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The bicategory of groupoid correspondences

Celso Antunes, Joanna Ko and Ralf Meyer

Abstract. We de�ne a bicategory with étale, locally compact groupoids as
objects and suitable correspondences, that is, spaces with two commuting ac-
tions as arrows; the 2-arrows are injective, equivariant continuous maps. We
prove that the usual recipe for composition makes this a bicategory, carefully
treating also non-Hausdor� groupoids and correspondences. We extend the
groupoid C*-algebra construction to a homomorphism from this bicategory
to that of C*-algebra correspondences. We describe the C*-algebras of self-
similar groups, higher-rank graphs, and discrete Conduché �brations in our
setup.

Contents

1. Introduction 1329
2. Étale groupoids and groupoid actions 1332
3. Groupoid correspondences 1335
4. Some examples of groupoid correspondences 1336
5. Composition of groupoid correspondences 1341
6. The bicategory of groupoid correspondences 1346
7. The homomorphism to C∗-algebras 1348
8. Conduché �brations as diagrams of groupoid correspondences 1358
References 1362

1. Introduction
Many interesting C∗-algebras may be realised as C∗-algebras of étale, locally

compact groupoids. Examples are the C∗-algebras associated to group actions
on spaces, (higher-rank) graphs, self-similar groups, and many C∗-algebras as-
sociated to semigroups. A (higher-rank) graph is interpreted in [2] as a gener-
alised dynamical system. A self-similarity of a group may also be interpreted
in this way, namely, as a generalised endomorphism of a group. This suggests
a way to put various constructions of groupoids and their C∗-algebras under a
common roof, starting with a rather general kind of dynamical system.
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This programme is worked out to a large extent in the dissertation of Al-
bandik [1]. His results have not yet been published in journal articles. This
article is concerned with the most basic part of the programme. Namely, we
de�ne groupoid correspondences, which are the “generalised maps” between
étale, locally compact groupoids; we show that they form a bicategory, and that
taking groupoid C∗-algebras is a homomorphism to the C∗-correspondence bi-
category ℭorr introduced in [9].

A homomorphism from a category to this bicategory ℭorr is identi�ed with
a product system over C in [3]. If the product system is proper, then it gives
rise to an “absolute” Cuntz–Pimsner algebra, where the Cuntz–Pimsner covari-
ance condition is asked for all elements. We show that many constructions of
C∗-algebras from combinatorial or dynamical data are examples of such ab-
solute Cuntz–Pimsner algebras of product systems obtained from homomor-
phisms to the bicategory of groupoid correspondences. This contains the
C∗-algebras of regular topological graphs, self-similar groups, row-�nite higher-
rank graphs, higher-rank self-similar groups, and even the rather general dis-
crete Conduché �brations of Brown and Yetter [6]. Thus the theory developed
here o�ers a uni�ed approach to several important constructions ofC∗-algebras.
In this article, we only set up the bicategories and the homomorphism to ℭorr
and identify the resulting Cuntz–Pimsner algebras in some examples. In fol-
lowing papers and in the thesis [1], it is shown how to realise these Cuntz–
Pimsner algebras as groupoid C∗-algebras, provided the underlying category
satis�es Ore conditions. The relevance of the Ore conditions is also noticed in
the theory of discrete Conduché �brations in [6].

Whilemost results that we prove here are rather basic, there are some techni-
cal di�culties that warrant a careful treatment. It is well known that mapping
a groupoid to its groupoid C∗-algebra cannot be functorial when we use func-
tors as arrows between groupoids. The problem is manifest if we look at the
subclasses of spaces and groups: the group C∗-algebra is a covariant functor
for group homomorphisms, whereas the map X ↦ C0(X) = C∗(X) for locally
compact spaces is a contravariant functor for proper continuous maps. Buneci
and Stachura [7] found a way around this: they de�ne suitable arrows between
groupoids that do induce morphisms between the groupoid C∗-algebras. Our
aim are C∗-algebra correspondences instead of morphisms of C∗-algebras. Our
theorem that there is a homomorphism of bicategories from the bicategory of
groupoid correspondences to that of C∗-correspondences makes precise that
the groupoid C∗-algebra is “functorial” for these two types of correspondences.
In the dissertation of Holkar (see [15–17]), a similar homomorphism is con-
structed in the realm of Hausdor�, locally compact groupoids with Haar sys-
tem. Holkar must decorate a groupoid correspondence with an analogue of a
Haar system, which makes his theory much more di�cult. To reduce the tech-
nicalities, Holkar assumes his groupoids to be Hausdor�. We cannot do this,
however, because the groupoids associated to self-similar groups may fail to be
Hausdor�, and we want our theory to cover this case.
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A groupoid correspondence is a space with commuting actions of the two
groupoids involved, which satisfy some extra conditions. Asking for more con-
ditions, we get Morita equivalences of groupoids. It is well known that these
form a bicategory and that taking groupoid C∗-algebras is a homomorphism
from this bicategory to the bicategory of C∗-algebras and Morita–Rie�el equiv-
alences; this goes back already to the seminalwork ofMuhly–Renault–Williams
in [27], except that they do not use the language of bicategories and allow the
more general case of locally compact groupoids with Haar systems. Another
variant of groupoid correspondences was studied by Hilsum–Skandalis [14] to
construct wrong-way functorialitymaps between the K-theory groups of group-
oid C∗-algebras. These, however, usually fail to induce C∗-correspondences.

Groupoid correspondences, Morita equivalences, and the morphisms of
Hilsum–Skandalis di�er only in the technical details, that is, in the extra condi-
tions asked for the commuting actions of the two groupoids. The composition
is de�ned in the same way in all three cases. What is di�erent, of course, is the
proof that the composite again satis�es the relevant extra conditions. Since the
bicategory of étale groupoid correspondences is a critical ingredient in a larger
programme, we �nd it useful to prove its expected properties from scratch.

This article is structured as follows. In Section 2, we de�ne étale groupoids
and their actions, and classes like free, proper, and basic actions. We also prove
again that an action is free and proper if and only if it is basic and its orbit space
is Hausdor�. In Section 3, we de�ne étale groupoid correspondences. Section 4
illustrates them by several examples, which are related to topological graphs,
self-similar groups and self-similar graphs. This justi�es viewing groupoid cor-
respondences as generalised maps between groupoids. In Section 5, we de�ne
the composition of groupoid correspondences. In Section 6, we build a bicat-
egory that has groupoids as objects and groupoid correspondences as arrows.
We also brie�y recall the analogous bicategory of C∗-correspondences. In Sec-
tion 7, we build C∗-correspondences from groupoid correspondences and show
that this is part of a homomorphism of bicategories. For topological graphs and
self-similar groups and graphs, we recover C∗-correspondences that were used
before to describe their C∗-algebras as Cuntz–Pimsner algebras. More gener-
ally, a homomorphism from a monoid to the groupoid correspondence bicate-
gory gives rise to a product system over that monoid. This suggests a way to as-
sociate a C∗-algebra to any such homomorphism. We examine such homomor-
phisms and the resulting product systems at the end of this article. In Section 8,
we identify discrete Conduché �brations with bicategory homomorphisms into
the bicategory of groupoid correspondences, and identify the Cuntz–Pimsner
algebra of the resulting product systemwith the C∗-algebra of the discrete Con-
duché �bration as de�ned previously. We also brie�y discuss the self-similar
k-graphs of Li and Yang.
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2. Étale groupoids and groupoid actions
Here we de�ne (locally compact) étale groupoids and their actions on topo-

logical spaces. We prove that an action is free and proper if and only if it is
“basic” and has Hausdor� orbit space. Most of this is standard, and the last
result is shown in [8, Proposition A.7].
De�nition 2.1. An étale (topological) groupoid is a groupoid Gwith topologies
on the arrow and object spaces G and G0 such that the range and source maps
r, s ∶ G ⇉ G0 are local homeomorphisms and the multiplication and inverse
maps are continuous. An étale groupoid is locally compact if the object space G0
is Hausdor� and locally compact.

We usually view G0 as a subset of G by the unit map, that is, we identify an
object x ∈ G0 with the unit arrow on x.
Remark 2.2. Weassume étale groupoids to be locally compact in order to pass to
C∗-algebras later on. The bicategory of groupoid correspondences may also be
de�ned more generally, to have all étale groupoids as objects. The reader inter-
ested in this will note that local compactness only becomes relevant in Section 7
when we turn to C∗-algebras. Since all groupoids in this article shall be étale
and locally compact, we usually drop these adjectives. Themore general setting
will, however, be used in [20].
De�nition 2.3. Let G be a groupoid. A right G-space is a topological space X
with a continuous map s ∶ X → G0, the anchor map, and a continuous map
mult∶ X ×s,G0,r G → X, X ×s,G0,r G ∶= {(x, g) ∈ X × G∶ s(x) = r(g)},

which we denote multiplicatively as ⋅, such that
(1) s(x ⋅ g) = s(g) for x ∈ X, g ∈ G with s(x) = r(g);
(2) (x ⋅ g1) ⋅ g2 = x ⋅ (g1 ⋅ g2) for x ∈ X, g1, g2 ∈ G with s(x) = r(g1),

s(g1) = r(g2);
(3) x ⋅ s(x) = x for all x ∈ X.

De�nition 2.4. The orbit space X∕G is the quotient X∕∼G with the quotient
topology, where x ∼G y if there is an element g ∈ G with s(x) = r(g) and
x ⋅ g = y. We always write p∶ X → X∕G for the orbit space projection.

Left G-spaces are de�ned similarly. We always write s ∶ X → G0 for the an-
chor map in a right action and r∶ X → G0 for the anchor map in a left action.
De�nition 2.5. Let X and Y be right G-spaces. A continuous map f∶ X → Y
is G-equivariant if s(f(x)) = s(x) for all x ∈ X and f(x ⋅ g) = f(x) ⋅ g for all
x ∈ X, g ∈ G with s(x) = r(g).
De�nition 2.6. Let X be a right G-space and Z a space. A continuous map
f∶ X → Z isG-invariant iff(x⋅g) = f(x) for all x ∈ X, g ∈ Gwith s(x) = r(g).
De�nition 2.7. A right G-spaceX is basic if the followingmap is a homeomor-
phism onto its image with the subspace topology from X ×X:

f∶ X ×s,G0,r G → X ×X, (x, g) ↦ (x ⋅ g, x). (2.1)
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The following useful lemma is used repeatedly throughout this article:

Lemma 2.8. A pullback of a local homeomorphism is again a local homeomor-
phism.

Proof. Consider the following pullback diagramwith a continuousmap�∶ A →
C and a local homeomorphism �∶ B → C:

A ×C B B

A C

prB

prA
⌟

�

�

(2.2)

Let (a, b) ∈ A×CB. By the de�nition of the product topology, any neighbour-
hoodN of (a, b) inA×C B contains a neighbourhood of the formUa×CUb with
open neighbourhoodsUa andUb of a and b inA and B, respectively. Since � is
a local homeomorphism, wemay shrinkUb so that �(Ub) is open and � restricts
to a homeomorphism on Ub. Now

prA(Ua ×C Ub) = {x ∈ Ua ∶ there is y ∈ Ub with �(x) = �(y)}
= �−1(�(Ub)) ∩ Ua.

Since � is continuous, �−1(�(Ub)) ∩Ua is open inA. It follows that prA(N) is a
neighbourhood of prA(a, b) = a. Therefore, prA is open. Let (a1, b1), (a2, b2) ∈
A ×C Ub satisfy prA(a1, b1) = prA(a2, b2). Then a1 = a2 and �(b1) = �(a1) =
�(a2) = �(b2). Since �|Ub

is injective, this implies b1 = b2. So prA|A×CUb
is a

homeomorphism onto an open subset of A. �

Lemma 2.9. Let X be a right G-space. The action mult∶ X ×s,G0,r G → X is a
surjective local homeomorphism.

Proof. The map
(mult, idG)∶ X ×s,G0,r G → X ×s,G0,s G, (x, g) ↦ (x ⋅ g, g),

is continuous becausemult is continuous. It has an inverse map

(mult′, idG)∶ X ×s,G0,s G → X ×s,G0,r G, (y, g) ↦ (y ⋅ g−1, g),

which is also continuous. So (mult, idG) is a homeomorphism. Since s ∶ G → G0
is a local homeomorphism, so is prX ∶ X ×s,G0,s G → X by Lemma 2.8. Then
prX◦(mult, idG) = mult is a local homeomorphism as the composite of two
local homeomorphisms. It is surjective because of the sectionX → X ×s,G0,r G,
x ↦ (x, s(x)). �

Lemma 2.10. The orbit space projection p∶ X → X∕G for a basic G-action is a
surjective local homeomorphism.

Proof. Let
X ×s,G0,r G ∶= {(x, g) ∈ X × G∶ s(x) = r(g)},

X ×p,X∕G,p X ∶= {(x1, x2) ∈ X × X ∶p(x1) = p(x2)}.
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Since the right G-action is basic, the following map is a homeomorphism:
f∶ X ×s,G0,r G → X ×p,X∕G,p X, (x, g) ↦ (x ⋅ g, x).

