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Strongly continuous composition
semigroups on analytic Morrey spaces

Fangmei Sun and Hasi Wulan

Abstract. For a semigroup ('t)t≥0 consisting of analytic self-maps from the
unit diskD to itself, a strongly continuous composition semi-group (Ct)t≥0 in-
duced by ('t)t≥0 on analytic Morrey spaces H2,�, 0 < � < 1, is investigated.
By the weak compactness of resolvent operator, we give a complete charac-
terization of H2,�

0 = ['t , H2,�] for 0 < � < 1 in terms of the in�nitesimal
generator if the Denjoy-Wol� point of ('t)t≥0 is in D.
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1. Introduction
Recall that a family ('t)t≥0 of analytic self-maps of the unit disk D in the

complex plane ℂ is said to be a semigroup if:
(i) '0 is the identity map I, i.e. '0(z) = z, z ∈ D;
(ii) 't+s = 't◦'s for all t, s ≥ 0;
(iii) for each z ∈ D, 't(z) → z as t → 0+.
A semigroup ('t)t≥0 is said to be trivial if each 't is the identity ofD. By [12],

every non-trivial semigroup ('t)t≥0 has a unique common �xed point b ∈ D
with |'′t(b)| ≤ 1 for all t ≥ 0, called the Denjoy-Wol� point (DW point) of
('t)t≥0. The in�nitesimal generator of ('t)t≥0 is the function

G(z) = lim
t→0+

't(z) − z
t = )'t(z)

)t
|||||t=0, z ∈ D.

Received May 31, 2022.
2010Mathematics Subject Classi�cation. 30D45, 30D99, 30H25, 47B38.
Key words and phrases. composition operator semigroup; strongly continuous; maximal

closed subspace; analytic Morrey space; Denjoy-Wol� point.
This research is supported by NNSF of China (No.11720101003, 12271328) and Guangdong

Basic and Applied-basic Research Foundation (No. 2022A1515012117).

ISSN 1076-9803/2022

1419

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2022/Vol28.htm


1420 FANGMEI SUN AND HASI WULAN

This convergence holds uniformly on compact subsets of D, so G ∈ ℋ(D), the
set of all analytic functions on D. Moreover, G has a unique representation

G(z) = (bz − 1)(z − b)P(z), z ∈ D, (1)

where b is the DW point of ('t)t≥0 and P ∈ ℋ(D) with Re(P(z)) ≥ 0 for z ∈
D. For every non-trivial semigroup ('t)t≥0 with the in�nitesimal generator G,
there exists a unique univalent function ℎ, the Koenigs function of ('t)t≥0 on
D, correspending to ('t)t≥0. If the DW point b ∈ D, then ℎ(b) = 0, ℎ′(b) = 1
and

ℎ('t(z)) = eG′(b)tℎ(z), z ∈ D, t ≥ 0.
If the DW point b ∈ )D = {z ∶ |z| = 1}, then ℎ(0) = 0 and

ℎ('t(z)) = ℎ(z) + it, z ∈ D, t ≥ 0.
Without loss of generality, the DW point b ∈ D or b ∈ )D can be written
as b = 0 or b = 1. See [5] and [12] for more results about the composition
semigroups.

For a given semigroup ('t)t≥0 and a Banach space X consisting of analytic
functions onD, we say that ('t)t≥0 generates a strongly continuous composition
semigroup (Ct)t≥0 on X if Ct is bounded on X for t ≥ 0 and

lim
t→0+

‖Ct(f) − f‖X = 0 for all f ∈ X,

where Ct(f) = f◦'t for f ∈ ℋ(D). Here C0 is the identity operator and
Ct+s = Ct◦Cs for t, s ≥ 0. Denote by ['t, X] the maximal subspace of X on
which ('t)t≥0 generates a strongly continuous composition semigroup (Ct)t≥0.
Note that ['t, X] ⊂ X is obvious. By [2, 10, 11], we know that every semigroup
('t)t≥0 generates a strongly continuous composition semigroup (Ct)t≥0 on the
Hardy space Hp, 1 ≤ p < ∞, the Bergman space Ap, 1 ≤ p < ∞, and the
Dirichlet space D, respectively. In our notation, ['t, Hp] = Hp, ['t, Ap] = Ap

for 1 ≤ p < ∞ and ['t, D] = D. However, not all analytic function spaces ad-
mit the property that the corresponding composition semigroups are strongly
continuous on them. For this situation, we choose X = H∞, the Bloch space
ℬ, the spaces Qp and QK , for examples. See [3, 9, 15] for the details.

