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Slice �ltration of certain Cpq-spectra

Surojit Ghosh

Abstract. For p, q distinct odd primes and a virtual Cpq-representation �,
we compute the slices of the Cpq-spectrum S� ∧Hℤ, and prove the existence
of spherical slice for this spectrum.
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1. Introduction
For a �xed �nite group G, a central computational tool in G-equivariant sta-

ble homotopy theory is the RO(G)-graded homotopy groups of a G-spectrum,
but there are di�cult to compute.

It was �rst observed by Voevodsky ([17]) that the stable motivic homotopy
theory can be understood by their slice �ltration. This slice �ltration yields a
spectral sequence, a tool computing various cohomology theories in algebraic
geometry context. In equivariant homotopy theory, for any G-spectrum X, we
have an analogous equivariant slice tower

⋯Pn+1X → PnX → Pn−1X → ⋯. (1)

In this tower, PnX is the localization with respect to the localizing category of
G-spectra generated by Σ∞G G+ ∧H Sk�H where �H is the regular representation
of H ≤ G and k|H| ≥ n. The homotopy �ber PnnX of PnX → Pn−1X is called
the n-slice of X.An n-slice is called spherical if it is of the form SV ∧Hℤ,where
V is a (non-virtual) representation of G of dimension n.
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The homotopy spectral sequence of (1) is an essential tool in modern homo-
topy theory due to Hill-Hopkins-Ravenel in [10]. This is called the slice spec-
tral sequence and it eventually computes the RO(G)-graded homotopy groups
of spectra.

The homotopy groups of the C2n -spectrum N2n
2 MUℝ played a crucial role in

solving the Kervaire invariant one problem. In [10, Theorem 6.5], Hill, Hop-
kins, and Ravenel proved that the 0-th slice of this spectrum is the Eilenberg-
Mac Lane spectrum Hℤ. This yields that in the slice spectral sequence of any
N2n
2 MUℝ-module, all the di�erentials and extensions live inHℤ-modules. This

motivates us to compute the slice �ltration of the certain Hℤ-modules. The
computation of the slice tower for Sn ∧Hℤwas made in [20] and for Sn� ∧Hℤ
in [11] for the group Cpn . Recently, in [8], Guilliou and Yarnall computed the
C2 × C2-slice tower for the spectrum Sn ∧ HF2.

In this article, for a Cpq-representation V, we investigate the spectrum SV ∧
Hℤ and provide a description of the slices of it as follows:

TheoremA. For anyd-dimensionalCpq-representationV, thed-slice of theCpq-
spectrum SV ∧ Hℤ is spherical.

See Theorem 5.7.
As a direct consequence, we derive:

Corollary B. For � ∈ RO(Cpq) there exists � ∈ RO(Cpq) such that S� ∧ Hℤ
has a dim(�)-slice S� ∧ Hℤ. The other slices are suspensions of HKp⟨ℤ∕p⟩ or
HKq⟨ℤ∕q⟩ or wedges of them.

See Corollary 5.8.

Organization. Section 2 provides a short tour of equivariant homotopy theory.
A few useful Mackey functors both in the context of Cp and Cpq have been
described, and as a consequence, we prove certain equivalences of spectra in
Section 3. Section 4 is dedicated to explaining the slice �ltration of the Cp-
spectrum SW ∧ Hℤ. Finally, in Section 5, we provide a careful analysis of the
Cpq-spectrum SV ∧ Hℤ with a result concerning the existence of a spherical
slice.

Notation1.1. For anorthogonalG-representationV, S(V)denotes the unit sphere,
D(V) the unit disk, and SV the one-point compacti�cation ≅ D(V)∕S(V).

Acknowledgement. The author wants to thank Samik Basu for suggesting
the problem and David Blanc for a careful reading of the �rst draft of this work,
which was partially supported by Israel Science Foundation grant 770∕16.

2. Preliminaries
In this section, we recall speci�c fundamental ideas and techniques in Bre-

don cohomology. Throughout the paper, G will be a �nite group.
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De�nition 2.1. The Burnside category of G is the category BurnG of �nite G-
sets, with Hom(S, T) the group completion of the set of correspondences S ←
U → T.

A functorM ∶ BurnopG → Ab from the Burnside category into abelian groups
is calledMackey functor.

Explicitly, aG-Mackey functorM is a collection of commutativeWG(H)-groups
M(G∕H) one for each subgroup H ≤ G, each accompanied by transfer trHK ∶
M(G∕K) → M(G∕H) and restriction resHK ∶ M(G∕H) → M(G∕K) for K ≤ H ≤
G such that

(1) trHJ = trHK tr
K
J and resHJ = resKJ res

H
K for all J ≤ K ≤ H.

(2) trHK (
.x) = trHK (x) for all x ∈ M(G∕K) and 
 ∈ WH(K).
(3) 
. resHK (x) = resHK (x) for all x ∈ M(G∕H) and 
 ∈ WH(K).
(4) resHK tr

J
K(x) =

∑

∈WH(K)


. trKJ∩K(x) for all subgroups J,H ≤ K.

Usually, we describe a Mackey functor by a Lewis diagram (see [13]). For a
Cp-Mackey functor N, we shall use the diagram:

N(Cp∕Cp)

res
Cp
e
��

N ∶

N(Cp∕e)

tr
Cp
e

TT

and a Cpq-Mackey functorM, we shall associate the following diagram.

M(Cpq∕Cpq)res
Cpq
Cp

��

res
Cpq
Cq

��
M ∶ M(Cpq∕Cp)

tr
Cpq
Cp

@@

res
Cp
e

++

M(Cpq∕Cq)

tr
Cpq
Cq

^^

res
Cq
e

ssM(Cpq∕e).

tr
Cp
e

kk

tr
Cq
e

33

We denote the category of G-Mackey functors byMackG.

