### New York Journal of Mathematics

New York J. Math. 28 (2022) 1399-1418.

# Slice filtration of certain $C_{pq}$ -spectra

## Surojit Ghosh

ABSTRACT. For p,q distinct odd primes and a virtual  $C_{pq}$ -representation  $\alpha$ , we compute the slices of the  $C_{pq}$ -spectrum  $S^{\alpha} \wedge H\underline{\mathbb{Z}}$ , and prove the existence of *spherical slice* for this spectrum.

#### **CONTENTS**

| 1.         | Introduction                                                                   | 1399 |
|------------|--------------------------------------------------------------------------------|------|
|            | Organization.                                                                  | 1400 |
|            | Acknowledgement                                                                | 1400 |
| 2.         | Preliminaries                                                                  | 1400 |
| 3.         | Some important Mackey functors                                                 | 1403 |
| 4.         | Spherical $C_p$ -slices for the spectrum $S^W \wedge H \underline{\mathbb{Z}}$ | 1405 |
| 5.         | $C_{pq}$ -slices for $S^V \wedge H\underline{\mathbb{Z}}$                      | 1410 |
| References |                                                                                | 1417 |

#### 1. Introduction

For a fixed finite group G, a central computational tool in G-equivariant stable homotopy theory is the RO(G)-graded homotopy groups of a G-spectrum, but there are difficult to compute.

It was first observed by Voevodsky ([17]) that the stable motivic homotopy theory can be understood by their slice filtration. This slice filtration yields a spectral sequence, a tool computing various cohomology theories in algebraic geometry context. In equivariant homotopy theory, for any G-spectrum X, we have an analogous equivariant *slice tower* 

$$\cdots P^{n+1}X \to P^nX \to P^{n-1}X \to \cdots. \tag{1}$$

In this tower,  $P^nX$  is the localization with respect to the localizing category of G-spectra generated by  $\Sigma_G^{\infty}G_+ \wedge_H S^{k\rho_H}$  where  $\rho_H$  is the regular representation of  $H \leq G$  and  $k|H| \geq n$ . The homotopy fiber  $P_n^nX$  of  $P^nX \to P^{n-1}X$  is called the n-slice of X. An n-slice is called *spherical* if it is of the form  $S^V \wedge H \underline{\mathbb{Z}}$ , where V is a (non-virtual) representation of G of dimension n.

Received August 2, 2021.

<sup>2010</sup> Mathematics Subject Classification. Primary: 55N91, 55P91; Secondary: 57S17, 14M15. Key words and phrases. Bredon cohomology, Mackey functor, Slice tower.

The homotopy spectral sequence of (1) is an essential tool in modern homotopy theory due to Hill-Hopkins-Ravenel in [10]. This is called the *slice spectral sequence* and it eventually computes the RO(G)-graded homotopy groups of spectra.

The homotopy groups of the  $C_{2^n}$ -spectrum  $N_2^{2^n}MU_{\mathbb{R}}$  played a crucial role in solving the Kervaire invariant one problem. In [10, Theorem 6.5], Hill, Hopkins, and Ravenel proved that the 0-th slice of this spectrum is the Eilenberg-Mac Lane spectrum  $H\underline{\mathbb{Z}}$ . This yields that in the slice spectral sequence of any  $N_2^{2^n}MU_{\mathbb{R}}$ -module, all the differentials and extensions live in  $H\underline{\mathbb{Z}}$ -modules. This motivates us to compute the slice filtration of the certain  $H\underline{\mathbb{Z}}$ -modules. The computation of the slice tower for  $S^n \wedge H\underline{\mathbb{Z}}$  was made in [20] and for  $S^{n\xi} \wedge H\underline{\mathbb{Z}}$  in [11] for the group  $C_{p^n}$ . Recently, in [8], Guilliou and Yarnall computed the  $C_2 \times C_2$ -slice tower for the spectrum  $S^n \wedge H\mathbb{F}_2$ .

In this article, for a  $C_{pq}$ -representation V, we investigate the spectrum  $S^V \wedge H\mathbb{Z}$  and provide a description of the slices of it as follows:

**Theorem A.** For any d-dimensional  $C_{pq}$ -representation V, the d-slice of the  $C_{pq}$ -spectrum  $S^V \wedge H \underline{\mathbb{Z}}$  is spherical.

See Theorem 5.7.

As a direct consequence, we derive:

**Corollary B.** For  $\alpha \in RO(C_{pq})$  there exists  $\beta \in RO(C_{pq})$  such that  $S^{\alpha} \wedge H\underline{\mathbb{Z}}$  has a  $\dim(\alpha)$ -slice  $S^{\beta} \wedge H\underline{\mathbb{Z}}$ . The other slices are suspensions of  $H\mathcal{K}_p\langle \mathbb{Z}/p\rangle$  or  $H\mathcal{K}_q\langle \mathbb{Z}/q\rangle$  or wedges of them.

See Corollary 5.8.

**Organization.** Section 2 provides a short tour of equivariant homotopy theory. A few useful Mackey functors both in the context of  $C_p$  and  $C_{pq}$  have been described, and as a consequence, we prove certain equivalences of spectra in Section 3. Section 4 is dedicated to explaining the slice filtration of the  $C_p$ -spectrum  $S^W \wedge H \mathbb{Z}$ . Finally, in Section 5, we provide a careful analysis of the  $C_{pq}$ -spectrum  $S^V \wedge H \mathbb{Z}$  with a result concerning the existence of a *spherical slice*.

**Notation 1.1.** For an orthogonal G-representation V, S(V) denotes the unit sphere, D(V) the unit disk, and  $S^V$  the one-point compactification  $\cong D(V)/S(V)$ .

**Acknowledgement.** The author wants to thank Samik Basu for suggesting the problem and David Blanc for a careful reading of the first draft of this work, which was partially supported by Israel Science Foundation grant 770/16.

### 2. Preliminaries

In this section, we recall specific fundamental ideas and techniques in Bredon cohomology. Throughout the paper, *G* will be a finite group.

**Definition 2.1.** The Burnside category of G is the category  $Burn_G$  of finite Gsets, with  $\operatorname{Hom}(S,T)$  the group completion of the set of correspondences  $S \leftarrow$  $U \rightarrow T$ .

A functor  $\underline{M}:\operatorname{\mathsf{Burn}}^{\operatorname{op}}_{\mathsf{G}}\to\operatorname{\mathsf{Ab}}$  from the Burnside category into abelian groups is called Mackey functor.

Explicitly, a G-Mackey functor M is a collection of commutative  $W_G(H)$ -groups  $\underline{\underline{M}}(G/H)$  one for each subgroup  $H \leq G$ , each accompanied by transfer  $\operatorname{tr}_K^H : \underline{\underline{M}}(G/K) \to \underline{\underline{M}}(G/H)$  and restriction  $\operatorname{res}_K^H : \underline{\underline{M}}(G/H) \to \underline{\underline{M}}(G/K)$  for  $K \leq H \leq$ 

- $\begin{array}{l} (1) \ \operatorname{tr}_J^H = \operatorname{tr}_K^H \operatorname{tr}_J^K \ \text{and} \ \operatorname{res}_J^H = \operatorname{res}_J^K \operatorname{res}_K^H \ \text{for all} \ J \leq K \leq H. \\ (2) \ \operatorname{tr}_K^H(\gamma.x) = \operatorname{tr}_K^H(x) \ \text{for all} \ x \in \underline{M}(G/K) \ \text{and} \ \gamma \in W_H(K). \\ (3) \ \gamma. \ \operatorname{res}_K^H(x) = \operatorname{res}_K^H(x) \ \text{for all} \ x \in \underline{M}(G/H) \ \text{and} \ \gamma \in W_H(K). \\ (4) \ \operatorname{res}_K^H \operatorname{tr}_K^J(x) = \sum_{\gamma \in W_H(K)} \gamma. \ \operatorname{tr}_{J \cap K}^K(x) \ \text{for all subgroups} \ J, H \leq K. \\ \end{array}$

Usually, we describe a Mackey functor by a Lewis diagram (see [13]). For a  $C_p$ -Mackey functor  $\underline{N}$ , we shall use the diagram:

$$rac{\underline{N}(C_p/C_p)}{\operatorname{res}_e^{C_p}}\Big\langle \operatorname{tr}_e^{C_p} \Big\rangle$$
 $rac{\underline{N}}{\operatorname{tr}_e^{C_p}}(C_p/e)$ 

and a  $C_{pq}$ -Mackey functor  $\underline{M}$ , we shall associate the following diagram.



We denote the category of G-Mackey functors by Mack<sub>G</sub>.

**Example 2.2.** For an abelian group *C*, the *constant Mackey functor C* is given by the assignment  $\underline{C}(G/H) = C$  with  $\operatorname{res}_K^H = \operatorname{Id}_C$  and  $\operatorname{tr}_K^H = \operatorname{multiplication}$ by the index [H:K]. One can define the dual constant Mackey functor  $\underline{C}^*$  by interchanging the role of  $\operatorname{tr}_K^H$  and  $\operatorname{res}_K^H$  for  $K \leq H \leq G$ . In particular, for  $G = C_p$ , cyclic group of order p, the constant and dual constant  $C_p$ -Mackey functors are listed as follows.

$$\underline{\mathbb{Z}}: 1 \left( \begin{array}{c} \mathbb{Z} \\ \mathbb{Z} \end{array} \right) p \qquad \underline{\mathbb{Z}}^*: p \left( \begin{array}{c} \mathbb{Z} \\ \mathbb{Z} \end{array} \right) 1$$

Let  $\operatorname{Sp}^G$  be the category of orthogonal G-spectra ([14]). It has a symmetric model category structure ( $\operatorname{Sp}^G$ ,  $\wedge$ ,  $\operatorname{S}^0$ ) as in [10, Appendix A, B], and we use  $\operatorname{Sp}^G$  as our model for the G-equivariant stable homotopy theory.