The authors of [6] considered the same problems for the analytic Morrey
spaces H2,�, 0 ≤ � ≤ 1. Let H2 be the Hardy space of all analytic functions f
on D for which

sup
0≤r<1

∫
2�

0
|f(rei�)|2 d�2� < ∞.

Note that for f ∈ H2, the function f(z) converges nontangentially to an L2
function f(t) almost everywhere on )D. For 0 ≤ � ≤ 1, the analytic Morrey
spaceH2,� consisting of those functions f ∈ H2 such that

‖f‖H2,� ∶= sup
I⊂)D

( 1
|I|�

∫
I
|f(t) − fI|2

|dt|
2� )

1∕2

< ∞,
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where fI denotes the average of f over the arc I ⊂ )D and |I| denotes the arc
length of I ⊂ )D. It is clear that for � = 0 or � = 1, H2,� reduces to H2 or
BMOA, the set of analytic functions in D with boundary values of bounded
mean oscillation. It is known (cf.[14]), that ‖f‖2H2,� is equivalent to

sup
I⊂)D

1
|I|�

∫
S(I)

|f′(z)|2(1 − |z|2)dm(z), (2)

where S(I) is the Carleson box and dm(z) is the normalized Lebesgue areamea-
sure on D.

It was shown in [6] that for every non-trivial semigroup ('t)t≥0,

BMOA ⫋ H2,�
0 ⊂ ['t, H2,�] ⫋ H2,�, 0 < � < 1. (3)

Here, H2,�
0 is the closure of all polynomials in H2,�. [6, Theorem 3.1], the ana-

logue of Sarason’s characterization of a function inVMOA, showed thatH2,�
0 =

['t, H2,�] for 't(z) = e−tz with the DW point b = 0. However, by choosing

't(z) =
(e−t(( 1+z

1−z
)
1−�
2 − 1) + 1)

2
1−� − 1

(e−t(( 1+z
1−z

)
1−�
2 − 1) + 1)

2
1−� + 1

, 0 < � < 1,

with the DW point b = 0, we �nd that the function

f�(z) = (1 + z
1 − z)

1−�
2 − 1 ∈ H2,�∖H2,�

0 , 0 < � < 1.

Since
‖f�◦'t − f�‖H2,� = (1 − e−t)‖f�‖H2,� → 0

as t → 0, f� ∈ ['t, H2,�]. It means that H2,�
0 ≠ ['t, H2,�] holds for the semi-

group ('t)t≥0. In addition, we are able to �nd a semigroup ('t)t≥0 = (e−tz+1−
e−t)t≥0 with the DW point b = 1, for example, such thatH2,�

0 ≠ ['t, H2,�].
A natural problem is to characterize the semigroup ('t)t≥0 such that H2,�

0 =
['t, H2,�] holds. The authors of [6] obtained a su�cient condition for H2,�

0 =
['t, H2,�] in terms of the in�nitesimal generator of ('t)t≥0 as follows.

Theorem A ([6]). Let ('t)t≥0 be a semigroup of analytic self-maps ofD with the
in�nitesimal generator G and 0 < � < 1. If

lim
|I|→0

1
|I| ∫S(I)

1 − |z|
|G(z)|2

dm(z) = 0, (4)

thenH2,�
0 = ['t, H2,�].

They also gave a neccessary condition on the in�nitesimal generator of a
semigroup with the DW point b ∈ D such thatH2,�

0 = ['t, H2,�].
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Theorem B ([6]). Let ('t)t≥0 be a semigroup of analytic self-maps of D with the
DW point b ∈ D and the in�nitesimal generator G. If for some � ∈ (0, 1)we have
H2,�
0 = ['t, H2,�], then

lim
|z|→1

(1 − |z|)
3−�
2

G(z)
= 0.

The following result, Theorem1.1, is our main result in this paper which
gives a su�cient and necessary condition for H2,�

0 = ['t, H2,�] in terms of the
weakly compactness of the resolvent operator when the semigroup ('t)t≥0 has
a DW point in D. Moreover, this shows that when (5) holds, condition (4) in
Theorem A is also necessary forH2,�

0 = ['t, H2,�].

Theorem 1.1. Suppose 0 < � < 1 and ('t)t≥0 is a non-trivial semigroup of an-
alytic self-maps of D with the DW point b = 0 and the in�nitesimal generator G.
Denote by Γ the in�nitesimal generator of the corresponding composition semi-
group (St)t≥0 onH2,�

0 and denote by R(�, Γ) = (�−Γ)−1 the resolvent operator for
� ∈ �(Γ), the resolvent set of Γ. ThenH2,�

0 = ['t, H2,�] if and only if the resolvent
operator R(�, Γ) is weakly compact onH2,�

0 . Moreover, if

sup
I⊂)D

1
|I| ∫S(I)

1 − |z|
|G(z)|2

dm(z) < ∞, (5)

thenH2,�
0 = ['t, H2,�] if and only if

lim
|I|→0

1
|I| ∫S(I)

1 − |z|
|G(z)|2

dm(z) = 0. (6)

Throughout the paper, the symbol A ≈ B means that A ≲ B ≲ A. We say
that A ≲ B if there exists a constant C > 0 such that A ≤ CB.

2. Lemmas
For g ∈ ℋ(D), the Volterra type operator Vg onH2,� is de�ned by

Vg(f)(z) = ∫
z

0
f(�)g′(�)d�, f ∈ H2,�.

The following Lemma2.1 andLemma2.2 are extensions of the related results
in [3].

Lemma 2.1. Let 0 < � < 1 and g ∈ ℋ(D). Then the following are equivalent:

(i) Vg is bounded onH2,�.
(ii) Vg is bounded onH2,�

0 .
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Proof. (i) ⇒ (ii). Suppose Vg is bounded on H2,�. By [8], g ∈ H2,�
0 since

BMOA ⊂ H2,�
0 for 0 < � < 1. A simple computation shows that

Vg(zn) = ∫
z

0
�ng′(�)d�

belong toH2,�
0 for all integers n ≥ 1, and then Vg(P) ∈ H2,�

0 for all polynomials
P. Thus, for f ∈ H2,�

0 , Vg(f) can be approximated byH2,�
0 functions sinceH2,�

0
is the closure of all polynomials inH2,�. Bearing inmind thatH2,�

0 is closed and
the assertion follows.

(ii) ⇒ (i). Suppose Vg is bounded on H2,�
0 . From [13], we know that the

second dual ofH2,�
0 is isomorphic toH2,� under the pairing:

⟨f, ℎ⟩ = 1
2� ∫

)D
f(�)ℎ(�)|d�| (7)

for f ∈ H2,�
0 and ℎ ∈ (H2,�

0 )∗. Let V∗
g be the adjoint of Vg acting on the dual

space (H2,�
0 )∗ under (2.1), and letV∗∗

g be the adjoint ofV∗
g acting onH2,�. Thus,

by the de�nition of the adjoint operator,

⟨Vg(f), ℎ⟩ = ⟨f, V∗
g (ℎ)⟩ = ⟨V∗

g (ℎ), f⟩ = ⟨ℎ, V∗∗
g (f)⟩ = ⟨V∗∗

g (f), ℎ⟩

hold for all f ∈ H2,�
0 and ℎ ∈ (H2,�

0 )∗. Owing to H2,�
0 is weak∗ dense in H2,�,

we say that V∗∗
g = Vg as operators onH2,�. Hence, Vg is bounded onH2,�. �

Lemma 2.2. Suppose 0 < � < 1 and g ∈ ℋ(D). If Vg is bounded onH2,�, then
the following statements are equivalent.

(i) Vg is weakly compact onH2,�.
(ii) Vg is weakly compact onH2,�

0 .
(iii) Vg is compact onH2,�.
(iv) Vg is compact onH2,�

0 .
(v) Vg(H2,�) ⊂ H2,�

0 .

Proof. By the proof of Lemma 2.1, we conclude that V∗∗
g = Vg. According to

[4], the equivalence of (i), (ii) and (v) can be easily obtained.
Next, we show that (iii) and (iv) are equivalent. Because H2,�

0 is a subspace
of H2,� and they share the same norm, (iii) implies (iv). Conversely, let Vg be
compact onH2,�

0 . UsingV∗∗
g = Vg again, and togetherwith [4, TheoremVI.5.2],

we get that (iv) and (iii) are equivalent.
Finally, we verify that (i) and (iii) are equivalent. (iii) ⇒ (i) is obvious. To

�nish the proof, for a given subarc I ⊂ )D, we consider the functions

fw(z) =
1

(1 − wz)
1−�
2

, z ∈ D,
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where w = (1 − |I|)� and � is the center of I. Note that fw ∈ H2,� and
sup
w∈D

‖fw‖H2,� < ∞.