The set of identity arrows G0 ⊆ G1 is open because G is étale. Then X × G0 is
open in X × G. Hence I ∶= (X × G0) ∩ (X ×s,G0,r G) is open in X ×s,G0,r G. If
(x, g) ∈ I, then x ⋅ g = x ⋅ s(x) = x. Therefore, f(I) = {(x, x) ∶ x ∈ X}. Since
f is a homeomorphism, f(I) is open in X ×p,X∕G,p X. Thus there is an open
subset V ⊆ X ×X such that f(I) = V ∩X ×p,X∕G,p X. For each x ∈ X, there is
an open neighbourhood U ⊆ X with U × U ⊆ V. Then

(U × U) ∩ (X ×p,X∕G,p X) = {(u, u) ∶ u ∈ U}.
Suppose p(u1) = p(u2) for some u1, u2 ∈ U. Then u1 = u2 ⋅ g for some g ∈ G.
Then (u2 ⋅ g, u2) ∈ (U × U) ∩ (X ×p,X∕G,p X) and hence u1 = u2. That is, p is
injective on U. Next we show that p is open. LetW ⊆ X be open. Then

p−1(p(W)) = {w ⋅ g ∶w ∈ W, g ∈ G, s(w) = r(g)} = mult(W ×s,G0,r G)
is open by Lemma 2.9. Since p is a quotient map, it follows that p(W) is open.

�

De�nition 2.11. A right G-space is free if the map in (2.1) is injective; equiva-
lently, x ⋅ g = x for x ∈ X, g ∈ G with s(x) = r(g) implies g = s(x).

De�nition 2.12. A continuous map f is proper if the map f × idZ is closed for
any topological spaceZ. A rightG-spaceX is proper if themap in (2.1) is proper.
An étale groupoid is proper if its canonical action on G0 is proper. Equivalently,
the following map is proper:

(r, s)∶ G → G0 × G0, g ↦ (r(g), s(g)).

Our next goal is to relate free and proper actions to basic actions.

Lemma 2.13. For a basic G-action,X ×p,X∕G,p X ⊆ X × X is closed if and only
ifX∕G is Hausdor�.

Proof. Assume �rst that X ×p,X∕G,p X ⊆ X × X is closed. Choose y1 ≠ y2 in
X∕G. There are x1, x2 ∈ X with p(x1) = y1 and p(x2) = y2. Then (x1, x2) ∉
X ×p,X∕G,pX because x1 and x2 are not in the same orbit. SinceX×p,X∕G,pX is
closed, its complement is open. This gives open neighbourhoods U1 ∋ x1 and
U2 ∋ x2 with (U1 × U2) ∩ (X ×p,X∕G,p X) = ∅. Then p(U1) ∩ p(U2) = ∅ by
de�nition ofX×p,X∕G,pX. Since the G-action is basic, p is open by Lemma 2.10.
Hence p(U1) and p(U2) are open neighbourhoods that separate y1 and y2. This
shows that X∕G is Hausdor�.

Conversely, let X∕G be Hausdor�. Let (x1, x2) ∈ (X × X) ⧵ (X ×p,X∕G,p X).
Then p(x1) ≠ p(x2). Since X∕G is Hausdor�, there are open neighbourhoods
V1 ∋ p(x1) and V2 ∋ p(x2) with V1 ∩ V2 = ∅. Then p−1(V1) × p−1(V2) is an
open neighbourhood of (x1, x2) that does not meet X ×p,X∕G,p X. This shows
that X ×p,X∕G,p X is closed in X ×X. �

Lemma 2.14. For a free and proper action,X ×p,X∕G,p X ⊆ X ×X is closed.
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Proof. The composite map

F∶ X ×s,G0,r G X ×p,X∕G,p X X ×X
f

(2.3)

is proper. Hence F(X×s,G0,rG) is closed. This is equal toX×p,X∕G,pX because f
is bijective. �

Lemma 2.15. For a basic action, if X ×p,X∕G,p X ⊆ X × X is closed, then the
map F de�ned in (2.3) is proper.

Proof. By de�nition, F is proper if and only if the map F × idZ is closed for
any topological space Z. Since the action is basic, F is a homeomorphism onto
its image, which is closed by assumption. The property of being a homeomor-
phism onto a closed subset is preserved by taking products with any space Z.
Thus F × idZ is a closed map. �

Proposition 2.16. Let G be an étale groupoid andX a right G-space. The follow-
ing are equivalent:

(1) the action of G onX is basic and the orbit spaceX∕G is Hausdor�;
(2) the action of G onX is free and proper.

Proof. Suppose �rst that the G-action is basic and X∕G is Hausdor�. Since
f∶ X ×s,G0,r G → X ×p,X∕G,p X is a homeomorphism, it must be injective. That
is, the G-action is free. By Lemma 2.13,X×p,X∕G,pX ⊆ X×X is closed. Then F
is proper by Lemma 2.15. That is, the G-action is proper.

Conversely, suppose the G-action to be free and proper. We �rst show that
the G-action is basic. Since f is clearly bijective, it remains to show that f−1
is continuous. Let U be open in X ×s,G0,r G. Then (f−1)−1(U) = f(U) is open
since f is closed and bijective, so that f is open. By Lemma 2.14,X×p,X∕G,pX ⊆
X ×X is closed. Hence X∕G is Hausdor� by Lemma 2.13. �

3. Groupoid correspondences
De�nition 3.1. Letℋ and G be étale groupoids. An (étale) groupoid correspon-
dence from G toℋ, denoted X∶ ℋ ← G, is a space X with commuting actions
ofℋ on the left and G on the right, such that the right anchor map s ∶ X → G0
is a local homeomorphism and the right G-action is free and proper.

That the actions ofℋ and G commute means that s(ℎ ⋅ x) = s(x), r(x ⋅ g) =
r(x), and (ℎ ⋅ x) ⋅ g = ℎ ⋅ (x ⋅ g) for all g ∈ G, x ∈ X, ℎ ∈ ℋ with s(ℎ) = r(x)
and s(x) = r(g), where s ∶ X → G0 and r∶ X → ℋ0 are the anchor maps.

Remark 3.2. Since G0 is locally compact and s is a local homeomorphism, the
underlying space X of a groupoid correspondence is locally compact as well.
The space X itself need not be Hausdor�. Proposition 2.16 implies, instead,
that the space X∕G is Hausdor�.

De�nition 3.3. AcorrespondenceX∶ ℋ ← G is proper if themap r∗∶ X∕G →
ℋ0 induced by r is proper. It is tight if r∗ is a homeomorphism.
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De�nition and Lemma 3.4. Let X be a space with a basic right G-action. Let
p∶ X → X∕G be the orbit space projection. The image of the map (2.1) is the
subset X ×X∕G X = X ×p,X∕G,p X of all (x1, x2) ∈ X × X with p(x1) = p(x2).
The inverse to the map in (2.1) induces a continuous map

X ×X∕G X
∼
,→ X ×s,G0,r G

prG
,,,→ G, (x1, x2) ↦ ⟨x2 | x1⟩. (3.1)

That is, ⟨x1 | x2⟩ is de�ned for x1, x2 ∈ X with p(x1) = p(x2) in X∕G, and it is
the unique g ∈ G with s(x1) = r(g) and x2 = x1g. Conversely, if g ∈ G with
x2 = x1g for x1, x2 ∈ X with p(x1) = p(x2) is unique and depends continuously
on (x1, x2) ∈ X ×X∕G X, then the right G-action onX is basic.

Proof. The inverse to the map in (2.1) is of the form

X ×X∕G X → X ×s,G0,r G, (x1, x2) ↦ (x2, ⟨x2 | x1⟩).

This is continuous if and only if the map in (3.1) is continuous. �

The following proposition says that ⟨x1 | x2⟩has properties analogous to those
of rank-one operators on Hilbert modules, which justi�es our notation.

Proposition 3.5. Let X∶ ℋ ← G be a groupoid correspondence. The map
in (3.1) is a local homeomorphism. It has the following properties:

(1) r(⟨x1 | x2⟩) = s(x1), s(⟨x1 | x2⟩) = s(x2), and x2 = x1 ⋅ ⟨x1 | x2⟩ for all
x1, x2 ∈ X with p(x1) = p(x2);

(2) ⟨x | x⟩ = s(x) for all x ∈ X;
(3) ⟨x1 | x2⟩ = ⟨x2 | x1⟩−1 for all x1, x2 ∈ X with p(x1) = p(x2);
(4) ⟨ℎx1g1 | ℎx2g2⟩ = g−11 ⟨x1 | x2⟩g2 for all ℎ ∈ ℋ, x1, x2 ∈ X, g1, g2 ∈ G

with s(ℎ) = r(x1) = r(x2), s(x1) = r(g1), s(x2) = r(g2), p(x1) = p(x2).

Proof. Since s is a local homeomorphism, so is

prG∶ X ×s,G0,r G → G

by Lemma 2.8. This map composed with the homeomorphism X ×X∕G X ≅
X ×s,G0,r G is the bracket map. The properties of ⟨x1 | x2⟩ are checked by di-
rect computations, using that for any (x1, x2) ∈ X ×X∕G X, there is only one
g ∈ G with x1 ⋅ g = x2, namely, g = ⟨x1 | x2⟩. This equation forces r(g) =
s(x1) and s(g) = s(x1g) = s(x2), which gives (1). Since x = xs(x), it im-
plies (2). Since x1 = x2g if and only if x1g−1 = x2, it implies (3). Since
(ℎx1g1) ⋅ (g−11 ⟨x1 | x2⟩g2) = ℎx1⟨x1 | x2⟩g2 = ℎx2g2, it implies (4). �

4. Some examples of groupoid correspondences
In this section, we examine our de�nition of a groupoid correspondence

when both groupoids G andℋ are locally compact spaces, discrete groups, or
transformation groups. We get topological graphs, self-similarities of groups,
and self-similarities of graphs in these three cases, respectively; these objects
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have been used before in order to de�ne C∗-algebras. More precisely, the self-
similarities of groups and graphs correspond to proper groupoid correspon-
dences on groups and transformation groups, respectively.

Any locally compact space gives a groupoid with only identity arrows. We
�rst describe groupoid correspondences between such groupoids.

Example 4.1. Let G andℋ be locally compact spaces, viewed as groupoids with
only identity arrows. A groupoid action of G orℋ is simply a continuous map
to these two spaces. The orbit space of an action on a space X is again X.
Any such action is basic. By Proposition 2.16, the underlying space of a group-
oid correspondence must be locally compact and Hausdor�. Summing up, a
groupoid correspondence X∶ ℋ ← G is the same as a locally compact, Haus-
dor� spaceX with a continuous map r∶ X → ℋ and a local homeomorphism
s ∶ X → G. The correspondence is proper if and only if r∶ X → ℋ is proper,
and tight if and only if r∶ X → ℋ is a homeomorphism. In the tight case,
we may use r to identify X with ℋ. This gives an isomorphic groupoid cor-
respondence with r = idℋ . Thus a tight groupoid correspondence ℋ ← G is
equivalent to a local homeomorphismℋ → G.

A groupoid correspondence (X, r, s) as above with locally compact, Haus-
dor� X, G andℋ is called a topological correspondence in [2]. If, in addition,
ℋ = G, then it is called a topological graph in [18]; this is the data from which
topological graph C∗-algebras are built. Similar notions are also introduced by
Deaconu [11] and Nekrashevych [29], under the names “continuous graph” or
“topological automaton.” These notions are meant to generalise non-invertible
dynamical systems.

There are two di�erent ways to turn a local homeomorphism f∶ G → G into
a groupoid correspondence, namely, r = f and s = idG or r = idG and s = f.
Unless f is a homeomorphism, the resulting topological graph C∗-algebras are
not closely related. So these two constructions must be distinguished carefully.

Next we describe groupoid correspondences between groups.

Example 4.2. Let ℋ and G be discrete groups. A groupoid correspondence
ℋ ← G is a space X with commuting actions of ℋ on the left and G on the
right, such that the right action is basic withHausdor� orbit space and the right
anchor map is a local homeomorphism. Since G0 is the one-point set, the an-
chor map s ∶ X → G0 is a local homeomorphism if and only if X is discrete.
In this case, the right G-action is basic if and only if it is free. Thus a group-
oid correspondence X∶ ℋ ← G is a set X with the discrete topology and with
commuting actions ofℋ on the left and G on the right, where the right action
is free.

Let A ∶= X∕G. Since the right action is free, there is a bijection A × G ≅ X
such that the right G-action onX becomes (x, g1) ⋅ g2 = (x, g1g2) on A × G. We
transfer the left ℋ-action to A × G using this bijection. Thus A × G becomes
a groupoid correspondenceℋ ← G that is isomorphic to X. The left action of
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ℎ ∈ ℋ on A × Gmust be of the form

ℎ ⋅ (x, g) = (�ℎ(x), ℎ|x ⋅ g)

for some map �ℎ ∶ A → A and some ℎ|x ∈ G because it commutes with the
right G-action. The property (ℎ1 ⋅ ℎ2) ⋅ (x, g) = ℎ1 ⋅ (ℎ2 ⋅ (x, g)) of a left action
is equivalent to the following two conditions. First, ℎ ↦ �ℎ must be a group
action ofℋ on A. Secondly, the map '∶ ℋ × A → G, (ℎ, x) ↦ ℎ|x, must be a
1-cocycle, that is,

(ℎ1ℎ2)|x = ℎ1|ℎ2x ⋅ ℎ2|x
for all ℎ1, ℎ2 ∈ ℋ, x ∈ A.

The bijection X ≅ A × G is unique only up to a map of the form (x, g) ↦
(x,  (x) ⋅ g) for some map  ∶ A → G. This does not change the action � and
replaces the cocycle ' by

' (ℎ, x) ∶=  (�ℎ(x))−1 ⋅ '(ℎ, x) ⋅  (x) (4.1)

because (�ℎ(x), ℎ|x ⋅ (x)⋅g) = (�ℎ(x),  (�ℎ(x))⋅' (ℎ, x)⋅g). Themap ↦ ' 
de�nes a right action of the group of maps  ∶ A → G on the set of 1-cocycles
'∶ ℋ×A → G. Theℋ-spaceA and the orbit of' under this action are uniquely
determined by the isomorphism class of the groupoid correspondenceℋ ← G,
and any such pair (A, ') comes from a groupoid correspondenceℋ ← G.

