|

‖‖‖‖‖‖‖‖‖‖

2

L2(D)

≤ 4�|f(0)|2 + 2
‖‖‖‖‖‖‖‖‖‖

∇f(z)
√
|z|

‖‖‖‖‖‖‖‖‖‖

2

L2(D)

. (38)

If f is bounded near 0 and ∇f is bounded near 0 and ∇f ∈ L2(D). For r small

∇f(z)
√
|z|

= ∇f(z)
√
|z|

�D(0,r0)
⏟⎴⎴⎴⏟⎴⎴⎴⏟

f1

+ ∇f(z)
√
|z|

�(D∖D(0,r0))
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

f2

= f1 + f2 (39)

Since f is bounded

‖f1‖
2
L2(D) = ∫

D(0,r0)

||||||||||

∇f(z)
√
|z|

�D(0,r0)
||||||||||

2

dxdy (40)

≲ ∫
D(0,r0)

1
|z|dxdy = ∫

2�

0
∫

r0

0

1
r rdrd� = 2�r0

and

‖f2‖
2
L2(D) = ∫

D∖D(0,r0)

||||||||||

∇f(z)
√
|z|

�(D∖D(0,r0))
||||||||||

2

dxdy (41)

≤ 1
r0
∫
D
|∇f(z)|2dxdy

since ∇f(z) ∈ L2(D). �

Remark 4.2. If (34) is integrated with respect to � between 0 and 2�

∫
2�

0
|f(r, �)|2d� ≤ 4�|f(0)|2 + 2 ∫

2�

0
∫

1

0

‖‖‖‖∇xyf(s, �)
‖‖‖‖
2 dsd� (42)
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by (39) (with (40) and (41)) the right hand side of (42) is just a constant. That
is, ∫ 2�0 |f(r, �)|2d� is uniformly bounded, or equivalently, all averages of |f|2
on circles centered at 0 are uniformly bounded.

Remark 4.3. Lemma 4.1 works without requiring harmonicity due to the sim-
plicity of its domain and dimension. The result in Lemma 4.1 is a particular
case of [3, (3.1)], which essentially comes from the book by Kufner ([12]). For
more general circumstances, see a version of a Poincare inequality with har-
monic functions in [2, Proposition 2.1] or [7, 13].

We present two di�erent proofs for Theorem 2.7. In the �rst one, we employ
Lemma 4.1, Stokes’ Theorem, Cauchy Integral Formula, and Cauchy’s Theo-
rem; we assumeharmonic functions’ �rst-derivative extend continuously to the
boundary of the unit disk and refer to the argument in the proof of Theorem 2.1.
The second proof is by working on the inner points of the unit disk with series
representations. We utilize the series representation of holomorphic functions
ℎ.

Proof of Theorem 2.7 by a geometric argument. Sinceu is harmonic on the
unit disk, a simply connected domain inℂ, there is a harmonic conjugate v, [10,
Lemma 7.1.2]. Let ℎ = u+ iv be the corresponding holomorphic function. Us-
ing Cauchy-Riemann’s equations, one can see that L2-norm of the gradient of
v is equal to L2-norm of the gradient of u, so the gradient of v is in L2(D). To
make the conjugate harmonic function v unique, we assume v(0) = 0. Then
by using Lemma 4.1 we obtain that v ∈ L2(D), and so ℎ ∈ W1

a(D).
We start by calculating the di�erences between the square of the L2-norms

of )
)z
(zu) and )

)z
u. In the beginning, we involve a factor of 4 to get rid of the 4

coming from the denominator.

4
‖‖‖‖‖‖‖‖
)(zu)
)z

‖‖‖‖‖‖‖‖

2

L2(D)
− 4

‖‖‖‖‖‖‖
)u
)z

‖‖‖‖‖‖‖

2

L2(D)
=

= 4
‖‖‖‖‖‖‖‖‖‖‖‖

)
)z

⎛
⎜
⎝
z (ℎ + ℎ)

2
⎞
⎟
⎠

‖‖‖‖‖‖‖‖‖‖‖‖

2

L2(D)

− 4
‖‖‖‖‖‖‖‖‖‖‖‖

)
)z

⎛
⎜
⎝

ℎ + ℎ
2

⎞
⎟
⎠

‖‖‖‖‖‖‖‖‖‖‖‖

2

L2(D)

