New York Journal of Mathematics
New York J. Math. 29 (2023) 261-285.

Higher-order spectral shift for pairs of
contractions via multiplicative path

Arup Chattopadhyay and Chandan Pradhan

ABSTRACT. Marcantognini and Moréan obtained the Koplienko-Neidhardt
trace formula in [17] for pairs of contractions and pairs of maximal dissipa-
tive operators via multiplicative path. In this article, we prove the existence
of higher-order spectral shift functions for pairs of contractions and pairs of
maximal dissipative operators via multiplicative path by adapting the argu-
ment employed in [17].
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1. Introduction

The spectral shift function (SSF) has become a fundamental object in pertur-
bation theory. The notion of first-order spectral shift function originated from
the work of Lifshits on theoretical physics [16], followed by Krein in [13, 15], in
which it was shown that for a pair of self-adjoint (not necessarily bounded) op-
erators H and H, satisfying H — H, € B,(# ) (the set of trace class operators on
a separable Hilbert space %), there exists a unique real-valued L'(R)- function
¢ such that

Tr{¢(H)—¢(Ho)}=f¢’(ﬂ) §(1) da, €y)

R
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for a large class of functions ¢. The function £ is known as Krein’s spectral shift
function, and the relation (1) is called Krein’s trace formula. A similar result
was obtained by Krein in [14] for pair of unitary operators {U, UO} such that
U — U, € B,(#). For each such pair, there exists a real-valued L!([0, 27])-
function &, unique modulo an additive constant, such that

2
Tr {$(U) - $(Uy)} = f Lt e ar, @
0

where ¢’ has an absolutely convergent Fourier series. The original proof of
Krein uses analytic function theory, and for various alternative proofs of the
formula (1) and (2), we refer to [4, 5, 19, 20, 41]. Moreover, for a description
of a wider class of functions for which formulae (1) and (2) hold, we refer to
[2, 28]. For a pair of contractions T, T, with T; — T, trace-class, Neidhardt
[22, 23] initiated the study of trace formula, to be followed by others in [1, 9,
18]. In this connection, it is worthwhile to mention that a series of papers by
Rybkin [33, 34, 35, 36], where an analogous extension of (1) and (2) in case of
contractions was also achieved.

The modified second-order spectral shift function in the case of non-trace
class perturbations was introduced by Koplienko in [12]. In 1984, Koplienko
also conjectured the existence of the higher order spectral shift measures. In
2013, Potapov, Skripka, and Sukochev affirmatively resolved Koplienko’s con-
jecture in [29] using an important and advanced tool in perturbation theory,
namely Multiple Operator Integrals (MOI) and proved the following:

Tt (Rpgy 1.0 (V)) = f FM()m,(A)dA, where
R

n—1 1 dk
RH ,f,n(V) L= f(HO + V) - _—
0 &k dsk

f(Hy), (3)
0

S=

for every sufficiently smooth function f, H; = Hy+sV, s € R, and f® denotes
the n-th order derivative of f, where H and H,, are two self-adjoint operators in
a separable Hilbert space # such that H — Hy, = V € B,(#’) (n-th Schatten-
von Neumann ideal), and the spectral shift function 7,, (of order n € N) is
integrable on R and depends only on H, Hy;, and n. For more on the Koplienko
trace formula, we refer to [8, 10, 11, 37] and the references cited therein.

Later, for n = 2, many authors studied the above formula (3) for various
classes of operators H and H in [11, 24, 27, 32]. In 2014, for general n(> 3) € N,
Potapov, Skripka and Sukochev obtained the formula (3) for any pair of contrac-
tions U, and U, + V with the perturbation V € B,(J() via linear path in [30,
Theorem 1.3]. In other words, they proved the following result:

Theorem 1.1. (See [30, Theorem 1.3]) Let n € N, n > 3. Let U, and U, be two
contractions on a separable Hilbert space 7,V .= U, —U, € B,(#) and denote
Us = Uy + sV, s € [0,1]. Then for any complex polynomial f, Ry, s (V) €
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B,(F) and there exists L' (T)-function n,, = Nn,u,v SUch that

Tr Ry, n(V) = f FO @)z @
T

Furthermore, for every given € > 0, the function 1), satisfying (4) can be chosen so
that |[n,ll1 £ @ + €)c, ||V ||, where c,, is some constant.

Going further, in 2016, for general n € N with n > 2, Potapov, Skripka
and Sukochev established the formula (3) for the couple of unitaries U, and
U, = e4U, with the perturbation A = A* € B,(¥() via multiplicative path in
[31, Theorem 4.1] corresponding to the class

9u(D) :={f@) = 3, fozk e c(T) : 3 1f(O)lk" < oo,
k=n k=n

where {f(k) : k € Z} are the Fourier coefficients of f and C(T) is the Banach
space of all continuous functions on T with the standard norm. Later, in 2017,
Skripka [38, Theorem 4.4] extends the result of [31, Theorem 4.1] established
forn > 2and f such that £ is given by an absolutely convergent Taylor series,
that is, for the class
Fu(D) :={f@ = Y, fzFecrm: 3 Ik"fol <l
k=—oc0 k=—c0

where C"(T) is the collection of all n-times continuously differentiable func-
tions on T and f denotes the n-th order derivative of the function f € C™(T).
More precisely, Skripka obtained the following result, and it will be useful to
achieve our main results in later sections:

Theorem 1.2. (See [38, Theorem 4.4]) Let n € N, n > 2. Let U, be a unitary
operator, A = A* € B,(%) and denote U; = 54U, s € [0,1]. Then, for any
[ € Fu(D), Ry,r.n(V) € B1(J() and there exists a constant ¢, and a function
M = Nnu,a € L'([0,27]) satisfying 0.l < callAll; such that

n—1 1 dk 27 .
T FUD = FU) = X ] FO0 = [ 5 mor
- 0

Tl dok
= k! dsk s

In this direction of studies, Marcantognini and Moran obtained the
Koplienko-Neidhardt trace formula (second order trace formula) for pairs of
contraction operators and pairs of maximal dissipative operators via multiplica-
tive path in [17]. The present article aims to prove a higher-order version of
the Koplienko-Neidhardt trace formula for pairs of contractions and pairs of
maximal dissipative operators via multiplicative path by adapting the method
developed for the second-order trace formula in [17]. The novelty of our re-
sultsis that the extension is natural in comparison with the known higher-order
trace formulas for unitary and self-adjoint operators. Moreover, the importance
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of our work lies in the fact that our results provide some new addition to the
theory of spectral shift functions. One of the major ingredients to prove our
main result is the higher-order trace formulas for unitary operators, namely
Theorem 1.2. We have adapted the method applied in [17] and modified it ap-
propriately to obtain our main results in this article. The major tools required
to achieve our results are the Schiffer matrix unitary dilation and the Cayley
transformation. In other words, the transference of the trace formulas from
unitary to contractive operators is made by means of the dilation theory, and
the transference from the contractive to dissipative operators is made with the
help of the Cayley transform as done in [17]. More precisely, the following are
the major contributions of this article:

« First, we prove a higher-order version of [17, Theorem 2.1]. In other
words, we consider a pair (T, V'), where V is a unitary operator and T
is a contraction on #. Then we prove a higher-order version of the
Koplienko-Neidhardt trace formula via multiplicative path correspond-
ing to the pair (T, V) under some additional hypotheses (see Theorem 3.2)
by using dilation theory and applying Theorem 1.2.

+ Next, we obtain a higher-order version of [17, Theorem 2.3]. More pre-
cisely, we prove a higher-order version of the Koplienko-Neidhardt trace
formula via multiplicative path for pairs of contractions (T, T;) (see
Theorem 4.1) by using our Theorem 3.2.

« At the end, we prove a higher-order version of [17, Theorem 2.3]. In
other words, as an application of our Theorem 4.1 for pairs of contrac-
tions, we obtain a higher-order analog of the Koplienko-Neidhardt trace
formula via multiplicative path for pairs of maximal dissipative opera-
tors (see Theorem 5.2).

The major difficulties we face in extending the results of [17] to higher-order

are as follows:
k

« Obtain a precise expression of the k-order derivatives d—k {(Vs)”},
" dsk| o
and I {(T,)"}, which we are able to overcome due to [39, Theorem
S* =

S=

0
5.3.4](see (18), (19)).
+ Secondly, to show P%X,|% =Y, and

Pgoge Xy

= Pu; oXrPr

For - Dlgoge

for r > 2, which we are able to complete by rigorously analyzing the
block matrix representations of the corresponding operators and shift-
ing the projections from left to right accordingly (see (21), (22), (37),

(38), and (39)).

The rest of the paper is organized as follows: Section 2 deals with some essential
preliminaries, which will be useful in later sections. In Section 3, we prove the
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higher-order analog of the Koplienko-Neidhardt trace formula corresponding
to the pair (T, V') via multiplicative path, where V is a unitary operator and T is
a contraction on # . Section 4 is devoted to obtaining a higher-order version of
the Koplienko-Neidhardt trace formula for pairs of contractions via multiplica-
tive path. Consequently, in Section 5, we prove the trace formula for pairs of
maximal dissipative operators.

2. Preliminaries

Notations: Here, # will denote the separable infinite dimensional Hilbert
space we work in; B(#), B,(# ), B,(#), B,,(# ) the set of bounded, trace class,
Hilbert-Schmidt class, Schatten-n class operators in # respectively with || - ||,
Il - I, Il - ll2> I - || as the associated norms. Given T € B(#'), we denote its
kernel by Ker(T), its range by Ran(T') and its spectrum by o(T'), and let Dom(A),
Tr(A) be the domain of the operator A and the trace of a trace class operator A
respectively. Also, N, Z, R, and C denote the collection of natural, integer, real,
and complex numbers, respectively. Furthermore, D stands for the open unit
disk in the complex plane C and T for the unit circle in C, hence D := {|z| <
1,z € C}and T := {|z| = 1, z € C}. Further, given a closed subspace M of
# , Py denotes the orthogonal projection of # onto M.

