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Partial-isometric crossed products of
dynamical systems by left LCM semigroups
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ABSTRACT. Let P be a left LCM semigroup, and « an action of P by endomor-
phisms of a C*-algebra A. We study a semigroup crossed product C*-algebra
in which the action « is implemented by partial isometries. This crossed
product gives a model for the Nica-Teoplitz algebras of product systems of
Hilbert bimodules (associated with semigroup dynamical systems) studied
first by Fowler, for which, we provide a structure theorem as it behaves well
under short exact sequences and tensor products.
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1. Introduction

Let P be a unital semigroup whose unit element is denoted by e. Suppose
that (A, P, a) is a dynamical system consisting of a C*-algebra A, and an action
a : P - End(A) of P by endomorphisms of A such that a, = id4. Note that,
since the C*-algebra A is not necessarily unital, we need to assume that each en-
domorphism «, is extendible, which means that it extends to a strictly continu-
ous endomorphism «, of the multiplier algebra M(A). Recall that an endomor-
phism « of A is extendible if and only if there exists an approximate identity {a; }
in A and a projection p € M(A) such that a(a;) converges strictly to p in M(A).
However, the extendibility of a does not necessarily imply a(1yg4)) = 1ag(a)-
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There have been huge efforts on the study of C*-algebras associated with
semigroups and semigroup dynamical systems. In the line of those efforts in
this regard, Fowler in [12], for the dynamical system (A, P, &), where P is the
positive cone of a group G such that (G, P) is quasi-lattice ordered in the sense of
Nica [24], defined a covariant representation called the Nica-Toeplitz covariant
representation of the system, such that the endomorphisms o, are implemented
by partial isometries. He then showed that there exists a universal C*-algebra
T ov(X) associated with the system generated by a universal Nica-Toeplitz co-
variant representation of the system such that there is a bijection between the
Nica-Toeplitz covariant representations of the system and the nondegenerate
representations of J ., (X). To be more precise, X is actually the product sys-
tem of Hilbert bimodules associated with the system (A, P, a) introduced by
him, and the algebra J,,(X) is universal for Toeplitz representations of X sat-
isfying a covariance condition called Nica covariance. He called this universal
algebra the Nica-Toeplitz crossed product (or Nica-Toeplitz algebra) of the sys-
tem (A, P, «) and denoted it by I, (A X, P). When the group G is totally or-
dered and abelian (with the positive cone Gt = P), the Nica covariance condi-
tion holds automatically, and the Toeplitz algebra 7°(X) is the partial-isometric

crossed product A X2*° P of the system (A, P, ) introduced and studied by the

authors of [23]. In other word, the semigroup crossed product A x5 *° P actually
gives a model for the Teoplitz algebras J°(X) of product systems X of Hilbert bi-
modules associated with the systems (A, P, a), where P is the positive cone of a
totally ordered abelian group G. Further studies on the structure of the crossed
product A x2°° P have been done progressively in [3], [4], [5], [20], and [29]
since then.

In the very recent years, mathematicians in [7, 15, 16], following the idea
of Fowler, have extended and studied the notion of the Nica-Toeplitz algebra
of a product system X over more general semigroups P, namely, right LCM
semigroups (see also [11]). These are the semigroups that appear as a natu-
ral generalization of the well-known notion of quasi-latticed ordered groups
introduced first by Nica in [24]. Recall that the notation N J(X) is used for
the Nica-Toeplitz algebra of X in [7, 15, 16], which are the works that brought
this question to our attention that whether we could define a partial-isometric
crossed product corresponding to the system (A, P, «), where the semigroup P
goes beyond the positive cones of totally ordered abelian groups. Although,
based on the work of Fowler in [12] (see also the effort in [2] in this direc-
tion), we were already aware that the answer to this question must be “yes"
for the positive cones P of quasi-latticed ordered groups (G, P), [7, 15, 16] made
us very enthusiastic to seek even more than that. Hence, the initial investiga-
tions in the present work indicated that the semigroup P must be left LCM (see
§2). More precisely, in the dynamical system (A, P, «), we considered the semi-
group P to be left LCM (so, the opposite semigroup P° becomes right LCM).
Then, following [12], we defined a covariant representation of the system sat-
isfying a covariance condition called the (right) Nica covariance, in which the



PARTIAL-ISOMETRIC CROSSED PRODUCTS 53

endomorphisms «, are implemented by partial isometries. We called this rep-
resentation the covariant partial-isometric representation of the system. More
importantly, we showed that every system (A, P, ) admits a nontrivial covari-
ant partial-isometric representation. Next, we proved that the Nica-Toeplitz
algebra V7 (X) of the product system X associated with the dynamical sys-
tem (A, P, @) is generated by a covariant partial-isometric representation of the
system which is universal for covariant partial-isometric representations of the
system. We called this universal algebra the partial-isometric crossed product of
piso

the system (A, P, «) and denoted itby AX,, P (following [23]), which is unique

up to isomorphism. We then studied the behavior of crossed product A x5*° P
under short exact sequences and tensor products, from which, a structure the-
orem followed. In addition, as an example, when P and P° are both left LCM
semigroups we studied the distinguished system (Bp, P, t), where Bp is the C*-
subalgebra of ¢*(P) generated by the characteristic functions {1, : y € P},
and the action 7 on Bjp is induced by the shift on £*°(P). It was shown that the

algebra Bp x2°° P is universal for bicovariant partial-isometric representations
of P, which are the partial-isometric representations of P satisfying both right
and left Nica covariance conditions.

Here, prior to talking about the organization of the present work, we would
like to mention that, by [28], if P is the positive cone of an abelian lattice-ordered
group G, then the Nica-Toeplitz algebra J ., (A X, P) of the system (A, P, @) is
a full corner in a classical crossed product by the group G. Thus, by the present
work, since A x5°° P ~ 7 ..,(A X, P), the same corner realization holds for
the partial-isometric crossed products of the systems (A, P, @) consisting of the
positive cones P of abelian lattice-ordered groups (see also [29]).

Now, the present work as an extension of the idea in [23] follows the frame-
work of [18] for partial-isometric crossed products. We begin with a prelimi-
nary section containing a summary on LCM semigroups and discrete product
systems of Hilbert bimodules. In section 3 and 4, for the system (A, P, a) with
a left LCM semigroup P, a covariant representation of the system is defined
which satisfies a covariance condition called the (right) Nica covariance, where
the endomorphisms o, are implemented by partial isometries. This represen-
tation is called the covariant partial-isometric representation of the system. We
also provide an example which shows that every system admits a nontrivial
covariant partial-isometric representation. Then, we show that there is a C*-
algebra B associated with the system generated by a covariant partial-isometric
representation of the system which is universal for covariant partial-isometric
representations of the system, in the sense that there is a bijection between the
covariant partial-isometric representations of the system and the nondegener-
ate representations of the C*-algebra B. This universal algebra B is called the
partial-isometric crossed product of the system (A, P, a) and denoted by Ax}"°P,
which is unique up to isomorphism. We also show that this crossed product
behaves well under short exact sequences. In section 5, we show that under
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some certain conditions the crossed product (A ®ax B) XP**° (P x S) can be
decomposed as the maximal tensor product of the crossed products A xP's° p
and B xP' S. Also, when P and the opposite semigroup P° are both left LCM
we consider the distinguished system (Bp, P, 7), where Bp is the C*-subalgebra
of £*°(P) generated by the characteristic functions {1, : y € P}, and the action
7 on Bp is induced by the shift on £*°(P). Note that each 1, is actually the char-
acteristic function of the right ideal yP = {yx : x € P}in P. We then show

that the crossed prodcut Bp x-°° P is universal for bicovariant partial-isometric
representations of P, which are the partial-isometric representations of P satisfy-
ing both right and left Nica covariance conditions. In section 6, for the crossed
product (A ®max B) XP'° P a composition series

0<7; <795 < (A Quax B) XV P
of ideals is obtained, for which we identify the subquotients
91, 95/ 7, and ((A ®max B) XP° P)/ 7,

with familiar terms. Finally in section 7, as an application, we study the partial-
isometric crossed product of the dynamical system considered in [19].

2. Preliminaries

2.1. LCM semigroups. Let P be a discrete semigroup. We assume that P is
unital, which means that there is an element e € P such that xe = ex = x for
all x € P. Recall that P is called right cancellative if xz = yz, then x = y for
every x,y,z € P.

Definition 2.1. A unital semigroup P is called left LCM (least common multiple)
if it is right cancellative and for every x,y € P, we have either Px N Py = @J or
Px N Py = Pz for some z € P.

Let P* denote the set of all invertible elements of P, which is obviously not
empty as e € P*. In fact, P* is a group with the action inherited from P. Now,
if Px N Py = Pz, since z = ez € Pz, we have sx = z = ty for some s,t € P. So,
z can be viewed as a least common left multiple of x, y. However, such a least
common left multiple may not be unique. Actually one can see that if z and Z
are both least common left multiples of x, y, then there is an invertible element
u of P (u € P*) such that Z = uz. Note that right LCM semigroups are defined
similarly. A unital semigroup P is called right LCM if it is left cancellative and
for every x,y € P, we have either xP N yP = {J or xP N yP = zP for some
z € P. Let P° denote the opposite semigroup endowed with the action « such
that x « y = yx for all x,y € P°. Clearly, P is a left LCM semigroup if and only
if P° is a right LCM semigroup.

LCM semigroups actually appear as a natural generalization of the well-known
notion of quasi-latticed ordered groups introduced first by Nica in [24]. Let G
be a group and P a unital subsemigroup such that P n P~! = {e}. There is a
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partial order on G defined by P such that
X<,y < yx'€P«yePx < PyCPx
for all x,y € G. Moreover, we have
Xy =>xz=<,yz

for all x,y,z € G, which means that this partial order is right-invariant. The
partial order <,; on G is said to be a right quasi-lattice order if every finite subset
of G which has an upper bound in P has a least upper bound in P. In this
case, the pair (G, P) is called a right quasi-lattice ordered group. Note that a left-
invariant partial order on G is also defined by P such that x <, y iff x~'y € P.
So, a left quasi-lattice ordered group (G, P) can be defined similarly. Now, it is
not difficult to see that if (G, P) is a right quasi-lattice ordered group, then the
semigroup P is a left LCM semigroup. Similarly, if (G, P) is a left quasi-lattice
ordered group, then P is a right LCM semigroup. Note that, however, a LCM
semigroup P is not necessarily embedded in a group G such that (G,P) is a
quasi-lattice ordered group (see more in [21]).

Example 2.2. For any positive integer k, the positive cone N¥ of the abelian
lattice-ordered group Z" is aleft LCM semigroup, such that

kanNky = Nk(xVy)
forall x,y € Nk, where x Vv y denotes the supremum of x and y given by (x Vv
y); = max{x;,y;} for1 <i<k.

Example2.3. Let N* denote the set of positive integers, which is a unital (abelian)
semigroup with the usual multiplication. It is indeed a left LCM semigroup
such that
N rnN"s =N (r v s)
for allr,s € N, where
r vV s = the least common multiple of numbers r and s.

In fact, if @ denotes the abelian multiplicative group of positive rationals, then
it is a lattice-ordered group with

s
rSS@(;)eNX@sr_leNx

forallr,s € Qi. So, N* is actually the positive cone of Qi, namely,
N*={reQ} :r>1}

Example 2.4. Assume that n is an integer such that n > 2. Let F,, be the free
group on n generators {a;, a,, ..., a,}, and F} the unital subsemigroup of F,, gen-
erated by the nonnegative powers of a;’s. Then, for the right-invariant partial
order <, on [, defined by F} wehave x <, yifand only if x is a final string on
the right of y, whit which, (F,,, [FI) is a right quasi-lattice ordered group. Thus,
[F: is a left LCM semigroup. The left-invariant partial order <j; on [F,, is given
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such that x <y y if and only if x is an initial string on the left of y, whit which,
(F,,F,) is a left quasi-lattice ordered group. So, in this case, F,, is a right LCM
semigroup.

2.2. Discrete product systems of Hilbert bimodules. A Hilbert bimodule
over a C*-algebra A is a right Hilbert A-module X together with a homomor-
phism ¢ : A - L£(X) which defines a left action of A on X by a - x = ¢(a)x for
alla € Aand x € X. A Toeplitz representation of X in a C*-algebra B is a pair
(3, 7r) consisting of a linear map ¢ : X — B and a homomorphism 7 : A — B
such that

P(x - a) =Pp(x)m(a), p(x)P(y) =7({x,y)4), and P(a - x) = w(a)h(x)

foralla € A and x,y € X. Then, there is a homomorphism (Pimsner homo-
morphism) p : X(X) — B such that

p(B, ;) =P(x)P(y)* forallx,y € X. (2.1)

The Toeplitz algebra of X is the C*-algebra J'(X) which is universal for Toeplitz
representations of X (see [26, 13]).
Recall that every right Hilbert A-module X is essential, which means that we
have
X =span{x-a : x € X,a € A}.
Moreover, a Hilbert bimodule X over a C*-algebra A is called essential if
X =span{a-x : a€ A,x € X} =span{¢(a)x : a € A, x € X},

which means that X is also essential as a left A-module.

Now, let A be a C*-algebra and S a unital (countable) discrete semigroup. We
recall from [12] that the disjoint union X = | |, s X of Hilbert bimodules X
over A is called a discrete product system over S if there is a multiplication

(x,y) EX; XX, > xy €Xy (2.2)

on X, with which, X is a semigroup, and the map (2.2) extends to an isomor-
phism of the Hilbert bimodules X; ® 4 X; and X, for all 5,t € S with s,t # e.
The bimodule X, is 444, and the multiplications X, X X; — X; and X; X X, —
X, are just given by the module actions of A on X;. Note that also we write
¢s : A - L(X,) for the homomorphism which defines the left action of A on
X,.

Note that, for every s,t € S with s # e, there is a homomorphism Lgf :
L(X) - L(X,;) characterized by

g (T)(xy) = (Tx)y

forall x € X;,y € X, and T € £(X,). In fact, f'(T) = T @ idy .
A Toeplitz representation of the product system X in a C*-algebra B is a map
¥ : X — Bsuch that

1) P ()P (y) = py(xy) foralls,t € S, x € X;,and y € X;; and
(2) the pair (¢, ¥,) is a Toeplitz representation of X in B for all s € S,
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where 1, denotes the restriction of 3 to X;. For every s € S, let p® : K(X,) —
B be the Pimsner homomorphism corresponding to the pair (3, ¥, ) defined by

PO(O,,) = () (»)*

for all x,y € X, (see (2.1)).

By [12, Proposition 2.8], for every product system X over S, there is a C*-
algebra J(X), called the Toeplitz algebra of X, which is generated by a universal
Toeplitz representation iy : X — J(X) of X. The pair (7 (X), ix) is unique up
to isomorphism, and iy is isometric.

Next, we recall that for any quasi-lattice ordered group (G, S), the notions
of compactly aligned product system over S and Nica covariant Toeplitz repre-
sentation of it were introduced first by Fowler in [12]. Then, authors in [7] ex-
tended these notions to product systems over right LCM semigroups. Suppose
that S is a unital right LCM semigroup. A product system X over S of Hilbert
bimodules is called compactly aligned if for all r,t € S such that rSNtS = sS
for some s € S we have

BRIE(T) € K(X,)

forallR € X(X,)and T € K(X,). Let X be a compactly aligned product system
over a right LCM semigroup S, and 3 : X — B a Toeplitz representation of X
in a C*-algebra B. Then, ¥ is called Nica covariant if

POER(T)) ifrSnitS =sS,

O(RYLO(TY —
¢(m¢(n—() ifrsntS =4

(2.3)
forallr,t € S,R € X(X,)and T € X(X;).

