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Fourier-theoretic inequalities for inclusions
of simple C∗-algebras

Keshab Chandra Bakshi, Satyajit Guin
and Sruthymurali

Abstract. This paper originates from a naive attempt to establish various
non-commutative Fourier-theoretic inequalities for an inclusion of simple
C∗-algebras equipped with a conditional expectation of index-�nite type. In
this setting, we discuss the Hausdor�-Young inequality and Young’s inequal-
ity. As a consequence, we prove the Hirschman–Beckner uncertainty princi-
ple and Donoho–Stark uncertainty principle. Our results generalize some of
the results of Jiang, Liu and Wu [Noncommutative uncertainty principle, J.
Funct. Anal., 270(1): 264–311, 2016].
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1. Introduction
Jones had discovered a notion of index [M ∶ N] for an inclusion of type II1

factors N ⊂ M in [10], which is now an active area of research in operator
algebra having applications in various other �elds of mathematics and math-
ematical physics. Subsequently, Kosaki [15] introduced a notion of index for
an inclusion of type III factors. Both type II1 and (�-�nite) type III factors
are particular cases of more general objects, called simple C∗-algebras (i.e., C∗-
algebras having no proper closed ideals). Thus, inclusion of simple C∗-algebras
encompasses both type II1 and type III subfactor theory. As a generalization
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of both Jones’ and Kosaki’s indices, Watatani [21] discussed index for an in-
clusion of C∗-algebras with a conditional expectation having a ‘quasi-basis’,
a generalization of Pimsner-Popa basis [18]. Given a subfactor N ⊂ M with
[M ∶ N] < ∞, Jones crucially observed that one can obtain another type II1
factorM1, called the basic construction, so that [M1 ∶ M] = [M ∶ N] and fur-
thermore, this operation can be iterated to obtain a tower of basic constructions:
N ⊂ M ⊂ M1 ⊂ ⋯ ⊂ Mk ⊂ ⋯. Thiswas the key observation in establishing the
famous ‘Jones’ index rigidity’ result in [10]. It is well-known from the early days
of subfactor theory that the higher relative commutants N′ ∩Mk andM′ ∩Mk

have incredibly rich structures. Using the relative commutants, Popa had asso-
ciated a ‘standard invariant’ to a subfactor : the �-lattice [19], which is arguably
the most powerful invariant of a subfactor. Subsequently, Jones discovered a
pictorial description of the standard invariant what he called ‘planar algebra’
[11] and it becomes an indispensable tool in subfactor theory. In another di-
rection, Ocneanu introduced a (fundamental) notion of Fourier transform ℱ

from N′ ∩ M1 onto M′ ∩ M2 (see also [3, 4] for details). This generalizes the
classical notion of Fourier transform for a �nite abelian group. Furthermore,
using the Fourier transform, one can associate a new multiplication structure
onN′∩M1 that generalizes the classical convolution. Fourier transform on the
relative commutants plays a major role in the abstract subfactor theory; for ex-
ample, the Fourier transform and ‘rotation operators’ are instrumental in the
formalism of Jones’ planar algebra, Ocneanu’s paragroups and Popa’s �-lattice.
Fourier transform also appeared naturally in Bisch’s biprojection theory (see
[2]) which is an indispensable tool in the theory of intermediate subfactors. In
Jones’ planar algebraic language, the Fourier transform, convolution and ro-
tation operator have beautiful pictorial descriptions (see [11, 4]). Exploiting
these pictorial formulations, in a recent paper [8] Jiang, Liu and Wu provided
a non-commutative version of the Hausdor�-Young inequality, the Young’s in-
equality and uncertainty principles for a subfactor N ⊂ M with [M ∶ N] < ∞

and N′ ∩ M = ℂ (such a subfactor is called irreducible). Moreover, for any
extremal subfactor which is not necessarily irreducible, these inequalities were
proved in the Section 7 of [16] using planar algebraic techniques. However, the
proofs use sphericality of the planar algebra and so are no longer valid for the
non-extremal subfactors. We alsomention some related works for Kac algebras
and locally compact quantum groups, see for instance [9, 17].

Analogous to Jones’ subfactor theory, given a unital inclusion of simple C∗-
algebras B ⊂ A, recently in [1], one of the authors and Gupta have system-
atically developed a Fourier theory on the relative commutants B′ ∩ Ak and
A′ ∩ Ak, where B ⊂ A ⊂ A1 ⊂ A2 ⊂ ⋯ ⊂ Ak ⊂ ⋯ is Watatani’s tower of
C∗-basic constructions (this notion parallels to the Jones’ tower of basic con-
struction in the C∗-world). More precisely, we have a notion of the Fourier
transform ℱ ∶ B′ ∩ A1 → A′ ∩ A2, rotation map �+ ∶ B′ ∩ A1 → B′ ∩ A1

and the convolution product ∗∶ B′ ∩ A1 → B′ ∩ A1. The crucial ingredient
that was used repeatedly is that of minimal conditional expectation and the
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minimal (Watatani) index [A ∶ B]0. In particular, for a subfactor N ⊂ M with
[M ∶ N] < ∞ we have another notion of index [M ∶ N]0 and it is a fact that
N ⊂ M is ‘extremal’ if and only if [M ∶ N] = [M ∶ N]0. In this paper, we
prove a non-commutative version of the Hausdor�-Young inequality, Young’s
inequality and a couple of uncertainty principles in the setting of inclusion of
simple C∗-algebras and in particular, for a subfactor (of both type II1 factors
and (�-�nite) type III-factors) with �nite index that is not-necessarily extremal.
Unlike [8], in the C∗-setting the main di�culty lies in the fact that it is still not
known whether there are pictorial descriptions (similar to planar algebra) of
the Fourier transform and convolution. However, we have found a way around
using the relationship between quasi-basis and minimal conditional expecta-
tions as exploited in [1]. Our proofs are inspired by the corresponding proofs in
[8].

2. Preliminaries
In this section, we �x the notations and brie�y recall a few key ingredients

which we repeatedly use in the sequel. For more details the readers are re-
quested to see [21, 14, 1].

2.1. Non-commutative conditional expectation. Analogous to the classi-
cal case, in the theory of operator algebras we have a well-studied notion of
conditional expectation. Suppose we have an inclusion of C∗-algebras B ⊂ A.
All C∗-algebras considered in this article will be unital, and all inclusion B ⊂ A

ofC∗-algebras will be considered as unital inclusion. A conditional expectation
E ∶ A → B is a linear surjective map satisfying

E(ba) = bE(a) , E(ab) = E(a)b and E(b) = b

for all b ∈ B and a ∈ A. In particular, E is a norm one projection (see for in-
stance in [13]). AC∗-inclusionmaynot have any conditional expectation. How-
ever, if we consider an inclusion of von Neumann algebrasN ⊂ M withM hav-
ing a tracial state tr (i.e., a �- weak-operator-topology(WOT) continuous linear
functional tr ∶ M → ℂ satisfying tr(xy) = tr(yx) for all x, y ∈ M and tr(1) = 1),
there always exists a unique ‘trace preserving’ conditional expectation, denoted
by EM

N
. More precisely, EM

N
is characterized by tr(nEM

N
(m)) = tr(nm) for all

n ∈ N andm ∈ M.
Let us recall the very useful Kadison-Schwarz inequality involving condi-

tional expectation which we shall use later.

Lemma 2.1 ([13]). Suppose thatN andM are von Neumann algebras acting on
a Hilbert spaceℋ, N ⊂ M, and E ∶ M → N is a conditional expectation. Then,
for all x ∈ M one has E(x)∗E(x) ≤ E(x∗x).

We remark that all conditional expectations in this paper are assumed to be
faithful.



338 KESHAB CHANDRA BAKSHI, SATYAJIT GUIN AND SRUTHYMURALI

2.2. A quick look at C∗-index theory. Motivated by the Jones’ index theory,
Watatani developed a theory of index for inclusion of C∗-algebras. Given a pair
B ⊂ A of C∗-algebras, a conditional expectation E ∶ A → B is said to be of
index-�nite type if there exists a �nite set {�1, … , �n} ⊂ A such that

x =
∑n

i=1
E(x�i)�

∗
i
=

∑n

i=1
�iE(�

∗
i
x)

for every x ∈ A. The set {�1, … , �n} is called a quasi-basis for E (see [21]). The
Watatani index of E is de�ned by

Indw(E) =
∑n

i=1
�i�

∗
i
,

and is independent of a quasi-basis. In general, Indw(E) is not a scalar but an
invertible positive element in the centerZ(A) ofA. In particular, ifA is a simple
C∗-algebra, the index is scalar-valued. Wedenote byℰ0(A, B) the set of all index-
�nite type conditional expectations from A onto B. A conditional expectation
F ∈ ℰ0(A, B) is said to be minimal if it satis�es Indw(F) ≤ Indw(E) for all
E ∈ ℰ0(A, B) (see [21] and the references therein). For inclusion of simple C∗-
algebras, we have a privileged minimal conditional expectation as mentioned
below.

