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Strongly continuous composition
semigroups on analytic Morrey spaces

Fangmei Sun and Hasi Wulan

ABSTRACT. For a semigroup (¢, ),», consisting of analytic self-maps from the
unit disk D to itself, a strongly continuous composition semi-group (C, ), in-
duced by (¢,),50 on analytic Morrey spaces H**, 0 < 1 < 1, is investigated.
By the weak compactness of resolvent operator, we give a complete charac-
terization of Hg‘l = [¢;,,H**] for 0 < 1 < 1 in terms of the infinitesimal
generator if the Denjoy-Wolff point of (¢, ), is in D.
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1. Introduction

Recall that a family (¢,);>¢ of analytic self-maps of the unit disk D in the
complex plane C is said to be a semigroup if:
(i) @ is the identity map I, i.e. ¢o(z) = z,z € D;
(i) @45 = @ropg forall ¢,5 > 0;
(iii) foreachz € D, ¢,(z) > zast — 0™ .

A semigroup (¢,)>o is said to be trivial if each ¢, is the identity of D. By [12],

every non-trivial semigroup (¢,);>o has a unique common fixed point b € D
with |¢/(b)| < 1 forall t > 0, called the Denjoy-Wolff point (DW point) of
(¢¢)i>0- The infinitesimal generator of (¢,);>¢ is the function

¢i(z)—z  9¢,(z)
t o at =0’

G(z) = lim zeD.
t—0+

Received May 31, 2022.

2010 Mathematics Subject Classification. 30D45, 30D99, 30H25, 47B38.

Key words and phrases. composition operator semigroup; strongly continuous; maximal
closed subspace; analytic Morrey space; Denjoy-Wolff point.

This research is supported by NNSF of China (No0.11720101003, 12271328) and Guangdong
Basic and Applied-basic Research Foundation (No. 2022A1515012117).

ISSN 1076-9803/2022
1419


http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2022/Vol28.htm

1420 FANGMEI SUN AND HASI WULAN

This convergence holds uniformly on compact subsets of D, so G € H(D), the
set of all analytic functions on D. Moreover, G has a unique representation

G(z) = (bz — 1)(z - b)P(z), zeD, (1)

where b is the DW point of (¢;);>¢ and P € F(D) with Re(P(z)) > 0 for z €
D. For every non-trivial semigroup (¢;);>o With the infinitesimal generator G,
there exists a unique univalent function h, the Koenigs function of (¢;);>o on
D, correspending to (¢;);>o. If the DW point b € D, then h(b) = 0, h'(b) = 1
and
hp(2)) = ¢ ®in(z), zeD,t>0.
If the DW point b € 0D = {z : |z| = 1}, then h(0) = 0 and
hp(z)=h(z)+it, zeD,t>0.

Without loss of generality, the DW point b € D or b € JdD can be written
asb = 0or b = 1. See [5] and [12] for more results about the composition
semigroups.

For a given semigroup (¢,);>o and a Banach space X consisting of analytic
functions on D, we say that (¢, ),>( generates a strongly continuous composition
semigroup (Cy);>o on X if C; is bounded on X for ¢ > 0 and

tlirg}rHCt(f)—fHX =0 forall feX,

where C,(f) = fog, for f € H(D). Here C, is the identity operator and
Ciys = C;oCy for t,s > 0. Denote by [¢;, X ] the maximal subspace of X on
which (¢,);>o generates a strongly continuous composition semigroup (C;);>o.
Note that [¢;, X ] C X is obvious. By [2, 10, 11], we know that every semigroup
(¢1)i>0 generates a strongly continuous composition semigroup (C;),» on the
Hardy space HP,1 < p < oo, the Bergman space A?,1 < p < oo, and the
Dirichlet space D, respectively. In our notation, [¢;, H?] = HP, [¢;, AP] = AP
for1 < p < o and [¢;, D] = D. However, not all analytic function spaces ad-
mit the property that the corresponding composition semigroups are strongly
continuous on them. For this situation, we choose X = H®, the Bloch space
B, the spaces Q p and Qg, for examples. See [3, 9, 15] for the details.

