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Nonorientable surfaces bounded by knots:
a geography problem

Samantha Allen

Abstract. The nonorientable 4–genus is an invariant of knots which has
been studied by many authors, including Gilmer and Livingston, Batson,
and Ozsváth, Stipsicz, and Szabó. Given a nonorientable surface 𝐹 ⊂ 𝐵4
with 𝜕𝐹 = 𝐾 ⊂ 𝑆3 a knot, an analysis of the existing methods for bounding
and computing the nonorientable 4–genus reveals relationships between the
first Betti number 𝛽1 of 𝐹 and the normal Euler class 𝑒 of 𝐹. This relation-
ship yields a geography problem: given a knot 𝐾, what is the set of realizable
pairs (𝑒(𝐹), 𝛽1(𝐹)) where 𝐹 ⊂ 𝐵4 is a nonorientable surface bounded by 𝐾?
We explore this problem for families of torus knots. In addition, we use the
Ozsváth-Szabó 𝑑–invariant of two-fold branched covers to give finer informa-
tion on the geography problem. We present an infinite family of knots where
this information provides an improvement upon the bound given byOzsváth,
Stipsicz, and Szabó using the Upsilon invariant.
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1. Introduction
One measure of the complexity of a knot in 𝑆3 is the genus of the simplest

surface that it bounds. For instance, restricting to smooth, orientable surfaces
in 𝐵4 results in the 4–genus of the knot. A similar variation is to consider
smooth nonorientable surfaces in 𝐵4 that are bounded by the knot—this yields
the nonorientable 4–genus of the knot.
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Definition 1.1. Let 𝐹 be a connected, nonorientable surface in 𝐵4 with non-
empty connected boundary 𝜕𝐹 ⊂ 𝑆3. Let ℎ(𝐹) = 𝛽1(𝐹) = dim𝐻1(𝐹,ℚ) be
the first Betti number of 𝐹 (also called the nonorientable genus of F). Then the
nonorientable 4–genus of a knot K is

𝛾4(𝐾) = min {ℎ(𝐹)
|||||||
𝜕𝐹 = 𝐾 and 𝐹 is a smoothly embedded,

nonorientable surface in 𝐵4 } .

Note that 𝛾4(𝐾) > 0, since any nonorientable surface with one boundary com-
ponent has positive first Betti number. (Some authors choose to let 𝛾4(𝐾) = 0
in the case of a slice knot 𝐾.)
The nonorientable 4–genus is an invariant of knots which has been studied

bymany authors, includingViro [24], Yasuhara [25], Gilmer andLivingston [6],
Batson [1], and Ozsváth, Stipsicz, and Szabó [21]. Each of these works offers
bounds on 𝛾4 and obstructions for the existence of nonorientable surfaces in 𝐵4
with boundary a given knot.
An analysis of the existingmethods for bounding and computing the nonori-

entable 4–genus of a knot reveals that many of these methods depend on the
Euler class 𝑒 of the normal bundle of the spanning surface, also called the nor-
mal Euler number of the surface. The author aims to further study this depen-
dence. We ask several questions, primarily:

Question 1.2. Given a knot 𝐾 ⊂ 𝑆3, what is the set of realizable pairs
(𝑒(𝐹), ℎ(𝐹)) = (normal Euler number of a surface 𝐹, nonorientable genus of 𝐹),
where 𝐹 ⊂ 𝐵4 is bounded by 𝐾?
For a given knot, we can plot these pairs in the (𝑒, ℎ)–plane and consider the
region of realizable points. This region (as in Figure 1) is always a union of sets
of the form

{
(𝑒, ℎ) ∶ |||||𝑎 −

𝑒
2
||||| ≤ ℎ

}
for some value of 𝑎, ignoring some issues of

parity. This leads to the following question:

e

b1

Figure 1

Question 1.3. What shapes of regions are achievable? How many global/local
minima can occur?
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For the remainder of this paper we will denote pairs

(normal Euler number of a surface 𝐹, nonorientable genus of 𝐹)
by (𝑒, ℎ). We prove the following results.

Theorem 1.4. For 𝑇(2, 𝑛) with 𝑛 odd, the following pairs are realizable:
(𝑒, ℎ) ∈ {(−2𝑛 ± 2𝑚, 1 + 𝑚 + 2𝑙) | 𝑚, 𝑙 ≥ 0} ∪ {(2 + 2𝑚, 𝑛 + 𝑚) | 𝑚 ≥ 0},

it is unknown if the following pairs are realizable:
(1) if 𝑛 ≡ 1 (mod 4), (𝑒, ℎ) = (4 − 2𝑛 + 2𝑚, 1 + 𝑚) for 0 ≤ 𝑚 ≤ 𝑛 − 1,
(2) if 𝑛 ≡ 3 (mod 4), (𝑒, ℎ) = (8 − 2𝑛 + 2𝑚, 3 + 𝑚) for 0 ≤ 𝑚 ≤ 𝑛 − 3,

and all other pairs are not realizable.

Thus, for 𝑇(2, 4𝑘 + 1) and 𝑇(2, 4𝑘 + 3) there are exactly 4𝑘 pairs for which
realizability is unknown.

Theorem 1.5. For 𝑇(3, 𝑛) where 𝑛 = 3𝑘 + 𝑑 and 𝑑 = 1 or 2, the following pairs
are realizable:

(𝑒, ℎ) = (−4𝑛 + 2 + 4𝑘 ± 2𝑚, 1 + 𝑚 + 2𝑙) for𝑚, 𝑙 ≥ 0,
the following pairs are unknown:

(1) if 𝑛 ≡ 1 (mod 6), (𝑒, ℎ) =
( 8(1−𝑛)

3
+ 2 + 2𝑚, 1 + 𝑚

)
for𝑚 ≥ 0,

(2) if 𝑛 ≡ 2 (mod 6), (𝑒, ℎ) =
( 8(2−𝑛)

3
+ 2 + 2𝑚, 3 + 𝑚

)
for𝑚 ≥ 0,

and all other pairs are not realizable.

Note that when 𝑛 ≡ 4 or 5 (mod 6), the realizable pairs are completely deter-
mined. In the other two cases there are infinitely many unknown points, all
lying on a single line in the (𝑒, ℎ)–plane.
The following are conjectures of the author.