Theorem 2.2. [21, Theorem 2.12.3] Let B ⊂ A be an inclusion of simple C∗-
algebras such that ℰ0(A, B) ≠ ∅. Then, there exists a uniqueminimal conditional
expectation E0 from A onto B.

For inclusion of simple C∗-algebras B ⊂ A, the minimal index is de�ned as
[A ∶ B]0 ∶= Indw(E0).

As is customary, we shall denote [A ∶ B]0 by �
2. We point out here that if N ⊂

M is a subfactor with �nite Jones index [M ∶ N] and is irreducible (i.e., N′ ∩

M = ℂ), then the trace preserving conditional expectation EM
N

is the minimal
conditional expectation with [M ∶ N] = [M ∶ N]0. In general, the minimal
index and Jones index need not coincide. Indeed, a subfactor is extremal if and
only if [M ∶ N] = [M ∶ N]0. We also remark that irreducibility of a subfactor
automatically implies extremality.

In the subfactor theory, Jones’ basic construction plays a pivotal role. Using
the language of the Hilbert C∗-module, Watatani proposed a parallel notion of
basic construction in theC∗-world, the so-calledC∗-basic construction. For the
convenience of the reader we brie�y recall it here and the details can be found
in [21]. Let B ⊂ A be an inclusion of C∗-algebras and EB ∈ ℰ0(A, B). Then, A
is a Hilbert B-module with respect to the B-valued inner product given by

⟨x, y⟩B = EB(x
∗y) for all x, y ∈ A. (2.1)

Recall that the space ℒB(A) consisting of adjointable B-linear maps on A is a
C∗-algebra. For each a ∈ A, consider �(a) ∈ ℒB(A) given by �(a)(x) = ax for
x ∈ A. For x ∈ A, the association x ↦ EB(x) is an adjointable projection onA,
and is denoted by eB ∈ ℒB(A). The projection eB is called the Jones projection
for the pair B ⊂ A. The C∗-basic construction C∗⟨A, eB⟩ is de�ned to be the C∗-
subalgebra generated by {�(A), eB} in ℒB(A). It turns out that C∗⟨A, eB⟩ equals
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the closure of the linear span of {�(x)eB�(y) ∶ x, y ∈ A} in the C∗-algebra
ℒB(A); � is an injective ∗-homomorphism, and thus we may consider A as a
C∗-subalgebra of C∗⟨A, eB⟩. It is customary to denote the basic construction by
A1 if the conditional expectation is understood from the context, and it is a fact
that A1 is simple whenever B ⊂ A is an inclusion of simple C∗-algebras. There
exists a unique �nite index conditional expectation ẼB ∶ A1 → A called the
‘dual conditional expectation’ of EB. Furthermore, Indw(EB) = Indw(ẼB).

2.3. Tracial states on the relative commutants. Let B ⊂ A be an inclu-
sion of simple C∗-algebras and E ∈ ℰ0(A, B). Let E0 be the unique minimal
conditional expectation from A onto B. Suppose B ⊂ A ⊂ A1 is the basic
construction corresponding to E0. Note that [A1 ∶ A]0 = [A ∶ B]0. The dual
conditional expectation Ẽ0 is also minimal [21]. We put E1 = Ẽ0. Iterating the
tower of C∗-basic construction for the inclusion B ⊂ A, we obtain

B ⊂ A ⊂ A1 ⊂ A2 ⊂ ⋯ ⊂ Ak ⊂ ⋯

with unique (dual) minimal conditional expectations Ek ∶ Ak → Ak−1, k ≥ 0,
with the convention that A−1 ∶= B and A0 ∶= A. For each k ≥ 0, let ek be
the Jones projection in Ak. The following extremely useful lemma is the C∗-
analogue of the ‘push-down lemma’ in subfactor theory [18].

Lemma 2.3 ([1]). If x1 ∈ A1, then there exists a unique x0 ∈ A such that x1e1 =
x0e1, where x0 = [A ∶ B]0E1(x1e1).

Let B′ ∩ Ak ∶= {x ∈ Ak ∶ xb = bx for all b ∈ B} be the relative com-
mutants of B in Ak. It is known that for each k, the relative commutants are
�nite dimensional [21]. On each B′ ∩ Ak, using the minimal conditional ex-
pectations, one obtains a consistent ‘Markov type trace’ (Proposition 2.21 in
[1]). More precisely, for each k ≥ 0, the map trk ∶ B′ ∩ Ak → ℂ de�ned by
trk = (E0◦E1◦⋯◦Ek)|B′∩Ak

becomes a faithful traical state on B′ ∩ Ak.

Proposition 2.4 ([1]). For each k ≥ 0, B′ ∩Ak admits a faithful tracial state trk
such that

trk(xek) = �−2trk−1(x) for all x ∈ B′ ∩ Ak−1 (2.2)
and trk|||B′∩Ak−1 = trk−1 for all k ≥ 1.

We shall sometimes drop k and denote trk simply by tr for notational brevity.
The following lemma is very useful.

Lemma 2.5 ([1]). Let {�i ∶ 1 ≤ i ≤ n} ⊂ A be a quasi-basis for the minimal
conditional expectation E0. Then, the tr-preserving conditional expectation from
B′ ∩ Ak onto A′ ∩ Ak is given by the following,

E
B′∩Ak
A′∩Ak

(x) =
1

[A∶B]0

∑

i
�ix�

∗
i
, x ∈ B′ ∩ Ak.

Recall that if {�i ∶ 1 ≤ i ≤ n} ⊂ A is a quasi-basis for E0, then we have (see
[21]) ∑

i

�ie1�
∗
i
= 1. (2.3)
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Corollary 2.6 ([1]). Following the notation in Lemma 2.5, we have EB
′∩A1

A′∩A1
(e1) =

�−2.

Remark 2.7. The reader should note that in [8] the authors have taken unnor-
malized trace Trk on N′ ∩ Mk, and thus Tr2(e1) = 1. More precisely, trk(x) =
�−(k+1)Trk(x) for any x ∈ B′ ∩ Ak.

2.4. Some useful inequalities. For the convenience of the reader, we recall
a few important inequalities as mentioned in [8].

De�nition 2.8. For x ∈ B′ ∩ A1, we de�ne the p-norm of x for 1 ≤ p < ∞ as
follows :

‖x‖p = (tr(|x|p))

1

p ;

and for p = ∞

‖x‖∞ = ‖x‖,

where ‖.‖ denotes the operator norm and tr denotes the Markov type trace on B′ ∩
A1 as in Proposition 2.4.

Proposition 2.9 (Hölder’s Inequality). [22] For any x, y, z in B′ ∩ A1, we have
the following,
(i) |tr(xy)| ≤ ||x||p||y||q , where 1 ≤ p ≤ ∞ ,

1

p
+

1

q
= 1;

(ii) |tr(xyz)| ≤ ‖x‖p‖y‖q‖z‖r , where 1 ≤ p, q ≤ ∞ ,
1

p
+

1

q
+

1

r
= 1;

(iii) ‖xy‖r ≤ ‖x‖p‖y‖q , where 1 ≤ p, q, r ≤ ∞ ,
1

r
=

1

p
+

1

q
.

Proposition 2.10 ([22]). For any x in B′ ∩ A1 and 1 ≤ p < ∞, we have
‖x‖p = sup{|tr(xy)| ∶ y ∈ B′ ∩ A1, ‖y‖q ≤ 1},

where 1

p
+

1

q
= 1.

Proposition 2.11 ([15]). Letℳ be a �nite von Neumann algebra with a faithful
normal tracial state �. Suppose that T ∶ ℳ →ℳ is a linear map. If

‖Tx‖p1 ≤ K1‖x‖q1 and ‖Tx‖p2 ≤ K2‖x‖q2 ,

then for any � ∈ [0, 1],
‖Tx‖p� ≤ K1−�

1
K�
2
‖x‖q�

where 1

p�
=

1−�

p1
+

�

p2
and 1

q�
=

1−�

q1
+

�

q2
.

3. Revisit of non-commutative Fourier theory
Analogous to subfactor theory, in [1] the authors have provided a Fourier

theory using Watatani’s notions of index and C∗-basic construction of certain
inclusions of C∗-algebras. In this section we further investigate this Fourier
theory and its properties which we shall use in the sequel. Throughout this
section let B ⊂ A denote an inclusion of simple C∗-algebras with a conditional
expectation of �nite Watatani index.
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3.1. The Rotation maps. The Fourier transform of paragroups for a �nite
depth subfactor was �rst introduced by Ocneanu and as already mentioned
in the introduction, it plays a major role in the development of the subfactor
theory. More generally, for any extremal subfactor an explicit formula for the
Fourier transform on the higher relative commutants was given by Bisch in
(Def. 2.16, [3]) (see also [4] for many interesting results involving the Fourier
transforms). The subtle di�erence between the Fourier theory for C∗-inclusion
as in [1] and that of subfactor theory lies in the fact that, unlike for �nite factors,
we neither have a tracial state on the C∗-algebra to begin with nor the ‘modular
conjugation operator’.