For a compactly aligned product system X over a right LCM semigroup S, the
Nica-Toeplitz algebra N J(X) is the C*-algebra generated by a Nica covariant
Toeplitz representation iy : X — N J(X) which is universal for Nica covari-
ant Toeplitz representations of X, which means that, for every Nica covariant
Toeplitz representation of i of X, there is a representation %, of ' J(X) such
that 1,0ix = 1 (see [12, 7]).

3. Nica partial-isometric representations

Let P be a left LCM semigroup. A partial-isometric representation of P on a
Hilbert space Hisamap V : P — B(H) such that each V. := V(x) is a partial
isometry, and the map V is a unital semigroup homomorphism of P into the
multiplicative semigroup B(H). Moreover, if the representation V satisfies the
equation

ViV, ifPxnPy=Pz,

3.1
0 if Px n Py = 0, G

ViV, ViV, =

then it is called a Nica partial-isometric representation of P on H. The equation
(3.1) is called the Nica covariance condition. Of course, since the least common
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left multiple z may not be unique, we must check that whether the Nica covari-
ance condition is well-defined. So, assume that Pz = Px n Py = PZ. If follows
that

VIV, ViV, = ViV,
and

VIVVIV, =ViVs;.
Now, since Z = uz for some invertible element u of P, we have

ViV = ViV = (V V)V, V, = VIVIV,V,.
But it is not difficult to see that Vu is actually a unitary, and therefore,
ViV = ViV,

This implies that the equation (3.1) is indeed well-defined.
The following example shows that given a left LCM semigroup P, a Nica
partial-isometric representation of P exists.

Example 3.1. Suppose that P is a left LCM semigroup and H a Hilbert space.
Defineamap S : P — B(¢?(P) ® H) by

f(r) ifx =ryforsomer €P,

Sy)x) =10

otherwise.

for every f € ¢?(P) ® H. Note that x = ry for some r € P is equivalent to
saying that x € Py. Moreover, if sy = x = ry for some r,s € P, then s = r by
the right cancellativity of P, and hence f(r) = f(s). This implies that each S, is
well-defined. One can see that each Sy, is a linear operator. We claim that each
S, is actually an isometry, and in particular, S, = 1. We have

IS, F12 = D2 NS, DI = D0 IS, HENN? = D IFOIR = 1117,
xX€EP repP repP

which implies that each S, is an isometry. In particular,
(Sef)(x) = (Sef)(xe) = f(x),
which shows that S, = 1. In addition, a simple calculation shows that
S¢Sy =S,x =S,., forallx,y € P. (3.2)
Next, we want to show that the adjoint of each S, is given by
Wy () = f(xy)
for all f € ¢?(P) ® H. For every f,g € ¢*(P) ® H, we have
S,fl9) = 2ASNIgE))

xeP

DSy Nry)lgry))

repP

2AFMIgry)) = 2 fMIW,8)P) = (fIW,g).

rep repP
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So, Sj = W, for every y € P. Also, for every x,y € P, by applying (3.2), we get
W W, =8:S5 = [S,Sc]" = S5y = Wy,

Therefore, since each W, is obviously a partial-isometry, it follows that the map

W : P — B(¢*(P) ® H) defined by (W, f)(x) = f(xy) is a partial-isometric

representation of P on £2(P) ® H. We claim that the representation W satisfies
the Nica covariance condition (3.1). Firstly,

WiW, WiW, = S,SiS,S;. (3.3)
Then, for every f € ¢*(P) ® H, we have
(%S, () = (S3(Sy M) = (S, f)rx) forallr € P. (3.4)

Now, if Px N Py = {J, since rx € Px, it follows that rx & Py, and therefore,

(S, f)rx) =0.

Thus, (S;S, f)(r) = 0, which implies that the equation (3.3) must be equal to
zero when Px N Py = (. Suppose the otherwise, namely, Px N Py = Pz. Note
that first, if {¢; : s € P} is the usual orthonormal basis of £2(P), then each S,S5

is a projection onto the closed subspace £2(Py) ® H of ¢?(P) ® H spanned by
the elements
{ey ®h i s€P,h e H},
which is indeed equal to the ker(1 — S,,S7). So, for every f € ¢ 2(P)®H,
(S,Sy () ifr € Px,
S,.S:i(S,S% = Y
(8:53(5,83.)(") {0 otherwise.

Moreover, for (Sysj f)(), where r € Px, we have

5590~ o
It thus follows that

(S.55,SLP)r) = {g(w gt;ee rvff;n Py) = Pz,
which equals (S,S; f)(r). Therefore, we have

S.S¥SySy = S,S7,
from which, for the equation (3.3), we get
WW WiW, =S,S; = W;W,.

Consequently, W is indeed a Nica partial-isometric representation.

Remark 3.2. If P is the positive cone of a totally ordered group G, then every
partial-isometric representation V of P automatically satisfies the Nica covari-
ance condition (3.1), such that

VIV VIV, =V Vmaxixyy forallx,y € P.

max{x,y}
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Lemma 3.3. Consider the right quasi-lattice ordered group (F,, Fy) (see Exam-
ple 2.4). A partial-isometric representation V of F, satisfies the Nica covariance
condition (3.1) if and only if the initial projections V, V, and V;j Va, have or-
thogonal ranges, where 1 < i, j < nsuch thati # j.

Proof. Suppose that V is a partial-isometric representation of [F: on a Hilbert
space H. Ifit satisfies the Nica covariance condition (3.1), then one can see that,
forevery 1 <i,j < nwithi # j, we have

ViVaViVa =0

asF)! a;nF} a j = . So, it follows that the initial projections V; V', and VZ}, Vg,
have orthogonal ranges for every 1 < i, j < n with i # j.

Conversely, suppose that for every 1 < i, j < nwith i # j, the initial projec-
tions V, V,, and VZJ_ V4, have orthogonal ranges. Therefore, we have

ViVaViVa, =0 (3.5)

for every 1 <i,j < nwithi # j. Now, for every x,y € Fif,if Fr x N F, y # @,
then x is a final string on the right of y or y is a final string on the right of x.
Suppose that x is a final string on the right of y, from which, it follows that
[FI XN [FZ y= F; y,and y = (yx~1)x, where yx~! € [F:. Therefore, we have

VIV VIV, = ViV (V1 )'V,
VIV (Ve Vi)'V,
= VIVVive .V,
= ViV .V,

= (Vyx_1Vx)*Vy = (Vyx—lx)*Vy = V;VY'

1

If y is the final string on the right of x, a similar computation shows that
ViV VIV, =ViV,as FrxnFly=F; x. IfF xnF, y = @ then x # y. Note
that we can consider x and y as two strings of letters a;’s with equal lengths by
adding, for example, a finite number of (a;)° to the left of the shorter string.
Therefore, since x # y, we can write

x=sa;z and y = ta;z,
where s,t,z € [F,J{, and i # j. It follows that
V;VxV;Vy = V;Vsaiz(vtajz)*vy
= V;staivz(vtvajvz)*vy
VIV(VVLVIVE VIV,
VIV (Vo VaVaVaViVE Vo Vi ViV,
VIV (VaV )V VOV Va VE VIV,

Now, in the bottom line, since the product V, V, of the partial-isometries V,
and V, is a partial-isometry, namely, V,, ,, by [14, Lemma 2], V V, commutes
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with V, V. So, we get
ViViViVy = ViViVa(VVOVaVaVaVa Vi ViV,
= ViViVo(V.V)OVE ViV, =0 (by(3.5).

Thus, the representation V satisfies the Nica covariance condition (3.1). O

4. Partial-isometric crossed products

4.1. Covariant partial-isometric representations. Let P be aleft LCM semi-
group, and (A, P, a) a dynamical system consisting of a C*-algebra A, and an
action ¢ : P — End(A) of P by extendible endomorphisms of A such that
Ao = ldA

Definition 4.1. A covariant partial-isometric representation of (A,P,a) on a
Hilbert space H is a pair (7, V') consisting of a nondegenerate representation
7 : A — B(H) and a Nica partial-isometric representation V' : P — B(H) of P
such that

n(ay(a)) =V,m(a)Vy and ViV 7m(a) = n(a)ViVy 4.1)
foralla € A and x € P.

Lemma 4.2. Every covariant partial-isometric pair (7, V') extends to a covari-
ant partial-isometric representation (7, V') of the system (M(A), P, ), and (4.1)
is equivalent to

m(ax(@)Vy = Vyr(a) and V, Vi =m(a,(1)) (4.2)
foralla € Aand x € P.

Proof. We skip the proof as it follows by similar discussions to the first part of
[23, §4]. O

The following example shows that every dynamical system (A, P, @) admits
a nontrivial (nonzero) covariant partial-isometric representation.

Example 4.3. Suppose that (A, P, &) is a dynamical system, and 7z, : A - B(H)
a nondegenerate representation of A on a Hilbert space H. Define a map 7 :
A — B(¢*(P) @ H) by

(m(a)f)(x) = mo(ax(a)) f(x)
foralla € Aand f € ¢2(P) ® H ~ ¢*(P, H). One can see that 7 is a represen-
tation of A on the Hilbert space £2(P) @ H. Letq : ¢>(P) @ H — ¢*(P) ® H be
a map defined by
(g)(x) = mo(ax (1)) f (x)

for all f € £2(P) ® H. It is not difficult to see that g € B(¢*(P) ® H), which
is actually a projection onto a closed subspace ¢ of £3(P) @ H. We claim
that if {a;} is any approximate unit in A, then 7(a;) converges strictly to g in
M (K (¢*(P) ® H)) = B(¢%(P) ® H). To prove our claim, since the net {r(q;)}
is a norm bounded subset of B(£%(P) ® H), and n(a;)* = n(qa;) for each i as
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well as g* = q, by [27, Proposition C.7], we only need to show that 7(a;) — g
strongly in B(¢*(P) ® H). If {¢, : x € P} is the usual orthonormal basis of
¢2(P), then it is enough to see that

m(a;)(ex ® mo(@)h) — q(ex ® mo(a)h)

for each spanning element (¢, ® 7y(a)h) of £2(P) ® H (recall that 7, is nonde-
generate). We have

7(a;)(ex ® mo(a)h) = &, ® mo(ax(a;))mo(a)h = e, ® mo(ay(a;)a)h,
which is convergent to
&x ® mo(ax(Da)h = &, @ mo(ax(1)mp(a)h = qlex @ mo(a)h)

in £2(P) ® H. This is due to the extendibility of each «,. Therefore, 7(a;) — ¢
strictly in B(¢%(P) ® H).

Next, let W : P — B(£2(P)®H) be the Nica partial-isometric representation
introduced in Example 3.1. We aim at constructing a covariant partial-isometric
representation (p, V') of (A, P, r) on the Hilbert space (closed subspace) F by
using the pair (7r, W). Note that, in general, 7 is not nondegenerate on ¢(P) ®
H, unless a, (1) = 1 for every x € P. So, for our purpose, we first show that

W,rn(a) = n(a(a))W, and WiW,n(a) = n(a)WiW, (4.3)
foralla € A and x € P. For every f € ¢%(P) ® H, we have

(Wym(a) f)(r) (W (m(a) ))(r)
(m(a)f)(rx)
”O(arx(a))f(rx)

7o(a (ax (@)W )(r)
(m(a (@)W f)(r)

forallr € P. So, W m(a) = n(a,(a))W, is valid, from which, we get 7(a)W; =
Win(a,(a)). One can apply these two equations to see that WiW, m(a) =
m(a)WiW, is alsovalid. Also, since W, Wy = S;S, = 1(see Example 3.1), each
W, is a coisometry, and hence, by applying the equation W,z (a) = 7(a,(a))W,,
we have

Wi n(@W; = n(a ()W, W} = m(a(a)). (4.4)

Now we claim that the pair (p, V) = (gq, qWq) is a covariant partial-isometric
representation of of (A, P, &) on J. More precisely, consider the maps

p:A—qB(t*(P)®H)q ~ B(H)
and
V 1 P — qB(f*(P) @ H)q ~ B(J()
defined by
pla) = qn(a)g =7m(a) and V, =qW.q
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for alla € A and x € P, respectively. Since for any approximate unit {a;} in
A, p(a;) = m(a;) — g strongly in B(J(), where g = 1p(y), it follows that the
representation p is nondegenerate. Moreover, by applying (4.4), we have

Vip(@)Vy = qWyqn(a)qWiq = qW m(a)Wiq = qr(a.(a))qg = p(ay(a)).

Also, by applying the first equation of (4.3) and n(a)W5 = Win(a,(a)) along
with the fact that p(a) = q(a)q = qn(a) = n(a)q = n(a), we get

ViVip(a) = qWiqW.qn(a)q
qWiqWm(a)q
gWigqr(a(a))W,q
qWim(a,(a)gWyq
qr(a)WiqW.q
qr(a)gWiqWyq = p(a)ViV .

Thus, it is only left to show that the map V is a Nica partial-isometric represen-
tation. To see that each V, is a partial-isometry, note that, for any approximate
unit {q;}in A,
qW m(a)WiqWyq

converges strongly to

QW qWiqWyq = Vi ViV
in B(¢%(P) ® H). On the other hand, by applying the covariance equations of
the pair (7, W), we have

q[Wym(a)WilgW,q

qn'(ocx(al-))quq

= gqr(ay(a))Wq = qW,m(a;)q,
which converges strongly to qgW,q = V. So, we must have V., ViV, = V,,
which means that each V, is a partial-isometry. To see V, V,, = V,,, for every
X,y € P, we first need to compute V. f for any f € H. So, knowing that
qf = f, we have

[V f1(r) = [qW, f1(r)

[g(W..)I(r)

To(a (D)W f)(r)

7o(ar (1)) f (rx)
7o(a(1))(qf)(rx)
7o(ar(1))7o(ar (1)) f(rx)
7o(a(Day (1)) f (rx)
mo(ax (D) f (rx)

= (gf)rx) = f(rx)

for all r € P. Thus, by applying the above computation, we get

[ViVy f1(r) [Vx(VyHIr)
(Vyf)(rx)

f((rx)y)

FrGxey)) = [V f10r).
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So, it follows that V', Vy=Vyy forall x,y € P. Finally, we show that the partial-
isometric representation V satisfies the Nica covariance condition (3.1). Let us
first mention that the Hilbert space J is spanned by the elements

{e, @ my(a,(1))h : r € P,h € H}
as a closed subspace of £2(P) ® H. Then, for every y € P and f € J(, we have
(V3 (r) = (@W5 /)(r) = (q(Sy H)r) = 7o, (1), [)F).

Now, if r = sy for some s € P, which means that r € Py, we get

(V) = mo(asy (DS, f)(sy) = mo(asy (D) f(s).
Otherwise, (V3 f)(r) = 0. It therefore follows that, if r = sy for some s € P,
then

VIV fItr) = [Vi(Vy M)

7o (@sy(D)Vy f)(8)

(@5 (1) f(5Y)
@f)(sy) = f(sy) = f(r).