Recall that #'-valued Hardy space over the unit disc D in C is denoted by
H_,(D) and defined by

2 [
H2,(D) :=
f@ =Y az: ||f||i1;f(D) 1= D llalll <0, €D, g €} (5)
k=0 A k=0

Recall that the shift operator on the Hardy space H;t,(lD) is denoted by S¢ and
is defined by (S f)(2) := zf(2), f € H;V([D), z € D. It is easy to check that
Se is an isometry on HéK(D) and Sy S;, = I — Py, where Py is the orthogonal
projection of H;K([D) onto # (that is, by identifying # as # -valued constant
functions). For more on vector-valued Hardy space, we refer to [25, 26].

Let T € B(#) be a contraction, that is ||T|| < 1. Then the defect oper-
ator of T is denoted by Dy and defined by Dy := (1 — T*T)'/2. Moreover,
Dr := Ran(Dr) is known as the corresponding defect space of T. Recall that
the minimal unitary dilation of a contraction T is a unitary operator Uy : F =
H%T* DY B H;T(D) - H%T* D)X B H%T([D) such that T" = Py, U~ |5
and T*" = Py Ur"lg for n € N, and & is the smallest Hilbert space contain-
ing the subspaces Uy # for all n € Z. Furthermore, the block matrix (Schiffer
matrix) representation of Uy is as follows:

* 2 2

Ur=|DpPp, T O |: H — 7x |, (6)
~T*Pp. Dy Sp, H}, (D) H}, (D)
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where Sy and Sy, are the shift operator on HZDT(D) and HZDT* (D) respectively
and Py, is the orthogonal projection from & onto Dr. @ 0 ® 0 = Dr.. Given
a pair of contractions (T, T) on #, we denote by Uy, r the extension of T, to
the minimal dilation space H%T* D)X ® H%T(ID) of T and the block matrix

representation of Ur, r is given by

* 2 2
Sy, 0 0 H, (D) H;, (D)
UTO,T O TO 0 . % e % . (7)
~ViPp,. O Sp, H}, (D) H}, (D)

For more on dilation theory we refer to [21]. Let ¢ € F,(T) be such that p(eit) =
Z P(k)elkt. Next we introduce the functions, namely ¢, () = Z P(k)etkt

k=—00

and ¢_(e") = Z P(—k)e*t. Then p(e'') = ¢, (e") + p_(e7**) and ¢, € F,(T).
k=1

Now for a given contraction T on #, we set

¢.(T) = Y. JUITX, ¢_(T) = > $(—k)T**, and ¢(T) = ¢ (T) + ¢_(T). (8)
k=0 k=1

3. Higher-order Trace formula for pair of contractive operators
with one of them unitary

In this section, we prove the higher-order version of the Koplienko- Neid-
hardt trace formula via multiplicative path for a pair (T, V'), where T is a con-
traction and V is a unitary operator on & such that T — V € B,(#). To pro-
ceed further, we need the following auxiliary lemma to obtain our main result
in this section. Note that Lemma 3.1 below is available in [39] (see Theorem
5.3.4) in the case when U is a unitary operator, and the expression of the k-th
order Gateaux derivative of f(U,) is given in terms of multiple operator inte-
gral, where f belongs to the Besov space. On the other hand, in our case, U is
a contraction, and f is a polynomial. Nevertheless, by simply mimicking the
proof of Theorem 5.3.4 in [39], one can obtain the following Lemma 3.1, and
hence the detailed proof is left to the reader.

Lemma 3.1. Let p(z) = 2",z € Tandn € N, let A € B(¥) be a self-adjoint
operator and let U € B(¥). Set U, = AU, t € R. Thenforall1 <k <n-—1,
we have

d* k!
ﬁ|t=s{U?} - Z Z lll lr!

r=1 L+hL+---+l=k
ll,lz,---’lrzl
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o 1 a L,
X > Uulwoud - woudr|, (9)
ag+aq+-- -+ =n—r
0,0 ooy 20

where W' = ((iA)leiSAU), leN.
Now we are in a position to state and prove our main result in this section.

Theorem 3.2. Letn € N. Let T and V be two contractions in # such that
(i) V*V =VvV* =1, and dim(ker T) = dim(ker T*),
(i) T—V € B,(¥), and (I — T*T)'/? € B,(¥).
Let T = V¢|T| be the polar decomposition of T, where V1 is a partial isometry

TV* —Dp.Vy H H
—_— .
Dr 2)T 2)T

Then £ is a unitary operator on # @ Dr and, hence there exists a unique self-
adjoint operator L € B, (# & Dr) with o(L) C (—m,x] such that £ = e
Furthermore, if we denote V¢ := Py eV, s € [0,1], then for € F,(T),

on% and |T| = (T*T)/2 Set £ := Dr

DV*  T*V,

n—1

k
HT)—pv)— Y L4
k=1

|V € B0, (10)

and there exists an L([0, 27])-function &, depend only on n, T and V such that

1 d¥

2
ol ewat= [ enengman a

n—1
Tr¢(T) = ¢(V) = ),

k=1 0
Proof. For n = 1,2, the property (10) and the trace formula (11) were estab-
lished in [22, Section 2] and [17, Theorem 2.1]. Now we prove the theorem for
n > 3. Let U; := Uy be the corresponding minimal unitary dilation of T on
F = H%T* (DY 4 @H%T([D). Given that T = V;|T| is the polar decomposition

of T, where |T| = (T*T)'/? and V7 is an isometry from Ran(T*) onto Ran(T).
Therefore by using the hypothesis dim(ker T) = dim(ker T*), we can extend V
to a unitary operator on the full space #. Going further, we need the following
useful relations obtained in [17]

ViDy =DV, A —|T))= A+ |T])"*(1 = T*T), and

Vi =T =Vr(1-|T)).