Example 2.2. For an abelian group C, the constant Mackey functor C is given
by the assignment C(G∕H) = C with resHK = IdC and trHK = multiplication
by the index [H ∶ K]. One can de�ne the dual constant Mackey functor C∗ by
interchanging the role of trHK and resHK forK ≤ H ≤ G. In particular, forG = Cp,
cyclic group of order p, the constant and dual constant Cp-Mackey functors are
listed as follows.
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ℤ

1
��

ℤ

p

��
ℤ ∶ ℤ∗ ∶

ℤ

p

UU

ℤ

1

UU

Let SpG be the category of orthogonal G-spectra ([14]). It has a symmetric
model category structure (SpG, ∧, S0) as in [10, Appendix A, B], and we use SpG

as our model for the G-equivariant stable homotopy theory.
It seems that the equivariant homotopy groups are more naturally graded on

RO(G), the free abelian group generated by the irreducible representations of
G. For any � = V −W ∈ RO(G), we de�ne

��(X) ∶= [SV , SW ∧ X]G ,

where the right hand side denotes the set of homotopy classes of maps in SpG.
Thus, any orthogonal G-spectrum X has RO(G)-graded homotopy groups, de-
noted by �★(X). It induces a Mackey functor ��(X) such that

��(X)(G∕H) ∶= ��(Σ∞G G∕H+ ∧ X).

For any G-Mackey functorM there is an equivariant Eilenberg-Mac Lane spec-
trumHM [7, Theorem 5.3] with

�k(HM) = {
M for k = 0,
0 otherwise.

The equivariant Eilenberg-Mac Lane spectrum HM gives rise to a reduced co-
homology theory given by

H̃�
G(X;M) ≅ [X, Σ�HM]G .

This cohomology is called the RO(G)-graded Bredon cohomology with coe�-
cients in the Mackey functorM.

It is interesting to note that the suspension isomorphism for RO(G)-graded
cohomology theory H̃�

G(−;M) takes the form H̃�
G(X;M) ≅ H̃�+V

G (SV∧X;M) for
every based G-space X and representation V.

Notation 2.3. For each odd cyclic group Cn, the representation ring RO(Cn) is
generated by the trivial representation 1, and the 2-dimension representation �j

given by the rotation by the angle 2�j
n

for j = 1,⋯ , n−1
2
.

Proposition 2.4 ([22], Proposition 4.25). Let p be an odd prime. In SpCp , there
is an equivalenceHℤ ∧ S� ≃ Hℤ ∧ S�j whenever p ∤ j.

We recall that there are change of groups functors on equivariant spectra.
The restriction functor i∗H ∶ SpG → SpH from G-spectra to H-spectra has a left
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adjoint given by smashing with G+ ∧H (−). For a G-CW complex X, this also
induces an isomorphism for cohomology with Mackey functor coe�cients

H̃�
G(G+ ∧H X;M) ≅ H̃�

H(i
∗
HX; ↓

G
H (M)).

Here ↓GH (M) is the H-Mackey functor de�ned by ↓GH (M)(H∕L) ∶= M(G∕H ×
H∕L).

The RO(G)-graded cohomology theories may also be assumed to be Mackey
functor-valued as in the de�nition below.

De�nition 2.5. Let X be a pointed G-space,M be any G-Mackey functor, and
� ∈ RO(G). Then the Mackey functor valued cohomology H�

G(X;M) ([16,
§2.3]) is de�ned:

H�
G(X;M)(G∕K) = H̃�

G((G∕K)+ ∧ X;M).

The restriction and transfer maps are induced by the appropriate maps of G-
spectra.

3. Some important Mackey functors
We start by recalling the Cp-Mackey functors from Example 2.2 along with

the following.
ℤ∕p

��
⟨ℤ∕p⟩ ∶

0

UU

Nowobserve that theBurnside categoryBurnCpq is isomorphic toBurnCp⊗BurnCq
formed as the product set of objects and tensor product set ofmorphisms. Thus,
we may de�ne a Cpq-Mackey functor by tensoring Mackey functors on Cp and
Cq. This is de�ned by a functor ⊠∶ MackCp × MackCq → MackCpq denoted by
(M,N) ↦ M ⊠N such that on objects G∕H = Cp∕H1 × Cq∕H2,

M ⊠N(G∕H) = M(Cp∕H1) ⊗ N(Cq∕H2).
The restrictions and transfers are given by tensoring the restrictions and trans-
fers forM and N (§3, [1]). The following Mackey functors have particular im-
portance in our case.

De�nition 3.1. For a Cp-Mackey functorM, de�ne Cpq-Mackey functors

CpM ∶= M ⊠ℤ∗, KpM ∶= M ⊠ℤ.
The Lewis diagrams for the Mackey functorsKp⟨ℤ∕p⟩ andKq⟨ℤ∕q⟩ are

ℤ∕p1

�� ��

ℤ∕q

		

1

��
ℤ∕p

q

GG

//

0

UU

oo

0

II

//

ℤ∕qp

WW

oo0

mm //

0

oo 11 (2)
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Kp⟨ℤ∕p⟩ Kq⟨ℤ∕q⟩

Also we denote the tensor products

ℤ⊠ℤ and ℤ∗⊠ℤ∗

again by ℤ and ℤ∗ respectively, and these are the constant and dual constant
Mackey functors for the group Cpq. Recall [18, §7] that

De�nition 3.2. AG-Mackey functorM is called cohomologicalMackey functor
if, for K ≤ H ≤ G, the composition trHK res

H
K ∶ M(G∕H) → M(G∕H) of the

restriction resHK ∶ M(G∕H) → M(G∕K) with the transfer trHK ∶ M(G∕K) →
M(G∕H) is equal to the multiplication by index [H ∶ K].

Anymodule over the constant Mackey functorℤ is a cohomological Mackey
functor (see [21]). For the group G = Cpq, any cohomological Mackey functor
satis�es the following:

Proposition 3.3. LetM be a cohomological Cpq-Mackey functor such that both
the abelian groupsM(Cpq∕Cp) andM(Cpq∕Cq) are trivial. Then,M(Cpq∕Cpq) is
the trivial abelian group.