It seems that the equivariant homotopy groups are more naturally graded on RO(G), the free abelian group generated by the irreducible representations of G. For any  $\alpha = V - W \in RO(G)$ , we define

$$\pi_{\alpha}(X) := [S^V, S^W \wedge X]^G,$$

where the right hand side denotes the set of homotopy classes of maps in  $Sp^G$ . Thus, any orthogonal G-spectrum X has RO(G)-graded homotopy groups, denoted by  $\pi_{\bigstar}(X)$ . It induces a Mackey functor  $\underline{\pi}_{\alpha}(X)$  such that

$$\underline{\pi}_{\alpha}(X)(G/H) := \pi_{\alpha}(\Sigma_{G}^{\infty}G/H_{+} \wedge X).$$

For any G-Mackey functor  $\underline{M}$  there is an equivariant Eilenberg-Mac Lane spectrum  $H\underline{M}$  [7, Theorem 5.3] with

$$\underline{\pi}_k(H\underline{M}) = \begin{cases} \underline{M} & \text{for } k = 0, \\ 0 & \text{otherwise.} \end{cases}$$

The equivariant Eilenberg-Mac Lane spectrum  $H\underline{M}$  gives rise to a reduced cohomology theory given by

$$\tilde{H}^{\alpha}_G(X;\underline{M})\cong [X,\Sigma^{\alpha}H\underline{M}]^G.$$

This cohomology is called the RO(G)-graded Bredon cohomology with coefficients in the Mackey functor M.

It is interesting to note that the suspension isomorphism for RO(G)-graded cohomology theory  $\tilde{H}_G^{\alpha}(-;\underline{M})$  takes the form  $\tilde{H}_G^{\alpha}(X;\underline{M}) \cong \tilde{H}_G^{\alpha+V}(S^V \wedge X;\underline{M})$  for every based G-space X and representation V.

**Notation 2.3.** For each odd cyclic group  $C_n$ , the representation ring  $RO(C_n)$  is generated by the trivial representation 1, and the 2-dimension representation  $\xi^j$  given by the rotation by the angle  $\frac{2\pi j}{n}$  for  $j=1,\cdots,\frac{n-1}{2}$ .

**Proposition 2.4** ([22], Proposition 4.25). Let p be an odd prime. In  $Sp^{C_p}$ , there is an equivalence  $H\mathbb{Z} \wedge S^{\xi} \simeq H\mathbb{Z} \wedge S^{\xi^j}$  whenever  $p \nmid j$ .

We recall that there are change of groups functors on equivariant spectra. The restriction functor  $i_H^*: \operatorname{Sp}^{\mathsf{G}} \to \operatorname{Sp}^{\mathsf{H}}$  from G-spectra to H-spectra has a left

adjoint given by smashing with  $G_+ \wedge_H (-)$ . For a G-CW complex X, this also induces an isomorphism for cohomology with Mackey functor coefficients

$$\tilde{H}^{\alpha}_{G}(G_{+} \wedge_{H} X; \underline{M}) \cong \tilde{H}^{\alpha}_{H}(i_{H}^{*}X; \downarrow_{H}^{G}(\underline{M})).$$

Here  $\downarrow_H^G(\underline{M})$  is the H-Mackey functor defined by  $\downarrow_H^G(\underline{M})(H/L) := \underline{M}(G/H \times H/L)$ .

The RO(G)-graded cohomology theories may also be assumed to be Mackey functor-valued as in the definition below.

**Definition 2.5.** Let X be a pointed G-space,  $\underline{M}$  be any G-Mackey functor, and  $\alpha \in RO(G)$ . Then the Mackey functor valued cohomology  $\underline{H}_G^{\alpha}(X;\underline{M})$  ([16, §2.3]) is defined:

$$\underline{H}_{G}^{\alpha}(X;\underline{M})(G/K) = \tilde{H}_{G}^{\alpha}((G/K)_{+} \wedge X;\underline{M}).$$

The restriction and transfer maps are induced by the appropriate maps of *G*-spectra.

### 3. Some important Mackey functors

We start by recalling the  $C_p$ -Mackey functors from Example 2.2 along with the following.

$$\langle \mathbb{Z}/p \rangle$$
:  $\mathbb{Z}/p$   $0$ 

Now observe that the Burnside category  $\operatorname{Burn}_{C_{pq}}$  is isomorphic to  $\operatorname{Burn}_{C_p} \otimes \operatorname{Burn}_{C_q}$  formed as the product set of objects and tensor product set of morphisms. Thus, we may define a  $C_{pq}$ -Mackey functor by tensoring Mackey functors on  $C_p$  and  $C_q$ . This is defined by a functor  $\boxtimes$ :  $\operatorname{Mack}_{C_p} \times \operatorname{Mack}_{C_q} \to \operatorname{Mack}_{C_{pq}}$  denoted by  $(\underline{M},\underline{N}) \mapsto \underline{M} \boxtimes \underline{N}$  such that on objects  $G/H = C_p/H_1 \times C_q/H_2$ ,

$$\underline{M} \boxtimes \underline{N}(G/H) = \underline{M}(C_p/H_1) \otimes \underline{N}(C_q/H_2).$$

The restrictions and transfers are given by tensoring the restrictions and transfers for  $\underline{M}$  and  $\underline{N}$  (§3, [1]). The following Mackey functors have particular importance in our case.

**Definition 3.1.** For a  $C_p$ -Mackey functor  $\underline{M}$ , define  $C_{pq}$ -Mackey functors

$$\mathcal{C}_{p}\underline{M}:=\underline{M}\boxtimes\underline{\mathbb{Z}}^{*},\,\mathcal{K}_{p}\underline{M}:=\underline{M}\boxtimes\underline{\mathbb{Z}}.$$

The Lewis diagrams for the Mackey functors  $\mathcal{K}_p\langle \mathbb{Z}/p\rangle$  and  $\mathcal{K}_q\langle \mathbb{Z}/q\rangle$  are



$$\mathcal{K}_p\langle \mathbb{Z}/p\rangle$$
  $\mathcal{K}_q\langle \mathbb{Z}/q\rangle$ 

Also we denote the tensor products

$$\underline{\mathbb{Z}} \boxtimes \underline{\mathbb{Z}} \text{ and } \underline{\mathbb{Z}}^* \boxtimes \underline{\mathbb{Z}}^*$$

again by  $\underline{\mathbb{Z}}$  and  $\underline{\mathbb{Z}}^*$  respectively, and these are the constant and dual constant Mackey functors for the group  $C_{pq}$ . Recall [18, §7] that

**Definition 3.2.** A G-Mackey functor  $\underline{M}$  is called *cohomological* Mackey functor if, for  $K \leq H \leq G$ , the composition  $\operatorname{tr}_K^H \operatorname{res}_K^H : \underline{M}(G/H) \to \underline{M}(G/H)$  of the restriction  $\operatorname{res}_K^H : \underline{M}(G/H) \to \underline{M}(G/K)$  with the transfer  $\operatorname{tr}_K^H : \underline{M}(G/K) \to \underline{M}(G/H)$  is equal to the multiplication by index [H : K].

Any module over the constant Mackey functor  $\underline{\mathbb{Z}}$  is a cohomological Mackey functor (see [21]). For the group  $G = C_{pq}$ , any cohomological Mackey functor satisfies the following:

**Proposition 3.3.** Let  $\underline{M}$  be a cohomological  $C_{pq}$ -Mackey functor such that both the abelian groups  $\underline{M}(C_{pq}/C_p)$  and  $\underline{M}(C_{pq}/C_q)$  are trivial. Then,  $\underline{M}(C_{pq}/C_{pq})$  is the trivial abelian group.

**Proof.** Since *M* is cohomological, for  $K \le H \le G$ , the composition

$$\operatorname{tr}_K^H \operatorname{res}_K^H : \underline{M}(G/H) \to \underline{M}(G/H)$$

is given by the multiplication by index [H:K]. Let  $x\in \underline{M}(C_{pq}/C_{pq})$ ; applying above map we get

$$px = 0$$
 and  $qx = 0$ .

Since, p and q are relatively prime, x = 0. The result follows.

With the above notations, we recall from [1] the additive structure of the Mackey functor  $\underline{H}^{\alpha}_{C_{pq}}(S^0;\underline{\mathbb{Z}})$  as follows:

**Theorem 3.4** (Theorem 7.3, [1]). Let  $\alpha \in RO(C_{pq})$ . Then the Mackey functor

$$\underbrace{H^{\alpha}_{C_{pq}}(S^{0}; \underline{\mathbb{Z}}) \cong}_{\mathcal{K}_{q}} \begin{cases} \mathcal{K}_{p} \langle \mathbb{Z}/p \rangle & \text{if } |\alpha| < 0, |\alpha^{C_{p}}| > 1, |\alpha^{C_{q}}| \leq 1 \text{ odd} \\ \mathcal{K}_{q} \langle \mathbb{Z}/q \rangle & \text{if } |\alpha| < 0, |\alpha^{C_{p}}| \leq 1, |\alpha^{C_{q}}| > 1 \text{ odd} \\ \mathcal{K}_{p} \langle \mathbb{Z}/p \rangle \oplus \mathcal{K}_{q} \langle \mathbb{Z}/q \rangle & \text{if } |\alpha| < 0, |\alpha^{C_{p}}| > 1, |\alpha^{C_{q}}| > 1 \text{ odd} \\ \mathcal{K}_{p} \langle \mathbb{Z}/p \rangle \oplus \mathcal{K}_{q} \langle \mathbb{Z}/q \rangle & \text{if } |\alpha| > 0, |\alpha^{C_{p}}| \leq 0, |\alpha^{C_{q}}| \leq 0 \text{ even} \\ \mathcal{K}_{p} \langle \mathbb{Z}/p \rangle & \text{if } |\alpha| > 0, |\alpha^{C_{p}}| \leq 0, |\alpha^{C_{q}}| > 0 \text{ even} \\ \mathcal{K}_{q} \langle \mathbb{Z}/q \rangle & \text{if } |\alpha| > 0, |\alpha^{C_{p}}| > 0, |\alpha^{C_{q}}| \leq 0 \text{ even} \\ \mathcal{Z}_{q} & \text{if } |\alpha| = 0, |\alpha^{C_{p}}| > 0, |\alpha^{C_{q}}| \leq 0 \\ \mathcal{Z}_{p}^{*} & \text{if } |\alpha| = 0, |\alpha^{C_{p}}| > 0, |\alpha^{C_{q}}| \geq 0 \\ \mathcal{K}_{p} \mathbb{Z}_{q}^{*} & \text{if } |\alpha| = 0, |\alpha^{C_{p}}| > 0, |\alpha^{C_{q}}| \leq 0 \\ \mathcal{K}_{q} \mathbb{Z}_{q}^{*} & \text{if } |\alpha| = 0, |\alpha^{C_{p}}| \leq 0, |\alpha^{C_{q}}| \geq 0 \\ 0 & \text{otherwise}. \end{cases}$$

