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Slice filtration of certain C,,-spectra

Surojit Ghosh

ABSTRACT. For p, g distinct odd primes and a virtual C,,-representation a,
we compute the slices of the C,,-spectrum S* A HZ, and prove the existence
of spherical slice for this spectrum.
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1. Introduction

For a fixed finite group G, a central computational tool in G-equivariant sta-
ble homotopy theory is the RO(G)-graded homotopy groups of a G-spectrum,
but there are difficult to compute.

It was first observed by Voevodsky ([17]) that the stable motivic homotopy
theory can be understood by their slice filtration. This slice filtration yields a
spectral sequence, a tool computing various cohomology theories in algebraic
geometry context. In equivariant homotopy theory, for any G-spectrum X, we
have an analogous equivariant slice tower

< PMFIX 5 PPX — PPIX (1)

In this tower, P"X is the localization with respect to the localizing category of
G-spectra generated by 237G, Ay Sken where py; is the regular representation
of H < G and k|H| > n. The homotopy fiber PIX of P"X — P" !X is called
the n-slice of X. An n-slice is called spherical if it is of the form S VAH Z,where
V is a (non-virtual) representation of G of dimension #.
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The homotopy spectral sequence of (1) is an essential tool in modern homo-
topy theory due to Hill-Hopkins-Ravenel in [10]. This is called the slice spec-
tral sequence and it eventually computes the RO(G)-graded homotopy groups
of spectra.

The homotopy groups of the C,.-spectrum N. g"M Ur played a crucial role in
solving the Kervaire invariant one problem. In [10, Theorem 6.5], Hill, Hop-
kins, and Ravenel proved that the 0-th slice of this spectrum is the Eilenberg-
Mac Lane spectrum HZ. This yields that in the slice spectral sequence of any
N gnM Ugr-module, all the differentials and extensions live in HZ-modules. This
motivates us to compute the slice filtration of the certain HZ-modules. The
computation of the slice tower for S” A HZ was made in [20] and for S AHZ
in [11] for the group C,.. Recently, in [8], Guilliou and Yarnall computed the
C, X C,-slice tower for the spectrum S" A HIF,.

In this article, for a Cpq—representation V, we investigate the spectrum SV A
HZ and provide a description of the slices of it as follows:

Theorem A. Forany d-dimensional Cp,-representation V, the d-slice of the Cpq-
spectrum SY A HZ is spherical.

See Theorem 5.7.
As a direct consequence, we derive:

Corollary B. For a € RO(C),) there exists § € RO(C)p,) such that S* N HZ

has a dim(a)-slice S° A HZ. The other slices are suspensions of HK ,(Z/p) or
HX(Z/q) or wedges of them.

See Corollary 5.8.

Organization. Section 2 provides a short tour of equivariant homotopy theory.
A few useful Mackey functors both in the context of C, and C,, have been
described, and as a consequence, we prove certain equivalences of spectra in
Section 3. Section 4 is dedicated to explaining the slice filtration of the C)-
spectrum S¥ A HZ. Finally, in Section 5, we provide a careful analysis of the
Cpq-spectrum SV A HZ with a result concerning the existence of a spherical
slice.

Notation 1.1. Foran orthogonal G-representationV, S(V') denotes the unit sphere,
D(V) the unit disk, and SV the one-point compactification =~ D(V)/S(V).

Acknowledgement. The author wants to thank Samik Basu for suggesting
the problem and David Blanc for a careful reading of the first draft of this work,
which was partially supported by Israel Science Foundation grant 770/16.

2. Preliminaries

In this section, we recall specific fundamental ideas and techniques in Bre-
don cohomology. Throughout the paper, G will be a finite group.
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Definition 2.1. The Burnside category of G is the category Burng of finite G-
sets, with Hom(S, T') the group completion of the set of correspondences S «
U-T.

A functor M : Burn?’ — Ab from the Burnside category into abelian groups
is called Mackey functor.

Explicitly, a G-Mackey functor M is a collection of commutative W ;(H)-groups
M(G/H) one for each subgroup H < G, each accompanied by transfer trg :
M(G/K) - M(G/H) and restriction resl : M(G/H) — M(G/K) forK < H <
G such that

(1) trff = tr} tr¥ and res’ = resf res}! forallJ <K <H.
@) tri(y.x) = trfl(x) for all x € M(G/K) and y € W (K).
(3) y.resf(x) = resf!(x) for all x € M(G/H) and y € Wy (K).

(@) res tri(x) = 2 ew,x) V- Wk (x) for all subgroups J, H < K.

Usually, we describe a Mackey functor by a Lewis diagram (see [13]). For a
Cp-Mackey functor N, we shall use the diagram:

c c
resciq M(Cpq/cpq) rescgq

trcp trcq \
¥
M M(Cpq/cp) M( Pq/Cq)
AN X Cq 4
tr, tr,

We denote the category of G-Mackey functors by Mackg.