(12)

LetUy := Uy : ¥ — F. Now by using the relations listed in (12) along with
the hypothesis (ii) we conclude U, —U,, € B,(%). Thus, we have a pair (U;, U,)
of unitary operators on %. By a similar computations as done in the proof of [17,
Theorem 2.1], we get a self-adjoint operator A € B,,(%) such that U; = e!4U,
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and the block matrix representation of A with respect to the decomposition
F = HZDT*([D) ®(H ®Dy)® SDTHZDT(D) is the following:

00 0 H}, (D) H}, (D)
A=|0 L o|:| ¥®D; |=| DDy |. (13)
0 00 SDTH;T(D) SDTHZDT([D)

Therefore the pair (U, U,) satisfies the hypothesis of Theorem 1.2 and hence
for any ¢ € F,(T),

n—1 1 dk
B = $W0) = 25 17| $U) ¢ € Bu(T), (14)

T Aok s
k=1k'ds 5=

and there exists an L'([0, 277])-function 7, = 7, , 4 such that

n—1 1 dk 2
— — Enlhadi = () (it
T ~ U - 3 ] 400k = [ e0e@moa a9
where U, = e4U,, s € [0,1]. Our next aim is to show that for ¢ € F,(T),
( n—1 1 dk
Tr{p(T) — (V) = 3 — 2
NP0 =00 = 2 o Y
( n—1 1 dk
=Ty $UD =40 = 2, | PO (16)
where
V, = P%eiSAUO’% = PyelV, s € [0, 1]. (17)

To this end, we first deal with the monomials, that is functions like ¢q(z) =
z9, z € Tand q € Z. Now if g € N, then by using Lemma 3.1, we conclude for
1<k<n-—1that

k
dk k! .
ﬁ _ {¢q(Us)} = Z Z Z l ... l |Ugo((lA)ll UO)Ugl
S* 1s=0 r=1 Q+--+a,=q—r [1+...+lr=k 1 re
0seees0pr >0 Iy yeslp>1
- (A UV, (18)
and
dk k k! o N
i IRCUDIEDINEEDY 2 o P (DY)
Sk 1s=0 r=1 0p+--+a,=q—r ll+"'+lr=k i Lt
Ayseens 0y >0 Iyl >1

X V% ... Po ((IL)r V)V %, (19)
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To complete the proof of this theorem we need the following essential lemma
in the sequel.

Lemma 3.3. Assume notations and hypotheses of the above Theorem 3.2. Let
Ul = UT and UO = UTO,T‘ Let

F :=H%T*([D) OH D HZDT([D), Xo:=Ul-U}, Yy :=T" = V",
X, :=U((1A)1Uy) Ug' -+ (1A Up)U;'", and
Y, :=V%Pg ((GL)1 V)V ... V-1 Po (L) V)V,

where A, L are given in (13), aj = Ofor0<j<r and lj/ >1for1 <j' <r,and
r > 1. Then for every integerr > 0,

() PuX,| =Y.

(ii) PE}'@%Xr

= P, 0% P, @ |ge%'

FOr
Proof. Forr = 0, 1, it was obtained in the proof of [17, Theorem 2.1] that

Py X,

L =Y (20)

For r > 2, by analyzing the block matrix representations (6), (7) and (13) of U,
U, and A respectively, we conclude

Py X,| =PrUy" (A1 U)UG" - (A Up)Uy

%
=Py U, Py gp,((iA)" Pygp. Ug)U, Pren,

Uy Pygyn, ((1A) Por gy, U Uy o
=V%Pg, (IL)2 V)V ... V4r-1Pg, (L)X V)V = Y,. (21)

On the other hand, for r = 0,1, it was obtained in the proof of [17, Theorem
2.1] that

PrewXr|, o = Prz, @XrPuz, (ID)|

o Fou
For r > 2, by analyzing the structures of U;, Uy, and A as in (6), (7), and (13)
respectively we get

PrewXs| ., =Pren Uy (A1 U)UG" - (LAY Ug)Uy'
=Pz Uy Pren, (1A Pygn, UgUy
"'P%GB@T((iA)er%@@T Uo)US"|%%

=P HZI,T([D)USCOP w@n, (1A Py, UgUy"

FOr

S AL o,
X oo X P%EBDT((I'A) P%@DT UO)U() PHZDT* (D) 99%’. (22)

O
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Continue of the proof of Theorem 3.2: Therefore using Lemma 3.3 (i),
from (18) and (19) we conclude that