If (i) is true, then the equivalence of (i) and (v) gives that Vg(H2,�) ⊂ H2,�
0 . It

follows that

Vg(fw)(z) = ∫
z

0
fw(�)g′(�)d�, w ∈ D,

belong toH2,�
0 . Similar to (2), we have

lim
|I|→0

1
|I|�

∫
S(I)

|fw(z)|2|g′(z)|2(1 − |z|2)dm(z) = 0.

Hence,

lim
|I|→0

1
|I| ∫S(I)

|g′(z)|2(1 − |z|2)dm(z) = 0,

which means that g ∈ VMOA by [7]. Combining this with [8] implies that Vg
is compact onH2,�. �

Suppose now that ('t)t≥0 is a semigroup of self-maps of D and (Ct)t≥0 is the
corresponding composition semigroup on H2,�. Since each 't is univalent, we
know that Ct is bounded onH2,� ([16, Corollary 1]), and supt∈[0,1] ‖Ct‖ < ∞. If
f ∈ H2,�

0 and � > 0, then there exists a polynomial P such that ‖f − P‖H2,� < �
([13, Lemma 2.8]). Hence,

‖Ct(f) − Ct(P)‖H2,� < �
(1 + |'t(0)|
1 − |'t(0)|

) 1−�
2 .

Since Ct(P) ∈ H2,�
0 , it follows that Ct(f) ∈ H2,�

0 . Therefore Ct ∶ H2,�
0 → H2,�

0

exists as a bounded operator with ‖Ct‖ ≤
( 1+|'t(0)|
1−|'t(0)|

) 1−�
2 . Thus, we can de�ne

the composition operator St = Ct|H2,�
0

onH2,�
0 . It is clear that (St)t≥0 is strongly

continuous onH2,�
0 , 0 < � < 1, by [1, Corollary 1.3].

Lemma 2.3. Let ('t)t≥0 be a semigroup of self-maps of D, (Ct)t≥0 be the corre-
sponding composition semigroup on H2,�, and St = Ct|H2,�

0
for 0 < � < 1. Then

S∗∗t = Ct for all t ≥ 0, where S∗∗t means the second adjoint operator of St under
the pairing (7).

Proof. For f ∈ H2,�
0 and ℎ ∈ (H2,�

0 )∗, we have

⟨St(f), ℎ⟩ = ⟨f, S∗t (ℎ)⟩ = ⟨S∗t (ℎ), f⟩ = ⟨ℎ, S∗∗t (f)⟩ = ⟨S∗∗t (f), ℎ⟩,
which gives

S∗∗t (f) = St(f) for all f ∈ H2,�
0 .

Therefore,
Ct|H2,�

0
= St = S∗∗t |H2,�

0
.
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SinceH2,�
0 is weak∗ dense inH2,�, the conclusion follows. �

LemmaC ([5]). Let (Tt)t≥0 be a strongly continuous composition semigroup on a
Banach spaceX with the in�nitesimal generatorA and let!0 be the growth bound
of (Tt)t≥0, i.e.

!0 = lim
t→∞

log ‖Tt‖
t .

(i) If � > !0, then there is a constantM� such that ‖Tt‖ ≤ M�e�t, t ≥ 0;
(ii) If Re(�) > !0, then � ∈ �(A) and

R(�,A)(f) = ∫
∞

0
e−�tTt(f)dt, f ∈ X.

Lemma 2.4. Let ('t)t≥0 be a non-trivial semigroup of self-maps ofDwith the DW
point b = 0, the in�nitesimal generator G and Koenigs function ℎ. Suppose St is
the corresponding composition semigroup onH2,�

0 , 0 < � < 1, with the in�nitesi-
mal generator Γ. Then for � ∈ �(Γ), the resolvent operator of Γ has the following
representation:

R(�, Γ)f(z) = − 1
G′(0)

1

(ℎ(z))−
�

G′(0)

∫
z

0
f(�)(ℎ(�))−

�
G′(0)

−1ℎ′(�)d�. (8)

In particular, −G′(0) belongs to �(Γ) and hence

R(−G′(0), Γ)f(z) = − 1
G′(0)ℎ(z)

∫
z

0
f(�)ℎ′(�)d�. (9)

Proof. Write

R ∶= − 1
G′(0)

1

(ℎ(z))−
�

G′(0)

∫
z

0
f(�)(ℎ(�))−

�
G′(0)

−1ℎ′(�)d�.