De�nition 3.1. For each k ≥ 0, the Fourier transform ℱk ∶ B
′ ∩ Ak ⟶ A′ ∩

Ak+1 is de�ned by the following,

ℱk(x) = �k+2 E
B′∩Ak+1

A′∩Ak+1
(xek+1ek⋯e2e1) .

The inverse Fourier transform ℱ−1

k
∶ A′ ∩ Ak+1 ⟶ B′ ∩ Ak is de�ned by the

following,
ℱ−1

k
(y) = �k+2 Ek+1(ye1e2⋯ekek+1) .

The meaning of “inverse” in the preceding de�nition is justi�ed by the fact
that ℱk◦ℱ

−1

k
= idA′∩Ak+1 and ℱ

−1

k
◦ℱk = idB′∩Ak for all k ≥ 0 (Proposition

3.2 in [1]). In this paper, we will be mainly interested in the case of k = 1 and
hence for simplicity, we denote the Fourier transformℱ1 byℱ. Recall that both

ℱ and ℱ−1 are isometries with respect to the norm given by ‖x‖2 = (tr(x∗x))
1

2

(Theorem 3.5 in [1]).
We now revisit the rotation map de�ned in (De�nition 3.7 in [1]) and derive

a few more properties of it. Recall the rotation map �+ ∶ B′ ∩ A1 ⟶ B′ ∩ A1

de�ned by,
�+(x) = (ℱ−1((ℱ(x))∗))∗ .

It is known that �+ is a unital involutive ∗-preserving anti-automorphism (Re-
mark 3.11 and Theorem 3.16 in [1]), and hence ‖x‖∞ = ‖�+(x)‖∞. It is also
shown in [1] that if the inclusion B ⊂ A is irreducible, then �+ is tr-preserving.

Analogous to �+, we can de�ne a rotation operator �− ∶ A′∩A2 ⟶A′∩A2

by the following,
�−(w) = (ℱ((ℱ−1(w))∗))∗.

Lemma 3.2. Wehave �− = ℱ◦�+◦ℱ
−1. In other words, the diagram in Figure 1

commutes.

Proof : Since �+ is ∗-preserving, we have the following,

ℱ(x)∗ = ℱ◦�+(x
∗). (3.1)

Now again from the de�nition,

�−(ℱ(x)) = (ℱ(x∗))∗ = ℱ◦�+(x), (3.2)

where the last equality follows from Equation (3.1). Thus, �−◦ℱ = ℱ◦�+. 2



342 KESHAB CHANDRA BAKSHI, SATYAJIT GUIN AND SRUTHYMURALI

B′ ∩ A1 A′ ∩ A2

B′ ∩ A1 A′ ∩ A2

ℱ

�+ �−

ℱ

Figure 1. Relation between �+ and �−

Next we show that �− also satis�es properties similar to �+.

Proposition 3.3. The rotation operator �− is a unital involutive ∗-preserving
anti-automorphism.

Proof : First we show that �− is ∗-preserving. To see this, for any w ∈ A′ ∩ A2

we observe the following,

w∗ = (ℱ(ℱ−1(w)))∗

= ℱ◦�+((ℱ
−1(w))∗) (3.3)

using Equation (3.1). Applying ℱ−1 on both sides of the Equation (3.3) we get
the following,

ℱ−1(w∗)) = �+((ℱ
−1(w))∗). (3.4)

Now apply �+ on both sides of Equation (3.4) and use the fact that �2+ = id to
get the following,

(ℱ−1(w))∗ = �+◦ℱ
−1(w∗)

= ℱ−1◦�−(w
∗) (3.5)

using Lemma 3.2. Finally, apply ℱ on both sides of Equation (3.5) and use the
de�nition of �− to conclude that �− is ∗-preserving. The fact that �2− = id is an
easy consequence of �2+ = id and Lemma 3.2.

It remains to show that �− is a unital anti-homomorphism. If {�i ∶ i ∈ I} is
a quasi-basis for E0, then by Lemma 2.5 we obtain the following,

�−(w) = (ℱ((ℱ−1(w))∗))∗

= �3E
B′∩A2
A′∩A2

(e1e2ℱ
−1(w))

= �
∑

i

�ie1e2ℱ
−1(w)�∗

i

= �4
∑

i

�ie1e2E2(we1e2)�
∗
i
. (3.6)

Since, e1e2e1 = �−2e1 and E2(e2) = �−2, we have
�−(1) = �2

∑

i
�ie1E2(e2)�

∗
i
=

∑

i
�ie1�

∗
i
= 1.

This last equality follows from Equation (2.3). As �− is ∗-preserving, to show
that it is an anti-homomorphism, it is enough to show that, �−(w1)�−(w2)

∗ =
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�−(w
∗
2
w1), for any w1, w2 ∈ A′ ∩ A2. By Equation (3.6) and Lemma 2.3 we

�nally get the following,

�−(w1)�−(w2)
∗ = �8

∑

i,j

�ie1e2E2(w1e1e2)�
∗
i
�jE2(e2e1w

∗
2
)e2e1�

∗
j

= �6
∑

i,j

�ie1E1◦E2(w1e1�
∗
i
�je2e1w

∗
2
)e2e1�

∗
j

= �6
∑

i,j

�ie1E1◦E2(e1�
∗
i
�je2e1w

∗
2
w1)e2e1�

∗
j
(Lemma 3.11 in [14])

= �6
∑

i,j

�ie1E1
(
e1E2(�

∗
i
�je2e1w

∗
2
w1)

)
e2e1�

∗
j

= �4
∑

i,j

�ie1E2(�
∗
i
�je2e1w

∗
2
w1)e2e1�

∗
j
(by Lemma 2.3)

= �4
∑

i,j

�ie1�
∗
i
�jE2(e2e1w

∗
2
w1)e2e1�

∗
j

= �4
∑

j

�jE2(e2e1w
∗
2
w1)e2e1�

∗
j

= �−(w
∗
1
w2)

∗

= �−(w
∗
2
w1)

and this completes the proof. 2

Proposition 3.4. If B ⊂ A is irreducible, then �− is a tr-preserving map on A′ ∩

A2, where tr on A′ ∩ A2 is the restriction of tr on B′ ∩ A2.

Proof : Forw ∈ A′ ∩A2, there exists a unique x ∈ B′ ∩A1 such thatw = ℱ(x).
By Lemma 3.2, we have

tr(�−(w)) = tr(�−◦ℱ(x)) = tr(ℱ◦�+(x)) = �3 tr
(
E
B′∩A2
A′∩A2

(�+(x)e2e1)
)
.

Since EB
′∩A2

A′∩A2
is tr-preserving, we get by Proposition 2.4,

tr(�−(w)) = �3 tr(�+(x)e2e1) = � tr(e1�+(x)) = � tr(�+(xe1)) .

Here, the last equality follows from the fact that �+(e1) = e1 and �+ is an anti-
homomorphism. Since �+ is tr-preserving, we immediately obtain the follow-
ing,

tr(�+(xe1)) = tr((xe1)) = �2 tr(xe2e1) = �2 tr(E
B′∩A2
A′∩A2

(xe2e1))

= �−1tr(ℱ(x)) = �−1tr(w) .

Therefore, we have tr(�−(w)) = tr(w) as desired. 2

Corollary 3.5. Let 1 ≤ p ≤ ∞. For an irreducible inclusion B ⊂ A, we have
‖x‖p = ‖�+(x)‖p and ‖w‖p = ‖�−(w)‖p

for x ∈ B′ ∩ A1 and w ∈ A′ ∩ A2.
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Remark 3.6. Note that Corollary 3.5 need not be true for non-irreducible sim-
ple C∗-inclusions for p ≠ ∞. For extremal II1 factors, not necessarily irre-
ducible, an easy pictorial calculation shows that�+ (resp. �−) being tr-preserving
is equivalent to Figure 2, which in turn is equivalent to the sphericality, and
hence Corollary 3.5 holds.

x

*

=

*

x

Figure 2. tr(x) = tr◦�+(x)

3.2. Convolution. Using the Fourier transform, we can introduce a newmul-
tiplication structure on the relative commutant B′ ∩ A1 (resp. A′ ∩ A2), which
we call the convolution product. This is de�ned formally below.

De�nition 3.7. [1] The convolution product of two elements x and y in B′ ∩A1,
denoted by x ∗ y, is de�ned as

x ∗ y = ℱ−1
(
ℱ(y)ℱ(x)

)
.