Using Theorem 3.4, we have the following equivalences of spectra which simplify computations:

**Lemma 3.5.** (a) There are the equivalences

- (1)  $S^{\xi} \wedge H\mathbb{Z} \simeq S^{\xi^{j}} \wedge H\mathbb{Z} \text{ if } (j, pq) = 1.$
- (2)  $S^{\xi^p} \wedge H\mathbb{Z} \simeq S^{\xi^{jp}} \wedge H\mathbb{Z} \text{ if } (j,q) = 1.$
- (3)  $S^{\xi^q} \wedge H\underline{\mathbb{Z}} \simeq S^{\xi^{jq}} \wedge H\underline{\mathbb{Z}} \text{ if } (j,p) = 1.$
- (4)  $\Sigma^{\xi^p} H \mathbb{Z} \simeq \Sigma^{\xi} H(\mathcal{K}_n \mathbb{Z}^*).$
- (5)  $H\underline{\mathbb{Z}}^* \simeq \Sigma^{2-\xi} H\underline{\mathbb{Z}}$ .
- (b) The equivalence (4) induces a map  $u_{\xi-\xi^p}: H\underline{\mathbb{Z}} \to \Sigma^{\xi-\xi^p}H\underline{\mathbb{Z}}$  and equivalence (5) induces  $u_{\xi}: H\mathbb{Z} \to \Sigma^{\xi-2}H\mathbb{Z}$ .

**Proof.** (a) These follow by computing homotopy groups of  $S^{\xi^j - \xi^k} \wedge H\underline{\mathbb{Z}}$  and using Theorem 3.4.

(b) Consider the  $C_p$ -Mackey functor map  $\underline{\mathbb{Z}}^* \to \underline{\mathbb{Z}}$  which is the identity on the orbit  $C_p/e$ . By tensoring with the constant  $C_q$ -Mackey functor  $\underline{\mathbb{Z}}$  and using equivalence (4), we obtain

$$H\underline{\mathbb{Z}} \stackrel{\cong}{\to} \Sigma^{\xi - \xi^p} H \mathcal{K}_p \underline{\mathbb{Z}}^* \to \Sigma^{\xi - \xi^p} H\underline{\mathbb{Z}}.$$

Next, consider the canonical  $C_{pq}$ -Mackey functor map  $\underline{\mathbb{Z}}^* \to \underline{\mathbb{Z}}$  which is the identity at level  $C_{pq}/e$ . Applying (5) yields  $u_{\xi}$ .

Remark 3.6. As a consequence of Lemma 3.5, only the  $C_{pq}$ -representations of the form

$$V = a + b\xi + c\xi^p + d\xi^q$$
 for  $a, b, c, d \in \mathbb{Z}$ 

are useful for our computations.

# 4. Spherical $C_p$ -slices for the spectrum $S^W \wedge H \underline{\mathbb{Z}}$

In this section, we recall certain general facts about the slice tower of any genuine G-spectra. We also prove a few results for  $C_p$ -spectra of the form  $S^W \wedge H\mathbb{Z}$ .

Recall the *localizing subcategories* of  $\operatorname{Sp}^G$  are those closed under weak equivalences, cofibrations, extensions, coproducts, and well-ordered homotopy colimits ([15, §2]). For each integer n, let  $\tau_{\geq n}$  denote the localizing subcategory of  $\operatorname{Sp}^G$  generated by the G-spectra of the form  $\Sigma_G^\infty G_+ \wedge_H S^{k\rho_H}$ , where H ranges over all subgroups of G,  $\rho_H$  is the regular representation of H and  $k|H| \geq n$ .

Associated to the category  $\tau_{\geq n}$  there is a natural localization functor  $P^{n-1}$ . As  $\tau_{\geq n+1} \subseteq \tau_{\geq n}$ , there is a natural transformation  $P^n \to P^{n-1}$ , which yields the slice tower (1) for each spectrum X. The homotopy fibre of  $P^nX \to P^{n-1}X$ , denoted by  $P^n_nX$ , is called the *n-slice* for the spectrum X (see [15, 4]).

A spectrum  $X \in \tau_{\geq n}$  is called *n-slice connective* written  $X \geq n$ . A criterion for this to hold is produced by

**Theorem 4.1** (Theorem A, [12]). A G-spectrum  $X \ge n$  if and only if the non equivariant homotopy groups

$$\pi_k \Phi^H(X) = 0$$

for all  $H \leq G$  and  $k < \frac{n}{|H|}$ .

Here  $\Phi^H(X)$  is the H-geometric fixed points of the spectrum X, that is, the geometric fixed point of  $i_H^*(X)$ , the restriction of the G-spectrum X to  $H \leq G$ .

Remark 4.2. For a fixed point free G-representation V,  $a_V \in \pi_{-V}(S^0)$  is represented by the map  $S^0 = \{0, \infty\} \subseteq S^V$ . For any  $X \in \operatorname{Sp}^G$ ,  $\Phi^G(X)$  is the fixed point spectrum of the localization  $X[a_{\bar{\rho}_G}^{-1}]$  by the element  $a_{\bar{\rho}_G}$ . For  $G = C_{pq}$ , it is evident that  $\xi^p \oplus \xi^q \subset \bar{\rho}_{C_{pq}}$ . Therefore,  $a_{\bar{\rho}_{C_{pq}}}$  is trivial by the ring structure described in [2]. Hence, the spectrum  $\Phi^{C_{pq}}(X)$  has trivial homotopy groups.

The local objects in  $\operatorname{Sp}^G$  with respect to  $\tau_{\geq n}$  are those X such that  $[Y,X]^G=0$  for all  $Y\in\tau_{\geq n}$ . These spectra are called *n-slice coconnective* spectra, and we write  $X\leq n$  in this case. Equivalently,

**Lemma 4.3.** A spectrum is n-slice coconnective if the restriction  $i_H^*(X) \le n$  and  $[S^{k\rho_G}, X]^G = 0$  for all  $k \ge 0$  such that k|G| > n. We denote such an X by  $X \le n$ .

By [9, Proposition 2.6], if a spectrum X satisfies  $k \le X \le n$ , the same holds for all its restrictions. Moreover,  $n \le X \le n$  if and only if  $X = P_n^n X$  in which case X is called an n-slice.

In general,  $\Sigma^V P_n^n X$  need not equal  $P_{n+\dim(V)}^{n+\dim(V)}(\Sigma^V X)$ , but it does commute with suspensions of the following forms.

**Proposition 4.4** (Corollary 4.25, [10]). *If X an m-slice*,  $\Sigma^{k\rho_G}X$  *is* (m+k|G|)-slice for all  $k \in \mathbb{Z}$ , that is,

$$P_{m+k|G|}^{m+k|G|}(\Sigma^{k\rho_G}X) \simeq \Sigma^{k\rho_G}P_m^m(X).$$

The homotopy spectral sequence of the slice tower (1) of a G-spectrum X is called the *slice spectral sequence* for X, with

$$E_2^{s,t} = \underline{\pi}_{t-s}(P_t^t X) \Rightarrow \underline{\pi}_{t-s}(X)$$

(more generally, it computes the RO(G)-graded homotopy groups  $\underline{\pi}_{\star}(X)$ ). The associated filtration on the homotopy groups of the spectrum X is

$$F^{s}\underline{\pi}_{t}(X) = \operatorname{Ker}(\underline{\pi}_{t}(X) \to \underline{\pi}_{t}(P^{t+s-1}X)).$$

In [15], Ullman proved following

**Proposition 4.5** (Corollary 8.6, [15]). *If* n > 0, then for a (n + 1)-coconnective spectrum X,

$$F^{s}\underline{\pi}_{n}(X) \cong \mathcal{F}^{(s+n-1)/n}\underline{\pi}_{n}X.$$

The filtration  $\mathcal{F}^k M$  for a Mackey functor M is given by:

$$\mathcal{F}^k\underline{M}(G/H)=\{x\in\underline{M}(G/H)\,:\, i_{|J|}^*x=0, \text{ for all } J\subset H, |J|\leq k\}.$$

Where  $i_a^*$ : Mack<sub>G</sub>  $\rightarrow$  Mack<sub>G</sub> such that

$$i_a^*\underline{M}(G/H) = \begin{cases} 0 & \text{if } |H| > a, \\ \underline{M}(G/H) & \text{otherwise,} \end{cases}$$

with restrictions and transfers induced from M.

