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Generalization of the excess area and its

geometric interpretation
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ABSTRACT. Theimage area of the unit disk under (z-h)(z) exceeds the image
area under the holomorphic function h(z). In his book, Hermitian Analysis,
J. D’Angelo precisely determines how this excess image area of the unit disk,
Area ((z - h)(D)) — Area (h(D)), grows. In our work, we replace the multi-
plier z with a finite Blaschke product and observe that the excess area growth
is a solution for the Dirichlet problem on the unit disk. We replace holomor-
phic functions with harmonic ones in the formulation and observe a new
identity. Furthermore, we show that the excess area growth idea can also be
implemented to some other domains conformal to the unit disk.
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The Lusin’s Area Integral formulation states that for & holomorphic and

h' # 0on Q C C one can observe Area(h(Q)) = Jf, ’h’(z)|2 dA(z). Itis an
essential tool in studying the boundary behaviors of complex maps, see [11,
Section 5.1]. If h : Q — C is m-to-one the above area formula still holds, [5].
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In general, the multiplicity varies from point to point for a complex valued func-
tion. However, for a complex analytic function, multiplicity is locally constant,
[1]. This property provides the convenience to justify the definition of area of
h(Q) by breaking Q into subsets on which & has constant multiplicity, [5].

On D, since |z| < 1, |zh(z)| = |z||h(z)| < |h(z)|. However, the area of
the image of D under zh exceeds the area of the image of D under h, unless h
is identically zero, see [5, proofs of Proposition 4.2 and Corollary 4.2]. In fact,
for certain holomorphic functions h on D, one can explain and determine the
area growth precisely by using the relationship between the L2-norm of h and
the £2-norm of the Taylor coefficients of h as 7 Z:’:O |h,|?, or by calculating it

through a geometric argument on the unit circle as % j’om |h(ei®)|2d6.

Let L?(Q) be the space of square integrable functions on Q, with inner prod-
uct (f, g)Lz @ = Jo f(2)8(2)dA(2). Let W1(Q) (Sobolev space) be the space of

u € L?(Q) such that Z—: € L?*(Q). The inner product for W(Q) is defined as

(f, g>W1(m = (f, g)LZ(Q) +(df/0z, ag/az>L2(m, for an elementary introduction
to Sobolev spaces see [5, Section 8 and the rest of Chapter 3] or [8, Chapter 6].
Let O(Q) denotes the space of holomorphic functions on Q, L2(Q) be the space
of square integrable holomorphic functions on Q, known as Bergman space on

Q, and W(Q) be the space of f € L2(Q) such that % € L(Q). The subspaces

L2(Q), Wl(Q), and W(Q) are closed in L*(Q), see [4, p. 70-71] or [10, Chapter
14].
For h : Q — C holomorphic function define A(h) := Area(h(Q2)), and note
2
that Area(h(Q)) = ”hI”LZ(Q) for h € Wi(Q).

A twice differentiable function u(x, y) is known as harmonic if Au(x,y) =
Sulx,y) | d*ulx.y)
dx2 dy?
twice differentiable function u(x, y) is known as subharmonic if Au(x,y) > 0.
For more on harmonic and subharmonic functions see for example [10, Chapter

7].
A Finite Blaschke product is a special function used for manipulating ze-
ros on the unit disk. It is of the form

= 0. They are continuous solutions to the Laplace equation. A

B(z) = ¢ [ [ (fo,(2)™,
j=1

where m; is the multiplicity of the zero a; € D, ¢'% is a point on the unit circle,
and f a (z)= 1Z_aj is known as Blaschke factor.
—ajz
Some properties of a finite Blaschke product and a Blaschke factor are that
B, faj € O(D), Band faj map bD to bD, faj is a one-to-one, so B is (Z';:l m;)-
to-one on D, and f gjl =f —a;- For more on the interesting properties of a finite
Blaschke Product and their use see the book [6] and the survey [9].
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In the computations of this work we use differential forms notation, dz =
dx + idy and dz = dx — idy. For h € C'(Q), we write dh for Z—hdz and oh for
z

Z—ZdE. If h is a holomorphic function on Q, 8h = 0and dh = @+ é)h =0h =
Z—:dz = h'dz.
The area form on the complex plane is

(-1) i _
dx Ady = sz/\dz— zdz/\dz.

The area difference between the image of the area of the unit disk under zh
and under h € W(D), Area (zh(D))—Area (h(D)), is geometrically interpreted
as the average value of the module-square of h on the unit circle times 7, see
Theorem 1.1.

When h extends continuously to the circle, let Sh to represent its restriction

to the unit circle. Then, for h € W (D), we have h(z) = Z:;o h,z" on D and
5 1 2 1 00 21 [

_ = 0240 — ~ 2 in8129a — 2

Iy = 5 [ 1HEOFA8 = 72 3l [ 1ede = 3, bl

. . . do
The measure used on the unit circle is the normalized one: P
T

Theorem 1.1 ([5]). Let Sh be the restriction of h to the unit circle for h € W(D).
Then Sh is square integrable on the unit circle and

d(zh)

0z

2 2

oh
o0z

2
= 7lIShllzp) » for b € W(D). )
LX(D)

(D) ‘

Theorem 1.1 in [5, Chapter 4, Section 2] is proved with two different ap-
proaches. One is by using the inner points of the domain. More specifically,
by utilizing the relationship between the L?-norm of h and the ¢?-norm of the
Taylor coefficients of h. The second approach uses Stokes’ Theorem to move
the calculations from the inner points of the unit disk to the unit circle. The
geometric approach requires h € W1(D) to be also one time continuously dif-
ferentiable on the unit circle.

