
New York Journal of Mathematics
New York J. Math. 29 (2023) 301–322.

Some new results on monochromatic sums
and products in the rationals

Neil Hindman, Maria-Romina Ivan and Imre Leader

Abstract. Our aim in this paper is to show that, for any k, there is a �-
nite colouring of the set of rationals whose denominators contain only the
�rst k primes such that no in�nite set has all of its �nite sums and products
monochromatic. We actually prove a ‘uniform’ form of this: there is a �nite
colouring of the rationals with the property that no in�nite set whose de-
nominators contain only �nitely many primes has all of its �nite sums and
productsmonochromatic. We also give various other results, including a new
short proof of the old result that there is a �nite colouring of the naturals such
that no in�nite set has all of its pairwise sums and products monochromatic.
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1. Introduction
The Finite Sums Theorem [3] states that whenever the natural numbers are

�nitely coloured there exists an in�nite sequence all of whose �nite sums are
the same colour. By considering just powers of 2, this immediately implies the
corresponding result for products: whenever the naturals are �nitely coloured
there exists a sequence all of whose products are the same colour. But what
happens if we want to combine sums and products?

Received October 14, 2022.
2020Mathematics Subject Classi�cation. 05D10, 11B13.
Key words and phrases. Ramsey Theory, monochromatic sums and products.

ISSN 1076-9803/2023

301

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2023/Vol29.htm


302 NEIL HINDMAN, MARIA-ROMINA IVAN AND IMRE LEADER

Hindman [4] showed that one cannot ask for sums and products, even just
pairwise: there is a �nite colouring of the naturals for which no (injective) se-
quence has the set of all of its pairwise sums and productsmonochromatic. The
question of what happens if we move from the naturals to a larger space is of
especial interest. Bergelson, Hindman and Leader [1] showed that if we have a
�nite colouring of the reals with each colour class measurable then there exists
a sequence with the set of all of its �nite sums and products monochromatic.
(They actually proved a stronger statement: one may insist that the in�nite
sums are the same colour as well.) However, they also showed that there is a
�nite colouring of the dyadic rationals such that no sequence has all of its �nite
sums and products monochromatic. The questions of what happens in general
for �nite colourings, in the rationals or the reals, remain open.

The arguments in [1] do not extend beyond the dyadics. Our aim in this
paper is to go further. Let ℚ(k) denote the set of rationals whose denominators
(in reduced form) involve only the �rst k primes. Then we show that there is
a �nite colouring of ℚ(k) such that no sequence has all of its �nite sums and
products monochromatic.

In fact, we strengthen this result in two ways. First of all, we insist that the
number of colours does not grow with k, and more importantly we give one
colouring that ‘works for all ℚ(k) at once’. The actual statement is: there is
a �nite colouring of the rationals such that no sequence for which the set of
primes that appear in the denominators is �nite has the set of its �nite sums
and products monochromatic. This is really made up of two separate results:
one about just pairwise sums, asserting that no such bounded sequence can
have all of its pairwise sums and products monochromatic, and the other about
general �nite sums, saying that no such unbounded sequence can have all of its
�nite sums and products monochromatic.

Our proofs are based on a careful analysis of the structure of addition and
multiplication inℚ(k), and also on a result (Lemma 2.1 below) about colouring
pairs of naturals that may be of independent interest. One application of this
lemma is a new short proof of the result of Hindman mentioned above, about
pairwise sums and products in the naturals.

We also prove various other related results. For example, we give a �nite
colouring of the reals such that no sequence that is bounded and bounded away
from zero can have its pairwise sums and products monochromatic.

The plan of the paper is as follows. In Section 2we state and prove our lemma
about colouring pairs of naturals, and use it in Section 3 to give a new proof of
the result about pairwise sums and products in the naturals. In Section 4 we
give the above result about the reals, which we then build on in Section 5 to
prove the statement about pairwise sums and products in bounded sequences.
Amusingly, it is not entirely clear that the colouring in Section 5 does not pre-
ventmonochromatic �nite sums and products from every sequence in the ratio-
nals, and sowe digress in Section 6 to exhibit such a sequence for this colouring.
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Finally in Section 7 we construct a colouring of the rationals such that if a se-
quence has the set of its �nite sums and products monochromatic and the set of
primes that appear in the denominators of its terms is �nite, then the sequence
has to be bounded – together with the results of Section 5 this establishes the
main result.

Our notation is standard. We restrict our attention to the positive rationals
and the positive reals (which we write as ℚ+ and ℝ+ respectively), since in
all situations either it would be impossible to use negative values (for example
because the sums are negative but the products are positive) or because, if say
we are dealing only with sums, then any colouring of the positive values could
be re�ected, using new colours, to the negative values. Throughout the paper
ℕ is the set of positive integers.

We end this introduction by mentioning that in the case of �nite sequences
very little is known. The question of whether or not in every �nite colouring
of the naturals there exist two (distinct) numbers that, together with their sum
and product, all have the same colour, remains tantalisingly open. Moreira [6]
showed that we may �nd x and y such that all of x, x + y, xy have the same
colour, and in the rationals Bowen and Sabok [2] showed that we can indeed
�nd the full set x, y, x + y, xy. But for example for sums and products from a
set of size three or more almost nothing is known.

2. Some useful lemmas
In this section we prove the lemma mentioned above that we will make use

of several times (Lemma 2.1). Wewill also need two slight variants of it, namely
Lemma 2.2 and Lemma 2.3.

Lemma 2.1. There exists a �nite colouringΦ of ℕ(2) = {(a, b) ∈ ℕ×ℕ ∶ a < b}
such that we cannot �nd two strictly increasing sequences of naturals, (an)n≥1 and
(bn)n≥1, such thatai < bi for every i and {(an+am, bn+bm) ∶ n < m}∪{(an, bm) ∶
n < m} is monochromatic.

Theway thiswill be of use to us is, roughly speaking, as follows. Suppose that
we are trying to show that a certain kind of sequence cannot have its pairwise
sums and products monochromatic (in the sense that there is a colouring that
prevents this). Then it is enough to �nd two ‘parameters’ a and b so that when
we multiply two terms of the sequence the a-values and the b-values add, but
when we add two terms the resulting a-value is the a-value of the earlier term
and the b-value is the b-value of the later term.

Before starting the proof, we need a little notation. When a natural number is
written in binary we call the rightmost 1 the ‘last digit’ of the number (the end),
and the leftmost 1 the ‘�rst digit’ of the number (the start). So for example the
number 10001010 has start 7 and end 1. Also, we say that natural numbers a
and b are ‘right to left disjoint’ if the end of b is greater than the start of a.

Proof. We colour a pair (a, b) by (c1, c2, c3, c4, c5), where c1 is the position of the
last digit of a mod 2 , c2 is the position of the last digit of b mod 2 , and c3 and
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c4 are the digits immediately to the left of the last digits of a and b respectively.
Finally c5 is 0 if the supports of a and b are right to left disjoint, and 1 otherwise.
Suppose for a contradiction that we can �nd two sequences (an)n≥1 and (bn)n≥1
as given in the statement of the lemma. Assume that for somen < m, an and am
end at the same position. Say that position is i. Because (an, bm) and (am, bm+1)
have to have the same colour, it follows that an and am have the same last 2
digits. This implies that the position of the last digit of an + am is i + 1. On the
other hand (an, bm) and (an+am, bn+bm)must have the same colour, but they
have a di�erent c1, a contradiction. Therefore we know that all an have to end
at di�erent positions. By passing to subsequences, we may assume that the an
have pairwise right to left disjoint supports.

Since (an, bm) and (an−1, bn) have the same colour, the same argument as
above shows that for any 1 < n < m, bn and bm must end at di�erent positions.
Thus by passing to subsequences we may assume that both an have right to left
disjoint supports and bn have right to left disjoint supports.

Finally, we can choosen large enough that a1 and bn have right to left disjoint
supports and b1 and an have right to left disjoint supports. Thus c5 = 0 for the
pair (a1, bn), but c5 = 1 for the pair (a1 + an, b1 + bn) (as the right-hand side
starts before the left-hand side �nishes), a contradiction. �

We will also need two slight variants of this lemma.

Lemma 2.2. There exists a �nite colouringΨ ofℕ(2) such that we cannot �nd two
strictly increasing sequences of naturals, (an)n≥1 and (bn)n≥1, such that ai < bi
for every i and {(an + am + 1, bn + bm) ∶ n < m} ∪ {(an, bm) ∶ n < m} is
monochromatic.

Proof. LetΦ be the colouring in Lemma 2.1. De�neΨ byΨ(a, b) = Φ(a, b+1).
Suppose we can �nd sequences (an)n≥1 and (bn)≥1 with the above properties.
Let dn = bn+1. Then for n < mwehaveΦ(an, dm) = Φ(an, bm+1) = Ψ(an, bm)
andΦ(an +am, dn +dm) = Φ(an +am, bn +bm +2) = Ψ(an +am, bn +bm +1),
contradicting Lemma 2.1. �

The next lemma is proved in a completely analogous manner; we omit the
proof.