Similarly, for any two elements w, z ∈ A′ ∩ A2 we de�ne
w ∗ z = ℱ

(
ℱ−1(z)ℱ−1(w)

)
.

Recall that (Lemma 3.20, [1]) the convolution * is associative. We now prove
that it is well behaved with the adjoint operation.

Proposition 3.8. For x, y ∈ B′∩A1, we have (x ∗ y)∗ = (x∗) ∗ (y∗). Similarly,
for w, z ∈ A′ ∩ A2, we have (w ∗ z)∗ = (w∗) ∗ (z∗).

Proof : Let x, y ∈ B′ ∩ A1. Using Proposition 3.3, Equations (3.5 , 3.1) and
Lemma 3.2 we observe the following,

(x ∗ y)∗ = (ℱ−1(ℱ(y)ℱ(x)))∗

= ℱ−1(�−((ℱ(y)ℱ(x))
∗))

= ℱ−1(�−((ℱ(x))
∗(ℱ(y))∗))

= ℱ−1(�−((ℱ(y))
∗)�−((ℱ(x))

∗))

= ℱ−1(�−◦ℱ◦�+(y
∗)�−◦ℱ◦�+(x

∗))

= ℱ−1(ℱ(y∗)ℱ(x∗))

= x∗ ∗ y∗,

which proves the �rst assertion, and the second assertion follows similarly. 2
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We �nally show that �+ and �− are anti-multiplicative with respect to the
convolution.

Proposition 3.9. For x, y ∈ B′ ∩ A1, we have �+(x ∗ y) = �+(y) ∗ �+(x).
Similarly, for w, z ∈ A′ ∩ A2 one has �−(w ∗ z) = �−(z) ∗ �+(w).

Proof : Observe that by Equations (3.2 , 3.4) and Proposition 3.8, we get

�+(y) ∗ �+(x) = ℱ−1(ℱ◦�+(x)ℱ◦�+(y))

= ℱ−1((ℱ(x∗))∗(ℱ(y∗))∗)

= ℱ−1((ℱ(y∗)ℱ(x∗))∗)

= �+((ℱ
−1((ℱ(y∗)ℱ(x∗))∗)

= �+((x
∗ ∗ y∗)∗)

= �+(x ∗ y) ,

proving that �+ is anti-multiplicative. A similar computation proves the result
for �−. 2

4. Fourier-theoretic inequalities
In this section we prove the Hausdor�-Young inequality and Young’s in-

equality for inclusion B ⊂ A of simple C∗-algebras which is not necessarily
irreducible. We also provide various uncertainty principles on the second rel-
ative commutant of such an inclusion. In the non-commutative world, these
Fourier-theoretic inequalities were �rst established in [8] for a �nite index ir-
reducible subfactor. We prove the non-commutative version of these inequali-
ties for inclusion of simple C∗-algebras with a conditional expectation of index-
�nite type by �nding the correct constants.

Notation: To avoid notational di�culty, for x ∈ B′ ∩ A1 and w ∈ A′ ∩ A2,
we denote �+(x) and �−(w) by x and w respectively. In the case of inclusion of
extremal II1 factors, �+ coincides with the 2-click rotation in the anti-clockwise
direction, and hence it is consistent with the notations in [8].

De�ne

�+
0
= min

{
tr(p) ∶ p ∈ P(B′ ∩ A)

}
,

�−
0
= min

{
tr(q) ∶ q ∈ P(A′ ∩ A1)

}

and

�0 =

√

�+
0
�−
0
.

Recall that, � =
√
[A ∶ B]0.



346 KESHAB CHANDRA BAKSHI, SATYAJIT GUIN AND SRUTHYMURALI

4.1. Hausdor�-Young inequality. Goal of this subsection is to prove the fol-
lowing non-commutative analogue of the classical Hausdor�-Young inequality
for inclusion of simple C∗-algebras B ⊂ A with a conditional expectation of
index-�nite type.

Theorem4.1 (Hausdor�-Young inequality). LetB ⊂ A be an inclusion of simple
C∗-algebras with a conditional expectation of index-�nite type. For any x ∈ B′ ∩

A1,

‖x‖q ≤ ‖ℱ(x)‖p ≤
( �

�0

)1− 2

p
‖x‖q

where, 2 ≤ p ≤ ∞ and 1

p
+

1

q
= 1.

The main point is Proposition 4.6 which is instrumental in proving Theo-
rem 4.1. To begin with, we prove a few useful lemmas.

Lemma 4.2. For x ∈ B′ ∩ A1, we haveℱ(x)ℱ(x)
∗
= �2 E

B′∩A2
A′∩A2

(xe2x
∗).

Proof : Let {�1,⋯ , �n} ⊂ A be a quasi-basis for the minimal conditional ex-
pectation E0. Using Lemma 2.5, we observe that for x ∈ B′ ∩ A1 the following
holds :

ℱ(x)ℱ(x)
∗
= �6 E

B′∩A2
A′∩A2

(xe2e1)E
B′∩A2
A′∩A2

(e1e2x
∗)

= �6 E
B′∩A2
A′∩A2

(
xe2e1E

B′∩A2
A′∩A2

(e1e2x
∗)
)

= �4 E
B′∩A2
A′∩A2

(∑

i

xe2e1�ie1e2x
∗�∗

i

)

= �4 E
B′∩A2
A′∩A2

(∑

i

xE1(E0(�i)e1)e2x
∗�∗

i

)

= �2 E
B′∩A2
A′∩A2

(∑

i

xE0(�i)e2x
∗�∗

i

)

= �2 E
B′∩A2
A′∩A2

(
xe2x

∗
(∑

i

E0(�i)�
∗
i

))

= �2 E
B′∩A2
A′∩A2

(xe2x
∗)

which completes the proof. 2

Recall the following well-known result from the basic von Neumann algebra
theory (see item 2.17 in [20], for instance).

Lemma 4.3. If 0 ≤ a ≤ 1 and p is a projection, then 0 ≤ a ≤ p if and only if
a = ap.

Lemma 4.4. Suppose that � ∈ B′ ∩ A1 is a non-zero partial isometry. Then, we
have the following.

(i) E1(�
∗�) ≤

1

�+
0

‖�‖
1
.
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(ii) E
B′∩A1
A′∩A1

(��∗) ≤
1

�−
0

‖�‖
1
.

Proof : First note that p = �∗� is a projection in B′ ∩ A1 and so,

‖�‖1 = tr|�| = tr((�∗�)
1

2 ) = tr(�∗�).

Take minimal projections {ek}k ⊂ B′ ∩ A such that
∑

k
ek = 1. Thus, there are

scalars �k ≥ 0 such that E1(�∗�) =
∑

k
�kek. It follows that

tr(�∗�) =
∑

k
�ktr(ek) ≥ �+

0

∑

k
�k ≥ �+

0

∑

k
�kek = �+

0
E1(�

∗�).

This completes the proof for the �rst part. The proof for the other part is similar
and we omit it. 2

Lemma 4.5. Suppose that � ∈ B′ ∩ A1 is a non-zero partial isometry. Then, we
have

�e2�
∗ ≤

‖�‖
1

�+
0

��∗.

Proof : Let p = ��∗ be the range projection of �. Now, using Lemma 4.4 we get

�e2�
∗.�e2�

∗ = �E1(�
∗�)e2�

∗ ≤
‖�‖

1

�+
0

�e2�
∗.

After taking∞-norm on both sides of the above inequality we have

‖‖‖‖‖

�+
0

‖�‖
1

�e2�
∗
‖‖‖‖‖∞

≤ 1

and hence, 0 ≤ �+
0

‖�‖
1

�e2�
∗ ≤ 1. Since � is a partial isometry, we have

( �+
0

‖�‖1
�e2�

∗
)(
��∗

)
=

�+
0

‖�‖1
�e2�

∗.

Thus the proof follows by Lemma 4.3 with a = �+
0

‖�‖1
�e2�

∗ and p = ��∗. 2

Proposition 4.6. For x ∈ B′ ∩ A1, we have

‖x‖1 ≤ ‖ℱ(x)‖
∞
≤

�

�0
‖x‖

1
.

Proof : Note that by the Kadison-Schwarz inequality we have ‖x‖
1
≤ ‖x‖

2
,

and we also know that ‖x‖
2
≤ ‖x‖

∞
. Since ‖ℱ(x)‖2 = ‖x‖2 , it follows that

‖x‖1 ≤ ‖ℱ(x)‖
∞
. It remains to prove ‖ℱ(x)‖

∞
≤

�

�0
‖x‖

1
. We �rst prove the

inequality for a partial isometry and then appealing to rank-one decomposition
as depicted in [8] proves the result for a general x ∈ B′ ∩ A1. Let � be a partial
isometry in B′ ∩ A1. By Lemma 4.2 and Lemma 4.5 we have the following,

ℱ(�)ℱ(�)
∗
= �2 E

B′∩A2
A′∩A2

(�e2�
∗) ≤

‖�‖
1

�+
0

�2E
B′∩A1
A′∩A1

(��∗) .
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Now, using Lemma 4.4(ii), we obtain the following,

ℱ(�)ℱ(�)
∗
≤
�2

�2
0

‖�‖
2

1
.

