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Partial Poisson transforms on
SU(n, n)∕SL(n, ℂ) × ℝ∗

+

Wei Han and Xingya Fan∗

Abstract. In this article, we introduce a partial Poisson transform on the
a�ne symmetric space SU(n, n)∕SL(n, ℂ) × ℝ∗

+ and prove that this trans-
form is a continuous SU(n, n)-homomorphism. We also give the form for
the Fourier transform of the Poisson kernel.
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1. Introduction
In a complex plane, the classical Poisson transform on the unit circle gives a

harmonic function on the unit disk. More generally, each eigenfunction of the
Laplace-Beltrami operator on the Poincaré disk can be represented by a gener-
alized Poisson transformof a hyperfunction on the unit circle. The notion of the
Poisson transformhas been generalized to a Riemannian symmetric spaceG∕K
of the non-compact type, where G is a connected real reductive Lie group and
K is its maximal compact subgroup (see [14, 15, 18, 23, 12] and the references
given there).

Now we recall theHelgason conjecture for the classical Poisson transform on
G∕K.

Theorem1.1. Every joint eigenfunction of the invariant di�erential operators on
G∕K has a Poisson integral representation by a hyperfunction on the boundary of
G∕K.
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In [14], Helgason proved Theorem 1.1 for Riemannian symmetric spaces
G∕K of rank one, except for an explicitly given set of spectral parameters deter-
mining the eigenvalues. In the same paper, Helgason conjectured that this the-
orem can be extended to higher-rank spaces by replacing the (geodesic) bound-
arywith the Furstenberg boundary. In [15], Helgason proved such an extension
for K-�nite functions. In [18], Kashiwara et al. give a proof, which is based on
the theory of boundary values for systems of di�erential equations with regu-
lar singularities developed by Kashiwara and Oshima in [17]. Recently, in [12],
Hansen, Hilgert, and Parthasarathy have given a new proof of a generic ver-
sion of Theorem 1.1. For a recent account of the theory, we refer the reader to
[25, 20].

The a�ne symmetric case remains an open one. In this paper we only con-
sider the a�ne symmetric space X = SU(n, n)∕SL(n, ℂ) × ℝ∗

+. It is possible
to de�ne the Poisson transformation for some sets of parameters by an integral
resembling those for SU(n, n)∕S(U(n) × U(n)) case.

Let (�, V(�)) be the irreducible representation ofM. According to [13, p. 161],
we choose the form of w(M ∩ H)w−1, which guarantees that the representa-
tion of w(M ∩ H ∩ K)w−1 is trivial. Technically, by [6, Lemma 1] and Frobe-
nius reciprocity, we prove that the restricted representation ResMw(M∩H)w−1V(�)
of M is isomorphic to ResM∩K

w(M∩H∩K)w(−1)V(�), where w ∈ W and W is as in
subsection 3.2 below. Then, to prove that the Poisson transform is a contin-
uous SU(n, n)-homomorphism, we just need to prove (4.3) below. We calcu-
late the normalized coe�cient of the Poisson transform by proving the limit
convergence of (4.3). As an interesting result, we give the form for the Fourier
transform of the Poisson kernel. We expect that some ideas of our article are ap-
plicable to Poisson transforms on more general semi-simple symmetric spaces,
as in [9, 23, 21, 1, 5, 7, 8, 11]. We also plan to address Theorem 1.1 on X in
forthcoming publications.

Precisely, this article is organized as follows.
In Section 2, we recall the a�ne symmetric space of Hermitian type.
In Section 3, we calculate the restricted root system of SU(n, n) and obtain

their Weyl groups and orbits, respectively. Then we de�ne the Poisson kernel,
Poisson transforms on these orbits, and obtain the normalized Eisenstein inte-
grals.

In Section 4, a continuous SU(n, n)-homomorphism of the Poisson trans-
form is obtained. Finally, we prove the relationship between the Poisson trans-
form and Fourier transform.
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2. Preliminaries
In what follows, we always de�ne the conjugate transpose and the transpose

of the matrix by ∗ and T, respectively. The group SU(n, n) is a connected non-
compact semi-simple Lie group de�ned by

SU(n, n) ={ ( A B
C D ) ∶ A∗A − C∗C = In, D∗D − B∗B = In,

B∗A − D∗C = 0,A, B, C, D ∈ Mn(ℂ)}.

Let S(U(n) × U(n)) be the maximal compact subgroup of SU(n, n). The Lie
algebra of SU(n, n) is given by

su(n, n) = {( � �
�∗ � ) ∶ �∗ = −�, �∗ = −�, tr(�) + tr(�) = 0} .

