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Classical results for alternating virtual links

Hans U. Boden and Homayun Karimi

Abstract. We extend some classical results of Bankwitz, Crowell, andMura-
sugi to the setting of virtual links. For instance, we show that an alternating
virtual link is split if and only if it is visibly split, and that the Alexander poly-
nomial of any almost classical alternating virtual link is alternating. The �rst
result is a consequence of an inequality relating the link determinant and
crossing number for any non-split alternating virtual link. The second is a
consequence of the matrix-tree theorem of Bott and Mayberry. We extend
the �rst result to semi-alternating virtual links. We discuss the Tait conjec-
tures for virtual andwelded links and note that Tait’s second conjecture is not
true for alternating welded links.
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1. Introduction
In this paper, we establish conditions that are satis�ed by invariants of alter-

nating virtual links, such as the link determinant and Alexander polynomial.
As an application, we deduce that a reduced alternating virtual link diagram is
split if and only if it is visibly split.

A link is said to be alternating if it admits an alternating diagram, and a dia-
gram is alternating if the crossings alternate between over and under-crossing
as one travels around any component. This applies to classical and virtual links,
with the proviso that virtual crossings are ignored.
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In [6], Bankwitz proved that det(L) ≥ c(L) for any non-split alternating link
L, where det(L) denotes the link determinant and c(L) the crossing number of
L. In [20, 37], Crowell and Murasugi independently proved that the Alexander
polynomial of an alternating link is alternating. Here, a Laurent polynomial
∆L(t) =

∑
citi is said to be alternating if its coe�cients satisfy (−1)i+jcicj ≥ 0.

We extend the results of Bankwitz, Crowell, andMurasugi to alternating vir-
tual links. Virtual knots were introduced by Kau�man in [32], and they repre-
sent a natural generalization to knots in thickened surfaces up to stabilization.
Classical knots embed faithfully into virtual knot theory [23], andmany invari-
ants from classical knot theory extend in a natural way to the virtual setting.

For example, the link determinant det(L) is de�ned in terms of the coloring
matrix and extends to checkerboard colorable virtual links (de�ned below). The
linkL admits ap-coloring if and only ifp dividesdet(L). One of ourmain results
is that det(L) ≥ c(L) for any non-split alternating virtual link L, where c(L) is
the classical crossing number of L. This result applies to show that a reduced
alternating virtual link diagram is split if and only if it is visibly split.

TheAlexander polynomial∆L(t) is de�ned in terms of theAlexandermodule
of L, and it extends to almost classical virtual links (de�ned below). Another
one of our main results is that, for any reduced alternating link L that is almost
classical, its Alexander polynomial ∆L(t) is alternating. To prove this result, we
appeal to the Matrix-Tree Theorem. It applies to show that many virtual knots
cannot be represented by alternating diagrams.

The link determinant and Alexander polynomial are both invariant under
welded equivalence. Therefore, our main results can be seen as providing re-
strictions on a virtual link diagram for it to be welded equivalent to an alternat-
ing virtual link. This is discussed at the end of the paper, where we state open
problems related to the Tait conjectures for welded links.

We provide a brief synopsis of the contents of the rest of this paper. In Sec-
tion 2, we review background material on links in thickened surfaces and vir-
tual andwelded links, together with Cheng coloring and Alexander numbering
for virtual links. In Section 3, we review the link group and determinant. In
Section 4, we recall the Matrix-Tree Theorem, which is used to prove one of the
main results. In Section 5, we prove that split alternating virtual links are vis-
ibly split. In Section 6, we prove analogous results for semi-alternating links,
and in Section 7, we present a discussion on the Tait conjectures for welded
links and state some interesting open problems.

2. Virtual links
In this sectionwe review the basic properties of virtual links, includingGauss

diagrams, links in thickened surfaces, welded links, ribbon torus links, alter-
nating virtual links, virtual linking numbers, Cheng colorings, and Alexander
numberings.

Virtual link diagrams. Virtual links are de�ned as equivalence classes of vir-
tual link diagrams. Here, a virtual link diagram is an immersion of one or more
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circles in the plane with only �nitely many regular singularities, each of which
is a double point. Each double point is either classical (indicated by over- and
under-crossings) or virtual (indicated by a circle). Two diagrams are said to be
virtually equivalent if they can be related by planar isotopies and a series of
generalized Reidemeister moves (r1)–(r3) and (v1)–(v4) depicted in Figure 1.

An orientation for a virtual link is obtained by choosing an orientation for
each component. For a diagram D, the orientation is usually indicated by plac-
ing one arrow on each component of D.

r1 r2 r3

v1 v2 v3

v4 f1

Figure 1. The generalized Reidemeistermoves (r1)–(r3), (v1)–(v4)
and the forbidden move (f1).

Gauss diagrams. Virtual links can also be de�ned as equivalence classes of
Gauss diagrams, which consist of one or more circles traversed counterclock-
wise, together with directed chords on the circles representing the classical
crossings. The chords point fromover-crossings to under-crossings and are dec-
orated with a sign (+ or −) to indicate whether the crossing is positive or nega-
tive. Each virtual link diagramdetermines aGauss diagram, and vice versa, and
this correspondence is well-de�ned up to moves (v1)–(v4). The Reidemeister
moves can be translated into moves between Gauss diagrams, and in this way
a virtual link can be regarded as an equivalence class of Gauss diagrams. By
convention, the core circles of a Gauss diagram are oriented counterclockwise.

Notice that the Gauss diagram does not keep track of the virtual crossings.
In e�ect, the virtual crossings are not really there, rather they are an inevitable
consequence of trying to represent a non-planar virtual link diagram by a dia-
gram in the plane.

A virtual link diagram is said to be split if its associated Gauss diagram is
disconnected, and a virtual link is split if it can be represented by a split diagram.
For classical links, this agrees with the usual de�nition. For virtual links, a
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diagram can be split and connected. However, any diagram that is split can be
transformed into a disconnected diagram using moves (v1)–(v4).

Links in thickened surfaces. A third approach is to de�ne virtual links as
stable equivalence classes of links in thickened surfaces, andwe take amoment
to explain this.

Let Σ be a closed, oriented surface and I = [0, 1]. Consider a link ℒ ⊂ Σ × I
in the thickened surface, up to isotopy. Let p∶ Σ×I → Σ be the projectionmap.