Conjecture 1.6. For 𝑇(2, 𝑛) with 𝑛 odd, all unknown points are not realizable.

Conjecture 1.7. For 𝑇(3, 𝑛)with 𝑛 ≡ 1 or 2 (mod 6), all unknown points are not
realizable.

Conjecture 1.8. All torus knots have a single realizable “minimal point". In
other words, for a torus knot 𝐾, there is exactly one realizable pair of the form
(𝑒, 𝛾4(𝐾)),

In recent work, Sabloff [22] determined the set of all realizable pairs (𝑒, ℎ)
for a subset of torus knots called“JVC knots" (after the work of Jabuka and Van
Cott [10]). In short, JVC knots are those torus knots 𝑇(𝑝, 𝑞) for which the lower
bound on 𝛾4(𝑇(𝑝, 𝑞)) given by Ozsváth-Stipsicz-Szabó is achieved by a series of
nonorientable band moves on parallel strands when 𝑇(𝑝, 𝑞) is viewed as em-
bedded in a standard torus. As a consequence, Sabloff confirms Conjecture 1.8
for JVC knots. We note here that the knots 𝑇(2, 𝑛) are not JVC knots (they
are alternating and so the relevant lower bound is 0) and neither are the knots
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𝑇(3, 𝑛) where 𝑛 ≡ 1, 2 (mod 6) (where the relevant lower bound is, again, 0).
Thus the unknown values in Theorems 1.4 and 1.5 remain unknown.
In addition, we give a family of knots forwhich theOzsváth-Szabó𝑑–invariant

can improve on the bound given by Ozsváth, Stipsicz, and Szabó (using the Υ
invariant).

Acknowledgements Thanks are due to Charles Livingston for guidance and
careful reading of many early versions of this paper. In addition, Ina Petkova
provided many helpful comments and suggestions for improving the exposi-
tion.

2. Background
Webegin this sectionwith a discussion of the nonorientable 4–genus of knots,

followed by definitions and results concerning the normal Euler number. Fi-
nally, we discuss the invariants and results that we use to prove the main theo-
rems.

2.1. The nonorientable 4–genus. Computing the nonorientable 4–genus of
knots is a difficult problem which remained relatively intractable until Hee-
gaard Floer theory entered the picture. For at least a few families of knots it is
simple to compute. For example, the (2, 𝑘)–torus knot can be easily seen to have
nonorientable 4–genus 1; see Figure 2(a). A single band move reveals that the
(3, 𝑘)–torus knot also has nonorientable 4–genus 1; see Figure 3. Note that the
(2, 𝑘)–torus knot actually bounds a surface in 𝑆3, while the the 4–ball is needed
to realize a Möbius band bounded by the (3, 𝑘)–torus knot. In Figure 2(b), we
illustrate a nonorientable surface 𝐹 with boundary the figure-eight knot and
ℎ(𝐹) = 2. Viro [24] proved that the figure-eight knot has nonorientable genus
greater than 1, and so 𝛾4(41) = 2.

(a) (b)

Figure 2. (a) The (2, 𝑘)–torus knot bounding a Möbius band.
(b) The figure-eight knot bounding a punctured Klein bottle.

An upper bound for 𝛾4(𝐾) is based on the 4–genus, 𝑔4(𝐾). Let 𝐺 ⊂ 𝐵4 be
a surface realizing 𝑔4(𝐾). Form the connected sum of 𝐺 with a real projective
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Band move
,,,,,,,,,→

Isotopy
,,,,,,→

Band move
,,,,,,,,,→

Isotopy
,,,,,,→

Figure 3. Performing an unoriented band move on 𝑇(3, 3𝑛 +
1) (top) and 𝑇(3, 3𝑛 + 2) (bottom) results in the unknot. This
implies that 𝛾4(𝑇(3, 𝑘)) ≤ 1.

plane 𝑃2 (away from the boundary of 𝐺); denote this new surface by 𝐹. Then 𝐹
is a nonorientable surface in 𝐵4 whose boundary is the knot 𝐾. Thus

𝛾4(𝐾) ≤ ℎ(𝐹) = 2𝑔4(𝐾) + 1.

This bound is sharp for all slice knots. Recently, Jabuka and Kelly [9] showed
that this bound is sharp for somenon-slice knots, aswell: 𝛾4(818) = 2𝑔4(818)+1.
However, since the (2, 𝑘)–torus knot has 4–genus (𝑘−1)∕2, the bound 2𝑔4(𝐾)+1
can be arbitrarily far from 𝛾4(𝐾). Also, note that this bound implies that slice
knots have nonorientable 4–genus equal to 1.
Some early progress towards lower bounds on the nonorientable 4–genus

in the smooth case was made in 1975 when Viro [24] gave an obstruction to a
knot bounding a Möbius band in 𝐵4 (usingWitt classes of intersection forms of
branched covers of the 4–ball branched over nonorientable surfaces). In 1996,
Yasuhara [25] gave an obstruction to a knot bounding aMöbius band in 𝐵4 (us-
ing the knot signature and the Arf invariant). In 2011, Gilmer and Livingston
[6] gave an obstruction to a knot bounding a puncturedKlein bottle in𝐵4 (again,
using the knot signature and the Arf invariant). Finally, in 2012, Batson [1]
showed that the nonorientable 4–genus of a knot can be arbitrarily large by us-
ing the knot signature and the Heegaard-Floer 𝑑–invariant defined by Ozsváth
and Szabó.
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2.2. The normal Euler number. In this section, we give a definition of the
normal Euler number for a nonorientable surface in 𝐵4 with boundary a knot.
We provide a summary here; see Gordon-Litherland [7] for more details.

