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Restriction of uniform crossnorms

Carlos S. Kubrusly

Abstract. Consider the spaceℬ[X⊗�Y] of operators on the tensor product
X ⊗�Y of normed spacesX andY equippedwith a uniform crossnorm ‖ ⋅ ‖� .
Take the induced uniform norm onℬ[X ⊗�Y] and consider its restriction to
the tensor product ℬ[X] ⊗ ℬ[Y] of the algebra of operators ℬ[X] and ℬ[Y].
It is proved that such a restriction is a reasonable crossnormonℬ[X] ⊗ ℬ[Y].
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1. Introduction
The paper deals with a special tensor norm on the tensor product of a pair

of spaces of bounded linear transformations; in particular, of a pair of spaces
of operators. We avoid the term “operator space” in this note, since the term
has already been consecrated to de�ne a theory of certain subspaces of the al-
gebra of Hilbert-space operators ℬ[ℋ], which can be thought of as object of a
category in the realm of C∗-algebras (see, e.g., [2], [9, De�nition 1.2], [1], [10,
De�nition 1.1]). On the contrary, our aim in this note is much less ambitious.
Letℬ[X] be the normed algebra of all operators on a normed spaceX, and con-
sider the tensor product ℬ[X] ⊗ ℬ[Y]. It is shown that this is included in the
normed algebraℬ[X ⊗�Y], whereX ⊗�Y stands for the tensor productX ⊗ Y
of normed spaces X and Y equipped with a uniform crossnorm ‖ ⋅ ‖�.We give
an elementary proof that the induced uniform operator norm on ℬ[X ⊗�Y],
when restricted to ℬ[X] ⊗ ℬ[Y], acts as a reasonable crossnorm on the tensor
product ℬ[X] ⊗ ℬ[Y].
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All terms and notation used abovewill be de�ned here in due course.The pa-
per is organized into four more sections. Basic propositions, including notation
and terminology, are summarized in Section 2. Supplementary results on uni-
form crossnorms required in the sequel are considered in Section 3. The main
theorem is proved in Section 4.Adiscussion on equivalent uniform crossnorms,
in light of the outcome of Section 4, closes the paper in Section 5.

2. Auxiliary results
All linear spaces in this paper are over the same scalar �eld F, which is either

ℝ or ℂ. The algebraic tensor product of linear spaces X and Y is a linear space
X ⊗ Y for which there is a bilinear map �∶ X×Y → X ⊗ Y (called the natural
bilinearmap associatedwithX ⊗ Y) whose range spansX ⊗ Ywith the follow-
ing additional (universal) property: for every bilinear map �∶ X×Y → Z into
any linear spaceZ there exists a (unique) linear transformationΦ∶ X ⊗ Y → Z
for which the diagram

X×Y
�

−−−→ Z

�
⟍
↘

↑⏐⏐⏐⏐⏐⏐⏐Φ

X ⊗ Y

commutes. A tensor product space X ⊗ Y exists for every pair of linear spaces
(X, Y) and is unique up to isomorphisms. Set x ⊗ y = �(x, y) ∈ X ⊗ Y for each
(x, y) ∈ X×Y. These are the single tensors. An arbitrary element ϝ in the linear
spaceX ⊗ Y is a �nite sum

∑
i xi ⊗ yi of single tensors, and the representation

of ϝ =
∑

i xi ⊗ yi as a �nite sum of single tensors is not unique. (For an exposi-
tion on algebraic tensor products see, e.g., [7].) IfX andY are linear spaces, then
ℒ[X, Y] denotes the linear space of all linear transformations of X into Y. Let
X,Y,V,W be linear spaces and consider the tensor product spacesX ⊗ Y and
V ⊗W. Take a pair of linear transformations A ∈ ℒ[X,V] and B ∈ ℒ[Y,W]
and set

(A ⊗ B)
∑

i
xi ⊗ yi =

∑
i
Axi ⊗ Byi

inV ⊗W for every ϝ =
∑

i xi ⊗ yi in X ⊗ Y. This de�nes a linear transforma-
tionA⊗ B ∈ ℒ[X ⊗ Y,V ⊗W] of the linear spaceX ⊗ Y into the linear space
V ⊗W, referred to as the tensor product of the linear transformations A and B,
which is such that (A ⊗ B)(ϝ) does not depend on the representation

∑
ixi⊗yi

of ϝ ∈ X ⊗ Y (see, e.g., [7, Proposition 3.6]).Consider the linear spacesℒ[X,V]
and ℒ[Y,W] and let L be an arbitrary element of ℒ[X,V] ⊗ ℒ[Y,W] so that
L =

