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Regular ideals of locally-convex higher-rank
graph algebras

Tim Schenkel

ABSTRACT. We give a vertex set description for basic, graded, regular ideals
of locally-convex Kumjian-Pask Algebras. We also show that Condition (B)
is preserved when taking the quotient by a basic, graded, regular ideal. We
further show that when a locally-convex, row-finite k-graph satisfies Condi-
tion (B), all regular ideals are graded. We then show the same things hold for
gauge-invariant, regular ideals in locally-convex k-graph C*-algebras.
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1. Introduction

In this paper, we will study the regular ideals of higher-rank graph algebras.
We study them first in the algebraic setting: Kumjian-Pask Algebras. We then
look at them in the analytic setting of k-graph C*-algebras.

Higher-rank graph C*-algebras were first introduced in [6] in 2000. In Kumjian
and Pask’s work, they focus on row-finite k-graphs with no sources. They were
able to show that the gauge-invariant uniqueness theorem could be generalized
from graph C*-algebras. Additionally, they were able to find conditions for sim-
plicity. This gave evidence to support the hope that much of the theory from
graph C*-algebras might carry over. These findings were further generalized in
[7], where Raeburn, Sims, and Yeend introduced the concept of local-convexity
in this setting. The local-convexity condition allows for sources to appear in the
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1582 TIM SCHENKEL

graphs. They were able to prove a generalization of the Cuntz-Krieger Unique-
ness Theorem and show that there is a lattice isomorphism from the saturated,
hereditary sets of vertices to the gauge-invariant ideals of k-graph C*-algebras.

Much like the creation of Leavitt path algebras as an algebraic analogue of
graph C*-algebras, Kumjian-Pask algebras were created as an algebraic ana-
logue of k-graph C*-algebras. They were first introduced in [1]. The authors
were able to prove many algebraic analogues to theorems proved in the C*-
algebra setting, included proofs of the uniqueness theorems and the lattice iso-
morphism of saturated and hereditary sets of vertices to the basic, graded ideals.
These works were again generalized to the locally-convex setting in [3].

In the recent work of [2] and [5], the regular ideals of row-finite, no-source
graph C*-algebras and Leavitt-Path algebras respectively were studied. In both
of [2] and [5], a vertex description of the regular, gauge-invariant ideals and reg-
ular, graded ideals were found respectively. As directed graphs can be seen as
1-graphs, the current paper generalizes both into higher-rank and by allowing
for sources. In [2] and [5], it was shown that Condition (L) (a graph satisfies
Condition (L) if every cycle has an entry) is preserved when quotienting by reg-
ular ideals.

In this paper, we provide clear vertex set descriptions for the basic, graded,
regular ideals of Kumjian-Pask algebras, in the form of Theorem 4.6, and the
gauge-invariant regular ideals of k-graph C*-algebras, Theorem 6.4. Condition
(B) was introduced in [7] as a generalization of Condition (L) for locally-convex
higher-rank-graphs. For this reason, it is a natural fit for replacing Condition
(L) in theorems similar to those seen in [2] and [5]. We see in Theorem 4.8
and Theorem 6.5 that Condition (B) is preserved in the graph when quotient-
ing by a regular ideal, which is not the case for arbitrary quotients. Condition
(B) was introduced to extend the Cuntz-Krieger Uniqueness Theorem for k-
graphs with sources [7]. We further show in Corollaries 4.12 and 6.9 that when a
locally-convex, row-finite k-graph satisfies Condition (B) that all regular ideals
of the Kumjian-Pask algebra are graded and all regular ideals of the k-graph
C*-algebra are gauge-invariant respectively.

Acknowledgement. Thank you to my advisor Dr. Adam Fuller for the guid-
ance and help throughout this paper as part of my dissertation.

2. Background: higher rank graphs

The information on k-graphs will pertain to both Kumjian-Pask algebras and
k-graph C*-algebras so we include it here in its own section. We use the defi-
nitions from [6], [8] and [3].

Definition 2.1. Letk € N\ {0}. A k-graph is a pair (A, d) where A is a countable
category and d is a functor from A to N* which satisfies the factorization property:
forall A € Mor(A) and allm, n € N¥ such that d(1) = m + n, there exists unique
morphisms u, v in Mor(A) such that d(u) = m, d(v) = nand A = uv.
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We put a partial order on the elements of N¥ in the following way: we say
that n < m if and only if n; < m; for all i , where m = (my, m,, ..., my), and
n = (n, ny, ..., N ). We refer to elements of Mor(A) as paths and write » and s
for the domain and codomain maps respectively.