Definition 2.1. Let 𝐹 ⊂ 𝐵4 be a nonorientable surface such that the boundary
of 𝐹 is contained in 𝑆3 = 𝜕𝐵4 and is a knot 𝐾. The normal bundle 𝜈(𝐹) always
admits a nowhere zero section 𝑠. On the boundary, 𝑠|𝜕𝐹 provides a framing of
𝐾. Define the normal Euler number of the surface 𝐹 to be

𝑒(𝐹) ∶= −lk(𝐾, 𝑠(𝐾)).
Gordon and Litherland [7] give an algorithm for computing 𝑒 in the case

where the nonorientable surface embeds in ℝ3. In some cases, we will build
surfaces in 𝐵4 using a sequence of band moves; these do not always embed in
𝑆3. For such surfaces, some care is required in the application of Definition 2.1.
Example 2.2. Webuild theMöbius band in𝐵4with boundary the trefoil𝑇(2, 3)
from a disk with a band added, and compute the normal Euler number. See
Figure 4. Begin with a disk bounded by the unknot and take a 0–framed push-
off of the unknot. Add a band to the disk as shown to form the trefoil 𝑇(2, 3).
The knot 𝐾 = 𝑇(2, 3) and the push-off 𝐾′ trace parallel surfaces in the 4–ball
with intersection count−lk(𝐾, 𝐾′) = −6. It follows that the knot𝑇(2, 3) bounds
a Möbius band 𝐹 in 𝐵4 with 𝑒(𝐹) = −6 and so, for 𝑇(2, 3), the pair (𝑒, ℎ) =
(−6, 1) is realizable.

Figure 4

2.3. Bounds and obstructions. Here we list some results for use later in the
paper.

2.3.1. The knot signature. The knot signature 𝜎(𝐾) is a concordance invari-
ant (see [14]). Some useful properties are listed below.

Theorem 2.3. For knots 𝐾, 𝐽 ⊂ 𝑆3,
(1) 𝜎(𝐾 # 𝐽) = 𝜎(𝐾) + 𝜎(𝐽).
(2) 𝜎(−𝐾) = −𝜎(𝐾).
(3) If 𝐾 is slice, 𝜎(𝐾) = 0.
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(4) 𝜎(𝐾) is even for all 𝐾.

In 1978, Gordon and Litherland proved the following relationship:

Theorem 2.4 (Gordon-Litherland, [7]). Let 𝐾 ⊂ 𝑆3 be a knot that bounds a
connected surface 𝐹 ⊂ 𝐵4 and let Σ(𝐹) be the two-fold cover of 𝐵4 branched over
F. Then

𝜎(𝐾) = sign(Σ(𝐹)) + 1
2𝑒(𝐹),

where, sign(Σ(𝐹))denotes the signature of the intersection form𝑄Σ(𝐹) on𝐻2(Σ(𝐹)).

This has the following corollary.

Corollary 2.5. Let 𝐾 ⊂ 𝑆3 be a knot and let 𝐹 ⊂ 𝐵4 be a nonorientable surface
such that 𝜕𝐹 = 𝐾. Then

|||||||
𝜎(𝐾) − 𝑒(𝐹)

2
|||||||
≤ ℎ(𝐹).

The corollary will follow easily from the theorem and the following lemma of
Massey:

Lemma 2.6 (Massey [12]). Let 𝐹 ⊂ 𝐵4 be a connected surface bounded by a
knot 𝐾 ⊂ 𝑆3 and let Σ(𝐹) be the two-fold cover of 𝐵4 branched over 𝐹. Then
𝑏2(Σ(𝐹)) = 𝑏1(𝐹).

Proof of Corollary 2.5. Let 𝐾 ⊂ 𝑆3 and let 𝐹 ⊂ 𝐵4 be a nonorientable surface
such that 𝜕𝐹 = 𝐾. Then

||||||𝜎(𝐾) −
1
2𝑒(𝐹)

|||||| = |sign(Σ(𝐹))| ≤ 𝑏2(Σ(𝐹)) = 𝑏1(𝐹),

where the first and last equalities follow from Theorem 2.4 and Lemma 2.6,
respectively. □

2.3.2. The Arf invariant. The Arf invariant Arf(𝐾) is an invariant of knots
satisfying the following:

Arf(𝐾) = { 0 if det(𝐾) ≡ ±1 (mod 8)
1 if det(𝐾) ≡ ±3 (mod 8).

In 2010, Gilmer and Livingston gave the following obstruction to a knot bound-
ing a Klein bottle.

Theorem 2.7 (Gilmer-Livingston, [6]). If 𝐾 bounds a punctured Klein bottle 𝐹
in 𝐵4 and Σ(𝐹), the two-fold cover of 𝐵4 branched over 𝐹, has a positive definite
intersection form, then

𝜎(𝐾) + 4Arf(𝐾) ≡ 0, 2, or 4 (mod 8).
If Σ(𝐹) is negative definite, then

𝜎(𝐾) + 4Arf(𝐾) ≡ 0, 4, or 6 (mod 8).
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2.3.3. TheUpsilon invariant. TheOzsváth-Stipsicz-SzabóUpsilon invariant
is another concordance invariant which yields a relationship between the nor-
mal Euler number and nonorientable genus. The definition of the Upsilon in-
variant Υ𝐾(𝑡) arises from the Heegaard Floer knot complex. It is a piecewise
linear function on [0, 2]. Some useful properties are listed below.

Theorem 2.8 (As in [20]). For knots 𝐾, 𝐽 ⊂ 𝑆3,
(1) Υ𝐾 #𝐽(𝑡) = Υ𝐾(𝑡) + Υ𝐽(𝑡).
(2) Υ−𝐾(𝑡) = −Υ𝐾(𝑡).
(3) If 𝐾 is slice, Υ𝐾(𝑡) = 0.
(4) If 𝐾 is an alternating knot, Υ𝐾(1) = 𝜎(𝐾)∕2.

In 2015, Ozsváth, Stipsicz, and Szabó proved the following.

Theorem 2.9 (Ozsváth-Stipsicz-Szabó, [21]). Suppose that 𝐹 ⊂ [0, 1] × 𝑆3 is a
(not necessarily orientable) smooth cobordism from the knot 𝐾0 ⊂ {0} × 𝑆3 to the
knot 𝐾1 ⊂ {1} × 𝑆3. Then

|||||||
Υ𝐾0(1) − Υ𝐾1(1) +

𝑒(𝐹)
4

|||||||
≤ ℎ(𝐹)

2 . (1)

To apply this, consider a cobordism 𝐹 from a knot 𝐾 to the unknot. Capping
off the unknot with a disk, we get a surface 𝐹′ in 𝐵4 that bounds 𝐾 and has
𝑒(𝐹′) = 𝑒(𝐹) and ℎ(𝐹′) = ℎ(𝐹). SinceUpsilon is identically zero for the unknot,
we have the following:

Corollary 2.10. Let 𝐾 ⊂ 𝑆3 be a knot and let 𝐹 ⊂ 𝐵4 be a nonorientable surface
such that 𝜕𝐹 = 𝐾. Then

|||||||
−2Υ𝐾(1) +

𝑒(𝐹)
2

|||||||
≤ ℎ(𝐹).