Stabilization is the operation of adding a 1-handle to Σ, disjoint from p(ℒ),
and destabilization is the opposite procedure. Two links ℒ ⊂ Σ × I and ℒ′ ⊂
Σ′×I are said to be stably equivalent if one is obtained from the other by a �nite
sequence of stabilizations, destablizations, and orientation-preserving di�eo-
morphisms of the pairs (Σ × I, Σ × {0}) and (Σ′ × I, Σ′ × {0}). In [17], Carter,
Kamada, and Saito show there is a one-to-one correspondence between virtual
links and stable equivalence classes of links in thickened surfaces.

Thus, every virtual link can be represented as a link in a thickened surface.
Further, any such link itself can be represented as a link diagram onΣ.A link di-
agramD on Σ is a tetravalent graph with over- and under-crossing information
drawn at each vertex in the usual way.

A link diagramD on Σ is said to be a split diagram if it is disconnected, and
a link in Σ × I is said to be split if it can be represented by a split diagram.

Welded links. Two virtual links are said to be welded equivalent if one can
be obtained from the other by a sequence of generalized Reidemeister moves
and the �rst forbidden move (f1) as depicted in Figure 1. In terms of Gauss
diagrams, the �rst forbidden move corresponds to exchanging two adjacent ar-
row feet without changing their signs or arrowheads, see Figure 2. Therefore,
a welded link can also be viewed as an equivalence class of Gauss diagrams.

ε ε′

f1

ε ε′

Figure 2. The forbidden overpass (f1) for Gauss diagrams.

Ribbon torus links. Every welded link determines a ribbon knotted surface
in S4. This is based on a beautiful construction by Satoh [44], which associates
to a welded link L a ribbon torus link Tube(L) in S4. In [44], Satoh shows that
every ribbon torus link occurs as Tube(L) for some welded link, and further
that �1(S4 ∖ Tube(L)) is isomorphic to the link group GL, de�ned below.

The correspondence between welded links and ribbon torus links is not one-
to-one, see [50]. It is an open problem to determine necessary and su�cient
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conditions for two welded knots to represent the same ribbon torus knot (cf.
[4, Question 3.6]).

Alternating virtual links. A virtual link diagramD is called alternating if the
classical crossings alternate between over-crossing and under-crossing as we go
around each component. AGauss diagram is alternating if it alternates between
arrow heads and tails when going around each of the core circles. A virtual or
welded link is called alternating if it can be represented by an alternating virtual
link diagram. For example, consider the virtual links in Figure 3. The virtual
Borromean rings is alternating, but the virtual Hopf link is not.

Virtual linking numbers. If J and K are oriented virtual knots, then the vir-
tual linking number vlk(J, K) is de�ned as the sum of the writhes of the clas-
sical crossings where J goes over K. Using the same de�nition, we can de�ne
vlk(J, K) more generally when J and K are oriented virtual links. Note that
vlk(J, K) is additive, namely if J = J′ ∪ J′′, then vlk(J, K) = vlk(J′, K) +
vlk(J′′, K), and likewise if K = K′ ∪ K′′. The virtual linking numbers are not
symmetric, i.e., it is not generally true that vlk(J, K) = vlk(K, J). For exam-
ple, consider the oriented virtual links in Figure 3. For the virtual Hopf link,
we have vlk(J, K) = 1 and vlk(K, J) = 0, and for the virtual Borromean rings,
we have

vlk(I, J) = 0, vlk(J, K) = 0, vlk(K, I) = 0,
vlk(J, I) = 1, vlk(K, J) = 1, vlk(I, K) = −1.

J K I J

K

Figure 3. The virtual Hopf link and the virtual Borromean rings.

Cheng colorings. Given a virtual link diagram D, a Cheng coloring of D is
an assignment of integer labels to each arc of D that satis�es the local rules
in Figure 4. An elementary exercise shows if D and D′ are two virtual link
diagrams that are related by virtual Reidemeistermoves, thenD admits aCheng
coloring if and only if D′ does. A virtual link L is said to be Cheng colorable if it
can be represented by a virtual link diagram with a Cheng coloring.

Not all virtual links are Cheng colorable. For example, the virtual Hopf link
in Figure 3 is not Cheng colorable. More generally, given a virtual link L =
K1 ∪⋯∪Km withm components, then an elementary argument shows that L
admits a Cheng coloring if and only if it satis�es

vlk(Ki, L ∖ Ki) = vlk(L ∖ Ki, Ki) = 0
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for each i = 1, … ,m.

a b

b+ 1 a− 1

a b

b+ 1 a− 1

a b

b a

Figure 4. Local rules for a Cheng coloring at classical and virtual
crossings.

Alexander numberings and almost classical links. Given a virtual link di-
agram D, an Alexander numbering on D is an assignment of integer labels to
each arc of D that satis�es the local rules in Figure 5. If D admits an integer la-
beling that satis�es the local rules mod p, thenD is said to be mod p Alexander
numberable.

Notice that if D is Alexander numberable, then it is Cheng colorable. Con-
versely, a virtual link diagramD is Alexander numberable if and only if it admits
a Cheng coloring such that the arc labels satisfy b = a−1 at each classical cross-
ing. Likewise, a virtual link diagram D is mod p Alexander numberable if and
only if it admits a Cheng coloring such that the arc labels satisfy b ≡ a−1 (mod
p) at each classical crossing.

a a− 1

a a− 1

a a− 1

a a− 1

a b

b a

Figure 5. Local rules for an Alexander numbering at classical and
virtual crossings.

A virtual link is said to be almost classical if it admits an Alexander num-
berable diagram, and it is said to be checkerboard colorable if it admits a mod 2
Alexander numberable diagram.

Recall from [9, Theorem 6.1] that a virtual link is almost classical if and only
if it can be represented by a null-homologous link ℒ ⊂ Σ × I, or equivalently if
ℒ admits a Seifert surface.

Recall also from [8, Proposition 1.1] that a virtual link is checkerboard col-
orable if and only if it can be represented by a ℤ∕2 null-homologous link ℒ ⊂
Σ × I, or equivalently if ℒ admits an unoriented spanning surface. This is the
case if and only if ℒ can be represented by a checkerboard colorable diagram
on Σ.

If a virtual link admits a diagramwhich is Cheng colorable, then any diagram
for the same link is also Cheng colorable. The reason is that Cheng colorings
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extend along generalized Reidemeister moves. The same thing is not true for
Alexander numberings. Indeed, one can easily �nd two virtual link diagrams
for the same link such that one of them is Alexander numberable and the other
is not. Thus, Alexander numberings of virtual links do not always extend along
generalized Reidemeister moves.