For the rest of this section,  $G=C_p$ , for p odd prime order. Let W be a (non-virtual) representation  $C_p$  of the form  $m+n\xi$  with  $m,n\geq 0$ . To describe the  $\dim(W)$ -slice of  $S^W\wedge H\underline{\mathbb{Z}}$ , we begin with the n-coconnective case:

**Lemma 4.6.** For a  $C_p$ -representation  $W = m + n\xi$ , the  $C_p$ -spectrum  $S^W \wedge H\underline{\mathbb{Z}}$  is slice  $\dim(W)$ -coconnective if and only if

$$m \le \frac{2n+3p}{p-1}.$$

**Proof.** By Lemma 4.3, we need to find conditions on *m*, *n* such that

$$[S^{k\rho},S^W\wedge H\underline{\mathbb{Z}}]^{C_p}=\tilde{H}^{W-k\rho}_{C_p}(S^0;\underline{\mathbb{Z}})=0$$

for all  $k \ge 0$  with kp > m + 2n. These cohomology groups are computed in [5, Corollary B.10]. For completeness, recall that

$$\underline{H}_{C_p}^{\alpha}(S^0; \underline{\mathbb{Z}}) \cong \begin{cases}
\underline{\mathbb{Z}} & \text{if } |\alpha| = 0, |\alpha^{C_p}| \leq 0 \\
\underline{\mathbb{Z}}^* & \text{if } |\alpha| = 0, |\alpha^{C_p}| > 0 \\
\langle \mathbb{Z}/p \rangle & \text{if } |\alpha| > 0, |\alpha^{C_p}| \leq 0 \text{ even} \\
\langle \mathbb{Z}/p \rangle & \text{if } |\alpha| < 0, |\alpha^{C_p}| \geq 3 \text{ odd} \\
0 & \text{otherwise.} 
\end{cases} \tag{3}$$

Let  $\alpha = W - k\rho$ . Then  $(|\alpha|, |\alpha|^{C_p}) = (m + 2n - kp, m - k)$ . Therefore, since m + 2n - kp < 0, then by (3), the group  $\tilde{H}_{C_p}^{W-k\rho}(S^0; \underline{\mathbb{Z}})$  is non-zero if and only if  $m - k \geq 3$  odd, equivalently (by transforming the inequalities),

$$\frac{m+2n}{p} < k \le m-3.$$

So there exists k with  $0 \le k$  and kp > m + 2n such that  $\tilde{H}_{C_p}^{W-k\rho}(S^0;\underline{\mathbb{Z}})$  is non-trivial if and only if  $m-3 > \frac{m+2n}{p}$ . Therefore,  $S^W \wedge H\underline{\mathbb{Z}} \le \dim(W)$  if and only if  $m \le \frac{2n+3p}{p-1}$ . The result follows.

**Lemma 4.7.** Let  $W = m + n\xi$  be a representation of  $C_p$ . Then the spectrum  $S^W \wedge H\underline{\mathbb{Z}} \geq \dim(W)$  if and only if

$$\frac{2n}{p-1} \le m.$$

**Proof.** Write  $\dim(W) = d$ , the  $C_p$ -spectrum  $S^W \wedge H\underline{\mathbb{Z}} \geq d$  if and only if  $\pi_k \Phi^{C_p}(S^W \wedge H\underline{\mathbb{Z}}) = 0$  for all  $k \leq d/p$ , as the statement of Theorem 4.1 for H = e is always true for  $X = S^W \wedge H\underline{\mathbb{Z}}$ . Since  $\Phi^{C_p}(\Sigma^W \wedge H\underline{\mathbb{Z}}) \cong S^m \wedge H\mathbb{Z}/p$ ,  $\pi_k \Phi^{C_p}(\Sigma^W \wedge H\underline{\mathbb{Z}}) \neq 0$  if and only if k = m. Therefore, the statement is true if and only if  $m \geq d/p = (m+2n)/p$ .

Lemma 4.6 and Lemma 4.7 together directly imply the following

**Proposition 4.8.** For a  $C_p$ -representation W, the spectrum  $S^W \wedge H \underline{\mathbb{Z}}$  is a  $\dim(W)$ -slice if and only if

$$\frac{\dim(W)}{p} \le \dim(W^{C_p}) \le \frac{\dim(W)}{p} + 3.$$

Remark 4.9. For p=3, we have an alternative proof: Recall that the regular representation is  $\rho_{C_3}=1+\xi$ . Therefore, we have  $S^{m+n\xi}\wedge H\underline{\mathbb{Z}}\cong S^{n\rho_{C_3}}\wedge \Sigma^{m-n}H\underline{\mathbb{Z}}$ . So, the problem reduces to showing that  $\Sigma^{m-n}H\underline{\mathbb{Z}}$  is an (m-n)-slice. Clearly,  $\Sigma^{m-n}H\underline{\mathbb{Z}}\geq m-n$ . By [5, Corollary B.10], it follows that if  $0\leq m-n\leq 4$ , then the spectrum  $\Sigma^{m-n}H\underline{\mathbb{Z}}\leq m-n$ .

For n > 0, recall [20, §3.1]  $d_n$  to be the number of the integers of the same parity as n that lie between  $\frac{n}{p}$  and n-2. It can be expressed using the following formula:

$$d_n := \frac{1}{2}(n - \frac{(n - n_0)}{p} - \delta) \tag{4}$$

where  $n_0$  is the residue of n modulo p and

$$\delta = \begin{cases} 2 & \text{if } n_0 \text{ is even} \\ 1 & \text{if } n_0 \text{ is odd} \\ 0 & \text{if } n_0 = 0. \end{cases}$$
 (5)

**Corollary 4.10.** For a  $C_p$ -representation W, if the  $C_p$ -spectrum  $S^W \wedge H\underline{\mathbb{Z}}$  is slice  $\dim(W)$ -coconnective then the integer

$$\frac{1}{2}(\dim(W) - \dim(W^{C_p})) - d_{\dim(W)} \ge -1.$$

The equality holds, if and only if  $S^W \wedge H\underline{\mathbb{Z}}$  is a dim(W)-slice.

**Proof.** Using (4),

$$\begin{split} \frac{1}{2}(\dim(W) - \dim(W^{C_p})) - d_{\dim(W)} &= \frac{1}{2}(\frac{\dim(W)}{p} - \dim(W^{C_p}) - \frac{\dim(W)_0}{p} + \delta) \\ &\geq \frac{1}{2}(-3 - \frac{\dim(W)_0}{p} + \delta) \text{ (by Proposition 4.8)} \\ &\geq -\frac{3}{2} \text{ (by (5))}. \end{split}$$

If the equality holds, then

$$\frac{\dim(W)}{p} - \dim(W^{C_p}) = \frac{\dim(W)_0}{p} - 2 - \delta \le 0 \text{ (by (5))}.$$

Then by Proposition 4.8, the spectrum  $S^W \wedge H\underline{\mathbb{Z}}$  is a dim(*W*)-slice. The result follows.

For the cyclic group  $G=C_{p^k}$ , Yarnall ([20, Main Theorem, §4]) computed an explicit formula of the n-slice associated to the  $C_{p^k}$ -spectrum  $S^n \wedge H \underline{\mathbb{Z}}$  when  $n \geq 3$ . To summarise her formula for k=1, define two  $C_p$ -representations

$$W(n) = (n - 2d_n) + d_n \xi$$
 and  $W'(n) = W(n) + (2 - \xi)$ ,

and then

$$P_{n}^{n}(S^{n} \wedge H\underline{\mathbb{Z}}) = \begin{cases} S^{W(n)} \wedge H\underline{\mathbb{Z}} & \text{if } p \nmid n, n_{0} = \text{even} \\ S^{W'(n)} \wedge H\underline{\mathbb{Z}} & \text{if } p \nmid n, n_{0} = \text{odd} \\ S^{W'(n)} \wedge H\underline{\mathbb{Z}} & \text{if } p \mid n. \end{cases}$$
(6)

Let W be a  $C_p$ -representation. The slice formula for the non-trivial  $RO(C_p)$ suspensions  $S^W \wedge H\underline{\mathbb{Z}}$  of  $H\underline{\mathbb{Z}}$  can be derived from the following result.

**Theorem 4.11** (Theorem C, [12]). Let p be odd. For the  $C_p$ -spectrum  $X = S^W \land H\mathbb{Z}$ , we have equivalences for any  $a \in \mathbb{Z}$ 

$$\begin{split} P^{ap}_{ap}(X) &\simeq S^{a\rho} \wedge H(\underline{H}^{W-a\rho}_{C_p}(S^0;\underline{\mathbb{Z}})). \\ P^{ap+2k+1}_{ap+2k+1}(X) &\simeq S^{a\rho+k\xi+1} \wedge H(\mathcal{P}^0\underline{H}^{W-a\rho-k\xi-1}_{C_p}(S^0;\underline{\mathbb{Z}})), \ 0 \leq k \leq \frac{p-3}{2}. \\ P^{ap+2k+2}_{ap+2k+2}(X) &\simeq S^{a\rho+(k+1)\xi} \wedge H(EC_p \otimes \underline{H}^{W-a\rho-(k+1)\xi}_{C_p}(S^0;\underline{\mathbb{Z}})), \ 0 \leq k \leq \frac{p-3}{2}. \end{split}$$

Here, for a G-Mackey functor  $\underline{M}$ ,  $EG \otimes \underline{M}$  denote the subMackey functor generated by  $\underline{M}(G/e)$ .  $\mathcal{P}^0$  is the functor that takes a Mackey functor to the largest quotient in which the restriction maps are injections.

As a consequences of the above discussion one may easily derive the formula for  $\dim(W)$ -slice for the spectrum  $S^W \wedge H\mathbb{Z}$  as follows.