1 odk
¢q(T) - ¢q(V) - = Hﬁ‘s=0¢q(vs)
=1 dk
= Pae| #4(U0) = $9U0) = 3, g #alU) K (23)

for all g € N. For q € Z, q < 0, recall that T9 = T*™ 7 for a given contraction T
(see (8)). Therefore using the facts

dk dk *
E s=0{¢q(US)} - (EL:O{(;)_‘](US)}) and

k k * (24)
d d
E s=0{¢q(VS)} - (EL:O{qb_q(Vs)}) ’

and applying Lemma 3.1 together with the similar arguments as above, we also
conclude that for ¢ € Z and q < 0, (23) holds good. Similarly, (23) also holds
good for g € Z, q < 0. Therefore

n—1 1 dk
84D =94 = 3, | $aV9) € B,
and
p
n—1 1 dk
Tr{¢,(T) — -y ==
SZCRL ORI RIS
(25)
n—1 1 dk
=Tr 1Py | $g(UD) = $gU0) = 2, 17| _ $aUD|| [ VaE€Z.
k=1 K as 5=0 o
\
Again using Lemma 3.3 (ii), we conclude that the operator
o1 dk
Ps;e%(sbq(ul) B CORDY F@L_O%(Us))
k=1"" = F
For

maps HZDT*([D) BODOto0 D 0D H%T([D) for g € N. These observations
immediately yield that

n—1 1 dk

Tr{ Pg Uy —¢,(Uy) — ——
I'yFgox ¢q( 1) ¢q( 0) ~ 1! dsk

| #UY
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for all g € N. Now by considering the pair (T*, V*) instead of (T, V') and re-
peating the similar calculations as above we conclude that (26) also holds for
q € Z, q < 0. Therefore combining equations (25) and (26) together with the
last line of argument, we conclude

-

n—1 1 dk
Ty 0D = 80 = X 1t PV
‘ 27)
n—1 1 dk
=T 99U = $4(U0) = X ] $aUD
forall g € Z. Let ¢(z) = k§ d(k)zk € F,(T), and hence ki |k|*| (k)| <

N
. Let N € N, and let pp(z) = D, $(k)z*. Then we have the following

k=—N
integral representation
n—1 1 dk
¢(U1) — ¢(Up) — kz_:l Tl dsk S:O¢(US)
B (28)
1 (e d
— _ n—-1) 2
T (n-1) fo (=" e L=t¢(Us) a,

where the integral converges in the operator norm. The above representation
(28) of the n-th order Taylor remainder is transferred from the analogous rep-
resentation for scalar functions via the application of bounded linear function-

als from (B(%))* (see, e.g., [31, Equation (4.2)], [40, Theorem 1.43, Corollary
1.45]). Therefore, it follows form (18) and (24) that
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1¢(U1) ¢>(Uo)—2 o dsk R Ch
1
1 EPNCEN (A
S(rz—l)!fo(l 2 el MG B
> LMD | Al < oo,
Jj=—o00
which further implies
o1 dk
Jlim H (U = e (Uo) = 3 o] U
- 19U - ¢(Uo)—2 k'd 7l P
1
=0. (29)
Similarly, we have
o1 dk
lim H D) = n () = X ] P
—1¢(T) - (V)—Zk,dk KD 1
=0. (30)

Therefore combining (27), (29) and (30), we have the trace equality (16). Fi-
nally the conclusion of the theorem follows by combining equations (15) and
(16). This completes the proof.

O

4. Higher-order Trace formula for pair of contractions

In the previous section, we discuss the trace formula for pairs of contrac-
tions (T, V') assuming that V' is unitary. In this section, we remove the assump-
tion on V. In other words, we prove the trace formula for pairs of contractions
(Ty, T;) on . The technique involved here is standard and similar to the idea
mentioned in [17] with an appropriate modification, that means first we dilate
(Ty, T;) to a pair of contractions (T, V) with V is a unitary operator on the big-
ger space F containing # as a subspace and then use the existing trace formula
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for the pair (T, V') obtained in our last section to get the required trace formula
in this section. The following is the main result in this section.
Theorem 4.1. Let n € N. Let Ty and T, be two contractions in # such that

(i) dim(ker T,) = dim(ker Tj), and dim(ker T,) = dim(ker T7),

(ii) T, — Ty € B,(¥), and (I — T;ij)l/2 € B,(¥) for j =0,1.
LetT; = Vr, |T;| be the polar decomposition of T j, where Vr,isa partial isometry
on% and |T;| = (T;’.‘Tj)l/zforj =0,1. Set

1 0 0 0
el T,T; T\Dy, Py, ~Dp: Vi,
“lo —viDre IToIPp, +T—Pp,) 0
0 DpT: Dy, Dr, Py, T*Vr,

[ 12 2

w, @] [H, ®
x || *
2 2 :

1, ©| [H, O
Dr, Dr,

Then M is a unitary operator on H, (D) ® # @ H%T (D)® Dr, = F @ Dr,
TS 0
and hence there exists a unique self-adjoint operator M € B,(F @ Dr, ) with
o(M) C (=, 7] such that M = e'M. Furthermore, if we denote
0

. T
Ty =Pye™| )" | 1 % - %, s €[0,1], (1)
Ty
0

then for ¢ € F,(T),

1 dk

0 sk S:O¢(Ts) € B1(%), (32)

n-1
$(T1) — $(To) — ),
k=1

and there exists an L'([0, 27r])-function &, depend only on n, T, and T, such that

n—1

Tr{¢(T1) — $(Tp) — D,

k=1

1 d¥

27
2| sml= fo FIEIEOd. (33)