Example 2.2. For an abelian group C, the constant Mackey functor C is given
by the assignment C(G/H) = C with resg = Id. and trg = multiplication
by the index [H : K]. One can define the dual constant Mackey functor C* by
interchanging the role of trg and resg forK < H < G.Inparticular, for G = Cp,
cyclic group of order p, the constant and dual constant C,-Mackey functors are
listed as follows.
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Z Z
Z: 1.’/§p z" . P/\'sl
B Y B \)

Z Z

Let SpG be the category of orthogonal G-spectra ([14]). It has a symmetric
model category structure (SpG, A, S®) asin [10, Appendix A, B], and we use SpG
as our model for the G-equivariant stable homotopy theory.

It seems that the equivariant homotopy groups are more naturally graded on
RO(G), the free abelian group generated by the irreducible representations of
G. Forany a =V — W € RO(G), we define

,(X) :=[SV,SV A X]C,

where the right hand side denotes the set of homotopy classes of maps in SpG.
Thus, any orthogonal G-spectrum X has RO(G)-graded homotopy groups, de-
noted by 77, (X). It induces a Mackey functor z_(X) such that

7 (X)G/H) := n(S3G/H, AX).

For any G-Mackey functor M there is an equivariant Eilenberg-Mac Lane spec-
trum HM [7, Theorem 5.3] with

M fork =0,
n, (HM) =1 i
—k = 0 otherwise.
The equivariant Eilenberg-Mac Lane spectrum HM gives rise to a reduced co-
homology theory given by

HE(X; M) = [X,Z*HM]°.

This cohomology is called the RO(G)-graded Bredon cohomology with coeffi-
cients in the Mackey functor M.

It is interesting to note that the suspension isomorphism for RO(G)-graded
cohomology theory H(—; M) takes the form H§(X; M) = Hg“LV(SV AX; M) for
every based G-space X and representation V.

Notation 2.3. For each odd cyclic group C,, the representation ring RO(C,,) is
generated by the trivial representation 1, and the 2-dimension representation &
given by the rotation by the angle Zﬂforj =1,-, nT_l

n
Proposition 2.4 ([22], Proposition 4.25). Let p be an odd prime. In Spc", there

is an equivalence HZ A S5 ~ HZ A s¢ whenever p } j.

We recall that there are change of groups functors on equivariant spectra.
The restriction functor i7; : SpG - SpH from G-spectra to H-spectra has a left
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adjoint given by smashing with G, Ay (—). For a G-CW complex X, this also
induces an isomorphism for cohomology with Mackey functor coefficients
HE(Gy A X3 M) = AS(i5,X3 16 (M)).
Here lf[ (M) is the H-Mackey functor defined by lf[ (M)H/L) := M(G/H x
H/L).
The RO(G)-graded cohomology theories may also be assumed to be Mackey
functor-valued as in the definition below.

Definition 2.5. Let X be a pointed G-space, M be any G-Mackey functor, and
a € RO(G). Then the Mackey functor valued cohomology ﬂg(X ;M) ([16,
§2.3]) is defined:

HE(X M)G/K) = HE(G/K), AX; M),

The restriction and transfer maps are induced by the appropriate maps of G-
spectra.

3. Some important Mackey functors

We start by recalling the Cp,-Mackey functors from Example 2.2 along with
the following.

2/
@/m: |

—

0
Now observe that the Burnside category Burnc is isomorphic to Burnc, ®Burnc,
formed as the product set of objects and tensor product set of morphisms. Thus,
we may define a Cpq—Mackey functor by tensoring Mackey functors on C p and
Cq- This is defined by a functor [X]: Mackc, X Macke, — Mackc = denoted by
(M,N) » M X N such that on objects G/H = C,/H, X Cy/H,,
MXN(G/H) = M(C,/H,) @ N(Cy/H,).
The restrictions and transfers are given by tensoring the restrictions and trans-

fers for M and N (§3, [1]). The following Mackey functors have particular im-
portance in our case.

Definition 3.1. For a C,-Mackey functor M, define C,,-Mackey functors
M :=MRZ', K,M :=MRZ.

The Lewis diagrams for the Mackey functors X ,(Z/p) and X,(Z/q) are
1_—Z/p Z/q—~_1
NN NN

Z/p 0 0 p Z/q (2)

PR N
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Kp(Z/p) K2/
Also we denote the tensor products
ZRZandZ'RZ’
again by Z and Z" respectively, and these are the constant and dual constant
Mackey functors for the group C,,. Recall [18, §7] that
Definition 3.2. A G-Mackey functor M is called cohomological Mackey functor
if, for K < H < G, the composition trllzlr resg : M(G/H) — M(G/H) of the
restriction resﬁ : M(G/H) —» M(G/K) with the transfer trg : M(G/K) —
M(G/H) is equal to the multiplication by index [H : K].
Any module over the constant Mackey functor Z is a cohomological Mackey

functor (see [21]). For the group G = C,,, any cohomological Mackey functor
satisfies the following:

Proposition 3.3. Let M be a cohomological Cp,-Mackey functor such that both
the abelian groups M(C,,/Cp) and M(C,,/Cy) are trivial. Then, M(C,q/Cpq) is
the trivial abelian group.

Proof. Since M is cohomological, for K < H < G, the composition
try rest? : M(G/H) - M(G/H)
is given by the multiplication by index [H : K]. Let x € M(C,4/Cp,); applying
above map we get
px =0and gx = 0.
Since, p and q are relatively prime, x = 0. The result follows. ([

With the above notations, we recall from [1] the additive structure of the
Mackey functor H;, (5% Z) as follows:
pq

Theorem 3.4 (Theorem 7.3, [1]). Let & € RO(C),). Then the Mackey functor

K(Z/p) if la| <0,]a?| > 1,|a%| <1 odd
KAZ/q) if la| <0,]a?| <1,|a%| > 1odd
K(Z/py® KLAZ/q) iflal<0,la|>1,]a%|>1o0dd
K(Z/p)® KfZ/q) ifla| > 0,|a] <0,|a%]| <0 even

K ,(Z/p) if la| > 0,]a?| <0, |a| > 0even
ﬂgpq(SO;Z) = 1K (Z/q) if la| > 0,]a?| > 0, |a| < 0even

z if la| = 0,]a%] < 0,]a%| <0

z" if la| = 0,]a?| > 0,]a| >0

x,Z" if lr] = 0,]a%| > 0, |ace| <0

KoZ® iflal = 0,]a| < 0,]a%| > 0

0 otherwise.
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Using Theorem 3.4, we have the following equivalences of spectra which
simplify computations:

Lemma 3.5. (a) There are the equivalences

(1) S*AHZ =S¢ AHZif(j,pg) = 1.

() S AHZ ~SE" AHZif(j,q) = 1.

(3) S5 AHZ ~ S AHZif(j, p) = 1.

(4) ZHZ ~ SEH(K,Z7).

(5) HZ" ~3>*HZ.
(b) The equivalence (4) induces amap ug_¢p * HZ — »¢~$"HZ and equivalence
(5) induces ug : HZ — 252HZ.

Proof. (a) These follow by computing homotopy groups of ¥ AH Z and
using Theorem 3.4.

(b) Consider the C,-Mackey functor map Z* — Z which is the identity on
the orbit C,, /e. By tensoring with the constant C,-Mackey functor Z and using
equivalence (4), we obtain

HZ S S5 HK,Z" — S5~ HZ.

Next, consider the canonical C,,,-Mackey functor map Z" — Z which is the
identity at level Cp, /e. Applying (5) yields u,. O

Remark 3.6. As a consequence of Lemma 3.5, only the Cp,-representations of
the form

V=a+ b +ctP +d&ifora,b,c,deZ

are useful for our computations.

4. Spherical C ,-slices for the spectrum S" A HZ

In this section, we recall certain general facts about the slice tower of any
genuine G-spectra. We also prove a few results for C,-spectra of the form SY A
HZ.

Recall the localizing subcategories of SpG are those closed under weak equiv-
alences, cofibrations, extensions, coproducts, and well-ordered homotopy col-
imits ([15, §2]). For each integer n, let 75, denote the localizing subcategory

of SpG generated by the G-spectra of the form ZXG, Ay Sker | where H ranges
over all subgroups of G, py is the regular representation of H and k|H| > n.

Associated to the category 7, there is a natural localization functor P"~1.
AS Ts,41 C Tsp, there is a natural transformation P — P""!, which yields
the slice tower (1) for each spectrum X. The homotopy fibre of P*X — P"71X,
denoted by P, X, is called the n-slice for the spectrum X (see [15, 4]).

A spectrum X € T, is called n-slice connective written X > n. A criterion
for this to hold is produced by
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Theorem 4.1 (Theorem A, [12]). A G-spectrum X > n if and only if the non
equivariant homotopy groups

T ®(X) =0
n

forall H < Gandk < Tk

Here ®"(X) is the H-geometric fixed points of the spectrum X, that is, the
geometric fixed point of i7,(X), the restriction of the G-spectrum X to H < G.

Remark 4.2. For a fixed point free G-representation V, a, € m_y(S°) is rep-
resented by the map S° = {0, 00} C SV. For any X € Sp°, ®9(X) is the fixed
point spectrum of the localization X [agcl] by the element a,,. For G = C, it
is evident that £P @ &9 C pc,,- Therefore, a; - is trivial by the ring structure

described in [2]. Hence, the spectrum ®r¢(X) has trivial homotopy groups.

The local objects in SpG with respect to 7, are those X such that [Y, X]° = 0
forall Y € 15,. These spectra are called n-slice coconnective spectra, and we
write X < n in this case. Equivalently,

Lemma 4.3. A spectrum is n-slice coconnective if the restriction i7,(X) < n and
[Skfe, X 16 = 0 for all k > 0 such that k|G| > n. We denote such an X by X < n.

By [9, Proposition 2.6], if a spectrum X satisfies k < X < n, the same holds
for all its restrictions. Moreover, n < X < nif and only if X = P}!X in which
case X is called an n-slice.

In general, ¥ PI'X need not equal P

suspensions of the following forms.

n+dim(V)

e dim(V) (=VX), but it does commute with

Proposition 4.4 (Corollary 4.25, [10]). IfX an m-slice, ¢ X is (m+k|G|)-slice
forallk € Z, that is,

k|G
szkl' Gl'(szGX) ~ $kPc PT(X),

The homotopy spectral sequence of the slice tower (1) of a G-spectrum X is
called the slice spectral sequence for X, with

S,t _ t
E' =7, (PIX)=> 7, (X)
(more generally, it computes the RO(G)-graded homotopy groups 7 N (X)). The
associated filtration on the homotopy groups of the spectrum X is
Frr (X) = Ker(z,(X) - E[(P”S‘IX)).
In [15], Ullman proved following

Proposition 4.5 (Corollary 8.6, [15]). If n > 0, then for a (n + 1)-coconnective
spectrum X,

F’m (X) = FGtn=D/ng x
—n —n
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The filtration ¥M for a Mackey functor M is given by:

F*M(G/H) = {x € M(G/H) : ijyx =0, forallJ C H,|J| <k}

Where i) : Mackg — Mackg such that

0 if |H| > a,
M(G/H) otherwise,
with restrictions and transfers induced from M.

For the rest of this section, G = C,, for p odd prime order. Let W be a (non-
virtual) representation C), of the form m + n& with m,n > 0. To describe the
dim(W)-slice of SW A HZ, we begin with the n-coconnective case:

isM(G/H) =

Lemma 4.6. For a C,-representation W = m + né, the Cp-spectrum SYANHZ
is slice dim(W)-coconnective if and only if

2
< n+3 p'
p—1
Proof. By Lemma 4.3, we need to find conditions on m, n such that

[Sk, 8% AHZI% = Al (5% 2) = 0
p

for all k > 0 with kp > m + 2n. These cohomology groups are computed in [5,
Corollary B.10]. For completeness, recall that

if |a| =0, |a?| <0

z if || =0, |a?| >0

ggp(so;z) ~ (Z/p) if|a| > 0,|a?| <0even (3)
(Z/p) iflal <0,]at?| >3 o0dd

0 otherwise.

;
Z
Z*

Let o« = W — kp. Then (|a|, ||°?) = (m + 2n — kp, m — k). Therefore, since
m + 2n — kp < 0, then by (3), the group sz_kp (8% Z) is non-zero if and only
p
if m — k > 3 odd, equivalently (by transforming the inequalities),

m+2
+ n<k§m—3.

So there exists k with 0 < k and kp > m + 2n such that HEV_kP(SO;Z) is
p

non-trivial if and only if m — 3 > man Therefore, SW A HZ < dim(W) if and
- £
onlyif m < 243 The result follows. ]

Lemma 4.7. Let W = m + n§ be a representation of Cp. Then the spectrum
SY AHZ > dim(W) if and only if
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Proof. Write dim(W) = d, the Cp,-spectrum S AHZ > d if and only if
1 ®»(SY A HZ) = 0 for all k < d/p, as the statement of Theorem 4.1 for
H = e is always true for X = SW A HZ. Since ®“»(Z% A HZ) ~ S™ AHZ/p,
T, ®P(ZV A HZ) # 0if and only if k = m. Therefore, the statement is true if
and only if m z_d/p=(m+2n)/p. O

Lemma 4.6 and Lemma 4.7 together directly imply the following

Proposition 4.8. Fora C,-representation W, the spectrum S WAHZ isa dim(W)-
slice if and only if

dim(W) dim(W)

< dim(W¢) <

Remark 4.9. For p = 3, we have an alternative proof: Recall that the regular
representationis pc, = 1+§. Therefore, we have SMMEAHZ = S"PG ASMTHZ.
So, the problem reduces to showing that ¥ "HZ is an (m — n)-slice. Clearly,
I "HZ > m — n. By [5, Corollary B.10], it follows that if 0 < m — n < 4, then
the spectrum X" "HZ < m — n.

For n > 0, recall [20, §3.1] d,, to be the number of the integers of the same
parity as n that lie between = and n — 2. It can be expressed using the following

P
formula:
1 (n —ny)
dy 1= 5(n———>=~9) @
where n, is the residue of n modulo p and
2 ifngiseven
=141 ifnyisodd (5)

0 ifn():().

Corollary 4.10. For a C,-representation W, if the C,-spectrum S W ANHZ isslice
dim(W)-coconnective then the integer

1 .. .

E(dlm(W) — dim(W¢r)) — dgimw) = —1.
The equality holds, if and only if S A HZ is a dim(W)-slice.
Proof. Using (4),

dim(W dim(W
%(dim(W) — dim(WP)) = dgimqw) =% mW) _ dim(W¢r) — dim(Wo +96)
dim(W
Z%(—3 _ dimW)o + &) (by Proposition 4.8)

3
> =2 (by ().
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If the equality holds, then

dim(W) _ dim(W),

— dim(W¢) = — —2-8<0(by(5)).

Then by Proposition 4.8, the spectrum S A HZ is a dim(W)-slice. The result
follows. O

For the cyclic group G = Cpk, Yarnall ([20, Main Theorem, §4]) computed
an explicit formula of the n-slice associated to the Cp«-spectrum S" A HZ when
n > 3. To summarise her formula for k = 1, define two Cp—representations

W) =m-2d,) +d,£and W (n) = W(n) + (2 -¢§),
and then

SWYMWAHZ ifptn,ny=even
PIS"AHZ)={S"'™WAHZ ifptn,ny=odd (6)
SW'MWAHZ ifp|n.

Let W be a C,-representation. The slice formula for the non-trivial RO(C,)-
suspensions S¥ A HZ of HZ can be derived from the following result.

Theorem 4.11 (Theorem C, [12]). Let p be odd. For the Cp-spectrum X = SW A
HZ, we have equivalences for any a € Z

Pep(X) = S AH(HY (8% 2).

ap+2k+l 5\ | capt+kE+l 0 7W—ap—kE—1, 0. p-3
Popran &) = STHE AHPH, (8%2), 0<k <=,

PZﬁEEE(X) ~ Sap+(k+1)§ /\H(ECP ® Eg;—ap—(kﬂ)ﬁ(so;z))’ 0<k< pT3
Here, for a G-Mackey functor M, EG®M denote the subMackey functor gen-
erated by M(G/e). PP is the functor that takes a Mackey functor to the largest
quotient in which the restriction maps are injections.
As a consequences of the above discussion one may easily derive the formula
for dim(W)-slice for the spectrum S¥ A HZ as follows.

Proposition 4.12. Let W be a C,-representation with dimension w. Then

(1) If the spectrum SW A HZ is slice w-coconnective, then either SW A HZ itself
a w-slice or SW©) A HZ is the cw-slice of S A HZ.

(2) If the spectrum S A HZ is slice w-connective, then either SW A HZ itself a
w-slice or

SV@AHZ ifple
PE(SY AHZ) = {SW' @ AHZ ifp}wandw, = odd
SW@ AHZ ifptwandw, = even.
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Proof. Here we prove part (1); the proof of part (2) is similar to (1). Set X :=
S AH Z. For (1), first consider p | w, that is, w = ap for some integer a. One
readily computes
a(p—1)
W(@) = a+ (=5

Since we consider X as slice w-coconnective, thus by Lemma 4.10, one derives
either dim(Wr) < a or X itself is a w-slice. Then by Theorem 4.11, the w-slice
of X,

P(X) ~ S AH (ﬂ?_a"(so; 2)) = S AHZ =~ SW@ AHZ (by Proposition 2.4).
p

Ifw of the form ap+2k+1where0 < k < p7_3,then W(w) = a+1+(@+k)§.

If X is not a w-slice, then Lemma 4.10 computes dim W< < a + 1. Thus by
Theorem 4.11,

P2(X) =~ SaptkE+l A Hj)o(ﬂg;—ap—k%—l(so;z))
& Sap+k§+1 /\H"PO(Z)
— Sap+k§+1 A HZ -
~ SW(@ A HZ (by Proposition 2.4)
Finally, if w is of the form ap+2k+2 for some 0 < k < p7_3, then we compute
Ww)y=a+2+ (@ + k)&. The result follows by analogous computations
above along with the observation EC, ® 7" 27"~ 25_2 HZ. O

Example 4.13. (1) Let us consider the spectrum X = S+ AHZ. Using Propo-
sition 4.8, one observes X is 12-coconnective but not slice 12-connective. Also
note that SWU2 A HZ ~ §*+% A HZ is a 12-slice (by Theorem 4.12).

(2) Next, consider X = S8+2 A HZ, which is slice 12-connective but not slice

12-coconnective. Here we compute S¥'02 A HZ =~ S+ A HZ, and it is the
12-slice of X by Theorem 4.12.

5. Cp,-slices for SY AHZ

In this section, we compute the C,4-slices for the spectrum S* A HZ for each
a € RO(Cpy). Slices of any Cp,-spectrum have a special feature: under a mild
condition, the information of the C,,- and Cg-slices of the corresponding restric-
tions give the slices of Cp4-spectrum as follows.

Proposition 5.1. Let X be a Cpq-spectrum such that 7 *(X ) is cohomological.
Then X is a k-slice if and only if both i, (X) and i7. (X) are k-slices.
p q

Proof. Assume bothi;, (X)andi; (X) are k-slices. Then, by Proposition 3.3 X
p q

is a k-slice for the group C,,. The other direction follows from [10, Proposition
4.13]. O
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For each k > 0, the Mackey functor kSV AHZ is cohomological (see Defini-
tion 3.2). Therefore, as a direct consequence of Proposition 5.1, one may extend
the detection result (Proposition 4.8) for C, to C,, case:

Corollary 5.2. Let p < g be odd primes and V' be a Cp-representation of the
formV = a+ b€ + c&P + d&9. Then the spectrum SV AHZ is a C,q-dim(V)-slice

if and only if
) 2(b+d) <a+2< 2(b+d)+3p‘
p-1 p-1
l) 2(b+c) <a+2d< 2(b+c)+3q.
g—1 q—1

Proof. If SY A HZ is a slice, it must be a dim(V)-slice. Using Proposition 5.1,
it is enough to show that both the spectra i, (¥ A HZ) and i, (S” A HZ) are
p q

dim(V)-slices. Hence, the result follows from Proposition 4.8. O

Remark 5.3. If the spectrum S¥ A HZ is not an n-slice, then we will construct
certain (co)fiber sequences to study the slices of this spectrum. For ¢ > 1,
repeated applications of the map u_gp) in Lemma 3.5 yields a map HZ —

StC=" AHZ. Then smashlng with SV yields a map S¥ A HZ — SV+(¢- € A
HZ.We denote it by ”f(g—gp) and its cofiber by C(V, ¢, p). For the prime g, one

has the similar construction. This cofiber spectrum plays an important role in
analyzing slices of the spectrum S¥ AHZ. To understand the slices of C(V, ¢, p),
we begin with the following result.

Lemma 5.4. The spectrum Z"HX (Z/p) is a pn-slice and Z"H(X ,(Z/p) &
KZ/q)) is a npg-slice.

Proof. As Z"HX ,(Z/p) has homotopy groups concentrated only in degree
n, it is (n + 1)-coconnective. So, by Proposition 4.5 FS“ZHZ”H K(Z/p) #
F'z Z"HX,(Z/p)ifand only iff(”")/”ﬂcp(Z/p) # f(”"_U/WCP(Z/p). This
can only happen when
(s+n—-1)/n<pand(s+n)/n>p.
This gives s = n(p — 1) and so,
FS+1gnz"Hﬂcp(z /p)=0and F°r Z"HX ,(Z/p) = K (Z/p).

The quotient FSEI_S(Z"HJCP(Z/p))/FS“Et_S(Z"HKP(Z/p)) can only be non-
zero when ¢ —s = n and hence, t = np. Therefore, X"HX ,(Z/p) is an np-slice.
The result for K ,(Z/p) & K(Z/q) can be proved analogously. O

Proposition 5.5. For ¢ > 1, the cofiber spectrum C(V, ¢, p) has only kp-slices
foreach k € {dim(VE r) —2¢, ---,dim(VC ) — 2}

Proof. First, we compute the Mackey functor valued homotopy groups of the
cofiber C(V, ¢, p). Note that the restriction of the cofiber to the subgroup C is
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trivial and the homotopy groups of C(V, ¢, p) are cohomological. Using Propo-
sition 3.3, we conclude that EkC(V, ¢, p)isnon-zeroif and only ifgkiz c\,¢t,p)
p

is non-zero. Set i, (V) = m + n§ for m,n > 0. The cofiber sequence
p
SmE AHZ — SMEHED NHZ - i, C(V, ¢, p)
- - p

yields the long exact sequence:

m—k+né ; 0 m—k—=2¢+(n+€)¢ ; 0 . m+1—k+né ;0
o HPE () — (8%) = m, 18, C(V, £, p) = HIF T8 (s50) ..

Incorporating the computation (3) in the above long exact sequence, one yields

K(Z/p) ifke{m-2¢,--,m—2}

c\v.,¢t, = .
T («( p)) 0 otherwise.

14

Therefore, the map u%’_%’p

induces a cofiber sequence as follows

MV
C(V,t=1,p) = CV,,p)— "1HK(Z/p) @)
with C(V, 1, p) = Z"2HX (Z/ p).

To compute the slices of C(V, ¢, p), we use induction on ¢. For ¢ = 1, it is
clear from Lemma 5.4 that C(V, 1, p) has only one (m —2)p-slice. Using (7) it is
clear that C(V, ¢, p) has an (m — 2)p-slice as Z"2HX p{Z/ p). The other slices
of C(V, ¢, p) are obtained from the induction hypothesis and [19, Proposition
2.32]. Hence, the result follows. O

Remark 5.6. Using Lemma 3.5 (b), construct a map
uf, : S" AHZ - SVHE-DAHZ

analogous to “g(g_gp)' We let S(p) = {dim(V°r) — 2¢, ---,dim(V°r) — 2}. Then

direct computation yields

K{Z[p)® KL Z/q) ifk e S(p)nS(q)

_ X (Z/p) ifk € 8(p) N 8(q)*
7, (cofiber(u;)) = %.(2/q) itk € S(p)f 1 8(@)
0, otherwise.

This allows us to identifies the slices for the cofiber of u;: using Lemma 5.4.
Theorem 5.7. Forareal Cpq-representation V with dimension v, the v-slice of the
Cpq-spectrum S¥ AHZ is spherical. In particular, if i;p (SYAHZ) < vand iéq (SYA
HZ) <, then for 0 < k < v, the k-slice of S” A HZ is either =*/PHX ,(Z / p) or
SMIHX (Z /q) or the wedge of the two.
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Proof. Using Remark 3.6, assume V = a + b§ + c&P + d§1 for some a, b, c and
d are non-negative integers. Note that for any C,-representation W, by Lemma
4.6 and Lemma 4.7, the C,-spectrum S A HZ is either slice d-connective or
slice d-coconnective, for d = dim(W). Therefore, to identify the slices of the
Cpg-spectrum SY A HZ it is enough to prove the following four cases:

Case (i). i/, (S" AHZ) <vand i}, (S" AHZ) <.
p q

We want to construct a spherical v-slice mapping to S A HZ with cofiber
< v — 1. By Lemma 4.6, the hypothesis of (i) yields

< 2(b+d)+3p

2(b 3
a+2c< anda+2d§w.

p-1 q-1
By Proposition 4.12, there exist C,- and C,-representations m+n§ and m'+n'€,
respectively, such that S™+"$ A HZ is the v-slice of izp (SY AHZ) and S™'+7¢ A
HZ is the v-slice of iéq (SY AHZ). By Lemma 4.10, it follows that b +d > n and
b+c>n'
ForV/ =V — (b +d — n)(§ — £P), we have
iz,p(V’) =m+ n§ and i;q(V’) = izq(V).

By Proposition 5.5, there exists a map

v’ Qv %4
W g ome—ery - S NHZ — S AHZ,

and the cofiber C(V’/, b + d — n, p) has slices only in filtrations p(m — 2(b +d —

n)), -, p(m—2).
By Proposition 4.12,

dim(V) — dim(V), +

p
Sdim(V) -1

m = dim(V'%r) = dim(V) — 2dgimy) = g

+ 1 (by (5)).

It readily follows p(m —2) < v. Therefore, the cofiber C(V’, b +d —n, p) is slice
(v — 1)-connective.
Since i, (SY AHZ) < v, we may define a representation
q

V" =V —-(b+c—n")&-E9,
and deduce izq(V” )=m'+n'¢ and ia, v = i*CP(V). By Proposition 5.5, there

is a map Ugye_pye_tay © SY AHZ — S” A HZ and as above the associated
cofiber C(V”,b + ¢ —n’, q) has slices in filtration < v,s0 C(V",b+c—n’,q) <
v—1.

Finally, set

Vi=v—(b+d-—n)(—EP)—(b+c—n')E-E9).
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Then, i, (S‘7 A HZ) (respectively, i. (S‘7 AHZ)) is the v-slice for i}, (SYAHZ)
p q p
(respectively, i. (SY A HZ)). By Proposition 5.1, the Cpq-spectrum SYANHZ is
q
thus the v-slice of S A HZ.

Case (ii). i;p(sV AHZ) > v and igq(SV AHZ) <.
By Lemma 4.6,
pdim(VCr) — dim(V) — 3p
2p
is the least positive integer such that the Cp,-spectrum SVHE—ED A H Z <.
Then the spectrum i/, (SV”P(g OANH Z) < v. For such I, by Proposition 5.5,
there exists a map

£,=1 ] (8)(p)

Veeen P SV ANHZ — ST AHZ
p

and the fiber of this map (equivalently, =~'C(V, ¢ p» P)) has slice filtration >
v+1. Now, as i, (SVJffP(g IAHZ) < vandif, (SV”)P@ $Y AHZ) < v, by case

(i), we have the spherlcal v-slice and also all the lower slices can be determined.
Hence, the result follows.

Case (iii). i (S" AHZ) <vandi}, (S" AHZ)>v.
p q
It is analogous to case (ii).