In this paper, we study the concept of excess area growth formulated in The-
orem 1.1. In section 2, we present one of the main results Theorem 2.1, pre-
cisely determining how the excess area grows when the multiplier z in (1) is re-
placed with a function f, holomorphic on a neighborhood of the closure of the
unit disk, mapping the unit circle to itself. Then, applying the modified excess
area growth formulation, we observe that the excess area growth generated with
the multiplier function f is comparable to that generated with the function z.
Moreover, we include another result, Theorem 2.7, on the unit disk, by keeping
the multiplier function as z we replace holomorphic functions h € Wk(D) with
harmonic functions u € W'(D) in the area difference identity (1). We observe

that the excess area growth with holomorphic functions h,||S hlliz(D), is a part
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of the new identity (14). In section 3, we provide the proof of Theorem 2.1. We
manage to use D’Angelo’s geometric approach. We also provide an argument
about how one can deduce the result to only h € W1(D) from h € Wl(D) with
the extra smoothness requirement on the unit circle, Lemma 3.1. In section 4,
we present the proof of Theorem 2.7. In the proof, to show that a harmonic
function u € W(D) is a real part of a holomorphic function h € Wk(D) we
make use of the observation that if g € C1(D) and Vg € L?(D) then g € L*(D),
see Lemma 4.1. In Section 5, we move the area difference formulation (1) onto
suitable domains conformal to the unit disk. In the last section, we propose a
future direction in this context.

2. Main results with some observations

In Theorem 2.1, we precisely determine how the excess area grows with mul-
tiplier function f holomorphic on a neighborhood of the closed unit disk that
maps the unit circle to the unit circle. Such a function f can always be repre-
sented with a Finite Blaschke Product, [6, Lemma 3.2] and [9]. This represen-
tation brings convenience into the calculations. Inspired by D’Angelo’s work
in [5] we use a similar geometric argument to prove our main result; we make
use of Stokes’ Theorem to move the calculations from D to bD. However, mov-
ing the calculations from the unit disk to the unit circle requires h’ to extend
continuously to the circle for h € W(D). In the proof, we use a standard lim-
iting argument Lemma 3.1 to infer the result for h € W(D) from the work
when h € W!(D) is having a continuous first derivative on the unit circle, see
section 3.

Theorem 2.1. For h € W.(D) and f holomorphic on a neighborhood of D such
that f(bD) = bD

2 2

A~ AR x

REeD
2

L2(D) ’ L2(D)

n 1 2 o 2
:nzlmj E-/o. ‘h(f_aj(e ))’ d6
J:

2

L2(bD)

—x¥m i||sh¢r-a)
Jj=1

where a; arezeros of f in D, m; is the multiplicity of thezero a; € D, and f a; (z)=
z—aj

is the Blaschke factor with zero at a;.

l—ajz

A simple outcome from Theorem 2.1 is as follows.
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Corollary 2.2. Forh € Wi(D)and0<m <n
A(z"h) — A(z"h) = t(n — m) f ’h(e’e)' do

=n(n— m)”Sh'HLz(bD)

A(Z""™(z™h)) — A(z"™h) which, by (2) in Theorem 2.1, is equal to
27
1
m(n —m) o j(;

Note that we use z for f,(z), that is, z is the Blaschke factor with zero at a = 0,
and so el = f,(e®). O

Proof. For h € W!(D) and 0 < m < n we consider A(z"h) — A(z"h) as

. 2 1 (7 e
e‘meh(ele)’ de | = n(n—m)| f ‘h(e’e)‘ de
0

2
=7r(n— m)HSh”LZ(bD) .

Corollary 2.2 also follows from D’Angelo’s Theorem 1.1 by an induction ar-
gument.

One observation that comes from Theorem 2.1 is that the excess area growth
generated with multiplier function Blaschke factor f,(z) = % becomes a

solution of the Dirichlet problem on the unit disk.

Corollary 2.3. If hewibD)n C(ﬁ) and the multiplier function is a Blaschke
factor f,(z) = — then

l‘/(-)zﬂ |h(e19)|2%w|22d6 lf weD
dw) 1= A(f h) — A(W) =1 ° lei®—w]
| h(w)|? if we bD.

Thus, ¢(w) is continuous on D and harmonic on D.

Proof. By using Theorem 2.1 with a multiplier f,(z) = — ~ forw € D we
—wz
have

1

2
A o) = AGR) = ZlISK(S )y = T3 f Ih(f—o(@)Pd0.  (3)
0

First, alter the integral in (3) with ¢ = ¢!® and d¢ = ie®®d8 for 0 < 6 < 27 as

2 2 h 6yy2
ISh(F - = o f H(f-(e®)Pde = s f [LOSCI
0 0

ei®
2
flh(f oSO o @

2711
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Note that f,, is a (one-to-one) holomorphic map on a neighborhood of D and

fu(bD) = bD. We make a change of coordinates with { = f,(§) and d{ =

of Wf)dg in the integral at (4) to obtain

1 |h(f_ w(fw(§)))|2f3fw(§)
w | fu® ok O ®
fo' (bD)=bD
%f) = %,soferg € bD we have
1 0fu(® 1-wf 1—jw? 1  1-—|w]?
fo® 08 E-w (Q-wEP E-w 1-wE
__ & 1owP g i-feP g 1w
1-wé 1-wé 11— wé|? 1§ —wl?