Remark. For an alternating knot𝐾, 𝜎(𝐾)∕2 = Υ𝐾(1) and so this bound is equiv-
alent to that of Gordon and Litherland.

Combining this with Corollary 2.5, Ozsváth, Stipsicz, and Szabó gave the fol-
lowing lower bound on the nonorientable 4–genus.

Corollary 2.11 ([21]). Let 𝐾 ⊂ 𝑆3 be a knot. Then
|||||||
Υ𝐾(1) −

𝜎(𝐾)
2

|||||||
≤ 𝛾4(𝐾).

Recently, Jabuka and Van Cott [10] addressed a conjecture of Batson [1] by
using Corollary 2.11 to compute the nonorientable 4–genus of many families of
torus knots.



1046 SAMANTHA ALLEN

3. The geography problem for families of torus knots
3.1. A detailed example. Here we return to Question 1.2 and begin with an
example: the trefoil knot. As we saw in Section 2.1, the trefoil knot 𝑇(2, 3)
bounds a Möbius band with normal Euler number −6, so 𝛾4(𝑇(2, 3)) = 1 and
the pair (𝑒, ℎ) = (−6, 1) is realizable for 𝑇(2, 3). We would like to identify all
pairs (𝑒, ℎ) that arise for nonorientable surfaces 𝐹 whose boundary is 𝑇(2, 3).
To start, we look at surfaces that can be realized by modifying surfaces we

already knoware realizable. In particular, given anonorientable surface𝐹 ⊂ 𝐵4
whose boundary is a knot𝐾 ⊂ 𝑆3, we can form the connected sum of𝐹 with the
real projective plane 𝑃2 (away from the boundary) to form a new nonorientable
surface 𝐹′ with boundary 𝐾. This surface will have 𝑒(𝐹′) = 𝑒(𝐹) ± 2 (since 𝑃2
has Euler number ±2) and ℎ(𝐹′) = ℎ(𝐹) + 1.
Thus, since (−6, 1) is realizable for the trefoil, so are (−8, 2) and (−4, 2).

Adding another 𝑃2 shows that (−10, 3), (−6, 3), and (−2, 3) are realizable as
well. We can continue this process indefinitely to get the following proposi-
tion.

Proposition 3.1. For 𝑇(2, 3), all pairs of the form
(𝑒, ℎ) = (−6 ± 2𝑛, 1 + 𝑛 + 2𝑚)

for𝑚, 𝑛 ≥ 0 are realizable.
Figure 5 gives a visual representation of the proposition. In the figure, many
lattice points are omitted. These are points that are ruled out by a theorem of
Massey [12]: for all nonorientable surfaces 𝐹 with boundary a knot,

𝑒(𝐹) ≡ 2ℎ(𝐹) (mod 4). (2)

(−6, 1)

Figure 5. (𝑒, ℎ) pairs for 𝑇(2, 3) based on Proposition 3.1.
Highlighted points indicate realizable pairs.

By noticing that a torus knot 𝑇(2, 𝑘) with 𝑘 odd bounds a Möbius band with
normal Euler number −2𝑘, we get an initial realizable pair of (𝑒, ℎ) = (−2𝑘, 1)
and the result above generalizes.

Corollary 3.2. For𝑇(2, 𝑘)with 𝑘 odd, all pairs of the form (𝑒, ℎ) = (−2𝑘±2𝑛, 1+
𝑛 + 2𝑚) for𝑚, 𝑛 ≥ 0 are realizable.
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Another strategy for constructing nonorientable surfaces with boundary a
knot is to use the 4–genus of the knot. For a given knot 𝐾, we can find an
orientable surface 𝑆 ⊂ 𝐵4 with 𝜕𝑆 = 𝐾 and genus 𝑔 = 𝑔4(𝐾). The surface
𝑆 is then a punctured connected sum of 𝑔 tori. If we form a connected sum
of 𝑆 with a projective plane 𝑃2, then we get a nonorientable surface 𝑆′ that
has ℎ(𝑆′) = 2𝑔 + 1. Since 𝑆 is orientable, it contributes 0 to the normal Euler
number. Thus 𝑒(𝑆′) = ±2. This yields a point on our (𝑒, ℎ) graph for 𝐾. For
the torus knot 𝑇(2, 𝑘), we know that 𝑔4(𝑇(2, 𝑘)) = (𝑘 − 1)∕2 and so this yields
the points (±2, 𝑘). For the trefoil knot, (2,3) is a new point. By forming the
connected sum of 𝑆′ with 𝑛 copies of 𝑃2, we see that the pairs (2 + 2𝑛, 3 + 𝑛)
are also new realizable pairs for 𝑇(2, 3). See Figure 6 for the updated graph.

(−6, 1)

Figure 6. Updated (𝑒, ℎ) pairs for 𝑇(2, 3). Highlighted points
indicate realizable pairs

Next, we apply Corollaries 2.5 and 2.10: if 𝐹 ⊂ 𝐵4 is a nonorientable surface
with boundary equal to a knot 𝐾 ⊂ 𝑆3,then

|||||||
𝜎(𝐾) − 𝑒(𝐹)

2
|||||||
≤ ℎ(𝐹) and

|||||||
2Υ𝐾(1) −

𝑒(𝐹)
2

|||||||
≤ ℎ(𝐹).