Proof. SinceM is cohomological, for K ≤ H ≤ G, the composition

trHK res
H
K ∶ M(G∕H) → M(G∕H)

is given by the multiplication by index [H ∶ K]. Let x ∈ M(Cpq∕Cpq); applying
above map we get

px = 0 and qx = 0.
Since, p and q are relatively prime, x = 0. The result follows. �

With the above notations, we recall from [1] the additive structure of the
Mackey functorH�

Cpq
(S0; ℤ) as follows:

Theorem 3.4 (Theorem 7.3, [1]). Let � ∈ RO(Cpq). Then the Mackey functor

H�
Cpq
(S0; ℤ) ≅

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Kp⟨ℤ∕p⟩ if |�| < 0, |�Cp | > 1, |�Cq | ≤ 1 odd
Kq⟨ℤ∕q⟩ if |�| < 0, |�Cp | ≤ 1, |�Cq | > 1 odd
Kp⟨ℤ∕p⟩ ⊕Kq⟨ℤ∕q⟩ if |�| < 0, |�Cp | > 1, |�Cq | > 1 odd
Kp⟨ℤ∕p⟩ ⊕Kq⟨ℤ∕q⟩ if |�| > 0, |�Cp | ≤ 0, |�Cq | ≤ 0 even
Kp⟨ℤ∕p⟩ if |�| > 0, |�Cp | ≤ 0, |�Cq | > 0 even
Kq⟨ℤ∕q⟩ if |�| > 0, |�Cp | > 0, |�Cq | ≤ 0 even
ℤ if |�| = 0, |�Cp | ≤ 0, |�Cq | ≤ 0
ℤ∗ if |�| = 0, |�Cp | > 0, |�Cq | > 0
Kpℤ

∗ if |�| = 0, |�Cp | > 0, |�Cq | ≤ 0
Kqℤ

∗ if |�| = 0, |�Cp | ≤ 0, |�Cq | > 0
0 otherwise.
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Using Theorem 3.4, we have the following equivalences of spectra which
simplify computations:

Lemma 3.5. (a) There are the equivalences
(1) S� ∧ Hℤ ≃ S�j ∧ Hℤ if (j, pq) = 1.
(2) S�p ∧ Hℤ ≃ S�jp ∧ Hℤ if (j, q) = 1.
(3) S�q ∧ Hℤ ≃ S�jq ∧ Hℤ if (j, p) = 1.
(4) Σ�pHℤ ≃ Σ�H(Kpℤ

∗).
(5) Hℤ∗ ≃ Σ2−�Hℤ.

(b) The equivalence (4) induces a map u�−�p ∶ Hℤ → Σ�−�pHℤ and equivalence
(5) induces u� ∶ Hℤ → Σ�−2Hℤ.

Proof. (a) These follow by computing homotopy groups of S�j−�k ∧ Hℤ and
using Theorem 3.4.

(b) Consider the Cp-Mackey functor map ℤ∗ → ℤ which is the identity on
the orbit Cp∕e. By tensoring with the constant Cq-Mackey functor ℤ and using
equivalence (4), we obtain

Hℤ
≅
→ Σ�−�pHKpℤ

∗ → Σ�−�pHℤ.

Next, consider the canonical Cpq-Mackey functor map ℤ∗ → ℤ which is the
identity at level Cpq∕e. Applying (5) yields u� . �

Remark 3.6. As a consequence of Lemma 3.5, only the Cpq-representations of
the form

V = a + b� + c�p + d�q for a, b, c, d ∈ ℤ
are useful for our computations.

4. Spherical Cp-slices for the spectrum SW ∧ Hℤ
In this section, we recall certain general facts about the slice tower of any

genuine G-spectra. We also prove a few results for Cp-spectra of the form SW ∧
Hℤ.

Recall the localizing subcategories of SpG are those closed under weak equiv-
alences, co�brations, extensions, coproducts, and well-ordered homotopy col-
imits ([15, §2]). For each integer n, let �≥n denote the localizing subcategory
of SpG generated by the G-spectra of the form Σ∞G G+ ∧H S

k�H , where H ranges
over all subgroups of G, �H is the regular representation ofH and k|H| ≥ n.

Associated to the category �≥n there is a natural localization functor Pn−1.
As �≥n+1 ⊆ �≥n, there is a natural transformation Pn → Pn−1, which yields
the slice tower (1) for each spectrum X. The homotopy �bre of PnX → Pn−1X,
denoted by PnnX, is called the n-slice for the spectrum X (see [15, 4]).

A spectrum X ∈ �≥n is called n-slice connective written X ≥ n. A criterion
for this to hold is produced by
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Theorem 4.1 (Theorem A, [12]). A G-spectrum X ≥ n if and only if the non
equivariant homotopy groups

�kΦH(X) = 0

for allH ≤ G and k < n
|H|
.

Here ΦH(X) is the H-geometric �xed points of the spectrum X, that is, the
geometric �xed point of i∗H(X), the restriction of the G-spectrum X toH ≤ G.

Remark 4.2. For a �xed point free G-representation V, aV ∈ �−V(S0) is rep-
resented by the map S0 = {0,∞} ⊆ SV . For any X ∈ SpG, ΦG(X) is the �xed
point spectrum of the localization X[a−1�̄G ] by the element a�̄G . For G = Cpq, it
is evident that �p ⊕ �q ⊂ �̄Cpq . Therefore, a�̄Cpq is trivial by the ring structure
described in [2]. Hence, the spectrum ΦCpq (X) has trivial homotopy groups.