Sinceℋ0 is the one-point set as well, a groupoid correspondence is proper if
and only if the set A ≅ X∕G is �nite, and tight if and only if |A| = 1 or, equiv-
alently, the right G-action onX is transitive. In the tight case, the construction
above identi�esX ≅ G as a right G-space by picking a base point inX. The left
actionmust be of the form ℎ⋅g = '(ℎ)g for a group homomorphism'∶ ℋ → G
in order to commute with the right G-action. If we pick another base point
g ∈ G ≅ X, then the homomorphism ' is replaced by Ad−1g ◦' by (4.1). Thus
isomorphism classes of tight groupoid correspondences ℋ ← G are canoni-
cally in bijection with equivalence classes of group homomorphismsℋ → G,
where we consider two homomorphisms equivalent if they di�er by an inner
automorphism of G.

An injective group homomorphism '∶ G → ℋ gives a tight groupoid cor-
respondence G ← ℋ. But it also gives a groupoid correspondenceℋ ← G by
takingℋ with the leftℋ-action by translation and the right G-action ℎ ⋅ g ∶=
ℎ'(g). Such groupoid correspondences for G = ℋ are implicitly used by Stam-
meier [31]. If G and ℋ are Abelian discrete groups, an injective group ho-
momorphism '∶ G → ℋ is equivalent to a surjective group homomorphism
'̂ ∶ ℋ̂ → Ĝ. These are used by Cuntz and Vershik [10].

The analysis in Example 4.2 shows that a proper groupoid correspondence
G ← G for a group G is the same as a “covering permutational bimodule” over G
in the notation of [28, Section 2]. These covering permutational bimodules are
another way to describe self-similarities of groups. It is customary, however,
to assume a certain faithfulness property for self-similarities (see [28, De�ni-
tion 2.1]). To formulate it, letA∗ be the set of �nite words overA. The 1-cocycle
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allows to extend the action ofG onA to an action onA∗ by the recursive formula

g ⋅ (xw) = g(x)(g|x ⋅ w) (4.2)

for g ∈ G, x ∈ A, w ∈ A∗. The triple consisting of the group G, the G-set A,
and the 1-cocycle G × A → G is called a self-similar group if A is �nite and the
action of G on A∗ de�ned above is faithful. The latter condition ensures that a
self-similarity is su�ciently nontrivial. We shall not use it in this article.

The relationship to self-similar groups suggests to view a proper correspon-
denceA∶ G ← G for a groupoid G as a self-similarity of G. What does this mean
for a transformation groupoid Γ ⋉ V, where Γ is a group and V is a left Γ-set?

Proposition 4.3. LetΓ be a discrete group and letV be a leftΓ-set. LetG ∶= Γ⋉V
be the transformation groupoid. LetE be a left Γ-setwith a 1-cocycle'∶ Γ×E → Γ,
(ℎ, e) ↦ ℎ|e, that is, (gℎ)|e = g|ℎ⋅e ⋅ ℎ|e for all g, ℎ ∈ Γ, e ∈ E and with maps
r, s ∶ E ⇉ V that satisfy

s(g ⋅ e) = (g|e) ⋅ s(e) and r(g ⋅ e) = g ⋅ r(e) (4.3)

for all g ∈ Γ, e ∈ E. ThenX ∶= E×Γwith the discrete topology, the anchormaps
r, s ∶ X ⇉ V, r(e, g) = r(e), s(e, g) = g−1 ⋅ s(e), with the obvious right Γ-action,
(e, g) ⋅ g2 = (e, g ⋅ g2), and the left Γ-action ℎ ⋅ (e, g) = (ℎ ⋅ e, ℎ|e ⋅ g) is a groupoid
correspondence G ← G. Any groupoid correspondence G ← G is isomorphic to
one of this form, where (E, r, s) is unique up to isomorphism, and ' is unique up
to the action of the group of maps  ∶ E → Γ by

' (ℎ, e) ∶=  (�ℎ(e))−1 ⋅ '(ℎ, e) ⋅  (e).

The correspondenceX is proper if and only if the map r∶ E → V is �nite-to-one,
and tight if and only if the map r∶ E → V is bijective.

Proof. An action of Γ⋉V onX is equivalent to a pair consisting of a Γ-action
on X and a Γ-equivariant map X → V. Thus a groupoid correspondence
X∶ G ← G is a space with commuting left and right actions of Γ and with
anchor maps r, s ∶ X ⇉ V, with some extra properties. Since V is discrete and
s ∶ X → V is a local homeomorphism, X must be discrete. Then the right
Γ ⋉ V-action is basic if and only if the right Γ-action is free. Choose a funda-
mental domain E ⊆ X for it. Then themap E×Γ → X, (e, g) ↦ e ⋅g, is a home-
omorphism. We use it to identifyX withE×Γ. Then the right Γ-action becomes
(e, g1) ⋅g2 = (e, g1 ⋅g2). The anchormaps satisfy s(e, g) = s(e ⋅g) = g−1 ⋅ s(e) and
r(e, g) = r(e ⋅ g) = r(e) for all e ∈ E, g ∈ Γ because s is equivariant and r is in-
variant for the right Γ-action. Thus s and r are determined by their restrictions
to E, which we also denote by s and r.

For e ∈ E, we may write ℎ ⋅ (e, 1) = (ℎ ⋅ e, ℎ|e) with ℎ ⋅ e ∈ E, ℎ|e ∈ Γ.
As in Example 4.2, the left action of Γ on X must be of the form ℎ ⋅ (e, g) =
(ℎ ⋅ e, ℎ|e ⋅ g) because it commutes with the right Γ-action; and this gives a left
Γ-action onE×Γ if and only if (ℎ1 ⋅ℎ2)⋅e = ℎ1 ⋅(ℎ2 ⋅e) and (ℎ1ℎ2)|e = ℎ1|ℎ2⋅e ⋅ℎ2|e
for all ℎ1, ℎ2 ∈ Γ, e ∈ E. That is, E is a left Γ-space and the map '∶ Γ × E → Γ,
(ℎ, e) ↦ ℎ|e, is a 1-cocycle.
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The map r is equivariant for the left Γ-action. Hence
r(ℎ ⋅ e) = r(ℎ ⋅ e, ℎ|e ⋅ g) = r(ℎ ⋅ (e, g)) = ℎ ⋅ r(e, g) = ℎ ⋅ r(e)

for all g, ℎ ∈ Γ, e ∈ E. The map s is invariant for the left Γ-actions. Hence
g−1 ⋅ (ℎ|e)−1 ⋅ s(ℎ ⋅ e) = s(ℎ ⋅ e, ℎ|e ⋅ g) = s(ℎ ⋅ (e, g)) = s(e, g) = g−1 ⋅ s(e)

for all ℎ, g ∈ Γ, e ∈ E. Equivalently, s(ℎ ⋅ e) = ℎ|e ⋅ s(e) for all ℎ ∈ Γ, e ∈ E. So
r and s satisfy the two conditions in (4.3).

By now, we have seen that any correspondence is of the asserted form. The
only choice in the construction is that of a fundamental domain for the free
right Γ-action onX. Two such choices di�er by right multiplication with amap
E → Γ. Hence isomorphisms of groupoid correspondences are in bijectionwith
pairs (f,  ), where f is a bijection f∶ E

∼
,→ E′ that intertwines the range and

source maps and  ∶ E → Γ is such that '′(ℎ, f(e)) = ' (ℎ, e) for all ℎ ∈ Γ, e ∈
E. Since E ≅ X∕G and both E and V are discrete, a groupoid correspondence
is tight or proper if and only if the corresponding map r∶ E → V is bijective or
�nite-to-one, respectively. �

It is possible, though not recommended, to view the space E in Proposi-
tion 4.3 as a directed graph with vertex set V and range and source maps r, s.
The group Γ acts both on the vertices and the edges in this graph, and r is equi-
variant. But the map s ∶ E → V is not Γ-equivariant, so Γ does not act by graph
automorphisms. The extra condition s(g ⋅ e) = g ⋅ s(e), which says that the
Γ-action preserves the graph structure, is equivalent to g|e ⋅ s(e) = g ⋅ s(e) for
all g ∈ Γ, e ∈ E. Exel and Pardo [13] de�ne a self-similar graph as a graph with
an action of Γ by graph automorphisms, such that g|e ⋅ x = g ⋅ x for all g ∈ Γ,
e ∈ E, x ∈ V (see [13, Equation (2.3.1)]). Thus a self-similar graph as in [13]
gives a groupoid correspondence on the transformation groupoid Γ ⋉ V. The
converse is not true, however.

We suggest that the right common generalisation of graph C∗-algebras and
Nekrashevych’s C∗-algebras is a proper groupoid correspondence G ← G for a
discrete groupoid G. The idea of [13] to look at self-similar graphs restricts G to
be a transformation groupoid Γ ⋉ V for a group action on a discrete set – the
vertices of the graph – and it leads to the unnecessary condition s(g ⋅e) = g⋅s(e)
on the source map s ∶ E → V in order for Γ to act by graph automorphisms. We
now show that the setting in [22] is almost equivalent to that of a groupoid cor-
respondence on a discrete groupoid, except for an extra faithfulness condition
in [22], which is analogous to the faithfulness condition in the de�nition of a
self-similar group.

Example 4.4. Let G be a (discrete) groupoid with object set V. Let X∶ G ←
G be a groupoid correspondence. As above, the space X is discrete and there
is a fundamental domain E with a map s ∶ E → V for the right G-action on
it such that X ≅ E ×s,V,r G as a right G-set. The left action of G induces an
action on E ≅ X∕G. Let r∶ E → V denote its anchor map. There is a map
'∶ G×s,V,rE → G, (g, e) ↦ g|e, such that s(g|e) = s(e) and g⋅(e, ℎ) = (g⋅e, g|e⋅ℎ)
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for all g, ℎ ∈ G, e ∈ E with s(g) = r(e), s(e) = r(ℎ). The maps above must
satisfy s(g|e) = s(e), r(g ⋅ e) = r(g), s(g ⋅ e) = r(g|e), and the cocycle condition
(g ⋅ ℎ)|e = g|ℎ⋅e ⋅ ℎ|e for all g, ℎ ∈ G, e ∈ E with s(g) = r(ℎ), s(ℎ) = r(e) in
order for g ⋅ (e, ℎ) = (g ⋅ e, g|e ⋅ ℎ) to de�ne a groupoid action on E ×s,V,r G.
Conversely, if we are given a G-set E with a cocycle satisfying these conditions,
then it comes from a unique groupoid correspondence. So the only di�erence
between a groupoid correspondence on G and a self-similar action of G as in
[22, De�nition 3.3] is the assumption in [22] that the induced action of G on
the space of �nite paths is faithful. In particular, it is already noticed in [22]
how to remove the assumption s(g ⋅ e) = g ⋅ s(e) in [13].

5. Composition of groupoid correspondences
We are ready to de�ne the composition of groupoid correspondences and

see that these form a bicategory. Let ℋ, G and K be étale groupoids and let
X∶ ℋ ← G and Y∶ G ← K be groupoid correspondences. Let

X ×G0 Y ∶= X ×s,G0,r Y ∶= {(x, y) ∈ X × Y ∶ s(x) = r(y)}.
Let G act on X ×G0 Y by the diagonal action

g ⋅ (x, y) ∶= (x ⋅ g−1, g ⋅ y)
for x ∈ X, y ∈ Y and g ∈ G with s(g) = r(y) = s(x). Let X◦GY be the orbit
space of this action. The image of (x, y) ∈ X ×G0 Y inX◦GY is usually denoted
by [x, y].

The maps r(x, y) ∶= r(x) and s(x, y) ∶= s(y) on X ×G0 Y are invariant for
this action and thus induce maps r∶ X◦GY → ℋ0 and s ∶ X◦GY → K0. These
are the anchor maps for the commuting actions ofℋ on the left andK on the
right, which we de�ne by

ℎ ⋅ [x, y] ∶= [ℎ ⋅ x, y], [x, y] ⋅ k ∶= [x, y ⋅ k]
for all ℎ ∈ ℋ, x ∈ X, y ∈ Y, k ∈ K with s(ℎ) = r(x), s(x) = r(y), and
s(y) = r(k). This is well de�ned because [ℎ ⋅ x ⋅ g−1, g ⋅ y] = [ℎ ⋅ x, y] and
[x ⋅ g−1, g ⋅ y ⋅ k] = [x, y ⋅ k] for g ∈ G with s(g) = s(x) = r(y).

We are going to prove that X◦GY with these two actions is again a group-
oid correspondence. The following lemmas are needed for this. In some of
the statements, we use the construction of X◦GY also when Y is merely a left
G-space, without a groupoidK that acts on Y on the right. Then X◦GY is still
a leftℋ-space.

Lemma 5.1. The pullback of a proper map is also a proper map.