Notice that since 𝑇(2, 3) is an alternating knot, Corollaries 2.5 and 2.10 yield
the same inequality. Applying Corollary 2.5 to the knot 𝑇(2, 3) and computing
that 𝜎(𝑇(2, 3)) = −2, we can restrict our search for realizable (𝑒, ℎ) pairs to
those satisfying

|||||−2 −
𝑒
2
||||| ≤ ℎ. Factoring in our previous conclusions, we see

that there are only two unknown pairs, (−2, 1) and (0, 2), as shown in Figure 7.
To rule out the final unknown points, we use the obstruction for punctured

Klein bottles in Theorem 2.7. For the knot 𝑇(2, 3), we first apply Theorem 2.4
to see that both unknown points (𝑒, ℎ) in Figure 7 must correspond to a sur-
face 𝐹 with sign(Σ(𝐹)) = −ℎ. Lemma 2.6 tells us that 𝑏2(Σ(𝐹)) = 𝑏1(𝐹) = ℎ.
Thus, both of the unknown points correspond to surfaces 𝐹 for which Σ(𝐹) has
negative definite intersection form. Since the pair (𝑒, ℎ) = (0, 2) corresponds
to a surface 𝐹 such that Σ(𝐹) is negative definite, we apply Theorem 2.7. As
𝜎(𝑇(2, 3)) = −2 and Arf(𝑇(2, 3)) = 1, Theorem 2.7 rules out the realization of
this pair. As a consequence, the pair (𝑒, ℎ) = (−2, 1) cannot be realized. This
fully determines the realizable (𝑒, ℎ) pairs for 𝑇(2, 3).
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(−6, 1)

Figure 7. Updated (𝑒, ℎ) pairs for 𝑇(2, 3) after application of
Corollary 2.5. Highlighted points indicate realizable pairs

4. Proof of Theorem 1.4
Now, we move on to the families of (2, 𝑛) and (3, 𝑛) torus knots. We will

henceforth ignore points that have been ruled out by Equation 2.

Proof of Theorem 1.4. The knot 𝑇(2, 𝑛) bounds a Möbius band with normal
Euler number −2𝑛; see Figure 2(a). This yields the realizable pair (−2𝑛, 1).
Since 𝑔4(𝑇(2, 𝑛)) =

𝑛−1
2
, we can form a connected sum with 𝑃2 to get nonori-

entable surfaces 𝑆± with boundary 𝑇(2, 𝑛) such that 𝑒(𝑆±) = ±2 and ℎ(𝑆±) =
2 ⋅

(𝑛−1
2

)
+ 1 = 𝑛. So the points (±2, 𝑛) are realizable for 𝑇(2, 𝑛). Finally, by

forming connected sums with 𝑃2, we get wedges𝑊1,𝑊2,𝑊3 of realizable pairs
starting at all three of these initial realizable points:

𝑊1 = {(𝑒, ℎ) ∶
||||||−𝑛 −

𝑒
2
|||||| + 1 ≤ ℎ} ,

𝑊2 = {(𝑒, ℎ) ∶
||||||−1 −

𝑒
2
|||||| + 𝑛 ≤ ℎ} ,

𝑊3 = {(𝑒, ℎ) ∶
||||||1 −

𝑒
2
|||||| + 𝑛 ≤ ℎ} .

See Figure 8 for a schematic picture of the (𝑒, ℎ)–graph of the regions. Notice
that𝑊2 ⊂ 𝑊1.

−2n −2n + 2 −2 2

1

n

W1

W2 W3

W4

Figure 8. Schematic picture of the (𝑒, ℎ)–graph of the regions
𝑊1,𝑊2,𝑊3 and𝑊4 for the knot 𝑇(2, 𝑛).
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We have that 𝜎(𝑇(2, 𝑛)) = −(𝑛 − 1). Thus, Corollary 2.5 rules out all pairs
outside of the region

𝑊4 = {(𝑒, ℎ) ∶
||||||−(𝑛 − 1) − 𝑒

2
|||||| ≤ ℎ} .

In other words, all unknown points lie in 𝑈 ∶= (𝑊1 ∪ 𝑊3)𝑐 ∩ 𝑊4; there are
exactly 𝑛 − 1 unknown points and all of the unknown points lie on the line
ℎ = 𝑒

2
+ (𝑛 − 1).

Finally, we attempt to rule out pairs by applying Theorem 2.7. First, from
Theorem2.4, we see that for a surface𝐹 given by a point (𝑒, ℎ) =

(
𝑒, 𝑒

2
+ (𝑛 − 1)

)
∈

𝑈, Sign(Σ(𝐹)) = −ℎ. Therefore, Lemma 2.6 reveals that all of the unknown
points correspond to surfaces 𝐹 with Σ(𝐹) negative definite. Consider the point
(−2𝑛 + 6, 2) corresponding to a punctured Klein bottle.
Since

∆𝑇(2,𝑛)(𝑡) = 1 − 𝑡 +⋯− 𝑡𝑛−2 + 𝑡𝑛−1,
Arf(𝑇(2, 𝑛)) = 0 if and only if 𝑛 ≡ ±1 (mod 8). Consider the following table of
computations:

𝑛 (mod 8) 𝜎 Arf 𝜎 + 4Arf (mod 8)
1 −(𝑛 − 1) 0 −𝑛 + 1 0
3 −(𝑛 − 1) 1 −𝑛 + 5 2
5 −(𝑛 − 1) 1 −𝑛 + 5 0
7 −(𝑛 − 1) 0 −𝑛 + 1 2

While Theorem 2.7 provides no obstruction for 𝑛 ≡ 1 (mod 4), we can rule out
the pair (𝑒, ℎ) = (6 − 2𝑛, 2) (and so also (4 − 2𝑛, 1)) for 𝑛 ≡ 3 (mod 4). This
proves Theorem 1.4. □

5. Proof of Theorem 1.5
Before proving Theorem 1.5, we compute the value of the knot signature and

of the Upsilon invariant at 𝑡 = 1 for the family of torus knots 𝑇(3, 𝑛).

Lemma 5.1. For the torus knot 𝑇(3, 𝑛),

𝜎(𝑇(3, 𝑛)) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

−4𝑛 + 4
3 if 𝑛 ≡ 1 (mod 6)

−4𝑛 + 2
3 if 𝑛 ≡ 2 (mod 6)

−4𝑛 − 2
3 if 𝑛 ≡ 4 (mod 6)

−4𝑛 − 4
3 if 𝑛 ≡ 5 (mod 6) .
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Proof. Weuse the recursive formulas of Gordon, Litherland, andMurasugi [8].
Consider 𝑇(3, 𝑛) where 𝑛 = 6𝑘 + 𝑑 with 𝑘 ≥ 1 and 𝑑 ∈ {1, 2, 4, 5}. Then

𝜎(𝑇(3, 𝑛)) = 𝜎(𝑇(3, 6(𝑘 − 1) + 𝑑)) − 8
= 𝜎(𝑇(3, 6(𝑘 − 2) + 𝑑)) − 16
= ⋯
= 𝜎(𝑇(3, 𝑑)) − 8𝑘.