Our factorization property gives us that d(1) = 0 if and only if A = id, for
some v € Obj(A). We often refer to the elements of Obj(A) as vertices. Thus,
we identify Obj(A) with {1 € Mor(A) : d(1) = 0}, and write 1 € A in place of
A € Mor(A). Forany A € A and E C A, we define

AE :={Au : u €E, r(u) = s(1)}

and
EAd:={ul : u€E, s(u) =r(1)}.

By the factorization property, we know that foranyl < m <n € NKifd(1) = n
then there are unique elements denoted (0, I), A(l, m), A(m, n) of A such that
d(A0,D)) =1, d(A(l,m)) =m -1, d(A(m,n)) = n — m and

A = 20, DAL, m)A(m, n).

For m € NK, we define A™ = {1 € A : d(1) = m}. Thus, Obj(A) = A°. We
say that a k-graph is row-finite if for each v € A® and each m € N¥, the set
A™(v) is finite. We say that v € A is a source if there exists m € N such that
A™(v) = 0.

As an example of a k-graph, we offer up a common one that is used in many
descriptions in research and later in this paper. We will use the notation from

[3].
Example 2.2. For a fixed m € (N U {co})¥: we define
Qe ={(p,) ENXNC: p<q<m.

The objects are Qg,m ={p € Nk : p < m}, and range and source maps r(p, q) =
p and s(p, q) = q. The morphisms (p, q) and (r, s) are composable if and only if
q = r. When they are composable, we have (p, q)(q, s) = (p, s). The factorization
property is fulfilled by d : Q™ — N defined by d((p,q)) = q — p. So, we have
that the pair (Qy ,, d) is a k-graph.

We introduce the set AS" consisting of paths A with d(1) < n which cannot
be extended to paths Ay with d(4) < d(Au) < n. Thus,

AS" :={1 € A : d(1) < n, and d(1); < n; implies s(1)A% = @}.

We have that vAS" := vA N A" for v € A° is always nonempty.
We will be interested in row-finite locally-convex k-graphs throughout the
paper, which were introduced in [3] and [7]

Definition 2.3. We say A is locally-convex if for every v € A% 1 < i, j < k with
i# j,A € vA%and u € vA%, the sets S(A)A% and s(u)A¢ are nonempty.
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It is worth noting that by [7, Remark 3.10] every row-finite 1-graph is locally-
convex, as are all row-finite, higher-rank graphs with no sources.

As we hope to give a vertex description of the regular ideals, it is natural to
introduce some vertex sets which will help us classify ideals in our respective
k-graph algebras.

Definition 2.4. Let (A, d) be a locally-convex row-finite k-graph. We say a subset
H of A° is hereditary if A € A and r(1) € H imply s(1) € H. We say that H is
saturated if for v € A°, s(LAS%) C H for somei € {1,.....,k} implies v € H.

As final definitions, we introduce boundary paths of locally-convex, row-
finite k-graphs and Condition (B). Boundary paths are used to put certain
conditions on our k-graphs including aperiodicity in [6] and Condition (C)
of [8]. We use it here to define Condition (B). Aperiodicity was a condition
that Kumjian and Pask used along with cofinality to find a simplicity condi-
tion of row-finte, no source k-graph C*-algebras. It served as an analogue to
Condition (L) of directed graphs. When switching to row-finite locally-convex
k-graph C*-algebras, Raeburn, Sims, and Yeend made Condition (B) as an ana-
logue of aperiodicity to allow for sources. With this, they were able to prove
the Cuntz-Krieger Uniqueness Theorem. By Theorem 8.4 of [3], when a row-
finite k-graph has no sources, Condition (B) is equivalent to the aperiodicity
condition.

Definition 2.5. Let A be a locally convex k-graph. A boundary path in A is a
graph morphism x : Qy ,, — A for somem € (NU o)X such that, whenever
U € Obj(Qy. ) satisfies v(Qy )=¢ = {v}, we also have that x(V)A=% = {x(v)}
We denote the collection of all boundary paths in A by AS®. The range map of
A extends naturally to AS® via r(x) := x(0). For v € A, we write vAS® for
{x € AS® : r(x) = vk

If A has no sources, then AS® = A®. It should also be noted that a boundary
path can be composed with finite paths. That is, if x is a boundary path and
A € Ais afinite path with s(1) = r(x) then we define Ax : Qy ;,44(2) = A such
that

Ax(d(2)) = r(x), 1x(0) = r(2),
Ax(Ll+e)=AL1+e)ifl + ¢ <d(A),
Ax(dAD) +L,dA)+1+e)=x(L+1+¢)ifl +e <m.

The rest of the graph morphism can be obtained by concatenating paths of
length e;. We have that Ax is also a boundary path. For more information,
the reader can refer to [3] and [7].