The local objects in SpG with respect to �≥n are thoseX such that [Y, X]G = 0
for all Y ∈ �≥n. These spectra are called n-slice coconnective spectra, and we
write X ≤ n in this case. Equivalently,

Lemma 4.3. A spectrum is n-slice coconnective if the restriction i∗H(X) ≤ n and
[Sk�G , X]G = 0 for all k ≥ 0 such that k|G| > n.We denote such an X by X ≤ n.

By [9, Proposition 2.6], if a spectrum X satis�es k ≤ X ≤ n, the same holds
for all its restrictions. Moreover, n ≤ X ≤ n if and only if X = PnnX in which
case X is called an n-slice.

In general, ΣVPnnX need not equal Pn+dim(V)n+dim(V)(Σ
VX), but it does commute with

suspensions of the following forms.

Proposition 4.4 (Corollary 4.25, [10]). IfX anm-slice, Σk�GX is (m+k|G|)-slice
for all k ∈ ℤ, that is,

Pm+k|G|m+k|G|(Σ
k�GX) ≃ Σk�GPmm(X).

The homotopy spectral sequence of the slice tower (1) of a G-spectrum X is
called the slice spectral sequence for X, with

Es,t2 = �t−s(P
t
tX) ⇒ �t−s(X)

(more generally, it computes the RO(G)-graded homotopy groups �★(X)). The
associated �ltration on the homotopy groups of the spectrum X is

Fs�t(X) = Ker(�t(X) → �t(P
t+s−1X)).

In [15], Ullman proved following

Proposition 4.5 (Corollary 8.6, [15]). If n > 0, then for a (n + 1)-coconnective
spectrum X,

Fs�n(X) ≅ ℱ(s+n−1)∕n�nX.
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The �ltration ℱkM for a Mackey functorM is given by:

ℱkM(G∕H) = {x ∈ M(G∕H) ∶ i∗|J|x = 0, for all J ⊂ H, |J| ≤ k}.

Where i∗a ∶ MackG → MackG such that

i∗aM(G∕H) = {
0 if |H| > a,
M(G∕H) otherwise,

with restrictions and transfers induced fromM.
For the rest of this section, G = Cp, for p odd prime order. LetW be a (non-

virtual) representation Cp of the form m + n� with m, n ≥ 0. To describe the
dim(W)-slice of SW ∧ Hℤ, we begin with the n-coconnective case:

Lemma 4.6. For a Cp-representationW = m + n�, the Cp-spectrum SW ∧ Hℤ
is slice dim(W)-coconnective if and only if

m ≤
2n + 3p
p − 1 .

Proof. By Lemma 4.3, we need to �nd conditions onm, n such that

[Sk�, SW ∧ Hℤ]Cp = H̃W−k�
Cp

(S0; ℤ) = 0

for all k ≥ 0 with kp > m + 2n. These cohomology groups are computed in [5,
Corollary B.10]. For completeness, recall that

H�
Cp
(S0; ℤ) ≅

⎧
⎪
⎪

⎨
⎪
⎪
⎩

ℤ if |�| = 0, |�Cp | ≤ 0
ℤ∗ if |�| = 0, |�Cp | > 0
⟨ℤ∕p⟩ if |�| > 0, |�Cp | ≤ 0 even
⟨ℤ∕p⟩ if |�| < 0, |�Cp | ≥ 3 odd
0 otherwise.

(3)

Let � = W − k�. Then (|�|, |�|Cp) = (m + 2n − kp,m − k). Therefore, since
m + 2n − kp < 0, then by (3), the group H̃W−k�

Cp
(S0; ℤ) is non-zero if and only

ifm − k ≥ 3 odd, equivalently (by transforming the inequalities),
m + 2n
p < k ≤ m − 3.

So there exists k with 0 ≤ k and kp > m + 2n such that H̃W−k�
Cp

(S0; ℤ) is

non-trivial if and only ifm − 3 > m+2n
p

. Therefore, SW ∧ Hℤ ≤ dim(W) if and

only ifm ≤ 2n+3p
p−1

. The result follows. �

Lemma 4.7. Let W = m + n� be a representation of Cp. Then the spectrum
SW ∧ Hℤ ≥ dim(W) if and only if

2n
p − 1 ≤ m.
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Proof. Write dim(W) = d, the Cp-spectrum SW ∧ Hℤ ≥ d if and only if
�kΦCp(SW ∧ Hℤ) = 0 for all k ≤ d∕p, as the statement of Theorem 4.1 for
H = e is always true for X = SW ∧ Hℤ. Since ΦCp(ΣW ∧ Hℤ) ≅ Sm ∧ Hℤ∕p,
�kΦCp(ΣW ∧ Hℤ) ≠ 0 if and only if k = m. Therefore, the statement is true if
and only ifm ≥ d∕p = (m + 2n)∕p. �

Lemma 4.6 and Lemma 4.7 together directly imply the following

Proposition 4.8. For aCp-representationW, the spectrumSW∧Hℤ is adim(W)-
slice if and only if

dim(W)
p ≤ dim(WCp) ≤

dim(W)
p + 3.

Remark 4.9. For p = 3, we have an alternative proof: Recall that the regular
representation is�C3 = 1+�.Therefore, wehaveSm+n�∧Hℤ ≅ Sn�C3∧Σm−nHℤ.
So, the problem reduces to showing that Σm−nHℤ is an (m − n)-slice. Clearly,
Σm−nHℤ ≥ m−n. By [5, Corollary B.10], it follows that if 0 ≤ m − n ≤ 4, then
the spectrum Σm−nHℤ ≤ m − n.

For n > 0, recall [20, §3.1] dn to be the number of the integers of the same
parity as n that lie between n

p
and n−2. It can be expressed using the following

formula:

dn ∶=
1
2(n −

(n − n0)
p − �) (4)

where n0 is the residue of nmodulo p and

� =
⎧

⎨
⎩

2 if n0 is even
1 if n0 is odd
0 if n0 = 0.

