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Random nilpotent groups of maximal step

Phillip Harris

ABSTRACT. Let G be a random torsion-free nilpotent group generated by two
random words of length ¢ in U,(Z). Letting ¢ grow as a function of n, we
analyze the step of G, which is bounded by the step of U,(Z). We prove a
conjecture of Delp, Dymarz, and Schaffer-Cohen, that the threshold function
for full step is £ = n?.
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1. Introduction

A group G is nilpotent if its lower central series,
G=G02G12"‘2Gr={1}

defined by G;;; = [G, G;], eventually terminates. The first index r for which
G, = {1} is called the step of G. One may ask what a generic nilpotent group
looks like, including its step. Questions about generic properties of groups can
be answered with random groups, first introduced by Gromov [5]. Since Gro-
mov’s original few relators and density models are nilpotent with probability 0,
they cannot tell us about generic properties of nilpotent groups. Thus, there is
a need for new random group models that are nilpotent by construction.

Delp, etal. (2019) [3] introduced a model for random nilpotent groups, moti-
vated by the observation that any finitely generated torsion-free nilpotent group
can be embedded in the group U,,(Z) of n X n upper triangular integer matrices
with ones on the diagonal [4]. Note that, since any finitely generated nilpotent
group contains a torsion-free subgroup of finite index, we are not losing much
by restricting our attention to torsion-free groups. (Another model is consid-
ered in [2]).

Received February 8, 2022.

2010 Mathematics Subject Classification. 20D15, 20P05, 60B15.

Key words and phrases. random groups, nilpotent groups, lower central series.
This research was supported by NSF grants DMS-2037851 and DMS-1902173.

ISSN 1076-9803/2022
1365


http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2022/Vol28.htm

1366 PHILLIP HARRIS

We construct a random subgroup of U,(Z) as follows. Let E; ; be the ele-
mentary matrix with 1’s on the diagonal, a 1 at position (i, j) and 0’s elsewhere.
Then S = {E;fil+1 : 1 <i < n} forms the standard generating set for U, (Z). We
call the entries at positions (i, i + 1) the superdiagonal entries. Define a random
walk of length ¢ to be a product

V = V1V2 oo Vf

where each V; is chosen independently and uniformly from S. Let V and W
be two independent random walks of length ¢. Then G = (V, W) is a random
subgroup of U,,(Z). We have step(G) < step(U,(Z)), and it is not hard to check
that step(U,(Z)) = n — 1. If step(G) = n — 1, we say G has full step.

Now let n - oo and ¢ = ¢(n) grow as a function of n. We say a proposition
P holds asymptotically almost surely (a.a.s.) if P[P] - 1asn — oo. Delp et
al. (2019) gave results on the step of G, depending on the growth rate of ¢ with
respect to n. Recall that f = o(g(n)) means f(n)/g(n) - 0asn — oo and
f = w(g(n)) means f(n)/g(n) > o0 asn — .

Theorem 1.1 (Delp-Dymarz-Schaffer-Cohen). Letn,¢(n) — coandG = (V,W)
where V., W are independent random walks of length €. Then:

1) Ife(n) = o(ﬁ) then a.a.s. step(G) = 1, i.e. G is abelian.

(2) If ¢(n) = o(n?) then a.a.s. step(G) < n — 1.
(3) If t(n) = w(n?) then a.a.s. step(G) = n — 1, i.e. G has full step.

In this paper we close the gap between cases 2 and 3.

Theorem 1.2. Letn,¢(n) — co and G = (V,W). If ¢(n) = w(n?) then a.a.s. G
has full step.

To prove this requires a careful analysis of the nested commutators that gen-
erate G,_;. In Section 1, we give a combinatorial criterion for a nested com-
mutator of V’s and W’s to be nontrivial. In Section 2, we show this criterion is
satisfied asymptotically almost surely when V', W are random walks.

2. Nested commutators

Let G = Gy > G; > ... be the lower central series of G. We have
G; =|G,G;_;]1=1G,|G,...,|G,G]...]]

In particular, G; includes all i + 1-fold nested commutators of elements of G.
We restrict our attention to commutators where each factor is V or W.