The authors of [6] considered the same problems for the analytic Morrey
spaces H>*, 0 < 1 < 1. Let H? be the Hardy space of all analytic functions f
on D for which

” i6y240
Os;gll | f(re™)] > < o0.
Note that for f € H?, the function f(z) converges nontangentially to an L?
function f(t) almost everywhere on 6D. For 0 < 1 < 1, the analytic Morrey
space H>* consisting of those functions f € H? such that

1/2
1 Idt|
A= — D-fi*==] <o,
Il Is;%(lllﬂ JRECE m) o
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where f; denotes the average of f over the arc I C dD and |I| denotes the arc
length of I C dD. It is clear that for A = 0 or A = 1, H>* reduces to H? or
BMOA, the set of analytic functions in D with boundary values of bounded

mean oscillation. It is known (cf.[14]), that || f ||§{2’/1 is equivalent to

sup —— f /@10 — |z12)dm(z), ®
S(n)

IcoD |I|/1

where S(I) is the Carleson box and dm(z) is the normalized Lebesgue area mea-
sure on D.
It was shown in [6] that for every non-trivial semigroup (¢;);0,

BMOA G H* C [, H*] S H>, 0<1<1 (3)

Here, H g’/l is the closure of all polynomials in H?*. [6, Theorem 3.1], the ana-
logue of Sarason’s characterization of a function in VMOA, showed that H, g’ﬂ =
[, H**] for ¢,(z) = e~'z with the DW point b = 0. However, by choosing

(555 —D+ DT -1

pi(2) = — > , 0<Aa<1,
()2 — 1) +1)ia +1

1z
with the DW point b = 0, we find that the function

1+2z 2

fa2) =( )7 —1eH*\H', 0<ai<1.

1—2z
Since

Ifa0®: = fallza = @ — eI fallaza —> 0
ast — 0, f; € [¢,, H**]. It means that Hg’l # [@,, H**] holds for the semi-
group (¢;);>o- In addition, we are able to find a semigroup (¢,),>o = (e 'z+1—
e™");>o with the DW point b = 1, for example, such that Hg’/I # [, H>].
A natural problem is to characterize the semigroup (¢;);>o such that Hg”1 =

[¢,, H**] holds. The authors of [6] obtained a sufficient condition for Hg’/1 =
[¢:, H**] in terms of the infinitesimal generator of (¢, ), as follows.

Theorem A ([6]). Let (¢;);>o be a semigroup of analytic self-maps of D with the

infinitesimal generator G and 0 < A < 1. If
lim L 1 |z]
110 |1 S(D) |G(2)|?

dm(z) =0, (4)

then H' = [¢,, H**].

They also gave a neccessary condition on the infinitesimal generator of a
semigroup with the DW point b € D such that Hg’/WL = [¢;, H>*].
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Theorem B ([6]). Let (¢;),>0 be a semigroup of analytic self-maps of D with the
DW point b € D and the infinitesimal generator G. If for some A € (0, 1) we have

Hg’/1 = [¢,, H>*], then

3-4
1-—
lzZl-1  G(2)

The following result, Theoreml.1, is our main result in this paper which
gives a sufficient and necessary condition for H g”l = [¢;, H**] in terms of the
weakly compactness of the resolvent operator when the semigroup (¢;);>o has
a DW point in D. Moreover, this shows that when (5) holds, condition (4) in
Theorem A is also necessary for H, g’l = [@;, H>*].

Theorem 1.1. Suppose 0 < A < 1 and (¢;);>¢ is a non-trivial semigroup of an-
alytic self-maps of D with the DW point b = 0 and the infinitesimal generator G.
Denote by T the infinitesimal generator of the corresponding composition semi-

group (S;);>o On Hg”1 and denote by R(c,T") = (o —T")~! the resolvent operator for
o € p(I), the resolvent set of T. Then Hé”1 = [p,, H**] if and only if the resolvent
operator R(o,T') is weakly compact on H g”l. Moreover, if

sup L 1 |z]
rcap | S(I) |G(2)|?

dm(z) < oo, ©)

then Hé”1 = [p,, H**] if and only if

1 1—|z|
lim — dm(z) = 0. (6)
|11—0 |I| .é(]) |G(2)|?

Throughout the paper, the symbol A =~ B means that A < B 5 A. We say
that A < B if there exists a constant C > 0 such that A < CB.

2. Lemmas

For g € 3((D), the Volterra type operator V, on H 24 is defined by

z
V@ = [ rog@as 5 e
0
The following Lemma 2.1 and Lemma 2.2 are extensions of the related results
in [3].

Lemma 2.1. Let0 < A < 1and g € H(D). Then the following are equivalent:
(i) V is bounded on H**.
(ii) V4 is bounded on Hg’/l.
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Proof. (i) = (ii). Suppose V, is bounded on H** By|[8], g € Hg’/1 since
BMOA C Hé”l for 0 < 1 < 1. A simple computation shows that

V(") = f Eng/(£)d
0

belong to Hg’/1 for all integers n > 1, and then V,(P) € H S’A for all polynomials
P. Thus, for f € H 24 Vo(f) can be approximated by H g’l functions since Hé”1

is the closure of all polynomials in H>*. Bearing in mind that H, g”l is closed and
the assertion follows.
(ii) = (i). Suppose V, is bounded on Hg’/l. From [13], we know that the

second dual of Hg”l is isomorphic to H>* under the pairing:

m= 5 [ FORDIE] )

for f € Hg’/l and h € (Hé”l)*. Let V; be the adjoint of V,; acting on the dual

space (Hg’/1 )" under (2.1), and let V;* be the adjoint of V' acting on H 24 Thus,
by the definition of the adjoint operator,

(Ve(), h) =(f, V() = (Vg (h), f) = (h, V" () = (V™ (f). )

hold for all f € Hé’/l and h € (H(Z)”l)*. Owing to HS”1 is weak* dense in H2%,
we say that V;* =V as operators on H 22, Hence, Vg is bounded on H 24 0O

Lemma 2.2. Suppose0 < 1 < 1andg € H(D). If V, is bounded on H**, then
the following statements are equivalent.
(i) Vg is weakly compact on H 2.4
(ii) V, is weakly compact on H, 24
g y comp 0
(iii) Vg is compact on H**.
(iv) Vg is compact on H g”l .
(v) Vo(H>") c H .

Proof. By the proof of Lemma 2.1, we conclude that V" = V. According to
[4], the equivalence of (i), (ii) and (v) can be easily obtained.

Next, we show that (iii) and (iv) are equivalent. Because H, g’l is a subspace
of H** and they share the same norm, (iii) implies (iv). Conversely, let Vg be
compact on H g”l. Using V;* = V, again, and together with [4, Theorem VI1.5.2],
we get that (iv) and (iii) are equivalent.

Finally, we verify that (i) and (iii) are equivalent. (iii) = (i) is obvious. To
finish the proof, for a given subarc I C 0D, we consider the functions

1
fol®)= ———, ze€D,

1-wz)2
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where w = (1 — |I])¢ and ¢ is the center of I. Note that f,, € H>* and

sup|| fullmea < oo.
weD

If (i) is true, then the equivalence of (i) and (v) gives that V,(H 24 ¢ Hg”l. It
follows that

V(fu)2) = f FAOFE  weD,
0

belong to Hé”1 . Similar to (2), we have

.1 216 (N2(1 — [o]2 _
l}llglo TG fsmlfw(Z)l 1g'(2)|*(1 — |z|*)dm(z) = 0.

Hence,

lim — [ |g'(2)]’(01 - |z[*)dm(z) = 0,

ir—o |1 S(D)
which means that g € VMOA by [7]. Combining this with [8] implies that V,
is compact on H>*. O

Suppose now that (¢;);>¢ is a semigroup of self-maps of D and (C, ), is the
corresponding composition semigroup on H>*. Since each ¢, is univalent, we
know that C, is bounded on H># ([16, Corollary 1]), and sup, o7 ICell < o0. If

fe Hg’/1 and € > 0, then there exists a polynomial P such that ||f — P||g22 <€
([13, Lemma 2.8]). Hence,

1+ |g,(0)] ﬁ

1 — |p(0)]

Since C,(P) € H>*, it follows that C/(f) € Hg”1 . Therefore C, : Hg”1 - Hé”l
A

140, 0)|\ 5
1—|p(0)]

|24 on Hg’/1 . Itis clear that (S,),>¢ is strongly
2 >

continuous on Hg”l, 0 < 1 < 1,by][1, Corollary 1.3].

”Ct(f) - Ct(P)”Hz,A < 6(

exists as a bounded operator with ||C,|| < ( ) ? . Thus, we can define

the composition operator S, = C,

Lemma 2.3. Let (¢,);>o be a semigroup of self-maps of D, (C;);>¢ be the corre-
sponding composition semigroup on H**, and S, = C,| A for0 < A < 1. Then
0

Sy* = C, forall t > 0, where S} means the second adjoint operator of S; under

the pairing (7).
Proof. For f € Hé”1 and h € (Hg”l)*, we have

(Se(),h) = ([, 5; (W) = (S; (), ) = (h, S7*()) = (5;*(f), h),

which gives

SE(f) = S,(f) forall f € H .
Therefore,
C[ng,/l = St == S;k*lHé,/l.
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Since Hé”1 is weak* dense in H2%, the conclusion follows. O

Lemma C ([5]). Let(T,;),»o be a strongly continuous composition semigroup on a
Banach space X with the infinitesimal generator A and let w be the growth bound

of (Ty)i>0, i.e.

. log||T |
wo = lim .
t—o0 t
(i) If & > wy, then there is a constant Mz such that ||T;|| < Mse®, t > 0;
(ii) IfRe(c) > wy, then o € p(A) and

R(O’,A)(f):f e o'T(fHdt, feX.
0

Lemma 2.4. Let(¢;);> be a non-trivial semigroup of self-maps of D with the DW
point b = 0, the infinitesimal generator G and Koenigs function h. Suppose S; is
the corresponding composition semigroup on H 240 < A < 1, with the infinitesi-
mal generator T. Then for o € p(T'), the resolvent operator of T has the following
representation:

R(o.D)f(2) = - O T G ®
g0 (h(z) T

In particular, —G'(0) belongs to p(T") and hence

’ _ 1 ‘ ’
RCGO.D@ = - g | OOt ©
Proof. Write
. 1 / ,
R:i=- FOME) 0 WL,
O (nzy 7w

It is easy to check that

(I —-T)R=R(cI-T) =1,
which shows that R is the resolvent operator of I" and (8) holds. Since each g,
is univalent, we immediately get that each S, maps Hg’/1 into itself and so

o loglsl
o .= llm =

t—o0

By (1), we have
G(z) = —zP(z), Re(P(2))>0,zeD,
and
Re(—G’(0)) = Re(P(0)) > 0.
If Re(—G'(0)) > 0, by (ii) of Lemma C, —G'(0) € p(T'). If Re(—G’(0)) = 0, write
G(z) = —iaz, where o € R \ {0}. By [3, Theorem 2],

I'(f)z) = G(2)f'(2) = —iazf'(2).
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Thus, (ial — T)(f) = g has the unique analytic solution

1 z
= — d¢.
f(@) '/0‘ g($Hd¢

iz

It is not difficult to see that the operator

| et

az 0

is bounded on H>*. Hence, it is bounded on Hg”l. Therefore, —G’(0) € p(T).
Choosing o = —G’(0) in (8), we obtain (9). O

3. The proof of Theorem 1.1

Now we are going to prove Theorem 1.1. Suppose H, g’/l = [p,, H**]. By (i) of

Lemma C, there are two positive constants § and M such that ||S,|| < Mse®*
for u > 0. By (ii) of Lemma C, we choose a large enough real number o > &
such that ¢ € p(T") and we have

R(a,T)(f) = f T, (du, f e H
Thus, :
SoR@ ) = [ T oS, (i = Ji " eous,(F)du.
Accordingly, 0 t
5,0R(@, T)(f) — R@,T)(/) = (% — 1) f " oo, (F)du - fo emeus, (P

Therefore,
IScoR(a, D)(f) — R(o, D)(f)|| 2
< (levt = 1] f " eus, e + f | e[S, [1du ) | l]pz21-
t 0
Thus,
IS;oR(c,T) — R(0,T)|| < M5(|e‘” —1] / ) e~(=udy + / [ e—<0—5>udu),
t 0

and so
lim IS;oR(c,I") — R(o, I)|| = 0.
t—
By Lemma 2.3, S;* = C,. Recalling that S; commutes with R(c, '), we have
lim [|C;oR(0, T)** — R(o,I)"*|| = 0.
t—
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This implies
%irré IC;oR(a, 1)**(f) = R(a, D)**(f)||g2a =0, f € H>A,

which yeilds that R(o, T)*(H?**) C [¢;, H**] = H g’l . According to [4, Theorem

V1.4.2], we know that R(o, I') is weakly compact on H, g’l for a large enough real
number o. For a general o € p(T'), using the resolvent equation

R(Gs F) - R(lua F) = (/" - U)R(O', F)R(,u’ F)a o,he P(F),

we obtain that R(o, T') is weakly compact for some o € p(T') if and only if it is
weakly compact for every o € p(I').