=
‖‖‖‖‖‖‖
)
)z

(
z(ℎ + ℎ)

)‖‖‖‖‖‖‖

2

L2(D)
−
‖‖‖‖‖‖‖
)
)z

(
ℎ + ℎ

)‖‖‖‖‖‖‖

2

L2(D)

=
⟨
)(z(ℎ + ℎ)), )(z(ℎ + ℎ))

⟩
L2(D)

−
⟨
)(ℎ + ℎ), )(ℎ + ℎ)

⟩
L2(D)

= i
2 ∫D

)(z(ℎ + ℎ)) ∧ )(z(ℎ + ℎ)) − i
2 ∫D

)(ℎ + ℎ) ∧ )(ℎ + ℎ) (43)
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Note that the form in the �rst integral at (43) can be rewritten as

)(z(ℎ + ℎ)) ∧ )(z(ℎ + ℎ)) = ()(zℎ) + )(zℎ)) ∧ ()(zℎ) + )(zℎ))

= )(zℎ) ∧ )(zℎ) + )(zℎ) ∧ )(zℎ)

+ )(zℎ) ∧ )(zℎ) + )(zℎ) ∧ )(zℎ)

= () + )) ((zℎ))(zℎ)) − () + ))
(
(zℎ))(zℎ)

)

+ () + )) ((zℎ))(zℎ)) + |ℎ|2dz ∧ dz,

so

= d ((zℎ))(zℎ)) − d
(
(zℎ))(zℎ)

)
+ d ((zℎ))(zℎ)) + |ℎ|2dz ∧ dz.

Similarly, the form in the second integral at (43) can be rewritten as

)(ℎ + ℎ) ∧ )(ℎ + ℎ) = )ℎ ∧ )ℎ = () + ))
(
ℎ)ℎ

)
= d

(
ℎ)ℎ

)
.

Then, the two integrals at (43) can written as

= i
2 ∫D

d ((zℎ))(zℎ)) − i
2 ∫D

d
(
(zℎ))(zℎ)

)
+ i
2 ∫D

d ((zℎ))(zℎ))

+ i
2 ∫D

|ℎ|2|dz ∧ dz − i
2 ∫D

d
(
ℎ)ℎ

)
.

= i
2 ∫D

d ((zℎ))(zℎ) − (zℎ))(zℎ) + (zℎ))(zℎ) − ℎ)ℎ) (44)

+ i2 ∫D
|ℎ|2z ∧ dz.

Now, at this point of the proof as in the proof of Theorem 2.1 we want to
move the �rst integral in (44) from the unit disk to the unit circle by Stokes’
Theorem, but ℎ ∈ W1

a(D), is not de�ned on the unit circle. We can use the
dilation argument, used in the proof of Theorem 2.1, and then at the end of
the proof again, and we can refer to Lemma 3.1 to obtain the result for ℎ ∈
W1

a(D). Keeping in mind that the same dilation argument can also work in
this proof, assuming that the function ℎ ∈ W1(D) has its derivative extending
continuously to the unit circle su�ces to complete the proof.

Next, we use Stoke’s Theorem on the �rst integral of (44); the second integral
is the L2-norm of ℎ on D.

= i
2∫
bD

((zℎ))(zℎ) − (zℎ))(zℎ) + (zℎ))(zℎ) − ℎ)ℎ) +‖ℎ‖2L2(D) . (45)
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By the product rule, we ohave

)(zℎ) = ℎ)z + z)ℎ = ℎdz + z)ℎ (46)

)(zℎ) = ℎ)z = ℎdz. (47)

We plug in (46) and (47) into the form in (45) and then simplify, obtaining

(zℎ))(zℎ) − (zℎ))(zℎ) + (zℎ))(zℎ) − ℎ)ℎ

= (zℎ)(ℎ)z + z)ℎ) − (zℎ)(ℎ)z + z)ℎ) + (zℎ)(ℎ)z + z)ℎ) − ℎ)ℎ

= z|ℎ|2)z + |z|2ℎ)ℎ − zℎ2)z − |z|2ℎ)ℎ + zℎ
2
)z + |z|2ℎ)ℎ − ℎ)ℎ

= z|ℎ|2)z + (|z|2 − 1)ℎ)ℎ − zℎ2)z − zzℎ)ℎ + zℎ
2
)z + |z|2ℎ)ℎ.