Definition 2.6. We say that a vertex v in a k-graph, A, satisfies Condition (B) if;
there exists x € VAS® such that a # 8 € A implies ax # Bx

We say that a k-graph, A, satisfies condition (B) if every vertex in A satisfies Con-
dition (B).
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3. Background: Kumjian-Pask algebras

As Kumjian-Pask algebras are an algebraic generalization of k-graph C*-
algebras, we introduce ghost paths to take the place of adjoints. We will again
be using the definitions and ideas from [3].

Definition 3.1. Define G(A) := {A* : 1 € A}, and call each A* a ghost path.
Ifv € A then we identify v and v*. We extend the degree functor d and the
range and source maps r and s to G(A) by d(1*) = —d(4), r(A*) = s(A) and
s(A*) = r(1). We extend the factorization property to the ghost paths by setting
(uA)* = A*u*. We denote by A7 the set of paths which are not vertices and by
G(A70) the set of ghost paths that are not vertices.

Definition 3.2. Let A be a row-finite k-graph and let R be a commutative ring
with 1. A Kumjian-Pask A-family (P,S) in an R-algebra A consists of two func-
tionsP : A » Aand S : A7 U G(A?®) » A such that:

(KP1) {P, : v € A% is a family of mutually orthogonal idempotents;

(KP2) for all 2, u € A7° with r(u) = s(1), we have SaSy = Saps SueSpx =
S(/l,u)*’ Pr(A)S/l = S/l = S/lps(/l)’ and Ps(/l)S/l* = S/l* = SA*Pr(/I);

(KP3) foralln € Nk \ {0} and A, u € AS", we have Sa=Sy = 67, Psay

(KP4) forallv € A® and all n € N¥ \ {0}, we have P, = Diaconsn SaSas

Theorem 3.3. |3, Proposition 3.3]. Let A be a locally-convex, row-finite k-graph,
(P, S) a Kumjian—Pask A-family in an R-algebra A, and A, u € A. Ifn € NF such

that d(A), d(u) < n, then S).S,, = ZM:MMEI\SH SaSgr.

Definition 3.4. We define KPr(A) to be the universal R-algebra generated by a
Kumjian-Pask A-family (p, s), in the sense that if (Q,T) is a Kumjian-Pask A-
family in an R-algebra A, then there exists a R-algebra homomorphism 7o .
KPgr(A) = Asuch that myrop = Q and g ros = T. Foreveryr € R \ {0} and
v € A% we haverp, # 0.

Grading plays an important role in the lattice of ideals of Kumjian-Pask alge-
bras. We take time here to define gradings, as it will pertain to later theorems.

Definition 3.5. Let G be an additive abelian group. A ring A is G-graded if there
are additive subgroups {A; : g € G} of A such that AgA, C Agyy and every
nonzero a € A can be written in exactly one way as a finite sum deF ag of
nongzero elements a, € A,. The elements of A, are homogeneous of degree g,

anda = Zg <r Gg 1S the homogeneous decomposition of a.

Suppose that A is G-graded by {4, : g € G}. Anideal I in A is a graded ideal
if{INn A, : g € G}is agrading of I. Every ideal I which is generated by a set S
of homogeneous elements is graded. The following theorem allows us to put a
Z* grading on KPg(A) as well as giving us a full description of the algebra.

Theorem 3.6. [3, Theorem 3.7]. Let A be a locally-convex, row-finite k-graph.
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(i) There is a unique R-algebra KPg(A), generated by a Kumjian—Pask A-
family (p, s), such that if (Q,T) is a Kumjian-Pask A-family in an R-
algebra A, then there exists a unique R-algebra homomorphism g r -
KPg(A) = A such that morop = Q and wgros = T. For everyr €
R\ {0} and v € A°, we haverp, # 0.

(ii) The subsets KPgr(M), := span{s,sg- : d(a) — d(B) = n} form a Zk-
grading of KPr(A).

By putting together Theorems 3.3 and 3.6, it can be seen that KPgr(A) =
spang{s;s, : s(4) = s()}.

Definition 3.7. Let R be a ring. Let A be a k-graph. Let I be an ideal of the

Kumjian-Pask Algebra KPgr(A). We say that I is basic if it has the property such
thatifrp, € I andr € R \ {0} then p, € I.

Remark 3.8. We note that if R is a field, all ideals of KPx(A) are basic. Indeed,
let I be an ideal. Suppose thatrp, € I andr # 0. Then

rpvr_lpv = rr_lpvpv =p, €L
Definition 3.9. For a subset H of A°, define
I(H) := spang{s,sg- : s(a) = s(B) € H}.

I(H) will be an ideal if H is saturated and hereditary.
In order to have a clear picture of the lattice isomorphism introduced in Def-
inition 3.12, we give notations that will be concise to use throughout.

