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Random nilpotent groups of maximal step

Phillip Harris

Abstract. LetG be a random torsion-free nilpotent group generated by two
random words of length l in Un(ℤ). Letting l grow as a function of n, we
analyze the step of G, which is bounded by the step of Un(ℤ). We prove a
conjecture of Delp, Dymarz, and Scha�er-Cohen, that the threshold function
for full step is l = n2.
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1. Introduction
A group G is nilpotent if its lower central series,

G = G0 ≥ G1 ≥ ⋯ ≥ Gr = {1}
de�ned by Gi+1 = [G, Gi], eventually terminates. The �rst index r for which
Gr = {1} is called the step of G. One may ask what a generic nilpotent group
looks like, including its step. Questions about generic properties of groups can
be answered with random groups, �rst introduced by Gromov [5]. Since Gro-
mov’s original few relators and densitymodels are nilpotent with probability 0,
they cannot tell us about generic properties of nilpotent groups. Thus, there is
a need for new random group models that are nilpotent by construction.

Delp, et al. (2019) [3] introduced amodel for randomnilpotent groups, moti-
vated by the observation that any �nitely generated torsion-free nilpotent group
can be embedded in the groupUn(ℤ) of n×n upper triangular integer matrices
with ones on the diagonal [4]. Note that, since any �nitely generated nilpotent
group contains a torsion-free subgroup of �nite index, we are not losing much
by restricting our attention to torsion-free groups. (Another model is consid-
ered in [2]).
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We construct a random subgroup of Un(ℤ) as follows. Let Ei,j be the ele-
mentary matrix with 1’s on the diagonal, a 1 at position (i, j) and 0’s elsewhere.
Then S = {E±1i,i+1 ∶ 1 ≤ i < n} forms the standard generating set for Un(ℤ). We
call the entries at positions (i, i +1) the superdiagonal entries. De�ne a random
walk of length l to be a product

V = V1V2…Vl

where each Vi is chosen independently and uniformly from S. Let V and W
be two independent random walks of length l. Then G = ⟨V,W⟩ is a random
subgroup ofUn(ℤ). We have step(G) ≤ step(Un(ℤ)), and it is not hard to check
that step(Un(ℤ)) = n − 1. If step(G) = n − 1, we say G has full step.

Now let n → ∞ and l = l(n) grow as a function of n. We say a proposition
P holds asymptotically almost surely (a.a.s.) if ℙ[P] → 1 as n → ∞. Delp et
al. (2019) gave results on the step of G, depending on the growth rate of l with
respect to n. Recall that f = o(g(n)) means f(n)∕g(n) → 0 as n → ∞ and
f = !(g(n))means f(n)∕g(n) → ∞ as n → ∞.

Theorem1.1 (Delp-Dymarz-Scha�er-Cohen). Letn, l(n) → ∞andG = ⟨V,W⟩
where V,W are independent random walks of length l. Then:

(1) If l(n) = o(
√
n) then a.a.s. step(G) = 1, i.e. G is abelian.

(2) If l(n) = o(n2) then a.a.s. step(G) < n − 1.
(3) If l(n) = !(n3) then a.a.s. step(G) = n − 1, i.e. G has full step.

In this paper we close the gap between cases 2 and 3.

Theorem 1.2. Let n, l(n) → ∞ and G = ⟨V,W⟩. If l(n) = !(n2) then a.a.s. G
has full step.

To prove this requires a careful analysis of the nested commutators that gen-
erate Gn−1. In Section 1, we give a combinatorial criterion for a nested com-
mutator of V’s andW’s to be nontrivial. In Section 2, we show this criterion is
satis�ed asymptotically almost surely when V,W are random walks.

2. Nested commutators
Let G = G0 ≥ G1 ≥ … be the lower central series of G. We have

Gi = [G, Gi−1] = [G, [G,… , [G, G]… ]]

In particular, Gi includes all i + 1-fold nested commutators of elements of G.
We restrict our attention to commutators where each factor is V orW.

Let {0, 1}d be the d-dimensional cube, or the set of all length d binary vec-
tors. For x ∈ {0, 1}d, y ∈ {0, 1}e we de�ne the norm N(x) =

∑
1≤i≤d xi and the

concatenation xy ∈ {0, 1}d+e. For example if x = (1, 0, 0) and y = (0, 1) then
xy = (1, 0, 0, 0, 1) = 1031.
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We de�ne a family of maps Cd ∶ {0, 1}d → Gd as follows.

C1(1) = V
C1(0) = W

Cd(1x) = [V, Cd−1(x)]
Cd(0x) = [W,Cd−1(x)]

Thus for example, C5(1031) = C5(10001) = [V, [W, [W, [W,V]]]]. We omit the
subscript d when it is obvious. To prove G has full step, it su�ces to �nd an
x ∈ {0, 1}n−1 such that C(x) is nontrivial. We begin with Lemma 2.3 from [3],
which gives a recursive formula for the entries of a nested commutator.