However, if two virtual knot diagrams are Alexander numberable and are
related by generalized Reidemeister moves, then one can arrange that they are
related through Alexander numberable diagrams. More precisely, suppose D
and D′ are two virtual knot diagrams and

D = D1 ∼ D2 ∼ ⋯ ∼ Dr = D′ (1)

is a chain of diagrams, where Di+1 is obtained from Di by a single generalized
Reidemeister move. If D and D′ are Alexander numberable, then there is a
chain (1) such that eachDi is Alexander numberable. A similar result holds ifD
andD′ are assumed to be mod p Alexander numberable. These statements can
be proved using parity projection, see [34, 40]. Any minimal crossing diagram
of an almost classical link is Alexander numberable, and this can also be proved
using parity projection, see [43, 13].

The corresponding statements for welded knots and links are either not true,
or not known to be true.

3. Link group, Alexander module, and determinant
In this section, we introduce the link group and the Alexander module as-

sociated to a virtual link. We also recall the de�nition of the link determinant
associated to a checkerboard colorable virtual link and show that det(L) = 0
when L is split. Finally, we discuss mod p labelings of virtual knots and show
that K admits a mod p labeling if and only if det(K) ≡ 0 (mod p).
Link Group. For classical links, the link group is just the fundamental group
of the complement of the link. For a link L, this group is denoted GL. Thus,
GL = �1(XL)whereXL is the result of removing an open tubular neighborhood
of L from S3.

As an invariant of classical knots, the knot group is an unknot detector, in-
deed the only classical knot K whose knot group is in�nite cyclic is the trivial
knot. In fact, Waldhausen’s theorem implies that the knot group together with
its peripheral structure is a complete invariant of classical knots, which is to say
that two classical knots are equivalent if and only if they have isomorphic knot
groups with equivalent peripheral structures.

The link group generalizes in a natural way to give an invariant of virtual
links by means of Wirtinger presentations. In fact, the abstract group together
with its peripheral structure are invariant under the �rst forbidden move and
thus de�ne invariants of the underlying welded link.

Given a virtual link diagram for L, wewill describe theWirtinger presentation
ofGL. LetD be a regular projection of L, and suppose it has n classical crossings.
We de�ne a long arc of the diagram D to be one that goes from one classical
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under-crossing to the next, passing through virtual crossings as it goes. Enu-
merate the long arcs of D by x1, … , xm and the classical crossings by c1, … , cn.

xj xk

x`

Figure 6. Arc labels at a crossing.

For each crossing, labeled as inFigure 6, wehave the relation ri = xlx−1j x−1k xj.
The Wirtinger presentation for GL is then:

GL = ⟨x1, … , xm ∣ r1, … , rn⟩. (2)

Alexandermodule. In order to de�ne theAlexander module, we brie�y recall
Fox di�erentiation. Let Fm be the free group on m generators, so elements of
Fm are words in x1, … , xm. For j = 1,… ,m, the Fox derivative )∕)xj is an
endomorphism of ℤ[Fm], the group ring, de�ned so that )∕)xj(1) = 0 and

)
)xj

(xi) = {
1 if i = j,
0 otherwise.

Further, given words w, z ∈ Fm, the Fox derivative satis�es the Leibnitz rule:
)
)xj

(wz) = )
)xj

(w) + w )
)xj

(z).

These relations completely determine )∕)xj on every word w ∈ Fm, and it is
extended linearly to the group ring ℤ[Fm].

We use this to describe the construction of the Alexander module associated
to a link L. Let G′L = [GL, GL] and G′′L = [G′L, G

′
L] be the �rst and second com-

mutator subgroups, then the Alexander module is the quotient G′L∕G
′′
L . It is a

�nitely generated module over ℤ[t, t−1], the ring of Laurent polynomials, and
it is determined by the Fox Jacobian matrix A as follows. Here, A is the n × m
matrix with ij entry equal to )ri

)xj

|||||||x1,…,xm=t
. In particular, the Fox Jacobian is ob-

tained by Fox di�erentiating the relations ri with respect to the generators xj
and applying the abelianizationmap xj ↦ t for j = 1,… ,m. We de�ne the k-th
elementary ideal Ek as the ideal of ℤ[t, t−1] generated by all (n − k) × (n − k)
minors of A.

The matrix A depends on the choice of a presentation for GL, but the associ-
ated sequence of elementary ideals

{0} = E0 ⊂ E1 ⊂ … ⊂ En = ℤ[t, t−1]

does not.
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For any classical link L, the �rst elementary ideal E1 is a principal ideal,
and the Alexander polynomial ∆L(t) is de�ned as the generator of E1. The
Alexander polynomial is well-de�ned up to multiplication by ±tk for k ∈ ℤ.
It is obtained by taking the determinant of the Alexander matrix, which is the
(n − 1) × (n − 1)matrix obtained by removing a row and column from A.

For a virtual link L, one canmimic the construction of the Alexandermodule
by regarding the quotientG′L∕G

′′
L as amodule overℤ[t, t−1], This can be used to

de�ne elementary ideals and the Alexander polynomial for virtual links. How-
ever, in contrast to the case of classical links, the �rst elementary ideal may
not be principal. One way to remedy the situation is to replace the elementary
ideals Ek with the smallest principal ideal containing them. For instance, this
would suggest a way to de�ne anAlexander polynomial for a virtual link L to be
a generator of the principal ideal containing E1. However, since the link group
itself is only an invariant of the associated welded link, the invariants one ob-
tains in this way will not be very re�ned. Indeed, for many virtual knots, the
Alexander polynomial is trivial.

Link determinant for checkerboard colorable virtual links. We review
the de�nition of the link determinant in terms of the coloring matrix and show
that it extends to an invariant of checkerboard colorable virtual links. We also
prove that the determinant of the coloring matrix is odd for any checkerboard
colorable virtual knot, and that a checkerboard colorable virtual knot K admits
a mod p labeling if and only if p divides det(K).

Let L be a virtual link that is represented by a checkerboard colorable dia-
gram D with n classical crossings {c1, … , cn} and m long arcs {a1, … , am}. If D
has k connected components, thenm = n + k − 1.

De�ne the n × m coloring matrix B(D) so that its ij entry is given by

bij(D) =
⎧

⎨
⎩

2, if aj is the over-crossing arc at ci,
−1, if aj is one of the under-crossing arcs at ci,
0, otherwise.

In case aj is coincidentally the over-crossing arc and one of the under-crossing
arcs at ci, then we set bij(D) = 1. In that case, if ak is the other under-crossing
arc at ci, then we set bik(D) = −1.

Note that the matrix B(D) is the one obtained by specializing the Fox Ja-
cobian matrix A(D) at t = −1.1 Here, A(D) is de�ned in terms of taking Fox
derivatives of theWirtinger presentation of the link groupGD whose generators
are given by the arcs a1, … , am and relations are given by classical crossings
c1, … , cn and applying the abelianization homomorphism GL → ⟨t⟩ , ai ↦ t.
For details, see [9, Section 5].