(5)

Corollary 4.10. For a Cp-representationW, if the Cp-spectrum SW ∧Hℤ is slice
dim(W)-coconnective then the integer

1
2(dim(W) − dim(WCp)) − ddim(W) ≥ −1.

The equality holds, if and only if SW ∧ Hℤ is a dim(W)-slice.

Proof. Using (4),

1
2(dim(W) − dim(WCp)) − ddim(W) =

1
2(
dim(W)

p − dim(WCp) −
dim(W)0

p + �)

≥12(−3 −
dim(W)0

p + �) (by Proposition 4.8)

≥ − 3
2 (by (5)).
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If the equality holds, then

dim(W)
p − dim(WCp) =

dim(W)0
p − 2 − � ≤ 0 (by (5) ).

Then by Proposition 4.8, the spectrum SW ∧ Hℤ is a dim(W)-slice. The result
follows. �

For the cyclic group G = Cpk , Yarnall ([20, Main Theorem, §4]) computed
an explicit formula of the n-slice associated to the Cpk -spectrum Sn ∧Hℤwhen
n ≥ 3. To summarise her formula for k = 1, de�ne two Cp-representations

W(n) = (n − 2dn) + dn� andW′(n) = W(n) + (2 − �),

and then

Pnn(Sn ∧ Hℤ) =
⎧

⎨
⎩

SW(n) ∧ Hℤ if p ∤ n, n0 = even
SW′(n) ∧ Hℤ if p ∤ n, n0 = odd
SW′(n) ∧ Hℤ if p ∣ n.

(6)

LetW be a Cp-representation. The slice formula for the non-trivial RO(Cp)-
suspensions SW ∧ Hℤ ofHℤ can be derived from the following result.

Theorem 4.11 (Theorem C, [12]). Let p be odd. For the Cp-spectrumX = SW ∧
Hℤ, we have equivalences for any a ∈ ℤ

Papap(X) ≃ Sa� ∧ H(HW−a�
Cp

(S0; ℤ)).

Pap+2k+1ap+2k+1(X) ≃ Sa�+k�+1 ∧ H(P0HW−a�−k�−1
Cp

(S0; ℤ)), 0 ≤ k ≤
p − 3
2 .

Pap+2k+2ap+2k+2(X) ≃ Sa�+(k+1)� ∧ H(ECp ⊗HW−a�−(k+1)�
Cp

(S0; ℤ)), 0 ≤ k ≤
p − 3
2 .

Here, for aG-Mackey functorM,EG⊗M denote the subMackey functor gen-
erated byM(G∕e). P0 is the functor that takes a Mackey functor to the largest
quotient in which the restriction maps are injections.

As a consequences of the above discussion onemay easily derive the formula
for dim(W)-slice for the spectrum SW ∧ Hℤ as follows.

Proposition 4.12. LetW be a Cp-representation with dimension !. Then
(1) If the spectrum SW ∧Hℤ is slice !-coconnective, then either SW ∧Hℤ itself

a !-slice or SW(!) ∧ Hℤ is the !-slice of SW ∧ Hℤ.
(2) If the spectrum SW ∧Hℤ is slice !-connective, then either SW ∧Hℤ itself a

!-slice or

P!!(SW ∧ Hℤ) =
⎧

⎨
⎩

SW′(!) ∧ Hℤ if p ∣ !
SW′(!) ∧ Hℤ if p ∤ ! and !0 = odd
SW(!) ∧ Hℤ if p ∤ ! and !0 = even.
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Proof. Here we prove part (1); the proof of part (2) is similar to (1). Set X ∶=
SW ∧ Hℤ. For (1), �rst consider p ∣ !, that is, ! = ap for some integer a. One
readily computes

W(!) = a + (
a(p − 1)

2 )�.

Since we consider X as slice !-coconnective, thus by Lemma 4.10, one derives
either dim(WCp) ≤ a or X itself is a !-slice. Then by Theorem 4.11, the !-slice
of X,
P!!(X) ≃ Sa�∧H(HW−a�

Cp
(S0; ℤ)) ≅ Sa�∧Hℤ ≅ SW(!)∧Hℤ (by Proposition 2.4).

If! of the formap+2k+1where 0 ≤ k ≤ p−3
2
, thenW(!) = a+1+(a(p−1)

2
+k)�.

If X is not a !-slice, then Lemma 4.10 computes dimWCp ≤ a + 1. Thus by
Theorem 4.11,

P!!(X) ≃ Sa�+k�+1 ∧ HP0(HW−a�−k�−1
Cp

(S0; ℤ))

≅ Sa�+k�+1 ∧ HP0(ℤ)

= Sa�+k�+1 ∧ Hℤ

≅ SW(!) ∧ Hℤ (by Proposition 2.4)

Finally, if! is of the form ap+2k+2 for some 0 ≤ k ≤ p−3
2
, thenwe compute

W(!) = a + 2 + (a(p−1)
2

+ k)�. The result follows by analogous computations

above along with the observation ECp ⊗ℤ∗ ≅ ℤ∗ ≅
∑�−2Hℤ. �

Example 4.13. (1) Let us consider the spectrumX = S2+5�∧Hℤ. Using Propo-
sition 4.8, one observes X is 12-coconnective but not slice 12-connective. Also
note that SW(12) ∧ Hℤ ≅ S4+4� ∧ Hℤ is a 12-slice (by Theorem 4.12).
(2) Next, consider X = S8+2� ∧ Hℤ, which is slice 12-connective but not slice
12-coconnective. Here we compute SW′(12) ∧ Hℤ ≅ S6+3� ∧ Hℤ, and it is the
12-slice of X by Theorem 4.12.

5. Cpq-slices for SV ∧ Hℤ
In this section, we compute the Cpq-slices for the spectrum S� ∧Hℤ for each

� ∈ RO(Cpq). Slices of any Cpq-spectrum have a special feature: under a mild
condition, the information of theCp- andCq-slices of the corresponding restric-
tions give the slices of Cpq-spectrum as follows.