Definition 3.10. For an ideal I in KPg(A), we define
H(I) :={veA:p,el}

Lemma 3.11. [3, Lemma 9.2]. Let H be a hereditary, saturated subset of A°, and
I(H) be the ideal of KPr(A) generated by {p, : v € H}. Then

I(H) = span{sysg- : o, B € A, s(a) = s(B) € H}.

Theorem 3.12. [3, Theorem 9.4] Let A be a row-finite, locally-convex k-graph.
Let R be a commutative ring with 1. Then the map H — I(H) is a lattice isomor-
phism from the set of saturated hereditary subsets of A° onto the lattice of basic
graded ideals of KPg(A).

Remark 3.13. The inverse of the lattice isomorphism described in the above the-
orem isthemap I — H(I).

We now show that there is an isomorphism between the quotient algebra
created by quotienting by a basic, graded ideal and the Kumjian-Pask algebra
of the quotient graph. For I an ideal, we define A\ H(I) to be the small category
with objects A° \ H(I), and morphisms {1 € A : r(1) and s(1) € A° \ H(I)},
with the factorization property d inherited from (A, d).

Proposition 3.14. Let A be a locally-convex row-finite k-graph and R a com-
mutative ring with 1. Let I be a basic graded ideal of KPgr(A), and let (q,t) and



REGULAR IDEALS OF LOCALLY-CONVEX HIGHER-RANK GRAPH ALGEBRAS 1587

(p, m) be the universal Kumjian-Pask families in KPr(A \ H(I)) and KPgr(A\),
respectively. Then there exists an isomorphism w . KPgr(A \ H(I)) » KPg(N)/I
such that

7(qy) = po + L, w(ty) = my + I, and 7(t,) = my. + 1
forve A°/H(I) and A, u € s~1(A°/H(I)).

Proof. Firstnote that A\H(I)isindeed alocally-convex k-graph. This is shown
in the proof of [7, Theorem 5.2].

Now we show that{p,+1I, m; +1I, m,. .} is a Kumjian-Pask (A \ H(I)) family.
(KP 1) and (KP 2) hold as (p, m) is a Kumjian-Pask A family. To see (KP 3)
and (KP 4), we show that (A \ HI))S" = AS*\ {1 € A : m; € I}. Take
n € NK. Here we note that since I is basic and graded, it is generated by the set
of idempotents of a hereditary and saturated set of vertices [3, Theorem 9.4].
Thus,{1 €A :my; el}={1€ A :s(Ad) € HI)}. To see that

(A\HI)S" CAS"\{A € A : s() € H(D},

take 1 € (A \ HUI))=". Note that s(1) ¢ H(I), so we need only show that
A € A", Suppose that d(1) = n. Then 1 € A",

Now suppose d(1) < n. For notation, assume that s(1) = v. Then for every i
such that d(1); < n;, V(A \ H(I))% = @. Thus, we must show that for such an i,
VA% = ). To obtain a contradiction, suppose there exists an i so that vA% # @.
Then we have that s(vA%) C H(I) is nonempty. Thus, by definition of v(A)<",
we get s(VA%) = s(VA=¢). Which, since H(I) is saturated, gives v € H(I) a
contradiction. So it must be that

(A\NHD)S" C AP\ {1 e A : s(A) e HI)}.

To see the other direction we simply note that by definition (A\ H(I))" C A".
So the inclusion is clear when d(1) = n. When d(4) < n, we note that since
(A\ H(I))% C A%, it must be that 2 € (A \ H(I))=". Now it is simple to show
that {p, + I, my + I, m,. + I} satisfy (KP 3) and (KP 4).

Thus, by [3, Theorem 3.7], we know there is a homomorphism 7,1 4 sat-
isfying the equations stated. Since other generators of KPy(A) belong to I, the
family (p + I, m + I) generates KPr(A)/I and 7 is surjective. Suppose that
n(rq,) = 0 forsomer € R\ {0} and v ¢ H(I). Thenrp, + I = n(rq,) = 0,
so that rp, € I and since I is basic, p, € I as well. And this implies that
v € H(I), a contradiction. Thus, 7(rq,) # 0for allr € R\ {0}. Since I is graded,
then KPg(A)/I is graded by (KPg(A)/I),, = q(KPr(A),), where q : KPgr(A) —
KPg(A)/I is the quotient map. If a, 8 € (A \ H(I)) with d(a) — d(B) = n € Z*,
then 7(totg.) = 548 + 1 = q(s45p+) € q(KPR(A),) = (KPg(A)/I),,. Thus, 7
is graded and thus, by the graded uniqueness theorem, [3, Theorem 4.1], 7 is
injective. [

Our last two theorems will be helpful in classifying when a basic regular ideal
must be graded.
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Theorem 3.15. Let A be a row-finite, locally-convex k-graph. Let J be a basic
ideal in KPgr(A), then I(H(J)) is the largest basic, graded ideal contained in J.