Notice that the entries in each row of B(D) sum to zero, therefore, it has rank
at most n − 1. The proof of the next result is similar to that of [12, Proposition
2.6].

1This is only true up to sign for any given row.
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Proposition 3.1. Any two (n − 1) × (n − 1) minors of B(D) are equal up to
sign. The absolute value of the minor is independent of the choice of checkerboard
colorable diagram D. It de�nes an invariant of checkerboard colorable links L
called the determinant of L and denoted det(L).

Proof. As previously noted, the columns of B(D) always sum to zero, and we
will use checkerboard colorability to derive a linear relation among the rows.
Recall that the diagram D is checkerboard colorable if and only if it admits a
mod 2 Alexander numbering. For each crossing ci of D, let 
i = (−1)�i , where
�i ∈ {0, 1} is the Alexander number on the incoming under-crossing at ci. Then
we claim that one obtains a linear relation on the rows by multiplying the i-th
row of B(D) by 
i.

To see why this is true, notice that the columns of B(D) correspond to arcs of
the diagram, and in any given column, there are nonzero entries for each cross-
ing the arc is involved in. The arc starts and ends with under-crossings, and the
associated column entries are both−1. Every time the arc crosses over another
arc, there is an associated column entry equal to 2. Since the diagram is mod 2
Alexander numberable, the numbers on the transverse arcs alternate between
0 and 1 as one travels along the arc. Consequently, the coe�cients 
i alternate
in sign as one travels along the arc. Therefore, after multiplying the i-th row by

i, this shows that the entries in each column sum to zero. Furthermore, since
each coe�cient 
i is a unit, every row of B(D) is a linear combination of the
other rows. This shows that the (n − 1) × (n − 1)minors of B(D) are all equal
up to sign. �

Proposition 3.2. Suppose L is a checkerboard colorable virtual link. If L is split,
then det(L) = 0.

Proof. Suppose D = D1 ∪ D2 is a split checkerboard colorable diagram for L.
In each row of the coloringmatrix, the nonzero elements are either 2, −1, −1 or
1, −1. It follows the rows add up to zero. We consider a simple closed curve in
the plane which separates D into two parts. It follows that the coloring matrix
B = B(D) admits a 2 × 2 block decomposition of the form

B = [B1 0
0 B2

] ,

where B1 and B2 are the coloring matrices for D1 and D2, respectively. Since
det(B1) = 0 = det(B2), it follows that the matrix obtained by removing a row
and column from B also has determinant zero. �

Next, we de�ne a mod p labeling for a virtual knot diagram.

De�nition 3.3. Let p be a prime number. A link diagram can be labeled mod
p if each long arc can be labeled with an integer from 0 to p − 1 such that

(i) at each crossing the relation 2x − y − z = 0 (mod p) holds, where x is
the label on the over-crossing and y and z the other two labels, and

(ii) at least two labels are distinct.
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If a diagram has a mod p labeling, then multiplying each label by a number
m gives a mod pm labeling, so we assume p is always a prime number.

Remark 3.4. If p = 2, then the equation 2x − y − z = 0 (mod p) indicates at
each crossing the two under-crossings have the same label, hence all the labels
are equal. Therefore, a mod 2 label for a knot diagram does not exist.

Given a knot diagram, label each long arc with a variable xi. At each crossing
we de�ne a relation 2xi−xj−xk = 0 (mod p), if the arc xi crosses over the arcs
xj and xk. Therefore, a knot can be labeled mod p, if this system has a solution
mod p such that not all xi’s are equal to each other.

Fix a variable xj. Since xi = 1 for all i, is a solution and adding two solutions
together forms a new solution, if there was a solution such that not all xi’s are
equal, then there is a solution with xj = 0. Conversely, a nontrivial solution
with xj = 0 results in a labeling of the knot. So we can delete the j-th column
and look for the nontrivial solutions of the resulting system.

Since we assume the knot diagram is checkerboard colorable, and we know
for such a diagram, a linear combination of rows of B(D) is zero, so we can
delete the j-th row as well. The result is a square matrix, and a nontrivial solu-
tion means the determinant should be zero mod p. The absolute value of this
determinant is det(K). So, we have the following.
Proposition 3.5. Wecanmodp label the knotK if and only ifdet(K) ≡ 0 (mod p).
Corollary 3.6. For a checkerboard colorable knot K, det(K) is an odd integer.

Proof. Combining Proposition 3.5 and Remark 3.4, the result follows. �

It would be interesting to compare the link determinant de�ned here with
the link determinants de�ned for checkerboard colorable virtual links in terms
of Goeritz matrices [25].

4. The Matrix-Tree theorem and an application
In this section, we recall thematrix-tree theorem from [15] (cf. [16, Theorem

13.22]). Using it, we adapt Crowell’s proof [20] to show that the Alexander
polynomial of any almost classical alternating link is alternating.

Here, we say a Laurent polynomial is alternating if its coe�cients alternate
in sign. Speci�cally, a polynomial f(t) =

∑
citi ∈ ℤ[t, t−1] is alternating if its

coe�cients satisfy (−1)i+jcicj ≥ 0.
The spectacular results concerning the Jones polynomial of classical alter-

nating links are generally not true in the virtual case. For instance, the span
of the Jones polynomial is not equal to the crossing number. For example, the
knot K = 6.90101 is alternating and has Jones polynomial VK(t) = 1.

In [47], Thistlethwaite proved that the Jones polynomial VL(t) of any non-
split, alternating classical link L is alternating. This result does not extend to
virtual links. For example, the virtual knot K = 5.2426 in Figure 7 is alternat-
ing and has Jones polynomial VK(t) = 1∕t2 + 1∕t3 − 1∕t5. Since VK(t) is not
alternating, Thistlethwaite’s result is not true for virtual links.
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Figure 7. A virtual knot diagram for 5.2426.

LetL be a virtual link. Wede�ne the link groupGL as in Section 2. WeuseFox
derivatives to de�ne the Jacobian matrix A. For virtual knots, the �rst elemen-
tary ideal E1 is not necessarily principal. We de�ne the Alexander polynomial
∆K(t) to be the generator of the smallest principal ideal containing E1. Since
ℤ[t, t−1] is a gcd domain, it is given by taking the gcd of all the (n − 1) × (n − 1)
minors of A . If we remove the i-th row and j-th column of A we denote the
corresponding minor by Aij.

In [39] and [12], the authors showed for almost classical links,E1 is principal,
and the Alexander polynomial ∆L(t) is given by taking the determinant of the
(n−1)× (n−1)matrix obtained by removing any row and any column fromA.