It is easy to check that

(�I − Γ)R = R(�I − Γ) = I,
which shows that R is the resolvent operator of Γ and (8) holds. Since each 't
is univalent, we immediately get that each St mapsH2,�

0 into itself and so

!0 ∶= lim
t→∞

log ‖St‖
t = 0.

By (1), we have

G(z) = −zP(z), Re(P(z)) ≥ 0, z ∈ D,
and

Re(−G′(0)) = Re(P(0)) ≥ 0.
If Re(−G′(0)) > 0, by (ii) of Lemma C, −G′(0) ∈ �(Γ). If Re(−G′(0)) = 0, write
G(z) = −i�z, where � ∈ ℝ ⧵ {0}. By [3, Theorem 2],

Γ(f)(z) = G(z)f′(z) = −i�zf′(z).
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Thus, (i�I − Γ)(f) = g has the unique analytic solution

f(z) = 1
i�z ∫

z

0
g(�)d�.

It is not di�cult to see that the operator

g → 1
i�z ∫

z

0
g(�)d�

is bounded on H2,�. Hence, it is bounded on H2,�
0 . Therefore, −G′(0) ∈ �(Γ).

Choosing � = −G′(0) in (8), we obtain (9). �

3. The proof of Theorem 1.1

Now we are going to prove Theorem 1.1. SupposeH2,�
0 = ['t, H2,�]. By (i) of

Lemma C, there are two positive constants � andM� such that ‖Su‖ ≤ M�e�u
for u ≥ 0. By (ii) of Lemma C, we choose a large enough real number � > �
such that � ∈ �(Γ) and we have

R(�, Γ)(f) = ∫
∞

0
e−�uSu(f)du, f ∈ H2,�

0 .

Thus,

St◦R(�, Γ)(f) = ∫
∞

0
e−�uSt+u(f)du = e�t ∫

∞

t
e−�uSu(f)du.

Accordingly,

St◦R(�, Γ)(f) − R(�, Γ)(f) = (e�t − 1) ∫
∞

t
e−�uSu(f)du − ∫

t

0
e−�uSu(f)du.

Therefore,

‖St◦R(�, Γ)(f) − R(�, Γ)(f)‖H2,�

≤
(
|e�t − 1| ∫

∞

t
e−�u‖Su‖du + ∫

t

0
e−�u‖Su‖du

)
‖f‖H2,� .

Thus,

‖St◦R(�, Γ) − R(�, Γ)‖ ≤ M�
(
|e�t − 1| ∫

∞

t
e−(�−�)udu + ∫

t

0
e−(�−�)udu

)
,

and so
lim
t→0

‖St◦R(�, Γ) − R(�, Γ)‖ = 0.

By Lemma 2.3, S∗∗t = Ct. Recalling that St commutes with R(�, Γ), we have
lim
t→0

‖Ct◦R(�, Γ)∗∗ − R(�, Γ)∗∗‖ = 0.
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This implies

lim
t→0

‖Ct◦R(�, Γ)∗∗(f) − R(�, Γ)∗∗(f)‖H2,� = 0, f ∈ H2,�,

which yeilds thatR(�, Γ)∗∗(H2,�) ⊂ ['t, H2,�] = H2,�
0 . According to [4, Theorem

VI.4.2], we know that R(�, Γ) is weakly compact onH2,�
0 for a large enough real

number �. For a general � ∈ �(Γ), using the resolvent equation
R(�, Γ) − R(�, Γ) = (� − �)R(�, Γ)R(�, Γ), �, � ∈ �(Γ),

we obtain that R(�, Γ) is weakly compact for some � ∈ �(Γ) if and only if it is
weakly compact for every � ∈ �(Γ).

Conversely, write Y = ['t, H2,�] and then H2,�
0 ⊂ Y ⫋ H2,� by [6]. By [3,

Theorem 2], the restriction of (Ct)t≥0 on Y is a strongly continuous semigroup
with the in�nitesimal generator ∆(f) = Gf′. It is clear that the domain of Γ

D(Γ) = {f ∈ H2,�
0 ∶ Gf′ ∈ H2,�

0 } ⊂ D(∆) = {f ∈ Y ∶ Gf′ ∈ Y},
and that ∆ is an extension of Γ. Let � be a large enough real number such that
� ∈ �(Γ) ∩ �(∆). An argument similar to that in the proof of Lemma 2.3 shows
that

R(�, Γ)∗∗|H2,�
0
= R(�, Γ), R(�, Γ)∗∗|Y = R(�, ∆).