So, since 𝜎(𝑇(3, 1)) = 0, 𝜎(𝑇(3, 2)) = −2, 𝜎(𝑇(3, 4)) = −6, and 𝜎(𝑇(3, 5)) =
−8, we have

𝜎(𝑇(3, 6𝑘 + 1)) = −8𝑘,
𝜎(𝑇(3, 6𝑘 + 2)) = −2 − 8𝑘,
𝜎(𝑇(3, 6𝑘 + 3)) = −6 − 8𝑘,
𝜎(𝑇(3, 6𝑘 + 5)) = −8 − 8𝑘.

Substituting 𝑘 = (𝑛 − 𝑑)∕6 proves the lemma. □

Lemma 5.2. For the torus knot 𝑇(3, 𝑛),

Υ𝑇(3,𝑛)(1) =
⎧

⎨
⎩

−2𝑛+2
3

if 𝑛 ≡ 1 (mod 3)
−2𝑛+1

3
if 𝑛 ≡ 2 (mod 3).

To prove the lemma, we use the following recursive formula given by Feller
and Krcatovich [5].

Theorem 5.3 ( [5]). Let 𝑎 < 𝑏 be two coprime positive integers. Then
Υ𝑇(𝑎,𝑏)(𝑡) = Υ𝑇(𝑎,𝑏−𝑎)(𝑡) + Υ𝑇(𝑎,𝑎+1)(𝑡).

Proof of Lemma 5.2. Consider𝑇(3, 𝑛)where 𝑛 = 3𝑘+𝑑with 𝑘 ≥ 1 and 𝑑 = 1
or 2. Then, by Theorem 5.3,

Υ𝑇(3,𝑛)(𝑡) = Υ𝑇(3,3(𝑘−1)+𝑑)(𝑡) + Υ𝑇(3,4)(𝑡)
= Υ𝑇(3,3(𝑘−2)+𝑑)(𝑡) + 2Υ𝑇(3,4)(𝑡)
= ⋯
= Υ𝑇(3,𝑑)(𝑡) + 𝑘Υ𝑇(3,4)(𝑡).

Since Υ𝑇(3,1)(1) = 0, Υ𝑇(3,2)(1) = −1 and Υ𝑇(3,4)(1) = −2, we have
Υ𝑇(3,3𝑘+1)(1) = −2𝑘 and Υ𝑇(3,3𝑘+2)(1) = −1 − 2𝑘.

Substituting 𝑘 = (𝑛 − 𝑑)∕3 proves the lemma. □

Proof of Theorem 1.5. In Section 2.1, we showed that 𝛾4(𝑇(3, 𝑛)) = 1. We
compute the Euler number for this Möbius band using the method in Example
2.2. For the torus knot 𝑇(3, 3𝑘 + 1), begin with a disk bounded by the unknot
and take a 0-framed push-off of the unknot, as in Figure 9(a). Add a band to the
disk as shown in Figure 9(b). The resulting knot 𝐾 and the push-off 𝐾′ (shown
as a dotted line in Figure 9(c)) trace parallel surfaces in 𝐵4 with intersection
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count−lk(𝐾, 𝐾′) = −8𝑛+2
3

. Thus, 𝑇(3, 3𝑘+1) bounds aMöbius band in 𝐵4 with
normal Euler number −8𝑛+2

3
. The same process shows that 𝑇(3, 3𝑘 +2) bounds

a Möbius band in 𝐵4 with normal Euler number −8𝑛−2
3

.

𝑘

(a) 0-framed unknot

𝑘 −𝑘

(b) band move

𝑘
−𝑘

(c) 𝑇(3, 3𝑘 + 1) with push-off

Figure 9. 𝑇(3, 3𝑘 + 1) bounds a Möbius band 𝐹 in 𝐵4 with
𝑒(𝐹) = −8𝑘 − 2. Note that boxed values indicate full twists on
the indicated strands.

Let 𝑒0 denote 𝑒(𝐹) for the surface described above. In other words, let

𝑒0 =
⎧

⎨
⎩

−8𝑛+2
3

𝑛 ≡ 1 (mod 3)
−8𝑛−2

3
𝑛 ≡ 2 (mod 3).

Then, in the (𝑒, ℎ)–graph for 𝑇(3, 𝑛), this yields an initial (𝑒, ℎ) pair of (𝑒0, 1).
Since 𝑔4(𝑇(3, 𝑛)) = 𝑛 − 1, there exist nonorientable surfaces with boundary
𝑇(3, 𝑛) and (𝑒, ℎ) equal to (±2, 2𝑛 − 1). By forming connected sums with 𝑃2,
we get wedges𝑊1,𝑊2,𝑊3 of realizable pairs starting at all three of these initial
realizable points:

𝑊1 = {(𝑒, ℎ) ∶
||||||
𝑒0
2 − 𝑒

2
|||||| + 1 ≤ ℎ} ,

𝑊2 = {(𝑒, ℎ) ∶
||||||−1 −

𝑒
2
|||||| + 2𝑛 − 1 ≤ ℎ} ,

𝑊3 = {(𝑒, ℎ) ∶
||||||1 −

𝑒
2
|||||| + 2𝑛 − 1 ≤ ℎ} .

Notice that𝑊2,𝑊3 ⊂ 𝑊1. See Figure 10 for schematic pictures of the (𝑒, ℎ)–
graphs of the regions.
Next, we determine which (𝑒, ℎ) pairs can be ruled out using the knot sig-

nature and the Upsilon invariant. We apply Lemmas 5.1 and 5.2 to compute
that

𝜎(𝑇(3, 𝑛)) − 2Υ𝑇(3,𝑛)(1) = { 0 if 𝑛 ≡ 1 or 2 (mod 6)
−2 if 𝑛 ≡ 4 or 5 (mod 6).
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e0 −2 2

W1

W2 W3

1

2n− 1

Figure 10. Schematic picture of the (𝑒, ℎ)–graph of the regions
𝑊1,𝑊2 and𝑊3 for the knot 𝑇(3, 𝑛).