∑
j Aj ⊗ Bj is a �nite sumof single tensorsAj ⊗ Bj ∈ ℒ[X,V] ⊗ ℒ[Y,W],

and therefore

ℒ[X,V] ⊗ ℒ[Y,W] ⊆ ℒ[X ⊗ Y,V ⊗W].
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Fromnowon supposeX andY are normed spaces.Letℬ[X, Y] be thenormed
space of all bounded linear transformations ofX into Y equipped with its stan-
dard induced uniform norm, and let X∗= ℬ[X, F] denote the dual of X. Let
x ⊗ y and f ⊗ g be single tensors in the tensor product spaces X ⊗ Y and
X∗ ⊗Y∗. A norm ‖ ⋅ ‖�on X ⊗ Y is a reasonable crossnorm if for every x ∈ X,
y ∈ Y, f ∈ X∗, g ∈ Y∗,

(a) ‖x ⊗ y‖� ≤ ‖x‖ ‖y‖,
(b) f ⊗ g lies in (X ⊗ Y)∗, and ‖f ⊗ g‖∗� ≤ ‖f‖ ‖g‖ (where ‖ ⋅ ‖∗� is the

norm on the dual (X ⊗ Y)∗ when X ⊗ Y is equipped with the norm
‖ ⋅ ‖�), so that

X∗ ⊗Y∗ ⊆ (X ⊗ Y)∗.
Actually, ‖x ⊗ y‖� = ‖x‖ ‖y‖ and ‖f ⊗ g‖∗� = ‖f‖ ‖g‖whenever ‖ ⋅ ‖� is a rea-
sonable crossnorm (see, e.g., [4, Proposition 1.1.1]). Two special reasonable
crossnorms on X ⊗ Y are the injective ‖ ⋅ ‖

∨
and projective ‖ ⋅ ‖

∧
norms,

‖ϝ‖
∨

= sup
‖f‖≤1, ‖g‖≤1, f∈X∗, g∈Y∗

|||||
∑

i
f(xi) g(yi)

|||||,

‖ϝ‖
∧

= inf
{xi}i , {yi}i , ϝ=

∑
i xi⊗yi

∑
i
‖xi‖ ‖yi‖,

for every ϝ =
∑

ixi ⊗ yi. Here the in�mum is taken over all representations of
ϝ ∈X ⊗Y.

Proposition 2.1. Anorm ‖ ⋅ ‖�onX ⊗Y is a reasonable crossnorm if and only if

‖ϝ‖
∨
≤ ‖ϝ‖� ≤ ‖ϝ‖

∧
for every ϝ ∈ X ⊗ Y.

Proof. See, e.g., [11, Proposition 6.1]. �

Let X ⊗�Y = (X ⊗ Y, ‖ ⋅ ‖�) be the tensor product space of normed spaces
equipped with a norm ‖ ⋅ ‖� onX ⊗ Y, which is not necessarily complete even
if ‖ ⋅ ‖� is a reasonable crossnorm and X and Y are Banach spaces. Their com-
pletion is denoted by X⊗̂�Y (same notation ‖ ⋅ ‖� for the extended norm on
X⊗̂�Y). In particular,X⊗̂

∨
Y andX⊗̂

∧
Y are referred to as the injective and pro-

jective tensor products. For the theory of Banach spaceX⊗̂�Y (includingX⊗̂
∨
Y

and X⊗̂
∧
Y) see, e.g., [5, Chapters 15 and 16], [3, Section 12], [11, Section 6.1],

[4, Sections 1.1 and 1.2].

Recall that
X∗ ⊗Y∗ ⊆ (X ⊗�Y)∗.

When restricted toX∗ ⊗Y∗ the norm ‖ ⋅ ‖∗� on (X ⊗�Y)∗ is a reasonable cross-
norm (with respect to (X∗ ⊗Y∗)∗).

Proposition 2.2. Let ‖ ⋅ ‖�be a reasonable crossnorm on a tensor product space
X ⊗ Y of normed spaces X and Y, and take the dual (X ⊗�Y)∗ of X ⊗�Y =
(X ⊗ Y, ‖ ⋅ ‖�).When restricted to X∗ ⊗Y∗ the norm ‖ ⋅ ‖∗� on (X ⊗�Y)∗ is a
reasonable crossnorm onX∗ ⊗Y∗.
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Proof. See, e.g., [4, Proposition 1.1.2]. �

The purpose of this paper is to extend the above (nontrivial) result to the case
where X∗= ℬ[X, F], Y∗= ℬ[Y, F], X∗⊗Y∗= ℬ[X, F] ⊗ ℬ[Y, F] and
(X ⊗�Y)∗ = ℬ[X ⊗�Y, F] are replaced by (extended to) ℬ[X,V], ℬ[Y,W],
ℬ[X,V] ⊗ ℬ[Y,W], and ℬ[X ⊗�Y,V ⊗�W], respectively, for arbitrary
normed spaces X,Y,V,W. This will be done in Section 4 (Theorem 4.1).