Proposition 4.1. For an almost classical link L, the determinant det(L) is equal
to |∆L(−1)|.

Proof. If D is a diagram for L, the coloring matrix B(D) is exactly the matrix
obtained from the Fox Jacobian matrix by replacing t with −1. 2 �

Remark 4.2. Since any almost classical knotK is checkerboard colorable, Corol-
lary 3.6 shows that ∆K(−1) is an odd number (see [9]).

Next, we state the Matrix-Tree theorem, as proved by Bott and Mayberry in
[15]. Tutte had given an earlier proof in [48]. The result goes back to even
earlier work of Kirchho�, to whom this theorem is usually attributed.3

Let Γ be a �nite oriented graph with vertices {ci ∣ 1 ≤ i ≤ n} and oriented
edges {u�ij}, such that ci is the initial point and cj the terminal point ofu�ij. Notice
that � enumerates the di�erent edges from ci to cj. By a rooted tree (with root
ci) wemean a subgraph of n−1 edges such that every point ck is terminal point
of a path with initial point ci. Let aij denote the number of edges with initial
point ci and terminal point cj.

2These matrices are equal up to multiplication by ±1 in the rows.
3See [21] for references to the early papers on the Matrix-Tree theorem.
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Theorem 4.3 (Matrix-Tree Theorem). Let Γ be a �nite oriented graph without
loops (aii = 0). The principal minorHii of the graph matrix

H(Γ) =
⎡
⎢
⎢
⎢
⎣

(
∑

k≠1 ak1) −a12 −a13 ⋯ −a1n
−a21 (

∑
k≠2 ak2) −a23 ⋯ −a2n

⋮ ⋮ ⋮ ⋮
−an1 −an2 −an3 ⋯ (

∑
k≠n akn)

⎤
⎥
⎥
⎥
⎦

,

is equal to the number of rooted trees with root ci .

Corollary 4.4. Suppose Γ is a �nite oriented loopless graph with a valuation
f∶ {u�ij} → {−1, 1} on edges. Then the principalminorHii of thematrixH = [bij],
where

bij = {
∑

� f(u
�
ij), i ≠ j,

−
∑

k≠i bki, i = j,
satis�es the following equation:

Hii =
∑

f(Tr(i)),

where the sum is to be taken over all ci-rooted trees Tr(i), and where

f(Tr(i)) =
∏

u�kj∈Tr(i)
f(u�kj).

For a virtual link diagram, there are (at least) two ways one can associate a 4-
valent graph. One way is to consider the diagramD itself. It has vertices for the
classical and virtual crossings and edges running from one classical or virtual
crossing to the next. This graph is planar. The other way to associate a graph
is to consider vertices only for classical crossings. The key di�erence is that in
general, this graph is not planar. For an alternating diagramD, we describe this
graph and an orientation on it as follows:

Let D have classical crossings c1, … , cn. The vertices of Γ are c1, … , cn. At
each vertex consider two out-going edges corresponding to the over-crossing
arc, and two in-coming edges for the under-crossing arcs (see Figure 8). This is
called the source-sink orientation or the alternate orientation. This orientation is
possible becauseD is alternating, and an out-going edge at the vertex ci, should
be an in-coming edge for the adjacent vertex.

Remark 4.5. In general, any checkerboard colorable diagramD admits a source-
sink orientation. In fact, a diagram is checkerboard colorable if and only if it
admits a source-sink orientation (see [29, Proposition 6]).

Theorem4.6. IfL is a non-split, almost classical alternating link, then itsAlexan-
der polynomial ∆L(t) is alternating.

Proof. For the unknot the result is obvious. Assume D has n ≥ 1 classi-
cal crossings. Orient D and enumerate the crossings by c1, … , cn. Label the
long arcs by g1, … , gn. At the crossing ci, label the over-crossing arc g�(i) and
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Figure 8. The source-sink orientation.

the under-crossing arcs g�(i) and g�(i) as in Figure 9. De�ne the relation ri =
g�(i)g−1�(i)g

−1
�(i)g�(i).

gν(i)

gρ(i)

gλ(i)

Figure 9. Arc labels at the crossing ci .

Now consider the graph Γ associated with D, with the source-sink orienta-
tion on it. Label the edges by u�ij. De�ne the valuation f as follows. At the
crossing cj, if u�ij corresponds to g�(j), then f(u

�
ij) = 1, and if it corresponds to

g�(j), then f(u�ij) = −t.
De�ne the matrix H as in Corollary 4.4. Notice that D is alternating and

there is a one-to-one correspondence between the classical crossings of D and
the set of over-crossing arcs. Therefore, we can choose to label over-crossing
arcs, such that �(i) = i. The matrix H is the transpose of the Jacobian matrix
A. The Alexander polynomial ∆L(t) = Aii = Hii. By Corollary 4.4,

Hii =
∑ ∏

u�kj∈Tr(i)
f(u�kj).

Since f(u�kj) = 1, or −t, the product
∏

u�kj∈Tr(i)
f(u�kj) is of the form (−1)ltl and

Hii is an alternating polynomial. Therefore, ∆L(t) is alternating. �

Example 4.7. Up to 6 classical crossings, the almost classical knots in Table 1 do
not have alternating Alexander polynomials. Therefore, by Theorem 4.6 they
do not admit alternating virtual knot diagrams. ◊

Remark 4.8. Any integral polynomial ∆(t) of degree 2n satisfying ∆(1) = 1
and ∆(t) = t2n∆(t−1) is the Alexander polynomial for some classical knot, see
[45]. In [22], Fox asked for a characterization of Alexander polynomials of al-
ternating knots. If K is an alternating knot, then ∆K(t) =

∑2n
j=0(−1)

jajtj. Fox
conjectured that the Alexander polynomial of any alternating knot satis�es the
trapezoidal inequalities:

a0 < a1 < ⋯ < an−k = ⋯ = an+k > ⋯ > a2n.
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K ∆K(t)
5.2331 t2 − 1 + t−1
6.85091 1 + t−1 − t−2
6.85774 t − 1 + t−2
6.87548 −t2 + 2t + 1 − t−1
6.87875 t + 1 − 2t−1 + t−2
6.89156 2t − 1 − t−1 + t−2
6.89812 t2 − 2 + 2t−1
6.90099 t − t−1 + t−3

Table 1. Almost classical knots with non-alternating Alexander
polynomials.

Fox veri�ed this conjecture for alternating knots up to 11 crossings, and it has
been veri�ed in many other cases [26, 24, 2, 18]. Despite this progress, Fox’s
trapezoidal conjecture remains an intriguing open problem.