Proposition 5.1. Let X be a Cpq-spectrum such that �★(X) is cohomological.
Then X is a k-slice if and only if both i∗Cp(X) and i

∗
Cq
(X) are k-slices.

Proof. Assume both i∗Cp(X) and i
∗
Cq
(X) are k-slices. Then, by Proposition 3.3 X

is a k-slice for the group Cpq. The other direction follows from [10, Proposition
4.13]. �
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For each k ≥ 0, theMackey functor�kS
V∧Hℤ is cohomological (see De�ni-

tion 3.2). Therefore, as a direct consequence of Proposition 5.1, onemay extend
the detection result (Proposition 4.8) for Cp to Cpq case:

Corollary 5.2. Let p < q be odd primes and V be a Cpq-representation of the
formV = a+b� + c�p +d�q. Then the spectrum SV ∧Hℤ is a Cpq-dim(V)-slice
if and only if

i) 2(b+d)
p−1

≤ a + 2c ≤ 2(b+d)+3p
p−1

.

ii) 2(b+c)
q−1

≤ a + 2d ≤ 2(b+c)+3q
q−1

.

Proof. If SV ∧ Hℤ is a slice, it must be a dim(V)-slice. Using Proposition 5.1,
it is enough to show that both the spectra i∗Cp(S

V ∧ Hℤ) and i∗Cq (S
V ∧ Hℤ) are

dim(V)-slices. Hence, the result follows from Proposition 4.8. �

Remark 5.3. If the spectrum SV ∧ Hℤ is not an n-slice, then we will construct
certain (co)�ber sequences to study the slices of this spectrum. For l ≥ 1,
repeated applications of the map u(�−�p) in Lemma 3.5 yields a map Hℤ →
Sl(�−�p) ∧ Hℤ. Then smashing with SV yields a map SV ∧ Hℤ → SV+l(�−�p) ∧
Hℤ.We denote it by uVl(�−�p) and its co�ber by C(V, l, p). For the prime q, one
has the similar construction. This co�ber spectrum plays an important role in
analyzing slices of the spectrum SV∧Hℤ.To understand the slices ofC(V, l, p),
we begin with the following result.

Lemma 5.4. The spectrum ΣnHKp⟨ℤ∕p⟩ is a pn-slice and ΣnH(Kp⟨ℤ∕p⟩ ⊕
Kq⟨ℤ∕q⟩) is a npq-slice.

Proof. As ΣnHKp⟨ℤ∕p⟩ has homotopy groups concentrated only in degree
n, it is (n + 1)-coconnective. So, by Proposition 4.5 Fs+1�nΣ

nHKp⟨ℤ∕p⟩ ≠
Fs�nΣ

nHKp⟨ℤ∕p⟩ if and only ifℱ(s+n)∕nKp⟨ℤ∕p⟩ ≠ ℱ(s+n−1)∕nKp⟨ℤ∕p⟩. This
can only happen when

(s + n − 1)∕n < p and (s + n)∕n ≥ p.

This gives s = n(p − 1) and so,

Fs+1�nΣ
nHKp⟨ℤ∕p⟩ = 0 and Fs�nΣ

nHKp⟨ℤ∕p⟩ ≅ Kp⟨ℤ∕p⟩.

The quotientFs�t−s(Σ
nHKp⟨ℤ∕p⟩)∕Fs+1�t−s(Σ

nHKp⟨ℤ∕p⟩) can only be non-
zero when t−s = n and hence, t = np. Therefore, ΣnHKp⟨ℤ∕p⟩ is an np-slice.

The result forKp⟨ℤ∕p⟩ ⊕Kq⟨ℤ∕q⟩ can be proved analogously. �

Proposition 5.5. For l ≥ 1, the co�ber spectrum C(V, l, p) has only kp-slices
for each k ∈ {dim(VCp) − 2l,⋯ , dim(VCp) − 2}.

Proof. First, we compute the Mackey functor valued homotopy groups of the
co�ber C(V, l, p). Note that the restriction of the co�ber to the subgroup Cq is
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trivial and the homotopy groups of C(V, l, p) are cohomological. Using Propo-
sition 3.3, we conclude that�kC(V, l, p) is non-zero if and only if�ki

∗
Cp
C(V, l, p)

is non-zero. Set i∗Cp(V) = m + n� form, n ≥ 0. The co�ber sequence

Sm+n� ∧ Hℤ → Sm+n�+l(�−2) ∧ Hℤ → i∗CpC(V, l, p)

yields the long exact sequence:

⋯Hm−k+n�
Cp

(S0) → Hm−k−2l+(n+l)�
Cp

(S0) → �ki
∗
Cp
C(V, l, p) → Hm+1−k+n�

Cp
(S0)⋯

Incorporating the computation (3) in the above long exact sequence, one yields

�k(C(V, l, p)) ≅ {
Kp⟨ℤ∕p⟩ if k ∈ {m − 2l,⋯ ,m − 2}
0 otherwise.

Therefore, the map uV�−�p induces a co�ber sequence as follows

C(V, l − 1, p)
uV
�−�p

→ C(V, l, p) → Σm−2lHKp⟨ℤ∕p⟩ (7)

with C(V, 1, p) ≅ Σm−2HKp⟨ℤ∕p⟩.
To compute the slices of C(V, l, p), we use induction on l. For l = 1, it is

clear from Lemma 5.4 that C(V, 1, p) has only one (m−2)p-slice. Using (7) it is
clear that C(V, l, p) has an (m − 2)p-slice as Σm−2HKp⟨ℤ∕p⟩. The other slices
of C(V, l, p) are obtained from the induction hypothesis and [19, Proposition
2.32]. Hence, the result follows. �

Remark 5.6. Using Lemma 3.5 (b), construct a map

uVl� ∶ S
V ∧ Hℤ → SV+l(�−2) ∧ Hℤ

analogous to uVl(�−�p). We let S(p) = {dim(VCp) − 2l,⋯ , dim(VCp) − 2}. Then
direct computation yields

�k(co�ber(ul�)) =

⎧
⎪

⎨
⎪
⎩

Kp⟨ℤ∕p⟩ ⊕Kq⟨ℤ∕q⟩ if k ∈ S(p) ∩ S(q)
Kp⟨ℤ∕p⟩ if k ∈ S(p) ∩ S(q)c

Kq⟨ℤ∕q⟩ if k ∈ S(p)c ∩ S(q)
0, otherwise.