Lemma2.3. There exists a �nite colouringΨ′ ofℕ(2) such thatwe cannot �nd two
strictly increasing sequences of natural numbers, (an)n≥1 and (bn)n≥1, such that
ai < bi for every i ≥ 1 and {(an+am−1, bn+bm) ∶ n < m}∪{(an, bm) ∶ n < m}
is monochromatic. □

Finally, we note a simple fact that we will use repeatedly.

Lemma 2.4. There exists a �nite colouring ' ∶ ℤ → {0, 1} such that '(k +
1) ≠ '(2k) and '(k + 1) ≠ '(2k + 1) for all k ∉ {0, 1}, and '(0) ≠ '(1) and
'(2) ≠ '(3).

Proof. We build ' inductively. Let '(0) = '(2) = 0 and '(1) = '(3) = 1. We
now assume that l ≤ −1, k ≥ 2 and that ' has been de�ned on {2l + 2, 2l +
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3, … , 2k − 1}. Since 0 < k + 1 ≤ 2k − 1, '(k + 1) is de�ned, thus we set
'(2k) = '(2k + 1) = 1−'(k + 1). Similarly, since 2l + 2 ≤ l + 1 ≤ 0, '(l + 1) is
de�ned, so we set '(2l) = '(2l+1) = 1−'(l+1), which �nishes the induction
step. �

3. Colouring the naturals
To illustrate the usefulness of Lemma 2.1, we use it here to give a short proof

of the result of Hindman [4] about pairwise sums and products in the naturals.
Because of the use of Lemma 2.1, what we are really doing is analysing the
positions of the digits in binary of the numbers that are themselves the positions
of the digits in binary of the terms of the sequence.

For a natural number a, we write e2(a) for the end of a (the subscript is
because later we will be looking at non-binary bases) and s2(a) for the start
of a. We also write ga for the di�erence between the positions of the two most
signi�cant 1s of a in binary, and call it the ‘gap’ or ‘left gap’ of a. Thus for
example 10001010 has gap 4.

Theorem 3.1. There exists a �nite colouring � ofℕ such that there is no injective
sequence (xn)n≥1 of natural numbers with the property that all numbers xn + xm
and xnxm for all 1 ≤ n < m have the same colour.

Proof. We begin by extending the colouring Φ from Lemma 2.1 to a colouring
of (ℕ ∪ {0}) × (ℕ∪ {0}) by setting Φ(a, b) to be 0 if a = 0 or b = 0 or a ≥ b. Now
let a be a natural number. We de�ne �(a) =

(pa, e2(a)mod 2, ga mod 2, Φ(e2(a), s2(a)), Φ(e2(a), s2(a) + 1), '((e2(a)), ta)

where pa is 1 if a is a power of 2 and 0 otherwise, and ta = 0 if ga = 1 and 1
otherwise. Observe that ' ensures that there are no two numbers a and b of the
same colour such that their end positions are i + 1 and 2i respectively, for some
i ≠ 1. Suppose for a contradiction that there exists a strictly increasing sequence
(xn)n≥1 such that all pairwise sums and products have the same colour with
respect to �. We observe that the �rst component of the colouring tells us that
we cannot have two distinct powers of 2 in our sequence, and sowemay assume
that no term is a power of 2. Let an be the position of the last digit of xn (i.e. an =
e2(xn)). Note that the position of the last digit of xnxm is an +am. Similarly, let
bn be the position of the �rst digit of xn (i.e. bn = s2(xn)). We know that there
will either be in�nitely many xn such that xn < 2bn

√
2, or in�nitely many xn

such that xn > 2bn
√
2. By passing to a subsequence we may assume that either

xn < 2bn
√
2 for all n, or xn > 2bn

√
2 for all n. In the �rst case, the position of the

�rst digit of xnxm is bn +bm, while in the second case it is bn +bm +1. Assume
�rst that all elements of the sequence end at position 1. We either have in�nitely
many terms with the same gap, or in�nitely many terms with pairwise distinct
gaps. If the latter is true wemay assume that (xn)n≥1 has pairwise distinct gaps.
Thereforewe can�nd twom andn such thatxn = 2+2i+⋯ andxm = 2+2j+⋯
where 2 < i < j. In this case the gap of the sum is i − 2, while the gap of the
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product is i − 1, a contradiction. Therefore we may assume that all xn end at
position 1 and they have the same gap g′. If g′ > 1 then by the pigeonhole
principle (and passing to a subsequence) we may assume that all terms have
the same digit in position g′ + 2. Now it is easy to see that the sum of any two
terms has gap g′, while the product has gap g′ + 1, a contradiction. Hence we
must have g′ = 1.

In other words, we may assume that all terms end 2 + 22 + ⋯, and by the
pigeonhole principle we may further assume that the digit in position 3 is the
same for all terms. A simple computation shows that the sum of any two terms
has gap 1, while the product does not, a contradiction. This shows that wemust
have in�nitely many terms that do not end at position 1. Then, by passing to a
subsequence, we may assume that no term of the sequence ends at position 1.
If two terms xn and xm end at the same position, say i ≠ 1, then they cannot
have the same gap. Indeed, if that were the case, the position of the last digit of
xn+xm is i +1, while the position of the last digit of xnxm is 2i, a contradiction.
Thus we have xn = 2i + 2i+k1 +⋯ and xm = 2i + 2i+k2⋯ for some 0 < k1 < k2
(without loss of generality). The gap of the product is k1. If k1 ≠ 1 then the gap
of the sum is k1 − 1, a contradiction. But among any three terms that have the
same end positions (and thus di�erent gaps), we must always have two with
gaps not equal to 1. In other words, for any end position there are at most two
terms that end there. By passing to a subsequence we may assume that the
terms have right to left disjoint supports.

To sum up, by passing to a subsequence, we may assume that the terms xn
are strictly increasing and have pairwise left to right disjoint supports. Thus the
start and end positions form two increasing sequences, and since for n < m we
have e2(xn + xm) = an and s2(xn + xm) = bm, we are done by Lemma 2.1 or
Lemma 2.2. �

4. Colouring the reals
In this section we prove the result about the reals mentioned in the intro-

duction, that there is a colouring for which no sequence that is bounded and
bounded away from zero has all of its pairwise sums and products monochro-
matic. There is a fair amount of notation, which will also be used in later sec-
tions, but all of it is very simple and self-explanatory. The aim is to analyse
carefully how the ‘starting’ few 1s (in binary) of the numbers behave, and espe-
cially how close together those �rst few 1s are.

For x ∈ ℝ+, we de�ne a(x) to be the unique integer such that 2a(x) ≤ x <
2a(x)+1. Moreover, for x ∈ ℝ+ ⧵ {2k ∶ k ∈ ℤ}, we de�ne b(x) = a(x − 2a(x)).
In other words, for x not an integer power of 2, b(x) is the unique integer such
that 2a(x)+2b(x) ≤ x < 2a(x)+2b(x)+1. For x ∈ ℝ+ ⧵{2k ∶ k ∈ ℤ}we also de�ne
c(x) to be the unique integer such that 2a(x)+1 − 2c(x)+1 ≤ x < 2a(x)+1 − 2c(x).

Note that if x ∈ ℕ then a(x) is what we called the start of x in Section 2 and
Section 3. If x is not a power of 2, then b(x) is the position of the second most



MONOCHROMATIC SUMS AND PRODUCTS 307

signi�cant digit 1 in the base 2 expansion of x, and c(x) is the position of the
leftmost zero when x is written in binary without leading 0s.

We now de�ne A0 = {x ∈ ℝ+ ∶ 2a(x) < x < 2a(x)+
1
2 }, A1 = {x ∈ ℝ+ ∶

2a(x)+
1
2 < x < 2a(x)+1}, C1 = {2k ∶ k ∈ ℤ} and C2 = {2k+

1
2 ∶ k ∈ ℤ}. We

observe that A0, A1, C1, and C2 are pairwise disjoint sets that partitionℝ+, and
A0 and A1 are open in ℝ+, while C1 and C2 are countable.

Recalling the colouring ' in Lemma 2.4, de�ne Gi = {x ∈ ℝ+ ⧵ C1 ∶
'(a(x)) = i} for i ∈ {0, 1}. Since Gi is the union of all the open intervals
(2k, 2k+1) where k ∈ ℤ and '(k) = i, we see that Gi is open in ℝ+. Moreover,
C1, G0 and G1 also form a partition of the positive reals, where C1 is countable
and G0 and G1 are open.

Next we de�ne C3 = {2k+2l ∶ k, l ∈ ℤ and l < k}, andHi = {x ∈ ℝ+ ⧵ (C1 ∪
C3) ∶ a(x) − b(x) ≡ i mod 3} for i ∈ {0, 1, 2}. By writingHi as the union of all
open intervals (2k + 2l, 2k + 2l+1) where k, l ∈ ℤ, l < k and k − l ≡ i mod 3,
we have thatHi is open inℝ+ for i ∈ {0, 1, 2}. As before, C1, C3,H0,H1 andH2
partition the positive reals.