Any integral polynomial ∆(t) satisfying ∆(1) = 1 is the Alexander polyno-
mial for some almost classical knotK, see [7]. Is there a way to characterize the
Alexander polynomials of alternating almost classical knots? Do they satisfy
Fox’s trapezoidal inequalities? This has been veri�ed for almost classical knots
up to six classical crossings.

5. Split alternating virtual links are visibly split
Aclassical result of Bankwitz [6] implies thatdet(L) is nontrivial for non-split

alternating links. We extend this result to virtual alternating links and apply it
to show that an alternating virtual link L is split if and only if it is visibly split.

The weak form of the �rst Tait Conjecture, namely that every knot having
a reduced alternating diagram with at least one crossing is nontrivial, was �rst
proved by Bankwitz [6] in 1930; and since then, Menasco and Thistlethwaite
[35] and Andersson [3] published simpler proofs. Here we outline the proof by
Balister et al. [5] and generalize it to alternating virtual links. This result was
�rst proved for alternating virtual knots by Cheng [19, Proposition 3.3].

Consider the graph Γ with vertices {c1, … , cn} as before.

De�nition 5.1. The outdegree of the vertex ci, denoted d+(ci), is the number
of edges of Γ with initial point ci. The indegree of the vertex ci, denoted d−(ci),
is the number of edges of Γ with terminal point ci. Therefore,

d+(ci) =
n∑

j=1
aij , d−(ci) =

n∑

j=1
aji.

De�nition 5.2. A walk in a graph is an alternating sequence of vertices and
edges, starting with a vertex ci and ending with a vertex cj. A walk is called a
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trail if all the edges in that walk are distinct. A circuit is a trail which starts and
ends at a vertex ci. An Eulerian circuit is a circuit which contains all the edges
of Γ. A graph Γ is called Eulerian if it has an Eulerian circuit.

An Eulerian graph is necessarily connected and has d+(ci) = d−(ci) for ev-
ery vertex. Let ti(Γ) be the number of rooted trees with root ci, then the BEST
Theorem is as follows (see [49] and [14, Theorem 13]).

Theorem 5.3. Let s(Γ) be the number of Eulerian circuits of Γ, then

s(Γ) = ti(Γ)
n∏

j=1
(d+(cj) − 1)!

In particular, if Γ is a two-in two-out oriented graph, i.e., d+(ci) = d−(ci) = 2
for every i, then by Theorems 4.3 and 5.3,

s(Γ) = ti(Γ) = Hii, for every i.
A vertex c of a graph Γ is an articulation vertex if Γ is the union of two non-

trivial graphs with only the vertex c in common. In [5] Balister et al. proved the
following result:

c oriented smoothing c

Figure 10. The oriented smoothing at c.

Theorem 5.4. Let Γ be a connected two-in two-out oriented graph with n ≥ 2
vertices and with no articulation vertex. Then s(Γ) ≥ n.

Given an oriented virtual link diagram D, recall that the oriented smoothing
at a crossing c is the diagramwith the crossing c removed, see Figure 10. Recall
also that a self-crossing of D is a crossing where one of the components of the
link crosses over itself.

De�nition 5.5. Let D be an oriented non-split virtual link diagram. Then a
self-crossing c is said to be nugatory if the oriented smoothing ofD at c is a split
link diagram.

The diagramD is said to be reduced if it does not contain any nugatory cross-
ings.

There is an equivalent de�nition of nugatory crossing for links in surfaces.
Let c be a crossing of a connected link diagram D on a surface Σ. Then c is
said to be nugatory if there is a simple closed curve on Σ that separates Σ and
intersectsD exactly once at c.
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For classical links, nugatory crossings are always removable. For virtual
links, this is no longer true. Indeed, there are examples of virtual knots that
contain essential nugatory crossings, see [11, Example 20]. For welded links,
nugatory crossings are once again always removable, see Remark 6.5 below.

Recall that associated with an alternating virtual link diagram D, there is an
oriented two-in two-out graph Γ. If D has no nugatory crossings, then Γ has no
articulation vertex.

Corollary 5.6. Let K be an almost classical knot and D a reduced alternating
diagram for K. If D has n classical crossings, then

|∆K(−1)| ≥ n.

Proof. By the proof of Theorem4.6, |∆K(−1)| counts ti(Γ) the number of rooted
trees with root ci in the oriented graph Γ, associated with the knot diagram D.
By Theorem 5.3, ti(Γ) = s(Γ), and the result follows from Theorem 5.4. �

Theorem 5.7. Let L be a non-split virtual link and D a reduced alternating dia-
gram for L. If D has n classical crossings, then the determinant of L satis�es

det(L) ≥ n.

Proof. Since D is alternating, we can repeat the proof of Theorem 4.6. By
Corollary 4.4, the determinant of L counts the number of spanning trees which
is equal to s(Γ). The result follows from Theorem 5.4. �

Corollary 5.8. Suppose L is a virtual link which admits an alternating diagram
D without nugatory crossings. Then L is a split link if and only if D is a split
diagram.

Proof. Clearly, if D is a split diagram, then L is split. Suppose then that D is a
non-split alternating diagram with n = n(D) > 0 classical crossings. (If n = 0,
then D has one component and is an unknot diagram.) Theorem 5.7 implies
that det(L) ≥ n. Hence det(L) ≠ 0, and Proposition 3.2 shows that L is not
split. �

6. Semi-alternating virtual links
In this section, we will extend the results from the previous section to semi-

alternating virtual links, de�ned below. We also give a formula for the link
determinant of a connected sum, and we use it to show that a semi-alternating
virtual link is split if and only if it is visibly split.

We begin by reviewing the connected sum of virtual links. Suppose D1 and
D2 are virtual link diagrams andp1, p2 are points onD1, D2 respectively, distinct
from the crossings. The connected sum is denoted D1#D2 and is formed by
removing small arcs fromD1 andD2 near the basepoints and joining themwith
trivial unknotted arcs. The basepoints are not assumed to lie in exterior regions
of the diagrams, but every crossing of one of the connecting arcswithD1 orD2 is
assumed to be a virtual crossing. IfD1 andD2 are oriented, then the connecting
arcs are required to preserve orientations. The connected sum depends on the



CLASSICAL RESULTS FOR ALTERNATING VIRTUAL LINKS 1389

choice of diagrams and basepoints. It does not lead to a well-de�ned operation
on virtual links.

De�nition 6.1. A virtual link diagram D is said to be semi-alternating if it can
be written D = D1#⋯#Dn, a connected sum of alternating virtual link dia-
grams D1, … , Dn.