The following lemma is essential to prove Theorem 4.1.
Lemma 4.2. Assume notations and hypotheses of the above Theorem 4.1. Let
T :=Urr,V :=Ur,and F = H%TS(ID) DX D HZDTO([D). Let
Xo:=T"=V"Yy :=T" - TP,
X, : = V%Pg ((iIM)"V) V% ... Pg ((M)"V) Vo,
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Y, : = TOaOP%’ ((lM)11W> TOal - Py ((lM)lrW) TOOlr’

where the operators M, W are given in (41) and (46) respectively, a; > 0 for 0 <
j<randly >1for1 < j <r,andr > 1. Then for each integerr > 0,

(i) P%’Xr %
(ii) P%e%xr

=Y, and

o = PH'ZDTO(D)XrPHZD

6 s ('D)Lze%'

Proof. Note that, it was obtained in the proof of [17, Theorem 2.3] that, for
r=0,1,

P%’Xr

o =Y, (34)

Forr > 2,toshow Py X, = Y,, we require the block matrix representations of

M"and V" on the space F @Dy := H; (D)OH Dy, ®Sp,, HzﬂT (D)® Dr,
T 0

for any n € N and they are the following?

2 i [ 2
0000 O Hy,. ) Hy,. (D)
0 % % 0 = H H
MP=10 % % 0 = ﬂTO - ﬂTO ’ (35)
2 2
0000 0] |5y H, @) |Sp,Hj, @
Dr, i Dr, ]
and
- Q¥Nn 2 2
SDT;; 0 0 HDT;; (D) HﬂTé (D)
V=1 =« Tg 0 : H - H
n 2 2
* L, SDTO HDTO(D) HDTO(D)
~sn i
SZ)TS 0 0 0 O
% Tg 0 0O O
= « Dr,T¢" 0 0 0
n n
* % SQT0 SZ)T0 0
| 0 0 0 0 O
_ , _ _ , :
Hy, . (D) Hy,. ()
H H
ZDZTO — DzTO , (36)
SDTOHDTO(D) SDTOHDTO(D)
i Dr, ] i Dr, ]

where * stands for some non-zero entries and L, = Dy, Tg_l + SDTOLn_l, Ly =
0,n > 1. Therefore using the structures (35) and (36) of M" and V" respectively
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we conclude that

Po,X

HA2 %
=Pg, V% Pg ((iM)1 V)V Pg((iM)2V)V % .
=P, V%P iM)hpL 1914

% #&Dr, ((iM) SDTOH%TO(D) )

X P iM)kp+ V)V
# oy, (M) Sy, B, (O) el

=P, V%P, ((iM)1 P+ V)V P, ((iM)-2PL V)V

H %’((l ) SDTOH%TO([D) ) %’((l ) SDTOHi)TO([D) ) %
=T, Py (M)A W)Tg' Pae ((IM)2W)T? = Y, (37)

and similarly for r > 3 we have
PyXy|., = To™ Py ((iM)AW) Ty™ - Py ((IM)*W) Ty™ = Y,.  (38)

Note that for r = 0, 1, it was mentioned in the proof of [17, Theorem 2.3], that

PaoweXr = Puz @XrP H%T*([D)‘
0 0

FOoK Fo%’

For r > 2, analyzing the structures of M" and V" as in (35) and (36) respectively
we conclude that

PoeyX
FOH A r Four
=Py VOP((IM)1V)VF .. Po((iM)r1 V)V %1 Py ((iM)- V)V e
[S)
=P99%V“°P%@29T0((iM)hP%@@TOV)V“’P%@DTO
-+ Pygp, ((IM )r-1P w®D;, V)

X V&1 Pygp, (M) Pygp, VIV

Fou
=P o)V Preo, (iM 1Py, VIV Pyan,
0
-+ Pygp, ((IM )r-LP won, VIV Preon,

x ((iM)P. V)V% P i (39)
#SDr, HﬂTS ([D)|g o%

This completes the proof. O

Proof of Theorem 4.1. For n = 1, 2, property (32) and the formula (33) were

established in [22, Section 2] and [17, Theorem 2.3]. Now we prove the theorem

for n > 3. Following the steps of the proof of [17, Theorem 2.3], we first dilate T,

to its minimal unitary dilation V := Uy, on & = H%T* D)OH ® HZDTO (D), and
0

then extend contraction T, to the contraction T := Uy p onF = H% (D)
; e

7 D HzﬂT (D). Now to apply our previous theorem, that is Theorem 3.2, we
0
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dilate T to its minimal dilation U; := Uy on X = HZDT* D) & (F b Dr) ®
Sp, H%T(ID) and extend V to the unitary U, := Uy r on X. Finally, following

similar lines of argument of the proof of [17, Theorem 2.3], we conclude that
there exists a self-adjoint operator A € B,(X) such that U; = ¢4U, with the
block matrix representation