Thus the integral at (5) becomes

2
|w|2 1 i0Y(2,—i0 1—|w . i6
mel OFF oot = 5 | INCOPe o T ietde

2ri w|?
27
1 i6y]2 |LU|2
— ——d6. 6
=57 | P (6)

The lastintegral at (6) provides another representation for the excess area growth
generated with multiplier function Blaschke factor f,,

, 1 1= fwp

2w
2 .
A oh) = A) = ISkl = [ 1h(e) ™)
0
The expression
1 1w

in (7) is known as the Poisson kernel for the unit disk. It is used to calculate
a harmonic function on the disk from its boundary values, that is, from its val-
ues on the circle that bounds the disk. Then use the solution of the Dirichlet
Problem for the unit disk, [10], to obtain the result. O

Remark 2.4. From Corollary 2.3 we know ¢(w) := A(f,h)—A(h)isaharmonic
function on D. Thus, one can use the properties of harmonic functions on the
unit disk to interpret the excess area growth generated by a Balschke factor
with its zero in the unit disk. For example, by the Mean Value Property for
harmonic functions, for D(a,r) C D, one can say that the excess area value,
#(a), generated by a Blaschke factor f, with its zero at the center of a disk
D(a,r), deduces from the extra area values, ¢(a + re’®), generated by Blaschke
factors f,r0ie With zeros on the circle bD(a,r).
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Another observation is a Harnack type inequality relating the excess area
values A(f¢h) — A(h) generated by a Blaschke factor f with a zero § € D at
two points, w and 0 in D.

Corollary 2.5. Ifh € Wl(D)n C(ﬁ) and the multiplier function is a Blaschke
factor f,(z) = _1Z:wwz’

1—|w
1+ |w|

L (aGh) - A (®)
~Jwl

- (A(zh) — A(h)) < A(fh) — A(h) <

The inequality (8) also works for any two points w and w’ in D. Moreover, for f

Z—aj

1—ajz

mj
equal to a finite Blaschke product e H;l=1 ( ) » wherem; is the multiplicity

ofthezeroa; € Dand e® is a point on the unit circle, (8) can be further formulated
as

1
Yy |- (AGh) = AR) < AGTR) - AGh) ©)

n

<| 3 my I  CaGah) - AGh

j=1 Jl_lajl

Proof. The inequality at (8) follows from triangle inequality and reversed tri-
angle inequality applied on the Poisson kernel’s denominator in the integral at
(7).

As for the second inequality (9) with

m;
n m; "l z—a;
— ,if I _ 6 J
f@)=e g(f_a,) = || -
we use Theorem 2.1, so for h € W(D) we have
n
2
A(fR) =AW =7 >, m j”s;z( ) . (10)
=t (bD)

Combining (10) with (8) will give us (9). That is, rewrite (8) as

_lajl

IShZ2p0) <|[SA(S o)) :

2
Sh .
206Dy ~ 1 —|a;] I1Shllz2m)
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Multiply each side of the inequality by m; and then sum the entire inequality
from j = 1 to j = n to obtain

n

|a;l n
om ]1+|a1| .||Sh||i2(bmsz1 ||Sh(f q
J:

Jj=1

L2(bD)

n

| ,| 2
< Zm 1K1l 2y -

Jj=1

which is,

n

1-la|
S my—— | (A(zh) - A(h)) < (A(Fh) — A(h))

J
j=1 1+ |a]|

n

< ij 1 aczy - A,

j=1 1_| ]I

O

The following observation is connected to the difference between 7|h(£)|?
and the excess area value, generated by a Blaschke factor f¢, being a subhar-
monic function (for &) on the closure of the unit disk.

. Then

Corollary 2.6. Let h € W(D) n C(D) and f,(z) =
A(fah) — A(h) > 7T|h(a)|2- (1)

Moreover, for f holomorphic on a neighborhood of D such that f(bD) = bD, we
have

A(fh) = A(h) 2 7 ) mylh(a). (12)

j=1
Proof. By the equation (7) in the proof of Corolarry 2.3 for w € D we have

271’| 19_w|2

27T 2
A(foh) — A(h) = 7 f (e l@)|2< A)de.
0

Moreover, by Corollary 2.3 we know that ¢(w) := A(f,h) — A(h) is harmonic
when w € D and ¢(w) = 7|h(w)|? COIEinuous when w € bD. Furthermore,

7|h(w)|? is a subharmonic function on D. _
Consider the following function ¥ (w) := 7|h(w)|?> — ¢(w) for w € D. The

function (w) is a subharmonic function on D: |h(w)|? is subharmonic on D
and ¢(w) is harmonic on D. For w € bD we have ¢(w) = 7|h(w)|?,s0 =0
on bD and

AY(w) = TA|h(w)]? — Agp(w) > 0.
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In the next step, we use the Maximum Value Property for the subharmonic
functions: The maximum value of a subharmonic function is attained only at the
boundary of the domain unless the function is constant. This tells us that the
function ¢(w) < 0 for w € D, that is,

mlhw)l* < ¢(w), Yw €D (13)

which is (11).

Moreover, if f is a holomorphic function on a neighborhood of D such that
f(bD) = bD, that is, f is a finite Blaschke product, see [6, Lemma 3.2] or [9],
and then by Theorem 2.1 we obtain (12). O

By replacing holomorphic functions with functions harmonic on D in the
area difference formulation (1), we lose the ’area’ meaning, but another inter-
esting identity emerges (14). In the identity (14) we observe the excess area
growth with holomorphic functions ||Sh||i2(D) as a part of the harmonic func-
tions’ identity.