The set of semi-alternating virtual links includes, as a proper subset, those
that can be represented as weakly alternating links in thickened surfaces, see
[11, §5].

Every semi-alternating virtual link diagram is checkerboard colorable. This
follows from the fact that every alternating virtual link diagram is checkerboard
colorable (see [27, Lemma 7]), and the observation that the connected sum of
two or more checkerboard colorable diagrams is checkerboard colorable.

De�nition 6.2. A virtual link is said to be w-split if it is welded equivalent to
a split virtual link.

Clearly, any virtual link that is split is necessarilyw-split, but there are virtual
links that are w-split but not split. For example, consider the virtual link L
whose Gauss diagram appears on the left of Figure 11. Using forbidden moves,
it is seen to be welded equivalent to the split classical link 820∪○ shown on the
right. Thus L is w-split.

Let L′ = 820 ∪ ○ be the split classical link shown on the right of Figure 11.
Using [33, De�nition 3.1 & Theorem 3.5], one can see that its Jones polynomial
satis�es

(t−1∕2 − t1∕2)V(L′) = (t − t−1)V(820)
= t−6 − t−5 − t−3 + 2t − t2.

In particular, (t−1∕2 − t1∕2)V(L′) lies in ℤ[t, t−1]. (This is true for any classical
link with two components.) On the other hand, direct computation shows that
the Jones polynomial of L satis�es

(t−1∕2 − t1∕2)V(L) = − t−1∕2 + 3t−3∕2 + 2t−2 − 3t−5∕2 − 3t−3 + 2t−7∕2+
3t−4 − t−9∕2 − 3t−5 − t−11∕2 + t−6 + t−13∕2.

Since (t−1∕2−t1∕2)V(L) does not lie inℤ[t, t−1], L cannot be virtually equivalent
to a classical link. On the other hand, if L were split, then it would be virtually
equivalent to L′. Since that is not the case, we see that L is non-split.

Proposition 6.3. If L is w-split, then det(L) = 0.

Proof. This follows directly from Proposition 3.2 and the fact that det(L) is an
invariant of welded links. �

There is a nice geometric interpretation of det(L) in terms of two-fold branch-
ed covers. Let T = Tube(L) be the ribbon torus link associated to L, and letX be
the two-fold cover of S4 branched along T. Using the isomorphism �1(S4 ∖T) ≅
GL, one can identify �1(X) with the quotient of GL under the relation x2i = 1
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Figure 11. The Gauss diagram for a non-split virtual link L (left).
Notice that L isw-split; in fact it is welded equivalent to the link 820∪
○ (right).

for each generator in equation (2). The coloring matrix is then a presentation
matrix for H1(X). Therefore, det(L) = |H1(X)| if it is �nite, and det(L) = 0 if
H1(X) is in�nite. Here homology groups are taken with ℤ coe�cients. Note
that, if L is split, then H1(X) is in�nite. This gives an alternative explanation
for Propositions 3.2 and 6.3.

Theorem 6.4. If D = D1#D2 is a connected sum of two checkerboard colorable
virtual link diagrams, then det(D) = det(D1) det(D2).

Proof. If D1 or D2 is split, then D is split and det(D) = 0 = det(D1) det(D2).
Therefore, we can assume that D1 and D2 are non-split.

There is a proof which is direct and elementary but long. We present an
alternative proof that is shorter and makes use of the interpretation of det(D)
as the order of the �rst homology of the two-fold cover of S4 branched along
Tube(D). In the following, all homology groups are taken with ℤ coe�cients.

LetD1 andD2 be checkerboard colorable virtual link diagrams, and letX1, X2,
and X be the two-fold covers of S4 branched along Tube(D1), Tube(D2) and
Tube(D), respectively. We can then write X1 = A1 ∪ B1, X2 = A2 ∪ B2, and
X = A1 ∪ A2. Here Ai is the double cover of D4 branched along the knotted
annulus which is part of Tube(Di) for i = 1, 2, and Bi is the double cover of D4

branched along trivial annulus. In particular, Ai = Xi ∖ Int(Bi) for i = 1, 2. By
[1, Corollary 4.3], Bi is di�eomorphic to S2 × D2, andH1(Bi) = 0 for i = 1, 2.

LetM = A1∩B1 = A2∩B2 = A1∩A2. ThenM is the 3-manifold obtained as
the double cover of S3 branched along the two component unlink. ThusM can
be identi�ed with the boundary of B1 (or B2) and is di�eomorphic to S2 × S1.
ThusH1(M) ≅ ℤ.

Now consider the decompositions X1 = A1 ∪ B1, X2 = A2 ∪ B2, and X =
A1 ∪ A2, along with their Mayer-Vietoris sequences in reduced homology:

H1(A1 ∩ B1)
'1 // H1(A1) ⊕ H1(B1)

 1 // H1(X1) // 0.

H1(A2 ∩ B2)
'2 // H1(A2) ⊕ H1(B2)

 2 // H1(X2) // 0.

H1(A1 ∩ A2)
' // H1(A1) ⊕ H1(A2)

 // H1(X) // 0.

(3)



CLASSICAL RESULTS FOR ALTERNATING VIRTUAL LINKS 1391

Note thatH1(A1 ∩ B1) ≅ ℤ ≅ H1(A2 ∩ B2) = H1(A1 ∩ A2).
We claim that the maps '1, '2 and ' are all zero. We prove this for '; the

argument for the other cases is similar. It su�ces for us to show that the maps
H1(A1 ∩ A2) → H1(Ai) induced by inclusion are zero for i = 1, 2.

Take two points in S3, one on each component of the unlink, and join them
by an arc in S3 that is otherwise disjoint from the link. The arc lifts to a loop in
the double branched cover, and the loop is a generator ofH1(A1∩A2). However,
when pushed into A1, the loop does not link the annulus in D4, so it is trivial
inH1(A1). A similar argument shows it is also trivial inH1(A2). Therefore, the
mapsH1(A1 ∩ A2) → H1(Aj) are zero for j = 1, 2, and it follows that ' = 0.

From the claim, it follows that  1,  2, and  are isomorphisms. Using (3)
and the fact thatH1(B1) = 0 = H1(B2), we deduce that

H1(X1) ≅ H1(A1), H1(X2) ≅ H1(A2), andH1(X) ≅ H1(A1) ⊕ H1(A2).
Therefore,

det(D) = |H1(X)|,
= |H1(A1)| ⋅ |H1(A2)|,
= |H1(X1)| ⋅ |H1(X2)|,
= det(D1) det(D2),

and this completes the proof. �

Remark 6.5. We claim that, for welded links, nugatory crossings are always re-
movable. Let D be a diagram with a nugatory crossing c as in Figure 12 (left).
Using forbiddenmoves, we can transformD by pulling the over-crossing arc o�
c, as in Figure 12 (middle). Thus, D is welded equivalent to the diagram with c
removed. Alternatively, one can remove c by making it virtual, as in Figure 12
(right). At the level of Gauss diagrams, this is equivalent to deleting the chord
associated to c.