3. Uniform crossnorms
If X, Y, and Z are normed spaces and if T ∈ ℬ[X, Y] and S ∈ ℬ[Y, Z], then

ST ∈ ℬ[X,Z] and ‖ST‖ ≤ ‖S‖ ‖T‖. This is a crucial property shared by the in-
duced uniformnormof bounded linear transformations, referred to as the oper-
ator norm property (see, e.g.,[6, Proposition 4.16]). Its counterpart for the case
of tensor products (rather than ordinary products) yields the notion of uniform
crossnorm.

A uniform crossnorm ‖ ⋅ ‖� is a reasonable crossnorm on every tensor prod-
uct space (of arbitrary normed spaces X,Y,V,W) such that for any bounded
linear transformations A ∈ ℬ[X,V] and B ∈ ℬ[Y,W] the linear tensor prod-
uct transformation A⊗ B∶X⊗�Y →V ⊗�W is bounded, i.e.,

A⊗ B ∈ ℬ[X ⊗�Y,V ⊗�W],

and
‖A ⊗ B‖ ≤ ‖A‖ ‖B‖, equivalently, ‖A ⊗ B‖ = ‖A‖ ‖B‖.

In fact, the above equivalence holds since

‖A‖‖B‖ = sup
‖x‖≤1

‖Ax‖ sup
‖y‖≤1

‖By‖ ≤ sup
‖x‖‖y‖≤1

‖Ax‖‖By‖ = sup
‖x⊗y‖�≤1

‖Ax ⊗ By‖�

= sup
‖x⊗y‖�≤1

‖(A ⊗ B)(x ⊗ y)‖� ≤ sup
‖ϝ‖�≤1

‖(A ⊗ B)ϝ‖� = ‖A ⊗ B‖,

with ‖A⊗B‖, ‖A‖, and ‖B‖ standing for the induced uniform norms of A⊗ B
in ℬ[X ⊗�Y, V ⊗�W], A in ℬ[X,V], and B in ℬ[Y,W].

The projective ‖ ⋅ ‖
∧
and injective ‖ ⋅ ‖

∨
norms are uniform crossnorms (see,

e.g., [11, Propositions 2.3 and 3.2]).
Let ‖ ⋅ ‖[�,�] be the induced uniform norm on the normed space of bounded

linear transformationsℬ[X ⊗�Y,V ⊗�W] (i.e., ‖ ⋅ ‖[�,�] stands for the induced
uniformnorm ‖ ⋅ ‖ onℬ[X ⊗ Y,V ⊗W]whenX⊗V andY ⊗W are equipped
with a uniform crossnorm ‖ ⋅ ‖�). The notation ‖ ⋅ ‖[�,�] highlights the depen-
dence of ‖ ⋅ ‖ on the uniform crossnorm ‖ ⋅ ‖� which equips both X ⊗ Y and
V ⊗W. For instance,

‖A ⊗ B‖[�,�] = sup
ϝ∈X⊗Y, ‖ϝ‖�≤1

‖(A ⊗ B)ϝ‖� = ‖A‖ ‖B‖.

Proposition 3.1. If ‖ ⋅ ‖� is a uniform crossnorm, then ℬ[X,V] ⊗ ℬ[Y,W] ⊆
ℬ[X ⊗�Y, V ⊗�W] so that

ℬ[X,V] ⊗[�,�] ℬ[Y,W] ⊆ ℬ[X ⊗�Y, V ⊗�W].
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Proof. An arbitrary element L in the tensor product spaceℬ[X,V] ⊗ ℬ[Y,W]
is represented by a �nite sum L =

∑
j Aj ⊗ Bj of single tensors with

Aj ∈ ℬ[X,V], Bj ∈ ℬ[Y,W].

If ‖ ⋅ ‖� is a uniform crossnorm, then each linear transformation Aj ⊗ Bj lies
in ℬ[X ⊗�Y,V ⊗�W] and so does L =

∑
jAj⊗Bj. Therefore

ℬ[X,V] ⊗ ℬ[Y,W] ⊆ ℬ[X ⊗�Y, V ⊗�W].