This allows us to identi�es the slices for the co�ber of ul� using Lemma 5.4.

Theorem5.7. For a realCpq-representationVwith dimension �, the �-slice of the
Cpq-spectrumSV∧Hℤ is spherical. In particular, if i∗Cp(S

V∧Hℤ) ≤ � and i∗Cq (S
V∧

Hℤ) ≤ �, then for 0 ≤ k < �, the k-slice of SV ∧ Hℤ is either Σk∕pHKp⟨ℤ∕p⟩ or
Σk∕qHKq⟨ℤ∕q⟩ or the wedge of the two.
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Proof. Using Remark 3.6, assume V = a+b� + c�p +d�q for some a, b, c and
d are non-negative integers. Note that for any Cp-representationW, by Lemma
4.6 and Lemma 4.7, the Cp-spectrum SW ∧ Hℤ is either slice d-connective or
slice d-coconnective, for d = dim(W). Therefore, to identify the slices of the
Cpq-spectrum SV ∧ Hℤ it is enough to prove the following four cases:

Case (i). i∗Cp(S
V ∧ Hℤ) ≤ � and i∗Cq (S

V ∧ Hℤ) ≤ �.
We want to construct a spherical �-slice mapping to SV ∧ Hℤ with co�ber

≤ � − 1. By Lemma 4.6, the hypothesis of (i) yields

a + 2c ≤
2(b + d) + 3p

p − 1 and a + 2d ≤
2(b + c) + 3q

q − 1 .

By Proposition 4.12, there existCp- andCq-representationsm+n� andm′+n′�,
respectively, such that Sm+n� ∧Hℤ is the �-slice of i∗Cp(S

V ∧Hℤ) and Sm′+n′� ∧
Hℤ is the �-slice of i∗Cq (S

V ∧Hℤ). By Lemma 4.10, it follows that b+d > n and
b + c > n′.

For V′ = V − (b + d − n)(� − �p), we have

i∗Cp(V
′) = m + n� and i∗Cq (V

′) = i∗Cq (V).

By Proposition 5.5, there exists a map

uV
′

(b+d−n)(�−�p) ∶ S
V′ ∧ Hℤ → SV ∧ Hℤ,

and the co�ber C(V′, b + d −n, p) has slices only in �ltrations p(m−2(b +d−
n)),⋯ , p(m − 2).

By Proposition 4.12,

m = dim(V′Cp) = dim(V) − 2ddim(V) =
dim(V) − dim(V)0

p + �

≤
dim(V) − 1

p + 1 (by (5)).

It readily follows p(m−2) < �. Therefore, the co�ber C(V′, b+d−n, p) is slice
(� − 1)-connective.

Since i∗Cq (S
V ∧ Hℤ) ≤ �, we may de�ne a representation

V′′ ∶= V − (b + c − n′)(� − �q),

and deduce i∗Cq (V
′′) = m′+n′� and i∗Cp(V

′′) = i∗Cp(V). By Proposition 5.5, there

is a map u(b+c−n′)(�−�q) ∶ SV
′′ ∧ Hℤ → SV ∧ Hℤ and as above the associated

co�ber C(V′′, b + c − n′, q) has slices in �ltration < �, so C(V′′, b + c − n′, q) ≤
� − 1.

Finally, set

V̂ ∶= V − (b + d − n)(� − �p) − (b + c − n′)(� − �q).
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Then, i∗Cp(S
V̂ ∧Hℤ) (respectively, i∗Cq (S

V̂ ∧Hℤ)) is the �-slice for i∗Cp(S
V ∧Hℤ)

(respectively, i∗Cq (S
V ∧ Hℤ)). By Proposition 5.1, the Cpq-spectrum SV̂ ∧ Hℤ is

thus the �-slice of SV ∧ Hℤ.

Case (ii). i∗Cp(S
V ∧ Hℤ) ≥ � and i∗Cq (S

V ∧ Hℤ) ≤ �.
By Lemma 4.6,

lp = ⌈
p dim(VCp) − dim(V) − 3p

2p ⌉ (8)(p)

is the least positive integer such that the Cpq-spectrum SV+lp(�−�
p) ∧ Hℤ ≤ �.

Then the spectrum i∗Cp(S
V+lp(�−�p) ∧ Hℤ) ≤ �. For such l, by Proposition 5.5,

there exists a map

uVlp(�−�p) ∶ S
V ∧ Hℤ → SV+lp(�−�

p) ∧ Hℤ

and the �ber of this map (equivalently, Σ−1C(V, lp, p)) has slice �ltration ≥
�+1.Now, as i∗Cp(S

V+lp(�−�p)∧Hℤ) ≤ � and i∗Cq (S
V+lp(�−�p)∧Hℤ) ≤ �, by case

(i), we have the spherical �-slice and also all the lower slices can be determined.
Hence, the result follows.

Case (iii). i∗Cp(S
V ∧ Hℤ) ≤ � and i∗Cq (S

V ∧ Hℤ) ≥ �.
It is analogous to case (ii).

Case (iv). i∗Cp(S
V ∧ Hℤ) ≥ � and i∗Cq (S

V ∧ Hℤ) ≥ �.