D1 D2 D1 D2 D1 D2

Figure 12. For welded links, nugatory crossing are removable.

Proposition 6.6. Let D be a virtual link diagram. If D is non-split and alternat-
ing, then det(D) ≠ 0.

Proof. In general, ifD is a non-reduced virtual link diagram, then successively
removing all the nugatory crossings will produce a reduced diagram D′ welded
equivalent to D. If D is non-split, then D′ will be too. If D is alternating, then
D′ will be semi-alternating.

Assume to the contrary that det(D) = 0. Then det(D′) = 0 since det(⋅) is
an invariant of welded type. Since D is non-split and alternating, it follows
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that D′ is reduced, non-split, and semi-alternating. Therefore, we can write
D′ = D′

1#⋯#D′
n, where D′

1, … , D
′
n are all reduced alternating diagrams. By

Theorem 6.4,
0 = det(D′) = det(D′

1)⋯det(D′
n),

thus det(D′
i ) = 0 for some 1 ≤ i ≤ n. Since D′

i is reduced and alternating,
det(D′

i ) = 0 implies thatD′
i is split. It follows thatD

′ is split, which implies that
D is split, giving the desired contradiction. �

Corollary 6.7. Suppose L is a virtual link which admits a semi-alternating dia-
gram D, possibly with nugatory crossings. Then L is w-split if and only if D is a
split diagram.

Proof. Clearly if D is split, then L is split and also w-split.
On the other hand, suppose D is non-split. Since D is semi-alternating, we

can write D = D1#⋯#Dn, where D1, … , Dn are all non-split, alternating dia-
grams. Proposition 6.6 implies that det(Di) ≠ 0 for i = 1, … , n. Theorem 6.4
implies that det(D) =

∏n
i=1 det(Di) ≠ 0. Therefore, det(L) ≠ 0, and by Propo-

sition 6.3, it follows that L is not w-split. �

7. The Tait conjectures for welded links
In his early work on knot tabulation, Tait formulated three far-reaching con-

jectures on reduced alternating classical link diagrams [46]. (A link diagram is
reduced if it does not contain a nugatory crossing.) They assert that, for a non-
split link, any two reduced alternating diagrams have the same crossing num-
ber, the same writhe, and are related by a sequence of �ype moves. The �rst
two statements were famously solved by Kau�man, Murasugi, and Thistleth-
waite using the recently discovered Jones polynomial [31, 38, 47], and the third
statement was subsequently proved by Menasco and Thistlethwaite [36]. The
three Tait conjectures lead to a simple and e�ective algorithm for tabulating
alternating knots and links that has been implemented [41, 42].

It is an interesting question whether similar results hold for virtual and/or
welded links. For example, analogues of the �rst and second Tait conjectures
have been established for virtual links using the Jones-Krushkal polynomial
and skein bracket, see [10, 11].

Problem 7.1. Is the Tait �ype conjecture true for alternating virtual links?

T
T

Figure 13. The �ype move.

The�ypemove is depicted in Figure 13. By assumption, the tangleT does not
contain any virtual crossings. Allowing the tangle to contain virtual crossings
results in a more general move called a virtual �ype move. The virtual �ype
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move does not, in general, preserve the virtual link type, for example, see [28,
51].

It is unknownwhether the Tait conjectures hold for welded links. More gen-
erally, what conditions must the invariants of a welded link satisfy in order for
it to be alternating?

Since det(L) is an invariant of welded links, any checkerboard colorable vir-
tual L with det(L) ≠ 1 is nontrivial as a welded link. In particular, Theorem 5.7
applies to show that any non-split virtual link represented by a reduced, alter-
nating diagram has det(L) ≠ 1 and therefore, is nontrivial as a welded link.

The Alexander polynomial ∆K(t) is also an invariant of the welded type.
Therefore, if K is almost classical and ∆K(t) is not alternating, then K is not
welded equivalent to an alternating virtual knot.

Figure 14. Alternating welded knots with 3 and 4 classical cross-
ings.

Figure 14 shows the �ve alternating welded knots with up to four classical
crossings. All the others can be ruled out using the consideration that det(K) ≥
n, the crossing number.

Problem 7.2. Is the �rst Tait conjecture true for alternating welded links?

One can �nd examples of virtual knots which are non-alternating but which
become alternating after adding one crossing. For example, consider Examples
19 and 20, [11]. The �rst is non-alternating and has six crossings; the second
is alternating and is obtained by adding a nugatory crossing. The two virtual
knots are welded equivalent (see Figure 12). We conjecture that there exist
welded knots which are alternating, but every minimal crossing diagram for
them is non-alternating.

Problem 7.3. Is it possible for an alternating welded knot to represent a non-
alternating classical knot?

Interestingly, there are pairs of reduced alternating virtual knot diagrams
which are equivalent aswelded knots but distinct as virtual knots. In particular,
this implies that Tait’s second conjecture is not true for welded knots.

For example, consider the virtual knots 4.106 and 4.107 in Figure 15. Both
are reduced alternating diagrams, but the diagram for 4.106 has writhew = −2
whereas the diagram for 4.107 has writhew = 0. Tait’s second conjecture holds
for reduced alternating virtual knot diagrams [10], and thus comparing the
writhes tells us these two are distinct as virtual knots. However, these diagrams
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Figure 15. Reduced alternating diagrams for the virtual knots
4.106 and 4.107.
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Figure 16. A sequence of moves on the Gauss diagrams, starting
from a diagram of 4.106 ending in a diagram for 4.107.

are equivalent as welded knots (see Figures 16 and 17). Since both diagrams are
reduced and alternating, this shows that the writhe of a reduced alternating di-
agram is not invariant under welded equivalence.

This implies that the second Tait conjecture is not true in the welded cate-
gory. Since the Tait �ype move preserves the writhe, this also shows that the
Tait’s third conjecture, if true, must take a di�erent form in the virtual and
welded settings.

r1 f1 r3 f1 f1
v2

r3 f1 r1

Figure 17. A sequence of moves on the virtual diagrams, starting
from a diagram of 4.106 ending in a diagram for 4.107. The fourth and
�fth diagrams are related by an f1move, and this is seen by compar-
ing Gauss diagrams.
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