Now, to �nish the proof, equip ℬ[X,V] ⊗ ℬ[Y,W] with the norm ‖ ⋅ ‖[�,�]
from ℬ[X ⊗�Y, V ⊗�W] and set

ℬ[X,V] ⊗[�,�] ℬ[Y,W] = (ℬ[X,V] ⊗ ℬ[Y,W], ‖ ⋅ ‖[�,�]). �

Let ‖ ⋅ ‖∗[�,�] be the induceduniformnormonℬ
[
ℬ[X,V] ⊗[�,�] ℬ[Y,W], F

]
.

Proposition 3.2. If ‖ ⋅ ‖� is a uniform crossnorm, thenℬ[X,V]∗⊗ℬ[Y,W]∗ ⊆
ℒ
[
ℬ[X, Y]⊗[�,�]ℬ[V,W], F

]
.Moreover,

‖' ⊗ �‖∗[�,�] ≤ ‖'‖ ‖�‖

for every ' ∈ ℬ[X,V]∗ and � ∈ ℬ[Y,W]∗. Consequently,

ℬ[X,V]∗ ⊗∗[�,�] ℬ[Y,W]∗ ⊆ (ℬ[X, Y] ⊗[�,�] ℬ[V,W])∗.

Proof. Since F ⊗ F ≅ F (here ≅ stands for algebraic isomorphism), we get

ℬ[X,V]∗⊗ℬ[Y,W]∗ =ℬ
[
ℬ[X,V], F]

]
⊗ ℬ

[
ℬ[Y,W], F]

]

⊆ ℒ
[
ℬ[X,V], F]

]
⊗ ℒ

[
ℬ[Y,W], F]

]

⊆ ℒ
[
ℬ[X, Y] ⊗ ℬ[V,W], F ⊗ F

]

=ℒ
[
ℬ[X, Y]⊗[�,�]ℬ[V,W], F

]
,

whenℬ[X, Y] ⊗ ℬ[V,W] is equipped with the uniform induced norm ‖ ⋅ ‖�,�]
on ℬ[X ⊗�Y, V ⊗�W] by Proposition 3.1. Take arbitrary ' ∈ ℬ[X,V]∗ and
� ∈ ℬ[Y,W]∗. According to the above inclusion,

' ⊗ � ∈ ℒ
[
ℬ[X, Y] ⊗[�,�] ℬ[V,W], F

]
.

Set
‖' ⊗ �‖∗[�,�] = sup

L∈ℬ[X,Y]⊗ℬ[V,W], ‖L‖[�,�]≤1
|(' ⊗ �)L|.

It was shown in [12, Theorem 3] that the above supremum is not only �nite but
bounded by ‖'‖ ‖�‖ for the particular case of V = X and W = Y when these
are Banach spaces, whose extension for arbitrary normed spaces X,Y,V,W
follows the same argument. Thus

‖' ⊗ �‖∗[�,�] ≤ ‖'‖ ‖�‖.

An arbitrary element k in

ℬ[X,V]∗ ⊗ℬ[Y,W]∗ ⊆ ℒ
[
ℬ[X, Y] ⊗[�,�] ℬ[V,W], F

]
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is represented by a sum k =
∑

k 'k ⊗ �k of �nitely many single tensors with
'k ∈ ℬ[X,V]∗ and �k ∈ ℬ[Y,W]∗. Take the induced uniform norm on

ℬ
[
ℬ[X,V] ⊗[�,�] ℬ[Y,W], F

]
,

say, ‖ ⋅ ‖∗[�,�]. The above displayed inequality ensures that

‖k‖∗[�,�] = sup
‖L‖[�,�]≤1

|||||
(∑

k
'k ⊗ �k

)
L
|||||

≤ sup
‖L‖[�,�]≤1

∑
k
‖'k ⊗ �k‖∗[�,�]‖L‖[�,�] ≤

∑
k
‖'k‖ ‖�k‖,

which is �nite as the sum is �nite. Thus k ∈ℬ
[
ℬ[X, Y] ⊗[�,�]ℬ[V,W], F]

]
,

and hence

ℬ[X,V]∗ ⊗ℬ[Y,W]∗ ⊆ ℬ
[
ℬ[X, Y] ⊗[�,�] ℬ[V,W], F

]

= (ℬ[X, Y] ⊗[�,�] ℬ[V,W])∗.

The proof is complete when we equip ℬ[X,V]∗ ⊗ℬ[Y,W]∗ with the norm
‖ ⋅ ‖∗[�,�] on ([ℬ[X, Y] ⊗[�,�] ℬ[V,W])∗ and set

ℬ[X,V]∗ ⊗∗[�,�] ℬ[Y,W]∗ = (ℬ[X,V]∗ ⊗ℬ[Y,W]∗, ‖ ⋅ ‖∗[�,�]). �

4. Main result
Theorem 4.1 shows that ‖ ⋅ ‖[�,�] is a reasonable crossnorm on the space

ℬ[X,V] ⊗ ℬ[Y,W], when inherited from ℬ[X ⊗�Y, V ⊗�W], thus extend-
ing Proposition 2.2 from continuous linear functionals to arbitrary continuous
linear transformations.