On the other hand,
D(∆) = {f ∈ Y ∶ Gf′ ∈ Y}

= {f ∈ Y ∶ g = Gf′ − �f ∈ Y}
= {f ∈ Y ∶ f = R(�, ∆)(g), g ∈ Y}
= R(�, ∆)(Y).

Thus,
D(∆) = R(�, Γ)∗∗|Y(Y) ⊂ R(�, Γ)∗∗(H2,�) ⊂ H2,�

0 .
By [3, Theorem 1], we have

Y = ['t, H2,�] = D(∆) ⊂ H2,�
0 ,

which means that
H2,�
0 = ['t, H2,�].

Next, we are going to prove the second part of Theorem 1.1. By Lemma 2.4,
we know that −G′(0) ∈ �(Γ) and

Rℎ(f) ∶= R(−G′(0), Γ)f(z) = − 1
G′(0)ℎ(z)

∫
z

0
f(�)ℎ′(�)d�.

By using the techniques mentioned in [12], the operator Rℎ and the multiplier
operator

MI(f)(z) = I(z)f(z) = zf(z)
satisfy the following identities:

MIPℎ = −G′(0)RℎMI , Qℎ = Pℎ + QℎPℎ, (10)
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where

Pℎf(z) =
1

zℎ(z)
∫

z

0
f(�)�ℎ′(�)d�

and

Qℎf(z) =
1
z ∫

z

0
f(�)�ℎ

′(�)
ℎ(�)

d�.

To �nish our proof, by the �rst part of the theorem, it su�ces to show that Rℎ is
weakly compact on H2,�

0 if and only if (6) holds. A simple computation shows
that

Qℎ(f)(z) = J(f)(z) + LℎMI(f)(z),
where

J(f)(z) = 1
z ∫

z

0
f(�)d�

and

Lℎf(z) =
1
z ∫

z

0
f(�)( log ℎ(�)

�
)
′
d�.

Since the DW point b = 0, we have

ℎ′(z)G(z) = G′(0)ℎ(z), z ∈ D.

Thus, (5) gives

sup
I⊂)D

1
|I| ∫S(I)

|||||||
zℎ′(z)
ℎ(z)

|||||||

2
(1 − |z|)dm(z) < ∞,

which shows that log ℎ(z)
z

∈ BMOA. By [8] and Lemma 2.1, Lℎ is bounded

on H2,�
0 , and so Qℎ is bounded on H2,�

0 . By (10), Rℎ is bounded on H2,�
0 and

therefore, Pℎ is bounded onH2,�
0 . Meanwhile, (6) is equivalent to

lim
|I|→0

1
|I| ∫S(I)

|||||||
zℎ′(z)
ℎ(z)

|||||||

2
(1 − |z|2)dm(z) = 0,

which shows that log ℎ(z)
z
∈ VMOA. Similarly, we obtain that (6) is equivalent

to that Rℎ is weakly compact on H2,�
0 see [4, Theorem VI.4.5]. The proof is

complete.
The following corollary is closely related to Theorem B.

Corollary 3.1. Suppose 0 < � < 1 and ('t)t≥0 is a non-trivial semigroup of
analytic self-maps of D with the DW point in D and in�nitesimal generator G. If
condition (5) holds, thenH2,�

0 = ['t, H2,�] implies that

lim
|z|→1

1 − |z|
G(z)

= 0.
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Proof. Suppose H2,�
0 = ['t, H2,�]. By Theorem 1.1, we have that (6) holds. A

standard argument (cf. [7]) gives

lim
|a|→1

∫
D

1
|G(z)|2

(1 − |�a(z)|2)dm(z) = 0, (11)

where �a(z) =
a−z
1−az

, a ∈ D, is the Möbius transformation of D. For 0 < r < 1,
let D(a, r) = {a ∈ D ∶ |�a(z)| < r} be the pseudohyperbolic disk with center
a ∈ D and radius r. By [17], we see that

|1 − āz|2 ≈ (1 − |z|2)2 ≈ (1 − |a|2)2 ≈ m(D(a, r)), z ∈ D(a, r).

Choose an r0 ∈ (0, 1). By the subharmonicity, we obtain

∫
D

1
|G(z)|2

(1 − |�a(z)|2)dm(z)

≥ (1 − r20) ∫
D(a,r0)

1
|G(z)|2

dm(z) ≥ (1 − r20)
(1 − |a|2)2
|G(a)|2

.

Letting |a| → 1, by (11) we obtain

lim
|a|→1

1 − |a|
G(a)

= 0.

Thus, Corollary 3.1 is proved. �
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