Proof. We form the pullback of two continuous maps �∶ A → C and �∶ B →
C as in (2.2). We assume � to be proper, that is, stably closed, and want to prove
the same for the pullback map prA ∶ A ×C B → A. Let X be another space.
Then the map idX×A × �∶ X × A × B → X × A × C is closed because � is
proper. The space X × A is homeomorphic to a subspace of X × A × C by the
embedding j ∶ X × A → X ×A × C, (x, a) ↦ (x, a, �(a)); this is an embedding
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because the projection to the �rst two coordinates is a one-sided inverse. The
spaceX×A×�,C,� B of all (x, a, b)with �(a) = �(b) is the preimage of j(X ×A)
under idX×A × �, and idX × prA ∶ X × A ×�,C,� B → X × A is the restriction of
idX×A × � to this preimage, composed with j−1. A subset of X × A ×�,C,� B is
closed if and only if it is of the formD∩(X ×A×�,C,� B) for a closed subsetD of
X × A × B. Then idX × prA maps it to the j-preimage of (idX×A × �)(D), which
is closed because idX×A × � is closed and j is continuous. Thus idX × prA is
closed. �

Lemma 5.2. Let A be a right G-space and B a left G-space. If the G-action on A
is proper and B is Hausdor�, then the diagonal G-action onA×s,G0,r B de�ned by
g ⋅ (a, b) ∶= (a ⋅ g−1, g ⋅ b) is proper.

Proof. Since B is Hausdor�, the diagonal inclusion

∆∶ B → B × B, b ↦ (b, b),

is a closedmap. Since∆ is also injective, it is even a propermap. By Lemma 5.1,
the pullback of ∆ along any map into B × B is again proper. It is useful to gen-
eralise this result a bit. Consider maps �∶ A → C and maps f∶ B1 → B2 and
�∶ B2 → C. In the diagram

A ×C B1 B1

A ×C B2 B2

A C

prB1

idA×Cf
⌟

f
prB2

prA
⌟

�

�

the lower square and the whole rectangle are pullbacks, and this implies that
the top square is a pullback square as well. Therefore, the map idA ×C f is a
pullback of f and inherits the property of being proper from f.

We now form this kind of pullback of ∆ along the maps B × B → G0 × G0,
(b1, b2) ↦ (r(b1), r(b2)), and G ×s,G0,s A → G0 × G0, (g, a) ↦ (s(g), s(a)) =
(s(g), s(g)). This gives a map from the space of triples (g, a, b) ∈ G×A×B with
s(g) = s(a) = r(b) to the space of quadruples (g, a, b1, b2) with s(g) = s(a) =
r(b1) = r(b2). The formula (g, a, b1, b2) ↦ (g, a, g ⋅ b1, b2) de�nes a homeo-
morphism from the target of this map to the space of quadruples (g, a, b1, b2) ∈
G × A × B × B with s(g) = s(a) = r(b2) and r(g) = r(b1); the inverse is de�ned
by (g, a, b1, b2) ↦ (g, a, g−1 ⋅ b1, b2).

Since the G-action on A is proper, the following map is proper:

'∶ G ×s,G0,s A → A × A, (g, a) ↦ (a ⋅ g−1, a).

We map A × A → G0 × G0, (a1, a2) ↦ (s(a1), s(a2)), and B × B → (G0, G0),
(b1, b2) ↦ (r(b1), r(b2)). Then the pullback of the proper map ' along these
maps becomes the map (g, a, b1, b2) ↦ (a ⋅ g−1, a, b1, b2) from the space of
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all quadruples (g, a, b1, b2) ∈ G × A × B × B with s(g) = s(a) = r(b2) and
s(a ⋅ g−1) = r(b1) to the space of all quadruples (a1, a2, b1, b2) ∈ A × A × B × B
with s(a1) = r(b1) and s(a2) = r(b2). This map is again proper as a pullback of
a propermap. Now use s(a ⋅g−1) = r(g) to identify the domain of this mapwith
the codomain of the propermap that we constructed above from∆. Composing
the two proper maps above gives the map (g, a, b) ↦ (a ⋅ g−1, a, g ⋅ b, b) from
the space of triples (g, a, b) ∈ G × A × B with s(g) = s(a) = r(b) to the space
of quadruples (a1, a2, b1, b2) with s(a1) = r(b1) and s(a2) = r(b2). Exchanging
the order of a2 and b1, this becomes the map that witnesses that the diagonal
G-action on A ×s,G0,r B is proper. �

Example 5.3. By Proposition 2.16, the trivial action of the trivial group on a
space B is proper if and only if B is Hausdor�. This shows that Lemma 5.2
becomes false if we do not assume B to be Hausdor�.
Lemma 5.4. We have (X ×s,G0,r Y)∕K ≅ X ×s,G0,rY∗ (Y∕K).

Proof. The orbit space projection pY ∶ Y ↠ Y∕K is a local homeomorphism
by Lemma 2.10. Then so is any pullback of it by Lemma 2.8. As in the proof of
Lemma 5.2, this applies to the map

idX ×G0 pY ∶ X ×s,G0,r Y → X ×s,G0,rY∗ (Y∕K),

which is equivalent to the pullback along themaps rY∗ ∶ Y∕K → G0 and s ∶ X →
G0 because rY∗◦pY = r. The quotient map p∶ X ×s,G0,r Y → (X ×s,G0,rY∗ Y)∕K
is a local homeomorphism as well by Lemma 5.2. By the universal property of
the orbit space, we get a commuting diagram of continuous maps

X ×s,G0,r Y

(X ×s,G0,r Y)∕K X ×s,G0,rY∗ (Y∕K).

p
idX×G0pY

(idX×G0pY)∗

The map in the bottom is easily seen to be bijective. Since both maps that go
down are surjective and local homeomorphisms, it follows that the bottommap
is a local homeomorphism as well. Being bijective, it is a homeomorphism. �

Since themap pr′X ∶ (X×s,G0,rY)∕K ≅ X×s,G0,r (Y∕K) → X is G-equivariant,
it induces a map (pr′X)∗∶ (X◦GY)∕K → X∕G on the G-orbit spaces.

Lemma 5.5. If pr′X is proper, then so is (pr′X)∗.
Proof. LetZ be a topological space. Lemma 5.4 implies (X∕G)×Z ≅ (X×Z)∕G
and (X×s,G0,rY)∕K×Z ≅ (X×s,G0,rY×Z)∕K. Consider the following diagram:

(X ×s,G0,r Y × Z)∕K X × Z

(X◦GY × Z)∕K (X∕G) × Z

pr′X×idZ

p pX

(pr′X)∗×idZ
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We abbreviate f ∶= pr′X × idZ . Let A be a closed subset in (X◦GY × Z)∕K.
Sincep is continuous andf is proper,f(p−1(A)) is closed. So (X×Z)∖f(p−1(A))
is open inX × Z. It consists of those (x, z) whose G-orbit is disjoint from f(A).
The map pX is open by Lemma 2.10. So pX(X × Z∖f(p−1(A))) = (X∕G ×
Z)∖pX(f(p−1(A))) is open inX∕G×Z. Thus pX(f(p−1(A))) = (pr′X)∗× idZ(A)
is closed. �

Lemma 5.6. There is a canonical homeomorphism (X◦GY)∕K ≅ X◦G(Y∕K).

Proof. Let p0∶ (X ×s,G0,r Y)∕K → (X ×s,G0,r Y)∕(G×K) be the orbit space pro-
jection. By de�nition, (X ×s,G0,r Y)∕(G×K) ≅ (X◦GY)∕K. Thus wemay de�ne
p1∶ (X ×s,G0,r Y)∕K → (X◦GY)∕K. Let p2∶ X ×s,G0,rY∗ (Y∕K) → X◦G(Y∕K)
be the orbit space projection. There is a commutative diagram

(X ×s,G0,r Y)∕K X ×s,G0,rY∗ (Y∕K)

(X◦GY)∕K X◦G(Y∕K).

≅

p1 p2

ℎ

Themap ℎ is clearly bijective, and the homeomorphism in the top row is shown
inLemma5.4. ByLemma2.10,p1 andp2 are surjective local homeomorphisms,
so ℎ is a homeomorphism. �

Proposition 5.7. The actions ofℋ and K on X◦GY are well de�ned and con-
tinuous and turn this into a groupoid correspondenceℋ ← K.

If both correspondencesX and Y are proper or tight, then so isX◦GY.

Proof. To show that the actions are well de�ned, let [x′, y′] = [x, y] be two
representatives for the same element inX◦GY. Then x′ = x ⋅ g−1 and y′ = g ⋅ y
for some g ∈ G. Then [ℎ ⋅x′, y′] = [(ℎ ⋅x)⋅g−1, g ⋅y] = [ℎ ⋅x, y] and [x′, y′ ⋅k] =
[x ⋅ g−1, g ⋅ (y ⋅ k)] = [x, y ⋅ k].

The actions onX◦GY are continuous because they are continuous onX×s,G0,r
Y andℋ×s,ℋ0,r (X◦GY) ≅ (ℋ×s,ℋ0,rX×s,G0,rY)∕G by Lemma 5.6, and similarly
forK.

To show that X◦GY is a groupoid correspondence, we �rst check that the
actions commute. Indeed, s(ℎ ⋅ [x, y]) = s(y) = s([x, y]), r([x, y] ⋅ k) = r(x) =
r([x, y]), and (ℎ ⋅ [x, y]) ⋅ k = [ℎ ⋅ x, y ⋅ k] = ℎ ⋅ ([x, y] ⋅ k).

Next we will show that s ∶ X◦GY → K0 is a local homeomorphism. Since
sX ∶ X → G0 is a local homeomorphism, Lemma 2.8 implies that prY ∶ X×s,G0,r
Y → Y is a local homeomorphism as well. Since sY is a local homeomorphism,
too, the composite map in the top of the following diagram is a local homeo-
morphism:

X ×s,G0,r Y Y K0

X◦GY

p

prY sY

s
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The map s ∶ X◦GY → K0 is de�ned so as to make this diagram commute, and
the vertical map is a surjective local homeomorphism by Lemma 2.10. Then it
follows that s is a local homeomorphism as well.

Next, we show that theK-action onX◦GY is basic. It is easy to check that this
action is free. Therefore, if [x1, y1], [x2, y2] ∈ X◦GY are in the same K-orbit,
there is a unique k ∈ K with s(y1) = s[x1, y1] = r(k) and [x2, y2] = [x1, y1] ⋅
k. We must show that k depends continuously on the pair [x1, y1], [x2, y2] –
subject to the condition that they lie in the same K-orbit. First, [x1, y1] ⋅ k =
[x1, y1 ⋅ k], and this is equal to [x2, y2] if and only if there is g ∈ G with s(x1) =
r(g) and (x2, y2) = (x1 ⋅ g, g−1 ⋅ y1 ⋅ k). Then Lemma 3.4 implies g = ⟨x1 | x2⟩
and

k = ⟨g−1y1 | y2⟩ =
⟨
⟨x2 | x1⟩ ⋅ y1

|||| y2
⟩
.

Since the bracket maps for X and Y are continuous, it follows that k depends
continuously on (x1, y1), (x2, y2) ∈ X ×s,G0,r Y. Since the orbit space projection
fromX ×s,G0,r Y toX◦GY is a local homeomorphism by Lemma 2.10, it follows
that k still depends continuously on [x1, y1], [x2, y2] ∈ X◦GY.

To prove that (X◦GY)∕K is a groupoid correspondence, it only remains to
show that the orbit space (X◦GY)∕K is Hausdor�; then Proposition 2.16 shows
that the right K-action on X◦GY is free and proper. Since the right K-action
onY is free and proper,Y∕K is Hausdor� by Proposition 2.16. Then Lemma 5.2
shows that the diagonal G-action on X ×s,G0,rY∗ (Y∕K) is proper. By Proposi-
tion 2.16, its orbit spaceX◦G(Y∕K) is Hausdor�. Then (X◦GY)∕K is Hausdor�
by Lemma 5.6.

Now assume that both correspondences X and Y are proper. That is, the
maps rX∗

∶ X∕G → ℋ0 and rY∗ ∶ Y∕K → G0 are proper. Lemma 5.1 applied to
the pullback diagram

X ×s,G0,rY∗ (Y∕K) Y∕K

X G0

prY∕K

prX
⌟

rY∗

sX

shows that prX is proper. Thus the map pr′X ∶ (X ×s,G0,r Y)∕K → X de�ned
through thehomeomorphism inLemma5.4 is also proper. Then themap (pr′X)∗
in Lemma 5.5 is proper. Then rX∗

◦(pr′X)∗ is proper, and this map is equal to
rX◦GY∗ .

Finally, suppose that both correspondences X∶ ℋ ← G and Y∶ G ← K are
tight. Then we follow the argument in the proper case and observe instead that
each of the maps rX∗

, prX , pr
′
X and (pr′X)∗, rY∗ is a homeomorphism, and then

so is the composite map rX◦GY∗ = rX∗
◦(pr′X)∗. �
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6. The bicategory of groupoid correspondences
In this section, we de�ne the bicategoryGr of groupoid correspondences. Its

objects are étale, locally compact groupoids withHausdor� object space, which
we continue to call just “groupoids” (see De�nition 2.1). Letℋ and G be two
such groupoids. An arrow ℋ ← G or G → ℋ is a groupoid correspondence
X∶ ℋ ← G as in De�nition 3.1; beware that the source of such a correspon-
dence is on the right, as in our notation for the anchormaps. LetX,Y∶ ℋ ⇇ G
be two such groupoid correspondences. A 2-arrowX ⇒ Y is an injective,ℋ,G-
equivariant, continuous map �∶ X → Y. The following lemma shows that
such a 2-arrow is automatically open or, equivalently, a homeomorphism onto
an open subset of Y:

Lemma 6.1. Let X,Y∶ ℋ ⇇ G be groupoid correspondences. Then anyℋ,G-
equivariant, continuous map �∶ X → Y is a local homeomorphism. Therefore,
a 2-arrow X ⇒ Y is a homeomorphism from X onto an open subset of Y. It is a
homeomorphism onto Y if it is also surjective.