Otherwise, [V;V, f](r) = 0. This implies that each VJV, is the projection of 3¢
onto the closed subspace

H, :={f €I : f(r) =0ifr & Py} =ker(1 - VV,)
of F, which is actually spanned by the elements
{esy ® mo(agy(1))h : s € P,h € H}.
Now, if Px N Py = @, then for every f € I,

[V V£l = [V (V3NOIr)
= (V;Nrx) =0,
This is due to the fact that, since rx € Px,rx ¢ Py. So, it follows that V', V; =0,
and hence,

ViV ViV, =0.
If Px N Py = Pz, for every f € J(,
V3V, f)r) ifr € Px,

(V;VX(V;Vyf )(r) = 0 otherwise.

Moreover, for (VJ’," vV, f)(r), where r € Px, we have

f(r) ifrePy,
Viv =
( yry ) 10 otherwise.
So, it follows that
f@r) ifr e (PxnPy)=Pz,
ViV (VEV =
( ENE: yf))(r) {0 otherwise,
which is equal to (V;V,f)(r). Therefore,

ViV, ViV, = ViV,
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Consequently, the pair (p, V) is a (nontrivial) covariant partial-isometric repre-
sentation of (A4, P, ) on K.

Note that, if 77 is faithful, then it is not difficult to see that p becomes faithful.
Hence, every system (A, P,a) has a (nontrivial) covariant pair (p, V) with p
faithful.

4.2. Crossed products and Nica-Teoplitz algebras of Hilbert bimodules.
Let P be a left LCM semigroup, and (A, P, «) a dynamical system consisting of
a C*-algebra A, and an action « : P — End(A) of P by extendible endomor-
phisms of A such that o, = id,.

Definition 4.4. A partial-isometric crossed product of (A, P,a)isatriple (B, i4,ip)
consisting of a C*-algebra B, a nondegenerate injective homomorphism i, :
A — B, and a Nica partial-isometric representation ip : P — M(B) such that:
(i) the pair (iy4, ip) is a covariant partial-isometric representation of (4, P, «)
in B;
(ii) for every covariant partial-isometric representation (7, V) of (A, P, x)
on a Hilbert space H, there exists a nondegenerate representation 7 X
V . B — B(H) such that (7 X V)oi,y = 7w and (& X V)oip = V; and
(iii) the C*-algebra B is generated by {i4(a)ip(x) : a € A,x € P}.
We call the algebra B the partial-isometric crossed product of the system
(A,P,a) and denote it by A xglso p.
Remark 4.5. Note that in the definition above, for part (iii), we actually have
B = span{ip(x)*is(a)ip(y) : x,y € P,a € A}. (4.5)
To see this, we only need to show that the right hand side of (4.5) is closed under

multiplication. To do so, we apply the Nica covariance condition to calculate
each product

[ip(x)*ia(@)ip(W][ip(s)*ia(D)ip(D)]. (4.6)

We have

[ip(x)*ia(@)ip(W)][ip(s)*is(D)ip(£)]

= ip(x)*ia(@)ip(W)ip(y)*ip(V)ip(s)*ip(s)]ip(s)*is(b)ip(t),
which is zero if Py n Ps = @. But if Py N Ps = Pz for some z € P, then
ry = z = gs for some r,q € P, and therefore by the covariance of the pair
(i4,ip), we get

[ip(x)*ia(@)ip(W)][ip(s)*is(D)ip(1)]

= ip(x)*is(@)ip(y)ip(2)*ip(2)ip(s)*ia(D)ip(t)

= ip(x)*iz(@)ip(y)ip(ry)*ip(qs)ip(s)*ia(b)ip(t)

= ip(x0)*ia(@)[ip(V)ip(¥)*lip(r)*“ip(@lip(s)ip(s)*1ia(b)ip(t)
ip(x)*ia(@)ia(ay(1))ip(r)*ip(q)ia(as(1))ia(b)ip(t)
ip(x)*is(aa,(1)ip(r)*ip(q)ia(as(1)b)ip(t)
ip(x)*ip(r)*iaa,(c))ia(ag(d))ip(q)ip(t)
= ip(rx)*ia(a,(c)ay(d))ip(gt),
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which is in the right hand side of (4.5), where ¢ = aa, (1) and d = a,(1)b. Thus,
(4.5) is indeed true.

Next, we want to show that the partial-isometric crossed product of the sys-
tem (A, P, a) always exists, and it is unique up to isomorphism. Firstly, since P
is a left LCM semigroup, the opposite semigroup P° is a right LCM semigroup.
Therefore, one can easily see that (A, P°, ) is a dynamical system in the sense
of [15, Definition 3.1]. Then, following [12, §3] (see also [15, §3]), for every
sEeP,let

X 1= {st x ay(DA,
where o (1)A = a,(A)A = span{a,(a)b : a,b € A} as each endomorphism o
is extendible. Now, each X is given the structure of a Hilbert bimodule over A
via
(8,x)-a :=(s,xa), ((s,%),(s5,¥)a 1= x"y,
and
a-(s,x) 1= (s, a,(a)x).
LetX = |_|S <p Xs» which is equipped with a multiplication

XS X X[ = Kot ((Ss X), (ts y)) = (Ss X)(t, }’)
defined by
(s,2)(t,y) = (ts,a,(x)y) = (s « t,a,(x)y)

for every x € a(1)A and y € a;(1)A. By [12, Lemma 3.2], X is a product
system over the opposite semigroup P° of essential Hilbert bimodules, and the
left action of A on each fiber X is by compact operators. So, X is compactly
aligned by [12, Proposition 5.8]. Let (V' J(X), ix) be the Nica-Toeplitz algebra
corresponding to X (see [12], [7, §6], and [15]), which is generated by the uni-
versal Nica covariant Toeplitz representation iy : X — N J(X). We show that
this algebra is the partial-isometric crossed product of the system (A, P, @). But
we first need to recall that, for any approximate unit {q;} in A, by a similar dis-
cussion to [12, Lemma 3.3], one can see that ix(s, ay(a;)) converges strictly in
the multiplier algebra M(N J (X)) for every s € P. Now, we have:

Proposition 4.6. Suppose that P is a left LCM semigroup, and (A, P, a) a dy-
namical system. Let {a;} be any approximate unit in A. Define the maps

it A->NT(X) and ip : P - MOV T(X))
by

ia(a) :=ix(e,a) and ip(s) :=limix(s, as(a;))* (strictly convergence)
1

foralla € Aands € P. Then the triple (N T(X),i,,ip) is a partial-isometric
crossed product for (A, P, &), which is unique up to isomorphism.

Proof. For any approximate unit {a;} in A,

is(a;) = ix(e, a;) = ix(e, a.(a;))
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converges strictly to 1 in the multiplier algebra M(N J(X)). One can see this
again by [12, Lemma 3.3] similarly when s = e. It follows that i, is a nondegen-
erate homomorphism. By a similar discussion to the first part of the proof of
[12, Proposition 3.4], we can see that the map ip is a partial-isometric represen-
tation such that together with the (nondegenerate) homomorphism i, satisfy
the covariance equations

is(ag(a)) = ip(s)ig(a)ip(s)* and is(a)ip(s)*ip(s) = ip(s)*ip(s)ia(a)

foralla € A and s € P. So, we only need to show that the representation ip
satisfies the Nica covariance condition. By the same calculation as (3.7) in the
proof of [12, Proposition 3.4], we have

ia(ab®)ip(s)*ip(s) = ix(s, as(a))ix (s, ag(b))* 4.7)
foralla,b € Aand s € P, and since

ix (5, cts(@))ix (5, ot (B))* = 19O (an (5o

it follows that
i(@b)ip(s) ip(8) = iy (O(s zy () (s.0(0))- (4.8)
Therefore,
ia(ab®)ip(s)*ip(s)ia(cd®)ip(t)*ip(t)
= 105 (@ sy (Ot (). (t(@)s
and since

is(ab®)ip(s)*ip(s)is(cd™)ip(t)*ip(t)
= is(ab)is(cd®)ip(s) ip(s)ip(t)*ip(t)
= ig(ab*(cd*))ip(s) ip(s)ip(t)*ip(t),

it follows that
is(ab*(cd*))ip(s) ip(s)ip(£)*ip(t) (4.9)
. .(t
= i) (O a5, (0) i (Ot @)1t
Now, if Ps n Pt = Pr for some r € P, which is equivalent to saying that
SeP°NteP°=repP°
since iy is Nica covariant, we have
ix(ab*(cd®))ip(s)*ip(s)ip(t)*ip(t) (4.10)
_ ;)
- er (‘g(®(S,as(a)),(syas(b)))‘:(®(t,at(0)),(t,%(d)))>'

Next, we want to calculate the product

15 (O (@, (s, (Ot (1)
of compact operators in X (X,) to show that it is equal to

O, (ab)),(rct,(de*))-
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Since s« p =r =t « q for some p,q € P, and X; ® 4 X; =~ X,.4, it is enough
to see this on the spanning elements (¢, a;(1)f)(q, a4(1)g) of X;., = X,, where
f, g EeA. First, (t, Et(l)f)(q,aq(l)g) by l;(®(t,oct(c)),(t,a,(d))) is mapped to

(O @)ty (6 T (DG, Ty(1)E))

= (O(t.a, (@) (. ()t A (D)) (g, g (1)g)

= (&, a(e)) - (&, a(@), (6, @ (D), )@, Tg(Dg)
((t, a(0)) - (e (@)D f))(q, Ty (1g)

((t, ay(0)) - (o, (d*)))(gq, @y (1)g)

= ((t, a(Q)a (d*) ))(q, Ty (1)g)

= (t,a,(cd") f)(q, a,(1)g)

(gt, oty (e, (cd®) )t (Dg)

(qt, ay(ct,(cd) f)g)

(qt, ag(cd*)ay(f)g)

(t » g, a.q(cdoy(f)g)

(r, o (cd*)ay(f)g)

(s p,a.p(cd®)ag(f)g) 3

(ps, aps(cd®)ay(f)g) = (s, as(cd™)(p, Tp(Dag(f)g)-

We then let ({(O o (a)) (5.0, (b))) aCt 0N (5, ats(cd™))(p, & p(1)exy(f)g), and hence,

5 P (Os (@) s b)) (€5 ased™))(p, &y (Vg ()g))

= (O s.,(@) (5., (b)) (S As(ed™))(p, &, (Dag(f)g)

= ((s, a5(@) - {(5, a5 (b), (5, a5(ed™)) ) (P, &p(Detg ()
= ((s, a5(@)) - [ (")t (cd ™)) (p, @ p(Dety(f)g)

= ((s, a(@)) - [as(b*ed*)])(p, & p(Dety (f)g)

(s, a(@)etg(b*ed™))(p, &, (Vay(f)g)

(s, ag(ab*cd*)(p, &, (Vaty(f)g)

(ps, a,(ag(ab*cd*)a (Do, (f)g)

(ps, ap(ag(ab*ed*))ay(f)g)

(ps, aps(ab*cd*)a,(f)g)

(s » p, as.p(ab*ed®)ay(f)g) = (r, o, (ab*cd*)a,()g).

Thus, it follows that

15 (O ., (@), 0) 1 (Ot @t @) (8 @ (D (G, Ty (1)g))

= (r,a,(ab*cd*)ay(f)g)- (4.11)
On the other hand, since
(t,a,(Df)Nq, ag(Dg) = (qt, ag(a(1)f)ag(1)g)
= (qt, aq(a:(1)f)g)
= (g, aq(a;(1))ag(f)g)
= (qt’ aqt(l)aq(f)g)

(r, o, (Day(f)g),
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we have
O, (ab" ), (e (£ (1D )G, ag(1)g))
= G(r,oc,(ab*)),(r,ar(dc*))(r, ocr(l)ocq(f)g)
= (r,a,(ab")) - {(r, a,(de*)), (r, &, (Dag()R)
= (r,ap(ab")) - [a,(dc*) o, (Vg (f)g] (4.12)
= (r,a.(ab™)) - [, (cd™)et, (Derg(f)g]
= (r,a,(ab")) - [a,(cd")ay(f)g]
= (r,a,(ab®)a,(cd*)ay(f)g)
= (r, ar(ab*Cd*)aq(f)g)-

So, we conclude by (4.11) and (4.12) that

5 (O (@) s (OtaeNta(@)) = Ot ab . (der)) (4.13)
Consequently, if Ps N Pt = Pr, then by applying (4.13), (4.10), and (4.8), we get

ia(ab*(cd*))ip(s)*ip(s)ip(£)*ip(t)
o
=iy <‘§(®<s,as<a»,<s,as(b»)lf (®(r,at(c>),<t,a,<d>>)>

= i0 (0, (@b (de*))
= ia(ab*(dc*)*)ip(r)*ip(r)
— i y(ab*(cd*))ip(r)*ip(r).

‘We therefore have

ia(ab*cd)ip(s)*ip(s)ip(t)*ip(t) = ix(ab*cd™)ip(r)*ip(r) (4.14)

for all a,b,c,d € A. Since A contains an approximate unit, it follows by (4.14)
that we must have

ip(s)*ip(8)ip(t)*ip(t) = ip(r)*ip(r)

when Ps N Pt = Pr. If Ps N Pt = {J, then again, since iy is Nica covariant, the
right hand side of (4.9) is zero, and therefore,

ia(ab*(cd™))ip(s) ip(s)ip(t)*ip(t) = 0 (4.15)

for all a,b,c,d € A. Thus, similar to the above, as A contains an approximate
unit, we conclude that

ip(s)*ip(8)ip(t)*ip(t) = 0.

So, the pair (i4, ip) is a covariant partial-isometric representation of (A4, P, @) in
the algebra V' 7°(X), and therefore, condition (i) in Definition 4.4 is satisfied.
Next, suppose that (7, V) is a covariant partial-isometric representation of
(A, P,a) on a Hilbert space H. Then, the pair (7, V*) is a representation of the
system (A, P°, «) in the sense of [15, Definition 3.2], which is Nica covariant.
Note that the semigroup homomorphism V* : P° — B(H) is defined by s —
V¥. Therefore, by [15, Proposition 3.11], the map 3 : X — B(H) defined by

¥(s,x) 1= Vim(x)
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is a nondegenerate Nica covariant Toeplitz representation of X on H (see also
[12, Proposition 9.2]). So, there is a homomorphism ¥, : N J(X) —» B(H)
such that 1,0iy = 3 (see [12, 7]), which is nondegenerate. Let 7 X V' = 1,.
Then

(m X V)(is(@) = P.(ix(e, a)) = P(e,a) = Vim(a) = n(a)

for all a € A. Also, since 7 X V is nondegenerate, we have

(rxV)(ip(s)) = (@ xV)(lim; ix(s, og(@;))*)
= lim;(z x V) (ix(s, ag(a;)*)

lim; . (ix (s, a(ap)

lirni ‘l,b(S, as(ai))*

lim; [V (ers(a;)]*

lim;[7(a;)V;]* (by the covariance of (7, V))
lim; V(a;) = Vi

for all s € P. Thus, condition (ii) in Definition 4.4 is satisfied, too.

Finally, condition (iii) also holds as the elements of the form iy (s, a,(1)a*)*
generate V' J(X), and

ix(s, as(a*)* = is(a)ip(s),
which follows by a simple computation.

To see that the homomorphism i, is injective, we recall from Example 4.3
that the system (A, P, «) admits a (nontrivial) covariant partial-isometric rep-
resentation (7, V) with 7 faithful. Therefore, it follows from the equation (7r X
V)oi, = m that iy must be injective.

For uniqueness, suppose that (C, j4, jp) is another triple which satisfies con-
ditions (i)-(iii) in Definition 4.4. Then, by applying the universal properties
(condition (ii)) of the algebras C and V' J(X), once can see that there is an iso-
morphism of C onto V' J°(X) which maps the pair (j4, jp) to the pair (iy, ip).