Here and hereafter, �, �, � ∈ Mn(ℂ). Let su(n, n) = k ⊕ p be the Cartan
decomposition, where

k = {X ∈ su(n, n) ∶ �(X) = −X∗ = X}

= {( � 0
0 � ) ∶ �∗ = −�, �∗ = −�, tr(�) + tr(�) = 0}

and

p = {X ∈ su(n, n) ∶ �(X) = −X∗ = −X} (2.1)

= {( 0 �
�∗ 0 ) ∶ � ∈ Mn(ℂ)} .

De�ne the involution (non Cartan involution) on SU(n, n) by

� (( A B
C D )) = ( D C

B A ) ,

where ( A B
C D ) ∈ SU(n, n). Let h + q be the decomposition of su(n, n) into

the ±1-eigenspaces of the involution �, where

h = {( � �
� � ) ∶ �∗ = −�, �∗ = �, tr(�) = 0}

and

q = {( � �
−� −� ) ∶ �∗ = −�, �∗ = −�} . (2.2)

By (2.1) and (2.2), we have

p ∩ q = {( 0 �
−� 0 ) ∶ �∗ = −�} .
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The maximal Abel subspace of p ∩ q is given by

ap = {i ( 0 t
−t 0 ) ∶ t = diag(t1, ⋯ , tn), ti ∈ ℝ} . (2.3)

The Lie groupH of h is de�ned by

H = {( A B
B A ) ∶ A, B ∈ Mn(ℂ), A∗A − B∗B = In, B∗A = A∗B} . (2.4)

Let ' ∶ h → sl(n, ℂ) ⊕ ℝIn be an isomorphism of Lie algebras, namely,

' (( � �
� � )) = � − �. And ' ∶ H → SL(n, ℂ) × ℝ∗

+ is an isomorphism of
groups.

Lemma 2.1. SU(n, n)∕SL(n, ℂ)×ℝ∗
+ is an a�ne symmetric space of Hermitian

type. Moveover,

SU(n, n)∕SL(n, ℂ) × ℝ∗
+ ≃ X ∶= {(z, w) ∈ U(n) × U(n) ∶ det(z − w) ≠ 0}.

Proof. Since gℂ = sl(2n, ℂ) and the complexi�cation of h is

hℂ ∶= {( � �
� � ) ∶ � ∈ Mn(ℂ), � ∈ Mn(ℂ), tr(�) = 0} ,

then De�nition 1.1(i) of [22] is natural. In what follows, condition De�nition
1.1(ii) of [22] can be replaced by saying that kℂ ∩ qℂ has a non-trivial center. In
fact,

kℂ = {( � 0
0 � ) ∶ � ∈ Mn(ℂ), � ∈ Mn(ℂ), tr(� + �) = 0}

and

qℂ ={ ( � �
−� −� ) ∶ � ∈ Mn(ℂ), � ∈ Mn(ℂ)}.

Thus

qℂk ∶= kℂ ∩ qℂ = {( � 0
0 −� ) ∶ � ∈ Mn(ℂ)} ,

which implies that qℂk has a non-trivial center:

cℂ = {(
�̃ 0
0 �̃ ) ∶ �̃ = aIn, �̃ = −aIn, a ∈ ℂ ⧵ {0}} .

And hence De�nition 1.1(ii) of [22] holds and SU(n, n)∕SL(n, ℂ) × ℝ∗
+ is an

a�ne symmetric space of Hermitian type. Finally, similar to the proof of [16,
Lemma 2.6.11, p. 68 and the table on p. 58], the bounded realization of the space
SU(n, n)∕SL(n, ℂ) × ℝ∗

+ is obtained. �

For the a�ne symmetric space of Hermitian type as in Lemma 2.1, we have
an equal description, namely, (su(n, n), sl(n, ℂ)⊕ℝIn) is an a�ne symmetric
pair (also see [4]).
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3. Frobenius reciprocity
3.1. Minimal parabolic subgroup.

Lemma 3.1. The positive root system of ∆ ∶= ∆(g, ap) is given by

∆+ =
{
2
j ∶ 1 ≤ j ≤ n

}
∪

{

i ± 
j ∶ 1 ≤ i < j ≤ n

}
. (3.1)

with multiplicity m� = 2 for the short roots � = ±(
i ± 
j) and m� = 1 for the
long roots � = ±2
i , where


i =

√
−1
8n (Ei,n+i − En+i,i) and (
i, 
j) =

1
8n�ij. (3.2)

Proof. Let eij = Eij+Eji and ẽij = Eji−Eij, where Eij denote the n×nmatrix
with 1 on the (i, j)-th entry and zero on all other entries. Then, for i < j, the
eigenvectors of ±(
i − 
j), respectively, are given by

⎧
⎪

⎨
⎪
⎩

aij1 = (
eij

√
−1 ẽij

−ẽij eij
√
−1

) ,

aij2 = (
−ẽij eij

√
−1

−eij
√
−1 −ẽij

) ,
(3.3)

⎧
⎪

⎨
⎪
⎩

bij1 = (
eij

√
−1 −ẽij

ẽij eij
√
−1

) ,

bij2 = (
−ẽij −eij

√
−1

eij
√
−1 −ẽij

) .