The combination of Corollaries 2.5 and 2.10 implies that all realizable pairs
lie in the intersection of the regions

𝑅1 ∶= {(𝑒, ℎ) ∶
||||||𝜎(𝐾) −

𝑒
2
|||||| ≤ ℎ} and 𝑅2 ∶= {(𝑒, ℎ) ∶

||||||−2Υ𝐾(1) +
𝑒
2
|||||| ≤ ℎ} .

See Figures 11 and 12 for the schematic pictures of the (𝑒, ℎ)–graphs for the
knot 𝑇(3, 𝑛) including regions 𝑅1 and 𝑅2.
For 𝑛 ≡ 4 or 5 (mod 6), 𝑅1∩𝑅2 = 𝑊1, so the realizable pairs are exactly those

in𝑊1 (excluding those pairs for which 𝑒 ≢ 2ℎ (mod 4)). For 𝑛 ≡ 1 or 2 (mod 6),
𝑅1 = 𝑅2 so the remaining unknown pairs are in 𝑈 = 𝑊𝑐

1 ∩ 𝑅1. The points in 𝑈
lie along a single line. For 𝑛 ≡ 1 (mod 6),

𝑈 ⊂ {(𝑒, ℎ) ∶ ℎ = 𝑒
2 +

4𝑛 − 4
3 } .

For 𝑛 ≡ 2 (mod 6),
𝑈 ⊂ {(𝑒, ℎ) ∶ ℎ = 𝑒

2 +
4𝑛 − 2
3 } .

e0 −2 22σ 4Υ

W1

W2 W3

R1 R2 1

2n− 1

Figure 11. Schematic picture of the (𝑒, ℎ)–graph of the regions
𝑊1,𝑊2,𝑊3, 𝑅1 and 𝑅2 for the knot 𝑇(3, 𝑛)with 𝑛 ≡ 4 or 5 (mod
6).

Finally, we attempt to rule out the punctured Klein bottle in each𝑈 by com-
puting:
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e0 −2 22σ = 4Υ

W1

W2 W3

R1 = R2 1

2n− 1

Figure 12. Schematic picture of the (𝑒, ℎ)–graph of the regions
𝑊1,𝑊2,𝑊3, and 𝑅1 = 𝑅2 for the knot 𝑇(3, 𝑛) with 𝑛 ≡ 1 or 2
(mod 6).

𝑛 (mod 6) 𝜎 Arf 𝜎 + 4Arf (mod 8)
1 −4𝑛+4

3
0 −4𝑛+4

3
0

2 −4𝑛+2
3

1 −4𝑛+2
3

+ 4 2

Thus Theorem 2.7 does not rule out points for 𝑛 ≡ 1 (mod 6), but the theorem
may be able to rule out points for 𝑛 ≡ 2 (mod 6). For 𝑛 ≡ 2 (mod 6), there is one
unknown point which corresponds to a punctured Klein bottle:

(−8𝑛+4
3

+ 4, 2
)
.

Computations reveal that this point corresponds to a surface 𝐹 such that Σ(𝐹)
is negative definite and so it (and, as a consequence, (−8𝑛+4

3
+2, 1)) can be ruled

out by Theorem 2.7. Thus the family of unknown points for 𝑛 ≡ 2 (mod 6) is
reduced by two, although still infinite. □

6. Application of the 𝒅–invariant to the geography problem
Let 𝐾 ⊂ 𝑆3 be a knot and 𝐹 ⊂ 𝐵4 be a nonorientable surface with 𝜕𝐹 = 𝐾.

Denote by Σ(𝐾) the two-fold branched cover of 𝑆3 branched over𝐾 and by Σ(𝐹)
the two-fold branched cover of 𝐵4 branched over 𝐹. In the previous section,
we noticed that all of the unknown points described in Theorems 1.4 and 1.5
correspond to surfaces 𝐹 with Σ(𝐹) negative definite. This leads us to consider
ruling out the existence of negative definite 4–manifolds with boundary Σ(𝐾),
where 𝐾 is a knot. Here, we use the 𝑑–invariant to do so for an infinite family
of knots. (We note that all torus knots have two–fold branched covers which
bound negative definite manifolds (see [16]), so we cannot apply the following
strategy directly to individual torus knots.)
In [19], Ozsváth and Szabó introduced the 𝑑–invariant. The 𝑑–invariant as-

sociates to a rational homology sphere𝑌with Spinc–structure 𝔱, a rational num-
ber denoted 𝑑(𝑌, 𝔱). Here we list some useful facts of the 𝑑–invariant.

Theorem 6.1 ([Ozsváth and Szabó, [19]).
∙ If 𝑌 is a closed, oriented 3–manifold and 𝔰 ∈ Spinc(𝑌), then 𝑑(𝑌, 𝔰) =
−𝑑(−𝑌, 𝔰).
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∙ If (𝑌, 𝔰) and (𝑍, 𝔱) are rational homology 3–spheres equipped with Spinc–
structures, then 𝑑(𝑌#𝑍, 𝔰#𝔱) = 𝑑(𝑌, 𝔰)) + 𝑑(𝑍, 𝔱).

Consider the following theorem.

Theorem 6.2 (Ozsváth and Szabó, [19]). Let𝑌 be a rational homology 3–sphere
and let 𝔱 ∈ Spinc(𝑌). Let 𝑋 be a smooth, negative definite 4–manifold with 𝜕𝑋 =
𝑌 and let 𝔰 ∈ Spinc(𝑋) with 𝔰|𝑌 = 𝔱. Then

𝑐1(𝔰)2 + 𝑏2(𝑋) ≤ 4𝑑(𝑌, 𝔱).

This has the following corollary, whichwewill apply to the geography problem.

Corollary 6.3 (Ozsváth and Szabó, [19]). If 𝑌 is an integer homology 3–sphere
with 𝑑(𝑌) < 0, then there is no negative definite 4–manifold X with 𝜕𝑋 = 𝑌.