0 0 O (D) (D)
0 0 O SDTH%T([D) SﬂTH;T(D)
where
[ 1 0 0 0 0o |
0 TiT; T\Dr, 0 —Dp:Vp,
M=[0 —ViDp |To| 0 0 (41)
0 0 0 I 0
0 DrT; DDy, 0 TiVp
: . - -
@T*(D) H@T;(D)
% H
Dr, - Dr, . (42)
2 2
S, Hy, (D) S, Hy, (D)
i Dr, ] i Dr, |

Therefore applying Theorem 3.2 corresponding to the pair (T, V) we conclude
that for ¢ € F,(T),

H(T) — (V) - Z o d | _ewot ez, (43)
and there exists an L!([0, 27r])-function &, depend only on n, T and V such that
2
T $(r) — $0v) - Z Galtwor= [ emeng o, @
where V = P5e*MV, s € [0,1]. Our next aim is to show that for ¢ € F,(T),
L1 dk

(T —$(To)— D, —
k=

Tr —_—
1 k! dSk s=0

A

¢(T5)

=Tr{$(T) — $(V) — Z k'dk 2oL (45)

\
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where
0 0
T, = Py V| = Pgye’sB To | _ PyeMW, where W :=V| = To | (46)
N N % DTO H % DT0
0 0

is a bounded operator from # to F @ Dr. Using Lemma 3.1 and Lemma 4.2
along with the similar type of arguments mentioned in the proof of Theorem
3.2, we conclude the identity (45). Thus the conclusion of the theorem follows
by combining equations (44) and (45). This completes the proof.

O

5. Higher-order Trace formula for pair of maximal dissipative
operators

In this section, our main aim is to prove the trace formula for pairs of maxi-
mal dissipative operators as an application of our main theorem in the previous
section. We start with the section by recalling the definition of the dissipative
operator. Let A : # — % be a linear operator (need not be bounded) with
dense domain Dom(A) called dissipative if Im(Ah, h) < 0 for all h € Dom(A).
A dissipative operator is called maximal if it has no proper dissipative extension.
It is well known that the Cayley transform of a maximal dissipative operator A
isacontraction T : # — # givenby T = —(A +i)(A — i)~ such thatker T =
ker(A + i) and kerT* = ker(A* — i). Furthermore, if Dom(A) = Dom(A*),
then the following pieces of information are also enlisted in [17], but for reader
convenience and the self-containment of the article, we are providing it here as
well with an appropriate modification of [17, Equation 2.11].

Dy =2|(-ImA)/2(A —)7'|, Dp = 2|(~ImA)/2(A* + )7, 47)
Dr = ((A* + i)~1(ImA)Dom(A)), D+ = (A —i)~1(ImA)Dom(A)). (48)

In the case of the dissipative operator we need a different class of functions
different from the class considered in the last two sections. Let us consider the
following class:

i+
i—A
Next we define 1, using ¢, in a similar way as we have done in (8) and hence we
obtain the decomposition (1) = (1) + p_(—A1). In other words, if p € R,,,

then p(1) = ¢ (i ii) for some ¢ € F,(T), and

R, = {w : R - Csuch that (1) = qb( > for some ¢ € ?H(T)}.

$.D =9, (F55) andy - =4 (F5).

Now we set

$(A) = ¢.(1), . (-A") = ¢_(T*), and P(A) = P, (A) + P_(-A").
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The following lemma is essential to prove the main theorem in this section.

Lemma 5.1. Let ¢ € R, be such that p(1) = ¢ (i +

Now if we substitute z = e'* = z+—/1 then ¢(z) = ¢(e") = Pp(1), 1 = —tan —,

A 2
andforalll1 < g <n,

)for some ¢ € F (T)

¢(q)( z)

= da
2 Peg@WPIO@ | s (49)
k=0

where py , are polynomials in 1 of degree (2(q — 1) — k) and it is given recursively
as follows

Do1(A) = 1and forq > 2

-

(=i/2)(i = 2 pog-1(A)
fork =0,

(=i/2){G = 22 (gD + P2, (D)) +2i = Dy g1 (D)
for1<k<gq-2,

(=i/2)[ (i = AP, o (A) +2i(i = D)pg 241 (D)]

fork =q—1.

pk,q (/1) =

Proof. We prove the identity (49) by the principle of mathematical induction.
Forq=1,¢W(z) = zp(l)(l)% and hence (49) is true for g = 1. Suppose (49) is
true for g = m < n — 1, that is

i di
$"(2) =| 2 PrmPOD |
k=0

Now we will show that (49) is also true for ¢ = m + 1. Note that
¢(m+1)(z)

m—1
_ ) m— - da
= kZO [ (P @™ 0) + pr @170 @)) =
+(- i)pk,mu)zp(m-@w]%

= Do) (‘“)

m—2

dA dA
PenmD e + B0, +<A—l>pkmu)l¢<m—k>(z>E

k 0
W da : di
+ | P D% + = DD 90D
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= Do) (‘“)

m—1

da o)) da .
pk,m(/l)E + pk_l’m(/‘l)E + (/1 - l)pk—l,m(/l)l

x4 o0 DF + G = Dpa @ 9D

= (Z pk,mﬂ(wmﬂ-@u)) =,
k=0

where
(=i/2)(i = 2 pom(D)
fork =0,
|G- 07 (P @ + P2, D) + 21 = D1 D)
pk,m+1(/1) = for1 < k <m-1,
(=i/2) [0 = 2P, () + 20 = DDy m(D)
fork = m,

\

and degree of py ;41 is (2((m+1)—1)—k), and hence (49) is true forg = m+1.
Therefore the result follows by the principle of mathematical induction. This
completes the proof. O

Now we are in a position to state and prove our main result in this section. It
is important to note that we make the hypothesis of our next theorem in such
a way so that we can apply Theorem 4.1 to achieve our goal.

