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1. Introduction

The paper concerns the following problem: the regularity of square root
of C%2% non-negative functions. Nirenberg-Tréves’ gradient estimate for non-
negative C1(R") functions [14] implies square roots of these functions are Lip-
schitz. This estimate plays important roles in analysis of linear and nonlinear
PDEs (e.g., [9], [1]). The sum of squares theorem of Fefferman and Phong [4, 5]
stated that any non-negative C>! function in R” can be written as a sum of
squares of C! functions. A detailed proof was given in [7] which was commu-
nicated by Fefferman (see also [3],[16]). This decomposition is crucial to obtain
C? a priori estimates for degenerate real Monge-Ampere equations in [7] and
complex Monge-Ampére equation in [15].

For functions of one variable, Glaeser [6] proved that if 0 < f € C?(R) is
2-flat on its zeroes (i.e., f(x) = 0 implies f”(x) = 0), then f/2 € C}(R).
Mandai [13] proved that for any 0 < f € C%(R), f always has an admissible
square root g € C!(R). In [3], Bony, Broglia, Colombini and Pernazza obtain
a necessary and sufficient condition for a non-negative function f € C*(R) to
have an admissible square root in C?(R), which is only related to the non-zero
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local minimum points of f. Korobenko-Sawyer [12] consider higher regularity
of square root functions under appropriate sufficient conditions.

The main result of this paper is the necessary and sufficient condition for
optimal C1“ regularity of square roots of C*2%*(R) non-negative functions. In
the rest of this paper, C*>?*(R) indicates C>**"1(R)if 1/2 < a < 1. Below is the
statement of the main theorem.

Theorem 1.1. Let0 < f € C***(R) with || f||c22«w) < 1. 0 < a < 1. Define the
set

A={xg €R : f(xy) >0, f'(x0) =0, f"(x0) > 0} (1
Then f = g* for some g € C¥%(R) if and only if there is a constant M > 0 such
that .

F0) S M- (f(p))ive, Vg € A. @

Moreover, if (2) is satisfied, then ||g||c1«ry < C for some universal C > 0, depend-
ing only on o and M.

Remark 1.2. The condition obtained by Bony, Broglia, Colombini and Pernazza
in [3] is there is a continuous function y vanishing at every flat points of f such
that

F10) < 7o) - (F(x))7, Vg € A. 3)
Condition (2) is a C*>** version of (3).

The main theorem is motivated by regularity problem associated to the iso-
metric embedding problem. Guan and Li [8] showed that if g is a C* Riemann-
ian metric on S? with Gauss curvature K, > 0, then there existsa C L1 jsometric
embedding X : (S?%,g) — (R3, gg,c)- A natural question is, can the embedding
X be improved to C>1? A positive answer was given in Jiang [11] in the graph
setting, under the assumption X takes the form X(x,y) = (x,y,u(x,y)) in local
coordinates. It relies on a square root regularity for square of monotone func-
tions. It is a special case of Theorem 1.1 where @ = 1 and A = @, which can be
stated as follows.

Corollary1.3. Let] = [-1/2,1/2]. Assume0 < f € C>'(I) satisfies || f||cs1q) <
1. The zero set of f in I is a closed interval N = [x{),xo] (possibly x(’) = Xg).
f is non-increasing in [—1/2,x;) and f is non-decreasing in (xy,1/2]. Then
3g € CY(I) such that f = g?in1, g is non-decreasing in I and ||g||c1a(y < C for
some universal constant C > 0.

2. Fefferman-Phong’s Lemma for C>** non-negative functions

The following lemma is well known (e.g. [16]). We provide a proof here for
completeness.