The proof of Theorem 4.1 is especially tailored to prompt the question that
closes the paper, and also to support the statement of Corollary 4.4.

Theorem 4.1. If ‖ ⋅ ‖� is a uniform crossnorm, then
(a) ‖L‖

∨
≤ ‖L‖[�,�] ≤ ‖L‖

∧
for every L ∈ ℬ[X,V] ⊗[�,�] ℬ[Y,W], where

X,Y,V,W are arbitrary normed spaces and ‖ ⋅ ‖[�,�] is the associated in-
duced uniform norm onℬ[X ⊗�Y,V ⊗�W]. Hence

(b) ‖ ⋅ ‖[�,�] is a reasonable crossnorm onℬ[X,V] ⊗ ℬ[Y,W].

Proof. (a) Take an arbitrary element

L ∈ ℬ[X,V] ⊗ ℬ[Y,W] ⊆ ℬ[X ⊗�Y,V ⊗�W]

(according to Proposition 3.1) and let
∑

j Aj ⊗ Bj be any �nite-sum representa-
tion of L in terms of single tensors inℬ[X,V] ⊗ ℬ[Y,W]. Regard L as a trans-
formation in ℬ[X ⊗�Y,V ⊗�W]. For ϝ in X⊗�Y set

‖L(ϝ)‖V⊗�W = ‖L(ϝ)‖�, ‖ϝ‖X⊗�Y = ‖ϝ‖�.
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With ‖ ⋅ ‖[�,�] standing for the induced uniform norm on ℬ[X⊗�Y,V⊗�W],

‖L(ϝ)‖� =
‖‖‖‖‖
(∑

j
Aj ⊗ Bj

)
ϝ
‖‖‖‖‖�

≤
∑

j
‖(Aj ⊗ Bj)ϝ‖�

≤
∑

j
‖Aj ⊗ Bj‖[�,�]‖ϝ‖� =

(∑
j
‖Aj‖ ‖Bj‖

)
‖ϝ‖�

for every ϝ ∈X ⊗ Y. As ‖L‖[�,�] = sup‖ϝ‖�≤1
‖L(ϝ)‖� we get

‖L‖[�,�] ≤
∑

j
‖Aj‖ ‖Bj‖.

Since the above inequality holds for every representation
∑

j Aj ⊗ Bj of L,

‖L‖[�,�] ≤ inf
L=ΣjAj⊗Bj

∑
j
‖Aj‖ ‖Bj‖ = ‖L‖

∧
,

where ‖ ⋅ ‖
∧
is the projective norm on ℬ[X,V] ⊗ ℬ[Y,W]. On the other hand,

take an arbitrary k =
∑

k 'k ⊗ �k in

ℬ[X,V]∗ ⊗ℬ[Y,W]∗ ⊆ (ℬ[X, Y] ⊗[�,�] ℬ[V,W])∗

(according to Proposition 3.2).Wewill regard k as a functional in the dual space
(ℬ[X, Y]⊗[�,�] ℬ[V,W])∗.With ‖ ⋅ ‖∗[�,�] being the induced uniform norm in
ℬ
[
ℬ[X, Y] ⊗[�,�] ℬ[V,W], F

]
,

‖k‖∗[�,�] = sup
‖L‖[�,�]≤1

|k(L)|. Dually, ‖L‖[�,�] = sup
‖k‖∗[�,�]≤1

|k(L)|.

Since for every k =
∑

k 'k ⊗ �k ∈ ℬ[X,V]∗ ⊗ℬ[Y,W]∗ the value of k(L) ∈ F
is

k(L) =
(∑

k
'k⊗�k

)∑
j
Aj⊗Bj =

∑
k,j
'k(Aj)⊗�k(Bj) =

∑
k,j
'k(Aj) �k(Bj)

for every L =
∑

j Aj ⊗ Bj ∈ ℬ[X, Y] ⊗ ℬ[V,W], we get

‖L‖[�,�] = sup
‖k‖∗[�,�]≤1

|k(L)| = sup
‖Σk'k⊗�k‖∗[�,�]≤1

|||||
∑

k,j
'k(Aj) �k(Bj)

|||||

≥ sup
‖'⊗�‖∗[�,�]≤1

|||||
∑

j
'(Aj) �(Bj)

||||| ≥ sup
‖'‖‖�‖≤1

|||||
∑

j
'(Aj) �(Bj)

|||||,

because ‖' ⊗ �‖∗[�,�] ≤ ‖'‖ ‖�‖ for every ' ∈ ℬ[X,V]∗ and � ∈ ℬ[Y,W]∗ ac-
cording to Proposition 3.2. Hence