Proof. AsJ isan ideal and I(H(J)) is the ideal generated by {p, : p, € J}itis
clear that I(H(J)) C J. Further, asJ is an ideal, H(J) is hereditary and saturated
by (KP2 — 4). Thus, I(H(J)) is basic and graded by Theorem 3.12. It remains
to show that I(H(J)) is the largest. For this, we note that by Theorem 3.12 all
basic, graded ideals are generated by the vertex idempotents of a saturated and
hereditary set of vertices. As I(H(J)) contains all such idempotents in J, there
can be no larger basic, graded ideal in J. [

Theorem 3.16. Let A be a row-finite, locally-convex k-graph. Let J be a basic
ideal in KPg(A), if A\ H(J) satisfies Condition (B) then J is basic and graded.

Proof. By Proposition 3.14 we can identify KPr(A)/I(H(J)) with KPRr(A\H(J)).
We have that I(H(J)) C J. Let N be the image of J under the quotient map
KPR(A) = KP(A)/I(H()) = KPg(A \ H(J)). Then

KPR(N)/J = KPg(A\ H(J))/N.

Consider our quotient mapping q : KPr(A\ H(J)) —» KPr(A\ H(J))/N. Note
that H(N) C (A \ H(J))? is empty. Thus, g(p,) # 0 forallv € A\ H(J)°. Since
A\ H(J) satisfies Condition (B), we have by [3, Theorem 4.2] that the quotient
map is injective. Hence, N is trivial and J = I(H(J)). ]

4. Regular ideals of Kumjian-Pask algebras

We start off this section by giving a series of observations which will help us
to our goal of giving a vertex description of the basic, regular, graded ideals of
KPR(A).

Definition 4.1. An ideal J in an algebra A is called regular if J** = J where
Jt={a€A:ax=xa=0Vx€eJkL

We note that if J is an ideal then J* is a regular ideal. The proof of the fol-
lowing lemma is largely the same as Lemma 3.2 of [5] but we include it here for
completeness.

Lemma 4.2. Let A be a row-finite locally-convex k-graph. Let R be a commuta-
tive ring with 1. If J is a graded ideal of KPg(A) then J* is a graded ideal.

Proof. Letz = ), _, r,z, € J-. We need to prove that each r,z, € J*. Let
x € J. Since J is graded, then x = Zn <z« tnXn, Where each t,x, is homoge-
neous and t,x, € J. So it is enough to check that r,z,t;x; = t;x;r,z, = 0
for each i,n. Since z € J*, and t;x; € J for each fixed i € Z¥, we have that
Yinezk LiXitnZn = Xz = 0 = ztix; = 3, i I'hZ,tiX;, and hence the grading
(and the fact that t;x; is homogeneous) implies that r,z,t;x; = t;x;r,z, = 0 as
desired. [
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Lemma 4.3. Let A be a row-finite, locally-convex k-graph. Let R be a commuta-
tive ring with 1. If J is a basic graded ideal of KPgx(A) then J* is a basic graded
ideal.

Proof. We have that J* is graded by Lemma 4.2. It remains to show that it is
basic. AsJ is a graded basic ideal it must be that J = I(H) for some saturated
hereditary set H by Theorem 3.12. Suppose thatrp, € H(J') then we have that
rPuS«Sp+ = 0and soSgrp, = rsySg-p, = 0 for all s,s5. € I(H). But this is true
ifand only if v # r(a) and v # r(pB) for all s,s. € I(H). Thus, we also get that
DuSaSgs = S¢Sg+Py = 0 for all s, sg. € I(H). Thus, p, € Tt [ |

The following notation will be useful for the remainder of the paper as they
reoccur.

Definition 4.4. (i) Forw € A_O, put T(w) ={s(1) : L € A,r(1) = w}.
(ii) IfI € KPg(A) anideal, let H(I) C A° be the set
H(I) ={r(d) : 1 € Aand s(A) € HUI)}.

We are now ready to describe the vertex set of J* and in turn give a vertex
description of J*.

Lemma 4.5. Let A be a row finite, locally-convex k-graph. Let H be a hereditary
and saturated subset of A°. Let J be the ideal generated by H. Then

HUY ={ve A’ : vAH =@} = A°\ H(J).
Proof. Since we define H(J ) tobe{v € A° : p, € J*},
HUYHY={veA: PuSaS; = SaSppy = 0 for all sgs; € J3

Sov € H(J*Y) if and only if for all SaSy €T
() pvsas; = 0; and
(ii) sasz Dy =0.