O

Remark 4.7. Recall that when P is the positive cone of an abelian lattice-ordered
group G, by [12, Theorem 9.3], a covariant partial-isometric representation (7, V)
of (A,P,a) on a Hilbert space H induces a faithful representation 7 X V' of
A xP%° P if and only if, for every finite subset F = {x1,X,, ..., x,} of P\{e}, 7
is faithful on the range of

n
[Ta-viv,)
i=1

Also, note that, by [15, Theorem 3.13], a similar necessary and sufficient condi-
tion for the faithfulness of the representation 77 x V of A x2"°° P can be obtained
for more general semigroups P, namely, LCM semigroups. (see also [11, Theo-

rem 3.2]).

Suppose that (A, P, ) is a dynamical system, and I is an ideal of A such that
piso

as(I) C I for all s € P. To define a crossed product I X, ~ P which we want it



PARTIAL-ISOMETRIC CROSSED PRODUCTS 71

to sit naturally in A XEISO P as an ideal, we need some extra condition. So, we
need to recall a definition from [1]. Let a be an extendible endomorphism of a
C*-algebra A, and I an ideal of A. Suppose thaty : A — M(I) is the canonical
nondegenerate homomorphism defined by ¢(a)i = aiforalla € Aandi € I.
Then, we say I is extendible a-invariant if it is a-invariant, which means that
a(Il) c I, and the endomorphism «|; is extendible, such that

a(uy) = P@aga)))

strictly in M (I), where {u,} is an approximate unit in I.

In addition, if (A, P,a) is a dynamical system and I is an ideal of A, then
there is a dynamical system (A/I, P, &) with extendible endomorphisms given
by ag(a +I) = ag(a) + I for every a € A and s € P (see again [1]).

The following theorem is actually a generalization of [5, Theorem 3.1]:

Theorem 4.8. Let (A xgiso P,i4, V) be the partial-isometric crossed product of a
dynamical system (A, P, a), and I an extendible o, -invariant ideal of A for every
Xx € P. Then, there is a short exact sequence

piso
a

0—IxPop L axPsop 2o g/ xP®p 0 (4.16)

of C*-algebras, where u is an isomorphism of I xgiso P onto the ideal

& i=span{V;i ,())V, : i €l,s,t € P}

of A xgi“’ P.Ifq : A — A/l is the quotient map, and the triples (I xgiso P,i;, W)
and (A/I xglso P, i, U) are the crossed products of the systems (I, P,a) and

(A/I, P, &), respectively, then

Iuoif = iAlI’ ﬁoW =V and qDOiA = iA/qu’ EOV =U.

piso

Proof. We first show that € is an ideal of A X;, P. To do so, it suffices to see
on the spanning elements of € that V&, iy(a)&, and V£ are all contained in
& for every a € A and r € P. This first one is obvious, and the second one
follows easily by applying the covariance equation iy (a)V; = Viis(ag(a)). For
the third one, we have

ViVSiaV, =V [VIV, VEVIVEia DV,
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which is zero if Pr n Ps = @. But if Pr N Ps = Pz for some z € P, then there are
X,y € P such that xr = z = ys, and therefore it follows that

VrV:iA(i)Vt =V, [V;VZ]V:iA(i)Vt

VrV;ckrVysV;kiA(i)Vt

Vr [Ver]*VstV;k iA(i)Vt

[VrV;k]V;Vy [VSV:]iA(i)Vt
ia(a,(DVVyia(ay(1)ig(V, (by Lemma (4.2))
Viia(ax(a,())Vyia(as(1)i)V, (by Lemma (4.2))
Viia(@y (D)ia(ay(@(DD)V,V,
Viia(az(1))ia(ay (@ (1)), (D)Vy,
Viia(az(1)ig(ays(Det, (D)V

Vi@ ())ia(@(Day, D)V,
V)tiA(‘xz(]-)(xz(l)ocy(i))Vyt

Viia(a,(Day(D)Vy,,

which belongs to €. Thus, € is an ideal of A xgi“’ P.Let¢p : A xgi“ P - M(E)
be the canonical nondegenerate homomorphism defined by ¢(§)n = &7 for all

£ € AxY™ pandy € & Suppose that now the maps
ky :IT->M(E) and S : P - M(E)

are defined by the compositions

12 4 X250 p 2, M(E) and P N M(A x2*° P) N M(E),
respectively. We claim that the triple (&, k;,S) is a partial-isometric crossed
product of the system (I, P, r). First, exactly by the same discussion as in the
proof of [ 5, Theorem 3.1] using the extendibility of the ideal I, it follows that the
homomorphism k; is nondegenerate. Also, it follows easily by the definition of
the map S that it is indeed a Nica partial-isometric representation. Then, by
some routine calculations, one can see that the pair (k;, S) satisfies the covari-
ance equations

k(e (i) = Siky(1)S} and S;Ski (D) = ki(D)S} S,

forallieIandt € P.

Next, suppose that the pair (7, T) is a covariant partial-isometric represen-
tation of (I, P,a) on a Hilbert space H. Let ¢ : A — M(I) be the canonical
nondegenerate homomorphism which was mentioned about earlier. Let the
map p : A — B(H) be defined by the composition

A2 v = B,

which is a nondegenerate representation of A on H. We claim that the pair
(p, T) is a covariant partial-isometric representation of (A, P, &) on H. To prove
our claim, we only need to show that the pair (p, T) satisfies the covariance
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equations (4.1). Since the ideal I is extendible, we have @oz,b = oa, for all
s € P. It therefore follows that
plas(a)) = (E°¢)(as(a))

= 7(poas(a))

= 7(aslrop(a))

= (moa,|(¥(a))

= Ta(a)Ts = Typ(a)Ty.
Also, one can easily see that we have T;T,o(a) = p(a)T;T,. Thus, there is a
nondegenerate representation pXT of A xgiSOP on H, whose restriction (o XT)|¢
is a nondegenerate representation of & on H satisfying

(pXT)|gok; =m and (o X T)|goS =T.
Finally, the elements of the form
SskiDS; = ¢V $iaD)P(V,)
p(Viia(DVy) = VgDV,
obviously span the algebra €. Thus, (&, k;, S) is a partial-isometric crossed prod-

uct of (I, P, @). So, by Proposition 4.6, there is an isomorphism u : I xgiSOP > &
such that

wiOW,) = ki (DS, = $ial (D)EV,) = $ial (DV1) = ial DV,

from which, it follows that

IL{OiI = iAlI andﬁOW =V.
To get the desired homomorphism ¢, let the homomorphism j, : A —
A/l xglso P be given by the composition

i .
AL a2l ayrxEep,
which is nondegenerate. Then, it is not difficult to see that the pair (j4,U) is a

covariant partial-isometric representation of (4, P, @) in the algebra A /T x2*°P.

Thus, there is a nondegenerate homomorphism ¢ (= j, XU : A xgi“’ P —
A/I x2™° P such that

&
@oiy = ja =ig/0q and oV =U,
which implies that ¢ is onto.

Finally, we show that u(I x2°° P) = & is equal to ker ¢ which means that
(4.16) is exact. The inclusion & C ker ¢ is immediate. To see the other inclu-
sion, take a nondegenerate representation IT of A x>°° P on a Hilbert space H
with kerIT = &. Since I C ker(Iloiy), the composition IToi, gives a (well-
defined) nodegenerate representation IT of A/I on H. Also, the composition
TIoV defines a Nica partial-isometric representation P on H, such that together
with IT forms a covariant partial-isometric representation of (A JI,P,&)on H.
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Then the corresponding (Eondegenerate) representation II X (TToV) lifts to TI,
which means that [II X (IToV)]op = II, from which the inclusion kerp C &
follows. This completes the proof. O

Example 4.9. Suppose that S is a unital right LCM semigroup. See in [6, 25]
that associated to S there is a universal C*-algebra

C*(S) = span{W W/ : s,t € S}

generated by a universal isometric representation W : S — C*(S), which is
Nica-covariant, which means that it satisfies

wWw; ifrSnsS =tS,
0 ifrSnsS =4¢.
In addition, by [7, Corollary 7.11], C*(S) is isomorphic to the Nica-Toeplitz al-
gebra N J(X) of the compactly aligned product system X over S with fibers
X; = Cforall s € S. Now, consider the trivial dynamical system (C, P, id),

where P is a left LCM semigroup. So, the opposite semigroup P° is right LCM.
Then, it follows by Proposition 4.6 that there is an isomorphism

ip(x) € (CXI°P) > Wi € C*(P)
for all x € P, where W is the universal Nica-covariant isometric representation
of P° which generates C*(P°).

For the C*-algebra C*(S) associated to any arbitrary left cancellative semi-
group S, readers may refer to [22].

W, W W W = (4.17)

Lemma 4.10. For the dynamical system (A, P,id) in which P is a left LCM semi-
group and id denotes the trivial action, we have

(AXE P,1) 2 A @pay C(P)

The isomorphism maps each (spanning) element i,,(x)*is(a)iy(y) of A ngo Pto
a @ W, W3, where W is the universal Nica-covariant isometric representation of
P° which generates C*(P°).

Proof. We skip the proof as it follows easily by some routine calculations. [

5. Tensor products of crossed products

Let (A,P,a) and (B, S, 8) be dynamical systems in which P and S are left
LCM semigroups. Then, P X S is a unital semigroup with the unit element
(ep,es), where ep and eg are the unit elements of P and S, respectively. In addi-
tion, since

PxSx,r)Nn (P xS)(,s) (Px X Sr)n (Py X Ss) (5.1)
(Px N Py) x (Srn Ss), )
it follows that P x S is a left LCM semigroup. More precisely, if Px N Py = Pz
and Sr N Ss = St for some z € P and t € S, then it follows by (5.1) that

PxS)x,r)N(PxS)y,s) =PzxSt =(PxS)z,1t),
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which means that (z,t) is a least common left multiple of (x,r) and (y, s) in
P x S. Otherwise, (P X S)(x,r) N (P X S)(y,s) = @. Thus, P X S is actually a
left LCM semigroup (note that, the similar fact holds if P and S are right LCM
semigroups).

Next, for every x € Pand r € S, as a,, and 8, are endomorphisms of the
algebras A and B, respectively, it follows by [27, Lemma B. 31] that there is
an endomorphism a, ® B, of the maximal tensor product A ®,.x B such that
(a, ® B ) a®b) =a,(a)® B,.(b) forall a € A and b € B. We therefore have
an action

a®p : PxS — End(A @y B)

of P X S on A ®.x B by endomorphisms such that
(@® B)x) = ax @ B, forall (x,r) €PXS.

Moreover, it follows by the extendibility of the actions a and 3 that the action
a ® B on A ®nax B is actually given by extendible endomorphisms (see [18,
Lemma 2.3]). Thus, we have a dynamical system (A ®.x B,P X S,a ® f8),
for which, we want to study the corresponding partial-isometric crossed prod-
uct. We actually aim to show that under some certain conditions we have the
following isomorphism:
(A ®max B) X(gp (P X S) = (A X5 P) @nmax (BX; ).

In fact, those conditions are to ensure that the Nica partial-isometric represen-
tations of P and S are x-commuting. Hence, we first need to assume that the
unital semigroups P, P°, S, and S° are all left LCM. It thus turns out that all of
them must actually be both left and right LCM semigroups. The other condi-
tion comes from the following definition:

Definition 5.1. Suppose that P and P° are both left LCM semigroups. A bicovari-
ant partial-isometric representation of P on a Hilbert space H is a Nica partial-
isometric representation V : P — B(H) which satisfies

Vv ifrPnsP =tP,

5.2
0 ifrPnsP =4. (5.2)

V, VIV V=
Note the equation (5.2) is a kind of Nica covariance condition, too. So, to dis-
tinguish it from the covariance equation (3.1), we view (3.1) as the right Nica
covariance condition and (5.2) as the left Nica covariance condition.

Note that similar to (3.1), we can see that the equation (5.2) is also well-
defined.

Lemma 5.2. Suppose that the unital semigroups P, P°, S, and S° are all left LCM.
Let V and W be bicovariant partial-isometric representations of P and S on a
Hilbert space H, respectively, such that each V, x-commutes with each W for all
p € Pand s € S. Then, there exits a bicovariant partial-isometric representation
U of P X S on H such that U, ;) = V,W. Moreover, every bicovariant partial-
isometric representation of P X S arises this way.
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Proof. DefineamapU : P XS — B(H) by
Ups) = VpWs

for all (p,s) € P X S. Since each V', x-commutes with each Wy, it follows that
each U(, ;) is a partial isometry, as

U(P’S)U(*p,s)U(P)s) = VWiV W'V, Wi

VW WV, IV, W,

VWV, WiV, Wy
VpVaWV Wil
V ViV, WWiW, =V, W, = Uy,
Also, a simple computation shows that

UpsUan = Upsian
for every (p,s) and (g,t) in P X S. Thus, the map U is a (unital) semigroup
homomorphism (with partial-isometric values). Next, we want to show that it
satisfies the Nica covariance conditions (3.1) and (5.2), and hence, it is bicovari-
ant. To see (3.1), we first have

U U UioUan = VWV WV W VW,
vawhs oy,
p S p S q t q t
VeV WiV WiV Wi W,
VIV VWV W WiW,
[VEV, VIV IIWEWWIW,].

(5.3)

If
PxS)p,s)N(PxS)g,t) =P xS)z,r)=PzxSr

for some (z,r) € P X S, then it follows by (5.1) (for the left hand side in above)
that

(PpnPq) X (SsnSt) =Pz x Sr.
Thus, we must have

PpnPq =Pz and Ssn St = Sr,
and hence, for (5.3), we get

U UoUs oUan = VEVVaVollWiw,wiw,]
V; VZWfWr

V; W;,k V,W,

[u/rvz]>(< U(z,r)

[VzWr]*U(z,r) = UEkZJ,) U(z,r)-

If (P x S)(p,s)N(PxS)q,t) =@, then again, by (5.1), we get
(PpnPqg)x (SsnSt)=4@.

It follows that
PpnNnPg=@ v SsnSt=4g,
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which implies that,
Sne
Thus, for (5.3), we have
UEkp,s)U(P’S)UEkq,t)U(q’t) = VRV, VeV IWiWWiW, ] = 0.

A similar discussion shows that the representation U satisfies the Nica covari-
ance condition (5.2), too. Therefore, U is a bicovariant partial-isometric repre-
sentation of P X S on H satisfying U, o) = V,Wi.

Conversely, suppose that U is any bicovariant partial-isometric representa-
tion of P X S on a Hilbert space H. Define the maps

V:P—->BH)and W : S - B(H)

=0 vV WWW:W, =0.

by

Vp = U(p,es) and Ws = U(ep,s)
for all p € P and s € S, respectively. It is easy to see that each V, is a partial
isometry as well as each Wy, and the maps V and W are (unital) semigroup
homomorphisms. Next, we show that the presentation V is bicovariant, and
we skip the proof for the presentation W as it follows similarly. To see that the
presentation V satisfies the Nica covariance condition (3.1), firstly,

ViVpViVa = Ul Uipen U e Utges)- (5.4)

Now, if Pp N Pq = Pz for some z € P, then it follows by (5.1) that

(PxS)p,es)N(PxS)g,es) = (PpNPg)X(SNS)
= PzxS
= Pz X Seg = (P x S)z, es).

Therefore, since U is bicovariant, for (5.4), we have

V;VPV; Vq = UEkp,eS)U(paeS)U(*q,eS)U(q’eS)
= U(Z,eS)U(Z’eS) - Vz VZ.