‖L‖[�,�] ≥ sup
‖'‖‖�‖≤1

|||||
∑

j
'(Aj) �(Bj)

||||| ≥ sup
‖'‖≤1, ‖�‖≤1

|||||
∑

j
'(Aj) �(Bj)

||||| = ‖L‖
∨
,

where ‖ ⋅ ‖
∧
is the injective norm on ℬ[X,V] ⊗ ℬ[Y,W]. Consequently,

‖L‖
∨
≤ ‖L‖[�,�] ≤ ‖L‖

∧

for every L ∈ ℬ[X,V] ⊗[�,�] ℬ[Y,W].

(b) Thus, according to Proposition 2.1, the induced uniform norm ‖ ⋅ ‖[�,�] be-
comes a reasonable crossnorm on the tensor product spaceℬ[X,V] ⊗ ℬ[Y,W].

�
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Particular case. Set V = X, W=Y and write ℬ[X], ℬ[Y], and ℬ[X ⊗�Y]
forℬ[X,X], ℬ[Y, Y], and ℬ[X ⊗�Y,X ⊗�Y], respectively. Thus Theorem 4.1
yields the result stated in theAbstract on tensor products of algebra of operators.

It is worth noticing that a �rst application of the inequalities in part (a) of
Theorem 4.1 is the assignment of a reasonable crossnorm to the tensor prod-
uct space ℬ[X,V] ⊗ ℬ[Y,W] associated with a single uniform crossnorm as
in part (b).

Remark 4.2. If ‖ ⋅ ‖� is a uniform crossnorm, then (by de�nition)

ℬ[X,V] ⊗ ℬ[Y,W] ⊆ ℬ[X ⊗�Y,V ⊗�W].
As before, let ‖ ⋅ ‖[�,�] be the induced uniform norm on ℬ[X ⊗�Y,V ⊗�W].
Take an arbitrary L =

∑
j Aj⊗Bj ∈ ℬ[X,V]⊗ℬ[Y,W] ⊆ ℒ[X ⊗Y,V ⊗W].

Since ‖ ⋅ ‖
∨
≤ ‖ ⋅ ‖� ≤ ‖ ⋅ ‖

∧
(cf. Proposition 2.1),

supϝ≠0
‖L(ϝ)‖∨
‖ϝ‖∧

≤ supϝ≠0
‖L(ϝ)‖�
‖ϝ‖�

≤ supϝ≠0
‖L(ϝ)‖∧
‖ϝ‖∨

. (∗)

Thus set ‖L‖[∧,∨] = supϝ≠0
‖L(ϝ)‖∨
‖ϝ‖∧

which is �nite as ‖L‖[�,�] = supϝ≠0
‖L(ϝ)‖�
‖ϝ‖�

is

a norm, which is enough to ensure that

‖ ⋅ ‖[∧,∨] is the induced uniform a norm on ℬ[X⊗
∧
Y,V⊗

∨
W],

and that L ∈ ℬ[X⊗
∧
Y,V⊗

∨
W]. (Note: supϝ≠0

‖L(ϝ)‖∧
‖ϝ‖∨

may not be �nite.) So

ℬ[X⊗
∧
Y,V⊗

∨
W] ⊆ ℬ[X ⊗�Y,V ⊗�W] where ‖ ⋅ ‖[∧,∨] ≤ ‖ ⋅ ‖[�,�]

by (∗), and since L ∈ ℬ[X⊗
∧
Y,V⊗

∨
W] we also get

ℬ[X,V] ⊗ ℬ[Y,W] ⊆ ℬ[X⊗
∧
Y,V⊗

∨
W].

Thereforewemay equipℬ[X,V] ⊗ ℬ[Y,W]with both induceduniformnorms,
namely, ‖ ⋅ ‖[∨,∧] and ‖ ⋅ ‖[�,�], and so we may consider the normed spaces

ℬ[X,V] ⊗[∧,∨] ℬ[Y,W] ⊆ ℬ[X,V] ⊗[�,�] ℬ[Y,W] with ‖ ⋅ ‖[∧,∨] ≤ ‖ ⋅ ‖[�,�].