**Proposition 4.12.** Let W be a  $C_p$ -representation with dimension  $\omega$ . Then

- (1) If the spectrum  $S^W \wedge H\underline{\mathbb{Z}}$  is slice  $\omega$ -coconnective, then either  $S^W \wedge H\underline{\mathbb{Z}}$  itself a  $\omega$ -slice or  $S^{W(\omega)} \wedge H\underline{\mathbb{Z}}$  is the  $\omega$ -slice of  $S^W \wedge H\underline{\mathbb{Z}}$ .
- (2) If the spectrum  $S^{\overline{W}} \wedge H \underline{\mathbb{Z}}$  is slice  $\omega$ -connective, then either  $S^W \wedge H \underline{\mathbb{Z}}$  itself a  $\omega$ -slice or

$$P_{\omega}^{\omega}(S^{W} \wedge H\underline{\mathbb{Z}}) = \begin{cases} S^{W'(\omega)} \wedge H\underline{\mathbb{Z}} & \text{if } p \mid \omega \\ S^{W'(\omega)} \wedge H\underline{\mathbb{Z}} & \text{if } p \nmid \omega \text{ and } \omega_{0} = \text{odd} \\ S^{W(\omega)} \wedge H\underline{\mathbb{Z}} & \text{if } p \nmid \omega \text{ and } \omega_{0} = \text{even.} \end{cases}$$

**Proof.** Here we prove part (1); the proof of part (2) is similar to (1). Set  $X := S^W \wedge H \underline{\mathbb{Z}}$ . For (1), first consider  $p \mid \omega$ , that is,  $\omega = ap$  for some integer a. One readily computes

$$W(\omega) = a + (\frac{a(p-1)}{2})\xi.$$

Since we consider X as slice  $\omega$ -coconnective, thus by Lemma 4.10, one derives either  $\dim(W^{C_p}) \leq a$  or X itself is a  $\omega$ -slice. Then by Theorem 4.11, the  $\omega$ -slice of X,

$$P_{\omega}^{\omega}(X) \simeq S^{a\rho} \wedge H(\underline{H}_{C_{p}}^{W-a\rho}(S^{0};\underline{\mathbb{Z}})) \cong S^{a\rho} \wedge H\underline{\mathbb{Z}} \cong S^{W(\omega)} \wedge H\underline{\mathbb{Z}} \text{ (by Proposition 2.4)}.$$

If  $\omega$  of the form ap+2k+1 where  $0 \le k \le \frac{p-3}{2}$ , then  $W(\omega) = a+1+(\frac{a(p-1)}{2}+k)\xi$ . If X is not a  $\omega$ -slice, then Lemma 4.10 computes dim  $W^{C_p} \le a+1$ . Thus by Theorem 4.11,

$$\begin{split} P_{\omega}^{\omega}(X) &\simeq S^{a\rho+k\xi+1} \wedge H\mathcal{P}^{0}(\underline{H}_{C_{p}}^{W-a\rho-k\xi-1}(S^{0};\underline{\mathbb{Z}})) \\ &\cong S^{a\rho+k\xi+1} \wedge H\mathcal{P}^{0}(\underline{\mathbb{Z}}) \\ &= S^{a\rho+k\xi+1} \wedge H\underline{\mathbb{Z}} \\ &\cong S^{W(\omega)} \wedge H\mathbb{Z} \text{ (by Proposition 2.4)} \end{split}$$

Finally, if  $\omega$  is of the form ap+2k+2 for some  $0 \le k \le \frac{p-3}{2}$ , then we compute  $W(\omega) = a+2+(\frac{a(p-1)}{2}+k)\xi$ . The result follows by analogous computations above along with the observation  $EC_p \otimes \underline{\mathbb{Z}}^* \cong \underline{\mathbb{Z}}^* \cong \underline{\mathbb{Z}}^{\xi-2} H\underline{\mathbb{Z}}$ .

**Example 4.13.** (1) Let us consider the spectrum  $X = S^{2+5\xi} \wedge H \underline{\mathbb{Z}}$ . Using Proposition 4.8, one observes X is 12-coconnective but not slice 12-connective. Also note that  $S^{W(12)} \wedge H \underline{\mathbb{Z}} \cong S^{4+4\xi} \wedge H \underline{\mathbb{Z}}$  is a 12-slice (by Theorem 4.12).

(2) Next, consider  $X = S^{8+2\xi} \wedge H \underline{\mathbb{Z}}$ , which is slice 12-connective but not slice 12-coconnective. Here we compute  $S^{W'(12)} \wedge H \underline{\mathbb{Z}} \cong S^{6+3\xi} \wedge H \underline{\mathbb{Z}}$ , and it is the 12-slice of X by Theorem 4.12.

# 5. $C_{pq}$ -slices for $S^V \wedge H \underline{\mathbb{Z}}$

In this section, we compute the  $C_{pq}$ -slices for the spectrum  $S^{\alpha} \wedge H \underline{\mathbb{Z}}$  for each  $\alpha \in RO(C_{pq})$ . Slices of any  $C_{pq}$ -spectrum have a special feature: under a mild condition, the information of the  $C_p$ - and  $C_q$ -slices of the corresponding restrictions give the slices of  $C_{pq}$ -spectrum as follows.

**Proposition 5.1.** Let X be a  $C_{pq}$ -spectrum such that  $\underline{\pi}_{\star}(X)$  is cohomological. Then X is a k-slice if and only if both  $i_{C_p}^*(X)$  and  $i_{C_q}^*(X)$  are k-slices.

**Proof.** Assume both  $i_{C_p}^*(X)$  and  $i_{C_q}^*(X)$  are k-slices. Then, by Proposition 3.3 X is a k-slice for the group  $C_{pq}$ . The other direction follows from [10, Proposition 4.13].

For each  $k \ge 0$ , the Mackey functor  $\underline{\pi}_k S^V \wedge H \underline{\mathbb{Z}}$  is cohomological (see Definition 3.2). Therefore, as a direct consequence of Proposition 5.1, one may extend the detection result (Proposition 4.8) for  $C_p$  to  $C_{pq}$  case:

**Corollary 5.2.** Let p < q be odd primes and V be a  $C_{pq}$ -representation of the form  $V = a + b\xi + c\xi^p + d\xi^q$ . Then the spectrum  $S^V \wedge H\mathbb{Z}$  is a  $C_{pq}$ -dim(V)-slice if and only if

$$i) \frac{2(b+d)}{p-1} \le a + 2c \le \frac{2(b+d)+3p}{p-1}.$$

$$ii) \frac{2(b+c)}{a-1} \le a + 2d \le \frac{2(b+c)+3q}{a-1}.$$

*ii)* 
$$\frac{2(b+c)}{q-1} \le a + 2d \le \frac{2(b+c)+3q}{q-1}$$
.

**Proof.** If  $S^V \wedge H\underline{\mathbb{Z}}$  is a slice, it must be a dim(V)-slice. Using Proposition 5.1, it is enough to show that both the spectra  $i_{C_p}^*(S^V \wedge H\underline{\mathbb{Z}})$  and  $i_{C_q}^*(S^{\hat{V}} \wedge H\underline{\mathbb{Z}})$  are  $\dim(V)$ -slices. Hence, the result follows from Proposition 4.8.

Remark 5.3. If the spectrum  $S^V \wedge H\mathbb{Z}$  is not an *n*-slice, then we will construct certain (co)fiber sequences to study the slices of this spectrum. For  $\ell \geq 1$ , repeated applications of the map  $u_{(\xi-\xi^p)}$  in Lemma 3.5 yields a map  $H\underline{\mathbb{Z}} \to$  $S^{\ell(\xi-\xi^p)} \wedge H\underline{\mathbb{Z}}$ . Then smashing with  $S^V$  yields a map  $S^V \wedge H\underline{\mathbb{Z}} \to S^{V+\ell(\xi-\xi^p)} \wedge S^V$  $H\underline{\mathbb{Z}}$ . We denote it by  $u_{\ell(\xi-\xi^p)}^V$  and its cofiber by  $C(V,\ell,p)$ . For the prime q, one has the similar construction. This cofiber spectrum plays an important role in analyzing slices of the spectrum  $S^V \wedge H\mathbb{Z}$ . To understand the slices of  $C(V, \ell, p)$ , we begin with the following result.

**Lemma 5.4.** The spectrum  $\Sigma^n H \mathcal{K}_p(\mathbb{Z}/p)$  is a pn-slice and  $\Sigma^n H(\mathcal{K}_p(\mathbb{Z}/p) \oplus \mathbb{Z}/p)$  $\mathcal{K}_q(\mathbb{Z}/q)$ ) is a npq-slice.

**Proof.** As  $\Sigma^n H\mathcal{K}_p(\mathbb{Z}/p)$  has homotopy groups concentrated only in degree n, it is (n + 1)-coconnective. So, by Proposition 4.5  $F^{s+1}\underline{\pi}_n\Sigma^n H\mathcal{K}_p\langle \mathbb{Z}/p\rangle \neq$  $F^s \underline{\pi}_n \Sigma^n H \mathcal{K}_p \langle \mathbb{Z}/p \rangle$  if and only if  $\mathcal{F}^{(s+n)/n} \mathcal{K}_p \langle \mathbb{Z}/p \rangle \neq \mathcal{F}^{(s+n-1)/n} \mathcal{K}_p \langle \mathbb{Z}/p \rangle$ . This can only happen when

$$(s+n-1)/n < p$$
 and  $(s+n)/n \ge p$ .

This gives s = n(p-1) and so,

$$F^{s+1}\underline{\pi}_{n}\Sigma^{n}H\mathcal{K}_{p}\langle \mathbb{Z}/p\rangle = 0$$
 and  $F^{s}\underline{\pi}_{n}\Sigma^{n}H\mathcal{K}_{p}\langle \mathbb{Z}/p\rangle \cong \mathcal{K}_{p}\langle \mathbb{Z}/p\rangle$ .