Let {0, 1}d be the d-dimensional cube, or the set of all length d binary vec-
tors. For x € {0,1}¢,y € {0, 1}° we define the norm N(x) = Zl<i<d x; and the
concatenation xy € {0,1}4*¢. For example if x = (1,0,0) and y = (0,1) then
xy =(1,0,0,0,1) = 10%1.
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We define a family of maps C; : {0,1}¢ — G, as follows.
)=V
C(0)=W
Ca(1x) = [V, Cq_1(x)]
Ca(0x) = [W,Cy_1(x)]
Thus for example, C5(10°1) = C5(10001) = [V, [W, [W, [W, V]]]]. We omit the
subscript d when it is obvious. To prove G has full step, it suffices to find an

x € {0,1}"*7! such that C(x) is nontrivial. We begin with Lemma 2.3 from [3],
which gives a recursive formula for the entries of a nested commutator.

Lemma 2.1. Leta € {0,1}, x € {0,1}4"L. Then C(ax) € G4 and we have
Clax)iiva = C(@)ix1C(Xig1i4d — C(@ird—1,i4aC(X)ii4d-1
and furthermore C(ax); j = 0 for j <i+d.

In particular, for d = n — 1 only the upper rightmost entry C(ax); , can be
nonzero.

From the formula, it is clear that C(ax); ;44 is a degree-d polynomial in the
superdiagonal entries of V and W. Let us state this more precisely and analyze
the coefficients of the polynomial.

Lemma 2.2. Letd > 1. There exists a function K; : {0,1}¢ x{0,1}¢ — Z such
that for1 <i < n—d we have

Yj 1-y;
COra =, Kaey) TI V75wl ¢y
ye{o,1}4 i<j<i+d
N(y)=N(x)

Furthermore, setting K (x,y) = 0 for N(x) # N(y) we have a recursion
Kq(ax,byc) = Ky (@, b)Ky_1(x, y¢) — Ky (@, )Kq_y (x, by)
with base cases
K,(0,0) = K;(1,1) =1
K;(0,1) = K,(1,0)=0

Note that K;(x, y) does not depend on i. We also drop the subscript d since
it can be inferred from x and y.

Proof. Abbreviate

; . Y 1=y;
U(i,d,y) := Vj,j+1Wj,j+1
i<j<i+d
We first prove inductively that there exist coefficients K : {0,1}¢ x{0,1}¢ - Z
such that

C)ira= », Kalx,»)U(.d,y)
ye{0,1}d
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The case d = 1 is trivial. Assume it holds ford — 1. Leta € {0,1} and x €
{0,1}9~1, then we have
Clax)iiva = C(@);i11C(X)iy1i4d — C(@ird—1,i4+dC(X)ii4a-1

Expanding C(a); ;+; and C(x);11 44, the first term is

[Ki(a, DV + K@ 0OWin || D) Kaoa (e )UG+1,d - 1,y)
ye{0,1}d-1

> Ki(a, DKy (x,»)UG, d, 1y) + Ky (a, 0)K4_, (x, Y)U(i, d, 0y)
ye{0,1}d-1

= Z Ky (a,b)K4_;(x,y'c)U(i,d,by’c)
b,c€{0,1}
y’e{O,l}d‘2

Similarly, the second term is

= > Ki(a,0)Ky(x,by)U(,d,by'c)
b,ce{0,1}
y’e{O,l}d_2

Combining, we get

C(ax)i,i+d = Z [Kl(a5 b)Kd—l(x! yC) - Kl(aa C)Kd—l(x’ by)] U(l’ da byC)
b,ce{0,1}
yE{0,1342
and setting K;(ax, byc) = K;(a, b)Ky_,(x,yc)—K;(a,c)K4_,(x, by), the lemma
is proved for d. It is also easy to see inductively that K;(x,y) = 0 for N(x) #
N(y), so we may add the condition N(x) = N(y) under the sum.
O

We now have a strategy for choosing x € {0, 1}"~! such that C(x) is nontriv-
ial. In the random model, it may happen that V;;,; = 0 for some i. Define the
vector v € {0,1}" ' by v; = 1if V;;;; # 0 and v; = 0 otherwise. For now as-
sume 0 < N(v) < n — 1. If we choose x such that N(x) = N(v), then Equation
1 simplifies to

Croa (10 = KaCx,0) TT Vit Wit
1<i<n
If we assume there is no i such that V;;,; = W;;,; = 0, the product of matrix
entries is nonzero. So, we just need to choose x such that K;(x, v) # 0. We can
do this with some additional assumptions on v.