Remark 4.3. For the induced uniform norm ‖ ⋅ ‖[∧,∨] on ℬ[X⊗
∧
Y,V⊗

∨
W],

‖L‖
∨
≤ ‖L‖[∧,∨] ≤ ‖L‖

∧

for every L ∈ ℬ[X,V] ⊗[∧,∨] ℬ[Y,W], and hence

‖ ⋅ ‖[∧,∨] is a reasonable crossnorm on ℬ[X,V] ⊗ ℬ[Y,W].

Indeed, it can be veri�ed that ‖ ⋅ ‖
∨
≤ ‖ ⋅ ‖[∧,∨].Also, ‖ ⋅ ‖[∧,∨] ≤ ‖ ⋅ ‖[�,�] for an ar-

bitrary uniform crossnorm ‖ ⋅ ‖� according to Remark 4.2.Moreover, Theorem
4.1(a) says that ‖ ⋅ ‖[�,�] ≤ ‖ ⋅ ‖

∧
. Summing up,

‖ ⋅ ‖
∨
≤ ‖ ⋅ ‖[∧,∨] ≤ ‖ ⋅ ‖[�,�] ≤ ‖ ⋅ ‖

∧
.

Again, Proposition 2.1 ensures that the induced uniform norm ‖ ⋅ ‖[∧,∨] is a rea-
sonable crossnorm on the ℬ[X,V] ⊗ ℬ[Y,W].
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The injective andprojective norms ‖ ⋅ ‖
∨
and ‖ ⋅ ‖

∧
, being uniformcrossnorms,

act on every tensor product space and are the least and the greatest uniform
crossnorm on every tensor product space (cf. Proposition 2.1). In particular, on
ℬ[X,V]⊗ℬ[Y,W] (as in the above displayed inequalities). Also, ‖ ⋅ ‖[∨,∨] and
‖ ⋅ ‖[∧,∧] are reasonable crossnorms on ℬ[X,V] ⊗ ℬ[Y,W] by Theorem 4.1 be-
cause ‖ ⋅ ‖

∨
and ‖ ⋅ ‖

∧
are uniform crossnorm. Therefore

‖L‖
∨
≤ ‖L‖[∨,∨] and ‖L‖[∧,∧] ≤ ‖L‖

∧
.

Question. Does ‖L‖[�,�] lie in between, so that ‖L‖[∨,∨] is the least and ‖L‖[∧,∧]
is the greatest reasonable crossnorm on ℬ[X,V] ⊗ ℬ[Y,W] that are inherited
from ℬ[X ⊗�V,Y ⊗�W] for arbitrary uniform crossnorms ‖ ⋅ ‖�? (Note that
there are reasonable crossnorms on the space ℬ[X,V] ⊗ ℬ[Y,W] that are not
restrictions of the uniform induced norm on ℬ[X ⊗�V,Y ⊗�W] for any uni-
form crossnorm ‖ ⋅ ‖�, as is the case of ‖L‖∨ and ‖L‖

∧
.)

Corollary 4.4 shows how ‖L‖[�,�] naturally �ts between ‖L‖[∨,∨] and ‖L‖[∧,∧],
giving a �rst estimate to the above question. (Compare the result in Corol-
lary 4.4 below with (∗) in Remark 4.2.) Consider the setup in the proof of
Theorem 4.1.

Corollary 4.4. If ‖ ⋅ ‖� is a uniform crossnorm, then

inf
0≠ϝ∈X⊗Y

‖ϝ‖∨
‖ϝ‖�

‖L‖[∨,∨] ≤ ‖L‖[�,�] ≤ sup
0≠ϝ∈X⊗Y

‖ϝ‖∧
‖ϝ‖�

‖L‖[∧,∧].

Proof. Consider the uniform crossnorms ‖ ⋅ ‖
∨
, ‖ ⋅ ‖�, and ‖ ⋅ ‖

∧
onX ⊗ Y and

on V ⊗W. According to Proposition 2.1 ‖ ⋅ ‖
∨
≤ ‖ ⋅ ‖� ≤ ‖ ⋅ ‖

∧
. Regarding

the setup in the proof of Theorem 4.1, take L(ϝ) ∈ V ⊗W for an arbitrary
ϝ ∈ X ⊗ Y. First consider the inequality ‖L(ϝ)‖� ≤ ‖L(ϝ)‖

∧
so that

‖L‖[�,�] = sup
ϝ≠0

‖L(ϝ)‖�
‖ϝ‖�

≤ sup
ϝ≠0

‖L(ϝ)‖∧
‖ϝ‖�

≤ ‖L‖[∧,∧] sup
ϝ≠0

‖ϝ‖∧
‖ϝ‖�

.