Proof. Let x ∈ X. By assumption, both source maps are local homeomor-
phisms and sY◦� = sX . Let UY ⊆ Y be an open neighbourhood of �(x) on
which sY is injective. Since � is continuous, there is an open neighbourhood
UX ⊆ X with �(UX) ⊆ UY . ShrinkingUX further if necessary, we may arrange
that sX|UX

is injective. Then �|UX
∶ UX → UY is equal to the map sY|−1UY

◦sX ,
and this is a homeomorphism fromUX onto an open subset ofUY . This implies
that � is a local homeomorphism. An injective local homeomorphism must be
a homeomorphism onto an open subset of its codomain. �

The composition of 2-arrows is the obvious composition of maps. This is
clearly associative, and the identitymaps on groupoid correspondences are units
for this composition. Thus there is a categoryGr(G,ℋ)with arrowsℋ ← G as
objects and the 2-arrows between them as arrows.

Remark 6.2. We would still get a bicategory in the same way if we allow all
ℋ,G-equivariant, continuous maps as 2-arrows. The injectivity assumption is
only needed for the homomorphism to C∗-algebras in Section 7.

The composition of arrowsℋ ← G ← K in Gr is the construction ◦G. Let
X1, X2∶ ℋ ⇇ G and Y1, Y2∶ G ⇇ K be groupoid correspondences and let
�∶ X1 ⇒ X2 and �∶ Y1 ⇒ Y2 be 2-arrows. These induce a map

�◦G�∶ X1◦GY1 ⇒ X2◦GY2, [(x, y)] ↦ [(�(x), �(y)],

which inherits the properties of being injective,ℋ,K-equivariant and contin-
uous. In addition, this construction is “functorial”, that is, the composition is a
bifunctor

◦G∶ Gr(G,ℋ) × Gr(K, G) → Gr(K,ℋ).
For each groupoid G, the identity groupoid correspondence 1G on G is the arrow
space of G – which we also denote by G – with the obvious left and right actions
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ofG bymultiplication; its anchormaps are the range and sourcemaps r, s ∶ G ⇉
G0. The following two easy lemmas describe the natural 2-arrows that complete
the bicategory structure ofGr:

Lemma 6.3. LetX∶ ℋ ← G be a groupoid correspondence. The maps

ℋ◦ℋX → X, [ℎ, x] ↦ ℎ ⋅ x,
X◦GG → X, [x, g] ↦ x ⋅ g,

areℋ,G-equivariant homeomorphisms, which are natural forℋ,G-equivariant
continuous mapsX → X′.

Proof. It is easy to see that these multiplication maps are bijective, continu-
ous andℋ,G-equivariant. Then they are isomorphisms of correspondences by
Lemma 6.1. The naturality statement is obvious. �

Lemma 6.4. Let Gi for 1 ≤ i ≤ 4 be étale groupoids. Let Xi ∶ Gi ← Gi+1 for
1 ≤ i ≤ 3 be correspondences. The map

assoc∶ X1◦G2(X2◦G3X3) → (X1◦G2X2)◦G3X3, [x1, [x2, x3]] ↦ [[x1, x2], x3],

is a G1, G4-equivariant homeomorphism, which is natural with respect to Gi, Gi+1-
equivariant continuous maps �i ∶ Xi → X′

i for 1 ≤ i ≤ 3; that is, the following
square commutes:

X1◦G2(X2◦G3X3) X′
1◦G2(X

′
2◦G3X

′
3)

(X1◦G2X2)◦G3X3 (X′
1◦G2X

′
2)◦G3X

′
3.

�1◦G2 (�2◦G3�3)

assoc assoc
(�1◦G2�2)◦G3�3

Proposition 6.5. The data above de�nes a bicategoryGr.

Proof. It is trivial to check that the coherence diagrams for a bicategory com-
mute (these diagrams are shown, for instance, in [5, 23]). �

Remark 6.6. General properties of groupoids, groupoid actions and groupoid
principal bundles are shown in [4, 26] in a rather abstract setting. When we
apply the de�nitions and results in [4] to the category of locally compact, topo-
logical spaces with local homeomorphisms as partial covers, we also get a con-
struction of a bicategory of étale groupoids and étale groupoid correspondences.
Here we only require for an étale groupoid correspondence that the right action
should be basic and that its anchor map should be a local homeomorphism. In
this article, we have added the assumptions that the object spaces of our group-
oids and the orbit spaces of our groupoid correspondences for the right actions
should be Hausdor�. Both assumptions are needed for the homomorphism to
C∗-algebras in Section 7. The fact that these Hausdor�ness assumptions de�ne
a subbicategory does not follow from the general theory in [26], unless we also
require all arrow spaces of groupoids to be Hausdor�. This, however, is too
much for certain applications.
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To prepare for the next section, we brie�y recall how to de�ne the bicate-
gory ℭorr of C∗-correspondences (see [9]). Its objects are C∗-algebras. Its ar-
rows A ← B for two C∗-algebras A and B are A-B-correspondences, that is,
Hilbert B-modules with a nondegenerate ∗-representation of A by adjointable
operators. If ℰ,ℱ∶ A ⇇ B are two such C∗-correspondences, then a 2-arrow
�∶ ℰ ⇒ ℱ is an A, B-bimodule map �∶ ℰ → ℱ that is isometric in the sense
that ⟨�(x) | �(y)⟩ = ⟨x | y⟩ for all x, y ∈ ℰ. These isometric bimodule maps are
composed as maps. This makes the arrows A ← B and their 2-arrows into a
category. The composition of arrows is the usual completed tensor product of
C∗-correspondences. This is clearly a bifunctor for isometric bimodule maps,
as required for a bicategory.

The unit arrow 1A for a C∗-algebra is A itself, viewed as a correspondence
A ← A in the obvious way, using the bimodule structure by left and right mul-
tiplication and the A-valued inner product ⟨x | y⟩ ∶= x∗y for x, y ∈ A. There
are natural isomorphisms of C∗-correspondences

A⊗A ℰ ≅ ℰ, ℰ ⊗B B ≅ ℰ, (ℰ ⊗B ℱ) ⊗C G ≅ ℰ ⊗B (ℱ ⊗C G)

for three composable C∗-correspondences ℰ∶ A ← B, ℱ∶ B ← C, G∶ C ← D.
It is easy to check that these are natural with respect to the 2-arrows above and
make the diagrams required for a bicategory commute (see [5, 23]).
ℭorr is de�ned in [9] using only isomorphisms of C∗-correspondences as

2-arrows. Herewe allow isometries that are not invertible, not even adjointable.
This is useful in some situations. In particular, non-invertible isometries of
C∗-correspondences are crucial in [25] or to treat partial actions in bicategorical
terms. In this article, we allow 2-arrows that are not invertible because this does
not cause any extra problems and it allows us to prove a stronger statement.

A C∗-correspondence ℰ∶ A ← B is called proper if the left action factors
through the ideal of compact operators, A → K(ℰ). The collection of proper
C∗-correspondences is a subbicategory ℭorrprop, that is, identity correspon-
dences are proper and the composite of two proper correspondences is again
proper.

7. The homomorphism to C∗-algebras

In this section, we�rst recall how to de�ne theC∗-algebra of an (étale) group-
oid. Then we turn a groupoid correspondence into a C∗-correspondence be-
tween the groupoid C∗-algebras. We prove that this is part of a homomor-
phism of bicategories Gr → ℭorr between the bicategories of groupoid and
C∗-correspondences.

Both C∗(G) for a groupoid G and C∗(X) for a groupoid correspondence X
are de�ned using a certain space of “quasi-continuous” functions. We de�ne
this in the generality of a locally compact, locally Hausdor� space X to treat
both cases simultaneously. If V ⊆ X is open and Hausdor�, then we extend a
function f ∈ Cc(V) to X by letting f(g) = 0 for all g ∈ X ⧵ V. Let S(X) be
the linear span of functions on X of this form. If X is Hausdor�, thenS(X) is
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equal to the space Cc(X) of continuous, compactly supported functions on X.
IfX is not Hausdor�, then theremay be too few continuous functions on it, and
we have to use the spaceS(X) instead. The following proposition allows us to
buildS(X) using a speci�c covering by Hausdor� open subsets:

Proposition 7.1 ([12, Proposition 3.10]). Let X be a topological space. Let Ui
for i ∈ I be open subsets that are locally compact and Hausdor�. Assume X =⋃

i∈I Ui . ThenS(X) is equal to the linear span of the subspaces Cc(Ui) for i ∈ I.

Proof. Let V be a locally compact Hausdor� open subset of X and f ∈ Cc(V).
Since the support of f is compact, it is covered by �nitely many of the open
subsets Ui. In addition, this covering has a �nite partition of unity. Then we
may write f =

∑n
j=1 fj with fj ∈ Cc(Uij ). �

De�nition 7.2. A slice of a groupoid G is an open subset V ⊆ G such that s|V
and r|V are injective. Let G and ℋ be groupoids. A slice of a groupoid corre-
spondence X∶ ℋ ← G is an open subset V ⊆ X such that s|V ∶ V → G0 and
p|V ∶ V → X∕G are injective.

The name “slice” comes from [12]. We �nd this namemore friendly than the
more common name “bisection”.

When we view a groupoid G as the identity correspondence over itself, then
the range map induces a homeomorphism G∕G ≅ G0. Therefore, p∶ G → G∕G
is equivalent to the range map and G as a groupoid and as a groupoid cor-
respondence have the same slices. If X is a groupoid correspondence, then
s ∶ X → G0 is a local homeomorphism by assumption and p∶ X → X∕G is one
by Lemma 2.10. Therefore, any point in X has an open neighbourhood that is
a slice. In other words, the slices cover X. Then Proposition 7.1 allows us to
write any element ofS(X) as a �nite sum

∑n
i=1 fi for functions fi ∈ Cc(Vi) and

slices Vi for i = 1, … , n. The special case when X = 1G ≅ G is itself a groupoid
is already well known.

We de�ne a ∗-algebra structure onS(G) as in [19]. If �, � ∈ S(G), let

� ∗ �(g) =
∑

ℎ∈Gr(g)
�(ℎ)�(ℎ−1g), �∗(g) = �(g−1).

We recall why this is well de�ned. Assume � ∈ Cc(V) and � ∈ Cc(W) for slices
V and W. Then V ⋅ W ∶= {g ⋅ ℎ ∶ g ∈ V, ℎ ∈ W, s(g) = r(ℎ)} is a slice as
well, and so is V∗ ∶= {g−1 ∶ g ∈ V}. The formula for � ∗ � above simpli�es
to � ∗ �(g) = �(ℎ)�(k) if there are ℎ ∈ V and k ∈ W with ℎ ⋅ k = g, and
� ∗ �(g) = 0 otherwise. As a result, � ∗ � ∈ Cc(V ⋅ W) ⊆ S(G). SinceS(G) is
spanned by functions in Cc(V) for slices V, this implies that � ∗ � ∈ S(G) for
all �, � ∈ S(G). Similarly, �∗ ∈ Cc(V−1) if � ∈ Cc(V), and then �∗ ∈ S(G) for
all � ∈ S(G).

Routine computations show that the convolution above is bilinear and asso-
ciative and that � ↦ �∗ is a conjugate-linear involutionwith (� ∗ �)∗ = �∗ ∗ �∗.
ThusS(G) is a ∗-algebra.
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Next, we recall why a maximal C∗-seminorm on S(G) exists. The subset
G0 ⊆ G is a slice, called the unit slice. So Cc(G0) ⊆ S(G). The convolution and
involution onS(G) restrict to the usual pointwisemultiplication and pointwise
involution onCc(G0). SinceCc(G0) is the union of the C∗-subalgebrasC0(U) for
relatively compact, open subsets U ⊆ G0, any ∗-representation of Cc(G0) on a
Hilbert space is bounded by the supremumnorm. Therefore, any C∗-seminorm
on Cc(G0) is bounded by the usual supremum norm. If � ∈ Cc(V) for a slice V,
then � ∗ �∗ ∈ Cc(V ⋅ V−1) ⊆ Cc(G0), and so

‖�‖ = ‖� ∗ �∗‖1∕2 ≤ ‖� ∗ �∗‖1∕2∞ = ‖�‖∞.

Any element � ∈ S(G) is a �nite linear combination of such functions on slices.
Therefore, there is C > 0 with ‖�‖ ≤ C for all C∗-seminorms onS(G). There-
fore, the supremum of the set of C∗-seminorms onS(G) exists. This is again a
C∗-seminorm, and clearly the maximal such. Actually, it is a C∗-norm and not
just a C∗-seminorm because of the regular representations, but this will not be
crucial in what follows.

De�nition 7.3. The groupoid C∗-algebra C∗(G) of G is the completion ofS(G)
in the largest C∗-norm.

Now let G andℋ be groupoids and letX∶ ℋ ← G be a groupoid correspon-
dence. We are going to build a C∗-correspondence C∗(X)∶ C∗(ℋ) ← C∗(G).
That is, C∗(X) is a Hilbert C∗(G)-module with a nondegenerate left action of
C∗(ℋ). The �rst result of this kind forMorita equivalences of Hausdor� locally
compact groupoidswithHaar systemswas proven byMuhly–Renault–Williams
in [27]. The Hausdor�ness assumption was soon removed by Renault (see
[30, Corollaire 5.4]). More general groupoid correspondences between Haus-
dor� locally compact groupoids withHaar systemswere treated byHolkar [15].
But we are not aware that this construction has been carried over to groupoid
correspondences between possibly non-Hausdor� étale groupoids as we need
it. Therefore, we give the details of this construction. Since we only work in the
étale case, this is much easier than the constructions in the papers mentioned
above.