Case (iv). ij: (S AHZ) >vand i}, (SY AHZ) > v.
p q
Then ¢, := max{(,,¢,} is the positive integer such that i SVH+C(§=2) A
p
HZ < vand i, SV*%¢-2 A HZ < v. Now we are in case (i). Therefore, by
p

Proposition 4.12, there exists a C,-representation m+né and a C,-representation
m’ + n’& such that S™*"¢ A HZ (resp., S™ +"'¢ A HZ) is the spherical v-slice of
(sV+fo<é’ ~2 AHZ) (resp., if; (sV+fo<5 ) AHZ)).
By hypothesis (iv), Pr0p051t10n 4.1 yields

<

a+2c>;anda+2d2—

»Q

which implies thatb +d + €, <nand b + ¢ + I, < n’. So, we set
V=V+e(E-D+m—b—d—t)§—EP)+ (' —b—c— )¢~ &9,

as in case (i) we see that the C,,;-spectrum S VAH Z is the v-slice for S¥ A HZ,
which is spherical. (|

Corollary 5.8. Any a € RO(C,) has B € RO(Cpg) such that S* A HZ has a

dim(a)-slice S A HZ. The other slices of S* A HZ are suspensions of HX ,{Z / p)
or HX ((Z / q) or wedges of the two.
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Proof. We can always find some k € Z such that a + chpq is a non-virtual
representation of C 4. Therefore, using Proposition 4.4 it is enough to consider
a=V =a+bé+c&P+d&9fora,b,c,and d non-negative integers. Proposition
5.5 and Theorem 5.7 together then imply the result. (]

Example 5.9. For the cyclic group C;5 with p = 3 and q = 5 we shall write a
slice tower of the C;s-spectrum S¢ A HZ. Note that this type of spectrum was
studied by Yarnall in [20] for G = C, in particular for Cp,. In our case, the
restrictions satisfy

pk>

it,(S°AHZ) > 6 and i, (S° AHZ) 2 6,

so, we are in case (iv) of the Theorem 5.7. Here ¢, = max{¢;,¢s} = 2 and
n = 2 = n’. Therefore, by construction of V in case (iv) of the theorem:

V=6+206-2)+2-2)¢(-E)+2-2)(¢-&)=2+2¢

Hence, using Remark 5.6, the slice tower is:

45 — slice : S H(KLZ/q) ® KZ/p)) —= S NHZ
|
6 — slice : SHSAHZ.

Example 5.10. Consider the C;s-spectrum X = SUEC AH Z. Note that
i (X)) = S A HZ and ii (X) = S? AHZ.

Therefore, we are in case (iv) of Theorem 5.7 as i;’;s (X) <22and ia (X) > 22.

By (8)(q), Is = 8, so i;558<§-§5) AX <22,and i;5(58¥+3§5 AHZ) < 22. Above
the 22-slice, all higher dimension slices are obtained by the computations of the
fiber of the map u;_¢,. By repeated use of Theorem 5.7 (iv), we obtain the slice

tower of S1€° A HZ in filtrations > 22.
Since, the spectrum S%+38> A HZ satisfies both

if, (S AHZ) < 22and if, (S¥+3° AHZ) < 22,

so we are in case (i) of Theorem 5.7. Now we compute d,, = 7 for p = 3 and
d,, = 8 for p = 5. (see Remark 4.9) By Theorem 5.7 we have

Vi =85+4385—(11-7)(§ — £3) = 4L +4£3 + 3¢5

with SV A HZ the 22-slice of S11€°,
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Thus, the slice tower for S'¢' A HZ is

95-slice:

85-slice:

75-slice:

65-slice:

55-slice:

45-slice:

35-slice:

25-slice:

22-slice:

18-slice:

12-slice:

6-slice:

0-slice:

Sllgq

SPHK(Z/q)

SVHK (Z/q)

SSHK(Z/q)

SBHK(Z/q)

SUHK (Z/q)

SHK(Z/q)

STHK(Z/q)

SSHK(Z/q)

GAE+4E3+387 AHZ

2i
S HENZ/P) — Victo123 2

S*HX ,(Z/p)

S*HK(Z/p) — HX,(Z/p) Vv

ANHZ

Ug_gq

S§+10§q A Hz

Ug_gq

SZ§+9§‘7 A HZ

Ug_gq

S3§+8§q A HZ

Ug_gq

S4§+7§q A HZ

Ug—gq

SS§+6§‘7 A HZ

Ug_gq

S6§+5§q A HZ

Ug_gq

S7§+4§q A HZ

Ug—gq

SS§+3§‘1 A HZ

Ug—¢p
HK,<Z/p>

Ug-gp

2i
Vie{0,1,2} 2 HK,<Z/p>

Ug—gp
ZzHI]Cp(Z /p)

Ug_gp

HX,(Z/p)
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