Lemma 2.1 (Even dominate odd, C?>%). Let0 < a < 1. Let f : R - R bea C?
non-negative function such that [ fczary < 1. Then

1+a 1

/Ol < 2 G + 5177l f)7 + f) - |fWle Vx € R. (&)
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Proof. We may assume f(x) # 0. By Taylor expansion, Vx, h € R, 3¢ between
X, X + h such that

0< f(x+h) = fG)+ f/Oh+ 3 (R + %%g xoR?
< OO+ 'R+ 37Ok + 3[R
Replacing h with A,
If k| < f(x)+ 5 f"(x)|h2 |h|2+“- (5
Setting h = {“‘)“i“ _in (5)and using h < f(x)5%, we obtain (4). [

fO2a +[fr(x)|«

Lemma 2.2 (Even dominate odd, C>%). Let0 < a < 1. Let f : R - R bea C3
non-negative function such that [ fcsary < 1. Then

2+a

If' (ol < —f(x)““ + f(x)3+°‘ |f”(x)|1+°‘ +f(x)3+°‘ If"(0)], VxeR. (6)
If""(x)] < 6f(x)3+_“ + 6|f”(x)|“_“, Vx € R. (7)
Proof. By Taylor expansion, Vx € R,
0< fx+h) < fx)+ f(Oh+ % PR + % FCORS + %|h|3+°‘. ®)
Replacing h with +h,
F/COR+ £ f"COR S FOO + 3IF7COIR + I =2 A ()
Replacing h by 2h in (9), we have
12- f'(x)h + 8- f”’(x)h3| <fx)+3 |f”(x)|(2h)2 |2h|3+“ =: B. (10)

Combining (9) and (10),
8A + B 2A + B
|f'(0h| < = f’”( | < (1)
2
If f(x) = 0, then f’(x) = Osince f > 0. Otherwise, setting h = lf () 3+ -

JO)3+a 4| f7 ()| T+

1

in (11) and using h < f(x)3+«, we have

IO ( L2 6-|f”(x)|h+4-|h|2+°‘)

(9 = (F)5 + (G T) + 6+ 1) - )7 +4- f(x)iii)

Thus, (6) holds.
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If f(x) = f"’(x) = 0, then f"”'(x) = 0 by (8). Otherwise, letting h =
1 1
max{f(x)3+«, | f”(x)|1+} and using max{a, b} < a+bin(11),and as (a +b)* <
a*+b*fora,b >0and 0 < a < 1, we have,

|f”’(x)| < 3];1(3)6) " 3|fh(x)| " (%

1
+ = 23+oc), |h|a
6
a

<3f(0)5 + 3|5 43+ [f05 + [0l

<3f(x) +31f"()| 7 +3- (f(x)ﬁ " |f"<x>|ﬁ).
Thus, (7) holds. O

We define some constants which will be used in the rest of the paper.
cp =1/10, C = 1000;
N(a)=2,if0<a<1/2, N(ax)=3,ifl1/2<a<1;

1 . 1 .
€ = (E)l/(m)’ ifo<a<1/2, ¢ = (F)l/(Zcx—l), if1/2 <a <1;
1 1 . 1 1 .
¢ = 1—03 . (W)3/(2a)’ if 0 <a< 1/2, = 1—04 . (ﬁ)4/(2a—1)’ lf1/2 <a< 1.

(12)
Denote the set of flat points of f by
F={xeR: f(x)=f'(x)=f"(x)=0} (13)
We note that if f € C3 and f > 0, x € & implies f""(x) = 0.

The next lemma is a C>**-version of Fefferman-Phong’s lemma (see [4] and
Lemma 18.6.9 of [10]).

Lemma 2.3 (Fefferman-Phong’s Lemma). Let I = [-1/2,1/2]. If0 < ¢ €
C%2%(I) such that

W) <C Vielfork=0,1,--,N(a), [$leazeq) <1 (14)

and max{$(0), |$"(0)[} > ¢, (15)

where N(a), C, € are defined in (12). Then there exist universal constants r, >
0, A > 0, ¢, > 0 such that, for t € (—ry, ry), either

¢ <Pt <C, | POllcrairyry < A (16)
or
6 <" <C, 17
1
8(1) = $(T) + (t = TP f &"(t + (T — D)s ds, (18)
0

wheret = T is the unique strict local minimum point of the function ¢ in (—rg, ry).
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Moreover, the function

1
g(t) = (t = TX f &t + (T — D)s ds)1/2 (19)
0
is in CY%((=ry, 1y)).