Note that Σ(𝐾) is a rational homology sphere, so the 𝑑–invariant is defined
for Σ(𝐾). In [11], Manolescu and Owens introduce a knot invariant, 𝛿, defined
by 𝛿(𝐾) ∶= 2𝑑(Σ(𝐾), 𝔱0), where 𝔱0 is the Spinc–structure induced by the unique
Spin structure on Σ(𝐾). They showed that 𝛿 is a concordance invariant which
is additive under forming connected sums of knots and with the property that
𝛿(−𝐾) = −𝛿(𝐾).
Rephrasing Corollary 6.3 for the problem at hand:

Corollary 6.4. Let 𝐾 ⊂ 𝑆3 be a knot such that Σ(𝐾) is a homology 3–sphere and
𝐹 a surface such that 𝜕𝐹 = 𝐾. Suppose Σ(𝐹) has a negative definite intersection
form. Then 𝛿(𝐾) ≥ 0.

This yields the following bound on the nonorientable 4–genus for some classes
of knots.

Proposition 6.5. Let 𝐾 ⊂ 𝑆3 be a knot. If 𝐾 satisfies
∙ 𝜎(𝐾) ≤ 2Υ𝐾(1),
∙ Σ(𝐾) is a homology 3–sphere, and
∙ 𝛿(𝐾) < 0,

then

Υ𝐾(1) −
𝜎(𝐾)
2 + 1 ≤ 𝛾4(𝐾).

Proof. Let𝐾 ⊂ 𝑆3 be a knot which satisfies the assumptions of the proposition.
Combining Corollaries 2.5 and 2.10 yields a wedge of pairs in the (𝑒, ℎ) graph
for 𝐾 corresponding to nonorientable surfaces in 𝐵4 which may be realizable
with boundary𝐾. Since 𝜎(𝐾) ≤ 2Υ𝐾(1), this wedge includes a half-line of pairs
which satisfy

−𝜎(𝐾) + 𝑒
2 = ℎ. (3)

On the (𝑒, ℎ) graph for 𝐾, these points are along the rightmost side of the 𝑅1
wedge. See Figure 13 for a schematic picture.
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2σ 4Υ

R1 R2
e

h

L

Figure 13. Schematic picture of the (𝑒, ℎ)–graph in the situa-
tion of Proposition 6.5. The regions 𝑅1 and 𝑅2 are those arising
from Corollaries 2.5 and 2.10, respectively. The line 𝐿 is that
described in Equation (3).

Suppose that one of the points lying along line (3) is realizable by somenonori-
entable surface 𝐹 ⊂ 𝐵4 with 𝜕𝐹 = 𝐾. Theorem 2.4 implies that ℎ(𝐹) =
−sign(Σ(𝐹)). Applying Lemma 2.6, we have that

−sign(Σ(𝐹)) = ℎ(𝐹) = 𝑏1(𝐹) = 𝑏2(Σ(𝐹)).

Thus Σ(𝐹) has a negative definite intersection form. Since Σ(𝐾) is a homology
3–sphere, we can invoke Corollary 6.4. So it must be that 𝛿(𝐾) ≥ 0, a contradic-
tion to our assumption that 𝛿(𝐾) is negative. Thus no point along the line (3)
can be realized. Note that the point (2Υ𝐾(1)+𝜎(𝐾),Υ𝐾(1)−

𝜎(𝐾)
2
)was the min-

imum point for the original wedge and it satisfies Equation 3. Thus the lower
bound in Corollary 2.11 can be increased by 1, as desired. □

We now seek to find examples of such knots. Given a torus knot 𝑇(𝑝, 𝑞),
Milnor [13] showed that its two-fold branched cover Σ(𝑇(𝑝, 𝑞)) is the Brieskorn
manifold Σ(2, 𝑝, 𝑞). If 𝑝 and 𝑞 are relatively prime and odd, then Σ(2, 𝑝, 𝑞) is an
integer homology sphere and so has a unique Spinc–structure. Wewill omit the
Spinc–structure in the notation for the 𝑑–invariant. In [19], Ozsváth and Szabó
computed 𝑑(−Σ(2, 3, 6𝑛±1)), and, in [23], Tweedy computed 𝑑(−Σ(2, 5, 𝑛)) for
(2, 5, 𝑛) relatively prime and 𝑑(−Σ(2, 7, 𝑛)) for (2, 7, 𝑛) relatively prime. In [15],
Nemethi gave an algorithm for computing 𝑑(Σ(𝑝, 𝑞, 𝑟)) for 𝑝, 𝑞, and 𝑟 relatively
prime. See also [2, 3].
Thus we can compute 𝛿(𝑇(𝑝, 𝑞))with 𝑝 and 𝑞 odd. Since the connected sum

of two integer homology spheres is again an integer homology sphere, and since
all of the relevant invariants are additive under forming connected sums, we
will consider connected sums of torus knots and construct an infinite family
of knots satisfying the conditions of Proposition 6.5. In this way we can rule
out infinitely many (𝑒, ℎ)–pairs which were previously unknown for the given
knot.
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Theorem 6.6. Let 𝑐 ≥ 1 and 𝐾 = 𝑐𝑇(5, 9)# − (𝑐 + 1)𝑇(5, 13) be the connected
sumof 𝑐 copies of𝑇(5, 9) and (𝑐+1) copies of−𝑇(5, 13). ThenΥ𝐾(1)−

𝜎(𝐾)
2

= 𝑐−1
and 𝛿(𝐾) = −4.

Proof. First, we compute that

𝜎(𝑇(5, 9))
2 = −12 and

𝜎(𝑇(5, 13))
2 = −16,

Υ𝑇(5,9)(1) = −10 and Υ𝑇(5,13)(1) = −15,
𝛿(𝑇(5, 9)) = 4 and 𝛿(𝑇(5, 13)) = 4.

Then,

𝜎(𝐾)
2 = −12𝑐 + 16(𝑐 + 1) = 4𝑐 + 16,

Υ𝐾(1) = −10𝑐 + 15(𝑐 + 1) = 5𝑐 + 15,
𝛿(𝐾) = 4𝑐 − 4(𝑐 + 1) = −4.

Thus

Υ𝐾(1) −
𝜎(𝐾)
2 = 5𝑐 + 15 − (4𝑐 + 16) = 𝑐 − 1.

□

96 100

R1 R2
e

h

x

x

x

xx

Figure 14. Schematic picture of the (𝑒, ℎ)–graph for the knot
2𝑇(5, 9)# − 3𝑇(5, 13). The regions 𝑅1 and 𝑅2 are those aris-
ing from Corollaries 2.5 and 2.10, respectively. