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Divisibility in rings of integer-valued
polynomials

Felix Gotti and Bangzheng Li

Abstract. In this paper, we address various aspects of divisibility by
irreducibles in rings consisting of integer-valued polynomials. An integral
domain is called atomic if every nonzero nonunit factors into irreducibles.
Atomic domains that do not satisfy the ascending chain condition on prin-
cipal ideals (ACCP) have proved to be elusive, and not many of them have
been found since the �rst one was constructed by A. Grams in 1974. Here we
exhibit the �rst class of atomic rings of integer-valued polynomials without
the ACCP. An integral domain is called a �nite factorization domain (FFD)
if it is simultaneously atomic and an idf-domain (i.e., every nonzero element
is divisible by only �nitely many irreducibles up to associates). We prove
that a ring is an FFD if and only if its ring of integer-valued polynomials is
an FFD. In addition, we show that being an idf-domain does not transfer, in
general, from an integral domain to its ring of integer-valued polynomials.
In the same class of rings of integer-valued polynomials, we consider further
properties that are de�ned in terms of divisibility by irreducibles, including
being Cohen-Kaplansky and being Furstenberg.
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1. Introduction

Let R be an integral domain with quotient �eld K, and let S be a subset of R.
The ring of integer-valued polynomials of R on S, denoted by Int(S, R), consists
of all polynomials in K[x] taking S to R. The �rst relevant studies of rings of
integer-valued polynomials date back to 1919 and are due to A. Ostrowski [38]
and G. Pólya [39]. Since then rings of integer-valued polynomials have been
systematically investigated in connection to several areas of mathematics.

When S = R it is customary to write Int(R) instead of the more cumbersome
notation Int(R, R); in this case, Int(R) is simply called the ring of integer-valued
polynomials of R. It is clear that R[x] ⊆ Int(R) ⊆ Int(S, R), and it is worth
noting that Int(R) = R[x]provided thatR is a local integral domainwith in�nite
residue �eld [9, Corollary 2]. In general, the inclusion R[x] ⊆ Int(R) is strict.
For instance, when R = ℤ, one sees that

(x
2

)
belongs to Int(ℤ) even though it

does not belong to ℤ[x]; moreover, for every n ∈ ℕ0,
(x
n

)
∶=

x(x − 1)⋯ (x − (n − 1))
n! ∈ Int(ℤ),

where we assume the convention that
(x
0

)
= 1. The ring Int(ℤ) exhibits a rather

fascinating algebro-combinatorial behavior. It is a free ℤ-module with regular
basis

{(x
n

)
∣ n ∈ ℕ0}. Indeed, if we set ∆f(k) = f(k + 1) − f(k), then the

Gregory-Newton formula allows us to write any polynomial f(x) in Int(ℤ) as a
unique ℤ-linear combination of the

(x
n

)
’s as follows:

f(x) =
n∑

j=0
∆jf(0)

(x
j

)
, (1.1)

where n is the degree of f(x). This property can be generalized to intermediate
rings of the extension R[x] ⊆ Int(ℤ, R) for any integral domain R of charac-
teristic zero (see [11, Proposition II.1.4]). From the ring-theoretical viewpoint,
it is worth mentioning that Int(ℤ) is a two-dimensional completely integrally
closed Prüfer domain (see [12, Theorems 13 and 17] and [1, Example 2.7(b)])
that is not a Bezout domain. In addition, Int(ℤ) is one of the most natural ex-
amples of non-Noetherian integral domains (see [12, Proposition 3]).

Several aspects of factorizations into irreducibles in rings of integer-valued
polynomials have been studied by various authors in the past. For instance,
the atomicity of Int(S, R) was considered by D. F. Anderson et al. in [6]. In
addition, the elasticity of Int(S, R) was �rst investigated by P. J. Cahen and J.
L. Chabert in [10], and further studied by S. T. Chapman et al. in [6, 14, 15].
On the other hand, the irreducibility in Int(S, R) has been recently studied by
S. Frisch and S. Nakato in [23, 37]. Finally, the system of sets of lengths of rings
of integer-valued polynomials was investigated by S. Frisch, S. Nakato, and R.
Rissner in [22, 24]. In this paper, we continue the study of the atomic structure
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of rings of integer-valued polynomials, emphasizing on properties that can be
de�ned in terms of divisibility by irreducibles.

Following P. M. Cohn [18], we say that the integral domain R is atomic if
every nonzero nonunit element of R factors into irreducibles. Also, if every as-
cending chain of principal ideals of R has �nite length, R is said to satisfy the
ACCP (ascending chain condition on principal ideals). It is easy to verify that
every integral domain satisfying the ACCP is atomic. Although the converse
of this statement does not hold in general, examples witnessing this failure are
hard to come by: the �rst of such examples was constructed back in the seven-
ties by A. Grams in [32]. In Section 3, we use Grams’ example to construct a
class of atomic rings of integer-valued polynomials that do not satisfy theACCP.

Following A. Grams and H. Warner [33], we say that an integral domain R
is irreducible-divisor-�nite (or an idf-domain) provided that every nonzero el-
ement of R has only �nitely many non-associate irreducible divisors. In [1], D.
D. Anderson, D. F. Anderson, and M. Zafrullah reserved the term �nite factor-
ization domain (FFD) for an integral domain that is atomic and an idf-domain
simultaneously: they proved indeed that an atomic domain is an FFD if and
only if each of its elements has �nitely many factorizations into irreducibles.
In Section 4, we establish the following characterization: for any integral do-
main R and any in�nite subset S of R, the ring Int(S, R) is an FFD if and only if
R is an FFD. In particular, Int(R) is an FFD if and only if R is an FFD. Cohen-
Kaplansky domains (CKD) are atomic domains containing only �nitely many
irreducibles up to associates. Clearly, every CKD is an FFD. We brie�y show at
the end of Section 4 that no ring of integer-valued polynomials is a CKD.

In Section 5, we keep on investigating divisibility by irreducibles in rings of
integer-valued polynomials. The question of whether the polynomial ring R[x]
is an idf-domain when R is an idf-domain was posed by Anderson, Anderson,
and Zafrullah [1, Question 2] back in 1990. Even though their paper has been
highly cited since then, the question remained open for almost two decades:
it was not until 2009 that P. Malcolmson and F. Okoh [36, Theorem 2.5] con-
structed the �rst class of counterexamples. The parallel question for rings of
integer-valued polynomials goes as follows.

Question 1.1. For an integral domain R, is Int(R) an idf-domain provided that
R is an idf-domain?

We will show that, as the parallel question for polynomial rings, Question 1.1
has a negative answer; this is the main result we establish in Section 5. As we
mentioned before, if R is an FFD, then so is Int(R). Based on this result, we �nd
interesting the fact that neither being atomic nor being an idf-domain transfers
from R to Int(R) (this is also known for polynomial rings). We also study rings
of integer-valued polynomials where every nonzero nonunit has an irreducible
divisor. HonoringH. Furstenberg and following P. Clark’s terminology [16], we
say that an integral domain is a Furstenberg domain if every nonzero nonunit
has an irreducible divisor. It is clear that every atomic domain is a Furstenberg
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domain. We will show that Int(S, R) is a Furstenberg domain if and only if R
is a Furstenberg domain (regardless of the cardinality of S), and this will allow
us to provide examples of non-atomic rings of integer-valued polynomials that
are Furstenberg domains.

2. Preliminary
In this section, we brie�y review most of the notation and terminology we

will be using later as well as some of the fundamental results we need fromnon-
unique factorization theory and rings of integer-valued polynomials. See [26]
by A. Geroldinger and F. Halter-Koch for an extensive treatment of non-unique
factorization theory and [11] by P. J. Cahen and J. L. Chabert for a comprehen-
sive background on integer-valued polynomials.

2.1. General notation. As it is customary, ℤ,ℚ,ℝ, and ℂ will denote the set
integers, rational numbers, real numbers, and complex numbers, respectively.
We let ℕ and ℕ0 denote the set of positive and nonnegative integers, respec-
tively. In addition, the set of primes will be denoted byℙ. For p ∈ ℙ and n ∈ ℕ,
we let Fpn be the �nite �eld of cardinality pn. If P is a partially ordered set and
a, b ∈ P, then the interval from a to b in P is the subset [a, b] ∶= {x ∈ P ∣ a ≤
x ≤ b} of P. When the partially ordered set is ℤ, we denote the interval from
a to b by Ja, bK, reserving the standard single-bracket notation for intervals in
the poset ℝ. In addition, for S ⊆ ℝ and r ∈ ℝ, we set S≥r = {s ∈ S ∣ s ≥ r} and
S>r = {s ∈ S ∣ s > r}.

2.2. Factorizations. Although a monoid is usually de�ned to be a semigroup
with an identity element, here we will tacitly assume that all monoids are can-
cellative and commutative. Let M be a monoid. We say that M is torsion-free
provided that for all a, b ∈ M, if an = bn for some n ∈ ℕ, then a = b. The
quotient group gp(M) of M is the unique abelian group gp(M) up to isomor-
phism satisfying that any abelian group containing a homomorphic image of
M will also contain a homomorphic image of gp(M). The rank ofM is the rank
of gp(M) as a ℤ-module. The group of invertible elements ofM is denoted by
U (M). We setMred = M∕U (M), and we say thatM is reduced if |U (M)| = 1,
in which case,M is naturally isomorphic toMred. For a, b ∈ M, we say that a
divides b inM andwrite a ∣M b if b ∈ aM. ThemonoidM is a valuationmonoid
if for every a, b ∈ M either a ∣M b or b ∣M a. In addition, a submonoid N ofM
is divisor-closed provided that, for any a ∈ M and b ∈ N, the relation a ∣M b
implies that a ∈ N.

An element a ∈ M⧵U (M) is an irreducible (or an atom) if whenever a = uv
for some u, v ∈ M, then either u ∈ U (M) or v ∈ U (M). The set of irreducibles
ofM is denoted by A (M). The monoidM is atomic if every non-invertible el-
ement factors into irreducibles. A subset I ofM is an ideal ofM provided that
I M = I (or, equivalently, I M ⊆ I). The ideal I is principal if I = bM for some
b ∈ M. The monoid M satis�es the ascending chain condition on principal
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ideals (ACCP) if every ascending chain of principal ideals of M stabilizes. Al-
though it is easy to check that every monoid satisfying the ACCP is atomic, the
converse does not hold even for rank-onemonoids (seeGrams’monoid in (3.1)).
IfM satis�es the ACCP, then every submonoidN ofM withU (N) = U (M)∩N
satis�es the ACCP. The same does not hold for atomicity (see (3.1)). Clearly,M
is atomic (resp., satis�es the ACCP) if and only ifMred is atomic (resp., satis�es
the ACCP).

Let Z(M) denote the free (commutative) monoid on A (Mred), and let

�∶ Z(M) → Mred

be the unique monoid homomorphism �xing a for every a ∈ A (Mred). If z =
a1⋯al ∈ Z(M), where a1, … , al ∈ A (Mred), then l is the length of z and is
denoted by |z|. For each b ∈ M, we set

Z(b) ∶= ZM(b) ∶= �−1(bU (M)).

If |Z(b)| = 1 for every b ∈ M, thenM is called a unique factorization monoid
(UFM). On the other hand, if M is atomic and |Z(b)| < ∞ for every b ∈ M,
thenM is called a �nite factorization monoid (FFM). Clearly, every UFM is an
FFM. The monoidM is an FFM if and only if every element ofM is contained
in only �nitely many principal ideals [34, Theorem 2]. IfM is an FFM, then it
is not hard to argue that every submonoidN ofM withU (N) = U (M)∩gp(N)
is also an FFM. Now, for each b ∈ M, we set

L(b) ∶= LM(b) ∶= {|z| ∣ z ∈ Z(b)}.

If M is atomic and |L(b)| < ∞ for every b ∈ M, then M is called a bounded
factorization monoid (BFM). It is clear that if a monoid is an FFM, then it is a
BFM. In addition, every BFM satis�es the ACCP [26, Corollary 1.4.4]. As for
the ACCP, ifM is a BFM, then it is not hard to verify that every submonoid N
ofM with U (N) = U (M) ∩ N is also a BFM.

Let R be an integral domain. Throughout this paper, we let R∗ ∶= R⧵{0} and
qf(R) denote themultiplicativemonoid and the quotient �eld of R, respectively.
In addition, the group of divisibility of R, often written additively and denoted
by G(R), is the abelian group qf(R)×∕R×. The group G(R) is partially ordered
by the relation xR× ≤ yR× if and only if y∕x ∈ R. As for monoids, we let A (R)
denote the set of irreducibles of R. Following J. Coykendall, D. E. Dobbs, and B.
Mullins [19], we say that an integral domain is antimatter if it does not contain
any irreducibles. On the other hand, an integral domain is atomic provided that
R∗ is an atomic monoid. It is not hard to verify that R is atomic if and only if
the nonnegative cone of G(R) is atomic.

Each factorization property previously introduced for an atomic monoid can
be naturally de�ned for an integral domain via its multiplicative monoid. We
say that R is a unique (resp., �nite, bounded) factorization domain provided that
R∗ is a unique (resp., �nite, bounded) factorization monoid. Accordingly, we
use the acronyms UFD, FFD, and BFD. Observe that this new de�nition of a
UFD coincides with the standard de�nition of a UFD. We set Z(R) ∶= Z(R∗)
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and, for every x ∈ R∗, we set Z(x) ∶= ZR∗(x) and L(x) ∶= LR∗(x). It is easy
to see that R is a BFD if and only if G(R) is a BFM, while R is an FFD if and
only if the interval [R×, xR×] is �nite for every positive element xR× ∈ G(R) [5,
Theorem 1].

2.3. Polynomial-like rings. Let R be an integral domain with quotient �eld
K, and let S be a subset of R. The ring of integer-valued polynomials of R on S,
denoted by Int(S, R), is the subring of K[x] consisting of all polynomials p(x)
satisfying that p(S) ⊆ R, that is,

Int(S, R) ∶= {p(x) ∈ K[x] ∣ p(S) ⊆ R}.

When S = R, it is customary to write Int(R) instead of Int(S, R) and simply
call Int(R) the ring of integer-valued polynomials of R. It immediately follows
from [9, Corollary 2] that if R is an integral domain containing an in�nite �eld,
then the equality Int(R) = R[x] holds. We record this result here for future
reference.

Theorem 2.1. If R is an integral domain containing an in�nite �eld, then Int(R)
= R[x].

From the fact that R∗ is a divisor-closed submonoid of Int(S, R)∗, it follows
that Int(S, R)× = R×. In addition, Int(S, R) satis�es theACCP (resp., is a BFD) if
and only if R satis�es the ACCP (resp., is a BFD) and |S| = ∞ (see Theorem 3.3
and Proposition 4.2), and the same statement holds for the �nite factorization
property, as we will �nd in Theorem 4.6. A similar statement does not hold,
however, for the property of being atomic, and we will say more about this in
the next section.

To construct various examples of rings of integer-valued polynomials here,
we use monoid rings with rational exponents. For a monoidM, we let R[y;M]
denote the ring of polynomial expressions with coe�cients in R and exponents
inM. If themonoidM is totally ordered (i.e., it has a total order relation ‘≤’ com-
patible with its operation), then a polynomial expression

∑n
i=1 ciy

mi ∈ R[y;M]
is said to be written canonically if c1, … , cn ∈ R∗ and m1 > ⋯ > mn. It fol-
lows from [27, Theorem 8.1] that whenM is torsion-free, R[y;M] is an integral
domain, in which case, [27, Theorem 11.1] guarantees that R[y;M]× = {uym ∣
u ∈ R× andm ∈ U (M)}. In [27], R. Gilmer gives a generous overview of the ad-
vances in monoid rings until 1984. Factorization-theoretical aspects of monoid
rings with rational exponents have been recently considered in [30].

3. Atomicity and the ACCP
Rings of integer-valued polynomials are not, in general, atomic. Perhaps

the simplest example of a non-atomic ring of integer-valued polynomials is
Int({0}, ℤ) = ℤ + xℚ[x]; indeed, one can readily check that x does not fac-
tor into irreducibles in Int({0}, ℤ). This result is generalized in [6] as follows.
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Proposition 3.1. [6, Proposition 1.1] Let R be an integral domain that is not a
�eld, and let S be a nonempty subset of R. If Int(S, R) is atomic, then |S| = ∞.

When |S| < ∞ we can obtain, as a consequence of Proposition 3.1, the fol-
lowing characterizations of the UFDs Int(S, R) in terms of the weaker factor-
ization properties we consider in this paper.

Corollary 3.2. LetR be an integral domain, and let S be a �nite subset ofR. Then
the following conditions are equivalent.

(a) Int(S, R) is a UFD.
(b) Int(S, R) is an FFD.
(c) Int(S, R) is a BFD.
(d) Int(S, R) is atomic.
(e) R is a �eld.

Proof. (a)⇒ (b)⇒ (c)⇒ (d): These implications are obvious.
(d)⇒ (e): This follows immediately from Proposition 3.1.
(e) ⇒ (a): It is clear that if R is a �eld, then Int(S, R) = R[x], and so it is a

UFD. �

In light of Corollary 3.2, in order to study the arithmetic of factorizations of
rings of integer-valued polynomials Int(S, R), it su�ces to focus on the cases
where |S| = ∞. We will do this throughout the current section and the next
one.

The ascending chain condition on principal ideals. It also follows from
Proposition 3.1 that if a ring of integer-valued polynomials Int(S, R) satis�es
the ACCP, then |S| = ∞. Rings of integer-valued polynomials satisfying the
ACCP have been characterized in [10] and [6] in the following way.

Theorem 3.3. Let R be an integral domain. Then the following statements hold.
(1) [10, Theorem 1.3] Int(R) satis�es the ACCP if and only if R satis�es the

ACCP.
(2) [6, Theorem 1.2] If S is an in�nite subset of R, then Int(S, R) satis�es the

ACCP if and only if R satis�es the ACCP.

Unfortunately, none of the statements in Theorem 3.3 hold if we replace the
ACCP by atomicity, as we proceed to argue.

Remark 3.4. By Theorem 2.1, the equality Int(R) = R[x] holds when R con-
tains an in�nite �eld. On the other hand, it follows from [40, Example 5.1] that
every �eld can be embedded into an atomic domain R satisfying that R[x] is not
atomic. As a result, atomicity does not always transfer from an integral domain
R to Int(R)1.

1The parallel question of whether atomicity transfers from a monoid M to a monoid ring
F[t;M] over a given �eld F was recently answered negatively in [20].



124 FELIX GOTTI AND BANGZHENG LI

As we have emphasized before, although not every atomic domain satis�es
the ACCP, the search for atomic domains without the ACCP has proved to be
a notoriously di�cult task. The �rst of such integral domains was constructed
in the seventies by Grams in [32], and not many more constructions of this
kind seem to have appeared in the literature since then, with the exceptions
of [40, 42] and, more recently, [8, 31]. Here we consider polynomial rings with
coe�cients in the non-ACCP atomic domain constructed by Grams to obtain
a class of atomic rings of integer-valued polynomials that do not satisfy the
ACCP. The key ingredient in Grams’ construction is an additive submonoid of
ℚ≥0, which we introduce in the next example. The atomicity of additive sub-
monoids of ℚ≥0 has been systematically investigated during the last few years
(see the recent survey [13] and references therein). As we will con�rm here,
these monoids are e�ective to �nd counterexamples in commutative ring the-
ory (see also [20]).

Example 3.5. Let (pn)n∈ℕ0 be the strictly increasing sequence whose terms are
the odd primes, and consider the following additive submonoid of ℚ≥0:

M ∶=
⟨ 1
2npn

|||| n ∈ ℕ0
⟩
. (3.1)

It is not hard to argue thatM is an atomic monoid with

A (M) =
{ 1
2npn

∣ n ∈ ℕ0
}
.

In addition,M does not satisfy the ACCP because the ascending chain of prin-
cipal ideals ( 1

2n
+M)n∈ℕ does not stabilize.

Now let F be a �eld, and let R be the integral domain we obtain after local-
izing the monoid ring F[t;M] at the multiplicative set

S ∶= {f(t) ∈ F[t;M] ∣ f(0) ≠ 0}, (3.2)

whereM is themonoid in Example 3.5. It follows from [32, Theorem 1.3] thatR
is atomic, and becauseM does not satisfy the ACCP, R cannot satisfy the ACCP.
The integral domain R is the non-ACCP atomic domain constructed by Grams
in [32] to disprove Cohn’s assertion [18, Proposition 1.1] that atomicity and the
ACCP are equivalent conditions in the setting of integral domains. Honoring
Grams, we call R the Grams’ ring over F. We are now in a position to provide a
class of atomic rings of integer-valued polynomials that do not satisfy theACCP.

Proposition 3.6. Let F be a �eld, and let R be the Grams’ ring over F. If |F| =
∞ (in particular, if F has characteristic zero), then Int(R) = R[x] is an atomic
domain that does not satisfy the ACCP.

Proof. LetM and S be as in (3.1) and (3.2), respectively, and let N be the sub-
monoid ⟨ 1

2n
∣ n ∈ ℕ⟩ ofM. Observe thatN is a valuationmonoid and, therefore,
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for any q1, q2 ∈ N the conditions q1 ≤ q2 and q1 ∣N q2 are equivalent. It follows
from [32, Lemma 1.1] that every element b ∈ M can be uniquely written as

b = �(b) +
k∑

i=0
ci

1
2ipi

,

where �(b) ∈ N and ci ∈ J0, pi − 1K for every i ∈ J0, kK. Now we de�ne the
map �̄ ∶ F[t;M]∗ → N by �̄ ∶

∑n
i=1 cit

bi ↦ min{�(bi) ∣ i ∈ J1, nK} for any
canonically-written nonzero polynomial expression

∑n
i=1 cit

bi .
As |F| = ∞, Theorem 2.1 guarantees that Int(R) = R[x]. Since R∗ is a

divisor-closed submonoid of Int(R)∗ that does not satisfy the ACCP, Int(R) can-
not satisfy the ACCP. Therefore we are done once we argue that R[x] is atomic.
To do this, take a nonzero nonunit p(x) ∶=

∑n
i=0 fi(t)x

i in R[x]. After replac-
ing p(x) by one of its associates, we can assume that fi(t) ∈ F[t;M] for every
i ∈ J0, nK. For each i ∈ J0, nK, the fact that N is a valuation monoid ensures
that fi(t)∕t�̄(fi) ∈ R, and it is proved in [32, Theorem 1.3] that LR(fi(t)∕t�̄(fi))
is bounded. Now set

q ∶= min{�̄(fi) ∣ i ∈ J0, nK} ∈ N

and take s ∈ J0, nK such that �̄(fs) = q. Once again the fact that N is a valu-
ation monoid allows us to write p(x) = tqp′(x) for some p′(x) ∈ R[x]. Since
the monomials in F[t;M] that are irreducibles remain irreducibles in R, the
fact that M is atomic ensures that tq factors into irreducibles in R, and so in
R[x]. To argue that p′(x) also factors into irreducibles in R[x], write p′(x) =
a1⋯akb1(x)⋯bl(x) for some nonunits a1, … , ak ∈ R and some polynomials
b1(x), … , bl(x) ∈ R[x] with deg bi(x) ≥ 1 for every i ∈ J1, lK. Because the
coe�cient fs(t)∕tq of xs has a bounded set of lengths in R, and the inequality
k+l ≤ max LR(fs(t)∕tq)+deg p′(x) holds, we can assume that k+lwas taken
as large as it could possibly be. This guarantees that a1⋯akb1(x)⋯bl(x) is a
factorization of p′(x) in R[x]. Hence R[x] is atomic. �

We conclude this section with a few words about hereditary atomicity. Fol-
lowing J. Coykendall, F. Gotti, and R. Hasenauer [21], we say that an integral
domain R is hereditarily atomic provided that every subring of R is atomic. In
particular, every hereditarily atomic domain must be atomic. As for atomic-
ity (and in contrast to Theorem 3.3), it is not true that Int(S, R) is hereditarily
atomic when R is hereditarily atomic and |S| = ∞.

Example 3.7. If K is a �nite algebraic extension of ℚ, then it follows from
[28, Theorem] that every subring of K is Noetherian. Since every Noetherian
domain is a BFD [1, Proposition 2.2], the �eld K is hereditarily atomic. In ad-
dition, since K is a �eld, Int(S, K) = K[x] for every nonempty subset S of K.
However, Int(S, K) is not hereditarily atomic becauseK[x] contains an isomor-
phic copy of the integral domain ℤ+xℚ[x], which we have seen before that is
not atomic.
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However, there are rings of integer-valued polynomials that are hereditarily
atomic. The following example sheds some light upon this observation.

Example 3.8. Consider the ring of polynomials F2[x, y], where F2 is the �eld
consisting of two elements. Observe that F2[x, y] satis�es the ACCP because
it is a UFD. Thus, it follows from Theorem 3.3 that Int(F2[x], F2[x, y]) satis�es
the ACCP. Now the fact that the group of units of Int(F2[x], F2[x, y]) is triv-
ial guarantees that every subring of Int(F2[x], F2[x, y]) satis�es the ACCP and
is, therefore, atomic. Hence Int(F2[x], F2[x, y]) is hereditarily atomic and, in
particular, Int(F2[x]) is hereditarily atomic.

4. The bounded and �nite factorization properties
In this section, we turn our attention to the bounded and �nite factorization

properties in rings of integer-valued polynomials. Some special cases of these
properties are also considered.

4.1. The bounded factorization property. According to [2, Corollary 7.6],
for an integral domain R, the ring of integer-valued polynomials Int(R) is a BFD
if and only if R is a BFD.We begin this section with amild generalization of this
property, mirroring part (2) of Theorem 3.3. We need the following technical
lemma, which we have borrowed from [11, Proposition I.3.1], where the reader
can �nd the proof.

Lemma 4.1. Let R be an integral domain, and let S be an in�nite subset of R.
Then there exists a sequence (dn)n∈ℕ0 whose terms are nonzero elements of R sat-
isfying that dnf(x) ∈ R[x] for every f(x) ∈ Int(S, R)∗ with deg f(x) = n.

Proposition 4.2. Let R be an integral domain, and let S be an in�nite subset of
R. Then Int(S, R) is a BFD if and only if R is a BFD.

Proof. Because Int(S, R)×∩R = R×, the ring R is a BFD provided that Int(S, R)
is a BFD, and so the direct implication follows. For the reverse implication,
suppose that R is a BFD and set K ∶= qf(R). By virtue of Lemma 4.1, there is a
sequence (dn)n∈ℕ0 whose terms are nonzero elements of R such that dnf(x) ∈
R[x] for every f(x) ∈ Int(S, R)∗ with deg f(x) ≤ n. Now since

R[x] ⊆ Int(S, R) ⊆ R + xK[x],

it follows from [2, Theorem 7.5] that Int(S, R) is also a BFD. �

Corollary 4.3. [2, Corollary 7.6] For an integral domain R, the ring Int(R) is a
BFD if and only if R is a BFD.

Proof. If |R| = ∞, then the corollary is a special case of Proposition 4.2. Sup-
pose, on the other hand, that |R| < ∞. In this case, R is a (�nite) �eld and,
therefore, Int(R) = R[x] is a UFD. Hence both Int(R) and R are BFDs. �
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We observe that the assumption |S| = ∞ is required to guarantee that the
direct implication of Proposition 4.2 holds. Indeed, although ℤ is a BFD, we
have seen before that Int({0}, ℤ) = ℤ + xℚ[x] is not even atomic.

Theorem 3.3 and Proposition 4.2, used in tandem, allow us to construct rings
of integer-valued polynomials that satisfy the ACCP but are not BFDs.

Example 4.4. For a �eld F, consider the monoid ring R ∶= F[y;M], whereM
is the additive submonoid ⟨1∕p ∣ p ∈ ℙ⟩ of ℚ. It was argued in [1, Example 2]
that R satis�es the ACCP but is not a BFD. In light of Theorem 3.3 and Propo-
sition 4.2, for any in�nite subset S of R, we obtain that Int(S, R) satis�es the
ACCP but is not a BFD.

A special class consisting of BFDs is that of half-factorial domains. Following
A. Zaks [41], we say that an integral domain R is a half-factorial domain (HFD)
if R is atomic and every two factorizations of the same element of R have the
same length. Unlike the properties of satisfying the ACCP and being a BFD,
being an HFD does not transfer from an integral domain to its ring of integer-
valued polynomials.

Example 4.5. Sinceℤ is a UFD, it is also anHFD. It is not hard to verify that
(x
n

)

is an irreducible polynomial in Int(ℤ) for every n ∈ ℕ (see [12, Proposition 6]).
The identity 2⋅3⋅

(x
6

)
= (x−5)⋅

(x
5

)
clearly holds, and its sides yield factorizations

of the integer-valued polynomial p(x) = 6
(x
6

)
. As a result, {2, 3} ⊆ L(p(x)),

which implies that Int(ℤ) is not anHFD. Thus, there are rings of integer-valued
polynomials that are BFDs but not HFDs (Int(ℤ) is a BFD by Proposition 4.2).
We emphasize that Int(ℤ) has in�nite elasticity, a property that is signi�cantly
stronger than that of failing half-factoriality (see [10, Theorem 1.6] for details).

Example 4.5 also illustrates that being a UFD does not transfer, in general,
from an integral domain to its ring of integer-valued polynomials.

4.2. The �nite factorization property. Now we turn our attention to the �-
nite factorization property. In the next theorem, we provide an analog of The-
orem 3.3 and Proposition 4.2.

Theorem 4.6. Let R be an integral domain, and let S be an in�nite subset of R.
Then Int(S, R) is an FFD if and only if R is an FFD.

Proof. For the direct implication, let us assume that Int(S, R) is an FFD. Since
Int(S, R)× = R×, we see that Int(S, R)× ∩ qf(R) = R×. This, together with the
assumption that Int(S, R) is an FFD, ensures that R is also an FFD.

For the reverse implication, let us assume that R is an FFD. Since |S| = ∞,
Lemma 4.1 guarantees the existence of a sequence (dn)n∈ℕ0 whose terms are
nonzero elements of R such that dnf(x) ∈ R[x] for all f(x) ∈ Int(S, R)∗ with
deg f(x) = n. Fix an algebraic closure F of the �eld qf(R). Now take a nonzero
polynomial p(x) ∈ Int(S, R) with degree n, and let us argue that ZInt(S,R)(p(x))
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is �nite. This is true when p(x) ∈ R because R∗ is both an FFM and a divisor-
closed submonoid of Int(S, R)∗. Assume, on the other hand, that n ≥ 1. Let
cp be the leading coe�cient of p(x), and then write p(x) = cp

∏n
i=1(x − ri)

for some r1, … , rn ∈ F. As deg p(x) = n, the polynomial dnp(x) belongs to
R[x] and, in particular, dncp ∈ R. Proving that p(x) has only �nitely many
factorizations in Int(S, R) amounts to showing that, for each J ⊆ J1, nK, the set

DJ ∶=
{
q(x) ∶= cq

∏

j∈J
(x − rj) ∈ Int(S, R)

||||| q(x) divides p(x) in Int(S, R)
}

contains �nitely many polynomials up to associates in Int(S, R). Now �x J ⊆
J1, nK, setm ∶= |J|, and let q(x) be a polynomial in DJ with leading coe�cient
cq. Since q(x) and p(x)∕q(x) are polynomials in Int(S, R) with degrees m and
n − m, respectively, dmcq and dn−m(cp∕cq) both belong to R. Let G(R) be the
divisibility group of R, and note that the set

Cm ∶= {dmrR× ∈ G(R) ∣ dmr ∈ R and dmr ∣R dmdn−m(dncp)}

is precisely the interval [R×, dmdn−m(dncp)R×] of G(R). Since R is an FFD, it
follows from [5, Theorem 1] that |Cm| < ∞. From

(dmcq)(dndn−m(cp∕cq)) = dmdn−m(dncp) ∈ R

and dndn−m(cp∕cq) ∈ R, we obtain that dmcqR× ∈ Cm. Consider now the map
DJ → Cm determined by q(x) ↦ dmcqR×. Observe that, for r, r′ ∈ qf(R)×,
the equality dmrR× = dmr′R× holds if and only if r∕r′ ∈ R×. Hence the map
DJ∕R× → Cm is well-de�ned and injective, which implies that |DJ∕R×| ≤
|Cm| < ∞. Therefore p(x) has only �nitely many non-associate divisors in
Int(S, R). As a consequence, we conclude that Int(S, R) is an FFD. �

Corollary 4.7. For an integral domain R, the ring Int(R) is an FFD if and only
if R is an FFD.

Proof. When |R| = ∞, this is a special case of Theorem 4.6. Assume, on the
other hand, that |R| < ∞. In this case, R is a �eld and, therefore, Int(R) = R[x]
is a UFD. Hence both Int(R) and R are FFDs. �

Corollary 4.7 allows us to identify rings of integer-valued polynomials that
are FFDs but not UFDs.

Example 4.8. We have seen in Example 4.5 that Int(ℤ) is not even an HFD.
However, since ℤ is an FFD, Corollary 4.7 guarantees that Int(ℤ) is an FFD.

Following D. D. Anderson and B. Mullins [5], we say that an integral do-
main R is a strong �nite factorization domain (SFFD) if every nonzero element
of R has only �nitely many divisors. One can verify that an integral domain is
an SFFD if and only if it is an FFDwith �nite group of units (see [5, Theorem 5]
for additional characterizations).

Corollary 4.9. Let R be an integral domain, and let S be an in�nite subset of R.
Then Int(S, R) is an SFFD if and only if R is an SFFD.
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Proof. The ring Int(S, R) is an SFFD if and only if it is an FFD and Int(S, R)× =
R× is �nite. In light of Theorem 4.6, this happens if and only if R is an FFD and
R× is �nite, which is equivalent to the fact that R is an SFFD. �

We are now in a position to exhibit rings of integer-valued polynomials satis-
fying the bounded factorization property but not the �nite factorization prop-
erty.

Example 4.10. Let F be a �eld, and letM be the additive submonoid {0} ∪ℝ≥1
ofℝ. It follows from [29, Proposition 4.5] thatM is a BFM, and one can readily
check that A (M) = [1, 2). Therefore [3, Theorem 13.3] guarantees that the
monoid ring R ∶= F[y;M] is a BFD. On the other hand, {ya ∣ a ∈ A (M)} ⊆

A (R), and so we can infer from the equalities y3 = y
3
2
+ 1
n y

3
2
− 1
n (for all n ∈ ℕ≥3)

that R is not an FFD. Now Proposition 4.2 and Theorem 4.6, used in tandem,
allow us to conclude that, for every in�nite subset S of R, the ring of integer-
valued polynomials Int(S, R) is a BFD that is not an FFD.

The class of FFDs consisting of integral domains with only �nitely many ir-
reducibles up to associates has been well investigated. Following D. D. Ander-
son and J. L. Mott [4], we call such integral domains Cohen-Kaplansky domains
(CKD). The terminology is justi�ed by the fact that Cohen-Kaplansky domains
were �rst studied by I. S. Cohen and I. Kaplansky in [17]. Although it follows
from Theorem 4.6 that there are plenty of rings of integer-valued polynomials
that are FFDs, none of them happens to be a CKD, as the following proposition
indicates.

Proposition 4.11. For any integral domain R and S ⊆ R, the ring Int(S, R) is
not a CKD.

Proof. Let R be an integral domain with quotient �eld K, and let S be a subset
of R. If S is empty, then Int(S, R) = K[x], which contains in�nitely many non-
associate irreducibles: indeed, if the polynomials a1(x), … , ak(x)were the only
irreducibles in K[x] (up to associates), then the irreducible a1(x)⋯ak(x) + 1
would be an associate of ai(x) for some i ∈ J1, kK, which is clearly not possi-
ble. In addition, observe that if R is �nite, then it is a �eld and so the equal-
ity Int(S, R) = K[x] holds once again, whence Int(S, R) contains in�nitely
many non-associate irreducibles. Thus, Int(S, R) is not a CKD provided that
S is empty or R is �nite.

Suppose, on the other hand, that S is not empty and R is not �nite. Fix s ∈ S
and, for each r ∈ R∗, consider the polynomial

ar(x) = rx − rs + 1 ∈ Int(S, R).

We claim that ar(x) is irreducible in Int(S, R) for all r ∈ R∗. To see this, �x
r ∈ R∗ andwrite ar(x) = tf(x), where t ∈ R andf(x) ∈ Int(S, R). Observe that
t−1 = ar(s)t−1 = f(s) ∈ R, whichmeans that t ∈ R×. Therefore {ar(x) ∣ r ∈ R∗}
is an in�nite set of irreducibles of Int(S, R), and it follows immediately that no
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two distinct polynomials of this set can be associates in Int(S, R). Thus, we can
also conclude in this case that Int(S, R) is not a CKD. �

As a porism of the previous proof, we obtain the following corollary.

Corollary 4.12. For any integral domain R and S ⊆ R, the ring Int(S, R) is not
antimatter.

5. On irreducible divisors
In this �nal section, we study divisibility by irreducibles in rings of integer-

valued polynomials. We consider two natural relaxations of atomicity and the
�nite factorization property: the Furstenberg and the irreducible-divisor-�nite
properties, respectively.

5.1. Furstenberg domains. Following [16], we say that an integral domain
is a Furstenberg domain if every nonunit element is divisible by an irreducible.
Clearly, every atomic domain is a Furstenberg domain. For an integral domain
R and a subset S of R, it turns out that Int(S, R) is a Furstenberg domain if and
only if R is a Furstenberg domain, regardless of the cardinality of S.

Proposition 5.1. Let R be an integral domain, and let S be a nonempty subset
of R. Then Int(S, R) is a Furstenberg domain if and only if R is a Furstenberg
domain.

Proof. For the direct implication, suppose that Int(S, R) is a Furstenberg do-
main. Let r be a nonunit ofR∗. Then r ∉ R× = Int(S, R)× and, because Int(S, R)
is a Furstenberg domain, there exists a ∈ A (Int(S, R)) such that a divides r
in Int(S, R). Since R∗ is a divisor-closed submonoid of Int(S, R)∗, we see that
a ∈ A (Int(S, R)) ∩ R = A (R). Hence R is a Furstenberg domain.

To argue the reverse implication, suppose that R is a Furstenberg domain,
and take a nonzero nonunit f(x) ∈ Int(S, R). If f(x) factors into irreducibles in
Int(S, R), then itmust be divisible by an irreducible. On the other hand, assume
that the polynomial f(x) does not factor into irreducibles in Int(S, R). Set d ∶=
deg f(x) andwrite f(x) = g1(x)⋯gn(x) for some nonunits g1(x), … , gn(x) and
n ∈ ℕ with n > d. Then there is an i ∈ J1, nK such that g ∶= gi(x) ∈ R. Since
g ∈ R ⧵ R×, the assumption that R is a Furstenberg domain guarantees that g
is divisible by some a ∈ A (R). Because R∗ is a divisor-closed submonoid of
Int(S, R)∗, the element a is also irreducible in Int(S, R). Hence f(x) is divisible
by an irreducible in Int(S, R). As a result, we can conclude that Int(S, R) is a
Furstenberg domain. �

As an application of Proposition 5.1, we can construct certain new examples
of Furstenberg domains. We illustrate this in the next example, where we ex-
hibit non-atomic Furstenberg domains Int(S, R) for �nite and in�nite subsets
S of R. Further examples of non-atomic Furstenberg domains have been given
in [35].
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Example 5.2. (1) For a nonempty subset S of ℤ, consider the ring of integer-
valued polynomials Int(S, ℤ). By Proposition 5.1, the ring Int(S, ℤ) is a Fursten-
berg domain. When |S| < ∞, it follows from Proposition 3.1 that Int(S, ℤ) is
not atomic. On the other hand, when |S| = ∞, it follows from Theorem 3.3
that Int(S, ℤ) satis�es the ACCP and is, therefore, atomic. Hence Int(S, ℤ) is a
Furstenberg domain, which is atomic if and only if |S| = ∞.

(2) We can use the example in part (1), in tandem with Proposition 5.1, to
produce a non-atomic Furstenberg domain Int(S, R) with |S| = ∞. To do so,
set R ∶= ℤ + yℚ[y], which is precisely the ring of integer-valued polynomials
Int({0}, ℤ) (in the indeterminate y). By part (1), R is a non-atomic Furstenberg
domain. Now let S be an in�nite subset ofR. It follows fromProposition 5.1 that
Int(S, R) is a Furstenberg domain. Finally, the fact that R is not atomic ensures
that Int(S, R) is not atomic; this is because R∗ is a divisor-closed submonoid of
Int(S, R)∗. Hence Int(S, R) is a non-atomic Furstenberg domain with |S| = ∞.

There are integral domains that are not Furstenberg domains; for instance,
every antimatter domain that is not a �eld fails to be a Furstenberg domain.
Then we can use non-Furstenberg domains and Proposition 5.1 to construct
rings of integer-valued polynomials that are not Furstenberg domains. We il-
lustrate this observation in the following example.

Example 5.3. For themonoid ring R = ℤ[y;ℚ≥0], consider the ring of integer-
valued polynomials Int(R). Observe thatR is not a Furstenberg domain because
every nonunit divisor of y in R has the form ±yq for some q ∈ ℚ>0, which is
not irreducible as ±yq = ±

(
yq∕2

)2
. Thus, it follows from Proposition 5.1 that

Int(R) is not a Furstenberg domain.

5.2. Irreducible-divisor-�nite domains. Following the terminology of [33],
we say that an integral domain R is an irreducible-divisor-�nite domain (or an
idf-domain for short) provided that every nonzero element ofR has only �nitely
many irreducible divisors up to associates. These integral domains were �rst
investigated by Grams and Warner in [33]. As mentioned in the introduction,
an integral domain is an FFD if and only if it is an atomic idf-domain [1, The-
orem 5.1]. The atomic condition is crucial in the previous statement as, for
instance, every antimatter domain (that is not a �eld) is an idf-domain that is
not an FFD.

Similarly, one candrop the atomic condition from theCohen-Kaplansky prop-
erty. We say that an integral domain R is an irreducible-�nite domain (IFD) pro-
vided that R contains only �nitely many irreducibles up to associates. Then an
integral domain is a CKD if and only if it is an atomic IFD. As the following
example shows, there are IFDs that are not CKDs.

Example 5.4. Letp be a prime number, and consider the integral domainR ∶=
ℤ(p) + xℂJxK. As ℂJxK is a local domain, it follows from [7, Lemma 4.17] that
R× = ℤ×

(p) + xℂJxK, and so no formal power series f(x) in R with f(0) = 0
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is irreducible because it can be written as f(x) = p(f(x)∕p). Then for any
q ∈ ℤ(p) and g(x) ∈ ℂJxK, the element q + xg(x) belongs to A (R) if and only
if the p-adic valuation of q is 1. Hence A (R) = pR×, which implies that R is
an IFD. Since ℤ(p) is not a �eld, [1, Proposition 1.2] guarantees that R is not
atomic. Thus, R is not a CKD.