Then l0 ∶= max{lp, lq} is the positive integer such that i∗CpS
V+l0(�−2) ∧

Hℤ ≤ � and i∗CpS
V+l0(�−2) ∧ Hℤ ≤ �. Now we are in case (i). Therefore, by

Proposition 4.12, there exists aCp-representationm+n� and aCq-representation
m′ + n′� such that Sm+n� ∧Hℤ (resp., Sm′+n′� ∧Hℤ) is the spherical �-slice of
i∗Cp(S

V+l0(�−2) ∧ Hℤ) (resp., i∗Cq (S
V+l0(�−2) ∧ Hℤ)).

By hypothesis (iv), Proposition 4.1 yields

a + 2c ≥ �
p and a + 2d ≥ �

q ,

which implies that b + d + l0 ≤ n and b + c + l0 ≤ n′. So, we set

V̂ = V + l0(� − 2) + (n − b − d − l0)(� − �p) + (n′ − b − c − l0)(� − �q),

as in case (i) we see that the Cpq-spectrum SV̂ ∧Hℤ is the �-slice for SV ∧Hℤ,
which is spherical. �

Corollary 5.8. Any � ∈ RO(Cpq) has � ∈ RO(Cpq) such that S� ∧ Hℤ has a
dim(�)-slice S� ∧Hℤ. The other slices of S� ∧Hℤ are suspensions ofHKp⟨ℤ∕p⟩
orHKq⟨ℤ∕q⟩ or wedges of the two.
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Proof. We can always �nd some k ∈ ℤ such that � + k�Cpq is a non-virtual
representation of Cpq. Therefore, using Proposition 4.4 it is enough to consider
� = V = a+b�+c�p+d�q for a, b, c, and d non-negative integers. Proposition
5.5 and Theorem 5.7 together then imply the result. �

Example 5.9. For the cyclic group C15 with p = 3 and q = 5 we shall write a
slice tower of the C15-spectrum S6 ∧ Hℤ. Note that this type of spectrum was
studied by Yarnall in [20] for G = Cpk , in particular for Cp. In our case, the
restrictions satisfy

i∗C3(S
6 ∧ Hℤ) ≥ 6 and i∗C5(S

6 ∧ Hℤ) ≥ 6,

so, we are in case (iv) of the Theorem 5.7. Here l0 = max{l3, l5} = 2 and
n = 2 = n′. Therefore, by construction of V̂ in case (iv) of the theorem:

V̂ = 6 + 2(� − 2) + (2 − 2)(� − �3) + (2 − 2)(� − �5) = 2 + 2�.

Hence, using Remark 5.6, the slice tower is:

45 − slice ∶ Σ3H(Kq⟨ℤ∕q⟩ ⊕Kp⟨ℤ∕p⟩) // S6 ∧ Hℤ

u�
��

6 − slice ∶ S4+� ∧ Hℤ.

Example 5.10. Consider the C15-spectrum X = S11�5 ∧ Hℤ. Note that

i∗C3(X) ≅ S11� ∧ Hℤ and i∗C5(X) ≅ S22 ∧ Hℤ.

Therefore, we are in case (iv) of Theorem 5.7 as i∗C3(X) ≤ 22 and i∗C5(X) ≥ 22.
By (8)(q), l5 = 8, so i∗C5S

8(�−�5) ∧ X ≤ 22, and i∗C5(S
8�+3�5 ∧Hℤ) ≤ 22. Above

the 22-slice, all higher dimension slices are obtained by the computations of the
�ber of the map u�−�q . By repeated use of Theorem 5.7 (iv), we obtain the slice
tower of S11�5 ∧ Hℤ in �ltrations > 22.

Since, the spectrum S8�+3�5 ∧ Hℤ satis�es both

i∗C3(S
8�+3�5 ∧ Hℤ) ≤ 22 and i∗C5(S

8�+3�5 ∧ Hℤ) ≤ 22,

so we are in case (i) of Theorem 5.7. Now we compute d22 = 7 for p = 3 and
d22 = 8 for p = 5. (see Remark 4.9) By Theorem 5.7 we have

V̂ ∶ = 8� + 3�5 − (11 − 7)(� − �3) = 4� + 4�3 + 3�5

with SV̂ ∧ Hℤ the 22-slice of S11�5 .
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Thus, the slice tower for S11�q ∧ Hℤ is

95-slice: Σ19HKq⟨ℤ∕q⟩ // S11�q ∧ Hℤ
u�−�q
��

85-slice: Σ17HKq⟨ℤ∕q⟩ // S�+10�q ∧ Hℤ
u�−�q
��

75-slice: Σ15HKq⟨ℤ∕q⟩ // S2�+9�q ∧ Hℤ
u�−�q
��

65-slice: Σ13HKq⟨ℤ∕q⟩ // S3�+8�q ∧ Hℤ
u�−�q
��

55-slice: Σ11HKq⟨ℤ∕q⟩ // S4�+7�q ∧ Hℤ
u�−�q
��

45-slice: Σ9HKq⟨ℤ∕q⟩ // S5�+6�q ∧ Hℤ
u�−�q
��

35-slice: Σ7HKq⟨ℤ∕q⟩ // S6�+5�q ∧ Hℤ
u�−�q
��

25-slice: Σ5HKq⟨ℤ∕q⟩ // S7�+4�q ∧ Hℤ
u�−�q
��

22-slice: S4�+4�3+3�5 ∧ Hℤ // S8�+3�q ∧ Hℤ

u�−�p
��

18-slice: Σ6HKp⟨ℤ∕p⟩ // ⋁
i∈{0,1,2,3}

∑2i HKp < Z∕p >

u�−�p
��

12-slice: Σ4HKp⟨ℤ∕p⟩ // ⋁
i∈{0,1,2}

∑2i HKp < Z∕p >

u�−�p
��

6-slice: Σ2HKp⟨ℤ∕p⟩ // HKp⟨ℤ∕p⟩ ∨ Σ2HKp⟨ℤ∕p⟩
u�−�p
��

0-slice: HKp⟨ℤ∕p⟩
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