The eigenvectors of ±(
i + 
j), respectively, are given by

⎧
⎪

⎨
⎪
⎩

cij1 = (
eij

√
−1 eij

eij −eij
√
−1

) ,

cij2 = (
−ẽij ẽij

√
−1

ẽij
√
−1 ẽij

) ,

⎧
⎪

⎨
⎪
⎩

dij1 = (
−eij

√
−1 eij

eij eij
√
−1

) ,

dij2 = (
ẽij ẽij

√
−1

ẽij
√
−1 −ẽij

) .

The eigenvectors of ±2
i, respectively, are given by

ei = ( Eii
√
−1 Eii

Eii −Eii
√
−1

) , fi = ( −Eii
√
−1 Eii

Eii Eii
√
−1

) .

Nowwe prove (3.2) holds true. Let ad be the adjoint representation of g+. Then,
for any a ∈ ap, we have

{
ad2aa

ij
1 = (
i − 
j)2(a)(a

ij
1 ),

ad2aa
ij
2 = (
i − 
j)2(a)(a

ij
2 ),

{
ad2ab

ij
1 = (
i − 
j)2(a)(b

ij
1 ),

ad2ab
ij
2 = (
i − 
j)2(a)(b

ij
2 ),

(3.4)

{
ad2ac

ij
1 = (
i + 
j)2(a)(c

ij
1 ),

ad2ac
ij
2 = (
i + 
j)2(a)(c

ij
2 ),

{
ad2ad

ij
1 = (
i + 
j)2(a)(d

ij
1 ),

ad2ad
ij
2 = (
i + 
j)2(a)(d

ij
2 ),
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and

{ ad2aei = (2
i)2(a)(ei),
ad2afi = (2
i)2(a)(fi).

In particular, we let ℎk, ek ∈ ap be as follows:

ℎk =
√
−1(Ek,n+k − Ek+1,n+k+1 − En+k,k + En+k+1,k+1) (3.5)

for 1 ≤ k ≤ n − 1, and

ek =
√
−1(Ek,n+k − En+k,k)

for 1 ≤ k ≤ n. From this, the equations above and the Killing form (x, y) =
Tr(adxady), it follows that

(ℎk, ℎk) = Tr(adℎkadℎk )

= 4
∑

1≤i<j≤n

[
(
i − 
j)2(ℎk) + (
i + 
j)2(ℎk)

]
+ 2

∑

1≤i≤n
(2
i)2(ℎk)

= 4(4 + 2(n − 2) + 2(n − 2)) + 2(4 + 4)
= 16n

and

(ek, ek) = Tr(adekadek )

= 4
∑

1≤i<j≤n

[
(
i − 
j)2(ek) + (
i + 
j)2(ek)

]
+ 2

∑

1≤i≤n
(2
i)2(ek)

= 8n.

Moreover, if i ≠ j, then (ei, ej) = Tr(adeiadej ) = 0.

Let 
k − 
k+1 = sℎk, 
k = s
√
−1(Ek,n+k − En+k,k). Together with (
k −


k+1)(ℎk) = (sℎk, ℎk) and (
k − 
k+1)(ℎk) = 2, imply that s = 1
8n
. And hence


k − 
k+1 =

√
−1
8n (Ek,n+k − Ek+1,n+k+1 − En+k,k + En+k+1,k+1)

for 1 ≤ k ≤ n − 1. Processing continues in this same way, we obtain


k =

√
−1
8n (Ek,n+k − En+k,k) and (
i, 
j) =

1
64n2

(ei, ej) = {
1
8n
, i = j

0, i ≠ j
This �nishes the proof of Lemma 3.1. �

Let n ∶= n(∆+) be the sum of the root spaces corresponding to the roots in
this set, and put N = N(Σ+(g, ap)) ∶= expn. LetM1 denote the centralizer of
ap in G, and put P′ = P′(Σ+(g, ap)) ∶= M1N. It is easily seen thatM1 normal-
izes N and hence P′ is a subgroup of G. Let u be complementary to n ∩ h in n,
and write U = expu. Here we assume that u is a unipotent radical. Let L be
the centralizer of ap in SU(n, n), namely,

L =
{
g ∈ SU(n, n) ∶ gag−1 = a, a ∈ ap

}
. (3.6)
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Motivated by [19], we have the minimal ��-stable parabolic subgroup as fol-
lows:

P = LU. (3.7)

3.2. Weyl groups and P-orbits. Since �� = ��, su(n, n) has a �� decompo-
sition g+ ⊕ g−, where

g+ = {X ∈ su(n, n) ∶ ��(X) = X} = (h ∩ k) ⊕ (q ∩ p) (3.8)

and g− = {X ∈ su(n, n) ∶ ��(X) = −X} = (h ∩ p) ⊕ (q ∩ k). Note that g+ is a
Lie subalgebra of su(n, n). In fact, since g+ is the subspace of su(n, n), then,
for any X,Y ∈ g+, the bracket operation [X, Y] is bilinear, and [X, Y] ∈ g+,
[X, X] = 0 for all X ∈ g+, and Jacobi’s identity holds. And hence g+ is a Lie
subalgebra of su(n, n).