For (i) to be true, we require that v # r(a). So, we require that v # r(a) for
all o with sas; € J. So, for v € H(J') there can be no path from a vertex in H
to v (as 54 = S¢Py(a) € J)-

For (ii) to be true we require that v # r(8). So, we require that v # r(3) for all
B with sas;; € J. So for v € H(J!) there can be no path from a vertex in H to v.

So, we have the following description:
HJ*) ={v € A : there is no path from a vertex in H to v}

as desired. ]

In [5], a vertex set description was given for the regular ideals of row-finite,
no source Leavitt Path Algebras. As Leavitt Path Algebras are isomorphic to
Kumjian-Pask Algebras generated by a 1-graph, the following result generalizes
[5] both in moving to higher-rank and by allowing for sources.
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Theorem 4.6. Let A be a locally-convex, row-finite k-graph. Let R be a commu-
tative ring with 1. Let J C KPg(A) be a basic graded ideal. Then:
(D) JH = 1A\ HO));
(i) JH =Iw € A° : T(w) C HVU)}); and
(iii) J is regular if and only if HJ) = {w € A° : T(w) € H()}

Proof. We know that J = I(H) for some saturated and hereditary set H by
Theorem 3.12. Thus, from Lemma 4.5, we know H(J*) = A® \ H(J). We also
know that J* is basic and graded since J is basic, and graded by Lemma 4.3. So
it must be generated by {p, : v € H(J1)}. This proves (i). The rest follows. m

Corollary 4.7. Let A be a locally-convex, row-finite k-graph. Let R be a field. Let
J C KPg(A) be a graded ideal. Then:
(D) J* = I(A°\ HV));
(i) JH =Iw e A° : T(w) C HVU)}); and
(iii) J is regular ifand only if HJ) = {w € A° : T(w) € H()}

Proof. All ideals are basic as R is a field. The rest follows from above. ]

We now show that quotienting by a basic, graded, regular ideal of a Kumjian-
Pask Algebra preserves Condition (B). It was shown in [5] that Condition (L)
is preserved when quotienting by a basic, graded, regular ideal of a Leavitt Path
Algebra.

Theorem 4.8. Suppose that A is a row-finite, locally-convex k-graph which sat-
isfies Condition (B). If J is a regular, basic, graded ideal, then A \ J satisfies Con-
dition (B).

Proof. First note that using Lemma 4.5 and replacing J with J*, and since J
is regular, basic and graded, we have that (A/J)° = A\ H(J) = H@1). For
a vertex v € H(J*) we know there exists an x € vAS® such that if a # g
then ax # Bx. As H(J*1) is saturated and hereditary (since J* is an ideal) and
r(x) = v we know that x(i,i) € H(J1) for all i. Thus, since J* is an ideal we
conclude that x € (A/J)S®. Hence all vertices in H(J*) satisfy Condition (B).
For a vertex w in H(J1) we know there exists a finite path y with r(y) = w and
s(y) € H(JY). Therefore YXs(y) € (AT )=* satisfies Condition (B) at w. To see
this note that if « # 8 then ay # By and x,) satisfies Condition (B) at s(¥). m

We remind the reader that for a row-finite k-graph with no sources that Con-
dition (B) is equivalent to the aperiodicity condition [3, Lemma 8.4]. The corol-
lary follows immediately.

Corollary 4.9. Let A be a row finite k-graph with no sources which is aperiodic.
Let J be a basic, graded regular ideal of KPr(A) then A/J is aperiodic.

We finish the section with some theorems that allow us to show sufficient
conditions for when a basic regular ideal must be graded.

Lemma 4.10. Let A be a locally-convex, row-finite k-graph. Let J be a basic,
regular ideal of KPgr(A). Then I(H(J)) C J is a regular basic, graded ideal.
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Proof. We know that I(H(J)) C J and that I[(H(J)) C I(HJ))* c JH =1J.
As I(H(J)) is basic and graded, by Lemma 4.3 we have I(H(J))* and I(H(J))*+
are basic and graded. By Theorem 3.15, I(H(J)) is the largest gauge-invariant
ideal in J. Thus, I(H(J)) = I(H(J))*L. n

Proposition 4.11. If A is a locally-convex, row-finite k-graph satisfying Condi-
tion (B), and J is a basic, regular ideal in KPx(A), then J is graded.

Proof. As/J is regular, we have that I(H(J)) is regular by Lemma 4.10. Thus,
by Theorem 4.8, A \ H(J) satisfies Condition (B). It follows that J is graded by
Theorem 3.16. ]

Putting together Theorem 4.3, Proposition 4.11 and Theorem 4.8, we get the
following corollary.