Next take the inequality ‖L(ϝ)‖
∨
≤ ‖L(ϝ)‖�. Similarly,

‖L‖[∨,∨] ≤ ‖L‖[�,�] sup
ϝ≠0

‖ϝ‖�
‖ϝ‖∨

; equivalently, inf
ϝ≠0

‖ϝ‖∨
‖ϝ‖�

‖L‖[∨,∨] ≤ ‖L‖[�,�],

with inf ϝ≠0
‖ϝ‖∨
‖ϝ‖�

=
(
supϝ≠0

‖ϝ‖�
‖ϝ‖∨

)−1
. �

Remark 4.5. It is not usual to considermore than one uniform crossnorm, one
equipping the domain and the other equipping the codomain, of a tensor prod-
uct A⊗ B of bounded linear transformations — see, e.g., [11, Section 6.1] and
[4, Section 1.2]. In fact, a uniform crossnorm ‖ ⋅ ‖� is a reasonable crossnorm
which is supposed to be assigned to every tensor product for arbitrary normed
spaces making A⊗ B continuous when acting from X ⊗�Y to V ⊗�W; both
tensor product spaces equipped with the same norm (cf. Section 3). Therefore,
if one takes another reasonable crossnorm ‖ ⋅ ‖�, also supposed to be assigned
to every tensor product space of arbitrary normed spaces, and requires that
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A ∈ ℬ[X,V] and B ∈ ℬ[Y,W] imply A⊗ B ∈ ℬ[X ⊗�Y,V ⊗�W], then it is
readily veri�ed that ‖A‖‖B‖ ≤ ‖A ⊗ B‖ = ‖A ⊗ B‖[�,�]. A new concept of a
jointly uniform crossnorm would require a new de�nition to make the above
inequality an identity. Also, under a new de�nition of a jointly uniform cross-
norm, Propositions 3.1 and 3.2 would require a restatement. (Extending Propo-
sition 3.1 to such a new setup seems to be a simple task, but Proposition 3.2
would perhaps require some additional, possibly nontrivial, arguments). Al-
though we will not proceed along this line — it goes beyond the purpose of the
present paper— it seems that a possible version of the �rst part of Theorem 4.1
involving a pair of distinct jointly uniform crossnormsmight lead to promising
further research.

5. Final remark

Suppose a pair of normed spaces (X, Y) is such that sup 0≠ϝ∈X⊗Y
‖ϝ‖∧
‖ϝ‖∨

<∞

when their tensor product space X ⊗ Y is equipped with the injective norm
‖ ⋅ ‖

∨
andwith the projective norm ‖ ⋅ ‖

∧
. (Trivial example: ifX andY are �nite-

dimensional, where all norms are equivalent, so that X⊗
∨
Y ≅ X⊗

∧
Y — here

≅means topological isomorphism). In such a case (when the above supremum
is �nite), set sup 0≠ϝ∈X⊗Y

‖ϝ‖∧
‖ϝ‖∨

= 
, and the injective and projective norms be-

come equivalent uniform crossnorms onX ⊗ Y and so is any uniform crossnorm
‖ ⋅ ‖� since

‖ ⋅ ‖
∨
≤ ‖ ⋅ ‖� ≤ ‖ ⋅ ‖

∧
≤ 
‖ ⋅ ‖

∨
,

and so supϝ≠0
‖ϝ‖∧
‖ϝ‖�

<∞ and supϝ≠0
‖ϝ‖�
‖ϝ‖∨

<∞. It is attributed to Grothendieck the

origin of the question whetherX⊗̂
∨
Y ≅ X⊗̂

∧
Y holds for some pair of in�nite-

dimensional Banach spaces X and Y (see [8, p.181]). A solution was given
by Pisier in [8, Theorem 3.2(b)] where it was exhibited a separable in�nite-
dimensional Banach spaceP, now called Pisier space, such thatP⊗̂

∨
P ≅ P⊗̂

∧
P

(here ≅ means isometric isomorphism), which shows in addition that all rea-
sonable crossnorms (and all uniform crossnorms) on P⊗̂P (and so on P ⊗ P)
are isomorphically equivalent, where in this case 
 = 1 and, consequently, for
L ∈ ℬ[P] ⊗ ℬ[P],

‖L‖[∨,∨] = ‖L‖[�,�] = ‖L‖[∧,∧],

with respect to the setup in the proof of Theorem 4.1. Corollary 4.4 gives just
a �rst estimate to the question of whether the equal signs “=” in the above
equation can be replaced by “≤” (perhaps weighted with positive constants) for
an arbitrary transformation L ∈ ℬ[X,V] ⊗ ℬ[Y,W] acting on arbitrary (or on
speci�c classes of) normed spaces X,Y,V,W.
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