Conversely, write Y = [¢;, H>*] and then Hg’/1 C Y G H* by [6]. By 3,
Theorem 2], the restriction of (C,),>o on Y is a strongly continuous semigroup
with the infinitesimal generator A(f) = Gf’. Itis clear that the domain of T

D) ={f eH :Gf' e H'}c D) ={feY : Gf eV},
and that A is an extension of I'. Let o be a large enough real number such that
o € p(I) N p(A). An argument similar to that in the proof of Lemma 2.3 shows
that
R(o,I)**| 22 =R(0,T), R(o,T)*|y = R(0,A).
0
On the other hand,
DA)={feY :Gf €Y}
={feY:g=Gf —of €Y}
={f€eY: f=R(0,A)g) g€ Y}
= R(o,A)(Y).
Thus,
D(A) = R(o, I)**|y(Y) C R(a, T)*(H**) c H".
By [3, Theorem 1], we have
Y = [, H**] = D(A) c H*,
which means that
Hy' = g, H].

Next, we are going to prove the second part of Theorem 1.1. By Lemma 2.4,
we know that —G’(0) € p(T") and

R(f) = REGO.DF@) =~ [ JQm s
0

By using the techniques mentioned in [12], the operator R;, and the multiplier
operator

M;(f)(2) =1(2)f(2) = zf(2)

satisfy the following identities:
M;P, = =G'(OR,M;,  Qp =Py + QuPy, (10)
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where .
PG = s [ X
0

and
Sh'(¢ )4
Quf(@) = f Oy
" TO%0
To finish our proof, by the first part of the theorem, it suffices to show that R, is

weakly compact on H, g”l if and only if (6) holds. A simple computation shows
that

Qn(f)(2) = J(f)(2) + LyM(f)(2),

where

1@ =1 [ e
0

Li@=7 [ (1o g%) .

and

Since the DW point b = 0, we have
h'(z)G(z) = G'(0)h(z), =z eD.
Thus, (5) gives
zZh' (2)*
h(z)
which shows that log — € BMOA. By [8] and Lemma 2.1, L, is bounded

on H0 , and so Qy, is bounded on HO . By (10), Ry, is bounded on Hg’/1 and
therefore, P, is bounded on Hé’/1 . Meanwhile, (6) is equivalent to

sup — !
IcoD |I| S(I)

(1 — [z])dm(z) < oo,

zh'(z) 2
h(z)

1

lim — (1= |z|?)dm(z) =0,
[1]—0 |I| S

which shows that log "®) e vmoa. Similarly, we obtain that (6) is equivalent
z

to that R, is weakly compact on Hé”wt see [4, Theorem VI.4.5]. The proof is
complete.
The following corollary is closely related to Theorem B.

Corollary 3.1. Suppose 0 < A < 1 and (¢;);>o is a non-trivial semigroup of
analytic self-maps of D with the DW point in D and infinitesimal generator G. If
condition (5) holds, then Hg’/1 = [@,, H**] implies that

. 1—]z|
lim =
lzZl-1 G(2)
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Proof. Suppose Hg,a = [¢;, H**]. By Theorem 1.1, we have that (6) holds. A
standard argument (cf. [7]) gives

. ; _ 2 —
i [ i~ leu@Pm@ =0, a

where 0,(z) = :;_Z, a € D, is the Mobius transformation of D. For0 < r < 1,

let D(a,r) = {a éaZ[D : |o4(2)| < r} be the pseudohyperbolic disk with center
a € D and radius r. By [17], we see that

1 —azl>~ (1 -|z|»)?~ 1 -|a|*)?~ m(D(a,r)), zé&cD(a,r).

Choose an ry € (0, 1). By the subharmonicity, we obtain

1
/Dm(l — loa(2)|*)dm(z)

1 (1 —lal)?
>(1-r2) f ———dm(z) > (1 - r)— .
O Jotary 16212 07 1G(a)|?
Letting |a| — 1, by (11) we obtain
1m 1_—M =0.
lal-1 G(a)
Thus, Corollary 3.1 is proved. O
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