Proposition 3.2. Let g+ be as in (3.8). Then

∆1 ∶= ∆(g+, ap) = {±(
i − 
j) ∶ i < j}

is the corresponding set of restricted roots of ∆ with multiplicity m� = 2 for the
roots � = ±(
i − 
j), where


i =

√
−1
4n (Ei,n+i − En+i,i) and (
i, 
j) =

⎧

⎨
⎩

n−1
4n2

, i = j,

− 1
4n2
, i ≠ j.

(3.9)

Proof. By (3.8), we have

g+ = {( X Y
−Y X ) ∶ X ∈ Mn(ℂ), Y ∈ Mn(ℂ), Y∗ = −Y, X∗ = −X} .

Let Zg+(ap) be the center of ap in g+. Then, by the form of g+, we see that
g+ = ap +m+ n±, where n± =

∑
i<j g±(
i−
j) and

m = {(
√
−1t 0
0

√
−1t

) ∶ t = diag(t1, t2, … , tn), ti ∈ ℝ} ⊂ Zg+(ap).

From this and Lemma 3.1, it follows that ∆1 = {±(
i − 
j) ∶ 1 ≤ i ≤ j ≤ n}.
Now we prove (3.9) holds true. For i < j, the eigenvectors of ±(
i − 
j) are

as in (3.3). Let ad be the adjoint representation of g+. Then, by (3.3) again, for
any a ∈ ap, we have (3.4). In particular, we let ℎk, ek ∈ ap be as in (3.5). From
this, (3.4) and the Killing form (x, y) = Tr(adxady), it follows that

(ℎk, ℎk) = Tr(adℎkadℎk ) = 4
∑

1≤i<j≤n
(
i − 
j)2(ℎk) = 4(4 + 2(n − 2)) = 8n,

(ek, ek) = Tr(adekadek ) = 4
∑

1≤i<j≤n
(
i − 
j)2(ek) = 4(n − 1)
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and, if i ≠ j, (ei, ej) = Tr(adeiadej ) = 4(
i − 
j)(ei)(
i − 
j)(ej) = −4. Let

k−
k+1 = sℎk. Together with (
k−
k+1)(ℎk) = (sℎk, ℎk) and (
k−
k+1)(ℎk) =
2, implies that s = 1

4n
. And hence


k − 
k+1 =

√
−1
4n (Ek,n+k − Ek+1,n+k+1 − En+k,k + En+k+1,k+1)

for 1 ≤ k ≤ n − 1. Processing continues in this same way, we obtain (3.9). This
�nishes the proof of Proposition 3.2. �

LetH be as in (2.4) and

K = S(U(n) × U(n)) = {( A 0
0 D ) ∶ A, D ∈ U(n), det(AD) = 1} .

Then

L′ = K ∩ H = {( A 0
0 A ) ∶ A ∈ U(n), det(A) = ±1} .

Notice that L′ is a maximal compact subgroup of G+ = exp g+. Since g+ =
(h ∩ k) ⊕ (q ∩ p) is the Cartan decomposition of g+ as in (3.8), we can apply
the theory of L′A+

pL
′ decomposition to G+ and obtain that ap is unique up to

conjugacy by L′, where A+
p is the closure of A+

p , A
+
p = exp a+p and a+p is the

Weyl chamber de�ned by a+p = {t ∈ ap ∶ tk − tl > 0, k < l}. The positive root
system ∆+1 of ∆1 is given by ∆+1 = {
k − 
l; k < l}. The Weyl group associated
with the restricted positive roots ∆+1 is

WL′ ∶= WL′(g+, ap) = NL′(ap)∕ZL′(ap),

where NL′(ap) and ZL′(ap) are the normalizer and centralizer of ap in L′, re-
spectively.

De�ne the Weyl group of ap in su(n, n) associated with ∆+ by

W ∶= W(su(n, n), ap) = NK(ap)∕ZK(ap),

whereNK(ap) and ZK(ap) are the normalizer and centralizer of ap inK, respec-
tively.

Lemma 3.3. TheWeyl groupsW andWL′ are isomorphic to the semidirect prod-
uct groups (ℤ∕2ℤ)n ⋊ Sn and Sn, respectively, where Sn is the n-th symmetric
group.

Proof. Let ap be as in (2.3). The root system of (su(n, n), ap) is∆ as in Lemma
3.1. Then 
1, 
2,⋯ , 
n is a family basis of ap. Let ℎ = x1
1+x2
2+⋯+xn
n ∈
ap, where xi ∈ ℝ for 1 ≤ i ≤ n. De�ne the re�ections by

r2
i (ℎ) = ℎ −
2(2
i, ℎ)
(2
i, 2
i)

2
i.
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By (3.2), we see that

r2
i (ℎ) = ℎ − 2xi
i =
∑

j≠i
xj
j − xi
i.

Notice that r2
ir2
j = r2
jr2
i , we let W1 be the subgroup of GL(n, ℝ) gener-
ated by the re�ections r2
i for 1 ≤ i ≤ n. ThenW1 is isomorphic to (ℤ∕2ℤ)n.
Similarly, de�ne the re�ections by

r
i−
j (ℎ) = ℎ −
2(
i − 
j, ℎ)

(
i − 
j, 
i − 
j)
(
i − 
j).

Then

r
i−
j (ℎ) = ℎ − (xi − xj)(
i − 
j) =
∑

k≠i,j
xk
k + xi
j + xj
i.

LetW2 be the subgroup ofGL(n, ℝ) generated by the re�ections r
i−
j for i ≠ j.
From this, it follows that W2 is isomorphic to the symmetric group Sn. Since
r2
j (
i − 
j) = 
i + 
j, so r
i+
j = r2
jr
i−
jr2
j ,

r
i−
j (2
k) =
⎧

⎨
⎩

2
k, if k ≠ i, j,
2
j, if k = i,
2
i, if k = j,

r
i−
jr2
kr
i−
j =
⎧

⎨
⎩

r2
k , if k ≠ i, j,
r2
j , if k = i,
r2
i , if k = j.

Let W be the Weyl group of ∆ which is generated by W1 and W2. Then W is
isomorphic to the semidirect product of (ℤ∕2ℤ)n ⋊ Sn.

Moreover, let ∆1 ∶= {±(
i − 
j) ∶ i ≠ j} be as in Proposition 3.2. Similar to
the proof above, for ℎ = x1
1+x2
2+⋯+xn
n ∈ ap and xi ∈ ℝ for 1 ≤ i ≤ n,
we consider the re�ections

r
i−
j (ℎ) = ℎ −
2(
i − 
j, ℎ)

(
i − 
j, 
i − 
j)
(
i − 
j).

Then, by (3.9), we have

r
i−
j (ℎ) = ℎ − (xi − xj)(
i − 
j) =
∑

k≠i,j
xk
k + xi
j + xj
i.

HenceWL′ is isomorphic to Sn. �

Remark 3.4. It is worthwhile to discuss the quotient groupW∕WL′ . By using
Lemma 3.3, we see that the quotientW∕WL′ has 2n elements, which, together
with [13, Theorem 3.3], implies that SU(n, n)∕H have 2n open P-orbits.

The following lemma is just [21, Theorem 1].

Lemma 3.5. Let P be a ��-minimal parabolic subgroup of SU(n, n) as in (3.7).
For j = 1, 2, … , 2n, we letOj ∶= PmjH, wheremj ∈ NK(ap). Then the following
holds:

(i) Oj is open in SU(n, n).
(ii) Oi ∩ Oj = ∅, i ≠ j.
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(iii)
⨁2n

i=1Oi is dense in SU(n, n).

In Remark 3.4, the open P×H double cosets on SU(n, n) are given by PmjH
for our �xed set W of representatives mj ∈ NK(ap) for W∕WL′ , where j =
1, 2, … , 2n (see [6, p. 521]). The mapW ∋ w ↦ PwH sets up a bijective corre-
spondence ofW with

⨁2n

i=1Oi.

3.3. Frobenius reciprocity. Since L = MAp, thenM is a unique �-stable sub-
groupM ⊂ L, where L is as in (3.6) and Ap = exp ap. From the local structure
theorem as in [19, Theorem 2.3], it follows that

P ⋅ z0 = MApN ⋅ z0, (3.10)

whereN = expn and z0 = eH denotes the origin of the a�ne symmetric space
of Hermitian type SU(n, n)∕H. Given an irreducible unitary representation �
ofM, we denote it by V(�). We have the formal orthogonal sum

V(�) =
⨁

w∈W
ℋw(M∩H)w−1

�

of the spaces of w(M ∩ H)w−1-�xed vectors for � (also see [6, (5)]). Note that
conjugation by an element w from NK(ap) leavesM invariant, and that hence
M∕(w(M ∩ H)w−1) = M∕(M ∩ wHw−1) is a symmetric space.