We will de�ne C∗(X) as a completion ofS(X) in a suitable norm. The alge-
braic structure of the correspondence is easy to write down on the dense sub-
spaces of S-functions. Namely, let �, � ∈ S(X), 
 ∈ S(G), � ∈ S(ℋ) and
x ∈ X, g ∈ G. Then we de�ne

� ∗ 
(x) =
∑

g∈Gs(x)
�(x ⋅ g)
(g−1), (7.1)

⟨� | �⟩(g) =
∑

{x∈X ∶ s(x)=r(g)}
�(x)�(x ⋅ g), (7.2)

� ∗ �(x) =
∑

ℎ∈ℋr(x)

�(ℎ)�(ℎ−1x). (7.3)
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We �rst check that this is well de�ned, that is, that these functions are �nite
linear combinations of Cc-functions on slices.

Lemma 7.4. Let � ∈ Cc(V1), � ∈ Cc(V2), 
 ∈ Cc(W), and � ∈ Cc(Z) for slices
V1, V2 ⊆ X,W ⊆ G and Z ⊆ ℋ. The following subsets are also slices:

V1W ∶= {xg ∶ x ∈ V1, g ∈ W, s(x) = r(g)} ⊆ X,
⟨V1 | V2⟩ ∶= {⟨x1 | x2⟩ ∶ x1 ∈ V1, x2 ∈ V2, p(x1) = p(x2)} ⊆ G,

ZV1 ∶= {ℎx ∶ ℎ ∈ Z, x ∈ V1, s(ℎ) = r(x)} ⊆ X.

For y ∈ V1W, there are unique x ∈ V1, g ∈ W with xg = y, and � ∗ 
 ∈
Cc(V1W) with (� ∗ 
)(y) = �(x)
(g). For g ∈ ⟨V1 | V2⟩, there are unique x1 ∈
V1, x2 ∈ V2 with g = ⟨x1 | x2⟩, and ⟨� | �⟩ ∈ Cc(⟨V1 | V2⟩) with ⟨� | �⟩(g) =
�(x1)�(x2). For y ∈ ZV1, there are unique ℎ ∈ Z, x ∈ V1 with y = ℎx, and
� ∗ � ∈ Cc(ZV1) with (� ∗ �)(y) = �(ℎ)�(x).

Proof. All three assertions are proven similarly, and the claims aboutV1W and
ZV1 are special cases of Lemma 7.11 and Proposition 7.12 about the composi-
tion of correspondences later on. Therefore, we only write down the proof for
⟨V1 | V2⟩.

The subset ⟨V1 | V2⟩ is open by Proposition 3.5. Let x1, y1 ∈ V1 and x2, y2 ∈
V2 satisfy p(x1) = p(x2) and p(y1) = p(y2), so that ⟨x1 | x2⟩ and ⟨y1 | y2⟩ are
de�ned. Assume �rst that s(⟨x1 | x2⟩) = s(⟨y1 | y2⟩). Then Lemma 3.4 implies
s(x2) = s(⟨x1 | x2⟩) = s(⟨y1 | y2⟩) = s(y2). Then x2 = y2 because V2 is a slice
of X. Then p(x1) = p(x2) = p(y2) = p(y1). Then x1 = y1 because V1 is a
slice ofX. This proves both that s is injective on ⟨V1 | V2⟩ and that the elements
x1 ∈ V1, x2 ∈ V2 with g = ⟨x1 | x2⟩ for g ∈ ⟨V1 | V2⟩ are unique. A similar
argument shows that x1 = y1 and x2 = y2 hold if r(⟨x1 | x2⟩) = r(⟨y1 | y2⟩).
Therefore, ⟨V1 | V2⟩ is a slice. By de�nition, ⟨� | �⟩ is only nonzero in ⟨V1 | V2⟩,
that is, for g ∈ G for which there are x1 ∈ V1, x2 ∈ V2 with x1g = x2. Since
x1 and x2 are unique, we compute ⟨� | �⟩(g) = �(x1)�(x2) as asserted. Thus
⟨� | �⟩ ∈ Cc(⟨V1 | V2⟩). �

Lemma 7.5. S(X) becomes a S(ℋ)-S(G)-bimodule with the multiplication
maps above, that is, these maps are bilinear and � ∗ (
1 ∗ 
2) = (� ∗ 
1) ∗ 
2,
(�1 ∗ �2) ∗ � = �1 ∗ (�2 ∗ �), (� ∗ �) ∗ 
 = � ∗ (� ∗ 
) for � ∈ S(X), 
, 
1, 
2 ∈
S(G), �, �1, �2 ∈ S(ℋ). The inner product is linear in the second variable and
satis�es (⟨� | �⟩)∗ = ⟨� | �⟩, ⟨� | � ∗ 
⟩ = ⟨� | �⟩ ∗ 
, and ⟨� ∗ � | �⟩ = ⟨� | �∗ ∗ �⟩
for �, � ∈ S(X), 
 ∈ S(G), � ∈ S(ℋ). It follows that the inner product is
conjugate-linear in the �rst variable and satis�es ⟨� ∗ 
 | �⟩ = 
∗ ∗ ⟨� | �⟩ for
�, � ∈ S(X), 
 ∈ S(G).

Proof. All claims for functions in S follow if they hold for compactly sup-
ported continuous functions on slices. In this special case, they follow from
the associativity of our products or from the properties of the bracket operation
in Lemma 3.4. �
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Lemma 7.6. Let � ∈ S(X). Then there are �nitely many elements ai ∈ S(G)
for i = 1, … , n with ⟨� | �⟩ =

∑n
i=1 ai ∗ a

∗
i ; roughly speaking ⟨� | �⟩ ≥ 0 inS(X).

In addition, if � ≠ 0, then ⟨� | �⟩ ≠ 0.

Proof. Write � =
∑n

k=1 �k with �k ∈ Cc(Vk) for slices Vk ⊆ X for k = 1,… , n.
Let p∶ X → X∕G be the quotient map. The space X∕G is locally compact
and Hausdor� by Proposition 2.16. The subset K ∶=

⋃n
k=1 p(supp �k) ⊆ X∕G

is compact, hence paracompact. Then there are functions '′i ∈ Cc(p(Vi)) for
i = 1, … , n with

∑n
i=1 |'

′
i (y)|

2 = 1 for all y ∈ K. Since each Vi is a slice,
p|Vi ∶ Vi → p(Vi) is a homeomorphism. Let 'i ∶= '′i◦p|

−1
Vi

∈ Cc(Vi). We
claim that ai ∶= ⟨� | 'i⟩ for i = 1, … , n will do the job.

To prove the claim, we �rst compute 'i ∗ ⟨'i | �k⟩ ∈ S(X). Since all func-
tions involved are continuous with compact support on certain slices of X, so
is this combination by the proof of Lemma 7.4. Its support is Vi ⋅ ⟨Vi | Vk⟩ ⊆ X.
Any element of this slice is of the form v1 ⋅ ⟨v2 | v3⟩ for some v1, v2 ∈ Vi,
v3 ∈ Vk, for which this expression is de�ned; that is, p(v2) = p(v3) and
s(v1) = r(⟨v2 | v3⟩) = s(v2). And then

'i ∗ ⟨'i | �k⟩(v1 ⋅ ⟨v2 | v3⟩) = 'i(v1)'i(v2)�k(v3).

Since v1, v2 ∈ Vi and Vi is a slice of X, s(v1) = s(v2) implies v1 = v2. Then
v1 ⋅ ⟨v2 | v3⟩ = v3 by Lemma 3.4. As a result, 'i ∗ ⟨'i | �k⟩ ∈ Cc(Vk) and if
x ∈ Vk, then

'i ∗ ⟨'i | �k⟩(x) = |'i(a)|2�k(x)
if there isa ∈ Vi withp(a) = p(x), and 0 otherwise. Then |'i(a)|2 = |'′i (p(x))|

2.
Since

∑
|'′i (p(x))|

2 = 1 for all x ∈ Vk with �k(x) ≠ 0, this implies
n∑

i=1
'i ∗ ⟨'i | �k⟩ = �k.

Since this holds for all k, summing over k gives
∑n

i=1 'i ∗ ⟨'i | �⟩ = �. There-
fore,

⟨� | �⟩ =
⟨
�
|||||||||

n∑

i=1
'i ∗ ⟨'i | �⟩

⟩
=

n∑

i=1
⟨� | 'i⟩ ∗ ⟨'i | �⟩ =

n∑

i=1
ai ∗ a∗i

as desired.
If y ∈ G0, then we compute

⟨� | �⟩(y) =
∑

{x∈X ∶ s(x)=y}
�(x)�(x) =

∑

{x∈X ∶ s(x)=y}
|�(x)|2.

If this vanishes for all y ∈ G0, then �(x) = 0 for all x ∈ X, and then � = 0. �

Lemma 7.6 implies the following:

∙ ‖�‖ ∶= ‖⟨� | �⟩‖1∕2
C∗(G)

is a norm onS(X);
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∙ the given inner product and rightS(G)-module structure onS(X) ex-
tend to a Hilbert C∗(G)-module structure on the norm completion of
S(X).

We denote this Hilbert C∗(G)-module by C∗(X).

Lemma 7.7. If � ∈ S(ℋ), then the map � ↦ � ∗ � is bounded for the norm on
S(X) de�ned above.

Proof. First, let � ∈ Cc(ℋ0) ⊆ S(ℋ). Then (� ∗ �)(x) = �(r(x)) ⋅ �(x) for all
� ∈ S(X). LetM be the maximum of |�| and let �(y) ∶=

√
M2 − |�(y)|2 for all

y ∈ ℋ0. This de�nes a bounded function onℋ0 with �∗ ∗ � + �∗ ∗ � = M2.
Therefore, we may estimate

M2 ⋅ ⟨� | �⟩ = ⟨� | (�∗ ∗ � + �∗ ∗ �) ∗ �⟩
= ⟨� ∗ � | � ∗ �⟩ + ⟨� ∗ � | � ∗ �⟩ ≥ ⟨� ∗ � | � ∗ �⟩.

This inequality inS(G) ⊆ C∗(G) impliesM ⋅ ‖�‖ ≥ ‖� ∗ �‖. Equivalently, the
operator norm of � ∈ C(ℋ0) is at most ‖�‖∞.

Next, if � ∈ Cc(Z) for a slice Z ⊆ ℋ, then ‖� ∗ �‖2 = ‖⟨� | �∗ ∗ � ∗ �⟩‖,
and �∗ ∗ � ∈ Cc(G0). Since the latter has operator norm at most ‖�‖2∞ < ∞,
it follows that the operator norm of left convolution with � is at most ‖�‖∞.
Finally, Proposition 7.1 reduces the case of general � ∈ S(ℋ) to this special
case. �

Lemma 7.7 implies that the representation of S(ℋ) on S(X) by left con-
volution extends to a representation by bounded linear operators on C∗(X).
This representation inherits the algebraic properties in Lemma 7.5 by conti-
nuity. Therefore, we get a ∗-homomorphism from S(ℋ) to the C∗-algebra of
adjointable operators on C∗(X). This extends uniquely to a ∗-homomorphism
on C∗(ℋ) by the universal property of the C∗-completion. The computations
above also show that the left Cc(ℋ0)-module structure onS(X) is nondegen-
erate. This implies that the representation of C∗(ℋ) on C∗(X) is nondegen-
erate. This completes the construction of the C∗(ℋ)-C∗(G)-correspondence
C∗(X) from a groupoid correspondence X∶ ℋ ← G.

Before we continue to build the homomorphism Gr → ℭorr, we examine
C∗(X) for groupoid correspondences between spaces, groups and transforma-
tion groups. We get the C∗-correspondences whose Cuntz–Pimsner algebras
(relative to Katsura’s ideal) are the C∗-algebras de�ned in these situations by
Katsura, Nekrashevych and Exel–Pardo, respectively.

Example 7.8. Let G = ℋ be a locally compact space. In Example 4.1, we have
identi�ed a groupoid correspondence X∶ G ← G with a topological graph.
Whenwe pass to C∗-algebras, we get C∗(G) = C∗(ℋ) = C0(G). SinceX is Haus-
dor�,S(X) = Cc(X). TheCc(G0)-bimodule structure onCc(X) extends contin-
uously to the C0(G0)-bimodule structure (f ⋅ � ⋅ g)(x) = f(r(x)) ⋅ �(x) ⋅ g(s(x))
for all f, g ∈ C0(G), � ∈ Cc(X), x ∈ X. The inner product of �, � ∈ Cc(X)
simpli�es to ⟨� | �⟩(y) =

∑
s(x)=y �(x)�(x) for all y ∈ G. The norm completion
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C∗(X) of this is exactly the C∗-correspondence that is used by Katsura [18] to
de�ne topological graph C∗-algebras.
Example 7.9. We have identi�ed a proper groupoid correspondenceX∶ G ← G
for a (discrete) group G in Example 4.1 with the covering permutational bimod-
ule of a self-similar group, minus a certain faithfulness property. The assump-
tion thatX is a proper correspondence says that the setX∕G is �nite. HereS(G)
is simply the group ringℂ[G], andS(X) is the vector spaceℂ[X]with basisX.
The bimodule structure and the inner product on ℂ[X] above are the same as
de�ned by Nekrashevych in [28, Section 3.1]. The Cuntz–Pimsner algebra of
the C∗-correspondence C∗(X)∶ C∗(G) ← C∗(G) is Nekrashevych’s universal
Cuntz–Pimsner algebra O(G,X) of the self-similar group as de�ned in [28].
Example 7.10. Now let G = ℋ = V ⋊ Γ for a group Γ and a discrete set V.
We have described groupoid correspondences X∶ G ← G in Proposition 4.3,
relating them to the self-similar graphs of Exel and Pardo [13]. Exel and Pardo
associate a C∗-algebra to such a self-similar graph and identify this C∗-algebra
with the Cuntz–Pimsner algebra of a C∗-correspondence on C∗(V ⋉ Γ). We
claim that this C∗-correspondence is exactly our C∗(X). To begin with, S(G)
is the algebraic crossed product algebra ℂ[V] ⋊ Γ, which is spanned by the
characteristic functions �v,g for v ∈ V and g ∈ Γ. Similarly,S(X) is the vector
space ℂ[E × Γ] with basis E × Γ. The bimodule structure and inner product
above may easily be expressed in terms of these bases, and the map �e,g ↦ tevg
gives an isomorphism from C∗(X) to the C∗-correspondence that is denotedM
in [13, Section 10].