If Pp N Pq = @, then it follows again by (5.1) that
(PxS)p,es)N(PxS)g,es) =PpNPg)X(SNS)=0xS =4¢.
Therefore, for (5.4), we get

% * _ * * —
VprVqV - U(p,es)U(p’eS)U(q,eS)U(q’eS) - 0’

as U is bicovariant. A similar discussion shows that the representation V sat-

isfies the Nica covariance condition (5.2), too. We skip it here. Finally, as we

obviously have
V, Wy =WV, =Ugyy, (5.5)
it is only left to show that VW, = WV forall p € Pand s € S. To do so,

we first need to recall that the product vw of two partial isometries v and w is
a partial isometry if and only if v*v commutes with ww* (see [14, Lemma 2]).
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This fact can be applied to the partial isometries V, and W due to (5.5). Now,
we have

VW, = ViV,ViWWIW,

UEkp’eS) [ U(p’eS) U(*p’eS) U(eP ’S) UEkePis)] U(eP ,S) ’

(5.6)

Since,

(p,es)(P X S)Nn (ep,s)(PXS) (pP X S)N (P x sS)
(pPNP)X(SNsS)

pP x5S = (p,s)(P X S),

it follows that
V,ViW W

Utp.es) Uzkp,es) Utep9 U(*ep,S)
(P,s) « (5‘7)
Uipes)Uter) U (ep)Upees) ]

U(P,es) U(eP 5) UEkp,es) UEkeP,s) = VP W V;; W;k >

as U is bicovariant. Therefore, by (5.6) and (5.7), we get

ViWs = ViV, VW WIW,
VAV, W VEWETW,

£3 ES ES 3k ES
[VPVPP/S*WS ]WSVQ[VP*VPWS W:]

(WS VoV o WSV (WW,Y V]
W WV , W VEW WV V5]
WWEVEIV VEWWEIWV,VE] (by (5.7))
WWIVEWV, Ve
W[V, W) (V, WV

WS[UEkp’S) U(p,s)]V; >

and hence,

VW, = WU UqpolVs. (5.8)

Moreover, since similarly

(P x S)(ep,s)N (P xS)p,es) = (P xS)p,s),

we have
Ut U@Vl Utnes) = Ugy g Utpy
as U is bicovariant. By applying this to (5.8), we finally get

V;;Ws = W U] U(ep,S)U* U(P,es)]V;

(i”’s) " (P,ﬁs)
= [WsWsWs][VprVp]

= W,V

This completes the proof. O
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Remark 5.3. If P is the positive cone of a totally ordered group G, then every
partial-isometric representation V of P automatically satisfies the left Nica co-
variance condition (5.2), such that

V ViV, Vi = Vmax{x,y}v;;ax{x,y} forallx,y € P.
Therefore, every partial-isometric representation of P is automatically bicovari-
ant (see Remark 3.2).

Remark 5.4. Recall that a partial isometry V is called a power partial isome-
try if V" is a partial isometry for every n € N. One can see that every power
partial isometry V' generates a partial-isometric representation of N such that
V, := V" for every n € N, and every partial-isometric representation V of
N arises this way, which means that it is actually generated by the power par-
tial isometry V. Now, it follows by Lemma 5.2 that U is a bicovariant partial-
isometric representation of N? if and only if there are *-commuting power par-
tial isometries V and W such that U, ,y = V""W" for every (m, n) € N2,

Lemma 5.5. Consider the left quasi-lattice ordered group (F,, F,\) (see Example
2.4). A partial-isometric representation V of F, satisfies the left Nica covariance
condition (5.2) if and only if the initial projections V, V, and Va, sz have or-
thogonal ranges, where 1 < i, j < nsuch thati # j.

Proof. We skip the proof as it follows by a similar discussion to the proof of
Lemma 3.3. ]

Lemma 5.6. Consider the abelian lattice-ordered group (Q’x,N*) (see Exam-
ple 2.3). A partial-isometric representation V of N™ is bicovariant if and only if
ViV, =V,VE for every relatively prime pair (m, n) of elements in N

Proof. Suppose that V is a bicovariant partial-isometric representation of N,
So, we have

ViViViVy = Vi Vavys (5.9)
and

VViVVi =V Vi, (5.10)
for all x,y € N*. If (m, n) is a relatively prime pair of elements in N*, then

n vV m = nm, and hence, we have

VaVi = VaViVaVaVulVin
VaVinVanVi by (5.9)
Vn(Vn ‘/I’}'l)>‘< Vl’l Vm V:;’l

Vo .V (ViV,V,, Vi),
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where in the bottom line, by [14, Lemma 2], V;;V,, commutes with V,,,V as
ViV = V- We therefore get

VnV;kn = Vn(V;anmV;)VZVn

ViV ViV

V.V, V)V,

VVium)* Vi

VulVin)* Vi

VaVilVi)*Vy

Va(VaVi)Vi

VaVaVal Vi)V Vi
VoV Va Vi)V Vi
V;ikflvmn(vmvn)*vn = V;anv;;znvn-

Finally, in the bottom line, since
anV;)k’m = VmV;annV:z

by (5.10), it follows that
Va Vi = VEVVEV VIV, = VEV,.

Conversely, assume that V is a partial-isometric representation of N* such
that V*V, = V,V: for every relatively prime pair (m, n) of elements in N*.
We want to prove that V' is bicovariant. To do so, we only show that V' satisfies
the equation (5.9) as the other equation, namely (5.10), follows by a similar
discussion. Let x,y € N*. If x and y are relatively prime, then one can easily
see that V' satisfies the equation (5.9) as V,, commutes with V. Now, assume
that x and y are not relatively prime, and therefore, we must have x,y > 1. By
the prime factorization theorem, x and y can be uniquely written as

ny _np

x=(p'py? - por and y=(p/"p,? - po)s,
where p; < p, < ... < pi are primes, each n; and m; is a positive integer, and
r,s € N such that all pairs (r, H;{:l p?"), (r,s), (r, Hi;l pim"), (s, Hle p;ﬂ"),
and (s, H;{:l p?") are relatively prime. We let a = Hf;l p?i and b = HL p;""
for convenience. Now, we have
VIV VIV, = ViVL ViV
= VoV VoV VeV ) ViV,
VIVEV(V,VOVIV,V,
VIVLV VOV, VVEV (since g.e.d(r,s) = 1)
VIVRVOVV, (V. V)V (since g.c.d(a,s) = g.c.d(r,b) = 1)
ViV V) VaViV,V,
ViV VaV ViV
Vi(Vas) VoV ViV, Vs
= ViV V)'VV ViV (5.11)
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V;kr(vz Va VZ Vi )Vrs
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(V;'k V:)(VzVaV;Vb)Vrs
(VsVr)*(VZVaVZ Vb)Vrs
= st(VakVaV,ij)Vrs .

Then, in the bottom line, for Vj;VaVZVb, since the pairs (V,V,) and (V},V})

obviously commute for all t,u € N,

and g.c.d(p™, g") = 1 for distinct primes

p and g and positive integers m and n, we have

V;VGVZVb
= (V;Zk .. V;;q )(fol . Vp:k)(V;;"k .. V;:nl )(Vp;,,1 e Vp;{"k)
= (V;?1 N VZZ" )(fol - szk )(V;;n1 . V;;:k )(Vp:"l c Vp;nk)
= (V:fl Vp;ll V:;nl Vpi"l )(V;;2 ce V;Zk )(Vp,212 ce Vp:")(V:;ﬂz ce V:;:k)

(szmz cee Vpl’("k)
— % n % m *
= VoV VoV )V o,
Let t; = max{n;, m;} forevery 1 <i <

* *
Vp?l. Vi Vpi,,,i Vi

If max{n;, m;} = m;, then

* . % X
ViV iV oV

VoV, V m) - (V* V auV*, V m).
Py p? pz) ( Pk P pl* pk)

k. If max{n;, m;} = n;, then

V* (V ey m )V V mi
pin,( pfnz mz)pimz) p;n, b; t

Vpini Vpi(ni—mi) (Vpimi Vpimi Vpl_ml )
%

Vpini Vpi(ni—mi) Vpimi

|4

p
V %V =V*V 4.
pi"l p;' p:z p/

%
V.
i

(nj—m;) m;
i i

V;”i Vpi"i (fomi‘”i)p,"i )* Vpimi
i i i
V;,-ni Vpini (fom,—-n,-) Vpini )* Vpi'ni

V m

* RV *
(Vpi"i Vp:h Vpl."i )Vp P!

(mj—n;)
i

% %
V ”tV (mj—n;)

b; ;
(Vpgmi—ni) Vplnl )* Vp,ml

Vpl_ml-

(Vplf'm‘—ni)pini )*Vpl_mi

. = * .
p:’”z Vp;i Vplfi .
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So, forevery 1 <i <k,

V5V m VSV om =V V
p?l pil p:nl pi 1 pltl pil ’

from which, it follows that
VaVaVyVe = (V*, 14 zl)(V*t 14 zz)(V*t Vyad o (Vo V)
k
= (V" )(V ertz)(V* Vta) (V Vtk)
= (VZ;VZ;VZ;XVP;IV VgV . Vi) <V V)

(5.12)

= (V;;l V:;z V:? e V*tk )(V [IV f2 Vpgs ce Vka)

= (V fk ,pfs [5) ;1)*(Vp§1 13 -p k)

(Vp[lptzpt3 B tk)*(v [1 t3 -p k)

= (VHll ztl) (VHl D l) a\/b avb'

Finally, by applying (5.12) to (5.11), since x Vy = (Hf=1 p;i)rs = (aV b)rs,we
get
V;va;vy = S(Vavb Vave)Vrs
(Va\/bvrs) (Va\/bvrs)
(V(avb)rs)*(v(avb)rs) - vanyVy‘

So, we are done. O

Definition 5.7. Let (A, P, a) be a dynamical system, in which P and P° are both
left LCM semigroups. The action « is called left-Nica covariant if it satisfies

a,(1) ifxPnNyP =zP,

@MW) =14, if xP N yP = .

(5.13)

We should mention that the above definition is well-defined. This is due to
the fact that if tP = xP n yP = zP, then there is an invertible element u of P
such that t = zu. Since u is invertible, a,, becomes an automorphism of A, and
hence a,,(1) = 1. So, it follows that

at(l) = azu(]-) = az(au(l)) = az(l)

Remark 5.8. Let (A, P,a) be a dynamical system, in which P and P° are both
left LCM semigroups, and the action « is left Nica-covariant. If (7, V) is covari-
ant partial-isometric of the system, then the representation V satisfies the left
Nica-covariance condition (5.2). One can easily see this by applying the equa-
tion V, .V = m(a,(1)) (see Lemma 4.2). Thus, the representation V is actually
bicovariant.
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Let us also recall that for C*-algebras A and B, there are nondegenerate ho-
momorphisms

ky @ A— M(A®umyB) and kg : B — M(A ®ay B)

such that
ka(a)kp(b) = kp(b)ka(a) =a®b
foralla € Aand b € B (see [27, Theorem B. 27]). Moreover, One can see that

the extensions k, and kp of the nondegenerate homomorphisms k, and kg,
respectively, have also commuting ranges. Therefore, there isa homomorphism

ka ®max kg + M(A) @pax M(B) = M(A @pax B),
which is the identity map on A ® .« B (see [18, Remark 2.2]).

Theorem 5.9. Suppose that the unital semigroups P, P°, S, and S° are all left
LCM. Let (A, P, ) and (B, S, 8) be dynamical systems in which the actions a and
B are both left Nica-covariant. Then, we have the following isomorphism:

(A ®pax B) X}, (P X S) = (AXE™ P) @i (BXG™ ). (5.14)

piso

Proof. Let the triples (A xf,’js" P,i,,ip) and (B X

isometric crossed products of the dynamical systems (A, P, ) and (B, S, 8), re-
spectively. Suppose that (ksx_p, kBX/gS) is the canonical pair of the algebras

S,ig,ig) be the partial-

piso

AX; "PandB xgiso S into the multiplier algebra M((A xgiso P)®pax (B xgiso S)).
Define the map
JA® B A Bmax B = (AXE™ P) @pax (BX ™ 5)
by jag, B := ia ®max ip (see [27, Lemma B. 31]), and therefore, we have
JA® (@ ® b) = i4(a) ® ip(b) = kax p(ia(a))kpy,s(ip(b))
forall a,b € A. Also, define a map
Joxs T PXS = MUAXE™ P) @max (BX]™ S))
by

Jpxs(X, 1) = Kax p @max kpsx;s(ip(x) ® is(t)) = kax p(ip(x))kpyx,s(is(t))
for all (x, t) € P x S. We claim that the triple
((AXE™ P) @max (BXG™ ), gy > Jpxs)

is a partial-isometric crossed product of the system (A @ pnax B,P X S,a ® B).
To prove our claim, first note that, since the homomorphisms i, and ip are
nondegenerate, so is the homomorphism j,g__ 5. Next, we show that the map
Jpxs is a bicovariant partial-isometric representation of P X S. To do so, first
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note that, since the actions a and § are left Nica-covariant, the representations
ip and ig are bicovariant (see Remark 5.8). It follows that the maps

jp 2 P = MUAXE™ P) @prax (B XE™ 5))

and . .
Js © S = MUAXE™ P) @puax (BXE™ )

given by compositions

i . Kasxg . )
P =5 M(A X P) 5 MAXE™ P) @pa (B X5 5)

and

i . kpy s . .
S = M(BX5™ 5) —> MUAXE™ P) @pax (B X5™ 5)),

respectively, are bicovariant partial-isometric representations of P and S in the

multiplier algebra M((A xgi“ P) ®max (B xgiso S)). Moreover, since the homo-

morphisms k4, p and kpy 55 have commuting ranges, each jp(x) *-commutes
with each jg(t). Therefore, as

Jpxs(X, 1) = Kax p(ip(X))kpx s (is(1)) = jp(x) js(t),

it follows by Lemma (5.2) that the map jpys must be a bicovariant partial-
isometric representation of P X S. Moreover, by using the covariance equations
of the pairs (i, ip) and (i, is), and the commutativity of the ranges of the maps
kax p and Kpx,s, one can see that the pair (jag__ B, jpxs) satisfies the covari-
ance equations

J 4@ B((& ® B)(x,n(a ® b)) = jpus(X,t)jag,,.B(@ ® b)jpxs(x, )"

and

Jpxs(X, ) jpxs(X, jag, . B(@a ®b) = jag, (@ ® b)jpxs(X, )" jpxs(x,t).