De�ne now C4 = {2k − 2l ∶ k, l ∈ ℤ and l < k}, and Ji = {x ∈ ℝ+ ⧵ C4 ∶
a(x) − c(x) ≡ i mod 3} for i ∈ {0, 1, 2}. Note that C1 ⊂ C4 and C3 ∩ C4 =
{2k+1 + 2k ∶ k ∈ ℤ} ≠ ∅. By writing Ji as the union of all open intervals
(2k+1−2l+1, 2k+1−2l)where k, l ∈ ℤ, l < k and k−l ≡ i mod 3, we see that Ji
is open in ℝ+ for i ∈ {0, 1, 2}. Also, C4, J0, J1 and J2 partition the positive reals.

Finally, we de�ne C5 = {2k+1(1 − 2l−k)
1
2 ∶ k, l ∈ ℤ and l < k}, and Bi =

{x ∈ ℝ+ ⧵ (C1 ∪ C5) ∶ x < 2a(x)+1(1 − 2c(x)−a(x))
1
2 and a(x) − c(x) ≡ i mod 3,

or x > 2a(x)+1(1 − 2c(x)−a(x))
1
2 and a(x) − c(x) ≡ i + 1 mod 3} for i ∈ {0, 1, 2}.

Note that C2 ⊂ C5. Since Bi can be written as the union of all the sets of the

form (2k+1 − 2l+1, 2k+1(1 − 2l−k)
1
2 ) where l, k ∈ ℤ, l < k and k − l ≡ i mod 3,

and all the sets of the form (2k+1(1 − 2l−k)
1
2 , 2k+1 − 2l) where k, l ∈ ℤ, l < k

and k − l ≡ i + 1 mod 3, we see that Bi is open in ℝ+ for all i ∈ {0, 1, 2}. Also,
C1, C5, B0, B1 and B2 partition the positive reals.

We are now ready to de�ne our colouring �. To start with, we let C1, C2,
C3 ⧵ C4, C4 ⧵ C1 and C5 ⧵ C2 be �ve colour classes of �. If x ∈ ℝ+ ⧵ (C1 ∪ C2 ∪
C3 ∪ C4 ∪ C5), then we set �(x) = (w1, w2, w3, w4, w5), where wi = i if x ∈ Ai,
w2 = i if x ∈ Gi, w3 = i if x ∈ Hi, w4 = i if x ∈ Ji and w5 = i if x ∈ Bi.

It is important to note that, with the exception of the �ve countable classes
de�ned �rst, the colour classes of � are open (as a consequence of C1 ∪⋯∪C5
being closed).

Theorem 4.1. Let (xn)n≥1 be an injective sequence of positive reals with the prop-
erty that all numbers xn + xm and xnxm for all 1 ≤ n < m have the same colour.
Then (xn)n≥1 cannot be bounded and bounded away from zero.

Proof. The colour class of the pairwise sums and products of (xn)n≥1 cannot be
any ofC1,C2,C3⧵C4,C4⧵C1 andC5⧵C2. Indeed, the proofs forC1 andC2 are an
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easy exercise. The proofs for C3 and C5, while routine, are lengthy, and so are
presented in theAppendix. The proof forC4 is very similar to the one forC3, and
so we omit it. Therefore xn+xm and xnxm are all inℝ+⧵(C1∪C2∪C3∪C4∪C5)
for all n < m.

Suppose for a contradiction that (xn)n≥1 is bounded and bounded away from
zero. This immediately implies that the sequence of integers (a(xn))n≥1 is bounded.
By passing to a subsequence, we may assume that (a(xn))n≥1 is constant, and
thus equal to some �xed integer k. Moreover, by the pigeonhole principle and

passing to another subsequence, we may assume that either xn < 2a(xn)+
1
2 for

all n or 2a(xn)+
1
2 ≤ xn for all n.

Let n and m be two distinct natural numbers. Since a(xn) = a(xm) = k we
have that 2k+1 < xn + xm < 2k+2 and 22k < xnxm < 22k+2. This implies that
a(xn + xm) = k + 1 and that either a(xnxm) = 2k, or a(xnxm) = 2k + 1. Let
i ∈ {0, 1} be such that xn + xm ∈ Gi and xnxm ∈ Gi. In other words we must
have '(a(xn + xm)) = '(a(xnxm)), which implies that '(k + 1) = '(2k) or
'(k + 1) = '(2k + 1), and thus k ∈ {0, 1}.

We consider �rst the case when k = 1. This means that 2 < an < 4 and
a(xnxm) = a(xn + xm) = 2 for all distinct naturals n and m. Hence we must

have 2 < xn < 2
3
2 for all n.

We �rst assume that the integer sequence (b(xn))n≥1 is bounded. By passing
to a subsequence, we may assume that (b(xn))n≥1 is constant and equal to a
�xed integer l < k = 1. Since xn ≥ 2a(xn) + 2b(xn) for all n, we cannot have

l = 0, or else xn ≥ 2 + 1 = 3 > 2
3
2 , and so l ≤ −1.

Let m and n be two distinct natural numbers. By the above we have that
xn = 2 + 2l + u and xm = 2 + 2l + v for some 0 ≤ u, v < 2l. Next we have that
xn + xm = 4 + 2l+1 + u + v and 0 ≤ u + v < 2l+1, thus b(xn + xm) = l + 1, and
consequently a(xn + xm) − b(xn + xm) = 2 − (l + 1) = 1 − l.

On the other hand, xnxm = 4+ 2l+2 + (2l + 2)(u + v) + uv + 22l. The sum of
terms involving the variables u and v can be bounded as follows: (2l + 2)(u +
v) + uv + 22l < (2l + 2)2l+1 + 22l + 22l = 22l+2 + 2l+2. Therefore we trivially
have 4 + 2l+2 < xnxm and xnxm < 4 + 2l+2 + 22l+2 + 2l+2 = 4 + 2l+3 + 22l+2 <
4 + 2l+4. This tells us that either b(xnxm) = l + 2, or b(xnxm) = l + 3, thus
either a(xnxm) − b(xnxm) = −l, or a(xnxm) − b(xnxm) = −l − 1. In both cases
a(xnxm) − b(xnxm) and a(xn +xm) − b(xn +xm) are not congruent mod 3, a
contradiction.

Therefore we must have that (b(xn))n≥1 is unbounded and, by passing to a
subsequence, we may assume that (b(xn))n≥1 is strictly decreasing.

Let n be a natural number and l = b(xn). We know that there exists u such
that 0 ≤ u < 2l and xn = 2 + 2l + u. We now pick an integer s < l such that
u + 2s < 2l, and then a natural number m such that b(xm) < s. Let t = b(xm)
and xm = 2+2t+v, where 0 ≤ v < 2t. It follows that xn+xm = 4+2l+u+2t+v.
By all the above we have that u + 2t + v < u + 2t+1 ≤ u + 2s < 2l. Thus
b(xn + xm) = l and a(xn + xm) − b(xn + xm) = 2 − l.
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Finally, since 2 + 2l ≤ xn < 2 + 2l+1 and 2 + 2t ≤ xm < 2 + 2t+1, we
�rst have that 4 + 2l+1 < 4 + 2l+1 + 2t+1 + 2l+t ≤ xnxm. Moreover, xnxm <
4 + 2l+2 + 2t+2 + 2l+t+2 < 4 + 2l+3. Putting these together we see that either
b(xnxm) = l + 1 or b(xnxm) = l + 2. Thus either a(xnxm) − b(xnxm) = 1− l, or
a(xnxm)−b(xnxm) = −l, neither of which is congruent to a(xn+xm)−b(xn+
xm) mod 3, a contradiction. This concludes the case when k = 1.

We must therefore have k = 0. In other words a(xn) = 0, 2
1
2 ≤ xn < 2, and

a(xn + xm) = a(xnxm) = 1 for all distinct natural numbers n and m. Since

there is at most one n such that xn = 2
1
2 , by passing to a subsequence we may

assume that 2
1
2 < xn < 2 for all n.

We observe that if 2
1
2 < xn <

3
2
and 2

1
2 < xn <

3
2
for two distinct m and n,

then 2⋅2
1
2 = 2

3
2 < xn+xm < 3, thus xn+xm ∈ A1, while 2 < xnxm < 9∕4 < 2

3
2 ,

so xnxm ∈ A0, a contradiction. Therefore, by passing to a subsequence, we
may assume that 3

2
≤ xn < 2. This immediately implies that xn ≥ 21 − 2−1 =

2a(xn)+1 − 2−2+1, and so c(xn) ≤ −2 for all n.
We �rst assume that the integer sequence (c(xn))n≥1 is bounded. Thus by

passing to a subsequence wemay assume that it is constant and equal to a �xed
integer l ≤ −2. Letm andn be two distinct natural numbers. Thenwe have that
2−2l+1 ≤ xn < 2−2l and 2−2l+1 ≤ xm < 2−2l. Summing the above we obtain
4 − 2l+2 ≤ xn + xm < 4 − 2l+1, and thus c(xn + xm) = l + 1 and consequently
a(xn +xm) − c(xn +xm) = −l. On the other hand, multiplying the above gives
4−2l+3+22l+2 ≤ xnxm < 4−2l+2+22l. The lower bound is trivially greater than
4−2l+3, and 2l+2−22l > 2l+1, so 4−2l+2+22l < 4−2l+1. Thismeans that c(xnxm)
is either l+1 or l+2. Since c(xnxm) = l+2 implies a(xnxm)−c(xnxm) = −l−1
which is not congruent to −l = a(xn + xm) − c(xn + xm) mod 3, we conclude
that c(xnxm) = l + 1 for all n ≠ m, which can be written as 4 − 2l+2 ≤ xnxm <
4 − 2l+1 for all n ≠ m.