Lemma 2.1. Let a ∈ {0, 1}, x ∈ {0, 1}d−1. Then C(ax) ∈ Gd and we have

C(ax)i,i+d = C(a)i,i+1C(x)i+1,i+d − C(a)i+d−1,i+dC(x)i,i+d−1
and furthermore C(ax)i,j = 0 for j < i + d.

In particular, for d = n − 1 only the upper rightmost entry C(ax)1,n can be
nonzero.

From the formula, it is clear that C(ax)i,i+d is a degree-d polynomial in the
superdiagonal entries of V andW. Let us state this more precisely and analyze
the coe�cients of the polynomial.

Lemma 2.2. Let d ≥ 1. There exists a function Kd ∶ {0, 1}d × {0, 1}d → ℤ such
that for 1 ≤ i ≤ n − d we have

C(x)i,i+d =
∑

y∈{0,1}d
N(y)=N(x)

Kd(x, y)
∏

i≤j<i+d
V
yj
j,j+1W

1−yj
j,j+1 (1)

Furthermore, setting Kd(x, y) = 0 forN(x) ≠ N(y) we have a recursion

Kd(ax, byc) = K1(a, b)Kd−1(x, yc) − K1(a, c)Kd−1(x, by)

with base cases

K1(0, 0) = K1(1, 1) = 1
K1(0, 1) = K1(1, 0) = 0

Note that Kd(x, y) does not depend on i. We also drop the subscript d since
it can be inferred from x and y.

Proof. Abbreviate

U(i, d, y) ∶=
∏

i≤j<i+d
V
yj
j,j+1W

1−yj
j,j+1

We �rst prove inductively that there exist coe�cientsKd ∶ {0, 1}d ×{0, 1}d → ℤ
such that

C(x)i,i+d =
∑

y∈{0,1}d
Kd(x, y)U(i, d, y)
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The case d = 1 is trivial. Assume it holds for d − 1. Let a ∈ {0, 1} and x ∈
{0, 1}d−1, then we have

C(ax)i,i+d = C(a)i,i+1C(x)i+1,i+d − C(a)i+d−1,i+dC(x)i,i+d−1
Expanding C(a)i,i+1 and C(x)i+1,i+d, the �rst term is

=
[
K1(a, 1)Vi,i+1 + K1(a, 0)Wi,i+1

] ⎡
⎢
⎣

∑

y∈{0,1}d−1
Kd−1(x, y)U(i + 1, d − 1, y)

⎤
⎥
⎦

=
∑

y∈{0,1}d−1
K1(a, 1)Kd−1(x, y)U(i, d, 1y) + K1(a, 0)Kd−1(x, y)U(i, d, 0y)

=
∑

b,c∈{0,1}
y′∈{0,1}d−2

K1(a, b)Kd−1(x, y′c)U(i, d, by′c)

Similarly, the second term is

=
∑

b,c∈{0,1}
y′∈{0,1}d−2

K1(a, c)Kd−1(x, by′)U(i, d, by′c)

Combining, we get

C(ax)i,i+d =
∑

b,c∈{0,1}
y∈{0,1}d−2

[K1(a, b)Kd−1(x, yc) − K1(a, c)Kd−1(x, by)]U(i, d, byc)

and settingKd(ax, byc) = K1(a, b)Kd−1(x, yc)−K1(a, c)Kd−1(x, by), the lemma
is proved for d. It is also easy to see inductively that Kd(x, y) = 0 for N(x) ≠
N(y), so we may add the condition N(x) = N(y) under the sum.

�

We now have a strategy for choosing x ∈ {0, 1}n−1 such that C(x) is nontriv-
ial. In the random model, it may happen that Vi,i+1 = 0 for some i. De�ne the
vector v ∈ {0, 1}n−1 by vi = 1 if Vi,i+1 ≠ 0 and vi = 0 otherwise. For now as-
sume 0 < N(v) < n − 1. If we choose x such that N(x) = N(v), then Equation
1 simpli�es to

Cn−1(x)1,n = Kd(x, v)
∏

1≤i<n
Vvi
i,i+1W

1−vi
i,i+1.

If we assume there is no i such that Vi,i+1 = Wi,i+1 = 0, the product of matrix
entries is nonzero. So, we just need to choose x such that Kd(x, v) ≠ 0. We can
do this with some additional assumptions on v.

Lemma2.3. Letv ∈ {0, 1}n−1with 0 < N(v) < n−1. Writev = 1a101a2 …1ak−101ak .
Assume that ai ≥ 1 for all i, i.e., there are no adjacent 0’s, and that a1 ≠ ak. Then
there exists x ∈ {0, 1}n−1 such that K(x, v) ≠ 0.

We will prove in section 2 that all assumptions used hold asymptotically al-
most surely.