The quotient  $F^s\underline{\pi}_{t-s}(\Sigma^n H\mathcal{K}_p\langle \mathbb{Z}/p\rangle)/F^{s+1}\underline{\pi}_{t-s}(\Sigma^n H\mathcal{K}_p\langle \mathbb{Z}/p\rangle)$  can only be nonzero when t - s = n and hence, t = np. Therefore,  $\sum_{p} H\mathcal{K}_p \langle \mathbb{Z}/p \rangle$  is an np-slice. The result for  $\mathcal{K}_p(\mathbb{Z}/p) \oplus \mathcal{K}_q(\mathbb{Z}/q)$  can be proved analogously.

**Proposition 5.5.** For  $\ell \geq 1$ , the cofiber spectrum  $C(V, \ell, p)$  has only kp-slices for each  $k \in \{\dim(V^{C_p}) - 2\ell, \cdots, \dim(V^{C_p}) - 2\}$ .

**Proof.** First, we compute the Mackey functor valued homotopy groups of the cofiber  $C(V, \ell, p)$ . Note that the restriction of the cofiber to the subgroup  $C_q$  is trivial and the homotopy groups of  $C(V,\ell,p)$  are cohomological. Using Proposition 3.3, we conclude that  $\underline{\pi}_k C(V,\ell,p)$  is non-zero if and only if  $\underline{\pi}_k i_{C_p}^* C(V,\ell,p)$  is non-zero. Set  $i_{C_p}^*(V) = m + n\xi$  for  $m,n \geq 0$ . The cofiber sequence

$$S^{m+n\xi} \wedge H\underline{\mathbb{Z}} \to S^{m+n\xi+\ell(\xi-2)} \wedge H\underline{\mathbb{Z}} \to i_{C_n}^*C(V,\ell,p)$$

yields the long exact sequence:

$$\cdots \underline{H}^{m-k+n\xi}_{C_p}(S^0) \to \underline{H}^{m-k-2\ell+(n+\ell)\xi}_{C_p}(S^0) \to \underline{\pi}_k i_{C_p}^* C(V,\ell,p) \to \underline{H}^{m+1-k+n\xi}_{C_p}(S^0) \cdots$$

Incorporating the computation (3) in the above long exact sequence, one yields

$$\underline{\pi}_k(C(V,\ell,p)) \cong \begin{cases} \mathcal{K}_p \langle \mathbb{Z}/p \rangle & \text{if } k \in \{m-2\ell,\cdots,m-2\} \\ 0 & \text{otherwise.} \end{cases}$$

Therefore, the map  $u^V_{\xi-\xi^p}$  induces a cofiber sequence as follows

$$C(V, \ell - 1, p) \stackrel{u_{\xi - \xi^p}^V}{\to} C(V, \ell, p) \to \Sigma^{m - 2l} H \mathcal{K}_p \langle \mathbb{Z}/p \rangle \tag{7}$$

with  $C(V, 1, p) \cong \Sigma^{m-2} H \mathcal{K}_p \langle \mathbb{Z}/p \rangle$ .

To compute the slices of  $C(V, \ell, p)$ , we use induction on  $\ell$ . For  $\ell = 1$ , it is clear from Lemma 5.4 that C(V, 1, p) has only one (m-2)p-slice. Using (7) it is clear that  $C(V, \ell, p)$  has an (m-2)p-slice as  $\Sigma^{m-2}H\mathcal{K}_p\langle \mathbb{Z}/p\rangle$ . The other slices of  $C(V, \ell, p)$  are obtained from the induction hypothesis and [19, Proposition 2.32]. Hence, the result follows.

Remark 5.6. Using Lemma 3.5 (b), construct a map

$$u^V_{\ell\xi}:S^V\wedge H\underline{\mathbb{Z}}\to S^{V+\ell(\xi-2)}\wedge H\underline{\mathbb{Z}}$$

analogous to  $u^V_{\ell(\xi-\xi^p)}$ . We let  $\mathcal{S}(p)=\{\dim(V^{C_p})-2\ell,\cdots,\dim(V^{C_p})-2\}$ . Then direct computation yields

$$\underline{\pi}_k(\text{cofiber}(u_{l\xi})) = \begin{cases} \mathcal{K}_p \langle \mathbb{Z}/p \rangle \oplus \mathcal{K}_q \langle \mathbb{Z}/q \rangle & \text{if } k \in \mathcal{S}(p) \cap \mathcal{S}(q) \\ \mathcal{K}_p \langle \mathbb{Z}/p \rangle & \text{if } k \in \mathcal{S}(p) \cap \mathcal{S}(q)^c \\ \mathcal{K}_q \langle \mathbb{Z}/q \rangle & \text{if } k \in \mathcal{S}(p)^c \cap \mathcal{S}(q) \\ 0, & \text{otherwise.} \end{cases}$$

This allows us to identifies the slices for the cofiber of  $u_{l\xi}$  using Lemma 5.4.

**Theorem 5.7.** For a real  $C_{pq}$ -representation V with dimension v, the v-slice of the  $C_{pq}$ -spectrum  $S^V \wedge H \underline{\mathbb{Z}}$  is spherical. In particular, if  $i_{C_p}^*(S^V \wedge H \underline{\mathbb{Z}}) \leq v$  and  $i_{C_q}^*(S^V \wedge H \underline{\mathbb{Z}}) \leq v$ , then for  $0 \leq k < v$ , the k-slice of  $S^V \wedge H \underline{\mathbb{Z}}$  is either  $\Sigma^{k/p} H \mathcal{K}_p \langle \mathbb{Z}/p \rangle$  or  $\Sigma^{k/q} H \mathcal{K}_q \langle \mathbb{Z}/q \rangle$  or the wedge of the two.

**Proof.** Using Remark 3.6, assume  $V=a+b\xi+c\xi^p+d\xi^q$  for some a,b,c and d are non-negative integers. Note that for any  $C_p$ -representation W, by Lemma 4.6 and Lemma 4.7, the  $C_p$ -spectrum  $S^W \wedge H\underline{\mathbb{Z}}$  is either slice d-connective or slice d-coconnective, for  $d=\dim(W)$ . Therefore, to identify the slices of the  $C_{pq}$ -spectrum  $S^V \wedge H\underline{\mathbb{Z}}$  it is enough to prove the following four cases:

Case (i). 
$$i_{C_n}^*(S^V \wedge H\underline{\mathbb{Z}}) \leq \nu$$
 and  $i_{C_n}^*(S^V \wedge H\underline{\mathbb{Z}}) \leq \nu$ .

We want to construct a spherical  $\nu$ -slice mapping to  $S^V \wedge H\underline{\mathbb{Z}}$  with cofiber  $\leq \nu - 1$ . By Lemma 4.6, the hypothesis of (i) yields

$$a + 2c \le \frac{2(b+d) + 3p}{p-1}$$
 and  $a + 2d \le \frac{2(b+c) + 3q}{q-1}$ .

By Proposition 4.12, there exist  $C_p$ - and  $C_q$ -representations  $m+n\xi$  and  $m'+n'\xi$ , respectively, such that  $S^{m+n\xi} \wedge H\underline{\mathbb{Z}}$  is the  $\nu$ -slice of  $i_{C_p}^*(S^V \wedge H\underline{\mathbb{Z}})$  and  $S^{m'+n'\xi} \wedge H\underline{\mathbb{Z}}$  is the  $\nu$ -slice of  $i_{C_q}^*(S^V \wedge H\underline{\mathbb{Z}})$ . By Lemma 4.10, it follows that b+d>n and b+c>n'.

For 
$$V' = V - (b + d - n)(\xi - \xi^p)$$
, we have

$$i_{C_p}^*(V') = m + n\xi$$
 and  $i_{C_q}^*(V') = i_{C_q}^*(V)$ .

By Proposition 5.5, there exists a map

$$u_{(b+d-n)(\xi-\xi^p)}^{V'}: S^{V'} \wedge H\underline{\mathbb{Z}} \to S^V \wedge H\underline{\mathbb{Z}},$$

and the cofiber C(V', b+d-n, p) has slices only in filtrations  $p(m-2(b+d-n)), \dots, p(m-2)$ .

By Proposition 4.12,

$$\begin{split} m &= \dim(V'^{C_p}) = \dim(V) - 2d_{\dim(V)} = \frac{\dim(V) - \dim(V)_0}{p} + \delta \\ &\leq \frac{\dim(V) - 1}{p} + 1 \text{ (by (5))}. \end{split}$$

It readily follows  $p(m-2) < \nu$ . Therefore, the cofiber C(V', b+d-n, p) is slice  $(\nu-1)$ -connective.

Since  $i_{C_q}^*(S^V \wedge H\underline{\mathbb{Z}}) \leq \nu$ , we may define a representation

$$V'' := V - (b + c - n')(\xi - \xi^q),$$

and deduce  $i_{C_q}^*(V'') = m' + n'\xi$  and  $i_{C_p}^*(V'') = i_{C_p}^*(V)$ . By Proposition 5.5, there is a map  $u_{(b+c-n')(\xi-\xi^q)}: S^{V''} \wedge H\underline{\mathbb{Z}} \to S^V \wedge H\underline{\mathbb{Z}}$  and as above the associated cofiber C(V'',b+c-n',q) has slices in filtration  $< \nu$ , so  $C(V'',b+c-n',q) \le \nu-1$ .

Finally, set

$$\widehat{V} := V - (b + d - n)(\xi - \xi^p) - (b + c - n')(\xi - \xi^q).$$

Then,  $i_{C_p}^*(S^{\widehat{V}} \wedge H\underline{\mathbb{Z}})$  (respectively,  $i_{C_q}^*(S^{\widehat{V}} \wedge H\underline{\mathbb{Z}})$ ) is the  $\nu$ -slice for  $i_{C_p}^*(S^V \wedge H\underline{\mathbb{Z}})$  (respectively,  $i_{C_q}^*(S^V \wedge H\underline{\mathbb{Z}})$ ). By Proposition 5.1, the  $C_{pq}$ -spectrum  $S^{\widehat{V}} \wedge H\underline{\mathbb{Z}}$  is thus the  $\nu$ -slice of  $S^V \wedge H\underline{\mathbb{Z}}$ .

Case (ii).  $i_{C_p}^*(S^V \wedge H\underline{\mathbb{Z}}) \geq \nu$  and  $i_{C_q}^*(S^V \wedge H\underline{\mathbb{Z}}) \leq \nu$ . By Lemma 4.6,

$$\ell_p = \lceil \frac{p \dim(V^{C_p}) - \dim(V) - 3p}{2p} \rceil \tag{8}(p)$$

is the least positive integer such that the  $C_{pq}$ -spectrum  $S^{V+\ell_p(\xi-\xi^p)} \wedge H\underline{\mathbb{Z}} \leq \nu$ . Then the spectrum  $i_{C_p}^*(S^{V+\ell_p(\xi-\xi^p)} \wedge H\underline{\mathbb{Z}}) \leq \nu$ . For such l, by Proposition 5.5, there exists a map

$$u^{V}_{\ell_{p}(\xi-\xi^{p})}: S^{V} \wedge H\underline{\mathbb{Z}} \to S^{V+\ell_{p}(\xi-\xi^{p})} \wedge H\underline{\mathbb{Z}}$$

and the fiber of this map (equivalently,  $\Sigma^{-1}C(V,\ell_p,p)$ ) has slice filtration  $\geq \nu+1$ . Now, as  $i_{C_p}^*(S^{V+\ell_p(\xi-\xi^p)}\wedge H\underline{\mathbb{Z}}) \leq \nu$  and  $i_{C_q}^*(S^{V+\ell_p(\xi-\xi^p)}\wedge H\underline{\mathbb{Z}}) \leq \nu$ , by case (i), we have the spherical  $\nu$ -slice and also all the lower slices can be determined. Hence, the result follows.

**Case (iii).**  $i_{C_p}^*(S^V \wedge H\underline{\mathbb{Z}}) \leq \nu$  and  $i_{C_q}^*(S^V \wedge H\underline{\mathbb{Z}}) \geq \nu$ . It is analogous to case (ii).

Case (iv).  $i_{C_p}^*(S^V \wedge H\underline{\mathbb{Z}}) \geq \nu$  and  $i_{C_q}^*(S^V \wedge H\underline{\mathbb{Z}}) \geq \nu$ .

Then  $\ell_0:=\max\{\ell_p,\ell_q\}$  is the positive integer such that  $i_{C_p}^*S^{V+\ell_0(\xi-2)}\wedge H\underline{\mathbb{Z}}\leq \nu$  and  $i_{C_p}^*S^{V+\ell_0(\xi-2)}\wedge H\underline{\mathbb{Z}}\leq \nu$ . Now we are in case (i). Therefore, by Proposition 4.12, there exists a  $C_p$ -representation  $m+n\xi$  and a  $C_q$ -representation  $m'+n'\xi$  such that  $S^{m+n\xi}\wedge H\underline{\mathbb{Z}}$  (resp.,  $S^{m'+n'\xi}\wedge H\underline{\mathbb{Z}}$ ) is the spherical  $\nu$ -slice of  $i_{C_p}^*(S^{V+\ell_0(\xi-2)}\wedge H\underline{\mathbb{Z}})$  (resp.,  $i_{C_q}^*(S^{V+\ell_0(\xi-2)}\wedge H\underline{\mathbb{Z}})$ ).

By hypothesis (iv), Proposition 4.1 yields

$$a + 2c \ge \frac{\nu}{p}$$
 and  $a + 2d \ge \frac{\nu}{q}$ ,

which implies that  $b+d+\ell_0 \le n$  and  $b+c+l_0 \le n'$ . So, we set

$$\widehat{V} = V + \ell_0(\xi - 2) + (n - b - d - \ell_0)(\xi - \xi^p) + (n' - b - c - \ell_0)(\xi - \xi^q),$$

as in case (i) we see that the  $C_{pq}$ -spectrum  $S^{\widehat{V}} \wedge H\underline{\mathbb{Z}}$  is the  $\nu$ -slice for  $S^V \wedge H\underline{\mathbb{Z}}$ , which is spherical.

**Corollary 5.8.** Any  $\alpha \in RO(C_{pq})$  has  $\beta \in RO(C_{pq})$  such that  $S^{\alpha} \wedge H\underline{\mathbb{Z}}$  has a  $\dim(\alpha)$ -slice  $S^{\beta} \wedge H\underline{\mathbb{Z}}$ . The other slices of  $S^{\alpha} \wedge H\underline{\mathbb{Z}}$  are suspensions of  $H\mathcal{K}_p\langle \mathbb{Z}/p\rangle$  or  $H\mathcal{K}_q\langle \mathbb{Z}/q\rangle$  or wedges of the two.

**Proof.** We can always find some  $k \in \mathbb{Z}$  such that  $\alpha + k\rho_{C_{pq}}$  is a non-virtual representation of  $C_{pq}$ . Therefore, using Proposition 4.4 it is enough to consider  $\alpha = V = a + b\xi + c\xi^p + d\xi^q$  for a, b, c, and d non-negative integers. Proposition 5.5 and Theorem 5.7 together then imply the result.

**Example 5.9.** For the cyclic group  $C_{15}$  with p=3 and q=5 we shall write a slice tower of the  $C_{15}$ -spectrum  $S^6 \wedge H \underline{\mathbb{Z}}$ . Note that this type of spectrum was studied by Yarnall in [20] for  $G=C_{p^k}$ , in particular for  $C_p$ . In our case, the restrictions satisfy

$$i_{C_3}^*(S^6 \wedge H\underline{\mathbb{Z}}) \ge 6 \text{ and } i_{C_5}^*(S^6 \wedge H\underline{\mathbb{Z}}) \ge 6,$$

so, we are in case (iv) of the Theorem 5.7. Here  $\ell_0 = \max\{\ell_3, \ell_5\} = 2$  and n = 2 = n'. Therefore, by construction of  $\widehat{V}$  in case (iv) of the theorem:

$$\hat{V} = 6 + 2(\xi - 2) + (2 - 2)(\xi - \xi^3) + (2 - 2)(\xi - \xi^5) = 2 + 2\xi.$$

Hence, using Remark 5.6, the slice tower is:

$$45 - slice: \qquad \Sigma^3 H(\mathcal{K}_q \langle \mathbb{Z}/q \rangle \oplus \mathcal{K}_p \langle \mathbb{Z}/p \rangle) \longrightarrow S^6 \wedge H\underline{\mathbb{Z}}$$
 
$$\downarrow^{u_\xi}$$
 
$$6 - slice: \qquad \qquad S^{4+\xi} \wedge H\mathbb{Z}.$$

**Example 5.10.** Consider the  $C_{15}$ -spectrum  $X = S^{11\xi^5} \wedge H \mathbb{Z}$ . Note that

$$i_{C_3}^*(X) \cong S^{11\xi} \wedge H\underline{\mathbb{Z}} \text{ and } i_{C_5}^*(X) \cong S^{22} \wedge H\underline{\mathbb{Z}}.$$

Therefore, we are in case (iv) of Theorem 5.7 as  $i_{C_3}^*(X) \le 22$  and  $i_{C_5}^*(X) \ge 22$ .

By (8)(q),  $l_5 = 8$ , so  $i_{C_5}^* S^{8(\xi - \xi^5)} \wedge X \le 22$ , and  $i_{C_5}^* (S^{8\xi + 3\xi^5} \wedge H\underline{\mathbb{Z}}) \le 22$ . Above the 22-slice, all higher dimension slices are obtained by the computations of the fiber of the map  $u_{\xi - \xi^q}$ . By repeated use of Theorem 5.7 (iv), we obtain the slice tower of  $S^{11\xi^5} \wedge H\underline{\mathbb{Z}}$  in filtrations > 22.

Since, the spectrum  $S^{8\xi+3\xi^5} \wedge H\underline{\mathbb{Z}}$  satisfies both

$$i_{C_3}^*(S^{8\xi+3\xi^5} \wedge H\underline{\mathbb{Z}}) \le 22 \text{ and } i_{C_5}^*(S^{8\xi+3\xi^5} \wedge H\underline{\mathbb{Z}}) \le 22,$$

so we are in case (i) of Theorem 5.7. Now we compute  $d_{22}=7$  for p=3 and  $d_{22}=8$  for p=5. (see Remark 4.9) By Theorem 5.7 we have

$$\hat{V}$$
: = 8 $\xi$  + 3 $\xi$ <sup>5</sup> - (11 - 7)( $\xi$  -  $\xi$ <sup>3</sup>) = 4 $\xi$  + 4 $\xi$ <sup>3</sup> + 3 $\xi$ <sup>5</sup>

with  $S^{\widehat{V}} \wedge H\underline{\mathbb{Z}}$  the 22-slice of  $S^{11\xi^5}$ .