Theorem 2.7. For u € W'(D) and harmonic on D, there is h € Wk(D) such
that u = R(h) and the following identity holds

K2 R (14)
o0z 12(D) o0z 12(D)
1 1 [ 2
— i0\]2 2
=37 Efo |h(e®)[2d0 | + 27R(R2(0)) +I[AIL
1

= 2 (7lIShIL:p) + 27RH2O) +IAl )

3. Proof of Theorem 2.1

The proof of Theorem 2.1 goes on the lines of the argument with a geomet-
ric approach for Theorem 1.1 in [5], using Stokes’ Theorem to move the com-
putations from the unit disk to the unit circle. The following Lemma 3.1 is
a standard analysis argument that allows deducing the result in Theorem 2.1
forh € W;([D) from calculations for W}l-functions h on D with derivative, h’,
continuous on the closure of the unit disk.

Lemma3.1. Leth € WY(D), h,(z) :=h (ﬁ) and S is the restriction operator
J

to the unit circle. Then

lim ||Sh; — Sh

jooo

206D)

Proof of the Lemma 3.1. Let h € W(D), for every ¢ > 0 there is a large
enough disc D(0,r) C D (with 0 < r < 1) and j, € N such that

Al < :
WiO\DON) S (1 4 1/j)?’

(15)
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which also gives
<e¢ forall j > j. (16)

&l

Let’s show how (16) is obtained.

Wo(D\D(0,r))

2

2
I, _=f h|—2— || dxdy
Wa(D\DO)  Jp\ Do) 1+1/j
2
0 z
+ —h - || dxdy.
L\D(O’ 3192 (1 + 1/])
We do change of coordinates z = F~1(¢) = (1 + 1/j)¢. Then
’ 1 4

dédn, L3

0
dxdy = |—F‘1(§) =
0z ;_{F—1(§) a¢

¢

SO

In ()] (1 +1/))dEdy

=L<o : )\D(O

141/ ’1+1/j>
a 2
+f 1 —‘—h(s”) dédn
p(o e 0-57) 1%
2
Sf _Ih(§)|2(1+1/j)2d§dn+f_ ih(g) dédy
D\D(0,r) D\D(0,r) ag

. \2 2
<@A+1/jo) ”h”W},(D\m) <e.
To prove the lemma, first, we show that k; converges to h in W'-norm on D.
In this step we also use (15) and (16). Then we make use of Trace theorem, [8,
Theorem 6.47].

Thus, let’s show that limj_m”hj - h” .. = 0: To make use of (15) and
W,(D)

(16) conveniently we split the W!-norm on D to W!-norm on D\D(0, r) and on
D(0,r).

- (17)

wl(D) =|| a h|

S TRt Ippp—
W(D(0,r)) Wi (D\D(0,r))

The first term on the right hand side of (17) can be made as small as it is needed:
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For z € D(0,r) and j,k € Nlety(t) := £t+(1—t)1+ik foro <t <1,
J

then we have
z z
h —h| —
(1+1/j) (1+1/k)

= |1 (7)) = 1 (1) =

by (2) = hye(2)| =

1
f W (e (@O)y ), (dt
0

1
<cC L (Oldt =C -
- /0 750! 1+1/j 1+1/k

z z ‘

1 1
<rC - —
1+1/j 1+1/k
SI’C%—%‘ 0 ask,j — oo.

Thus, hj(z) is uniformly Cauchy on D(0, r) which implies that h;(z) converges

to h(z) uniformly on D(0, r).
Note also that, by Cauchy estimate

o) o)
ERICRFANE

1
<=
r

sup |hj () - hy (2)].
zeD(0,r)

The right hand side goes to 0 as j and k go to oo, since D(0,r) C D is compact,

so that h; converges uniformly on D(0, ). Thus ;izh j is also uniformly Cauchy

(Cauchy in the uniform norm) on D(0, r), as it suffices to conclude that aih i (2)
z

converges to aih (z) uniformly on D(0,r). Thus, choose J so large that for all
z
j > J we have

-+l

Wi(D(0,r))

2
= | hj(2) —h(2)| + [
D(0,r) D(0,r)

< mr?e? + wre?

(18)

9

3 2
azhj(z) - a_zh(z)

The second term on the right had side of (17) can be estimated from above by
using the triangle inequality,

2 2
< h-—h| _ ||h' —__ +|h S— 19
- “ J WD) g WL(D\D(0,)) + ”W;(D\D(o,r)) (19)
JE— 2
By the choice of D(0,r), the last two norms are dominated by ¢ and (1:, v
Jo

respectively, see (16) and (15). By the choice of J, the first norm is dominated
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by 7r?e? + nre?. Altogether

2 2
h~—h|| <mre? +mref 424 —,
” N T 1+ jo)*
SO
||hj - h‘ WD) — 0 as j - oo. (20)

Now, the restriction operator S maps W(D) to W/2(bD) c L3(bD), see [8,
Theorem 6.47]. Thus, S : W(D) — L?(bD) is a bounded operator, that is,

“Shj 26Dy = ||hj ’Wl(um) 1)
Thus, by (20) and (21) we obtain
jlinc;lo |Shj B Sh”LZ(bu:o) < Jli_)rgo hj = h’ WD)
This complies the proof of Lemma 3.1. O

Note that if a function f is complex analytic on a neighborhood of D, map-
ping bD to bD and with no zeros on the inner points of the unit disk, then f isa
constant. An argument for proving this is as follows: Assume f is not constant,
with no zeros on the unit disk. Then, functions f and 1/f would be complex

analytic on the unit disk. By Maximum Modulus Principle we observe fL) <1
z

and | f(z)| <1 on D, which implies that f maps the unit disk to the unit circle.
This outcome contradicts the Open Mapping Theorem, so f is constant.