Applying ‖ . ‖∞ on both sides and taking square root �nishes the proof for �.
For an arbitrary x ∈ B′ ∩ A1, let x =

∑

k
�k�k be the rank- one decomposition

of x. Then, ‖x‖1 =
∑

k
�k‖�k‖1 and hence we have the following,

‖ℱ(x)‖∞ ≤
∑

k

�k‖ℱ(�k)‖∞ ≤
�

�0

∑

k

�k‖�k‖1 =
�

�0
‖x‖1 ,

and this completes the proof. 2

Proof of Theorem 4.1: Using Proposition 4.6 and the fact that ℱ and ℱ−1

both are isometries with respect to the norm given by ‖x‖2 = (tr(x∗x))
1

2 , we
have the following,

‖ℱ(x)‖
∞
≤

�

�0
‖x‖

1
and ‖ℱ(x)‖

2
= ‖x‖

2
.

The proof of the inequality ‖ℱ(x)‖p ≤ (
�

�0
)

1−
2

p

‖x‖q is now clear from Propo-

sition 2.11 with p1 = ∞, q1 = 1, p2 = 2, q2 = 2, K1 =
�

�0
, K2 = 1 and � = 2

p
.

The proof of ‖x‖q ≤ ‖ℱ(x)‖p is similar. 2

As a corollary of Theorem 4.1, we obtain the following Hausdor�-Young in-
equality for a �nite index subfactor not necessarily irreducible and in particular,
in the extremal case we recover the result in (Theorem 7.3, [8]).

Corollary 4.7. Let N ⊂ M be a subfactor with �nite Jones index. Then, for any
x ∈ N′ ∩M1,

‖x‖q ≤ ‖ℱ(x)‖p ≤ (

√
[M ∶ N]0

�0
)

1−
2

p

‖x‖q,

where, 2 ≤ p ≤ ∞ and 1

p
+

1

q
= 1.

4.2. Non-commutativeuncertaintyprinciples. Motivated by [8], we prove
the Donoho-Stark uncertainty principle and Hirschman-Beckner uncertainty
principle for inclusion of simple C∗-algebras B ⊂ Awith a conditional expecta-
tion of index-�nite type. Our proofs are essentially applications of Section 4.1
and marginal modi�cation of the proofs in [8] with revised constants.

Recall that for x ∈ B′ ∩ A1, the range projection x is the smallest projection
l(x) ∈ B′ ∩ A1 such that l(x)x = x. Now if x =

∑

j
�j�j is the rank-one

decomposition of x, then it is easy to see the following,

l(x) =
∑

j

�j�
∗
j
. (4.1)
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For x ∈ B′ ∩ A1, we denote S(x) = tr(l(x)).

Theorem 4.8 (Donoho-Stark uncertainty principle). Consider an inclusion of
simple C∗-algebras B ⊂ A with a conditional expectation of index-�nite type. For
any non zero x ∈ B′ ∩ A1, we have

S(x)S(ℱ(x)) ≥
�2
0

[A ∶ B]0
.

In particular, if N ⊂ M is a subfactor with �nite Jones index, then for any non
zero x ∈ N′ ∩M1 we have

S(x)S(ℱ(x)) ≥
�2
0

[M ∶ N]0
.

Proof : The proof is inspired by the proof of Theorem 5.2 in [8]. Let x ∈ B′∩A1

and ℱ(x) =
∑

j
�j�j be the rank one decomposition of ℱ(x). It is easy to see

that S(ℱ(x)) =
∑

j
‖�j‖1. By Proposition 2.9 and Proposition 4.6 we have the

following,

sup
j

�j = ‖ℱ(x)‖∞ ≤
�

�0
‖x‖1

=
�

�0
‖l(x)x‖1

=
�

�0
‖x‖2‖l(x)‖2

=
�

�0
‖ℱ(x)‖2‖l(x)‖2

=
�

�0
‖ℱ(x)‖2(S(x))

1

2 . (4.2)

It is clear from the rank one decomposition ofℱ(x) that ‖ℱ(x)‖2 = (
∑

j
�2
j
‖�j‖1)

1

2 .
Hence, Equation (4.2) becomes,

sup
j

�j ≤
�

�0

(∑

j

�2
j
‖�j‖1

) 1

2 (S(x))
1

2

≤
�

�0
(sup

j

�j)
(∑

j

‖�j‖1
) 1

2 (S(x))
1

2

=
�

�0
(sup

j

�j)(S(ℱ(x)))
1

2 (S(x))
1

2

which completes the proof. 2

Consider the continuous function � ∶ [0,∞)⟶ ℝ de�ned by

�(t) = {
−t log t if t > 0,

0 if t = 0.
(4.3)
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De�nition 4.9 (von Neumann entropy). For x ∈ B′ ∩ A1, the von Neumann
entropy of |x|2 is de�ned by the following,

H(|x|2) = tr(�(|x|2)).

Theorem 4.10 (Hirschman-Beckner uncertainty principle). Let B ⊂ A be an
inclusion of simpleC∗-algebras with a conditional expectation of index-�nite type.
For any x ∈ B′ ∩ A1,

1

2

(
H(|ℱ(x)|2) + H(|x|2)

)
≥ −‖x‖2

2

(
log (

�

�0
) + log ‖x‖2

2

)
.

In particular, if ‖x‖2 = 1, then we have
1

2

(
H(|ℱ(x)|2) + H(|x|2)

)
≥ − log (

�

�0
) .

Proof : The proof is a consequence of Theorem 4.1 and the standard argument
as in Theorem 5.5 in [8]. However, we sketch the proof for completeness. Let
0 ≠ x ∈ B′ ∩ A1 so that ℱ(x) ≠ 0. By Theorem 4.1 we have the following,

‖ℱ(x)‖p ≤
( �

�0

)1− 2

p
‖x‖q (4.4)

where, 2 ≤ p ≤ ∞ and 1

p
+

1

q
= 1. Consider the following function,

f(p) = log ‖ℱ(x)‖p − log ‖x‖q − log (
�

�0
)

1−
2

p

.

By Equation (4.4), we have f(p) ≤ 0. Now, since ℱ is an isometry with respect
to ‖.‖2, we have f(2) = 0 and hence f′(2) ≤ 0. Hence, we obtain

d
dp

|||||p=2

(
‖ℱ(x)‖

p
p

)
= −

1

2
H
(
|ℱ(x)|2

)

and
d
dp

|||||p=2

(
log ‖ℱ(x)‖p

)
= −

1

4
log ‖ℱ(x)‖2

2
−
H(|ℱ(x)|2)

4‖ℱ(x)‖2
2

.

Similarly,
d
dp

|||||p=2

(
log ‖x‖q

)
=
1

4
log ‖x‖2

2
+
H(|x|2)

4‖x‖2
2

and
d
dp

|||||p=2

(
log (

�

�0
)

1−
2

p
)
=
1

2
log (

�

�0
) .

Now, the above equations together with the facts f′(2) ≤ 0 and ‖ℱ(x)‖2 = ‖x‖2
implies the following,

−
1

4
log ‖x‖2

2
−
1

4

H(|ℱ(x)|2)

‖ℱ(x)‖2
2

−
1

4
log ‖x‖2

2
−
1

4

H(|x|2)

‖x‖2
2

−
1

2
log

�

�0
≤ 0. (4.5)

A rearrangement of Equation (4.5) completes the proof. 2



FOURIER-THEORETIC INEQUALITIES FOR INCLUSIONS OF SIMPLE C∗-ALGEBRAS 351

Corollary 4.11. LetN ⊂ M be a subfactor with �nite Jones index. Then, for any
x ∈ N′ ∩M1 we have

1

2

(
H(|ℱ(x)|2) + H(|x|2)

)
≥ −‖x‖2

2

(
log (

√
[M ∶ N]

0

�0
) + log ‖x‖2

2

)
.

In particular, if ‖x‖2 = 1, then we have

1

2

(
H(|ℱ(x)|2) + H(|x|2)

)
≥ − log (

√
[M ∶ N]

0

�0
) .

4.3. Young’s inequality. Goal of this subsection is to prove the Young’s in-
equality. Throughout this subsection we �x an (not necessarily irreducible)
inclusion of simple C∗-algebras B ⊂ A with a conditional expectation of �nite
Watatani index.