After these examples, we resume the construction of a homomorphismGr →
ℭorr and turn to the action of 2-arrows. Let ℋ and G be groupoids and let
X,Y∶ ℋ ← G be groupoid correspondences. A 2-arrow �∶ X ⇒ Y is, by
de�nition, an injective, ℋ-G-equivariant, continuous map �∶ X → Y. By
Lemma 6.1, it follows that � is a homeomorphism from X onto an open sub-
set of Y. Then any slice of X is also a slice of Y, and so extension by zero de-
�nes an injective map S(X) ↪ S(Y). This map preserves both the bimodule
structure and the inner product. Therefore, it is an isometry for the Hilbert
module norms. Then it extends uniquely to an isometric map on the comple-
tions. This extension remains a C∗(ℋ)-C∗(G)-bimodule map, which we denote
by C∗(�)∶ C∗(X) ⇒ C∗(Y).

It is easy to see that � ↦ C∗(�) is functorial, that is, the identity mapX
∼
,→ X

goes to the identity map C∗(X)
∼
,→ C∗(X), and C∗(�)◦C∗(�) = C∗(�◦�) for

composable 2-arrows � and �.
The unit correspondence 1G on a groupoid G is Gwith the actions of G by left

and right multiplication. Inspection shows that the resulting S(G)-bimodule
structure and inner product onS(G) are given by left and right convolution and
the usual inner product formula ⟨� | �⟩ ∶= �∗ ∗ �. Therefore, the completion
C∗(1G) is equal to C∗(G) with the usual Hilbert bimodule structure over itself.
Thus the construction X ↦ C∗(X) maps the unit groupoid correspondence
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to the unit C∗-correspondence. We brie�y say that our construction is strictly
unital.

Next, we turn to the compatibility with composition of groupoid correspon-
dences. We �rst prove a preparatory lemma about the composition of slices,
which is analogous to Lemma 7.4.

Lemma 7.11. Let X∶ K ← ℋ and Y∶ ℋ ← G be composable groupoid cor-
respondences. Recall that X◦ℋY is the orbit space of the diagonalℋ-action on
X ×s,ℋ0,r Y, with a canonical structure of groupoid correspondenceK ← G. De-
note elements of X◦ℋY as [x, y] for x ∈ X, y ∈ Y with s(x) = r(y). Let U ⊆ X
and V ⊆ Y be slices. De�ne

U ⋅ V ∶= {[x, y] ∶ x ∈ U, y ∈ V, s(x) = r(y)} ⊆ X◦GY.

This subset is a slice. For each point in z ∈ U ⋅ V, the elements x ∈ U and y ∈ V
with z = [x, y] are unique.

Proof. The subsetU ×G0 V is open inX ×s,G0,rℋ by de�nition. Then its image
U ⋅ V in X◦GY is open by Lemma 2.10. Let x1, x2 ∈ U and y1, y2 ∈ V be such
that s(x1) = r(y1) and s(x2) = r(y2). Assume �rst that s[x1, y1] = s[x2, y2].
This means that s(y1) = s(y2). Then y1 = y2 because V is a slice. Then s(x1) =
r(y1) = r(y2) = s(x2). This implies x1 = x2 because U is a slice. This proves
that the elements x ∈ U and y ∈ V with z = [x, y] are unique and that s|U⋅V is
injective. Next, we assume instead that p[x1, y1] = p[x2, y2]. This means that
there is g ∈ G with s[x1, y1] = r(g) and [x1, y1] ⋅ g = [x2, y2]. Equivalently,
s(y1) = r(g) and [x1, y1 ⋅ g] = [x2, y2]. This means that there is ℎ ∈ ℋ with
r(ℎ) = s(x1) = r(y1) such that (x1 ⋅ ℎ, ℎ−1 ⋅ y1 ⋅ g) = (x2, y2). Then x1 ⋅ ℎ = x2,
so that p(x1) = p(x2) inX∕ℋ. This implies x1 = x2 becauseU is a slice. Since
the right ℋ-action on X is free, it follows that ℎ = s(x1). Then y1 ⋅ g = y2,
and an analogous argument for the slice V in the groupoid correspondence Y
shows that y1 = y2. Therefore, the orbit space projection is injective on U ⋅ V.
This �nishes the proof that U ⋅ V is a slice in X◦ℋY. �

Proposition 7.12. Let X∶ K ← ℋ and Y∶ ℋ ← G be composable groupoid
correspondences. There is a well de�ned map

�0X,Y ∶ S(X) ⊗S(Y) → S(X◦ℋY),

�0X,Y(f1 ⊗ f2)([x, y]) =
∑

{ℎ∈ℋ0 ∶ r(ℎ)=s(x)}
f1(xℎ) ⋅ f2(ℎ−1y).

It extends to an isomorphism of C∗(K)-C∗(G)-correspondences

�X,Y ∶ C∗(X) ⊗C∗(ℋ) C
∗(Y) → C∗(X◦ℋY).

This isomorphism is natural with respect to the 2-arrows inGr.

Proof. First examine �0X,Y on f1 ⊗ f2 with f1 ∈ Cc(U) and f2 ∈ Cc(V) for
slices U ⊆ X and V ⊆ Y. Then Lemma 7.11 implies that U ⋅ V is a slice and
that �0X,Y(f1⊗f2) ∈ Cc(U ⋅V), with the function given by [x, y] ↦ f1(x)f2(y)
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for x ∈ U, y ∈ V. It follows that �0X,Y mapsS(X) ⊗S(Y) toS(X◦ℋY). This
map is surjective because slices of the formU ⋅V coverX◦ℋY and all functions
in Cc(U ⋅ V)may be written in the form �0X,Y(f1 ⊗ f2).

GiveS(X)⊗S(Y) the usualS(K)-S(G)-bimodule structure and the usual
inner product, de�ned by ⟨f1⊗f2 | f3⊗f4⟩ = ⟨f2 | ⟨f1 | f3⟩ ∗ f4⟩. Lemma 7.4
implies that �0X,Y is anS(K)-S(G)-bimodule mapwith ⟨�0X,Y(F1) | �

0
X,Y(F2)⟩ =

⟨F1 | F2⟩ for all F1, F2 ∈ S(X)⊗S(Y). Then �0X,Y extends uniquely to an isom-
etry �X,Y between the norm completions. The extension remains an S(K)-
S(G)-bimodule map. The bimodule property extends by continuity to C∗(K)
and C∗(G). Since �0X,Y is surjective, so is �X,Y . This makes it unitary. It is easy
to check that �X,Y is natural for the 2-arrows inGr. �

Theorem 7.13. The maps G ↦ C∗(G) on objects, X ↦ C∗(X) on arrows, and
� ↦ C∗(�) on 2-arrows together with the identity maps C∗(1G) = 1C∗(G) and the
maps �X,Y ∶ C∗(X)⊗C∗(ℋ)C

∗(Y) → C∗(X◦ℋY) form a strictly unital homomor-
phism of bicategoriesGr → ℭorr.

Proof. The only reason to call this a theorem is that it summarises all the con-
structions in this section. It remains to prove that the identity maps C∗(1G) =
1C∗(G) and the maps �X,Y in Proposition 7.12 make the three diagrams com-
mute that are required for homomorphisms of bicategories (see [5,23]). This is
checked by plugging in elementary tensors where each factor is supported on a
slice. �

Let P be a monoid with unit element 1 ∈ P. We view P as a bicategory
with only one object, set of arrows P, and only identity 2-arrows. A bicategory
homomorphism from P toGr as de�ned in [5,23] is described by the following
data:

∙ a groupoid G;
∙ groupoid correspondences Xa ∶ G ← G for a ∈ P∖{1};
∙ biequivariant homeomorphisms�a,b ∶ Xa◦GXb → Xab fora, b ∈ P∖{1};

here we let X1 ∶= 1G. Let �1,b ∶ 1G◦GXb → Xb and �a,1∶ Xa◦G1G → Xa be the
canonical maps in Lemma 6.3. The above data gives a bicategory homomor-
phism if and only if the following diagram commutes for all a, b, c ∈ P:

Xa◦GXb◦GXc Xa◦GXbc

Xab◦GXc Xabc.

idXa◦G�b,c

�a,b◦GidXc �a,bc

�ab,c

(7.4)

More generally, wemay replace amonoid by a category. Then homomorphisms
are de�ned in the same way. The only change is that we now have one group-
oid Gx for each object x ∈ C0, and the groupoid correspondenceXa for a∶ x →
y becomes a correspondence Gy ← Gx.
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Two homomorphisms of bicategories C → D → ℰ may be composed in a
canonical way to a homomorphism C → ℰ (see [5]). Therefore, we may com-
pose the homomorphism described by the data above with the homomorphism
in Theorem7.13 to get a homomorphismP → ℭorr. Such homomorphisms are
identi�ed in [3] with product systems over the monoid P. The product system
resulting from this composition has the following data:

∙ the �bres are the C∗-algebra C∗(G) at 1 ∈ P and the underlying Banach
spaces of the correspondences C∗(Xa)∶ C∗(G) ← C∗(G) for a ∈ P∖{1};

∙ the multiplication with C∗(G) and the inner product maps on the �-
bres of the product system come from the correspondence structure on
C∗(Xa);

∙ the multiplication map C∗(Xa) ⊗C∗(G) C
∗(Xb) → C∗(Xab) for a, b ∈

P ⧵ {1} is the isomorphism of correspondences

C∗(Xa) ⊗C∗(G) C
∗(Xb)

�Xa,Xb,,,,,,→ C∗(Xa◦GXb)
C∗(�a,b)
,,,,,,,→ C∗(Xab).

This multiplication is associative because of the commuting diagrams (7.4) and
the general theory of bicategories. In particular, it uses the commuting dia-
grams in the de�nition of a bicategory homomorphism (see [5, 23]), which in-
volve the maps �X,Y in Proposition 7.12. Thus the construction of a product
system from a homomorphism P → Gr uses Theorem 7.13.

Once we have got a product system, we may take its Cuntz–Pimsner algebra
to associate a C∗-algebra to a homomorphism P → Gr.

The further study of this Cuntz–Pimsner algebra becomes much easier if the
composite homomorphism P → ℭorr lands in the subbicategory of proper cor-
respondences, that is, correspondences where the left action is by compact op-
erators. The following theorem characterises when this happens:

Theorem7.14. LetG andℋ be groupoids. A groupoid correspondenceX∶ ℋ ←
G is proper if and only if the associated C∗-correspondence C∗(X) is proper.

Proof. Since C0(ℋ0) is embedded nondegenerately into C∗(ℋ), a correspon-
dence C∗(ℋ) ← B for a C∗-algebra B is proper if and only if C0(ℋ0) acts by
compact operators. In the proof of Lemma 7.6, we have shown that the oper-
ators of pointwise multiplication by functions in Cc(X∕G) on C∗(X) are com-
pact. More precisely, if V ⊆ X is a slice and ' ∈ Cc(p(V)), then we identi�ed
the operator of pointwisemultiplication by |'|2 with a rank-one operator. Then
the C∗-completion C0(X∕G) of Cc(X∕G) also acts by compact operators. Since
pointwise multiplication by C0(X∕G) is nondegenerate on S(X), it remains
nondegenerate on C∗(X). This implies that C0(X∕G) embeds nondegenerately
into theC∗-algebra of compact operators onC∗(X). Therefore, pointwisemulti-
plication with a function in Cb(X∕G) is only compact if the function belongs to
C0(X∕G). The action of C0(ℋ0) on C∗(X) factors through the homomorphism
C0(ℋ0) → Cb(X∕G) induced by (rX)∗∶ X∕G → ℋ0. This homomorphism fac-
tors through C0(X∕G) if and only if (rX)∗ is proper. This �nishes the proof. �
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Tight groupoid correspondences are proper, of course, and therefore induce
proper C∗-correspondences. It is unclear, however, which further extra proper-
ties C∗(X) has if X is a tight correspondence.
Example 7.15. If G is Hausdor�, then the arrow space of the groupoid G with
the usual left action and the source map as right anchor map is a groupoid cor-
respondence X∶ G ← G0; here we view G0 as a groupoid with only identity
arrows. The resulting C∗-correspondence C∗(X)∶ C∗(G) ← C∗(G0) ≅ C0(G0)
is equivalent to a continuous family of representations of C∗(G) on a contin-
uous �eld of Hilbert spaces over G0. This is the family of regular representa-
tions of C∗(G) on the Hilbert spaces l2(Gx) for x ∈ G0. The homomorphism
C∗(G) → B(C∗(X)) descends to a faithful representation of the reduced group-
oid C∗-algebra. In particular, it need not be faithful on C∗(G). This example
shows that itmay be hard to characterisewhen the left action of C∗(G) onC∗(X)
for a groupoid correspondence X is faithful.

If G is not Hausdor�, then the above groupoid correspondence no longer
exists because we require G∕G0 = G to be Hausdor� for a groupoid correspon-
dence. We may, however, pick x ∈ G0 and construct a representation of C∗(G)
on the Hilbert space l2(Gx). These representations, however, no longer �t to-
gether into a continuous �eld. We may view the representation of C∗(G) on
l2(Gx) as a C

∗-correspondence C∗(G) ← ℂ = C∗(pt) for the trivial groupoid pt.
This comes from Gx = s−1({x}) ⊆ G, viewed as a groupoid correspondence
Gx ∶ G ← pt.

8. Conduché �brations as diagrams of groupoid
correspondences
Let C be a small category. In this section, we examine bicategory homomor-

phisms from C to Gr that map each object of C to a locally compact group-
oid with only identity arrows. If Gx and Gy are locally compact spaces, then a
groupoid correspondence Gx ← Gy is the same as a topological correspondence
as de�ned in [2] (see Example 4.1). The Cuntz–Pimsner algebras of the prod-
uct systems associated to diagrams of proper topological correspondences are
already studied in [2], and we have nothing to add to this, except that it is easy
to generalise fromdiagrams de�ned overmonoids to diagrams de�ned over cat-
egories. We would like to point out, however, that the C∗-algebras of discrete
Conduché �brations studied by Brown and Yetter [6] are the special case of this
where the locally compact spaces in the diagram are all discrete.
De�nition 8.1 ([6]). Let ℰ and C be two small categories. A functor F∶ ℰ → C
is called a discrete Conduché �bration if it has the following unique factorisation
lifting property (also called the Conduché condition): if '∶ y → x is an arrow
in ℰ, then any factorisation

F(y) z F(x)

F(')

� %
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of F(') in C lifts uniquely to a factorisation

y z̃ x

'

�̃ %̃

of ' in ℰ; here lifting means that Fmaps �̃ to � and %̃ to %. A discrete Conduché
�bration is row-�nite if for every object X in ℰ and every morphism �∶ y →
F(X) in C, the class of morphisms with target X whose image under F is � is a
�nite set.

De�nition 8.2. Suppose F is a row-�nite discrete Conduché �bration. The
C∗-algebra of F is the universal C∗-algebra C∗(F) generated by orthogonal pro-
jections PX forX ∈ ℰ0 and partial isometries S� for morphisms �∶ Y → X in ℰ
that satisfy the following relations:

(1) if X ≠ Y, then PXPY = 0;
(2) if � and � are composable, then S�� = S�S�;
(3) Px = Sidx for all x;
(4) if �∶ y → x, then S∗�S� = Py;
(5) if F(�) = F(�) and � ≠ �, then S∗�S� = 0;
(6) if X ∈ ℰ0 and g∶ y → F(X) is an arrow in C, then

∑

F(�)=g,r(�)=X
S�S∗� = PX .

These de�nitions are inspired by the usual de�nition of a (row-�nite) higher-
rank graph and its C∗-algebra: this is the special case when C is the monoid
(ℕk, +). We will not say more about the theory of discrete Conduché �brations
and refer to [6] for further discussion. The theorem below describes them in
another way, using the bicategory of groupoid correspondences. We believe
that this alternative description is much more informative. From our point of
view, a discrete Conduché �bration is equivalent to an action of C on discrete
sets by correspondences. In particular, a higher-rank graph is an action of ℕk
on a discrete set by correspondences.

To be precise, Brown and Yetter de�ne C∗(F) only if F is row-�nite and
“strongly surjective”. This says that the sum on the right in condition (6) is
non-empty for all X and g. If this fails, the condition asks for PX = 0, which
may entail further generators to become 0 andmay reduce thewholeC∗-algebra
to be 0. We allow this degenerate case, however, because the following theorem
remains true.

The following theorem uses product systems over categories and their abso-
lute Cuntz–Pimsner algebras. All this is usually considered only over monoids,
but the de�nitionsmake perfect sense over a category instead. The quickestway
for us to de�ne a product system over the category C is as a bicategory homo-
morphism C → ℭorr. We call a product system proper if this homomorphism
lands in the subbicategory of proper correspondences. The absolute Cuntz–
Pimsner algebra of a proper product system is de�ned in [3, De�nition 6.8].
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Over a monoid, this de�nition is the usual one, asking the Cuntz–Pimsner co-
variance condition for all elements of the underlying C∗-algebra and not just
on some ideal.

Theorem 8.3. A discrete Conduché �bration F∶ ℰ → C is equivalent to a bicat-
egory homomorphism F̃ ∶ C → Gr with the extra property that each groupoid Gx
for x ∈ C0 is a discrete set with only identity arrows. Here “equivalent” means a
bijection on isomorphism classes. The �bration F is row-�nite if and only if the
corresponding homomorphism F̃ is proper. If F is row-�nite, then C∗(F) is nat-
urally isomorphic to the absolute Cuntz–Pimsner algebra of the product system
over C associated to F̃.

Proof. For x ∈ C0 and g ∈ C, let Gx ∶= F−1(x) ⊆ ℰ0 and Xg ∶= F−1(g) ⊆ ℰ,
respectively. So ℰ0 =

⨆
x∈C0 Gx and ℰ =

⨆
g∈CXg. We view Gx for x ∈ C0

as an étale groupoid with only identity arrows and the discrete topology. The
range and source maps r, s ∶ ℰ ⇉ ℰ0 restrict to maps r∶ Xg → Gr(g) and
s ∶ Xg → Gs(g) because F is a functor. These make Xg a groupoid correspon-
dence Gr(g) ← Gs(g); the conditions for a groupoid correspondence are obvi-
ously satis�ed because our groupoids have only identity arrows andXg has the
discrete topology. Since F is a functor, the composition in ℰ restricts to maps
�g,ℎ ∶ Xg ×Gs(g) Xℎ → Xg⋅ℎ for all g, ℎ ∈ C with s(g) = r(ℎ). Since each Gx is
a space, Xg ×Gs(g) Xℎ = Xg◦Gs(g)Xℎ. The discrete Conduché �bration condition
says exactly that each map �g,ℎ is bijective, as required for a homomorphism of
bicategories. The maps �g,ℎ determine the multiplication in ℰ because the set
of composable pairs of arrows in ℰ is the disjoint union of the �bre products
Xg×Gs(g)Xℎ for (g, ℎ) ∈ C2. The associativity of the multiplication in ℰ is equiv-
alent to the associativity condition for a bicategory homomorphism in (7.4).

If x ∈ C0 ⊆ C, then Xx = Gx is the set of all unit arrows on objects x̂ ∈ ℰ0
with F(x̂) = x by [6, Lemma 2.3], as required for a groupoid homomorphism.
Since all arrows in Gx are identities, the multiplication maps �g,ℎ when g or ℎ
is a unit arrow in C contain no information. So a discrete Conduché �bration
ℰ → C gives a homomorphism of bicategories C → Gr with the extra prop-
erty that each Gx is a discrete set viewed as an étale groupoid with the discrete
topology and only identity arrows. This construction is reversible, that is, any
bicategory homomorphismwith this extra property comes from a discrete Con-
duché �bration, which is unique up to isomorphism.

The correspondence Xg for an arrow g in C is proper if and only if for each
object x ∈ ℰ0, the set of 
 ∈ Xg with r(
) = g is �nite. This happens for all g if
and only if the �bration F is row-�nite.

Since the spaces Gx and Xg are discrete, the C
∗-algebras and C∗-correspon-

dences in our proper product system have obvious bases, namely, the delta-
functions of elements in Gx and Xg, respectively. Let �g ∶ Xg → B(ℋ) for
g ∈ C be a Cuntz–Pimsner covariant representation of the proper product
system C∗(Xg)g∈C over C. Since the delta-functions span dense subspaces in
C∗(Gx) and C∗(Xg), the representation � = (�g)g∈C of the product system is
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determined by its values on the delta-functions. Actually, since Xx = Gx for a
unit arrow, there is no need to list the generators for objects at all. So we only
need the values S� ∶= �f(��) if f ∈ C(x, y), x, y ∈ C0, and � ∈ Xf. It is
convenient to also de�ne PX ∶= SX = �x(�X) if x ∈ C0 and X ∈ G0x. Actually,
� ∈

⨆
g∈CXg = ℰ and X ∈

⨆
x∈C0 G

0
x = ℰ0. It su�ces to check the condi-

tions for a Cuntz–Pimsner covariant representation of the product system on
the basis of delta-functions. We claim that a family (S�)�∈ℰ as above de�nes a
representation if and only if

(1) PX ∶= SX for X ∈
⨆

x∈C0 Gx = ℰ0 are mutually orthogonal projections;
(2) each S� is a partial isometry;
(3) for all � ∈ ℰ, S∗�S� = Ps(�);
(4) if �, � ∈ ℰ are di�erent, then S∗�S� = 0;
(5) if � and � are composable in ℰ ∶=

⨆
g∈CXg, then S�S� = S�� .

(6) if x, y ∈ C0, X ∈ G0x, g ∈ C(y, x), then PX =
∑

�∈Xg ,r(�)=X
S�S∗�.

Condition (1) says that the map �X ↦ PX extends to a ∗-homomorphism on
C0

(⨆
x∈C0 G

0
x
)
= C0(ℰ0). Condition (2) follows from (3) and (4), and these

say that �s(g)(⟨�� | ��⟩) = �g(��)∗�g(��) for all g ∈ C, �, � ∈ Xg; this is the
condition for the right inner product in a Toeplitz representation of a product
system. Condition (5) says that �g(S�)�ℎ(S�) = �gℎ(S��) for all (g, ℎ) ∈ C2
and � ∈ Xg, � ∈ Xℎ; this is the condition for the multiplication in a Toeplitz
representation of a product system for g, ℎ not a unit. If g or ℎ is a unit, then the
conditions PXS� = �X,r(�)S� and S�PX = �X,s(�)S� follow from (1), (3) and (6).
Condition (6) says that the representation of C∗(Xg) for an arrow g ∈ C(y, x) is
Cuntz–Pimsner covariant on all elements of C∗(Gx); by assumption, the prod-
uct system is proper, so that C∗(Gx) acts on C∗(Xg) by compact operators. Now
it is easy to see that the resulting list of conditions is equivalent to the list inDe�-
nition 8.2. Therefore, both universal properties de�ne the sameC∗-algebra. �

We now specialise this to k-graph C∗-algebras (see [21]):

Corollary 8.4. A k-graph is equivalent to a bicategory homomorphism from
(ℕk, +) viewed as a bicategory to Gr that maps the unique object of the bicate-
gory ℕk to a discrete set. The k-graph is row-�nite if and only if it corresponds
to a homomorphism to Grprop. The C

∗-algebra of a row-�nite k-graph without
sources is naturally isomorphic to the absolute Cuntz–Pimsner algebra of the re-
sulting proper product system over ℕk.

Proof. This follows from Theorem 8.3 because discrete Conduché �brations
with C = (ℕk, +) are the same as rank-k graphs (see [6]). The condition of
having no sources is a standing assumption in [21]. It says that none of the
sums in (6) is empty, so that it is reasonable to impose this condition for each
(X, g). �

We may also allow each Gx to be a locally compact space, made a groupoid
with only identity arrows. We propose this as the right locally compact version
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of a Conduché �bration. Now the category ℰ =
⨆

g∈CXg is a locally compact
topological categorywith a continuous functorF∶ ℰ → C that is a discrete Con-
duché �bration as de�ned abovewhenwe forget the topologies. In addition, the
source map s ∶ ℰ → ℰ0 and the multiplication in ℰ are local homeomorphisms.
These extra conditions are necessary and su�cient for a functor F∶ ℰ → C to
come from a bicategory homomorphism C → Gr by the construction above.

If Gx are locally compact spaces, then a groupoid correspondence Gx ← Gy
is the same as a topological correspondence as de�ned in [2] (see Example 4.1).
When C is a monoid, we get actions of that monoid on a topological space by
topological correspondences exactly as in [2]. If C = (ℕk, +), we get the topo-
logical rank-k graphs by Yeend [32]. The topological analogue of row-�niteness
says exactly that these topological correspondences are proper. If they are also
all surjective, then the C∗-algebra of the topological rank-k graph is isomorphic
to the absolute Cuntz–Pimsner algebra of the proper product system over ℕk
de�ned by the homomorphism ℕk → Gr → ℭorr.

We may also replace a discrete set by a discrete group G or a transformation
group V ⋊ Γ for an action of a group Γ on a discrete set V. We have related
groupoid correspondences on V ⋊ Γ to self-similar graphs in Example 7.10.
In an analogous way, a bicategory homomorphism ℕk → Grprop that maps
the unique object of the category ℕk to V ⋊ Γ is equivalent to a self-similar
(row-�nite) k-graph as de�ned by Li and Yang [24]. They also describe the
C∗-algebra of such an object as the Cuntz–Pimsner algebra of a proper product
system over ℕk. For each n ∈ ℕk and � ∈ d−1(n), the map ��,g ↦ ��j(g)
implements an isomorphism from C∗(X) to the C∗-correspondence that is de-
noted by XG,Λ,n in [24]. Then the product system by Li and Yang is naturally
isomorphic to the product system corresponding to the composite homomor-
phism ℕk → Gr → ℭorr.

Summing up, various constructions of C∗-algebras from combinatorial or dy-
namical data may be realised as Cuntz–Pimsner algebras of product systems
associated to homomorphisms to the bicategory of groupoid correspondences.
This interprets these C∗-algebras as covariance algebras of generalised dynami-
cal systems, where a category acts on an étale groupoid by groupoid correspon-
dences.
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