Observe that if xn < 2(1 − 2l)
1
2 and xm < 2(2 − 2l)

1
2 for two distinct positive

integersm andn, thenxnxm < 4(1−2l) = 4−2l+2, which contradicts c(xnxm) =
l + 1. Therefore, by passing to a subsequence, we may assume that xn ≥ 2(1 −

2l)
1
2 for all n. Let n ≠ m be two natural numbers. Then xn +xm ≥ 4(1− 2l)

1
2 =

4(1 − 2c(xn+xm)−a(xn+xm))
1
2 . Let i ∈ {0, 1, 2} such that −l = a(xn + xm) − c(xn +

xm) ≡ i+1 mod 3. Thismeans thatxn+xm ∈ Bi, and consequentlyxnxm ∈ Bi.
On the other hand, since xn < 2−2l and xm < 2−2l, it is easy to check that the

product xnxm < 4−2l+2+22l = 4(1−2l +22l−2) < 4(1−2l)
1
2 . Since a(xnxm)−

c(xnxm) = 1 − (l + 1) = −l we have that xnxm < 4(1 − 2c(xnxm)−a(xnxm))
1
2 , and

thus xnxm ∈ Bj where j ∈ {0, 1, 2} and j ≡ −l mod 3 ≡ i + 1 mod 3. But this
is a contradiction since it implies that i ≠ j, so that the sum and the product
are in di�erent B-classes.
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Therefore we must have that the sequence (c(xn))n≥1 is unbounded and, by
passing to a subsequence, we may assume that it is strictly decreasing.

Let us �rst assume that there exist n < m such that xn = 2 − 2c(xn)+1 and
xm = 2−2c(xm)+1. Thenwe have that xn+xm = 4−2c(xn)+1−2c(xm)+1, and since
c(m) < c(n) we get that 4 − 2c(xn)+2 < xn + xm < 4 − 2c(xn)+1, so c(xn + xm) =
c(xn)+1 and consequentlya(xn+xm)−c(xn+xm) = −c(xn). On the other hand,
xnxm = 4−2c(xn)+2−2c(xm)+2+2c(xn)+c(xm)+2 = 4−2c(xn)+2−2c(xm)+2(1−2c(xn)).
Hence we have that 4− 2c(xn)+3 < 4− 2c(xn)+2 −2c(xm)+2 < xnxm < 4− 2c(xn)+2.
It follows that c(xnxm) = c(xn) + 2, soa(xnxm) − c(xnxm) = −c(xn) − 1, a
contradiction.

Finally, after passing to a subsequence, wemay assume that for every n there
exists un such that 0 < un < 2c(xn) and xn = 2 − 2c(xn)+1 + un. Let n be a
natural number and let s ∈ ℤ be such that un + 2s < 2c(xn). Since the sequence
(c(xn))n≥1 is strictly decreasing and unbounded, we can �nd m > n such that
c(xm) < min{s, log2 un − 1}. It then follows that xn + xm = 4 − 2c(xn)+1 + un −
2c(xm)+1+um. We observe that 0 < un−2c(xm)+1+um < un−2c(xm)+1+2c(xm) <
un + 2c(xm) < un + 2s < 2c(xn). This means that 4 − 2c(xn)+1 < xn + xm <
4 − 2c(xn)+1 + 2c(xn) = 4 − 2c(xn), and so c(xn + xm) = c(xn) and consequently
a(xn + xm) − c(xn + xm) = 1 − c(xn).

We are now going to analyse the product xnxm. We have that 2 − 2c(xn)+1 <
xn < 2 − 2c(xn) and 2 − 2c(xm)+1 < xm < 2 − 2c(xm). By multiplying the above
inequalities we obtain that 4 − 2c(xn)+2 − 2c(xm)+2 + 2c(xn)+c(xm)+2 < xnxm and
xnxm < 4−2c(xn)+1−2c(xm)+1+2c(xn)+c(xm). We consider these two inequalities
separately.

First we have that 4−2c(xn)+1−2c(xm)+1+2c(xn)+c(xm) = 4−2c(xn)+1−2c(xm)(2−
2c(xn)) < 4 − 2c(xn)+1, thus xnxm < 4 − 2c(xn)+1.

Secondly we have that 4 − 2c(xn)+2 − 2c(xm)+2 + 2c(xn)+c(xm)+2 > 4− 2c(xn)+2 −
2c(xm)+2 > 4 − 2c(xn)+3, since c(xm) < c(xn).

Putting everything together we get that 4 − 2c(xn)+3 < xnxm < 4 − 2c(xn)+1,
and thus either c(xnxm) = c(xn) + 1 or c(xnxm) = c(xn) + 2. This means
that either a(xnxm) − c(xnxm) = −c(xn), or a(xnxm) − c(xnxm) = −c(xn) − 1,
neither of which is congruent to a(xn + xm) − c(xn + xm) = 1 − c(xn) mod 3,
a contradiction. �

It is important to point out that the colouring � cannot be used to rule out
similar statements about sums and products from a sequence (xn)n≥1 that tends
to zero. Indeed, since each colour class of � is measurable (being either count-
able or open), the result of [1] tells us that there is a sequence with all of its
products and all of its sums (even in�nite sums) having the same colour for �.

5. Combining an extension of � over the rationals with �
In this sectionwewill build a colouring of the positive rationals via an ‘exten-

sion’ of the colouring � that also incorporates �. This colouring will force any
bounded sequence with monochromatic pairwise sums and products to have
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the set of primes which divide the denominators of the terms of the sequence
to be in�nite.

Roughly speaking, we will be concerned with how a number ends, not just
how it starts, and therefore we will be considering numbers written not in bi-
nary (of course) but rather in the smallest base for which they terminate. The
analysis is considerably more complicated than it would be for binary. There is
also the issue that di�erent numbers will have di�erent ‘smallest bases’, but it
turns out that this will not cause too much of a problem.

Let (pn)n≥1 be the enumeration of all primes in increasing order, and Pn =
n∏

k=1
pk for all n ∈ ℕ. Let also Tn = ℚ(n) ∩ (0, 1). In other words, Tn consists of

all the rationals between 0 and 1 for which, in reduced form, the denominator
does not have any pt with t > n as a factor. For completeness, de�ne T0 = ∅. If
x ∈ Tn ⧵ Tn−1 we may say that Pn is the ‘minimal base’ of x.

For n ∈ ℕ and x ∈ Tn, we de�ne sn(x) to be the position of the leftmost sig-
ni�cant digit and en(x) the position of the rightmost signi�cant digit in the base
Pn expansion of x. For example, if x has the base 6 expansion 405.00213 then
s3(x) = 2 and e3(x) = −5. For x ∈ ℕ, so that e2(x) and s2(x) are the position of
the rightmost signi�cant digit and leftmost signi�cant digit respectively in the
binary expansion of x, we set d(x) to be the digit in position e2(x) + 1. Finally,
for x, y ∈ ℕ, de�ne g(x, y) = 0 if e2(y) > s2(x) and g(x, y) = 1 if e2(y) ≤ s2(x).

The colouringΦ ofℕ(2) de�nedpreviously can be rewritten as follows: Φ(x, y) =
(e2(x) mod 2, e2(y) mod 2, d(x), d(y), g(x, y)). We also de�ne the colouring
Ψ′ of ℕ(2), which is very similar in spirit to the previously de�ned colouring Ψ,
by Ψ′(x, y) = Φ(1, 2) if x = 1, and Ψ′(x, y) = Φ(x − 1, y) if x > 1.

We are now ready to de�ne a colouring � ofℚ as follows. If x ≥ 1, let �(x) =
�(x). Otherwise, for any x ∈ ℚ ∩ (0, 1), there exists a unique n ∈ ℕ such that
x ∈ Tn ⧵ Tn−1. Consequently, de�ne

�(x) = (�(x), Φ(−sn(x), −en(x)), Ψ′(−sn(x), −en(x))) .

The following is what we wish to prove.

Theorem 5.1. Let (xn)n≥1 be a bounded sequence of positive rationals such that
the set {xn + xm, xnxm ∶ n ≠ m} is monochromatic with respect to �. Then for
any k ∈ ℕ there exist l and n such that xn ∈ Tl ⧵ Tk.

Proof. Because the sequence (xn)n≥1 is monochromatic with respect to � it is
also monochromatic with respect to �. Since (xn)n≥1 is bounded, Theorem 4.1
tells us that (xn)n≥1 must converge to 0, and so we may assume that all terms
are less than 1. Assume for a contradiction that there exists k ∈ ℕ such that
xn ∈ Tk for all n ∈ ℕ. By passing to a subsequence, we can assume that for all
n xn ∈ Tt ⧵ Tt−1 for some t ≤ k. In other words, the minimal base of the form
Ps for xn is Pt, for all n ≥ 1. Since (xn)n≥1 converges to 0, st(xn) and et(xn)must
tend to−∞. In particular, we may assume from now on that st(xn) < −1 for all
n. Moreover, by passing to a subsequence, we may assume that the sequence
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is strictly decreasing and that all of its terms have pairwise left to right disjoint
support – in otherwords, ifn < m then et(xn) > st(xm). Also, by the pigeonhole
principle, there exists a subsequence for which all terms have the same last
digit, say 0 < d < Pt, and by passing to that subsequence we may assume
that this is the case for (xn)n≥1 itself. Let n < m be positive integers. Then,
because xn and xm have disjoint supports in base Pt, which is their minimal
base, xn+xm also has minimal base Pt. Furthermore, st(xn+xm) = st(xn) and
et(xn + xm) = et(xm). It is also easy to see that if both xn and xm have minimal
base Pt then so does xnxm.

We note that if x ∈ Tt ⧵ Tt−1, then −et(x) is the smallest positive integer u
such that x(Pt)u ∈ ℕ. Clearly xnxm(Pt)−et(xn)−et(xm) ∈ ℕ, and thus et(xnxm) ≥
et(xn) + et(xm).

Now suppose that there exists k′ ∈ ℕ smaller than −et(xn) − et(xm) such
that xnxm(Pt)k

′ ∈ ℕ. It follows that

xn(Pt)−et(xn)xm(Pt)−et(xm)(Pt)k
′+et(xn)+et(xm) ∈ ℕ .

But xn(Pt)−et(xn) ≡ xm(Pt)−et(xm) ≡ d mod Pt. Because the power of Pt is
negative, we must have that Pt divides d2, and since Pt is a product of dis-
tinct primes, we must in fact have that Pt divides d, a contradiction. Therefore
et(xnxm) = et(xn) + et(xm).

Finally, for x ∈ Tt ⧵ Tt−1, st(x) is the unique integer l such that (Pt)l+1 >
x ≥ (Pt)l. By the pigeonhole principle we either have xn ≥

√
Pt(Pt)st(xn) for

in�nitely many n or xn <
√
Pt(Pt)st(xn) for in�nitely many n. By passing to a

subsequencewemay assume that we are either in the �rst case for all n or in the
second case for alln. In the �rst case st(xnxm) = st(xn)+st(xm)+1 for allm ≠ n,
while in the second case st(xnxm) = st(xn) + st(xm). Let an = −st(xn) > 1 and
bn = −et(xn) > an for all n ∈ ℕ. Note that both (an)n≥1 and (bn)n≥1 are
strictly increasing sequences of natural numbers. Then � tells us that either
Φ(an, bm) = Φ(an+am, bn+bm) for all n < m, orΦ(an−1, bm) = Φ(an+am−
2, bn + bm) for all n < m, which contradicts Lemma 2.1 or Lemma 2.3. �

6. Exploring � further
It turns out that for � we can �nd an injective sequence with all pairwise

sums and products monochromatic, and actually even all �nite sums and prod-
ucts monochromatic. This shows that neither � nor � nor their product can
provide a counterexample for the ‘�nite sums and products’ problem in the set
of all rationals. We include this result just out of interest; the reader can skip
this section if desired. We say that the sequence (yn)n≥1 is a product subsystem
of the sequence (xn)n≥1 if there exists a sequence (Hn)n≥1 of �nite sets of natural
numbers such that for every n ≥ 1,max Hn < minHn+1 and yn =

∏

t∈Hn

xt.

Theorem 6.1. There exists a sequence (yn)n≥1 in ℚ ∩ (0, 1) such that all of its
�nite sums and �nite products are monochromatic with respect to �.
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Proof. Startingwith r1 = 2, wemay inductively choose an increasing sequence

(rn)n≥1 of natural numbers such that for all n ∈ ℕ we have
n∑

i=1

1
pri

< 1. By the

Finite Sums Theorem (or rather a simple corollary of it – see Corollary 5.15 in

[5]) we can choose a product subsystem (xn)n≥1 of (
1
pri

)
n≥1

such that all �nite

products of (xn)n≥1 are monochromatic with respect to � – in other words, they
are all members of a colour class of �, say U.

The colouring � of ℝ+ consists of �ve countable classes and several classes
that are open inℝ+. Recall that the countable colour classes areC1 = {2k ∶ k ∈

ℤ}, C2 = {2k+
1
2 ∶ k ∈ ℤ}, C3 ⧵C4 = {2k+2l ∶ k, l ∈ ℤ and l < k}⧵C4, C4 ⧵C1 =

{2k−2l ∶ k, l ∈ ℤ and l < k}⧵C1, and C5 ⧵C2 = {2k+1(1−2l−k)
1
2 ∶ k, l ∈ ℤ and

l < k} ⧵ C2. It is easy to see that C2 contains only irrational numbers. Observe

also that C5 contains only irrational numbers, because
(
1 − 1

2n

) 1
2 is irrational

for any n ∈ ℕ. (Indeed, suppose
(
1 − 1

2n

) 1
2 = p

q
for some coprime p, q ∈ ℕ; we

then get that 2
n−1
2n

= p2

q2
, so 2n and 2n − 1 have to be perfect squares, but no two

perfect squares in ℕ di�er by 1.)
The classes C1, C3 ⧵ C4, and C4 ⧵ C1 consist of rational number that have

denominator (in reduced form) a power of 2, and thus none of them can be in
U as no xn has this property since r1 = 2. Furthermore, C2 and C5 ⧵ C2 consist
of irrational numbers, so C2 ≠ U and C5 ⧵ C2 ≠ U. We conclude that U is an
open colour class of � that contains all the �nite products of (xn)n≥1.

We are now going to �nd a subsequence (yn)n≥1 of (xn)n≥1 such that all its
�nite sums are in U as well. We proceed by induction. Let y1 = x1. Now
assume n ≥ 1 and that we have chosen y1 > y2 > ⋯ > yn such that yi ∈
{xj ∶ j ∈ ℕ} for all 1 ≤ i ≤ n, and that for any �nite non-empty set A of
{1, 2, … , n} we have

∑

i∈A
yi ∈ U. Because U is open in ℝ+, we can pick �A > 0

such that (
∑

i∈A
yi,

∑

i∈A
yi + �A) ⊂ U for any �nite non-empty setA of {1, 2, … , n}.

Let � = min{�A, yi ∶ ∅ ≠ F ⊆ {1, 2, … , n}, 1 ≤ i ≤ n}. Pick m such that for all
j ≥ m we have xj < �, and set yn+1 = xm. This �nishes the induction step.
Therefore, all the �nite sums and all the �nite products of the sequence (yn)n≥1
are in U, and so are monochromatic for the colouring �.

To complete the proof we show that if z is either a �nite sum or a �nite prod-
uct of (yn)n≥1 and z ∈ Tk⧵Tk−1, then ek(z) = −1, and consequently sk(z) = −1.

First assume that z is a �nite product of elements of (yn)n≥1. This implies

that z is a �nite product of elements of ( 1
pn

)
n≥1

. Therefore there exists a �nite
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set A of natural numbers such that z =
∏

i∈A

1
pi
, and thus z ∈ Tk ⧵ Tk−1, where

k = max A. We observe that zPk =
∏

i∈{1,2,…,k}⧵A
pi < Pk, so z =

z′

Pk
for some

1 ≤ z′ < Pk, which implies that ek(z) = sk(z) = −1.
Finally, let z =

∑

i∈A
yi for some �nite setA = {j1, j2, … , js} of natural numbers

of size s > 1, where j1 < j2 < ⋯ < js. Since (yn)n≥1 is a subsequence of (xn)n≥1,

which is a product subsystem of (
1
prn

)
n≥1

, for each i ∈ {1, 2, … , s} there exists

a �nite set Fi of natural numbers such that max Fi < minFi+1 if i < s, and

yji =
∏

t∈Fi

1
prt

. Denote by mi the maximum of Fi for all i ∈ {1, 2, … , s}, and let

k = rms
, so that z ∈ Tk ⧵ Tk−1.

We�rst note that
s∑

i=1

1
prmi

< 1, and thus
s∑

i=1

pk
prmi

< pk. We now see that zPk =

(
s∑

i=1
yji)

k∏

m=1
pm =

⎛
⎜
⎝

s∑

i=1

∏

t∈Fi

1
prt

⎞
⎟
⎠

k∏

m=1
pm ≤ (

s∑

i=1

1
prmi

)
k∏

m=1
pm = (

s∑

i=1

pk
prmi

)
k−1∏

m=1
pm <

Pk, by the above observation. Therefore, as before, z =
z′′

Pk
for some 1 ≤ z′′ <

Pk, which implies ek(z) = sk(z) = −1. �

7. Unbounded sequences in the rationals
In this section we give a �nite colouring of the rationals such that no un-

bounded sequence whose denominators contain only �nitely many primes can
have the set of all its �nite sums and products monochromatic.

The general aim is to write numbers as an integer part (which will be consid-
ered in binary) and a fractional part (which will be considered in the ‘minimal
base’ as in Section 5), although actually wewill alsomake use of the integer part
written in that minimal base of the fractional part. By using the �nite sums, we
hope to show that the ‘centres clear out’, meaning that the fractional parts tend
to 0 (or 1) and the integer parts have ends that tend to in�nity. This will then
give us the disjointness of support that we need to apply results conceptually
similar to Lemma 2.1. For example, if the fractional parts tend to 0 and the in-
teger parts have ends that tend to in�nity thenwewill consider the relationship
between quantities like the left gap of the integer part and the end of the frac-
tional part – the key point being that we will be able to control how the integer
parts behave under sum and product, because the fractional parts will be ‘too
small to interfere’.

Theorem 7.1. There exists a �nite colouring � of the positive rationals such that
there exists no unbounded sequence (xn)n≥1 that has the set of all its �nite sums
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and products monochromatic with respect to �, with the set of primes that divide
the denominators of its terms being �nite.

Proof. Let Sn = {x ∈ ℚ+ ∶ x has a terminating base Pn expansion} for all
n > 0, and S0 = ∅. We �rst de�ne the colouring �′ of

ℚ+ ⧵ (ℕ ∪ {2k ∶ k ∈ ℤ} ∪ (0, 2])

as follows: for x ∈ Sr ⧵ Sr−1 we set

�′(x) = (a(x)mod 2, a(frac(x))mod 2, �(frac(x))mod 2, er(⌊x⌋)mod 2,
e2(⌊x⌋)mod 2, er(⌊x⌋ + 1)mod 2, e2(⌊x⌋ + 1)mod 2,
a(r(x))mod 3, p(x), q(x), q′(x), s(x), s′(x)) ,

where 1 − 2�(frac(x)) ≤ frac(x) < 1 − 2�(frac(x))−1, and as before er(x) is the
position of the rightmost signi�cant digit in base Pr and e2(x) is the position

of the rightmost signi�cant digit in binary, and also r(x) = x − 2a(x)

2a(x)
, p(x) is

0 if ⌊x⌋ is a power of 2 and 1 otherwise, q(x) is 0 if a(x) − b(x) > er(⌊x⌋) and
1 otherwise, q′(x) is 0 if a(x) − b(x) > er(⌊x⌋ + 1) and 1 otherwise, s(x) is 0 if
a(x)− c(x) > er(⌊x⌋) and 1 otherwise, s′(x) is 0 if a(x)− c(x) > er(⌊x⌋+ 1) and
1 otherwise. Here ⌊x⌋ and frac(x) are the integer and the fractional parts of x
respectively.

We are now ready to de�ne the colouring �. Let x ∈ ℚ+. Then �(x) =
(0, �(x)) if x ∈ ℕ, �(x) = 1 if x ∈ {2k ∶ k ∈ ℤ, k < 0}, �(x) = 2 if x ≤ 2, x ∉ ℕ
and x ∉ {2k ∶ k ∈ ℤ, k < 0}, and �(x) = (1, �′(x)) otherwise.

Suppose for a contradiction that a sequence as speci�ed in the statement of
the theorem exists. Since it is unbounded, we may assume that all its terms are
greater than 2. Since � prevents any sequence of natural numbers from having
monochromatic pairwise sums and products, we may assume, by passing to a
subsequence, that none of the xn are natural numbers – and hence, since the set
of the �nite sums and products ismonochromatic, also no �nite sumor product
of the xn is a natural number. Moreover, by looking at sums of two terms, it is
easy to see that p prevents the integer parts from being powers of 2, and thus
we can assume that no xn has its integer part a power of 2. By assumption, and
after passing to a subsequence, we may assume that there exists r ∈ ℕ such
that xn ∈ Sr ⧵ Sr−1 for all n. Since Sr ⧵ Sr−1 is closed under multiplication, all
the �nite products are in Sr ⧵ Sr−1 too.

Let xn = yn + zn, where yn ∈ ℕ is the integer part of xn and 0 < zn < 1 is its
fractional part. By passing to a subsequence we may assume that the sequence
(yn)n≥1 is strictly increasing and tending to in�nity. Suppose that the sequence
(zn)n≥1 is bounded away from both 0 and 1, which is equivalent to saying that
a(zn) and �(zn) are both bounded. Therefore, by passing to a subsequence, we
may assume that there exist �xed integers k < 0 and l < 1 such that a(zn) = k
and �(zn) = l for all n. We either have zn <

1
2
for in�nitely many n or zn ≥

1
2

for in�nitely many n.
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In the �rst case, if zn and zm are less than 1
2
then frac(xn + xm) = zn + zm,

and thus a(frac(xn + xm)) = k + 1 ≠ a(frac(xn)) mod 2, a contradiction. In
the second case, if zn and zm are at least 1

2
then frac(xn +xm) = zn +zm −1, so

that 1− frac(xn +xm) = 1− zn +1− zm which implies that �(frac(xn +xm)) =
l + 1 ≠ �(frac(xn)) mod 2, a contradiction. This tells us that, by passing to a
subsequence, we may either assume that zn converges to 0 or that it converges
to 1.

By passing to a subsequence we may assume that either xn < 2a(xn)+
1
2 for

all n or xn ≥ 2a(xn)+
1
2 for all n. In the �rst case a(xnxm) = a(xn) + a(xm),

while in the second case a(xnxm) = a(xn) + a(xm) + 1 (for all n ≠ m). Since,
for x ∈ ℝ+ ⧵ (ℕ ∪ C1), r(x) is the unique number strictly between 0 and 1
such that x = 2a(x)(1 + r(x)), a simple computation shows that in the �rst case
r(xnxm) = r(xn) + r(xm) + r(xn)r(xm), while in the second case r(xnxm) =
r(xn) + r(xm) + r(xn)r(xm) − 1

2 for all n ≠ m.

Suppose that xn < 2a(xn)+
1
2 for all n and that r(xn) is bounded away from 0.

Then a(r(xn)) is bounded, so by passing to a subsequence we may assume that
there is an integer l < −1 such that a(r(xn)) = l for all n (Recall that we are in
the case where r(xn) + r(xm) + r(xn)r(xm) < 1 and thus a(r(xn)) < −1). Since
2l ≤ r(xn) < 2l+1 and 2l ≤ r(xm) < 2l+1, we have that 2l+1 < 2l+1 + 22l ≤
r(xn) + r(xm) + r(xn)r(xm) < 2l+1 + 22l+2 < 2l+3. Thus a(r(xnxm)) is l + 1 or
l + 2, neither of which is congruent to l mod 3, a contradiction. Therefore in

this �rst case (namely when xn < 2a(xn)+
1
2 for all n), we must have that r(xn)

converges to 0, which immediately implies that a(xn) − b(xn) (the ‘left gap’)
goes to in�nity.

Suppose instead that we are in the second case (namely that xn ≥ 2a(x)+
1
2

for all n), so that r(xnxm) =
r(xn) + r(xm) + r(xn)r(xm) − 1

2 for all n ≠ m.
Suppose that a(xn) − c(xn) is bounded. By passing to a subsequence, we may
assume that there exists a �xed l ∈ ℕ such that a(xn) − c(xn) = l for all n.

Let 2k − 2 < d ∈ ℕ be such that
(2k+1 − 1)d

2(k+1)d
< 1

2 , and look at the �rst d

terms. We have that xj < 2a(xj)+1−2c(xj) = 2a(xj)+1−2a(xj)−k = 2a(xj) 2
k+1 − 1
2k

,

so that we have x1x2⋯xd < 2a(x1)+…+a(xd)
(2k+1 − 1)d

2kd
< 2a(x1)+…+a(xd)+k−1.

On the other hand, by assumption, the product is at least 2a(x1)+⋯+a(xd)+
d
2 >

2a(x1)+⋯+a(xd)+k−1, a contradiction. Thereforewemay assume thata(xn)−c(xn)
is strictly increasing and goes to in�nity, which is equivalent to r(xn) converging
to 1.
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To summarise, we either have r(xn) converging to 0, which is equivalent to
a(xn) − b(xn) going to in�nity, or r(xn) converging to 1, which is equivalent to
a(xn) − c(xn) going to in�nity. We distinguish these two cases.
Case 1. The sequence (zn)n≥1 converges to 0. In this case, by passing to a

subsequence we may assume that the terms of the sequence (zn)n≥1 have pair-
wise left to right disjoint supports in base Pr – note that this implies that all
�nite sums of (xn)n≥1 also have minimal base Pr. By passing to a subsequence
we may assume that all yn have the same digit in position er(yn) + 1 in base
Pr, and that zn <

1
Pr

for all n. Suppose that there exist Pr terms such that their
integer parts end at the same position in base Pr, call it p. It is easy to see that
the integer part of their sum is the sum of their integer parts, which ends at
position p + 1, a contradiction. Therefore we may assume that the terms of the
sequence (yn)n≥1 have left to right disjoint supports in base Pr. By exactly the
same argument (looking at a sum of two terms only) we can further deduce that
the terms of the sequence (yn)n≥1 have left to right disjoint supports in binary
as well.