Theorem 4.12 (Young’s Inequality). Suppose B ⊂ A is an inclusion of sim-
ple C∗-algebras with a conditional expectation of index-�nite type. Then, for any
x, y ∈ B′ ∩ A1, we have

‖x ∗ y‖r ≤
�

�+
0

(
‖y‖1

‖y‖1
)

1

r

‖x‖p‖y‖q

where, 1 ≤ p, q, r ≤ ∞ and 1

p
+

1

q
=

1

r
+ 1.

As a corollary, we prove Young’s inequality for a subfactor which is not nec-
essarily extremal. Recall that, a subfactor is extremal if and only if [M ∶ N] =

[M ∶ N]0 and furthermore, in the extremal case for any y ∈ N′ ∩ M1 we have
‖y‖

1
= ‖y‖

1
(see Remark 3.6). We would like to mention that in the extremal

case we recover the following Young’s inequality for spherical planar algebras
as in (Theorem 7.6, [8]).

Corollary 4.13 ([8]). If N ⊂ M is an extremal subfactor with [M ∶ N] < ∞,
then for any x, y ∈ N′ ∩M1 we have

‖x ∗ y‖r ≤

√
[M ∶ N]

�+
0

‖x‖p‖y‖q

where, 1 ≤ p, q, r ≤ ∞ and 1

p
+

1

q
=

1

r
+ 1.

To prove Theorem 4.12 we start with proving a few results involving the
Fourier transform ℱ which will be crucially used.

Lemma 4.14. For x ∈ B′ ∩ A1, we haveℱ(x)e1ℱ(x)∗ = xe2x
∗.

Proof : Let {�i ∶ i ∈ I} be a quasi-basis for E0 . Using Lemma 2.5 we observe
the following,

ℱ(x)e1ℱ(x)
∗ = �6 E

B′∩A2
A′∩A2

(xe2e1)e1E
B′∩A2
A′∩A2

(e1e2x
∗)
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= �2
∑

i,j

�ixe2e1�
∗
i
e1�je1e2x

∗�∗
j

= �2
∑

i,j

�ixE0(�
∗
i
)E0(�j)e2e1e2x

∗�∗
j

=
∑

j

(∑

i

�iE0(�
∗
i
)
)
E0(�j)xe2x

∗�∗
j

=
∑

j

E0(�j)xe2x
∗�∗

j

= xe2x
∗
(∑

j

E0(�j)�
∗
j

)

= xe2x
∗

which �nishes the proof. 2

Lemma 4.15. For x, y ∈ B′ ∩ A1, we have

E2
(
ℱ(x)yℱ(x)∗

)
=
1

�

(
y ∗ (xx∗)

)
.

Proof : Let {�i ∶ i ∈ I} be a quasi-basis for E0. Using Lemma 2.5 we observe
the following,

E2(ℱ(x)yℱ(x)
∗) = �6 E2

(
E
B′∩A2
A′∩A2

(xe2e1)yE
B′∩A2
A′∩A2

(e1e2x
∗)
)

= �2
∑

i,j

E2(�ixe2e1�
∗
i
y�je1e2x

∗�∗
j
)

=
∑

i,j

�ixE1(e1�
∗
i
y�je1)x

∗�∗
j
. (4.6)

Since y ∈ B′ ∩ A1, we can write y = y0e1y1 for some y0, y1 ∈ A. Then, from
Equation (4.6) and again using Lemma 2.5, we have the following,

E2(ℱ(x)yℱ(x)
∗) =

∑

i,j

�ixE1(e1�
∗
i
y0e1y1�je1)x

∗�∗
j

=
∑

i,j

�iE0(�
∗
i
y0)xx

∗E1(e1)E0(y1�j)�
∗
j

=
∑

i

�ixx
∗E1(E0(�

∗
i
y0)e1y1)

=
∑

i

�ixx
∗E1(e1�

∗
i
y)

=
∑

i,j

�ixx
∗E1(e1�

∗
i
�jE0(�

∗
j
)y)

= �2
∑

i,j

�ixx
∗E1(e1�

∗
i
�jy)E0(�

∗
j
)E2(e2)

= �4
∑

i,j

E2(�ixx
∗E1(e1�

∗
i
�jy)e2E0(�

∗
j
)e1e2)
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= �4
∑

i,j

E2(�ixx
∗e2e1�

∗
i
�jye2e1�

∗
j
e1e2)

= �8 E2(E
B′∩A2
A′∩A2

(xx∗e2e1)E
B′∩A2
A′∩A2

(ye2e1)e1e2)

=
1

�
ℱ−1(ℱ(xx∗)ℱ(y))

=
1

�
y ∗ (xx∗)

which completes the proof. 2

As a corollary, we prove the following Schur product theorem. In the planar
algebraic language this was �rst noticed by Liu (Theorem 4.1 in [16]).

Corollary 4.16. (Schur product theorem) Ifx, y ∈ B′∩A1 are positive, thenx ∗ y
is positive.

Proof : Let x = aa∗, y = bb∗ for some a, b ∈ B′ ∩ A1. Then, by Lemma 4.15
and in view of the fact that E2 is a positive map it is now easy to see that x ∗ y
is positive. Indeed,

x ∗ y = (aa∗) ∗ (bb∗) = � E2
(
ℱ(b)aa∗ℱ(b)

)

= � E2
(
ℱ(b)a(ℱ(b)a)∗

)

≥ 0 .

2

Remark 4.17. We would like to remark that as a consequence of Lemma 4.15,
we can prove that the ‘coproduct’ on B′ ∩ A1 is well behaved with adjoints.
However, at present we are not sure whether these two notions are equivalent.
To see this, it is enough to take x, y ∈ B′∩A1 such that y ≥ 0. We write y = bb∗

for some b ∈ B′ ∩ A1. Then by Lemma 4.15 and since E2 is ∗ - preserving, we
have:

(x ∗ y)∗ = (x ∗ (bb∗))∗

= �−1E2(ℱ(b)xℱ(b)
∗)∗

= �−1E2(ℱ(b)x
∗f(b)∗)

= (x∗ ∗ (bb∗))

= (x∗ ∗ y∗).

Next we prove a Frobenius reciprocity type result as follows.

Corollary 4.18. For x, y, z ∈ B′ ∩ A1, we have

tr((x ∗ y)z) = tr(x(z ∗ y)

Proof : First we claim that tr◦E2 = tr2, where tr2 is the Markov type trace on
B′ ∩ A2 (see Proposition 2.4). Observe the following for x ∈ B′ ∩ A2 :

tr1◦E2(x) = E0◦E1|B′∩A1(E2(x))
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= E0◦E1◦E2|B′∩A2(x)

= tr2(x)

which �nishes the proof of the claim.
Recall that by Equation (3.1), we have (ℱ(x))∗ = ℱ

(
x∗

)
. Now to prove the

statement, assume that y is positive so that y = bb∗ for some b ∈ B′∩A1. Then,
by Lemma 4.15 we have the following,

tr(x ∗ y)z) = tr((x ∗ (bb∗))z)

= � tr(E2(ℱ(b)xℱ(b)
∗z)

= � tr2(ℱ(b)xℱ(b)
∗z)

= � tr2(xℱ(b)
∗zℱ(b))

= � tr(xE2(ℱ(b
∗)z(ℱ(b∗))∗))

= tr(x(z ∗ (b∗(b∗)∗)))

= tr(x(z ∗ y))

where, the last equation follows from Proposition 3.3. 2

The following lemma is crucial in proving the Young’s inequality.

Lemma 4.19. For any x, y ∈ B′ ∩ A1, we have

‖x ∗ y‖∞ ≤
�

�+
0

‖x‖∞‖y‖1 and ‖y ∗ x‖∞ ≤
�

�+
0

‖x‖∞‖y‖1 .

Proof : First we prove that for w ∈ A′ ∩ A2 we have the following,

ℱ−1(w)ℱ−1(w)
∗
= �2 E2(we1w

∗) . (4.7)

To see this, using Lemma 2.3 we observe the following,

ℱ−1(w)ℱ−1(w)
∗
= �6 E2(we1e2)E2(e2e1w

∗)

= �6 E2(we1e2E2(e2e1w
∗))

= �4 E2(we1e2e1w
∗)

= �2 E2(we1w
∗) .

Next, suppose � ∈ B′∩A1 is a partial isometry. For x ∈ B′∩A1, using Equation
(4.7) we observe the following,

(� ∗ x)(� ∗ x)∗ = ℱ−1(ℱ(x)ℱ(�))(ℱ−1(ℱ(x)ℱ(�)))∗

= �2 E2(ℱ(x)ℱ(�)e1(ℱ(�))
∗(ℱ(x))∗)

= �2 E2(ℱ(x)�e2�
∗ℱ(x)∗) .
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Now, by Lemma 4.5 we have �e2�∗ ≤
‖�‖1

�+
0

��∗. Then, using Lemma 4.15, we

observe that

(� ∗ x)(� ∗ x)∗ ≤ �2
‖�‖1

�+
0

E2(ℱ(x)��
∗ℱ(x)∗)

= �
‖�‖1

�+
0

(��∗) ∗ (xx∗)

≤ �
‖�‖1

�+
0

‖x‖
2

∞
(��∗) ∗ 1. (4.8)

On the other hand, we note that

(��∗) ∗ 1 = ℱ−1(ℱ(1)ℱ(��∗))

= �3E2(ℱ(1)ℱ(��
∗)e1e2)

= �4E2(e2ℱ(��
∗)e1e2)

= �7E2(E
B′∩A2
A′∩A2

(e2��
∗e2e1)e1e2)

= �7E2(E
B′∩A2
A′∩A2

(E1(��
∗)e2e1)e1e2) . (4.9)

Now, using Corollary 2.6, Lemma 4.4 and Equation (4.9) we conclude that

(��∗) ∗ 1 ≤
�

�+
0

‖�‖
1
.

Therefore, from Equation (4.8) it follows that

(� ∗ x)(� ∗ x)∗ ≤ (
�

�0
+
)

2

‖�‖
2

1
‖x‖

2

∞
.

Thus we obtain,

‖� ∗ x‖∞ ≤
�

�+
0

‖�‖1 ‖x‖∞ . (4.10)

Now, let y ∈ B′ ∩A1 be arbitrary and y =
∑

k
�k�k be the rank one decomposi-

tion of y. Then, by Equation (4.10) we have the following,

‖y ∗ x‖∞ ≤
∑

k

�k ‖� ∗ x‖∞

≤
�

�+
0

∑

k

�k ‖�‖1 ‖x‖∞

=
�

�+
0

‖x‖∞ ‖y‖1,

and by Proposition 3.9 we have the following,

‖x ∗ y‖∞ = ‖x ∗ y‖∞ = ‖y ∗ x‖∞
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≤
�

�+
0

‖x‖∞ ‖y‖1

=
�

�+
0

‖x‖∞ ‖y‖1 .

Here ‖x‖∞ = ‖x‖∞, since the map �+ is a unital anti-homomorphsim. This
completes the proof. 2

Lemma 4.20. For any x, y ∈ B′ ∩ A1, we have

‖x ∗ y‖1 ≤
�

�+
0

‖x‖1‖y‖1 .

Proof : For any x, y ∈ B′ ∩ A1, using Proposition 2.10, Corollary 4.18, Proposi-
tion 2.9 and Lemma 4.19 respectively, we get the following,

‖x ∗ y‖1 = sup
‖z‖∞=1

|tr((x ∗ y)z)| = sup
‖z‖∞=1

|tr(x(z ∗ y))|

≤ ‖x‖1‖z ∗ y‖∞

≤
�

�+
0

‖x‖1‖y‖1

=
�

�+
0

‖x‖1‖y‖1 .

2

Lemma 4.21. For any x, y ∈ B′ ∩ A1, we have

‖x ∗ y‖p ≤
�

�+
0

(
‖y‖1

‖y‖1
)

1

p

‖x‖p‖y‖1 and ‖y ∗ x‖p ≤
�

�+
0

‖x‖p‖y‖1

where 1 ≤ p ≤ ∞.

Proof : For �xed y ∈ B′ ∩ A1, de�ne Ty ∶ B′ ∩ A1 ⟶B′ ∩ A1 by
Ty(x) = x ∗ y.

Clearly Ty is linear. Now, Lemma 4.19 and Lemma 4.20 respectively implies
the following,

‖Ty(x)‖∞ = ‖x ∗ y‖∞ ≤
�

�+
0

‖x‖∞‖y‖1 ,

and

‖Ty(x)‖1 = ‖x ∗ y‖1 ≤
�

�+
0

‖x‖1‖y‖1 .

Applying Proposition 2.11 with p1 = ∞, p2 = 1, q1 = ∞, q2 = 1, � =
1

p
,

K1 =
�

�+
0

‖y‖1 and K2 =
�

�+
0

‖y‖1 we get the �rst part. For the second part, for
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�xed y we de�ne Ty(x) = y ∗ x. Then, a similar proof as above implies the
result. 2

Lemma 4.22. For any x, y ∈ B′ ∩ A1, we have

‖x ∗ y‖∞ ≤
�

�+
0

‖x‖p‖y‖q

where 1 ≤ p ≤ ∞ and 1

p
+

1

q
= 1.

Proof : Let x ∗ y =
∑

k
�k�k be the rank-one decomposition of x ∗ y. Then,

‖x ∗ y‖∞ = sup
k

�k = sup
k

tr((x ∗ y)v∗
k
)

tr(|vk|)
. (4.11)

Using Corollary 4.18, Proposition 2.9 and Lemma 4.21 respectively we see that

|tr((x ∗ y)v∗
k
)| = |tr(x(�∗

k
∗ y))

≤ ‖x‖p‖�
∗

k
∗ y‖q

≤
�

�+
0

‖x‖p‖y‖q‖�
∗

k
‖1

≤
�

�+
0

‖x‖p‖y‖q tr(|�
∗

k
|) . (4.12)

The proof is now clear from Equations (4.11 and 4.12). 2

Proof of Theorem 4.12 : Fix x ∈ B′∩A1 and de�ne Tx ∶ B′∩A1 → B′∩A1

by Tx(y) = x ∗ y. For x, y ∈ B′ ∩ A1, thanks to Lemma 4.21 and Lemma 4.22,
we have the following,

‖Tx(y)‖p = ‖x ∗ y‖p ≤
�

�+
0

‖x‖p‖y‖1
−
1

p ‖y‖

1

p

1
‖y‖1

and

‖Tx(y)‖∞ = ‖x ∗ y‖∞ ≤
�

�+
0

‖x‖p‖y‖ 1

1

q
−
1

r

.

The proof is now clear by the Proposition 2.11 with p1 = p, p2 = ∞, q1 = 1,

q2 =
1

1

q
−

1

r

, K1 =
�

�+
0

‖x‖p‖y‖
−
1

p

1
‖y‖

1

p

1
, K2 =

�

�+
0

‖x‖p and � = 1 −
p

r
. 2

Remark 4.23. We remark that ifB ⊂ A is an irreducible inclusion of simpleC∗-
algebras with a conditional expectation of index-�nite type, then the quadruple
(B′∩A1, tr, ∗, �+) forms a Frobenius �-algebra. We refer the reader to [7] for the
de�nition of a Frobenius k-algebra. We also send the reader to [6] for related
notions.
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5. Appendix
In this appendix, we discuss two examples to illustrate our results. We skip

the proofs as they are routine veri�cation. In order to investigate theory con-
cerning Fourier transform for inclusion of simple C∗-algebras, these two exam-
ples can be considered as model examples to test new theories.

5.1. Fourier transform for noncommutative torus. Let � be an irrational
number and consider the universal C∗-algebra A�, called the noncommutative
torus, generated by two unitary elements U and V satisfying UV = e−2�i�VU.
It has a unital dense subalgebra T� given by the following,

T� ∶=
{
a =

∑

m,n∈ℤ

am,nU
mVn ∶ {am,n} ∈ S(ℤ2)

}
,

whereS(ℤ2) is the space of rapidly decreasing double sequences. TheC∗-algebra
A� is equipped with a distinguished faithful tracial state, given on the dense
subalgebra T� by �(a) = a0,0 and extends to A� by continuity. We refer to
(Chapter 6, Section 3 in [5]) for these facts. Moreover,A� is a simpleC∗-algebra
since � is irrational.

Let k ≥ 2 be any natural number. Let us consider the unital C∗-subalgebra
ℬ� of A� generated by Uk and V. By the universality and simplicity of Ak�,
it follows that ℬ� is canonically isomorphic to Ak�. Assume further that � is
not an algebraic number of degree 2. Then, the Watatani index [A� ∶ ℬ�]0 is
equal to k (Page 112 in [21]). Observe that ℬ� is nothing but the �xed point
subalgebra of A� under the ℤk action given bym.U = e2�im∕kU andm.V = V

for all m ∈ ℤk. This says that the inclusion ℬ� ⊂ A� is in fact A
ℤk

�
⊂ A�,

and hence the basic construction is A� ⋊ℤk. Since ℤk is abelian, it then turns
out that the Fourier transform ℱ simply becomes the Fourier transform from
the group algebra ℂℤk onto ℂℤ̂k ≅ ℂℤk, and hence given by the k × k Fourier
matrix.