RANDOM NILPOTENT GROUPS OF MAXIMAL STEP 1369

Proof. Using the recursion from Lemma 2.2, the following identities are easily
veri�ed by induction:

(1) If a, b ≥ 0, then

K(1a+b0, 1a01b) =
(a + b

a

)
(−1)b

(2) If a, b ≥ 1, c ≥ 0 with c < min(a, b), then
K(1c0x, 1ay1b) = 0

(3) Let a, b ≥ 0. If a < b then
K(1a0x, 1a0y1b) = K(x, y1b)

If b < a then
K(1b0x, 1ay01b) = K(x, 1ay)(−1)b+1

(4) If a, b ≥ 0 then

K(1a+b02x, 1a01y101b) = 2
(a + b

a

)
(−1)bK(x, 1y1)

Let v = 1a101a2 …01ak . First assume k = 2l is even. We set
x = 1a1+a2l021a2+a2l−102…1al+al+10

Then applying identity 4 repeatedly followed by identity 1, we obtain

K(x, v) = 2l(−1)a2l+a2l−1+⋯+al+1
(a1 + a2l+1

a1

)(a2 + a2l
a2

)
…

(al + al+1
al

)

If k is odd, we apply identity 3 once and proceed as before. �

3. Asymptotics
In Section 1, we derived a combinatorial condition on the superdiagonal en-

tries of V andW su�cient for G to have full step. De�ne
V = {i ∶ 1 ≤ i < n, Vi,i+1 = 0}
W = {i ∶ 1 ≤ i < n,Wi,i+1 = 0}

Then, to apply Lemma 2.3, we need that
(1) V andW are nonempty.
(2) V ∩W = ∅.
(3) V has no adjacent elements.
(4) minV ≠ n −max V .

If condition (1) does not hold, then Theorem 1.2 follows by a modi�cation of
Lemma 5.4 in [3].

We now show that in the random model, if l = !(n2), then the superdiag-
onal entries satisfy conditions (2)-(4) asymptotically almost surely. Recall that
V andW are random walks

V = V1V2…Vl
W = W1W2…Wl
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where each Vi,Wi is chosen independently and uniformly from the generating
set S = {E±1i,i+1 ∶ 1 ≤ i < n}.

De�ne

�j(Z) =
⎧

⎨
⎩

1 if Z = Ej,j+1
−1 if Z = E−1j,j+1
0 otherwise

.

Then we have

Vi,i+1 =
l∑

j=1
�i(Vj).

When l ≫ n, the superdiagonal entriesVi,i+1 behave roughly like independent
random walks on ℤ. We restate Corollary 3.2 from [3].

Lemma 3.1. Suppose l = !(n). Then uniformly for 1 ≤ k1 < k2 < ⋯ < kd < n
we have

ℙ[ki ∈ V ∩W for all i] ∼ ( n
2�l

)
d

By the union bound, we have ℙ[V ∩W ≠ ∅] ≪ n2∕l → 0. Thus, condition
(2) holds a.a.s. For conditions (3) and (4), we will need a bound on the size of
V .

Lemma 3.2. Fix � > 0. Then ℙ[|V| > �
√
n] → 0 as n → ∞.

Proof. De�ne random variables

Xi = {
1 V(i, i + 1) = 0
0 V(i, i + 1) ≠ 0

So |V| =
∑

i Xi. From Lemma 3.1 we have E[Xi] ≪
√
n∕l and E[XiXj] ≪

n∕l for 1 ≤ i < j < n. Hence E[|V|] ≪
√
n3∕l and Var[|V|] ≪ n3∕l. By

Chebyshev’s inequality,

ℙ[|V| ≥ �
√
n] ≤ ℙ [|V| −

√
n3∕l ≥

√
n(� −

√
n2∕l)]

≤ 1

(� −
√
n2∕l)2(l∕n2)

→ 0

�

Observe that the distribution of V is invariant under permutation. In other
words, for a �xed set S ⊂ {1, … , n − 1} and a permutation � on {1, … , n − 1} we
have

ℙ[V = S] = ℙ[V = �S]
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and hence,

ℙ[V = S] = 1
(n−1

|S|

) ℙ[|V| = |S|]

Let A(k) be the number of sets S ⊂ {1, … , n − 1} of size k with at least one pair
of adjacent elements. We have

A(k) ≤ (n − 2)
(n − 3
k − 2

)
.

Let B(k) be the number of sets S for whichminS = n −max S. Summing over
the possible values ofminS we have

B(k) ≤
∑

1≤a≤n∕2

(n − 1 − 2a
k − 2

)
.

One easily checks
A(k) + B(k)

(n−1
k

) ≤ 2k2

n .

For k ≤ �
√
n, this is ≤ 2�2. On the other hand, ℙ[|V| > �

√
n] → 0, so we are

done.
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