Thus, the slice tower for  $S^{11\xi^q} \wedge H\mathbb{Z}$  is

95-slice: 
$$\Sigma^{19}H\mathcal{K}_{q}\langle\mathbb{Z}/q\rangle \longrightarrow S^{11\xi^{q}} \wedge H\underline{\mathbb{Z}}$$

$$\downarrow u_{\xi-\xi^{q}}$$
85-slice: 
$$\Sigma^{17}H\mathcal{K}_{q}\langle\mathbb{Z}/q\rangle \longrightarrow S^{\xi+10\xi^{q}} \wedge H\underline{\mathbb{Z}}$$

$$\downarrow u_{\xi-\xi^{q}}$$
75-slice: 
$$\Sigma^{15}H\mathcal{K}_{q}\langle\mathbb{Z}/q\rangle \longrightarrow S^{2\xi+9\xi^{q}} \wedge H\underline{\mathbb{Z}}$$

$$\downarrow u_{\xi-\xi^{q}}$$
65-slice: 
$$\Sigma^{13}H\mathcal{K}_{q}\langle\mathbb{Z}/q\rangle \longrightarrow S^{3\xi+8\xi^{q}} \wedge H\underline{\mathbb{Z}}$$

$$\downarrow u_{\xi-\xi^{q}}$$
55-slice: 
$$\Sigma^{11}H\mathcal{K}_{q}\langle\mathbb{Z}/q\rangle \longrightarrow S^{4\xi+7\xi^{q}} \wedge H\underline{\mathbb{Z}}$$

$$\downarrow u_{\xi-\xi^{q}}$$
45-slice: 
$$\Sigma^{9}H\mathcal{K}_{q}\langle\mathbb{Z}/q\rangle \longrightarrow S^{5\xi+6\xi^{q}} \wedge H\underline{\mathbb{Z}}$$

$$\downarrow u_{\xi-\xi^{q}}$$
35-slice: 
$$\Sigma^{7}H\mathcal{K}_{q}\langle\mathbb{Z}/q\rangle \longrightarrow S^{6\xi+5\xi^{q}} \wedge H\underline{\mathbb{Z}}$$

$$\downarrow u_{\xi-\xi^{q}}$$
25-slice: 
$$\Sigma^{5}H\mathcal{K}_{q}\langle\mathbb{Z}/q\rangle \longrightarrow S^{7\xi+4\xi^{q}} \wedge H\underline{\mathbb{Z}}$$

$$\downarrow u_{\xi-\xi^{q}}$$
22-slice: 
$$S^{4\xi+4\xi^{3}+3\xi^{5}} \wedge H\underline{\mathbb{Z}} \longrightarrow S^{8\xi+3\xi^{q}} \wedge H\underline{\mathbb{Z}}$$

$$\downarrow u_{\xi-\xi^{q}}$$
18-slice: 
$$\Sigma^{6}H\mathcal{K}_{p}\langle\mathbb{Z}/p\rangle \longrightarrow \bigvee_{i\in\{0,1,2,3\}} \Sigma^{2i} HK_{p} < Z/p > \bigvee_{u_{\xi-\xi^{p}}}$$
12-slice: 
$$\Sigma^{4}H\mathcal{K}_{p}\langle\mathbb{Z}/p\rangle \longrightarrow \bigvee_{i\in\{0,1,2\}} \Sigma^{2i} HK_{p} < Z/p > \bigvee_{u_{\xi-\xi^{p}}}$$
6-slice: 
$$\Sigma^{2}H\mathcal{K}_{p}\langle\mathbb{Z}/p\rangle \longrightarrow H\mathcal{K}_{p}\langle\mathbb{Z}/p\rangle \vee \Sigma^{2}H\mathcal{K}_{p}\langle\mathbb{Z}/p\rangle$$
0-slice: 
$$H\mathcal{K}_{p}\langle\mathbb{Z}/p\rangle$$

#### References

- [1] BASU, SAMIK; GHOSH, SUROJIT. Computations in  $C_{pq}$ -Bredon cohomology. *Math. Z.* **293** (2019), no. 3-4, pp. 1443-1487. MR4024594, Zbl 1435.55003, arXiv:1612.02159, doi: 10.1007/s00209-019-02248-2.1403, 1404
- [2] BASU, SAMIK; GHOSH, SUROJIT. Equivariant cohomology for cyclic groups of squarefree order. Preprint, 2020. arXiv:2006.09669. 1406
- [3] CARUSO, JEFFREY L. Operations in equivariant Z/p-cohomology. Math. Proc. Cambridge Philos. Soc. 126 (1999), no. 3, pp. 521–541. MR1684248, Zbl 0933.55009, doi: 10.1017/S0305004198003375.
- [4] DUGGER, DANIEL. An Atiyah–Hirzebruch spectral sequence for KR-theory. K-Theory 35 (2005), no. 3-4, pp. 213–256. MR2240234, Zbl 1109.14024, arXiv:math/0304099, doi:10.1007/s10977-005-1552-9. 1405
- [5] FERLAND, KEVIN K. On the RO(G)-graded equivariant ordinary cohomology of generalized G-cell complexes for  $G=\mathbb{Z}/p$ . Ph.D. Thesis, Syracuse University. 1999. 176 pp. ISBN: 978-0599-42024-3. MR2699528. 1407, 1408
- [6] GREENLEES, JOHN P. C.; MAY, J. PETER. Generalized Tate cohomology. Mem. Amer. Math. Soc. 113 (1995), no. 543, viii+178 pp. MR1230773, Zbl 0876.55003, doi:10.1090/memo/0543.
- [7] GREENLEES, JOHN P. C.; MAY, J. PETER. Equivariant stable homotopy theory. Hand-book of algebraic topology., 277–323, North-Holland, Amsterdam, 1995. MR1361893, Zbl 0866.55013, doi: 10.1016/B978-044481779-2/50009-2.
- [8] GUILLOU, BERTRAND J.; YARNALL, CAROLYN. The Klein four slices of  $\Sigma^n H \mathbb{F}_2$ . *Math. Z.* **295** (2020), no. 3-4, pp. 1405–1441. MR4125695, Zbl 1454.55004, doi: 10.1007/s00209-019-02433-3. 1402
- [9] HILL, MICHAEL A. The equivariant slice filtration: a primer. Homology Homotopy Appl. 14 (2012), no. 2, pp. 143–166. MR3007090, Zbl 1403.55003, arXiv:1107.3582, doi:10.4310/HHA.2012.v14.n2.a9. 1400
- [10] HILL, MICHAEL A.; HOPKINS, MICHAEL J.; RAVENEL, DOUGLAS, C. On the nonexistence of elements of Kervaire invariant one. *Ann. of Math.* (2) 184 (2016), no. 1, pp. 1–262. MR3505179, Zbl 1366.55007, arXiv:0908.3724, doi: 10.4007/annals.2016.184.1.1. 1406
- [11] HILL, MICHAEL A.; HOPKINS, MICHAEL J.; RAVENEL, DOUGLAS, C. The slice spectral sequence for the  $C_4$  analog of real K-theory. Forum Math. **29** (2017), no. 2, pp. 383-447. MR3619120, Zbl 1362.55009, arXiv:1502.07611, doi:10.1515/forum-2016-0017. 1400, 1402, 1406, 1410
- [12] HILL, MICHAEL A.; YARNALL, CAROLYN. A new formulation of the equivariant slice filtration with applications to  $C_p$ -slices. *Proc. Amer. Math. Soc.* **146** (2018), no. 8, pp. 3605-3614. MR3803684, Zbl 1395.55014, arXiv:1703.10526, doi: 10.1090/proc/13906. 1400
- [13] LEWIS, L. GAUNCE, JR. The RO(G)-graded equivariant ordinary cohomology of complex projective spaces with linear  $\mathbb{Z}/p$  actions. *Algebraic topology and transformation groups* (Göttingen, 1987), 53-122. Lecture Notes in Math., 1361, Math. Gottingensis. *Springer, Berlin*, 1988. MR979507, Zbl 0669.57024, doi: 10.1007/BFb0083034.
- [14] MANDELL, MICHAEL A. & MAY, J. PETER. Equivariant orthogonal spectra and S-modules. Mem. Amer. Math. Soc. 159 (2002), no. 755, x+108 pp. MR1922205, Zbl 1025.55002, doi: 10.1090/memo/0755. 1406, 1409
- [15] ULLMAN, JOHN. On the regular slice spectral sequence. Ph.D. Thesis, Massachusetts Institute of Technology, 2013. ProQuest LLC. MR3211466. 1401
- [16] SHULMAN, MEGAN Equivariant local coefficients and the RO(G)-graded cohomology of classifying spaces. Ph.D. Thesis, University of Chicago, 2010. 127 pp.MR2941379, arXiv:1405.1770. 1402

- [17] VOEVODSKY, VLADIMIR. Open problems in the motivic stable homotopy theory. I. Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), 3–34. Int. Press Lect. Ser., 3, I. Int. Press, Somerville, MA, 2002. MR1977582, Zbl 1047.14012. 1405, 1406
- [18] WEBB, PETER. A guide to Mackey functors. Handbook of algebra, 2, 805–836. Handb. Algebr., 2, Elsevier/North-Holland, Amsterdam, 2000. MR1759612, Zbl 0972.19001, doi: 10.1016/S1570-7954(00)80044-3. 1399
- [19] WILSON, DYLAN. On categories of slices. Preprint, 2017. arXiv:1711.03472. 1412
- [20] Yarnall, Carolyn. The slices of  $S^n \wedge H\underline{\mathbb{Z}}$  for cyclic *p*-groups. *Homology Homotopy Appl.* **19** (2017), no. 1, pp. 1–22. MR3628673, Zbl 1394.55007, doi:10.4310/HHA.2017.v19.n1.a1.
- [21] YOSHIDA, TOMOYUKI. On G-functors. II. Hecke operators and G-functors. J. Math. Soc. Japan 35 (1983), no. 1, 179–190. MR679083, Zbl 0507.20010, doi: 10.2969/jmsj/03510179. 1400, 1408, 1409, 1415
- [22] ZENG, MINGCONG. Equivariant Eilenberg–MacLane spectra in cyclic p-groups. Preprint, 2017. arXiv:1710.01769. 1404 1402

(Surojit Ghosh) Department of Mathematics, Indian Institute of Technology, Roorkee, Uttarakhand-247667, INDIA

surojitghosh89@gmail.com; surojit.ghosh@ma.iitr.ac.in

This paper is available via http://nyjm.albany.edu/j/2022/28-59.html.