Lemma2.3. Letv € {0, 1}* ' with0 < N(v) < n—1. Writev = 1%101% ... 1%~101%,
Assume that a; > 1 foralli, i.e., there are no adjacent 0’s, and that a; # ay. Then
there exists x € {0,1}"~! such that K(x,v) # 0.

We will prove in section 2 that all assumptions used hold asymptotically al-
most surely.
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Proof. Using the recursion from Lemma 2.2, the following identities are easily
verified by induction:

(1) Ifa,b > 0, then

S

(2) Ifa,b > 1,c > 0 with ¢ < min(a, b), then
K(1°0x,1%91%) = 0
(3) Leta,b > 0. Ifa < b then
K(1%0x,1%0y1%) = K(x, y1b)

K(19+b0, 1901b) = (

If b < a then
K(1°0x,1%y01%) = K(x, 1%y)(—1)P*!
(4) Ifa,b > 0 then

R CVDLERER

Letv = 191019 ...01%. First assume k = 2¢ is even. We set

X = 1a1+a2,;021a2+a2{;_1 02 1ag+ag+10

K(19+002x, 1901y101?) = 2(

Then applying identity 4 repeatedly followed by identity 1, we obtain
— Al Nty ot (M T G2e41) (G2 + Qg ag + ey
K(x,v) = 26(—1)%¢ +aae++a ( o )( o )( 0 )
If k is odd, we apply identity 3 once and proceed as before. ]

3. Asymptotics

In Section 1, we derived a combinatorial condition on the superdiagonal en-
tries of V' and W sufficient for G to have full step. Define
V={i:15i<nVj; =0}
W={i:1<i<nW;,; =0}
Then, to apply Lemma 2.3, we need that

(1) V and W are nonempty.

Q) Vnw=4.

(3) V hasno adjacent elements.

(4) minV # n — max V.
If condition (1) does not hold, then Theorem 1.2 follows by a modification of
Lemma 5.4 in [3].

We now show that in the random model, if £ = w(n?), then the superdiag-

onal entries satisfy conditions (2)-(4) asymptotically almost surely. Recall that
V and W are random walks

V = V1V2 .o V{
W = W1W2 Wf
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where each V;, W, is chosen independently and uniformly from the generating
setS={E*' :1<i<n}

i,i+1
Define
1 le = Ej,j+1
—J_ 3 _ -1
0j(2)=1-1 i#Z=E},, .

0 otherwise

Then we have
¢

Viie1 = Z o (V).
=1

When ¢ > n, the superdiagonal entries V; ;. ; behave roughly like independent
random walks on Z. We restate Corollary 3.2 from [3].

Lemma 3.1. Suppose ¢ = w(n). Then uniformly forl <k; <k, <--<kz<n

we have
d

Plk, € V0 W foralli] ~ (%)

By the union bound, we have P[V N W # §J] < n?/¢ — 0. Thus, condition
(2) holds a.a.s. For conditions (3) and (4), we will need a bound on the size of
V.

Lemma 3.2. Fixe > 0. Then P[|V]| > eﬁ] —>0asn — oo.

Proof. Define random variables

1 V(@,i+1)=0
0 V(Gi,i+1)#0

i

So |V| = X, X;. From Lemma 3.1 we have E[X;] < yn/¢ and E[X;X;] <
n/t for1 < i < j < n. Hence E[|V|] < 4/n3/¢ and Var[|V|] < n3/¢. By

Chebyshev’s inequality,

PUVI 2 el < P [1V] = \[n/¢ 2 Ve =2 /0)]
1

< -0
(e —\n2/E)(¢ /n?)

O

Observe that the distribution of V is invariant under permutation. In other
words, for a fixed set § C {1,...,n — 1} and a permutation 7 on {1, ... ,n — 1} we
have

P[V = 8] = P[V = 78]



RANDOM NILPOTENT GROUPS OF MAXIMAL STEP 1371

and hence,
1
n—1

(l5)
Let A(k) be the number of sets § C {1, ..., n — 1} of size k with at least one pair
of adjacent elements. We have

n—3
A(k) < (n — z)(k - 2).

Let B(k) be the number of sets 8§ for which min § = n — max 8. Summing over
the possible values of min § we have

PV =8]=

PLVI=18I]

sos Y ("0

1<a<n/2

One easily checks
A(k) + B(k) < 2_k2
n—-1 ~n '
)

For k < eﬁ, this is < 2¢2. On the other hand, P[|V| > eﬁ] — 0, so we are
done.
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