Next, suppose that the pair (7, U) is covariant partial-isometric representa-
tion of (A @max B, P X S, ® ) on a Hilbert space H. We want to get a nonde-

piso

generate representation 7 X U of (A X, P) Qmax (B xgiso S) such that

(X U)ojag, =7 and (X U)ojpys =U.
Let (k 4, kg) be the canonical pair of the C*-algebras A and B into the multiplier
algebra M(A ®max B). The compositions
A — M(A Quax B) — B(H)
and

B =% M(A @ B) , B(H)
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give us the nondegenerate representations 74 and 7z of A and B on H with
commuting ranges, respectively. This is due to the fact that the ranges of i, and
ip commute (see also [27, Corollary B. 22]). Also, define the maps

V :P— B(H) and W : S > B(H)

by
Vx = U(x,es) and Wt = U(ep,t)

forall x € Pand t € S, respectively. Since the representation U already sat-
isfies the right Nica covariance condition (3.1), if we show that it satisfies the
left Nica covariance condition (5.2), too, then it is bicovariant. Therefore, it fol-
lows by Lemma 5.2 that the maps V and W are bicovariant partial-isometric
representations such that each V', x-commutes with each W, for all x € P and
t € S. By Remark 5.8, we only need to verify that the action a ® 8 in the system
(A ®max B, P X S,a ® B) is left Nica-covariant. Firstly, we have

(@ ® By °ka Omax k) = ® Bro(ky Gma kn)
(kAoax) ®ma.x (kBO;B[)
for all (x,t) € P x S (see [18, Lemma 2.3]). It follows that

(5.15)

(@ ® B .y LA 1ucB) (X B By ) (AM(A® e B))

= [ﬁx ® Br(kA(IJﬂA)_)kBOM(B)M[ay ® I@s(kAEJV[_(A))kB(lM(B)))]
= k_A(ax(lM(A)))k_B(ﬁr(lM(B)))ki(a_y(LM(A)))k_B(E ()

= k_A(Ex(lM(A)))kA (ay(l]v[@)lkB(5r(1]£(B)))kB(ﬁ (aes)

= ka(@(aecaay Uaecay)) ks (B, Iaez)B, (L)),

and hence,

m(x,r)(1M(A®max3))m(y,s)(lmmqgmg))
= ka (@ (L)% Uaeea) ke (B, Laeee)B(Laeay)
for all (x,r),(y,s) € P X S. Now, if
x, )P XS)N(Y,s)(PXS)=(z,t)(PXS)

for some (z,t) € P X S, then, since

(5.16)

XPNyP =zP and rSnsS =tS,

and the actions o and g are left Nica-covariant, for (5.16), we get

(Oig 6)(x,r)(1M(A&na)i3))(“ ® By, (1nM(A@muxB))

= kA_(az(lM(A)))kB_(ﬁ[_(lM(B)))

= (ka °az) gmax (kBo_Bt)(lM(A) ® 1M(B))

= o, @ Bi(ka ®max ks(Lyrca) ® 1)) [by (5.15)]
= (@ ® B) .y AM(AB )
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If (x,r)(PxS)N (y,s)(P xS) =@, then
XPNyYyP=@ Vv rSnsS =0,
which implies that

a(Iagcayay(Iageay) =0 V Er(lM(B))Es(l.’M(B)) =0

as o and f are left Nica-covariant. Thus, for (5.16), we get

(@ ® B) ) (L(A®1nuB))X B B, ) (I(A® o)) = O

So, the action o ® S is left Nica-covariant.

Now, consider the pairs (74, V) and (75, W). They are indeed the covariant
partial-isometric representations of the systems (A, P, «) and (B, S, ) on H, re-
spectively. We only show this for (74, V) as the proof for (75, W) follows sim-
ilarly. We have to show that the pair (7 4, V') satisfies the covariance equations
(4.1). We have

Vara(@Vy = Ugepmlka(aDU(,
= U etka(@)m(pyag,, 85U,
= UteepaUea(@)@ep(Lagp)IU;,
= Uteeplka(@ks(Lyp)IU7, ,
= 7((@ ® By oy (ka(@kp(lagcs)))
= (e ® By (ka(@kp(Loes)))
= T(ka@x(@)kp(B,,(Lrez)) [by (5.15)]
7 (ka(ax(@)kp(idoes) (Laecs)))
7 (ka(ax(@)kp(Lyg))

= 7(kala(@)yag,. 5)

= 7(ka(ax(a)) = malax(@)
foralla € A and x € P. Also, by a similar calculation using the covariance of
the pair (7, U), it follows that

TA@QVEV, = VIV, 4(0).

&
(x’eS)

Consequently, there are nondegenerate representations 74 X V and g X W of

the algebras A xljjs" Pand B xgiso S on H, respectively, such that

(myg X V)oiy =7y, my X Voip =V and (g X W)oig = mp, mg X Woig = W.

Next, we aim to show that the representations 74 X V and 7y X W have
commuting ranges, from which, it follows that there is a representation (74 X
V) ®max (T X W) of (A X2 P) @max (B xg,lso S), which is the desired (non-
degenerate) representation 7 X U. So, it suffices to see that the pairs (74, 7p),

V, W), (V*,W), (m4, W), and (7, V) all have commuting ranges. We already
saw that this is indeed true for the first three pairs. So, we compute to show
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that this is also true for the pair (74, W) and skip the similar computation for
the pair (75, V). We have
W 4(a) U(ep,t)ﬁ(kA(a))
Uepy Tka(@)Lpr(4@,B))
UepnyT(ka(@)k(1yecs)))
(& ® B) e,y ka(@kp(aemy)) Utepur
ﬁ(% ® /3t(kf£a)_k3(1M(B)))) Uep )
7 (ka(@e,(a)k(B, (1)) Ue,.y [by (5.15)]
ﬁ(kA(idA(a))kiﬂf t_(lJV[(B)))) Ulep.t)
(mok 4 )(@)(T@okp)(B,(re(3))Ute,.t)

74()75 (B, Laee)) W
wA(@)W W W, [by the covariance of (75, W)]
Ta(@)W,.

piso

Thus, there is a representation (74 X V) ®max (15 X W) of (A X P) ®max
(B xf;so S) on H such that

(T4 X V) Omax (3 X W)(E @ 1) = (mg X V)(§)(7wp X W)(1)
forall§ € (A xljf“’ P)andn € (B xgiso S). Let
TXU =y XV) Qmax (m5 X W),

which is nondegenerate as both representations 74 X V and 7tz X W are. Then,
we have

T X U(jag,,n(a ® b)) X U(iz(a) ® ig(b))

(4 X V)(ia(a))(7p X W)(ip(b))
7 4(a)mp(b)

w(ka(a))7m(kp(b))
m(ka(a)kp(b)) = 7(a ® b).

To see (7 X U)o jpys = U, we apply the equation

7 X Uo(kax,p ®max Kpx;s)
= (A X V) Qmax (g X W)o(kax,p ®max kpx;s)
= (T4 X V) Qmax (Tg X W),

which is valid by [18, Lemma 2.4]. Therefore, we have

X U(pxs( 1) = 7 XU (kas, p(ip()kpr,s(is(t))

= 7 X U(kax,p @max kpx,s(ip(x) ® is(1)))
7T X Uo(Kyx p Omax Kpx;s)(ip(x) ® is(1))
(4 X V) ®max (5 X W)(ip(x) ® is(1))

(ma X V)(ip(x)) (g X W)(is(t))
VWi = U e)Uept) = Ugxy)-
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Finally, as the algebras A xgiso P and B xgiso S are spanned by the elements
ip(x)*ig(a)ip(y) and ig(r)*ig(b)is(t), respectively, the algebra

(A ><(13){is0 P) Pmax (B ><I[p;’iso S)
is spanned by the elements
[ip(x)*ia(@)ip(¥)] ® [is(r)*ip(b)is(£)],

where, by calculation, we have

lip(x)*1a(@)ip(P)] @ [is()*ip(D)is(D)] = jrxs(X,7)* ja@,B(@ & b)jpxs(V, 1).
So, the triple
((AXE™ P) @pax (B X5 S), gy Jxs)
is a partial-isometric crossed product of the system (A @ pnax B, P X S,a ® ). It
thus follows that there is an isomorphism
T2 (A ®max B) Xy (P X S), i, 50 ipxs) = (AXE™ P) @puax (B X5 S)
such that

F(iPxS(x’ ) A, B(a ® b)ipxs(y, t))
= Jpxs(X,1)* jag,,8(a ® b)jpxs(y, 1)
= [ip(x)*is(@)ip(¥)] @ [is(r)*ig(b)is(D)].

This completes the proof. O

Let P be a unital semigroup such that itself and the opposite semigroup P°
are both left LCM. For every y € P, defineamap 1,, : P — C by

1 ifx eypP,
0 otherwise,

1y(x) = {

which is the characteristic function of yP. Each 1, is obviously a function in
¢*(P). Then, since P is right LCM, one can see that we have

11 = 1, ifxPnyP =zP,
V7 lo xPnyP=4.

Note that, if ZP = xP N yP = zP, then there is an invertible element u of P
such that Z = zu. It therefore follows that s € zP if and only if s € ZP for
all s € P, which implies that we must have 1, = 1;. So, the above equation is
well-defined. Also, we clearly have 1; =1, for all y € P. Therefore, if Bp is the
C*-subalgebra of ¢*(P) generated by the characteristic functions {1, : y € P},
then we have
Bp =span{l, : y € P}.

Note that the algebra Bp is abelian and unital, whose unit element is 1, which
is a constant function on P with the constant value 1. One can see that, in fact,
1, = 1, for every u € P*. In addition, the shift on £*°(P) induces an action
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on Bp by injective endomorphisms. More precisely, for every x € P, the map
a, : €®(P) — ¢*(P) defined by

f(r) ift=xrforsomer e P(=t € xP),
0 otherwise,

a () =

for every f € ¢*°(P) is an injective endomorphism of ¢*°(P). Also, the map
a . P— End(€*®(P)); x v a,

is a semigroup homomorphism such that «¢, = id, which gives us an action of
P on ¢*(P) by injective endomorphisms. Since a,(1,) = 1, forall x,y € P,
a,(Bp) C Bp, and therefore the restriction of the action « to Bp gives an action

T.P—> End(BP)

by injective endomorphisms such that 7,(1,) = 1, for all x,y € P. Note
that 7,.(1,) = 1, # 1, for all x € P\P*. Consequently, we obtain a dynami-
cal system (Bp, P, 7), for which, we want to describe the corresponding partial-

isometric crossed product (Bp X2"*° P, ig,ip). More precisely, we want to show

that the algebra Bp x¥™™ P is universal for bicovariant partial-isometric repre-

sentations of P. Once, we have done this, it would be proper to denote Bp XEISOP
by Cy. ... (P). So, this actually generalizes [12, Proposition 9.6] from the positive
cones of quasi lattice-ordered groups (in the sense of Nica [24]) to LCM semi-
groups.

To start, for our purpose, we borrow some notations from quasi lattice-ordered
groups. For every x,y € P, if xPNyP = zP for some z € P, which means that z
is a right least common multiple of x and y, then we denote such an element z
by x Vi y, which may not be unique. If xPNyP = {J, then we denote x vy = oo.
Note that we are using the notation Vj; to indicate that we are treating P as a
right LCM semigroup. But if we are treating P as a left LCM semigroup, then we
use the notation Vv to distinguish it from vy;. Moreover, if F = {x;, x,, ..., X,;} is
any finite subset of P, then oF is written for x; Vy; X, Vy; ... Vi X,,. Therefore, if

Nyep XP = ﬂinzl x;P # @, oF denotes an element in
n
v [)xP=yP
i=1

and if ﬂ;;l x;P = §, then oF = 0.

Lemma 5.10. Let P be a unital semigroup such that itself and the opposite semi-
group P° are both left LCM. Let V' be any bicovariant partial-isometric represen-
tation of P on a Hilbert space H. Then:

(i) thereisa (unital) representation my, of Bp on H such that y(1,) =V, V}
forallx € P;
(ii) thepair(my,V)isa covariant partial-isometric representation of (Bp, P, T)
on H.
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Proof. We prove (i) by extending [17, Proposition 1.3 (2)] to LCM semigroups
for the particular family
{L, :=V,V;:xeP}
of projections, which satifies
L,=1 and LyLy = Lyy,ys

where L, = 0. To do so, we make some adjustment to the proof of [17, Propo-
sition 1.3 (2)]. Define a map

. span{l, : x € P} - B(H)
by
n n n
ﬂ(Z/lxilxi) = Z/lxiin = lezvxzv;i’
i=1 i=1 i=1

where 4, € C for each i. It is obvious that 7 is linear. Next, we show that

D7 ALy DA,

xeF xe€F

< (5.17)

for any finite subset F of P. So, it follows that the map 7 is a well-defined
bounded linear map, and therefore, it extends to a bounded linear map of B,
in B(H) such that 1, — V,V;} for all x € P. To see (5.17), we exactly follow
[17, Lemma 1.4] to obtain an expression for the norm of the forms ), or AxLx
by using an appropriate set of mutually orthogonal projections. So, if F is any
finite subset of P, then for every nonempty proper subset A of F, take Qfl =
yema(Loa — Loay,x)- Moreover, let Qg = Myep(1 — Ly) and Qf = MyepLy =
L,r. Then, exactly by following the proof of [17, Lemma 1.4], we can show
that {Qﬁ : A C F}is adecomposition of the identity into mutually orthogonal
projections, such that

z@%=z(z@ﬁg (5.18)

xeF ACF “xeA
and
Z AL = max{ Z Ae| 1 ACFandQf # 0}. (5.19)
XEF XEA

Also, we have a fact similar to [17, Remark 1.5]. Suppose that, similarly, {Q4 :
A C F}is the decomposition of the identity corresponding to the family of
projections {1, : x € F}. Consider

Qs = erF\A(lcrA - lcrA\/hx)

for any nonempty proper subset A C F. If 0A € x,P for some x, € F\A, then
(cA)P = ﬂy e YP C xoP which implies that (cA)P N x,P = (cA)P. So, we
have oA vy; xy = 0A, and therefore,

Ioa — 1aAv1tx0 =1ly4 — 154 =0.
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Thus, we get Q4 = 0. Note that when we say 0A € xP (for some x, € F\A),
it means that at least one element in

{z: ﬂ yP = zP} (5.20)

yEA

belongs to x,P, from which, it follows that all elements in (5.20) must belong
to xyP. This is due to the fact that if z, Z are in (5.20), then Z = zu for some
invertible element u of P. Now, conversely, suppose that

0=0Q,= erF\A(laA - 10Avhx)'

This implies that we must have Q4(r) = 0 for all r € P, in particular, when
r = oA, and hence

0= QA(V) = erF\A(lr(r) - 1r\/hx(r)) = erF\A(1 - 1rvltx(r))-

Therefore, there is at least one element x, € F\A such that 1,,, , (r) = 1,
which implies that we must have r € (r V}; xo)P = rP N xyP. It follows that
oA =r € x,4P and therefore, r vy, X = 0A V|, Xg = 0dA. Consequently, we have
Q4 # 0if and only if

A={x€F :0Ae€xP}

Eventually, we conclude that if QIL4 # 0, then Q4 # 0. This is due to the fact
that, if Q4 = 0, then there is x, € F\A such that cA € x,P. Therefore, we get
Q% = 0as the factor Ly — Ly 4y,,x, in QY becomes zero. Thus, it follows that

[OES RS

X€EA X€A
which implies that the inequality (5.17) is valid for any finite subset F of P. So,
we have a bounded linear map 7y, : B, — B(H) (the extension of 7r) such that
my(1,) = V, .V for all x € P. Furthermore, since

:AcFandQﬁ;ﬁO}c{ :AcFandQA;éo},

7TV(1x)7TV(1y) = VXV;VyV;< = vahyV* = ﬂV(lxvhy) = ﬂV(lxly)a

xviey —

and obviously, ,(1,)* = (1) = my(1}), it follows that the map 7y is ac-
tually a *-homomorphism, which is clearly unital. This completes the proof of
@.

To see (ii), it is enough to show that the pair (77}, V) satisfies the covariance
equations (4.1) on the spanning elements of Bp. For all x,y € P, we have

ﬂV(Tx(ly)) =1y = nyV;cky = VxVy[VxVy]* = VxVyV;V; = Vxn'V(ly)V;ck'

Also, since the product of partial isometries V', and V, is a partial isometry,
namely, V.V, =V, by [14, Lemma 2], each V{V, commutes with each V,,V'}.
Hence, we have

ViVemy(ly) = ViV, V,VE =V, ViVEV, = my(1,)ViV,.