However, in this example one can take the pedestrian way to �nd the explicit
form of the Fourier transform and the rotation maps without invoking any re-
sult involving the crossed product. Observe that (see Proposition (2.2.11, 2.2.12)
in [21]) we may use the GNS construction to realize the C∗-basic construction
in this case. We only mention the intermediate steps and leave the detail to the
interested reader for veri�cation. For notational simplicity, we denote ℬ ⊂ A

to mean the inclusion ℬ� ⊂ A�. The GNS Hilbert space L2(A�, �) is isomor-
phic to l2(ℤ2) via the identi�cation UmVn ⟼em,n. De�ne k-many mutually
orthogonal projections pr ∈ B

(
l2(ℤ2)

)
, 0 ≤ r ≤ k − 1, by pr ∶ em,n ↦ em,n

if m ∈ kℤ + r and 0 otherwise. Considering the unital C∗-subalgebra A1 of
B

(
l2(ℤ2)

)
generated byU,V andp0 (here �(p0) = 1∕k) one gets the basic con-

struction ℬ ⊂ A ⊂ A1. Using the decomposition A1 =
⨁k−1

r=0
prA� as inner-

product space, the GNS Hilbert space L2(A1, �) is isomorphic to ℂk ⊗ l2(ℤ2)

by the following map,
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p0U
m0Vn0 ⊕……⊕ pk−1U

mk−1Vnk−1 ⟼
1

√
k
(em0,n0

, … , emk−1,nk−1
) .

The following orthogonal projection q ∶ ℂk ⊗ l2(ℤ2)⟶ ℂk ⊗ l2(ℤ2)

q ∶ (em0,n0
, … , emk−1,nk−1

)⟼
1

k

(∑k−1

r=0
emr ,nr

, … ,
∑k−1

r=0
emr ,nr

)

has rangel2(ℤ2) ≅ L2(A, �), andwe obtain the basic construction tower of sim-
pleC∗-algebrasℬ ⊂ A ⊂p A1 ⊂

q A2, whereA2 = C∗{A1, q} ⊆ B
(
ℂk ⊗ l2(ℤ2)

)
=

Mk(ℂ)⊗B
(
l2(ℤ2)

)
. It follows thatA2 = Mk(ℂ)⊗A�. For a subset S ⊆ Mk(ℂ),

we denote by Alg{S} the subalgebra generated by S and S∗ = {x∗ ∶ x ∈ S}

inMk(ℂ). Let Ck denote the permutation matrix E1,k +
∑k−1

i=1
Ei+1,i inMk(ℂ).

Then,ℬ′ ∩A1 = Alg{p0, … , pk−1} ⊗ℂ andA′ ∩A2 = Alg{Ik, Ck, … , Ck−1k
} ⊗ℂ

are subalgebras of Mk(ℂ) ⊗ B
(
l2(ℤ2)

)
. The Fourier and the inverse Fourier

transform are given by the following maps,

ℱ ∶

k−1∑

r=0

�rpr ⟼
1

√
k

k−1∑

r=0

�rC
r

k
,

and

ℱ−1 ∶

k−1∑

r=0


rC
r

k
⟼

√
k

k−1∑

r=0


rpr,

where �r, 
r ∈ ℂ. Let us consider the following multiplication on ℂk,

(�0, … , �k−1) ∗ (�0, … , �k−1) ∶= (
0, … , 
k−1) (5.13)

where 
j =
∑k−1

r=0
�r�k+j−r for 0 ≤ j ≤ k−1, with the convention �k+j = �j for

all j. Then, Alg{Ik, Ck, … , Ck−1k
} ≅ (ℂk, ∗) as unital algebras and the following

map

Φ ∶ (�0, … , �k−1)⟼
1

√
k

( k−1∑

r=0

�r,

k−1∑

r=0

!r�r,

k−1∑

r=0

!2r�r, … ,

k−1∑

r=0

!(k−1)r�r

)
,

where ! = e2�i∕k is a primitive k-th root of unity, implements a unital alge-
bra isomorphism between (ℂk, ∗) and ℂk equipped with the standard algebra
structure. It now follows that Φ◦ℱ ∶ ℂk → ℂk is equal to the Fourier matrix.
Moreover, the rotation maps �+, �− are given by the following,

�+ ∶
∑k−1

r=0
�rpr ⟼

∑k

r=1
�k−rpr and �− ∶

∑k−1

r=0

rC

r

k
⟼

∑k

r=1

k−rC

r

k
,

with the convention pk = p0. Therefore, as an element ofMk(ℂ), both �+ and
Φ◦�−◦Φ

−1 are equal to the k × k permutation matrix E11 +
∑k

j=2
Ej,k+2−j in

Mk(ℂ). It turns out that the convolution product on Alg{p0, … , pk−1} ≅ ℂk is
the product ∗ de�ned in Equation (5.13), and that on Alg{Ik, Ck, … , Ck−1k

} ≅

(ℂk, ∗) is the usual componentwise multiplication on ℂk.
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5.2. Fourier transform for matrix algebras. Let us consider the inclusion
ℂ ⊂ Mn(ℂ). It is well known that the (standard normalized) trace-preserving
conditional expectation is of index-�nite type and it is the uniqueminimal one.
We shall use the notation (�ij)ij, 1 ≤ i, j ≤ n, to denote a matrix inMn(ℂ), and
the elementary matrices will be denoted by Eij. The unique normalized trace
onMn(ℂ) is denoted by tr. It is known that the basic construction for the unital
inclusion ℂ ⊂ Mn(ℂ) is of the following form

ℂ ⊂ Mn(ℂ) ⊂
e1 Mn(ℂ) ⊗Mn(ℂ) ⊂

e2 Mn(ℂ) ⊗Mn(ℂ) ⊗Mn(ℂ) ⊂ ⋯⋯

with e1 =
1

n

∑n

i,j=1
Eij⊗Eij and e2 =

1

n

∑n

i,j=1
Eij⊗Eij⊗In (see [12]). Thus, in

accordance with the notations used in earlier sections, we have in this situation
the inclusion ℬ ⊂ A ⊂ A1 ⊂ A2 where,

ℬ = ℂ⊗ℂ⊗ℂ , A = ℂ⊗ℂ⊗Mn(ℂ) ,

A1 = ℂ⊗Mn(ℂ) ⊗Mn(ℂ) , A2 = Mn(ℂ) ⊗Mn(ℂ) ⊗Mn(ℂ) .

Clearly,ℬ′∩A1 = A1 andA′∩A2 = Mn(ℂ)⊗Mn(ℂ)⊗ℂ. Then, it is clear that
the conditional expectation EA2

A′∩A2
is given by id⊗ id⊗ tr and the conditional

expectation EA2

A1
is given by tr ⊗ id⊗ id. We shall use the standard convention

E(i,p)(j,q) ∶= Eij ⊗ Epq for the matrix units inMn(ℂ) ⊗Mn(ℂ) (Sec. 6, Page 97
in [18]).

Proposition 5.1. The Fourier and the inverse Fourier transform on Mn(ℂ) ⊗

Mn(ℂ) are given by the following,
ℱ ∶ Ekl ⊗Epq ⟼Elq ⊗Ekp ,

ℱ−1 ∶ Ekl ⊗Epq ⟼Epk ⊗Eql .

We now �nd convolution onMn(ℂ) ⊗Mn(ℂ) de�ned by the formula

x ∗ y ∶= ℱ−1(ℱ(y)ℱ(x)).

Given two elementsA,D ∈ Mn(ℂ), letA⊙D be their Schur product. Since the
projection 1

n
Jn ∈ Mn(ℂ), with Jn =

∑n

i,j=1
Eij, is a minimal projection, we have

1

n2
Jn(A ⊙ D)Jn is a scalar multiple of 1

n
Jn. Denote this scalar by �A,D . That is,

( 1

n
Jn

)
(A ⊙ D)

( 1

n
Jn

)
= �A,D

( 1

n
Jn

)
(5.14)

with �A,D ∈ ℂ.

Proposition 5.2. The convolution onMn(ℂ)⊗Mn(ℂ) implemented by theFourier
and the inverse Fourier transform is the given by the following,

(A ⊗ B) ∗ (C ⊗ D) = n �A,D(C ⊗ B)

where �A,D ∈ ℂ is as de�ned in Equation (5.14).

Proposition 5.3. The rotation maps �+, �− ∶ Mn(ℂ) ⊗ Mn(ℂ) ⟶ Mn(ℂ) ⊗

Mn(ℂ) coincide, i,e. �+ = �−, and they are given by the following,
Eij ⊗Ekl ⟼Elk ⊗Eji .
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Remark 5.4. It is easy to see that �+ is trace preserving, i,e., tr(�+(x)) = tr(x)

for all x ∈ Mn(ℂ)⊗Mn(ℂ). Therefore, the Young’s inequality in Theorem 4.12
becomes the following,

‖x ∗ y‖r ≤ n2‖x‖p‖y‖q

for x, y ∈ Mn(ℂ) ⊗Mn(ℂ), where 1 ≤ p, q, r ≤ ∞ and 1

p
+

1

q
=

1

r
+ 1.
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