It is clear that every IFD is an idf-domain. Not every idf-domain, however,
is an IFD. For instance, ℤ is an atomic idf-domain (FFD) that is not an IFD.
Moreover, there are non-atomic idf-domains that are not IFDs. Let us construct
one of such integral domains.

Example 5.5. Let D denote the monoid ring F2[y;ℚ≥0], and let K denote the
quotient �eld of D. Now set R ∶= D + xK[x]. Since D is not a �eld, it follows
from [1, Proposition 1.2] that R is not atomic. For the rest of our argument, we
need the following claim.
Claim. If a(x) ∈ A (R), then a(0) = 1.
Proof of Claim. We take f(x) ∈ R∗ with f(0) ≠ 1. First, assume that f(0) = 0.
Then f(x)∕y ∈ R∗. Since the additive monoid ℚ≥0 is reduced, R× = D× = {1},
and so y ∉ R×. Because both y and f(x)∕y belong to R∗ ⧵ R×, the equality
f(x) = y(f(x)∕y) ensures that f(x) ∉ A (R). Now assume that f(0) ≠ 0. If
deg f(x) = 0, then f(x) ∉ A (R) because D∗ is an antimatter divisor-closed
submonoid of R∗. If deg f(x) ≥ 1, then after writing f(x) = f(0)(f(x)∕f(0)),
the fact that both f(0) and f(x)∕f(0) belong to R∗ ⧵ R× ensures that f(x) ∉
A (R). Thus, the claim is established.

Let us proceed to prove that R is an idf-domain that is not an IFD. To argue
that R is an idf-domain, �x f(x) ∈ R∗. It su�ces to observe that for every
divisor g(x) of f(x) in K[x], the set S ∶= {k ∈ K∗ ∣ kg(x) ∈ A (R)} is �nite:
indeed, if g(0) = 0, then S is empty, while if g(0) ≠ 0, then k = g(0)−1 by virtue
of the claim previously proved. Thus, R is an idf-domain. To argue that R is not
an IFD, we observe that, since D× = {1}, the polynomial rx + 1 is irreducible
in R for each r ∈ D∗. As a consequence, {rx + 1 ∣ r ∈ D∗} is an in�nite set
consisting of pairwise non-associate irreducible polynomials of R.

The following proposition yields twonecessary conditions for rings of integer-
valued polynomials to be idf-domains.

Proposition 5.6. Let R be an integral domain, and let S be a nonempty subset of
R such that Int(S, R) is an idf-domain. Then the following statements hold.

(1) R is an idf-domain.
(2) If |S| < ∞, then R is an IFD.

Proof. (1) Since R∗ is a divisor-closed submonoid of Int(S, R)∗, the equality
A (Int(S, R)) ∩R = A (R) holds, from which one infers that R is an idf-domain.

(2) Now suppose that |S| < ∞, and write S = {s1, … , sn}. Then set f(x) ∶=∏n
i=1(x−si). For every nonzero r ∈ R, it is clear thatf(x)∕r belongs to Int(S, R)
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and, therefore, r divides f(x) in Int(S, R). Thus, the equalityA (Int(S, R))∩R =
A (R) guarantees that every irreducible element of R is an irreducible element
of Int(S, R) dividing f(x). Hence the fact that Int(S, R) is an idf-domain, along
with Int(S, R)× = R×, implies that R is an IFD. �

According to part (1) of Proposition 5.6, an integral domain is an idf-domain
when its ring of integer-valued polynomials is an idf-domain. We proceed to
consider the converse, which was stated as Question 1.1 in the introduction. It
turns out that, as it is the case for polynomial rings, the property of being an idf-
domain does not transfer from an integral domain to its ring of integer-valued
polynomials. We will establish this result in our next theorem, which is the
main result we present in this section.

First, we introduce a monoid that is crucial for our construction. If T is a
nonempty subset of ℝ, then the additive submonoid

coneℚ(T) ∶=
{ n∑

i=1
qiti

||||| n ∈ ℕ, and qi ∈ ℚ≥0 and ti ∈ T for every i ∈ J1, nK
}

of ℝ is called the rational cone of T over ℚ. Submonoids of ℝ obtained in this
way are called rational cones of ℝ. Note that rational cones are closed under
nonnegative rational multiplication. Let t be a transcendental number such
that 0 < t < 1, and consider the sequences (an)n∈ℕ and (bn)n∈ℕ of positive real
numbers de�ned as follows:

an ∶= 1 − tn+1 and bn ∶= t − tn+1.

Now we consider the monoid

M ∶= coneℚ(T), where T ∶= {tn, an, bn ∣ n ∈ ℕ}. (5.1)

Observe �rst that 1 = a1 + t2 ∈ M and also that M is a reduced monoid. We
are in a position to state and prove the main result of this section.

Theorem 5.7. For each p ∈ ℙ, let R be the monoid ring Fp[y;M], where M is
the monoid in (5.1). Then the following statements hold.

(1) R is antimatter, and so an idf-domain.
(2) Int(R) is not an idf-domain.

Proof. (1) Observe that R× = F×p . To argue that R is antimatter, take a nonzero
f(y) ∈ R and write f(y) =

∑n
i=1 y

mi for some m1, … ,mn ∈ M (not necessar-
ily distinct). Since M is a rational cone, mi∕p ∈ M for every i ∈ J1, nK and,
therefore, g(y) ∶=

∑n
i=1 y

mi∕p ∈ R. Since f(y) = g(y)p, the polynomial expres-
sion f(y) is not irreducible. Hence A (R) is empty, and so R is antimatter. As a
consequence, R is an idf-domain.

(2) We proceed to prove that Int(R) is not an idf-domain. We claim that yx+
yt has in�nitely many non-associate irreducible divisors in Int(R). Since yx +
yt = ytn+1(yanx+ybn), it su�ces to show that yanx+ybn is irreducible in Int(R)
for every n ∈ ℕ. To do so, �x yaix + ybi for some i ∈ ℕ. Now observe that
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r0, r1 ∈ R if and only if r1x + r0 ∈ Int(R) for every r0, r1 ∈ qf(R). Therefore the
only way to write yaix + ybi as a product of two elements in Int(R) is

yaix + ybi = ℎ(y)
( yai

ℎ(y)
x +

ybi

ℎ(y)

)
,

where ℎ(y) ∈ R is a common divisor of yai and ybi inR. Since themultiplicative
set of nonzero monomials of R is a divisor-closed submonoid of R∗, it follows
that ℎ(y) must be a monomial in R, namely, ℎ(y) = �yc for some � ∈ Fp and
c ∈ M. To argue that c = 0, we consider the following three cases.
Case 1: qaj ∣M c for some j ∈ ℕ and q ∈ ℚ≥0. From t = b1 + t2, we obtain that
M = coneℚ(T ⧵{t}). Now as qaj ∣M bi, for some n ∈ ℕwith n ≥ j, we can write

t − ti+1 =
n∑

k=1
qk(1 − tk+1) +

n∑

k=1
rk(t − tk+1) +

n∑

k=1
sktk+1, (5.2)

where qk, rk, sk ∈ ℚ≥0 for every k ∈ J1, nK and q ≤ qj. Since t is transcendental,
the coe�cient