By using Lemma 3.5 and (3.10), we have the following de�nition.

De�nition 3.6. Leta∗p,ℂ be the dual of the complexi�cation ofap. Let�P ∈ a∗p,ℂ
behalf the sumof positive roots. LetC(� ∶ �)H be the inducedM-representation
which is the set of all continuous functions � ∈ V(�) satisfying, for w ∈ W,
� ∈ a∗p,ℂ and j = 1, 2, … , 2n,

Kj
�(�)(manwℎ) ∶= { a�+�P�(m)�w, if manwℎ ∈ Oj,

0, otherwise.

The following theorem is the Frobenius reciprocity.

Theorem 3.7. Let V(�) and C(� ∶ �)H be as above, representations denote by
�1, �, andℋ� the representation of w(M ∩ H)w−1. Then there is a canonical iso-
morphism

HomM
(
V(�), C(� ∶ �)H

)
≃ Homw(M∩H)w−1

(
ResMw(M∩H)w−1V(�), ℋ�

)
,

where ResMw(M∩H)w−1V(�) denotes the restriction of V(�) toℋ� .

Proof. By De�nition 3.6 withma ∈ MAp ∩wHw−1, [13, p. 140] and � ∈ a∗p,ℂ,
the evaluation map ew ∶ C(� ∶ �)H → ℋ� given by ew(F) = F(w) for F ∈
C(� ∶ �)H , satis�es, for allm0 ∈ w(M ∩ H)w−1 and F ∈ C(� ∶ �)H ,

ew(�(m0)F) = (�(m0)F)(w) = F(m0w) = F(w) = ew(F),
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namely, ew is a morphism of representation of w(M ∩ H)w−1. Let V(�) be a
representation ofM andKj

� ∶ V(�) → C(� ∶ �)H be a morphism of represen-
tation ofM as in De�nition 3.6. Then the composition ew◦K

j
� is a morphism of

ResMw(M∩H)w−1V(�) intoℋ� . Denote the linear map A ∶ Kj
� → ew◦K

j
� by

HomM
(
V(�), C(� ∶ �)H

)
↪ Homw(M∩H)w−1

(
ResMw(M∩H)w−1V(�), ℋ�

)
.

Let v ∈ V(�) and ' ∶ V(�) → ℋw(M∩H)w−1

� be a morphism of representation

of w(M ∩H)w−1. Then, we now consider the function Fv ∶ M → ℋw(M∩H)w−1

�
given by Fv(m) = '(�(m)v) for anym ∈ M. First, form0 ∈ w(M ∩ H)w−1 and
anym ∈ M, we have

Fv(m0m) = '(�(m0m)v) = '(�(m0)�(m)v) = '(�(m)v) = Fv(m),

which implies that Fv is a function in C(� ∶ �)H . Write the mapKj
� ∶ V(�) →

C(� ∶ �)H given byKj
�(v) = Fv. Clearly, for each v, v0 ∈ V(�) and anym ∈ M,

Fv+v0(m) = '(�(m)(v + v0)) = '(�(m)v) + '(�(m)v0) = Fv(m) + Fv0(m).

Then Kj
�(v + v0) = Kj

�(v) + Kj
�(v0). In addition, for any m ∈ M, � ∈ ℂ

and v ∈ V(�), Kj
�(�v)(m) = �'(�(m)v) = �Kj

�(v)(m), which implies that
Kj
�(�v) = �Kj

�(v). From this, it follows thatKj
� is a linear map V(�) ↪ C(� ∶

�)H .Moreover, for allm′ ∈ M,

'(�(m′)�(m)v) = '(�(m′m)v) = Kj
�(v)(m

′m).

And hence, for any m ∈ M and v ∈ V(�), Kj
�(�(m)v) = �1(m)K

j
�(v). There-

fore,Kj
� is a morphism of representations V(�) and C(� ∶ �)H ofM.

On the other hand, denote the map B ∶ ' → Kj
� by

Homw(M∩H)w−1(ResMw(M∩H)w−1V(�), ℋ�) ↪ HomM(V(�), C(� ∶ �)H).

Clearly, for any' ∈ Homw(M∩H)w−1(ResMw(M∩H)w−1V(�), ℋ�),we obtain, for any
v ∈ V(�),

((A◦B)('))(v) = (A(Kj
�))(v) = Kj

�(v)(w) = Fv(w) = '(v).

Thus A◦B is the identity map. By this, for any m ∈ M, Kj
�(�(m)v)(w) =

�(m)(Kj
�(v))(w) andK

j
� ∈ HomM

(
V(�), C(� ∶ �)H

)
, we have

(((B◦A)(Kj
�))(v))(mw) = (B(A(Kj

�))(v))(mw)

= A(Kj
�)(�(m)v)

= Kj
�(v)(mw).
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Hence, we have (B◦A)(Kj
�) = Kj

� for allK
j
� and B◦A is also the identity map.