~ ~ 1
Proof. Set u = min{%, (2)5 }, where ¢ and C are defined in (12).
(). It p(0) > ¢, V|t| < p,

Lo, and |V (1) = |2¢’ ) <

| < =: b. (20)

Ve 5. [k
3
By (14), (20), and the mean value theorem, for |¢;| < p and |t,| < i, t; # ¢,

P'(t)  P(t)
21(V8) (1) — WY DI/ 1ty — o] = | - |/1t, — t2]*
1 S BERVE 03 R
< ¢'(t) (L) /1t = 6% + | ¢'()  ¢(ty) 1ty — 6,
Vo)  Vo(h) Vo) V()
I | (51)_||t1 ; 15y +C. |<}i (&)1t — 1o <c 1)
Iz -t 2,621ty = 1yl

3
where b,C; > 0 are universal constants, and £, £, are some points between

$(1) >

W |

t1,t,.
(ii). Assume |¢"'(0)| > é.
(a) If ¢"(0) < —¢, then for |t| < u, ¢"'(t) < —%c”. For any |t,| < %,u, expand-
ing ¢ near t,, we have

0<¢pto+h)+¢p(ty—h)<2- (¢(t0) + % . (_%5) Ch? 4 %|h|2+20{).

Letting h = %M, Vlt,| < %M, b(to) > %5}12 - §|h|2+20f > 2—14;125(1 )
Similar to case (i), we have \/E € CY((—u/2, u/2)).
(b) If ¢"'(0) > ¢ and ¢(0) < ¢;, where ¢; > 01is a small and universal constant

to be determined, then |¢’(0)| is also small since ¢ > 0. By expansion of ¢’ €
CY2%(I) near 0,

¢'(t) = ¢'(0) + ¢”(0)t + R(t), where |R(t)| < C|t|**e. (22)
In particular, (22) shows that ¢'(r) > 0 and ¢’'(—r) < 0 if
¢"(0)r > |¢'(0)| + 2Crite. (23)

- - 1
Fixr = min{%, (E)Z}. As ¢ € C*(D),

#0236 It <. (24)
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This implies ¢'(¢) is strictly increasing in [—r, 7], thus ¢’(t) = 0 has a unique
solution t = T in B, := (—r,r). By Taylor expansion of ¢ near t = T, we obtain
in B,,

1
d(t) = §(T) + (t = T)? f " (t + s(T —t))sds. (25)
0

We note ¢t = T is the unique strict local minimum point of the function ¢ in B,.
We will estimate Holder seminorm of g’ where g is defined in (19). Assume

without loss of generality that ¢(T) = 0. Then in B,, g(¢t) = v/ ¢(t) if t > T and

g(t) = =/ ¢(¢) if t < T. By Taylor expansion,
l " —T)2 — T|24+min{1,2a}) — \/_
£ — oT $/"(T)(t — T + O(|t — T|2+min{1.23) — /0
L0 —gM) _ V3
t—>T+ t—T t—>T+ t—T

1 "
=/ 5¢"(D.

We obtain the same value for the left limit and hence g'(T) = 4/ %gb” (7).
If t # T, then by Taylor expansion,

B(0) = 58" (TN = T) + Ay, 26)
B0 = §" (TN =T) + Ay, @7
#'(0) = (1) + As, (28)

By (24), (14) and |t — T| < 2r,
Ay < Cy - [e = TP < 2g7/(Ty(e — T,
|4, < Cy - |t = THmintl2ad < |@"(T)(t — T)),
|A3] < C5 - |t — T|mintt2al, (29)
Suppose t > T. By (26), (27), (29) and ¢"'(t) ~ 1 in B,, Vt € B,,

[y - 20
240

1g"(T) — 'O =

< |4 /%43//(7")_ 1 ¢'(t) n 1 ¢'(t) B d'(t)
250" M -TRl 2y ignaye -T2 240
V2¢"(T)t = T)?
+ 31801 — 4 :
\/ 587D = T) - V() - (V(t) + / S8 (D)t = T)?)

<b-|T—t|%, (30)
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where b > 0 is a universal constant. Proof is the same for¢t < T.
By (26), (27), (28), and ¢"'(t) ~ 1 in B,, there exists a universal ¢ > 0 such
that, Vt € B, with t # T,

197(1) - $(0) = 3¢/ (1] = O — T|+mint1 ),

1
R ELOR" OREr {0 S
N == <c-|t-— eETh 31
80 = 5| | e it =T] (3D
Vt,,t, € B,, we want to estimate |g’(t;) — g’(t,)|. By (30), we only need to
deal with

T<t;<ty, or t,<t;<T, with
[ty — o] < [t; =T (32)
We only consider thecase T < t; < t, (t; < t, < T issimilar). By assumption

(32),
[E=T|>|t; =T| > |t; —t5], VEE(t3,1).

By the mean value theorem, 3¢ € (t,, t,) such that
1g'(t1) =g ()] = g Oty — 5] S c- [§ =T ™21 |y — 1] <c- |ty — 1%
() If ¢; £ ¢(0) < ¢, then similar to case (i), we have \/E € Cl’“((—g—é, ;—é)).

To summarize, case (i), (ii)(a) and (ii)(c) lead to (16). Case (ii)(b) leads to
17). O

3. A Calderon-Zygmund decomposition

We use the Calderdn-Zygmund decomposition, which was originally sug-
gested by Fefferman in [7].

Lemma 3.1. Let0 < f € C***(R) with ||f||c22«my < 1. There is a countable
collection of intervals{Q, },> taking the form of (a, b], whose interiors are disjoint,
such that

1) R=7Fu(,Q,)and F n(U,Q,) = &, where F is defined in (13).

(2) Let 8, = diam(Q,). Then forany v, 6, < 1. With N(«) defined in (12),

N(a)
inf [ > 65 CPI|VEf(0)] | > N(@) + 1. (33)
x€Q, k=0

Proof. We decompose R into a (countable) collection of disjoint intervals (a,,, b, |
with the same length, and their common diameter is so large that

N(a)

inf ( > (diam(Q’))k—<2+2“>|ka(x)|) <N@ +1
xeQ’ k=0

for every interval Q” in this collection. As || f||c22¢ry < 1, the common diameter
can be chosen to be 1.

Let Q' be a fixed interval in this collection. By bisecting, we divide Q' into 2
congruent intervals. Let Q" be one of these new intervals.
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) If

N(x)
inf [ > (diam(Q")*~+2)|VEf(x)| | > N(a) + 1,
xeqQ” k=0
then we don’t sub-divide Q" any further, and Q" is selected as one of
the intervals Q,,.
) I
N(x)

in ( )y (diaM(Q”))"‘(“Z“)IV"f(X)I) <N(@)+1,
xeqQ” k=0

then we proceed with the sub-division of Q”, and repeat this process
until we are forced to the case (i).

O
Lemma 3.2. Let 3Q, be the interval of diameter 39, with the same center as Q,,,
then
N(o)
> eIk < ¢ Vx €3Q,, (34)
k=0
where C is defined in (12).

Proof. We prove the case where 1/2 < a < 1. 0 < a < 1/2 is similar.
Let Q, be the step before we get Q,,. Then Q, C Q,, and diameter of Q,, is 23,,.
Since we didn’t stop at Q,, there is x, € Q,, C 3Q, such that

3
D, (28,0 |Vk f(x,)| < 4.
k=0

That is

|VEf(xo)| < 4(26,)3 207k |k =0,1,2,3. (35)
Using || fllc22e(ry < 1 and dist(x, x,) < 36, we get Vx € 3Q,,

IV f () IV2f(x)l +1 - [x = xo|**!
4(25v)2+2a—3 + (35v)2a—1
1162%71, (36)
Using (35) and (36), we get Vx € 3Q,,

IVZf(l < S;é)plwfl-Ix—xO|+|V2f(xO)|

IANIA IA

< 1155‘1_1 . 351/ + 4(25v)(2+20c)—2
< 4983

Going backwards, we get |Vf(x)| < 1796,72 and |f(x)| < 6018272, Vx €

30,.
O
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Lemma 3.3. Let Q; be the interval of diameter (1 + €,)d,, with the same center
as Q,, then

N(a)
inf () 65"+ yk > ¢, 37
inf (2 87 HIVE) 2 6 (37)

where c, €, are defined in (12).

Proof. Let B = {x € R : dist(x, xy) < €y6,}.
We prove the case where 1/2 < a < 1. 0 < o < 1/2 is similar.

Assume not, then 3x, € Q; such that Zi:o 5’;_(2““) |VEf(x0)] < co-
Using || f||c22a(ry < 1 and the mean value theorem, we get

IV3FOO)| < IV3f(x)] + 1+ |x = xo|2%7L < (o +1)62*7! Vx €B.
|V2f(xX)] < sup |V3f] - [x — xo| + [V2f(x0)| < (2¢o +1)8;* Vx €B.
B
Going backwards, we get |V f(x)| < (3¢o + 1)8.7%* and | f(x)| < [(3¢co + 1)eg +
o]821%%. Note ¢, < #, so for any x € B, Z}i:o SKk=2+20, gk £()| < 4, contra-

dicting with (33).
U

Lemma 3.4. Let 1 = €,/2. Let Q be the interval of diameter (1 + 1)3,,, with the
same center as Q,. Then for z € Q, either

f(z) > &8, (38)
or
f(2) < &8F and |V2f(2)| > ¢62%, (39)
where € is defined in (12).
Proof. By translation we assume z = 0, with
f(0) < e82t*® and |V2f(0)| < é52~. (40)

First, we assume 1/2 < a < 1. Letc > 0 be small such that 2¢d, < (diam(Q})—
diam(Qjy))/2. By Taylor expansion, (40) and || f||cza«(m) < 1, for any |x| < 2¢6,,,

1 1 1
0 < f(x) <E82%2% 4+ f(0)x + zééﬁo‘xz + gf”’(O)x3 + g|x|2+2“. (41)
Taking x and —x in (41), for any |x| < 2c9,,,
1 1 1
|/ (0)x + gf”’(O)x3| < @5t 4 5655"%2 + €|x|2+2“- (42)
In particular, for any |x| < ¢d,,

1 1 1
|/ (0)x + gf”’(O)x3| < @Okt 4 5555“(051,)2 + g|c5,,|2+2“ =: ASZt% (43)
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On the other hand, by substituting x with 2x in (42), for any |x| < ¢6,,
1 1 1
1f'(O@x) + = f "(0)(2x)%| < €851 + 5555“(2X)2 + gIZXI“Z“
1 1
< g5t 4 Ec?éﬁ"‘(zcciy)Z +2 |2¢8, |22 =: B&ZT,
(44)
Combining (43) and (44), we obtain for any |x| < cd,),

1 1 1
f/(0)x] < Z(8A+B);™, |2 f"(0)x°] < (24 + B)S;* .

8A+B 2A+B
= and |f7(0)] < Z£=.
6c c3

8A4+B _ 2A+B
+é+
6C c3

Thus, |f(0)] < If ¢ = ¢,/10, & = ¢*, then

3
>, 8, GOk f ()] < et
k=0
contradicting with (37).
Next, we deal with the case 0 < a < 1/2.
Let ¢ > 0 be small such that 2¢§, < (diam(Q%) — diam(Q}))/2. By Taylor
expansion, (40) and || f||c22«w) < 1, for any [x| < 2¢6,,

< 0.014+0.01+0.01*+0.07 < c,

0 < f(x) <E8272% 4+ f1(0)x + %Edﬁo‘xz + %|x|2+2°‘. (45)
If c = ¢y/10, & = ¢3, setting x = +c&, in (45) yields
|f'(0)] < (c* + %c“ + %cm“)ai”“ < 0.01851+,
Hence

2
> 8 TCTPI|VE£(0)] < &+ 0.01 + ¢ < 0.01° + 0.01 + 0.013 < ¢,
k=0

contradicting with (37). O
For any z € Qj, we apply Fefferman-Phong Lemma 2.3 to the function
(1) =8, f(z +18).

Corollary 3.5. Let C = 1000. For z € Q}, there exist universal constants r, >
0,A >0, ¢, > 0such that, for x € (z — ry8,,z + ry5,),
either
0,877 < f(x) < €63+, (46)

IV FCOller(amres, z4ry8,) < ASY,
” \/ f(x)l|Clv°‘((z—r061,,z+r051,)) < A;

0% < f!'(x) < €827, 47)

or

1
f(x)=f(X)+(x—X)2f '+ tX = x)e dt, (48)
0
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where x = X is the unique strict local minimum point of the function f in (z —
r90y,Z +1¢0,).

Moreover, g(x) = (x —X)(fo1 f"(x +t(X —x)tdt) /2 isin CY4((z — 18, z +
ro8,)) with CY* norm under control.

4. Proof of Theorem 1.1
Let0 < f S C2,20¢(R) with ||f||c2,2a(R) <1

4.1. Proof of sufficiency.

4.1.1. Construction of g. We write R \ F (where ¥ is defined in (13)) as a
countable union of disjoint open intervals, so that R \ & = U7 I;. Note if
3x, € Ij with f(x,) = 0, then f”(x,) # 0. (If 0 < a < 1/2, by Lemma 2.1,

| f(x0)| and | f"(xy)| dominate | f'(x,)]. If 1/2 < a < 1, by Lemma 2.2, | f(x,)|
and | f”(x,)| dominate | f’(x,)| and |f""(x,)|.) For each m, k € N, define

1
I ={x €I : dist(x,F) > a}, B={xeR: f(x)=0,f"(x)+#0}.
Lemma 4.1. I, N B is at most countable for each k, and
LNB={Xx_,<X_1<Xy<X3 <Xy}

Proof. VN > 0, we claim that I} ,, N B N [N, N] is finite for each m,k €
N. Assume Iy, N B N [-N,N] is infinite, then 3x, € R such that x, is an
accumulation point of I ,, N B. So, there is a sequence {x,} in B such that
lim,,_, o, x,, = X, and f(x,) = lim,,_, o, f(x,) = 0. Note f > 0, so f'(x,) = 0.

If f”(xy) # 0, then x = X, is a strict local minimum point of f. However, by
construction, near x, there is a point x; € B, so that f(x;) = 0, contradicting
with strict local minimality.

If f”(xy) = 0, then x, € F. However, (x, — ﬁ,xo + ﬁ) NIy, = 9,
contradiction.

Now since Iy, is an interval and Iy ,, C Iy 41, any point in Iy 41 \ Ix 1S
either on the left or right of I, ,,. The points in I N BN[—N, N] can be ordered.
The lemma follows by letting N — oo. (]

We define the function g as follows. If x € F, set g(x) = 0. For each k, if
I, N B = @ in I, then define g(x) =4/ f(x) for x € I;. Otherwise,

LNB={X_y<Xx_; <Xg<X] <X}

Define g(x) = (—=1)4/f(x) for x € [x;_;,x;]. Note that g changes sign when
crossing each x; in I;.
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4.1.2. C! regularity of g. g is continuous in each I} = (ay, by). It suffices to
discuss the continuity at x, € . By Taylor expansion of f near x,, f(x) =

O(|x — xo|>™%), so that | + 4/ f(x)] = O(|x — xp|***) —» 0as x — x, and
limx—>x0 g(x) = 0.

Lemma 4.2. g € C'(I}) for each k.
Proof. If I, NB = @, then g’ = % € C(I,). If I, N B # @, then for each

x; € I, N B, x; € Q,, for some v = v(x;). By Corollary 3.5, only (47) holds and
near x;, f can locally be written as

1
00 = (= x,)? / x4+ 1 = 0N d,
0

with fol f"(x + t(x; — x))t dt ~ 52*. By definition of g, near x;, g(x) = +(x —

x;)( fol f"(x + t(x; — x))t dt)'/?(the sign depends only on the choice of sign
of g near x,), so that g changes sign when crossing x;. By Corollary 3.5, g’ is
continuous at x;. ([

The next is a key lemma to obtain uniform estimate for g’ under (2).

Lemma 4.3. Assume condition (2) is satisfied. There exists a universal constant
C, > 0 such that, for any x, € I} with x, € Q,, for some v = v(x,), then

18’ (xp)| < C,65. (49)
Proof. By Corollary 3.5, either (46) holds which implies (49); or

1
f(x)=f(X)+(x—X)2f f"(x + t(X — x))t dt, (50)
0

where x = X is the unique strict local minimum point of the function f in
(xO - 1"057,, Xy + r05,,).
If f(X) = 0, then g(x) = +(x —X)(jz)1 F"(x +t(X —x))t dt)'/2. By (47), local

Holder continuity of g/, and g'(X) = 4/ % f"(X), there is universal b > 0 such
that,
001 < 1 COI+bIX-X|% < 1| 3CEX+DET < C85, Vx € (xg=robyy X+od,).
If f(X) # 0, then by (2) and (47),

M- (fOO) = 2 f(X) 2 6,657,

so that (50) reads
cy e
FO) 2 fXO 2 (D -8

By (34), f(x) ~ 822% and the computation is reduced to case (16). O
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Corollary 4.4. Assume I, = (ay, b,), where by, < +o0. Then
lim g’(x) = 0.
x—b,
Similarly, if a;, > —oo, then limx_,a: g'(x)=0.

Proof. By Corollary 3.5, for each x € Iy, (x — r¢8yx), X + o0y (x)) C I. Hence
limy_p- 8y(x) = 0. By (49), lg'(x)] < Czéj‘(x) —0asx — b_. O

Corollary 4.5. Forany x, € F, g’(x) is continuous at x,, with
lim g'(x) = g'(x,) = 0.
X=X,

Proof. By Taylor expansion of f near x,, f(x) = O(|x — x,|**?%), so that

8(x) — g(x0) | _ +Vf(x) = O(]x — xy|%) = 0 as x — Xx,.
X — Xy X — Xp

If x, has a neighbourhood which is contained in &, then the result is trivial.
Otherwise, X, is the boundary point of some interval I, = (ay, by). Without
loss of generality we assume X, = b, < +00.

If x, is discrete, then X, is the boundary point of two consecutive intervals I,
and I, with a; < b, = x¢y = @41 < bi41. By Corollary 4.4,

lim g’/(x) = lim g'(x)=0.
x—>b; x—>a2’+1

Otherwise, x, € [xg, a,1] C F for some a; ;. By Corollary 4.4 again,

lim g’(x) = lim g'(x) = 0.
x—by x—>x6’

To summarize, g € C1(R), with |g’(x)| < C,, Vx € R, since §,, < 1.

4.1.3. Global Holder estimate. Let x,y € R with x # y.

(1) If 3z € R\ F such that x and y are both contained in (z — rd,(;), z +
ro9,(z)), then by Corollary 3.5, the Holder estimate is trivial if (46) holds
or (47) holds with f(X) = 0. If case (47) holds with f(X) # 0, then by
@), a

M- (fOO)™= 2 f'(X) 2 6,657,
so that (48) reads

fO2 [0 (G2 e 6 and ()2 (52) = 67 ()

The computation is reduced to case (16), and |g'(x) — g’ (V)| /|x — y|* is
bounded by a constant depending only on M and a.

(2) Assume 3z € R \ ¥ such that x and y are both contained in (z —
}’05,,(2), z+ roév(z)).
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(a) If x € F and y € F, then by Corollary 4.5, |g’(x) — g'(y)|
|0—0]| = 0.
(b) fx ¢ Fandy € F, then x € Q, for some v = v(x) and |x — y| >
ro9,. By (49) and Corollary 4.5,
C
18'(0) = g0 = I8 (0)] < CoF < =+ Jx = yI°.
0
(©) Ifx ¢ Fandy ¢ F, then x € Q,(y) and x € Q,(), with [x — y| >
ro0y(x) and |x — y| > ryd,(y). By (49),

2,
a . _yla
860 =g/ 0)] < 8GOl + Ig/0)] < Co8 + Ca8y) < 32 I =P

Remark 4.6. C'“ estimate of g doesn’t depend on the choice of sign of g in each
interval I,.

4.2. Proof of necessity. Assume (2) doesn’t hold and f = g for some g €
CL%(R), then there is a sequence x,, in A such that

() = nfie(x,), VneN. (52)

f(x,) > 0,s0 x, € Q, for some v = v(n).
In case (i) of Lemma 3.4, f(x,) > ¢627** and f"(x,) < C82*. By (52),

C&2* > n(es; )i, (53)

so that §,, get cancelled. Letting n — oo in (53), contradiction.
In case (ii) of Lemma 3.4, f(x,) < é827** and f”(x,) > é52%. Define s, =

)
.By(52)and g,
\ ey Y 52

s \l [ _ [ S

Sp = = m < — 0asn — .
J"G) = N\ nfia(e)  Vn Vn
(54)

If1/2 < a < 1, by Taylor expansion and ||f ||C2,2a(R) <1,

f(xn + Sn) > f(xn) + f,/(xn)s -z f”,(xn)ls -z 2+20{

Pt +5) < FO6) + 3£ Ce)sh + £l Cenlsy + ésma
By (34) and (54), for large n,

(xp) e & flx) _ 1
PGS = 17 e, Jf,,( S Car T < e,
4

SZ+2a — S2a f(xn) < (~ i)Za f(xn)

n n f”(x ) - \/z ~520c - 2
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So, 4f(x,) > f(x, +s,) > f(x,) > 0 for large n. By the mean value theorem,
Ot s, G
VG + 50 Vf(xn)
f,(xn + Sn) - f,(xn)l — |f’/(§n)| *Sp
vV flx, +s,) vV fix, +s,)

where &, € (x,, x,, + s,). By Taylor expansion of f”, for large n,

f1ED 2 fCen) = 1" Ce)lsn — 53 2 %f”(xn)-

If 0 < a < 1/2, by expansion to the second order, we also have for large n,

4fCen) 2 f (i +50) 2 f06a) > 0and f"(6) 2 5 " (xn).
Therefore, for any 0 < a < 1, by (52),

2|g,(xn + Sn) - g,(xn)l = | =+

ED s, | 3O 5

1
zlg,(xn + Sn) - g’(xn)l = Z == f’l(xn)
ViG, +s) VafG) 4
1/2
=lsg.f‘”(x—;)l/zzlsg. w.f”(xn)a
4 Sn 4 S(xp)®
1 (e
= _¢%. n > — a
g ( FGon ) > g%V
Hence,
|g,(xn + Sn) _g’(xn)l/s;% Z %\/E —> 0 asn — 0.
Contradiction.
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