∑n
k=1 qk of 1 in the right-hand side of (5.2) must be zero. This,

in turns, implies that q = 0.
Case 2: qbj ∣M c for some j ∈ ℕ and q ∈ ℚ≥0. In this case, qbj ∣M ai, and we
can mimic the argument given for Case 1 (this time with bj and ai playing the
roles of aj and bi, respectively) to arrive to the same conclusion, namely, that
q = 0.
Case 3: qtj ∣M c for some j ∈ ℕ and q ∈ ℚ≥0. If j = 1, then qb1 ∣M c and,
therefore, q = 0 by virtue of Case 2. Then we can assume that j ≥ 2. Because
qtj ∣M ai, we can take n ∈ ℕ with n ≥ j and write

1 − ti+1 =
n∑

k=1
qk(1 − tk+1) +

n∑

k=1
rktk+1, (5.3)

where qk, rk ∈ ℚ≥0 for every k ∈ J1, nK and q ≤ rj−1 (as seen in Case 2, sbk ∤M
ai for any s ∈ ℚ>0 and k ∈ ℕ). Since t is transcendental, after comparing
coe�cients in both sides of (5.3), we see that

∑n
k=1 qk = 1, and also that qk = rk

for every k ∈ J1, nK ⧵ {i}while qi = ri +1. Therefore qi = ri +1 = ri +
∑n

k=1 qk,
and so ri = 0 and qk = 0 for every k ∈ J1, nK ⧵ {i}. Thus, rk = 0 for every
k ∈ J1, nK, which implies that q = 0.

Since c is not divisible by any of the positive rational multiples of any of the
elements in T, we obtain that c = 0. Hence ℎ ∈ F×p = Int(R)×. As M is a
reducedmonoid, yaix+ybi and yajx+ybj are associates if and only if i = j, from
which we conclude that yx + yt has in�nitely many non-associate irreducible
divisors in Int(R). Hence Int(R) is not an idf-domain. �

We summarize some of our main results, highlighting their known parallel
statements in the context of polynomial rings.
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Remark 5.8. Let R be an integral domain. As observed in Remark 3.4, the ring
of integer-valued polynomials Int(R)may not be atomic even when R is atomic.
In addition, we have seen in Theorem 5.7 that Int(R)may not be an idf-domain
even when R is an idf-domain. However, it follows from Corollary 4.7 that if R
is an atomic idf-domain, then Int(R) is also an atomic idf-domain (recall that,
in light of [1, Theorem 5.1], an integral domain is an atomic idf-domain if and
only if it is an FFD). These results resemblance nontrivial facts already known
for polynomial rings ([1, Proposition 5.3], [36, Theorem 2.5], and [40, Exam-
ple 5.1]).

Let R be an integral domain, and let S be a subset of R. By virtue of part (2)
of Proposition 5.6, when S is �nite we need R to be an IFD for Int(S, R) to be
an idf-domain. One can naturally wonder for which �nite subsets S of R the
converse holds, that is, the fact that R is an IFD guarantees that Int(S, R) is an
idf-domain. We conclude this paper by giving a partial answer to this question,
and doing so we provide a way to produce rings of integer-valued polynomials
that are non-atomic idf-domains.

Theorem 5.9. Let R be an IFD. Then Int({s}, R) is an idf-domain for every s ∈ R.

Proof. Fix s ∈ R, and let K denote the quotient �eld of R. Then set T ∶=
Int({s}, R) = R + (x − s)K[x]. If R is a �eld, then T = K[x] is an FFD and, as
a consequence, an idf-domain. On the other hand, we assume that R is not a
�eld. Let f(x) be a nonzero nonunit of T, and let us argue that the following
set is �nite:

A ∶=
{
a(x)T× ∣ a(x) ∈ A (T) and a(x) ∣T f(x)

}
.

First, observe that if b(s) = 0 for some nonzero polynomial b(x) in T, then we
can write b(x) = r(b(x)∕r) for some nonzero nonunit r ∈ R (which must exist
because R is not a �eld), and the fact that b(x)∕r is a nonunit of T guarantees
that b(x) ∉ A (T). Thus, s is not a root of any irreducible polynomial in T. As
a consequence, if a(x) ∈ A (T) and deg a(x) ≥ 1, then the equality a(x) =
a(s)

(
a(x)∕a(s)

)
implies that a(s) ∈ T×. Let G(R) be the divisibility group of

R, and write A = A0 ∪ A1, where A0 ∶= A ∩ G(R) and A1 ∶= A ⧵ G(R). As
R∗ is a divisor-closed submonoid of T∗, the equality A (T) ∩ R = A (R) holds.
This, along with the fact that R contains only �nitely many irreducibles (up to
associates), ensures that A0 is �nite. To argue that A1 is also �nite, set

B ∶= {b(x)K× ∣ b(x) ∈ K[x] and b(x) ∣K[x] f(x)},

and consider the map '∶ A1 → B de�ned by a(x)T× ↦ a(x)K×. Since T× =
R×, the map ' is well-de�ned. Now suppose that a(x) and a′(x) are non-
constant polynomials in A (T) both dividing f(x) in T such that a(x)K× =
a′(x)K×. The fact that both a(s) and a′(s) belong to T× implies that a(x)T× =
a′(x)T×. Hence the map A1 → B is injective. Since K[x] is an FFD, the set B is
�nite. Hence A1 is also �nite, and so A is �nite. We can now conclude that T
is an idf-domain. �
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As a direct consequence of Theorem 5.9 and part (2) of Proposition 5.6, we
obtain the following corollary.

Corollary 5.10. Let R be an integral domain. For each s ∈ R, the ring Int({s}, R)
is an idf-domain if and only if R is an IFD.

Finally, we observe that Theorem 5.9 cannot be extended to Int(S, R) for �-
nite subsets S of R. The following example, which is a modi�ed version of The-
orem 5.7, sheds some light upon this observation.

Example 5.11. Forp ∈ ℙ, letR ∶= Fp[y;M] be the integral domain introduced
in Theorem 5.7, whereM is the rational cone of the set

T = {tn, 1 − tn+1, t − tn+1 ∣ n ∈ ℕ}

for some �xed transcendental number t ∈ (0, 1). We have already seen that R
is antimatter and, therefore, an IFD. Now consider the ring of integer-valued
polynomials Int(S, R), where S = {0, 1}. Note that for any polynomial f(x) ∶=
r1x+r0 ∈ qf(R)[x], the equalities r0 = f(0) and r1 = f(1)−f(0) guarantee that
f(x) ∈ Int(S, R) if and only if r0, r1 ∈ R (as it is the case in Theorem 5.7). Now
we can simply follow the lines of Theorem 5.7 to show that y1−tn+1x + yt−tn+1 is
an irreducible divisor of yx+yt in Int(S, R) for every n ∈ ℕ. As a consequence,
we conclude that Int(S, R) is not an idf-domain even though R is an IFD.

For an integral domainR, we have seen thatR is an IFD if and only if Int(S, R)
is an idf-domain provided that the set S is a singleton (Corollary 5.10). On the
other hand, we have seen that the same property does not hold even for every
set S of cardinality 2 (Example 5.11). We conclude this paper with the following
natural open question.

Question 5.12. Let R be an integral domain. For which �nite nonempty subsets
S of R does the following property hold: the ring Int(S, R) is an idf-domain if and
only if R is an IFD?
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