The integral term in (45) becomes

= i
2∫
bD

z|ℎ|2)z + i
2∫
bD

ℎ
2
z)z − i

2∫
bD

zℎ2)z − i
2∫
bD

zzℎ)ℎ + i
2 ∫

bD

(|z|2 − 1)ℎ)ℎ

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
=0 since on bD |z|2=1

+ i
2∫
bD

|z|2ℎ)ℎ +‖ℎ‖2L2(D)

= 1
2 ∫

2�

0
|ℎ(ei�)|2d� + i

2∫
bD

ℎ2(z)zdz − i
2∫
bD

ℎ2(z)zdz − i
2∫
bD

ℎ)ℎ (48)

+ i
2∫
bD

ℎ)ℎ +‖ℎ‖2L2(D) .

Next, we employ Stoke’s Theorem for the fourth and �fth integrals at (48) to
see that they are equal to zero, one can also use Cauchy’s Theorem (since ℎ ∈
W1

a(D)we have ℎ)ℎ as holomorphic on the disk and continuous on the circle.)
Moreover, we use Cauchy’s Integral Formula on the second and third integrals
at (48):

i
2∫
bD

ℎ2(z)zdz = i
2∫
bD

ℎ2(z)
z

dz = i
2

⎛
⎜
⎜
⎝

∫
bD

ℎ2(z)
z − 0dz

⎞
⎟
⎟
⎠

= i
2 (2�iℎ2(0)) = �ℎ2(0),

− i2∫
bD

ℎ2(z)zdz = − i2∫
bD

ℎ2(z)
z − 0dz = − i22�iℎ

2(0) = �ℎ2(0).

Thus, (48) is equal to

= �‖Sℎ‖2bD + 2�ℜ(ℎ2(0)) +‖ℎ‖2L2(D) .
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�

Proof of Theorem 2.7 by series representation. The proof with series is an
elementary calculation.

4
‖‖‖‖‖‖‖‖
)(zu)
)z

‖‖‖‖‖‖‖‖

2

L2(D)
− 4

‖‖‖‖‖‖‖
)u
)z

‖‖‖‖‖‖‖

2

L2(D)
=

= 4
‖‖‖‖‖‖‖‖‖‖‖‖

)
)z

⎛
⎜
⎝
z (ℎ + ℎ)

2
⎞
⎟
⎠

‖‖‖‖‖‖‖‖‖‖‖‖

2

L2(D)

− 4
‖‖‖‖‖‖‖‖‖‖‖‖

)
)z

⎛
⎜
⎝

ℎ + ℎ
2

⎞
⎟
⎠

‖‖‖‖‖‖‖‖‖‖‖‖

2

L2(D)

=
‖‖‖‖‖‖‖
)
)z

(
z(ℎ + ℎ)

)‖‖‖‖‖‖‖

2

L2(D)
−
‖‖‖‖‖‖‖
)
)z

(
ℎ + ℎ

)‖‖‖‖‖‖‖

2

L2(D)
. (49)

Let’s �rst observe the the following equalities between the L2-norms of some
terms involved in the calculation at (49):

‖‖‖‖‖‖‖‖‖‖

)(zℎ)
)z

‖‖‖‖‖‖‖‖‖‖

2

L2(D)

=
⟨ ∞∑

n=0
ℎnz

n,
∞∑

n=0
ℎnz

n⟩

L2(D)

(50)

=
∞∑

n=0
|ℎn|2‖zn‖

2
L2(D) =

∞∑

n=0
|ℎn|2

�
n + 1 =‖ℎ‖2L2(D) .

‖‖‖‖‖‖‖‖‖‖

)ℎ
)z

‖‖‖‖‖‖‖‖‖‖

2

L2(D)

= 0 ⇒
‖‖‖‖‖‖‖‖‖‖

)(ℎ + ℎ)
)z

‖‖‖‖‖‖‖‖‖‖

2

L2(D)

=
‖‖‖‖‖‖‖
)ℎ
)z

‖‖‖‖‖‖‖

2

L2(D)
.