So, we are done with (ii), too. O
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Proposition 5.11. Suppose that P is a unital semigroup such that itself and the
opposite semigroup P° are both left LCM. Then, the map

ip:P—Bpx2™°Pp

is a bicovariant partial-isometric representation of P whose range generates the
C*-algebra Bp x2™° P. Moreover, for every bicovariant partial-isometric repre-

sentation V of P, there is a (unital) representation V, of Bp xfiso P such that

V,oip=V.

Proof. To see that ip is a bicovariant partial-isometric representation of P, we
only need to show that it satisfies the left Nica covariance condition (5.2). Since

iBP(ly) = iBP(Ty(le)) = iP(y)iBP(le)iP(y)* = ip(y)ip(y)*

for all y € P, it follows that ip indeed satisfies (5.2). Thgn, as the elements

{1, : y € P} generate the algebra Bp, the C*-algebra By xP® P is generated by
the elements

iBP(ly)iP(x) = ip(V)ip(y)*ip(x),

which implies that ip(P) generates Bp x5 P.

Suppose that now V is a bicovariant partial-isometric representation of P on
a Hilbert space H. Then, by Lemma 5.10, there is a covariant partial-isometric
representation (7, V) of (Bp, P, 7) on H, such that 7y (1,) = V.V forallx € P.
The corresponding (unital) representation 7, X V of (Bp X2 P, ig,,ip) on H is
the desired representation V,, which satisfies Vo0ip = V. O

So, as we mentioned earlier, we denote the algebra Bp xfiso P by C{)“iCOV(P),

which is universal for bicovariant partial-isometric representations of P.
The following remark contains some point which will be applied in the next
corollary and also in the next section.

Remark 5.12. Suppose that P is a left LCM semigroup. Let (A, P,a) and (B, P, )
be dynamical systems, and ¢ : A — B a nondegenerate homomorphism such

that oa, = B0t for all x € P. Suppose that (4 X2 P, i) and (B xziso P,j)
are the partial-isometric crossed products of the systems (A, P, «) and (B, P, j3),
respectively. Now, one can see that the pair (jgo?, jp) is covariant partial-

isometric representation of (A4, P, «) in the algebra B xglso P. Hence, there is
a nondegenerate homomorphism

$xP = [(jpow) X jp] 1 AXE® P - BxE* P

such that
('(p XP)OiA = jBO'Qb and '(,b XPOiP = jp.
One can see that if ¢ is an isomorphism, so is ¢ X P.
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Corollary 5.13. Suppose that the unital semigroups P, P°, S, and S° are all left
LCM. Then,

(PXS) = Cli . (P) @may Cliy (S)- (5.21)

Proof. Corresponding to the pairs (P, P°) and (S, S°) we have the dynamical
systems (Bp, P, 7) and (Bg, S, B) along with their associated C*-algebras

blCOV

(cx (P)=BpxP® P,ig,,V)

bicov
and
* _ piso o .
(Chicor(S) =Bs X5 S, ip, W),
respectively. By Theorem 5.9, there is an isomorphism

s (PXS), i®,08), T) = (Bp X}

plSO piso

T: ((Bp ® By) X7

such that

P) ®pax (Bs X5*° S)

T(ig,08.)(1x ® 1)T(p ) = lig, 1)V ] @ [ip (1)W;]

forall x,p € Pand t,s € S. Note that Bp ® Bs = Bp ®pax Bs = Bp ®min Bs
as the algebras Bp and Bg are abelian. Now, since the unital semigroups P X S
and (P x S)° are both left LCM, we have a dynamical system (B(pxs), P X S, a)
along with its associated C*-algebra

( blCOV(P X S) = B(pxs) Xglso (P x.5), iB(PxS)’ U)’

where the action a : P X S — End(B(ps)) is induced by the shift on £°(P X S)
such that o, o (1x,1) = Lips)xe) = Lipx,s)- Moreover, since there is an isomor-
phism
P (1, ®1) € (Bp QBs) = 1(xs) € Bipxs)
which satisfies Yo(zr @ B)ps) = (p5 oY for all (p,s) € P x S, we have an
isomorphism
A : (Bp ® Bs) Xl (P X S) = Bps) X5 (P X S)
such that
Aoip,@Bg) = iB s P and AoT = U (see Remark 5.12).

Eventually, the composition

-1
(Px S) — (Bp ® Bs) X\, (P X S) o oo P) B e (5)

blCOV

of isomorphisms gives the desired isomorphism (5.21), such that
Ups) = Vp @ W
for all (p,s) e P x S. O
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6. Ideals in tensor products

Suppose that P is a left LCM semigroup. Let o and (8 be the actions of P on
C*-algebras A and B by extendible endomorphisms, respectively. Then, there
is an action

a®p:P— El’ld(A@maxB)
of P on the maximal tensor product A ®,.x B by extendible endomorphisms
such that (a ® ), = a, ® B, for all x € P. Note that the extendibility of
a ®  follows by the extendibility of the actions o and 8 (see [18, Lemma 2.3]).
Therefore, we obtain a dynamical system (A ®pnax B, P, ® ). Let (A @pax
B) xplsoﬁ P be the partial-isometric crossed product of (A ® . B, P, ® §). Our

a®
main goal in this section is to obtain a composition series

0< 71 <75 < (A @max B) X5 P
of ideals, and then identify the subquotients
Ty, 93/ 9 and (A @y B) Xgy P)/ 72

with familiar terms. To do so, we first need to recall the following lemma from
[18]:

Lemma 6.1. [18, Lemma 3.2] Suppose that a and 3 are extendible endomor-
phisms of C*-algebras A and B, respectively. If I is an extendible c-invariant
ideal of A and J is an extendible 3-invariant ideal of B, then the ideal I @ . J of
A Qmax B is extendible « @ f-invariant.

Remark 6.2. Tt follows by Lemma 6.1 thatif (A, P, ) and (B, P, §) are dynamical
systems, and I is an extendible a,-invariant ideal of A and J is an extendible
By-invariant ideal of B for every x € P, then I @, J is an extendible (o ® 3),-
invariant ideal of A®,,x B for all x € P. Therefore, by Theorem 4.8, the crossed

product (I ®@,ax J) xgi;% P sits in the algebra (A ® . B) xgi;oﬁ P as an ideal (this

will be the ideal 7, shortly later). As an application of this fact, we observe that,
by [27, Proposition B. 30], the short exact sequence

J
0—J—B—B/J—0

gives rise to the short exact sequence

iClA ®maxqj
0— A®maxJ — A®uixB — A®uixB/J —0, (6.1)

where A ®ax J is an extendible (¢ ® ), -invariant ideal of A ®,,.x B for all
x € P. Thus, (6.1) itself by Theorem 4.8 gives rise to the following short exact
sequence

piso piso

N ¢ i ;

where § : P — End(B/J) is the (extendible) action induced by 8, and the
surjective homomorphism ¢ is indeed the homomorphism (id4 ®maxq’) X P

0 = (A ®max ) X2 P 5 ((A ®@pax B) X
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(see Remark 5.12) such that [(id4 ®.xq”) X Ploip = jp and [(id4 ®maxq’) X
Ploiag, . B) = J(A®yuB/7°(1d4 Omaxq’)-

In the following proposition and theorem, for the maximal tensor product
between the C*-algebras involved, we simply write ® for convenience.

Proposition 6.3. Let (A, P,a) and (B, P, 8) be dynamical systems, and I an ex-
tendible a,-invariant ideal of A and J an extendible [,-invariant ideal of B for
every x € P. Assume that& : P — End(A/I) and f : P — End(B/J) are the
actions induced by o and S, respectively. Then, the following diagram

0 0 0
O—>(I®J)><pg:8P*>(I®B) pg‘;Pﬂ»(I(gB/J)xpls%P—»O
0—»(A®J)><p‘s° (A®B)><p‘s° P&(A(X)B/J)xplsc% P—0
X P
1 P2 \g\ P3
0»(A/I®J)><§§%P»(A/I®B)x§i;‘% %(A/I®B/J)xgi;°[§P»0
0 0 0

(6.2)
commutes, where
¢ 1= (d; ®q') X P, ¢, :=(idy ®q) X P, ¢; := (ida/r ®q’) X P,
and
1 :=(¢' ®id)) X P, ¢, :=(¢' ®idp) X P, and ¢; :=(q' ® idg,;) X P.

Also, there is a surjective homomorphism q : A® B — (A/I) ® (B/J) which
intertwines the actions a ® 8 and & @ 3, and therefore, we have a homomorphism
g X Pof(AQ® B) xplso Ponto (A/I ® B/J) ><plso~ P induced by q. Moreover, we
have

ker(g X P) = (A®J) xp‘s" P+(I®B) xpls" (6.3)

Proof. Firstofall, in the diagram, each row as well as each column is obtained
by a similar discussion to Remark 6.2, and hence, it is exact.
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Next, for the quotient mapsq’ : A - A/Iandq’ : B — B/J,by[27, Lemma
B. 31], there is a homomorphism ¢/ ® ¢’ : A® B — (A/I) ® (B/J), which we
denote it by g, such that

qa®b) =@ ®q)e®b)=¢(@®¢®)=(@+DH® D +J)
for all a € A and b € B. It is obviously surjective. Moreover,

g @B (a®b)) = g((ay @ By)a® b))
g(ay(a) ® By(b))

(ax(a) + 1) ® (By(b) +J)
ax(a+1)® By(b+J)

(@ @ Bx)(a+1)® (b +J))
(@ ® B)x(q(a ® b))

for all x € P. Therefore, by Remark 5.12, there is a (nondegenerate) homomor-
phism

(6.4)

gxP:((A®B) xplSO P,i) - ((A/I®B/J) x?g%P k)

such that

(q XP)OI(A®B) = k(A/I(X)B/])Oq and q XPin = kp.
One can easily see that as g is surjective, so is g X P.

Now, an inspection on spanning elements shows that the diagram commutes.
Finally, to see (6.3), we only show that

ker(gxP) c (A®J) xp“o P+(I®B) xp‘s"

as the other inclusion can be verified easily. To do so, take a nondegenerate
representation

7:(A®B) xplso P — B(H)
with
kerz=(AQJ) xp‘s" P+(®B) xpls‘)

Then, defineamap p : (A/I ® B/J) - B(H) by p(q(é’)) = n(i(A®B)(§')) for all
¢ € (A® B). Since

(A®J)+ (I ®B) = kerq C ker(moi 4gp)),

it follows that the map p is well-defined, which is actually a nondegenerate
representation. Also, the composition

P (A®B) xp‘so P) . B(H)

gives a (right) Nica partial-isometric representation W : P — B(H). Now, by
applying the covariance equations of the pair (i 4gp), ip) and (6.4), one can see
that the pair (p, W) is a covariant partial-isometric representation of (A/I ®
B/J,P,& ® B) on H. The corresponding representation p x W lifts to 7z, which
means that (p X W)o(g X P) = &, and therefore, we have

P + (I ®B) X,

piso p1s0

ker(q X P) C kerm = (A ®J)><
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Thus, the equation (6.3) holds. O

Theorem 6.4. Let (A,P,a) and (B, P, f3) be dynamical systems, and I an ex-
tendible a,-invariant ideal of A and J an extendible 3,-invariant ideal of B for
every x € P. Assume that& : P — End(A/I) and f : P — End(B/J) are the
actions induced by a and (3, respectively. Then, there is a composition series

0<79,<9,< (A@B)xp‘s"
of ideals, such that:
(i) theideal 7, is (isomorphic to) (I @ J) X,
(i) 92/ 1 = (A/I® ) X P& (I @ B/J) xp‘s"
(iii) the surjection q X P induces an isomorphism of ((A ®B) xplso P) / 9, onto
(A/I®B/J) xg‘;‘% P.

plSO

Proof. For (i), as we mentioned in Remark 6.2, I ® J is an extendible (a ® ), -
invariant ideal of A ® B for all x € P. Therefore, by Theorem 4.8, the crossed

product (I ® J) xplso P sits in the algebra (A ® B) ><p iso ', P as an ideal, which we
denote it by ;.
To get (ii), we first define
=A@ X0 P+ (I ®B) X", P

p1so

which is an ideal of (A ® B) X, P as each summand is. Note that we have

[(A®JT) Xplso PIn [(I ®B) Xplso Pl=(I®J) Xplso
So, it follows that (see the diagram (6.2))
9,/ 9
=[(A®J) xP‘SO P+(I®B) xplso Pl/I®J) xp‘s"
=[(A®J) xp‘“ Pl/lA®T) x"‘“ PI®[U®B) ><‘”S° PI/IU ® ) X5 Pl
~[(A®J)/UT ® D] xp‘s" PO (I ®B)/I ®J)] xpls‘;
~(AJI®T) x‘fg’ﬁ P ea (I ® B/J) xp‘s‘i P.
Finally, for (iii), we recall from Proposmon (6.3) that we have a surjective ho-
momorphism

gxP:(A®B) xpls" P— (A/I®B/)) XE’I;%P

with

p1so piso

ker(gxP)=(AQ®J) X,
Therefore, we have
(A®B) xpls" P)/7, = ((A®B) xPISO P)/ker(q X P)
~ (A/I®B/J) xgg’ﬁ P.