Corollary 4.12. Let A be a locally-convex, row-finite k-graph satisfying Condi-
tion (B). Let J be a basic, regular ideal in KPr(A). Then A\ J satisfies Condition
(B) and KPr(A/T) = KPr(A \ H()).

5. Background: k-graph C*-algebras

In the following section we will be giving background information and the-
orems to help us establish similar classification to the regular ideals in k-graph
C*-algebras. We begin by defining the Cuntz-Kreiger A family for a C*-algebra.

Definition 5.1. Let A be a row-finite k-graph. A Cuntz-Krieger A-family in a
C*-algebra B consists of a family of partial isometries {s, : A € A} satisfying the
Cuntz-Krieger relations:

(KP1) {s, : v € A% is a family of mutually orthogonal projections;

(KP2) s5;, = 838, for all A, u € Awith s(1) = r(w);

(KP3) 5781 = S1)5

(KP4) 5, = X pemy S253 forallv € A andm € Nk

Theorem 5.2. [7, Theorem 3.15.] Let (A, d) be a row-finite k-graph. Then there
is a Cuntz—Krieger A-family {s; : A € A} with each s; non-zero if and only if A is
locally-convex.

Given a row-finite k-graph (A, d), there is a C*-algebra C*(A) generated by
a universal Cuntz-Krieger A-family {s; : 4 € A} [7]. We call this algebra the
k-graph C*-algebra for A and denote it C*(A).

Theorem 5.3. |7, Proposition 3.5]Let (A, d) be a row-finite k-graph and let {s; :
A € A} be a Cuntz-Krieger A-family. Then for A,u € A and q € N* with
d(1),d(u) < q we have
$ySu = Z S8
Aa=up,lacA=q

Hence, Theorem 5.3 gives us that C*(A) = span{sysg- : s(B) = s(a)}.

Similar to the graph C*-algebra, the universality of C*(A) gives us an action
of T* on C*(A) known as the gauge action.
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Definition 5.4. Let (A, d) be a row-finite k-graph. Forz € T* and n € 7,
let z" := z?l...zZ". Then {z%Ws,; : 1 € A}is a Cuntz-Krieger A-family which
generates C*(A), and the universal property of C*(A) gives a homomorphismy, .
C*(A) = C*(A) such that y,(s;) = zWs, for A € A; yz is an inverse fory,, so y,
is an automorphism. This action is strongly continuous and known as the gauge
action.

For an ideal I in C*(A) we denote H(I) :={v € A° : p, € I}.

Theorem 5.5. [7, Theorem 5.2] Let (A, d) be a locally-convex row-finite k-graph.
For each subset H of A°, let I(H) be the closed ideal in C*(A) generated by {s,, :
v € H}
(i) The map H — I(H) is an isomorphism of the lattice of saturated hered-
itary subsets of A° onto the lattice of closed gauge-invariant ideals of
C*(N).
(ii) Suppose H is saturated and hereditary. Then A \ H, the small cate-
gory with objects A° \ H, and morphisms {A € A : r(1)and s(1) €
A° \ H(I)}, with the factorization property d inherited from (A, d). is
a locally-convex row-finite k-graph, and C*(A)/I(H) is canonically iso-
morphic to C*(A \ H).
(iii) IfH is any hereditary subset of A°, then A(H), the small category with ob-
jects H and morphisms {1 € A : r(1) € H} and the factorization prop-
erty d inherited from A, is a locally-convex row-finite k-graph, C*(A(H))
is canonically isomorphic to the subalgebra C*(s; : r(1) € H) of C*(A),
and this subalgebra is a full corner in I(H).

Remark 5.6. The inverse of the lattice isomorphism in (i) is I — H(I).

Remark 5.7. By putting together Theorems 5.5 and 5.3 we get the following for J
an ideal, generated by a saturated and hereditary H of a locally-convex, row-finite
k-graph.

C*(A) = spanisqs, © s(a) = s(B)},
Hence,
J= span{pvsas;;,sas;pv :vEH,}
= span{sas; :r(B) e Horr(ax) € H}.

Since we need that s(t) = s(8) for sas["; # 0, we can conclude that for sas;‘, elJ

if r(B) € H then s(a) € H as H is hereditary. Similarly, we get if r(a) € H then
s(B) € H. So we have:

J= span{sas;‘, :r(B) € Horr(ax) € H, and s(a) = s(8) € H}
We finish this section with two additional applications of Theorem 5.5.

Theorem 5.8. Let A be a locally-convex k-graph. LetJ be an ideal in C*(A), then
I(H(J)) is the largest gauge-invariant ideal contained in J.
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Theorem 5.9. Let A be a locally-convex row-finite k-graph. Let J be an ideal in
C*(N) if A\ H(J) satisfies Condition (B) then J is gauge invariant.