�

Corollary 3.8. Let ℋ� = ℂW be the trivial one-dimensional representation of
w(M ∩ H)w−1. Let C0(M∕w(M ∩ H)w−1, ℂW) be the space of continuous func-
tionsM∕w(M ∩ H)w−1 → ℂW withM-action given by left translation. Then

C(� ∶ �)H ≃ C0(M∕w(M ∩ H)w−1, ℂW) (3.11)

and the multiplicity of V(�) in C0(M∕w(M ∩ H)w−1, ℂW) is equal to 1.

Proof. By using Theorem 3.7, we see that (3.11) holds true. Moreover, we also
have

dimHomM
(
V(�), C(� ∶ �)H

)

= dimHomw(M∩H)w−1

(
ResMw(M∩H)w−1V(�), ℂW

)
.

Notice that ResMw(M∩H)w−1V(�) = ℋw(M∩H)w−1

� . From this and Lemma 5.3 as in
[13, p. 140], it follows that

dimℂHomw(M∩H)w−1

(
ℋw(M∩H)w−1

� , ℂW
)
= 1.

This �nishes the proof of Corollary 3.8. �

Corollary 3.9. For any w ∈ W , if V(�) is non-zero then the restriction of � to
M ∩ K is irreducible and

ResMw(M∩H)w−1V(�) ≃ ResM∩K
w(M∩H∩K)w−1V(�).

Proof. By [6, Lemma 1] and [13, Lemma 3.2, p. 115], we see that M∕w(M ∩
H)w−1 for w ∈ W is a compact symmetric space and

M∕w(M ∩ H)w−1 ≃ M ∩ K∕w(M ∩ H ∩ K)w−1,

which, together with [6, p, 522], implies that Corollary 3.9 holds. �

4. Partial Poisson transform
By Theorem 3.7, Corollary 3.9 and [13, p. 161], we consider the principal se-

ries with the trivial w(M ∩ H ∩ K)w−1-type 1 forH-invariant function on X.

De�nition 4.1. For allm ∈ K∩M, k ∈ K, the spaces C∞(K ∶ �) = C∞(K ∶ 1)
and C−∞(K ∶ 1) are the set of all smooth and generalizedℂW -valued functions
on K, respectively, transforming according to f(mk) = �(m)f(k) = f(k). The
Hilbert space L2(K) is de�ned similarly and the inner product is given by

(f, g) = ∫
K
⟨f(k), g(k)⟩dk

with respect to invariant measure on K.
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De�nition 4.2. Let �P be as in De�nition 3.6. The Poisson kernel is given by,
for w ∈ W, � ∈ a∗p,ℂ and j = 1, 2, … , 2n,

pj�(manwℎ) ∶= { a�+�P , if manwℎ ∈ Oj,
0, otherwise.

The following lemma is just [13, p. 145, Proposition 6.1].

Lemma 4.3. For j = 1, 2, … , 2n, let pj� be as in De�nition 4.2. Suppose that
⟨Re� + �P, �⟩ < 0, where � ∈ ∆+ and ∆+ is as in (3.1), then, for �w ∈ ℂW , pj��w
as a C∞(K ∶ 1)-valued function of � is a holomorphic function.

Let D(X) be the commutative algebra of invariant di�erential operators on
X. LetS(ap)W be theW-invariant symmetric algebra. By [13, Lemma4.6, p. 130],
we have an algebra homomorphism 
p of D(X) into S(ap)W . This is indepen-
dence of the choice of ∆+ as in (3.1).

By using De�nition 4.2 and Lemma 4.3, for any x ∈ X, ⟨Re� + �P, �⟩ < 0
and any f ∈ C∞(K ∶ 1), we now de�ne the Poisson transform Pj� as follows:

Pj�f(x) = ∫
K
f(k)pj−�(x

−1k) dk, (4.1)

where pj� for j = 1, 2, … , 2n is as in De�nition 4.2.
The following lemma is just [13, Proposition 7.4, p. 162].

Lemma 4.4. For any D ∈ D(X), � ∈ a∗p, c and f ∈ C∞(K ∶ 1), DPj�f =

jp(D, �)P

j
�f, where P

j
�f is as in (4.1) for j = 1, 2, … , 2n, and 
jp(D, �) denotes

the eigenvalue of D.

De�nition 4.5. For � ∈ a∗p,ℂ, we de�neA(X, ℳ�) to be the space of functions

Pj�f ∈ C∞(X) satisfying the system of di�erential equation: ℳ�, j ∶ DPj�f =

jp(D, �)P

j
�f, where D is as in Lemma 4.4.

Theorem 4.6. The Poisson transform Pj� for j = 1, 2, … , 2n is a continuous
SU(n, n)-homomorphism from C∞(K ∶ 1) toA(X, ℳ�, j).

Proof. For any f ∈ C∞(K ∶ 1), let Pj�f be as above. Then, by [21, Theorem
1.2, Lemma 1.3] and [24, Lemma 7.6.6], we have

Pj�f(x) = ∫
K
f(xk)pj−�(k) dk. (4.2)

In fact, let  (k) = f(xk)pj−�(k) and  (mk) =  (k). Then,

∫
K
 (k) dk = ∫

K
 (�(x−1k)) exp(−2�P(a(x−1k))) dk,
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where �(x−1k) ∈ K and a is the Iwasawa projection a ∶ xK → ap. From this,

 (�(x−1k)) = f(x�(x−1k))pj−�(�(x
−1k)),

the change of variables x�(x−1k) → �(x−1k) and theM-invariant (left action)
of  on K, it follows that

∫
K
f(x�(x−1k))pj−�(�(x

−1k)) exp(−2�P(a(x−1k))) dk

= ∫
K
f(�(x−1k))pj−�(x

−1�(x−1k)) dk,

which implies that (4.2) holds true. And it means that Pj� is an SU(n, n)-
homomorphism.

We prove the continuous of SU(n, n)-map. Let P, P̄ be two minimal ��-
stable parabolic subgroups. If, for any � ∈ ∆+, there is a constant C ≥ 0 such
that ⟨Re�, �⟩ > C, then, for any f ∈ C∞(K ∶ 1), A(P̄ ∶ P ∶ 1 ∶ �)f(g) =
∫N̄ f(gn̄) dn̄ converges absolutely (see [13, Proposition 5.5, p. 144]). From this,
[13, Theorem 5.6, p. 144] and A(P̄ ∶ P ∶ 1 ∶ �)f extends to a meromorphic
C∞(K ∶ 1)-valued function of � in a∗p,ℂ, it follows that A(P̄ ∶ P ∶ 1 ∶ �) is
a continuous intertwining operator from C−∞(P ∶ 1 ∶ �) to C−∞(P̄ ∶ 1 ∶ �).
Then, the normalization of Pj�f is given by

0P
j
�f(gH) = ∫

K
f(k)

0
pj−�(g

−1k)dk,

where
0
pj−� = c−1(�)pj−� for some meromorphic function c−1(�). Now we cal-

culate the constant c−1(�) via the asymptotic of the properties Pj�f, where P
j
�f

is as in (4.1). Let � ∈ a∗p,ℂ with Re� strictly dominant and w ∈ W. From [10,
Section 6], [2, p. 316] and [3, pp. 276-278], it follows that

lim
a→∞

a�−�PPj�f(aw) = c(�)f(w), � = (�1,⋯ , �n) ↦
∑

j
�j
j, (4.3)

where

c(�) =
∏

j

Γ(�j +
1
2
)

Γ(�j + 1)
∏

i<j
(�2j − �2i )

−1.

Moreover, by using [13, Proposition 7.7, p. 167], we have

lim
a→∞

a�−�P 0P
j
�f(aw) = f(w),

which, together with (4.3), implies that Pj�f = c(�)0P
j
�f. And hence

0
pj−� =

c−1(�)pj−�. This �nishes the proof of Theorem 4.6. �
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The Fourier transform of f ∈ C∞c (X) is given by, for j = 1, 2, … , 2n,

f̂j(1 ∶ �)(�)(k) = ∫
X
f(x)

0
Kj
−�(�)(x

−1k)dx, (4.4)

where
0
Kj
−�(�) = c(�)Kj

−�(�) andK
j
−�(�) is as in De�nition 3.6.

Theorem 4.7. Let ℰ ∶=
{
� ∈ a∗p, c ∶ ∀� ∈ ∆+, Re(� + �P, �) < 0

}
. Let � ∈ ℰ.

Then, for w ∈ W , j = 1, 2, … , 2n,

∫
K
1̂j(1 ∶ �)(�)(k)dk = c(�) ∫

X
Pj��w(y)dy.

Proof. From (4.4), it follows that

∫
K
1̂j(1 ∶ �)(�)(k) dk = ∫

K
[∫

X
0
Kj
−�(�)(y

−1k)dy] dk.

Notice that, as the function of variables y ↦
0
Kj
−�(�)(y

−1k) is continuous with
compact support it is integrable. By Lemma 4.3 and Fubini’s theorem, we have

∫
K
∫
X

0
Kj
−�(�)(y

−1k) dydk = ∫
X
∫
K

0
Kj
−�(�)(y

−1k) dkdy

= c(�) ∫
X
Pj��w(y)dy,

this completes that proof of Theorem 4.7. �
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