Assume �rst that r(xn) converges to 0. We �x x1 and look at x1 + xn. For
n su�ciently large we have q(x1 + xn) = 0, because the left gap of the sum is
the left gap of xn, while the end position of ⌊x1+xn⌋ in base Ps is �xed, namely
the end position of y1 in base Pr. On the other hand, if the fractional part of
x1 has end position a < 0 in base Pr and n is large enough, then ⌊x1xn⌋ has
end position er(yn) + a in base Pr, which tends to in�nity as n tends to in�nity.
However, due to the fact that the left gap of xn goes to in�nity, we see that for n
large enough the left gap of xnx1 equals the left gap of x1, which will eventually
be less than er(yn) + a. So q(x1xn) = 1, a contradiction.

Assumenow that r(xn) converges to 1. As before, we �x x1 and look at xn+x1
for n large enough. Since xn and x1 have disjoint supports in binary, we have

thata(xn+x1) = a(xn), and thus r(xn+x1) =
xn + x1 − 2a(xn)

2a(xn)
which converges

to 1. Therefore, as n tends to in�nity, a(xn+x1)−c(xn+x1) also tends to in�nity
– thus it will eventually be greater that the end position of ⌊xn + x1⌋ in base Pr
(which is the end position of y1 in base Pr), so s(xn + x1) = 0 for all n large
enough. On the other hand, it is a straightforward computation to show that
a(xnx1)−c(xnx1) is either a(x1)−c(x1) or a(x1)−c(x1)+1, and thus is bounded.
However, we have seen above that er(⌊xnx1⌋) is unbounded. We conclude that
for all n su�ciently large we have a(xnx1) − c(xnx1) < er(⌊xnx1⌋), and thus
s(xnx1) = 1 for all n su�ciently large, a contradiction. This concludes Case 1.
Case 2. The sequence (zn)n≥1 converges to 1. In this case we have that xn =

yn + 1 − (1 − zn) and the sequence (1 − zn)n≥1 converges to 0. With the same
type of argument as the one presented above, we may assume that the terms of
the sequence (yn + 1)n≥1 have pairwise left to right disjoint supports in binary
and in base Pr, and the sequence is strictly increasing (it su�ces to show that
we cannot have in�nitely many terms ending at the same place in binary or in
base Pr). Since the full argument for base Pr has been given above, here we
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just include the argument for binary. So suppose that we have n ≠ m such
that e2(yn + 1) = e2(ym + 1) = p and yn + 1 and ym + 1 have the same binary
digit in position p + 1 (which we can achieve by passing to a subsequence).
Then e2(⌊xn⌋ + 1) = p, while e2(⌊xn + xm⌋ + 1) = e2(yn + ym + 2) = p + 1, a
contradiction.

We observe that for any n > 1, er(⌊xn + x1⌋ + 1) = er((yn + 1) + (y1 + 1)) =
er(y1+1). Let er(x1) = u < 0 and pick n such that 1−zn <

1
x1

and er(yn +1) =
vn > −u. This implies that 0 < 1 − (1 − zn)x1 < 1 and that (yn + 1)x1 ∈ ℕ.
Therefore xnx1 = ((yn + 1) − (1 − zn))x1 = (yn + 1)x1 − (1 − zn)x1, and
thus ⌊xnx1⌋ + 1 = ⌊xnx1 + 1⌋ = ⌊(yn + 1)x1 + 1 − (1 − zn)x1⌋ = (yn + 1)x1.
This means that er(⌊xnx1⌋ + 1) = vn + u for all n su�ciently large, so that the
sequence (er(⌊xnx1⌋))n≥1 is unbounded.

To complete the proof, we show that if xn < 2a(xn)+
1
2 for all n ≥ 1 then

for su�ciently large n we have q′(xn + x1) = 0 and q′(xnx1) = 1, while if

xn ≥ 2a(xn)+
1
2 for all n ≥ 1 then for su�ciently large n we have s′(xn + x1) = 0

and s′(xnx1) = 1.

Assume �rst that xn < 2a(xn)+
1
2 for all n ≥ 1. As we have seen above, this

implies that a(xn) − b(xn) tends to in�nity (and we may also assume that it is
strictly increasing and a(x1)−b(x1) > 2). Consequently a(xn+x1)−b(xn+x1)
also tends to in�nity, and so is eventually larger than er(⌊xn +x1⌋ + 1), whence
q′(xn + x1) = 0 for n large enough. On the other hand, since 2a(xn) + 2b(xn) ≤
xn < 2a(xn) + 2b(xn)+1 and 2a(x1) + 2b(x1) ≤ x1 < 2a(x1) + 2b(x1)+1, we have that
2a(xn)+a(x1) + 2a(xn)+b(x1) < xnx1 < 2a(xn)+a(x1) + 2a(xn)+b(x1)+1 + 2a(x1)+b(xn)+1 +
2b(xn)+b(x1)+2 < 2a(xn)+a(x1) + 2a(xn)+b(x1)+2. This is because b(xn) + b(x1) + 2 <
a(x1)+b(xn)+1 < a(xn)+b(x1)+1. Therefore b(xnx1) is either a(xn)+b(x1) or
a(xn)+b(x1)+1, and thusa(xnx1)−b(xnx1) ≤ a(x1)−b(x1). Since er(⌊x1xn⌋+1)
will eventually be greater than a(x1) − b(x1), we have that q′(xnx1) = 1 for n
large enough, a contradiction.

Finally, assume that xn ≥ 2a(xn)+
1
2 for all n ≥ 1. Thus a(xn) − c(xn) goes to

in�nity (and as above we may assume it to be strictly increasing and such that
a(x1) − c(x1) > 2), and consequently so does a(xn + x1) − c(xn + x1). This
means that a(xn +x1) − c(xn +x1) > er(⌊xn +x1⌋ + 1) for n large enough, and
so s′(xn + x1) = 0 for n large enough. On the other hand, 2a(xn)+1 − 2c(xn)+1 ≤
xn < 2a(xn)+1−2c(xn) and 2a(x1)+1−2c(x1)+1 ≤ x1 < 2a(x1)+1−2c(x1). This implies
that 2a(xn)+a(x1)+2−2a(xn)+c(x1)+3 ≤ 2a(xn)+a(x1)+2−2a(xn)+c(x1)+2−2a(x1)+c(xn)+2+
2c(xn)+c(x1)+2 < xnx1 < 2a(xn)+a(x1)+2 − 2a(xn)+c(x1)+1. Here the �rst inequality
holds because a(xn) + c(x1) + 2 > a(x1) + c(xn) + 2, which implies that

2a(xn)+c(x1)+2 + 2a(x1)+c(xn)+2 < 2a(xn)+c(x1)+3 .

Therefore c(xnx1) is either a(xn)+c(x1)+1 or a(xn)+c(x1)+2, and so a(xnx1)−
c(xnx1) ≤ a(x1) − c(x1). Since er(⌊x1xn⌋ + 1) will eventually be greater than
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a(x1) − c(x1), we have that s′(xnx1) = 1 for n large enough, a contradiction.
This concludes Case 2. �

Note that Theorem 7.1, together with Theorem 5.1, completes the proof of
our main result.

Theorem 7.2. There exists a �nite colouring of the rational numbers with the
property that there exists no sequence such that the set of its �nite sums and prod-
ucts is monochromatic and the set of primes that divide the denominators of its
terms is �nite. □

8. Concluding remarks
The �rst remaining problem is of course to understand what happens with

�nite sums and products in the rationals. The above colourings of ℚ(k) do rely
heavily on the representation of numbers in a suitable base, and so do not pass
to sequences from the whole of ℚ.

Itwould be very good to�nd ‘parameters’a and b thatwould allowLemma2.1
to be applied, or perhaps some variant like Lemma 2.2. We have tried to �nd
such parameters in the rationals in general, but have been unsuccessful. It
would be extremely interesting to decide whether or not such parameters do
exist.

Appendix
Here we provide the cases in the proof of Theorem 4.1 when the colour class

is C3 or C5.

Proposition 8.1. There does not exist an injective sequence (xn)n≥1 in ℝ+ such
that the set of all its pairwise sums and products is contained in C3 = {2k + 2l ∶
k, l ∈ ℤ and l < k}.

Proof. Assume for a contradiction that such a sequence (xn)n≥1 exists. It is
easy to see that if x < y < z are three positive real such that {x+y, x+z, y+z} ⊆
C3 then {x, y, z} ⊆ ℚ(2), and so xn ∈ ℚ(2) for all n ≥ 1.

We know that the set {xn ∶ n ∈ ℕ} ∩ {2k ∶ k ∈ ℤ} is �nite, otherwise we get
a contradiction as the product of two powers of 2 does not lie in C3. We may
therefore assume that no xn is a power of 2.

Suppose �rst that xn ∈ (0, 1) for all n ≥ 1. Suppose that {s2(xn) ∶ n ∈
ℕ} is in�nite. We may pick n such that s2(xn) < e2(x1), but then the binary
expansion of x1 + xn has at least four nonzero digits, and thus x1 + xn ∉ C3, a
contradiction. We may therefore assume (after passing to a subsequence) that
there exists k ∈ ℤ (with k < 0) such that s2(xn) = k for every n ≥ 1. Then each
xn = 2k + yn where s2(yn) < k. Since there are only �nitely many numbers
with given values of s2(x) and e2(x), by passing to a subsequence we may also
assume that e2(yn) > e2(yn+1) for all n ≥ 1. We now observe that if n < m
then s2(xn + xm) = k + 1 and e2(xn + xm) = e2(xm), so xn + xm has a nonzero
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digit at positions k +1 and e(xm), and thus, since it is in C3, we have xn +xm =
2k+1 + 2e(xm). But then x1 + x3 = x2 + x3, a contradiction.

Wemay therefore assume that xn > 1 for all n ≥ 1. By Ramsey’s theorem for
pairs, we may assume either that for all n ≠ m we have xn + xm ∈ {2k + 2l ∶
k, l ∈ ℤ and 0 ≤ l < k} or that for alln ≠ mwehavexn+xm ∈ {2k+2l ∶ k, l ∈ ℤ
and l < 0 < k}.
Case 1. For all n ≠ m we have xn + xm ∈ {2k + 2l ∶ k, l ∈ ℤ and 0 ≤ l < k}.
Let yn = ⌊xn⌋ and �n = xn − yn for all n ≥ 1. Given n ≠ m, we have

xn+xm = yn+ym+�n+�m, and so �n+�m ∈ {0, 1}. If n,m and r are pairwise
distinct and �n, �m, �r ∉ {0, 1

2
}, then some two are in (0, 1

2
) or some two are

in ( 1
2
, 1), a contradiction. Hence, for all but at most two values of n, we have

�n ∈ {0, 1
2
}. If n ≠ m and �n = �m = 1

2
, then xn ⋅xm ∉ ℕ, again a contradiction.

We may therefore assume that �n = 0 for all n ≥ 1.
Since no xn is a power of 2, {e2(xn) ∶ n ∈ ℕ} is �nite. The reasoning is

similar to that presented above: if e2(xn) > s2(x1) then the binary expansion of
x1 + xn has at least four nonzero digits. We may therefore assume that there
exists k such that e2(xn) = k for all n ≥ 1. By passing to a subsequence, we
may further assume that either each xn end in 01 or each xn ends in 11, so that
e2(xn + xm) = k + 1. Moreover, we may also assume that s2(xn) < s2(xn+1) for
all n ≥ 1.

We now see that if n < m then s2(xn + xm) = s2(xm) or s2(xn + xm) =
s2(xm) + 1. Pick i ≠ j in {1, 2, 3} and t ∈ {0, 1} such that s2(xi +x4) = s2(x4) + t
and s2(xj+x4) = s2(x4)+t. Since k+1 < s2(x4)+t are two positions of nonzero
digits, we must have xi + x4 = xj + x4 = 2s2(x4)+t + 2k+1, a contradiction
Case 2. For all n ≠ m we have xn + xm ∈ {2k + 2l ∶ k, l ∈ ℤ and l < 0 < k}.
In this case, for all n ≠ m, xn + xm has one nonzero digit to the right of the

decimal point and one nonzero digit to the left of the decimal point.
Suppose �rst that {e2(xn) ∶ n ∈ ℕ} is unbounded. By passing to a subse-

quence, we may assume that 0 > e2(x1) > e2(x2) > e2(x3). This implies that
x1 + x3 and x2 + x3 each have a nonzero digit in position e2(x3) and x1 + x2
has a nonzero digit in position e2(x2). Thus there exist y, z, w ∈ ℕ such that
x1 +x3 = y + 2e2(x3), x2 +x3 = z+ 2e2(x3), and x1 +x2 = w+2e2(x2). Clearly we
have that y ≠ z. If z > y, then x2−x1 = z−y so 2x2 = z−y+w+2e2(x2), whence
e2(x2) = e2(2x2) = e(x2) + 1, a contradiction. If y > z, then x1 −x2 = y − z, so
2x1 = y − z + w + 2e2(x2), giving e2(x2) = e2(2x1) = e2(x1) + 1 > e2(x2), again
a contradiction.

Hence {e2(xn) ∶ n ∈ ℕ} is bounded. Thus {s2(xn) ∶ n ∈ ℕ} has to be
unbounded. We may therefore assume that there exists k < −1 such that
e2(xn) = k for all n ≥ 1. (If e2(xn) = e2(xm) = −1 then xn + xm ∈ ℕ.) By pass-
ing to a subsequence, we may also assume that all terms of the sequence have
the same digit in position k +1, and for all n ≠ m we have e2(xn +xm) = k +1.

We may further assume that s2(x1) < s2(x2) < s2(x3) < s2(x4). For i ∈
{1, 2, 3}, xi + x4 has a nonzero digit in position s2(x4) or in position s2(x4) + 1.
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Pick i ≠ j in {1, 2, 3} and t ∈ {0, 1} such that xi + x4 and xj + x4 each have a
nonzero digit in position s2(x4) + t. Then xi + x4 = xj + x4 = 2s2(x4)+t + 2k+1,
a contradiction. �

Proposition 8.2. There does not exist an injective sequence (xn)n≥1 in ℝ+ such
that the set of all its pairwise sums and products is contained in C5 = {2k+1(1 −

2l−k)
1
2 ∶ k, l ∈ ℤ and l < k}.

Proof. Assume for a contradiction that such a sequence (xn)n≥1 exists. Let �,
�, 
 be three numbers in C5 such that x1+x2 = �, x1+x3 = � and x2+x3 = 
.
Let also x1x2 = �, x1x3 = � and x2x3 = �, where �, � and � are in C5. We
therefore have x21 =

�⋅�
�
, whence x41 is rational.

Case 1. Suppose that � ⋅ �, � ⋅ 
 and � ⋅ 
 are all irrational. Since �2, �2 and

2 are rational, �∕�, �∕
 and �∕
 are all irrational as well. It is easy to show
that if K and R are two �elds such that ℚ ⊂ K ⊂ R and � ∈ R ⧵ K is such that
�2 ∈ ℚ, then K(�) = {a + b ⋅ � ∶ a, b ∈ K}. Using this fact, it is straightforward
to show that � ∉ ℚ(�), � ∉ ℚ(�) and 
 ∉ ℚ(�, �).

Now, we know that x41 is rational. On the other hand, x1 =
�+�−


2
, and so

16 ⋅x41 = (�+�−
)4 = r0+r1 ⋅ � ⋅ � −r2 ⋅ � ⋅ 
−r3 ⋅ � ⋅ 
, where r0, r1, r2, and r3
are positive rationals. It then follows that 
 ⋅ (r2 ⋅ �+r3 ⋅ �) = −16 ⋅x41 +r0+r1 ⋅
� ⋅ �, which implies that 
 is inℚ(�, �), a contradiction. (For the conscientious
reader, the coe�cients are r0 = �4+�4+
4+6 ⋅ �2 ⋅ �2+6 ⋅ �2 ⋅ 
2+6 ⋅ �2 ⋅ 
2,
r1 = 4⋅�2+4⋅�2+12⋅
2, r2 = 4⋅�2+4⋅
2+12⋅�2 and r3 = 4⋅�2+4⋅
2+12⋅�2.)
Case 2. Suppose now that � ⋅ � is a rational number, say q. It is clear that

q > 0. We then have (x1 + x2)(x1 + x3) = q = x21 + x1x3 + x1x2 + x2x3 =
x21 +� + � + �. We now observe that, by the de�nition of C5, all of its elements
are square roots of positive rational numbers. Hence there exist three positive
rational numbers q1, q2 and q3, such that � =

√
q1, � =

√
q2 and � =

√
q3.

Moreover, since x21 =
�⋅�
�
, it follows that x21 is also a square root of a positive

rational. More precisely x21 =
√
q4 where q4 =

q1⋅q2
q3

.

We therefore have q =
√
q1 +

√
q2 +

√
q3 +

√
q4. Let

M = ℚ(
√
q1,

√
q2,

√
q3,

√
q4) ,

and let d be its degree over ℚ. On the one hand, the trace of q is d ⋅ q, and on
the other had it is the sum of d ⋅

√
qi for those qi that are perfect squares. This is

because, for any positive rational t, the trace of
√
t is 0 if t is not a perfect square,

and d
√
t if t is a perfect square. The only way to have equality in the above is if

all the qi are perfect squares, but then x1x2 ∈ C5 is rational, a contradiction. �
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