The proofs follow the same reasoning as in the Kumjian-Pask algebra case.

6. Regular ideals of k-graph C*-algebras

In this section, we give analagous proofs of those in Section 4 for the k-graph
C*-Algebras. As many of the proofs follow the same reasoning as the Kumjian-
Pask Algebra case, we omit them here when logical. We refer the reader to
Section 4 for the full details.

We intend to give a vertex description of the gauge-invariant regular ideals in
C*(A). For this purpose, we refer the reader to Definition 4.1 for the definition
of regular ideals and recall that if J is a regular ideal, then so is J*. The next
lemma shows that J* must be gauge-invariant, if J is. It is a good starting point
for obtaining a vertex description of J L and, in turn, J.

Lemma 6.1. Let J be a gauge-invariant ideal in a k-graph C*-algebra C*(A).
Then J* is a gauge-invariant regular ideal.

Proof. For an ideal J we know that J* is always a regular ideal. It remains to
show that it is gauge-invariant. Suppose that a € J* then for any z € T* we
have that:

{rz(@)b : b €T} =1{y,()y,(rz(b)) : b €J}={y,(ayz(b)) : b €J;={0}
as yz(b) € J since J gauge-invariant. Similarly:
{byz(a) : b e T} ={y.(rz(b))y,(a) : b €} ={y,(yz(b)a) : b € J} ={0}.

So we have y,(a) € J.
]

We give now the C*-algebra definitions that are analogues of the ones used
in the regular ideal section for Kumjian-Pask algebras:
Definition 6.2. (i) Forw € éo, put T(w) = {s(1) LAEN, r(Ad) = wh

(ii) If I C C*(A) an ideal, let H(I) C A° be the set H(I) = {r(1) : 1 € A
and s(A) € H(I)}.
Lemma 6.3. Let A be a row finite, locally-convex k-graph. Let H be a hereditary
and saturated subset of A°. Let J be the ideal generated by H. Then
HUY) ={ve A’ : vAH =@} = A°\ HQ).

Proof. Since we define H(J ) tobe{v € A° : p, € J*},

HUY ={veCc*(A): PuSaSE = sasz,pv = 0 for all SaSZ eJ}

The rest of the proof follows a similar reasoning to the Kumjian-Pask case. m

Theorem 6.4. Let A be a locally-convex, row-finite k-graph. Let J C C*(A) be a
gauge-invariant ideal. Then:
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(i) J* =I(A°\ HV));
(i) JH =Iw € A° : T(w) C HU)Y); and
(iii) J is regular ifand only if HJ) = {w € A° : T(w) C HJ)}.

Proof. From [7] [Theorem 5.2] we know thatJ must be generated by {p, : v €
H} for some saturated and hereditary set H. Thus, by Lemma 6.3, We know that
H@J1) = A°\ H(J). But from Lemma 6.1, we know that J* is gauge-invariant.
So, using [7] [Th. 5.2] it must be that J* = I(A® \ H(J)). Proving i. The rest
follow. ]

Theorem 6.5. Suppose that A is a row-finite, locally-convex k-graph which sat-
isfies Condition (B). If J is a regular gauge-invariant ideal, then A \ J satisfies
Condition (B).

The proof follows a similar reasoning as the Kumjian-Pask algebra case since
the regular ideals of both have the same vertex description and satisfying Con-
dition (B) is a property of the graph. We further remind the reader that for
a row-finite k-graph without sources, satisfying Condition (B) is equivalent to
being aperiodic [3, Lemma 8.4], so the corollary follows.

Corollary 6.6. Let A be a row finite k-graph with no sources which is aperiodic.
Let J be a gauge-invariant regular ideal of C*(A) then A/J is aperiodic.

Lemma 6.7. Let A be a locally-convex, row-finite k-graph. Let J be a regular
ideal of C*(A). Then I(H(J)) C J is a regular gauge-invariant ideal.

The proof is again similar to the Kumjian-Pask algebra case.

Proposition 6.8. If A is a locally-convex, row-finite k-graph satisfying Condition
(B), and J is a regular ideal in C*(A\), then J is gauge-invariant.

Proof. AsJ isregular, we have that I(H(J)) is regular by lemma 6.7. Thus, by
Theorem 6.5 A\ H(J) satisfies Condition (B). It follows that J is gauge invariant
by Theorem 5.9. [

Putting together Theorem 5.5, Proposition 6.8 and Theorem 6.5, we get the
following Corollary.

Corollary 6.9. Let A be a row-finite, locally-convex k-graph satisfying Condition
(B). Let J be a regular ideal in C*(A). Then A \ J satisfies Condition (B) and
C*(A)/H{) = C*(A\ H()).
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