Theorem 5.2. Letn € N. Let Ay and A; be two maximal dissipative operators
on # such that
(i) dimker(A; + i) = dim ker(Ajf —i),forj=0,1,
(i) (A=D1 =(Ay—i)t e B, (K), and
A —A*

(iii) Tm A; = L € By () for j=0,1.

2i
LetTy = —(Ag+i)(Ayg—i)tand T; = —(A; +i)(A; — i)~ be the corresponding
contractions obtained by the Cayley transform of maximal dissipative operators
Ay and A, respectively. Set Ag = (i —2i(T, + 1)_1), where T as in (31). Then for
b eR,

(A - (Ao)—Z JP(As) ¢ € By (),

kldk
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and there exists an L*([0, 27t])-function &, depend only on n, A, and A, such that

n—1

Tr { (A1) — $(4g) — D,

k=1

1 dk

27
- - — (n) ¢ i
k! dsk sZol’b(AS) _fo ¢"(e)E,(1)dt,

where p(1) = ¢ (%

(Schwartz class of functions on R), then there existsn,, € L' ([R{, (1+/12)_“d/1), a>
n, such that

)for some ¢ € F,(T) and A € R. Moreover, ifp € S(R)

n—1 k [
T pa) — 90 - 3, o]t = [ pamwar

Tl dok
= k! dsk s

Proof. LetT; = —(A; +i)(A; - i)~! be the contraction obtained via the Cayley
transform of a maximal dissipative operator A; and hence ker T; = ker(A; + i)
and ker T}.* = ker(A;? — i) for j = 0, 1. Furthermore, note that

T, —Ty=—=2i[(A; =)t = (A —D7].

Therefore using the hypothesis (i), (ii) and (iii) we conclude that the pair of
contractions (T, T;) on # satisfies the hypothesis (i) and (ii) of Theorem 4.1.
Let V; be the unitary operator on # such that (A; + i)(A; — ! = Vil(A; +
DA — i)~!| for j = 0,1. Thus by applying Theorem 4.1 corresponding to the
pair (T, T,) we get for ¢ € F,(T),

n—1

$(T) — $(To) — D,

k=1

1 d¥

K dsk S=O¢(Ts) € By(%), (50)

and there exists an L([0, 27r])-function &, depend only on n,T; and T, such
that

n—1

k 2
T4 - 400 - 3 ] 4Tt = [ $Es 0 6D
k=1 S= 0
where
0
. . _1
T, = pyeitt | ~(Ao+D(Ao—1) ,seo,1], (52)

|2(—ImAg)/2(Ay — i)}
0

and M is a self-adjoint operator on F @ ((A;k + i)—l(ImAl)Dom(Al)) such that

F = H? (D)@ * & H? (D),
((Ap—i)~1(ImAg)Dom(Ay)) ((Az+i)-1(ImAy)Dom(A,))
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oM) C (-7, 7], M € B,(F ® ((A} + i)~1(ImA;)Dom(A4,))) (the block matrix
representation of e™ is same as the block matrix representation of H mentioned
in the proof of [17, Theorem 2.5]).

i+A

Now it easy to observe that for p(1) = ¢ (H) € R, where ¢ € F,(T),

n—1

B(A) - P(Ay) — D,

k=0

14d°
k! dSk s=

by

1 dk

0 sk S:0¢(Ts), (53)

n—1

= ¢(T1) — $(To) — Y,

k=1

where Ag = (i — 2i(T, + 1)‘1). Therefore using equations (50), (51) and (53)
we conclude that

n—1

YA — P(Ag) — D,

k=0

L% gt e 60
k! dSk s=0 § 1 ’

and there exists an L'([0, 27r])-function &, depend only on n, A; and A, such
that

n—1 1 dk 27 .
Tl WA) — A0 - X ] gt = [ #meng o,
k=1 [ as 5s=0 0

which by applying Lemma 5.1 yields that

n—1 1 dk
T 9D = $(40) = 2, ] A
o (n—1
- f S pen PO ¢ . (54)
—oo \ k=0

where ¢,(1) = i(A — i)(i + )71¢,(—2tan"1 (1)) and ¢, € L' (R, (1 + A%)71dA).
In particular, if we consider € S(R) C R, then by performing integration
by-parts (54) becomes

n—1

Tr{9%(A;) — P(A4y) — Z

k=0

1 dk

Pl = ” (n)
T dsk lseo P [ = f_ V@ @iz,

where

n—1
Nn(A) = [Z(—l)kn,’f,k(/l)] » Moy = p,, (DS, (D),
k=0
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A
70 = [ b, 08,60 du, andfork > 2,
0

yi s
_ /Z)A b, (W, (Wdu ifj =1,
R wdpif2<) <k
This completes the proof. O

)
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