LP+U®B)X P =1,
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7. An application

In this section, as an application, we will consider the dynamical system
(C*(Gpg) N?, B) studied in [19], where N? is the positive cone of the abelian
lattice-ordered group Z?. Let p and g be distinct odd primes, and consider the
subgroup

Gpq = {np™*q7! 1 nk,lez}) 7

of Q/Z. There is an averaging type action § of N? on the group C*-algebra
C*(Gp4) by endomorphisms, such that on the canonical generating unitaries
{fu, 1 r € Gp g} of C*(Gp 4) we have

Bomm(tty) = — S (7.1)

mah
pTq {s€Gpq:p™q"s=r}

for all (m,n) € N°. Let Z p be the compact topological ring of p-adic inte-
gers (similarly for Z,). See in [19, Lemma 1.1] that by the Fourier transform

C*(Gpq) = C(Z,xZ,), the action § corresponds to the action a of N? on
C(Z, x Z,4) by endomorphisms, such that

(p~™q"x,p™"q""y) ifxepmq*Z,andy € p"q"Z,,
(P y) = | PP p"q"Z,andy € pq" 2,
0 otherwise

(7.2)

for all (m,n) € N?® and f € C(Z,XZg,). Therefore, to study the partial-
isometric crossed product C*(Gp, 4) XEISO N? of the system (C*(G, ), N2, B), it

is enough to study the crossed product C(Z, X Z,) xgiso N? of the correspond-
ing system (C(Z, X Z,), N2, a). Firstly, we have C(Z, x Z,) ~ C(Z,) @ C(Z,),
and recall that the action a decomposes as the tensor product y ® § : N -
End (C(Z,) ® C(Z,)) of two actions of N?, such that

glp™™q"x) ifx € p"q" Z,,

. (7.3)
0 otherwise

V(m,n)(g)(x) =
forall(m,n) € N2 and g € C(Z,) (similarly for§ : N* - End (C(Zq))). It thus
follows that C(Z, x Zq)xglso N? o~ (C(Zp)®C(Zq)) xP*° N?, for which we want

Y®6
to apply Theorem 6.4. To do so, consider the extendible y-invariant ideal I : =

Co(Z, \{0}) of C(Z,,) and the extendible §-invariant ideal J := Cy(Z4 \{0}) of
C(Z,) as in [19]. Now, by applying Theorem 6.4 to the systems (C(Z)), N?, 7)

and (C(Z,), Nz, d) along with the ideals I and J, we get the following theorem
which is the partial-isometric version of [19, Theorem 2.2]:
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Theorem 7.1. There areideals 7, and J, in
C(Z,xZ )xP‘SO N o ~ (C(Z,) ® C(Zy) xplso
which form the composition series
0<7, T, S C(ZyxZy) X0° N (7.4)
of ideals, such that:
(@) 71 = A @max AQC(U(Zp) X U(Zy)),
(0) 92/ 91 = (A @max [ CAUZp) X2, N]) @ (A @uax [ C(UZ ) XTu N]).
and .
© (CZpxZ)XZN*)[ 9, = T(ZH) = T(2) @ T(D),
where U(Z,) is the group of the multiplicatively invertible elements in Z , (sim-
ilarly for U(Z,)), oP9 is the action of N on the algebra C(U(Z,)) by automor-
phisms such that o2 9(f)(x) = f(g~"x) (similarly for c%P), and the algebra
A is a full corner in the algebra K(¢*(N) ® c¢) of compact operators, in which
¢ =By =span{l, : n € N}
Proof. For the proof, we apply Theorem 6.4 to the systems (C(Z,), N?,y) and
(C(Zyp), N2, &) with the ideals I = Cy(Z, \{0}) and J = CO(Zq \{0}). Therefore,
we have
= [Co(Z, \{0D) ® Co(Z \{OP] X N

and
2 1= [Co(Zy \{OD ® C(Z)] X0, N +[C(Z,)) ® Co(Z \OD)] XPo N,

from which, we obtain the comp0s1t10n series (7.4) of ideals.
Next, to identify the subquotients with familiar terms, we start with (c). First,
by (iii) in Theorem 6.4, we have

(C(Z,xZ) xZ*°N*)/ 1,
~ ([C(Z,)/Co(Z, \{OD] ® [C(Z)/Co(Z4 \{0D)]) x ‘fg;
Then, as
C(Zp)/Co(Z \{0}) = C = C(Zy)/Co(Z4 \{0}) (see [19]),

we get

(C(ZyxZ) xEP°N?) /7, = (CRO) X2 N = CxEP N = 7(2),

where the bottom line follows from Example 4.9 as (Zz, Nz) is abelian (see also
the remark prior to [28, Lemma 5.4]). Also, by applying Theorem 5.9,

2\ piso \ 2 piso 2
T(Z7) =Cxy N° (C®C)xid®idN

CxXEPN)® (CXX°N) = 7(2) ® T(2),

R

where C xf;so N ~ 7(Z) is known by [4, Example 4.3]. So, we are done with
(c).
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To get (a), first, by [19, Corollary 2.4], there is an isomorphism
Co(Z, \{0}) = ¢y ® C(U(Z)p)),

where ¢, = span{l,, — 1,, : n,m € N with n < m} = Cy(N). By this isomor-
phism, the action y corresponds to the tensor product action 7 @ oP9, where
7 is the action of N on ¢, by forward shifts (similarly for Co(Z, \{0}) and the
action §). Therefore, we have an isomorphism (see the ideal 7;)

Co(Z, \{0}) ® Co(Z,\{0}) € ® ¢y ® C(U(Zp)) ® C(U(Zy))
CoNXNXU(Zp) X U(Z,))

RIRR

which takes each endomorphism (y @ 8) ) to 7,, ® 7, ® 1@ alP. So, it
follows that
2

~ piso
Iy = [Co(NXN) @ C(U(Z,) x U(Z,))] X rgr@cragen) N -

Moreover, there is an automorphism ® of Cy(N X N) ® C(U(Z,) X U(Z,)) such
that we have
Po(1, @7, LT @0r) =1, ®1,®id®id (see again [19]).
The automorphism @ then induces the isomorphism
91 = [Co(NXN) ® C(U(Z,) x U(Z,))] xszgf) oV
Next, we need to show that

[Co(NXN) ® C(U(Z,) x U(Z,))] X?Tigf)@d N

~ [CoNXN) xPo? N* | @ C(U(Z,) x U(Zy)).
We skip the proof as it is routine and refer readers to Remark 7.4 for an indica-

tion on the proof. Also, by applying Theorem 5.9,

Co(NXN) XE;(; N? = (co ® ¢p) XS;(; N? o~ (co Xgiso N) ®max (€o xfiso N),

and hence, we get

Ty = (€0 X2 N) @ax (€0 X2 N) ® C(U(Z,,) X U(Z,))-

2

Finally, see in [4, Example 4.3] that the algebra ¢, x*™° N is a full corner in
the algebra K (£2(N) ® ¢) of compact operators. More precisely, let P be the

projection in M(K(£2(N) ® ¢)) ~ L(£*(N) ® c) defined by
P(§)(n) = 1,(DE(n) = 1,5(n) forall § € *(N) ®cc,
where  is the action of N on the algebra ¢ by forward shifts. Then, ¢, x*™° N is
isomorphic to the full corner P X (¢£%(N) ® ¢)P, which we denote it by A. Thus,
we have
1 = A®maxy ARC(UZ,) X U(Z,)).
At last, to see (b), we first apply (ii) in Theorem 6.4 to get

95/ 91 = [Co(Z, \(OD®C(Z)[T] X0 s N B[C(Z,) /1@ ColZy MOD] Xo s N,
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and since C(Z,)/J ~ C ~ C(Z,)/I, we have

72/91 = [Co(Z, 0D & C Xl N’ @[ C®Co(Z, \{OD] Xiyigs N

. y®id ;
(Co(Zy \O}) X5 N ) @ (Co(Z \{O}) XE* N?).

Then, by applying [19, Corollary 2.4] and Theorem 5.9 (see also the proof of
(a)), for the crossed product (Cy(Z, \{0}) XEISO N*), we have

R

R

Co(Z, \O}) xp** N

1R

(co ® CQUZ,H)) XPgeps (NXN)

[c0 X2 N | @max [CQUEZ) x2pa N ]
A ®max [ C(UZ,)) xPpa N -

1R

Similarly,

Co(Zg \{0) X5 ™ N? 2 A @ | C(UZ)) X}y N

od:P

Therefore, it follows that

75/ 91 = (A®max[CUEZ,) X0y N]) @ (A ®rmax [C(UZ)) Xy N1
This completes the proof. O

Remark 7.2. Recall that, if m and n are relatively prime integers, then m €
U(Z /n Z) (similarly n € U(Z /m Z)). Let o0,(m) denote the order of m in
U(Z /n Z). Since p and q in Theorem 7.1 are distinct odd primes, it follows by
[19, Theorem 3.1] that there is a positive integer L = L,(g) such that

(m ifl1<¢<IL,

Lo,(q) if¢ > L. (7:5)

Opt (CI)
Now, since the action o4 of N on the algebra C(U(Z))) is given by automor-
phisms, it follows by [4, Theorem 4.1] that the algebra of compact operators

K(E2(N) ® C(U(Z,)) sits in C(U(Z)) ><pls0 N as an ideal, such that

[Cu(z,) X N]/[ K(E2(N) ® C(U(Z,))]
~ C(U(Z ) X0, N = C(U(Z ) Xgpa Z

oP4

But, again by [19, Theorem 3.1], the classical crossed product C(U(Z ,)) Xsp.a Z

is the direct sum of p"»(¥~!(p — 1)/0,(g) Bunce-Deddens algebras with super-
natural number 0,(q)p®. Similarly,

[Cc(u(z,y) x{:if;’ /[ %(@€*(N) @ C(U(Z,))]
~ C(U(Z ) X2, N = C(U(Z)) Xgar Z,

o4.P

where C(U(Z4))XqrZ is the direct sum oquq(p)_l(q—l)/oq(p) Bunce-Deddens
algebras with supernatural number o,4(p)q®. Readers are referred to [8, 9, 10]
on Bunce-Deddens algebras. However, we will provide a quick recall on these
algebras shortly later.
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Next, we would like to analyze the crossed product C(U(Z},)) xglpsfq) N in The-
orem 7.1 more. Recall from [19] that if T is the closed subgroup of U(Z,)
generated by g, then it is invariant under multiplication by powers of q. It
thus follows that the ideal C(I') of C(U(Z})) is oP4-invariant. Note that the
same facts hold for each closed subset xT of U(Z,) and each ideal C(xT) of
C(U(Zp)), where x € U(Z,). Moreover, since U(Z),) is the disjoint union of

N := p»@~1(p — 1)/0,(q) closed invariant subsets of the form xT', C(U(Z,))
is the direct sum of N oP4-invariant ideals of the form C(xI"). Now, since each
ideal C(xT’), as well as the algebra C(U(Z},)), is unital and the action o of N is
given by automorphisms, it is not difficult to see that each algebra C(xT') is ac-
tually an extendible gP9-invariant ideal of C(U(Z,)). Therefore, each crossed

product C(xT") xgig N sits in C(U(Z},)) xP5° N as an ideal by Theorem 4.8 or [5,

ob4
Theorem 3.1]. Also, calculation shows that

CUEZ) XN = (CuT) XPON) @ - - @ (CeyT) XPho N),  (7.6)

ob4 obq obq

where one may take x,; to be 1, the unit element of the group U(Z,). Now,
since for every x € U(Z,), the closed subsets I' and xT of U(Z,) are homeo-
morphic, there is an isomorphism ¢ : C(I') - C(xI') of C*-algebras such that
ol%oyp = oot for all n € N. The isomorphism ¢ then induces an isomor-

phism between crossed products C(I") xgﬁg N and C(xI') xgi;g N (see Remark
5.12). So, this fact and (7.6) imply that the crossed product C(U(Z)) X2pe N

- ob4
is actually isomorphic to the direct sum of N ideals C(I") xglps,f; N. At last, we

want to have a familiar description for the crossed product C(T") X2, N. To do
so, we need to recall on Bunce-Deddens algebras quickly. These algebras were
first defined in [8] as the C*-algebras related to certain weighted shift operators
on the Hilbert space £2(N). They were then identified as the classical crossed
products by (automorphic) actions induced by the odometer map (see [10, 19]).
Suppose that {n;};°  is a strictly increasing sequence of positive integers, such
that n; divides n;,; for all i. Note that one can assume that n, = 1 without loss
of generality. For every i > 0, let m; = n;,,/n;, and then consider the Cantor
set K given by the model

K=]J0.1,..m-1}.
i=0

The odometer map on K, namely O : K — K, is given by addition of (1, 0,0, ...)
with carry over to the right. For example,

O(my —1,m; —1,0,0,0,...) = (0,0,1,0,0, ...).

So, it induces an action 7 of Z on the algebra C(K) by automorphisms, such
that the classical crossed product C(K) X, Z is a Bunce-Deddens algebra with
supernatural number II;5, m;. Now, in particular, for the sequence

{n}2, ={1,d,dp,dp? dp* .},
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the Cantor set K is
K=10,1,.,d-1}x[]{0,1,...p— 1},
i=1

where d = 0,(q). Then, there is a homeomorphism of K onto the closed
subgroup I', which induces an isomorphism ¢ of C(K) onto C(I') such that

pot, = oh%op for all n € N (see [19]). Therefore, each ideal C(T') X% 50 N is
actually isomorphic to the partial-isometric crossed product C(K) xplso N (see
Remark 5.12). Consequently, the algebra C(U(Z p)) xplso N is in fact isomorphic

to the direct sum of N crossed products C(K) xplso N. Note that, since the ac-

tion 7 is automorphic, by [4, Theorem 4.1], C(K) XEISO N contains the algebra of
compact operators K(£2(N)) ® C(K) as an ideal, such that the quotient algebra

[C(K) X2 N /[ K (£2(N) ® C(K)] = C(K) X5° N = C(K) X, Z
is a Bunce-Deddens algebra with supernatural number 0,(q)p™. By swapping

the roles of p and g, similarly, the algebra C(L((Zq))xpISO N is indeed isomorphic
to the direct sum of qu(P) Yq-1)/ 04(p) crossed products C(K) xplso N, where

K ={0,1,..,0,(p) — 1} x H{o, 1,...q—1}
i=1

and 7 is the action of Z on C(K) by automorphisms induced by the odometer
map on K. Also, the quotient algebra (again by [4, Theorem 4.1])

[C(R) 2™ N /[ K (2(N) ® C(K)] = C(R) x° N = C(R) X Z
is a Bunce-Deddens algebra with supernatural number o,(p)q*. Therefore, we
have actually proved the following corollary as a refinement of Theorem 7.1:
Corollary 7.3. There areideals 7, and 7, in
C(ZpxZg) X5 N = (C(Z,)) ® C(Z)) Xy N
which form the composition series
0<7, T, SC(ZyxZ)xE¥ N (7.7)
of ideals, such that:
(@) I 2 A @max AQC(U(Z) X U(Zy)),
(b) 72 / ‘71 ("4 ®maxe) S (A ®max2)) and
(©) (C(ZpyxZ)XECN*)/ 9y = T(Z*) = T(2) ® T(2),
where U(Z,) is the group of the multiplicatively invertible elements in Z, (sim-
ilarly for U(Z,)), the algebra A is a full corner in the algebra K(*(N) ® ¢) of
compact operators, the algebra C is the direct sum of p» @~ (p—1)/ 0,(q) crossed
products C(K) xplso N, and the algebra D is the direct sum of g~4(P)~1 (g — 1)/04(p)
crossed products C(K) xplso
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Remark 7.4. To see that for any C*-algebra A,

i 2 i 2
(CoNXN) @ A) X0 NP = (Co(NXN) XE? N*) @ oy A,

let (jc,(nxivy» Jp2) be the canonical covariant partial-isometric pair of the system
(Co(NxN), N’ T ® 7) in the algebra B := Cy(N X N) ng N2, Suppose that ip
and i, are the canonical nondegenerate homomorphisms of the algebras B and

A in the multiplier algebra M (B ® . A), respectively (see [27, Theorem B.27]).
Consider the homomorphism given by the composition

JeoNxN)

CoNXN) =" B = M(B @prax A).
Then, the ranges of (igojc,vxn)) and iy commute, and therefore, there is a
homomorphism ke, nxwea = (IBOJcyvxN)) Omax ia of Co(NXN) ® A in
M(B ®max A) such that
ke,nxwea(f ® @) = ig(je,nxny()ia(@) = je,nxn (/) @ a

for all f € Co(NxN)and a € A. One can see that kc, (vxn)g4 IS indeed non-
degenerate. Next, let k2 be the map defined by the composition

2 e ip
N 25 M(B) = M(B @puax A)-
Itis not difficult to see that k. is a (right) Nica partial-isometric representation.
Now, it is routine for one to check that the triple (B ®max A4, keynvxm@as Kn?)
is a partial-isometric crossed product for the system (Co(NXN) ® A, N (T ®
7) ®id ) Therefore, there is an isomorphism
i 2, .\ Y i 2

((CoINXN)® A) xf;gr) oid NV Ic,(Nx @A iy2) = (Co(NXN) X2 ! N) @y A
such that

Y (ic,vxn@alf ® Mia(m,n) = ke,nxnealf ® akya(m,n)

s ey (Mia(@ip(yz(m, n)
= ip(icymxm izl (m, n))iaa)
iB(jCO(N X N)(f)sz(m, n))is(a)
LicanxnPine(m,m)] @ a.
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