Let’s start by calculating the �rst term at (49):
‖‖‖‖‖‖‖
)(z(ℎ+ℎ))

)z

‖‖‖‖‖‖‖

2

L2(D)
=

=
⟨ ∞∑

n=0
ℎn(n + 1)zn +

∞∑

n=0
ℎnz

n,
∞∑

n=0
ℎn(n + 1)zn +

∞∑

n=0
ℎnz

n⟩

D

=
⟨ ∞∑

n=0
ℎn(n + 1)zn,

∞∑

n=0
ℎn(n + 1)zn

⟩

D

+
⟨ ∞∑

n=0
ℎnz

n,
∞∑

n=0
ℎnz

n⟩

D

+
⟨ ∞∑

n=0
ℎn(n + 1)zn,

∞∑

n=0
ℎnz

n⟩

D

+
⟨ ∞∑

n=0
ℎnz

n,
∞∑

n=0
ℎn(n + 1)zn

⟩

D

=
‖‖‖‖‖‖‖‖
)(zℎ)
)z

‖‖‖‖‖‖‖‖

2

L2(D)
+
‖‖‖‖‖‖‖‖‖‖

)(zℎ)
)z

‖‖‖‖‖‖‖‖‖‖

2

L2(D)

+ �ℎ20 + �ℎ20

=
‖‖‖‖‖‖‖‖
)(zℎ)
)z

‖‖‖‖‖‖‖‖

2

L2(D)
+ 2�ℜ(ℎ20) +‖ℎ‖2L2(D) .
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On the last equality we used (50).
Thus, the di�erence of the L2-norms at (49) becomes

‖‖‖‖‖‖‖‖‖‖

)(z(ℎ + ℎ))
)z

‖‖‖‖‖‖‖‖‖‖

2

L2(D)

−
‖‖‖‖‖‖‖‖‖‖

)(ℎ + ℎ)
)z

‖‖‖‖‖‖‖‖‖‖

2

L2(D)

=

=
‖‖‖‖‖‖‖‖
)(zℎ)
)z

‖‖‖‖‖‖‖‖

2

L2(D)
−
‖‖‖‖‖‖‖
)ℎ
)z

‖‖‖‖‖‖‖

2

L2(D)
+ 2�ℜ(ℎ20) +‖ℎ‖2L2(D)

= �
∞∑

n=0
|ℎn|2 + 2�ℜ(ℎ20) +‖ℎ‖2L2(D) .

�

5. Excess area growth on some simply-connected domains
Weshow that the area di�erence formulation at (1) is invariant under speci�c

conformal maps. In the hypothesis for ℎ ∈ W1
a(Ω), we require its derivative

ℎ′ to extend continuously to bΩ. However, Lemma 3.1 can easily be altered
for any simply connected bounded domain on the complex plain and can be
used to deduce the result of Proposition 5.1 for ℎ ∈ W1

a(Ω) without the initial
regularity requirement on bΩ.

Proposition 5.1. Let Ω ⊂ ℂ bounded domain with C1-smooth boundary such
that there is a conformal map F ∶ Ω → D. Suppose )(Fℎ)

)z
is in L2(Ω) for ℎ ∈

W1
a(Ω) such thatℎ′ extends continuously tobΩ. ThenS(ℎ◦F−1) is square-integrable

on bD and
‖‖‖‖‖‖‖‖
)(Fℎ)
)z

‖‖‖‖‖‖‖‖

2

L2(Ω)
−

‖‖‖‖‖‖‖
)ℎ
)z

‖‖‖‖‖‖‖

2

L2(Ω)
= �‖‖‖‖S(ℎ◦F

−1)‖‖‖‖
2
L2(bD) .

To prove Proposition 5.1 we can not use the series representation approach
because the domain of convergence for power series is a disk, and Ω might
not be a domain of convergence. In the proof we utilize the same geometric
argument that we employed to prove Theorem 2.1.

Painlevé’s theorem [11, Theorem 5.2.4], allows the conformal map F to ex-
tend as a C1-function to bΩ. Thus we canmove the calculations from the inner
points of the domainΩ to its boundaries by the Stokes’ Theorem. Thenwemake
use of the fact that |F(z)| = 1 for z ∈ bΩ to annihilate one of the boundary in-
tegrals. Then we do a change of coordinates with the conformal map w = F(z)
to move the integral from bΩ to bD and formulate it with the operator S.

Proof of Proposition 5.1. If ℎ is holomorphic, then )ℎ = 0 and we have

dℎ = () + ))ℎ = )ℎ = ℎ′(z)dz.
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Thus,

A(Fℎ) − A(ℎ) =‖)(Fℎ)‖2L2(Ω) −‖)ℎ‖2L2(Ω)
=

⟨
)(Fℎ), )(Fℎ)

⟩
L2(Ω) −

⟨
)ℎ, )ℎ

⟩
L2(Ω)

= i
2 ∫Ω

)(Fℎ) ∧ )(Fℎ) − i
2 ∫Ω

)ℎ ∧ )ℎ

Now, note that )(Fℎ) ∧ )(Fℎ) = () + )) ((Fℎ))(Fℎ)) = d ((Fℎ))(Fℎ)). Simi-

larly, )ℎ∧)ℎ = ()+))
(
ℎ)ℎ

)
= d

(
ℎ)ℎ

)
. Then, we canwrite the above integrals

are equal to

= i
2 ∫Ω

d ((Fℎ))(Fℎ)) − i
2 ∫Ω

d
(
ℎ)ℎ

)

= i
2 ∫Ω

d ((Fℎ))(Fℎ) − ℎ)ℎ) . (51)

By the product rule, )(Fℎ) = ℎ)F + F)ℎ. Now, we plug in ℎ)F + F)ℎ into
(Fℎ))(Fℎ) − ℎ)ℎ and simplify, getting

(Fℎ))(Fℎ) − ℎ)ℎ = (Fℎ)(ℎ)F + F)ℎ) − ℎ)ℎ = F|ℎ|2)F + (|F|2 − 1)ℎ)ℎ

The integral in (51) becomes

= i
2 ∫Ω

d
(
F|ℎ|2)F + (|F|2 − 1)ℎ)ℎ

)
.

We use Stokes Theorem:

= i
2∫
bΩ

(
F|ℎ|2)F + (|F|2 − 1)ℎ)ℎ

)
. (52)

Then,

i
2∫
bΩ

(
F|ℎ|2)F + (|F|2 − 1)ℎ)ℎ

)
= i
2∫
bΩ

F|ℎ|2)F + i
2∫
bΩ

(|F|2 − 1)ℎ)ℎ

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
=0 since on bΩ |F|2=1

= i
2∫
bΩ

|ℎ(z)|2F(z)F′(z)dz
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We do change of coordinates z = F−1(w) (we move the boundary integral
from bΩ to the unit circle bD). Then,

i
2∫
bΩ

|ℎ(z)|2F(z)F′(z)dz

= i
2 ∫
bD=F(bΩ)

|ℎ(F−1(w))|2F(F−1(w))F′(F−1(w)))F
−1(w)
)w dw

Note that
)F(F−1(w))

)z = 1
)F−1(w)
)w

,

we use this on the last integral and obtain

= i
2∫
bD

|ℎ(F−1(w))|2w 1
)F−1(w)
)w

)F−1(w)
)w dw = i

2∫
bD

||||ℎ(F
−1(w))||||

2wdw.

Now, let’s use w = ei� on bD, then the last integral becomes

= i
2 ∫

2�

0
ei�|ℎ(F−1(ei�))|2(−i)e−i�d� = 1

2 ∫
2�

0
|ℎ(F−1(ei�))|2d�.

Thus we observe that

AFℎ − Aℎ = �‖‖‖‖Sℎ(F
−1)‖‖‖‖

2
L2(bD) . (53)

�

6. A future direction
The higher dimensional analog of the excess area growth idea is developed

by J. D’Angelo, see [5, Section 9 of Chapter 4] and the papers he refers to in
the references section. It will be interesting to explore the idea in the weighted
space of square-integrable entire holomorphic functions whose �rst derivative
is also weighted-square integrable,W1

a(ℂ, e−|z|2). The di�erential operatorD =
)
)z

and the multiplier operator M = z from Theorem 1.1 play important roles

in Physics, in W1
a(ℂn, e−|z|2) space, [5, Section 12 of Chapter 4]. In the case

of W1
a(ℂ, e−|z|2), instead of the area of the image of the unit disk, it may be

interpreted as theweighted-area of the image of the entire complex plane under
a holomorphic function. The relationship between theL2-normoff and thel2-
norm of the Taylor coe�cients of f can still be useful. Integration by parts will
be the main tool instead of Stokes’ theorem due to the absence of boundaries in
W1

a(ℂn, e−|z|2) space. Moreover, it will be interesting to see what operator can
replace S in the excess area di�erence.
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