Proof of Theorem 2.1. If f is holomorphic on D and maps bD to bD, then f
can be represented with a Finite Blaschke Product, f = B, [6, Lemma 3.2].
For any h € W (D) we have

2
L2(D)

Ao~ 400 =B [, || @

= (8(Bh), 8(BI) ) — (01, OR) 1y

=ifa(Bh)Aa(Bh)—i/ahA%
2 D 2 D

Note that d(Bh) A d(Bh) = (0 + 5) ((Bh)é(Bh)) =d ((Bh)d(Bh)). Similarly,
dhAdh = (3+9) (h%) =d (h%) Then, we can write the above integrals are
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equal to

i — — —\ i —
3 fD o(Bh) A 6(Bh) - 5 f oh AOh = f@ d((Bh)a(Bh))—E fD d(hah)

D

N~

N | =~

d ((Bh)@ - h%)

d (B|h|2£) (23)

N | =~

N

+ f d((|B|* = 1)hdh).
D

Now, we want to use Stokes’ Theorem on (23), but h € W(D) is not defined
on the unit circle, so we will use a standard limiting argument. Let’s dilate
z

heWyD)ashj(z) :=h <1+1/.

j
and so it is smooth on the boundary of the unit disk. From this point on, we
will work with h j instead of h. Then, in the end, we will take the limit of h j in

Wl-norm on D as j goes to infinity.
Then the two integrals in (23) are modified as

). h; is holomorphic on a neighborhood of D

i

EfDal(B|hj|ZaB)+Efmd((uﬂz—1)hjahj). (24)

By using Stokes’ Theorem we move the integration from the disk D to the circle
bD, so the two integrals in (24) become

i — i —
Ef B|hj|zaB+§f (IB|> — 1)h;dh,;. (25)
bD bD

The second integral in (25) is vanishing due to |B(z)| = 1 for z € {|z|*> = 1}.
Thus, we are left only with the first integral
i

> / B(2)|h;(2)|?3B(2). (26)
bD

By induction it suffices to present the case for B(z) = f, (2) - fq,(2). The
computation for any finite Blaschke product will be the same. Thus, B'(z) =
f0,(2) - fa,(2) + fq,(2) - fo,(2) and the last integral (26) becomes

L f B(@)|h(2) B (2)dz

bD

= %ffal(z) fa, (@212 (fgl(z) fa,(2) + fa,(2) - fflz(z)> dz.
bD
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At this point, we do a change of coordinates with w = f, (z) and obtain
i
-1 [ atEefuuEw) @)
fal (bD)=bD

-1 2 1 -1 fall( )
@) (@) - fa o)
[ faUaw) st w)

fal (bD)=bD

1w . — fall( w) .
“hi(fa, DI fo,(fa, W) - fa,(fa, W) w.

3(fe, (f)
Note that in the first integral at (27) we have the term Uy oy @)

———1 " which cancels
_ o0z

aft .

with f‘”—(w), that is,
Jw

0(fa,(fa! W) 9fq ()

oG w)  Fw
0z dw

w ZEZI'

After the simplifications in both integrals at (27) we arrive at

=% f w - | fo,(fa, WHIPIh;(f5, (w))*dw (28)
bD

—. S a}( w)
2 f ww - fo,(fa @I (Fo @D fo,(fa W) - el

bD

For further simplification in (28) we observe |f,,(f gll(w))|2 = 1 for w € bD.

Moreover, the last two factors in the second integral in (28), f/ o, (f 511( w))- fal (w)

1
resulted from w by applying the chain rule:
w

6(faofal) @) 0(fu(fa @)  Bfe,(falw) ofal(w)
ow - - '

ow 0z ow

T . 511( )
_faz(fall( )) f
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Thus, we rewrite (28) as

- 5 [l s @i 29)
bD
[ d a,® 1;11( )
+= f faz(f;f(w))|h,-(f;f(w))|2wdw.
bD

2

The first integral in (29) is equal to 7T“Sh i(f gll) D) but the second inte-

gral needs more work. Thus, we make another change of coordinates ¢
fa,of o) = fo,(fo! (W) (note that w = (fg,0fz)7(E) = fo,0fa (&)
fo,(f gzl(g“ ))) on the second integral in (29) and obtain

L f fa, (f;} (fa <f;;<§>))) R (Fu GO e
Fay(fal(bD)=bD
9 (faz (f;f (fa <f;j<§))))) 3 (fu D) -
' dw ' 3¢ ds.
6<fa2<f5f(fa1(f;§(§))))) —
Note that in the integral (30) the factor ” = cancels with

fa (o Sw
the factor M — a_w.
a¢ a¢

After the simplifications, we obtain that the above integral in (30) is equal to

L [e ] d = alsmad, G
bD
Thus, (29) becomes equal to
2 2
ﬂ“Shj(f‘;ll) 12(bD) + ﬂ"Shj(f‘;zl) 12(bD) (32)

Based on the above calculations, if B(z) = e HZ:I( fa.£(z))™ then the inte-
gral in (26) by induction is equal to

2

o 3 m[shya) 3
k=1

L2(bD)

That is, the area difference at (22) is equal to the finite sum at (33), with h;’s
which are holomorphic on D and smooth up to the unit circle. However, by



GENERALIZATION OF THE EXCESS AREA 1245

Lemma 3.1 we conclude that the equality also holds for h € Wé, that is,

2
1
2D for h € W (D).

A(BR) = A(h) = m 3, my||Sh(f5)
k=1

4. Proof of Theorem 2.7

The calculations in the proof are on the unit disk, which is a simply-connected
domain. Thus, we make use of the observation that on a simply connected do-
main, every harmonic function is the real part of a holomorphic function, [10,
Lemma 7.1.2]. Moreover, the following lemma is used in the proof of Theorem
2.7 to obtain h € Wk(D).

Lemma4.1. Let f € CY(D)and Vf € L%(D). Then f € L*(D).
Proof. x = rcos(8) and y = rsin(0).

) _|6fox  dfdy
‘af(r,e)‘— 554_55

= |fx - cos(6) + f, - sin(6))|
= |V f (r,6) - (cos(6), sin(6))|
<|| Vi f(r,0)

||nyf(r, 6)” represents the pointwise-norm of V., f (r, 6).
Now, we apply the Fundamental Theorem of Calculus on f(r, ) only on its
r variable. We have

f(r,@):f(0,9)+f if(s,e)ds
b 0s

1
= 11O <100+ [ Vs (5.0 s
0

Then, let’s consider the squared-terms
2

1
£ O <210, 0) +2 f Vs (5,0)]| ds (34)
0

1
<2/f () +2 f Va0 ds
0

Note that since f(z) is continuous at z = 0 we have |f(0,0)| = |f(0)|. We
used Cauchy-Schwartz Inequality on the last integral. We take integral of both
sides of the inequality at (34) with respect to r and 6.

1 1 27
/ 1£(r,0)2drdo < 4x|f () +2 f f f IV f .0 dedsdr  (35)
D 0 0 0
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On the triple integral on the right-hand side, we can drop the outermost integral
because the result out of the two-innermost integrals is a constant, and the third
integral does not add anything to the outcome.

2 1
f |f(r,0)2drdd < 4r|f(0)]* +2 f f [V fr.0)| drde.  (36)
D 0 0

Let’s rewrite the inequality (36) in z variable
f f@P dxdy < 4l fO)F +2 f [Vaf @[ Srdxdy. (7

Note that we have |z| on the denominator, and it will go under the squared-

norm as 4/ |z| and we will have \J;% in the integrand as square-integrable. That
is,
@| @|
2 f(z Vf(z
110 st P2 <anlfo) +2 (38)
VIzl| 2y 12| || L2

If f is bounded near 0 and V f is bounded near 0 and V f € L*(D). For r small

Vf(Z) Vf(Z) Vf(Z)
XD(0r) T —— Xm@\DOsry) = 1+ [2 (39)
Viz| Viz| Viz|
f1 f2
Since f is bounded
/@ [
Vf(z
1l = f Y o dxdy (40)
© D(Or) | V 1zl ’
5/ l—dxdy / f =rdrdf = 27r,
D(0,rp)
and
) ’
Vfi(z
”fz”iz D) = f X(@\D@©,rpy| dxdy (41)
O ooy | VIz] ’
<1 f IV £(2)Pdxdy
o Jp
since Vf(z) € L*(D). O

Remark 4.2. 1f (34) is integrated with respect to 6 between 0 and 27

2 27 1
f |£(r,6)17d0 < 4m|f(O) +2 ] f Vi fs.0)| dsdo (42)
0 0 0
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by (39) (with (40) and (41)) the right hand side of (42) is just a constant. That

is, fom | f(r,6)|?d0 is uniformly bounded, or equivalently, all averages of |f |2
on circles centered at 0 are uniformly bounded.

Remark 4.3. Lemma 4.1 works without requiring harmonicity due to the sim-
plicity of its domain and dimension. The result in Lemma 4.1 is a particular
case of [3, (3.1)], which essentially comes from the book by Kufner ([12]). For
more general circumstances, see a version of a Poincare inequality with har-
monic functions in [2, Proposition 2.1] or [7, 13].

We present two different proofs for Theorem 2.7. In the first one, we employ
Lemma 4.1, Stokes’ Theorem, Cauchy Integral Formula, and Cauchy’s Theo-
rem; we assume harmonic functions’ first-derivative extend continuously to the
boundary of the unit disk and refer to the argument in the proof of Theorem 2.1.
The second proof is by working on the inner points of the unit disk with series

representations. We utilize the series representation of holomorphic functions
h.

Proof of Theorem 2.7 by a geometric argument. Since u is harmonic on the
unit disk, a simply connected domain in C, there is a harmonic conjugate v, [10,
Lemma 7.1.2]. Let h = u + iv be the corresponding holomorphic function. Us-
ing Cauchy-Riemann’s equations, one can see that L?>-norm of the gradient of
v is equal to L?-norm of the gradient of u, so the gradient of v is in L?(D). To
make the conjugate harmonic function v unique, we assume v(0) = 0. Then
by using Lemma 4.1 we obtain that v € L?(D), and so h € W}(D).

We start by calculating the differences between the square of the L?-norms

of ai(zu) and aiu. In the beginning, we involve a factor of 4 to get rid of the 4
V4 zZ
coming from the denominator.

2

\S)

4||a(zu) B 4‘ du _
0z || 2o 9z ||12(m)
o] .(h+h O |h+h
=4 o -4 3zl 2
L2(D) L2(D)
5 i S (el
== (z(h + h) —l|zz(h+h
”az ( ) @) 92 ( ) (D)
- <a(z(h + h)),d(z(h + h))>L2(D) - <6(h + h),d(h + h)>L2(D)

L f 3z(h + 1)) A 3(z(h + 1)) — f Ih+MAdh+h)  (43)
2 D 2 D
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Note that the form in the first integral at (43) can be rewritten as
3(z(h + h)) A 3(z(h + h)) = (8(zh) + d(zh)) A (3(zh) + 3(zh))

= 8(zh) A 3(zh) + 8(zh) A 3(zh)
+ 3(zh) A d(zh) + 8(zh) A 3(zh)

— (0+79) ((zh)a(zh)) — @ +3) (@n)3(zh))

+(0+9) ((zﬁ)a(zh)) + |h|2dz A dzZ,
SO
=d ((zh)d(zh)) —d((zh)d(zh)) +d ((zﬁ)é(zh)) + |h|?dz A dz.

Similarly, the form in the second integral at (43) can be rewritten as

d(h+h)Ad(h+h)=03hAdh = (0 +5)(h%) =d(hﬁ).

Then, the two integrals at (43) can written as
i — i _ i o
=3 /D d((zh)a(zh)> -5 /l; d ((zh)a(zh)) + 3 fD d((zh)a(zh))

i 2 -_ L 3h
+2fm|h| |dz A dz ZfDd(hah).

f d ((zh)a(zh) — Zh)3(zh) + (zR)3zh) — hﬁ) (44)
D

+if|h|2md§.
2 D

Now, at this point of the proof as in the proof of Theorem 2.1 we want to
move the first integral in (44) from the unit disk to the unit circle by Stokes’
Theorem, but h € W;([D), is not defined on the unit circle. We can use the
dilation argument, used in the proof of Theorem 2.1, and then at the end of
the proof again, and we can refer to Lemma 3.1 to obtain the result for h €
Wk(D). Keeping in mind that the same dilation argument can also work in
this proof, assuming that the function h € W(D) has its derivative extending
continuously to the unit circle suffices to complete the proof.

Next, we use Stoke’s Theorem on the first integral of (44); the second integral
is the L2-norm of h on D.

N~

= % f ((zh)a(zh) — (zh)d(zh) + (zh)A(zh) — h%) Hlal g - (@5)
bD
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By the product rule, we ohave
0(zh) = hdz + z0h = hdz + zoh (46)
3(zh) = hdz = hdz. (47)
We plug in (46) and (47) into the form in (45) and then simplify, obtaining
(zh)d(zh) — (zh)3(zh) + (zh)3(zh) — hdh
= (zh)(hdz + z0h) — (zh)(hdz + z8h) + (zh)(hdZ + zdh) — hdh
_ _ _2_ -
= z|h|?0z + |z|*hdh — zh?0z — |z|*hdh + zh 0z + |z|*hdh — hdh
— R 2 [
= z|h|?0z + (|z|?> — 1)hdh — zh?dz — zzhdh + zh 0z + |z|*hdh.
The integral term in (45) becomes

/z|h|262+ fh 28z — Efzhzaz— zfzzh6h+ f(|z|2 — 1)héh

bD bD bD bD
_,_/
=0 since on bD |z|2=1

i — 2
+ Eflzlzhah +||h||L2(D)

27
_ % f |h(e®)[2d6 + f h2(z)zdz — - f h2(z)zdz — - f hoh  (48)
0

bD bD bD
i [— 2
+ 5 hoh +||h||L2(D).
bD

Next, we employ Stoke’s Theorem for the fourth and fifth integrals at (48) to
see that they are equal to zero, one can also use Cauchy’s Theorem (since h €
W k(D) we have hdh as holomorphic on the disk and continuous on the circle.)
Moreover, we use Cauchy’s Integral Formula on the second and third integrals
at (48):

; ; 2 N 2z
%fhz(z)zdi = %/h EZ)dE = % fh (Z)dz =5 (2mh2(0)> = 7h2(0),

z z—0
bD bD bD

i _.i(r@, i B
—thz(z)zdz = ___/z = 0dz = —52711}12(0) = h?(0).

Thus, (48) is equal to
= 71|IShllyy + 27RH2(0)) + |l 2, -
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O

Proof of Theorem 2.7 by series representation. The proof with series is an
elementary calculation.

2

Ild(zu) ‘ ou B
12(D) 0z ||r2(p)

_ 2 _ 2
o] (h+h) d|h+h
=4 P 2 —4 az| 2

LZ(D) L(D)
0
2 (zth + ) h+h (49)

H ) L2(D) az( ) L2(D)

Let’s first observe the the following equalities between the L2-norms of some
terms involved in the calculation at (49):
2

d(zh E e -
Dl (T TR (50)

12(D) n=0 n=0 LZ(ID)
= 20 1Pl o) = Z (a2 =I1Al}p -
n=0

_ 2 —_ 2 5

oh oth+h) oh

az| O oz || "ozl

L2(D) L2(D) L)

— 2
Let’s start by calculating the first term at (49): dzhth)

0z

L2(D)
=<Zhn(n+1)z Z Z 2(n 4+ 1)z" +Zh >
n=0 n=0 n=0 n=0 D
<Z ha(n + D)z", Z ha(n + D)z" > (T Y hz")
n=0 n=0 D
+ <Z I+ D2, S nz") <Z .z Z ha(n +1)z" >
n=0 n=0 D
)
Il a(zh) d(zh) ah? + 71’]’1_(2)
LZ(D) 12(D)

Il azh) | +27R(h2) + IIhIIizm) :

Lx(D)
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On the last equality we used (50).
Thus, the difference of the L?>-norms at (49) becomes

2 2

3(z(h + h)) RECEDD _
o0z o0z B
L2(D) L2(D)
aizh) |’ on|P
=H _’__ £ 20R0D) +h I,
9Z |l 11921l

7 3 hal? + 27R(12) + ||l -

n=0

5. Excess area growth on some simply-connected domains

We show that the area difference formulation at (1) is invariant under specific
conformal maps. In the hypothesis for h € W1(Q), we require its derivative
h' to extend continuously to bQ. However, Lemma 3.1 can easily be altered
for any simply connected bounded domain on the complex plain and can be
used to deduce the result of Proposition 5.1 for h € Wk(Q) without the initial
regularity requirement on bQ.

Proposition 5.1. Let Q C C bounded domain with C!-smooth boundary such

that there is a conformal map F : Q — D. Suppose @ isin L2(Q) for h €

z

WL(Q)suchthat h' extends continuously to bQ. Then S(hoF 1) is square-integrable
on bD and

2 an|P

9z

)
I

o(Fh)
o0z

12(Q) ’

To prove Proposition 5.1 we can not use the series representation approach
because the domain of convergence for power series is a disk, and Q might
not be a domain of convergence. In the proof we utilize the same geometric
argument that we employed to prove Theorem 2.1.

Painlevé’s theorem [11, Theorem 5.2.4], allows the conformal map F to ex-
tend as a C!-function to bQ. Thus we can move the calculations from the inner
points of the domain Q to its boundaries by the Stokes’ Theorem. Then we make
use of the fact that |F(z)| = 1 for z € bQ to annihilate one of the boundary in-
tegrals. Then we do a change of coordinates with the conformal map w = F(z)
to move the integral from bQ to bD and formulate it with the operator S.

Proof of Proposition 5.1. If & is holomorphic, then dh = 0 and we have

dh = (8 + d)h = dh = W (z)dz.



1252 HALEY K. BAMBICO, MEHMET CELIK, SARAH T. GROSS AND FRANCIS HALL

Thus,

A(FR) = A(h) =[10F I}y 18Rl

= (8(Fh),8(FR)) o,y — (0h.Oh)

=ifa(Fh)Aa(Fh)—lfah/\%
2 Q 2 Q

LX)

Now, note that d(Fh) A 8(Fh) = (3 + 8) ((Fh)d(Fh)) =d ((Fh)d(Fh)). Simi-
larly, hAdh = (0 +5) (hﬁ) =d (h%) Then, we can write the above integrals

are equal to
fﬂ d((Fh)d(Fh))—E fﬂ d(hah)

f d ((Fh)a(Fh) - hﬁ). (51)
Q

N =~.

N~

By the product rule, d(Fh) = hoF + Foh. Now, we plug in hdF + Foh into
(Fh)d(Fh) — hoh and simplify, getting

(Fh)3(Fh) — hdh = (Fh)(hF + Fdh) — hdh = F|h|*dF + (|F|> = 1)hdh

The integral in (51) becomes
i 231 2 A
- —fd(Flhl 3F + (|F| —l)hah).
2 Jg

‘We use Stokes Theorem:

= %f (F|h|251?+(|1:|2 _ 1);@). (52)
bQ
Then,

%f(F|h|25f+(|F|2—1)h%) = %fF|h|251?+ %/(|F|2—1)h%
bQ bQ bQ

=0 since on bQ |F|2=1

= % f \h(2)2F(2)F(2)dzZ
bQ
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We do change of coordinates z = F~}(w) (we move the boundary integral
from bQ to the unit circle bD). Then,

% / \h(2)2F(2)F'(2)dzZ
bQ

bD=F(bQ)
Note that
OFF'(w) _ 1
oz W)’
ow

we use this on the last integral and obtain

——
L OF (W) _
oF-1(w) Ow

Jw

% f Ih(F- (W) wd.

bD

- 3 [ @y
bD

Now, let’s use w = ¢ on bD, then the last integral becomes

1

27
=2 f e8| R(F~(e))[2(~i)e 86 = =
0

27w
L f |R(F-1(e))2d.
2 0

Thus we observe that

App — Ay, = 7rHSh(F‘1)||i2 D) " (53)

6. A future direction

The higher dimensional analog of the excess area growth idea is developed
by J. D’Angelo, see [5, Section 9 of Chapter 4] and the papers he refers to in
the references section. It will be interesting to explore the idea in the weighted
space of square-integrable entire holomorphic functions whose first derivative
is also weighted-square integrable, W1(C, e~1? ). The differential operator D =

ai and the multiplier operator M = z from Theorem 1.1 play important roles
z

in Physics, in W(C", e~12") space, [5, Section 12 of Chapter 4]. In the case
of W(C,e 1#I"), instead of the area of the image of the unit disk, it may be
interpreted as the weighted-area of the image of the entire complex plane under
a holomorphic function. The relationship between the L?-norm of f and the £2-
norm of the Taylor coefficients of f can still be useful. Integration by parts will
be the main tool instead of Stokes’ theorem due to the absence of boundaries in
wicr, e~ 12" space. Moreover, it will be interesting to see what operator can
replace S in the excess area difference.
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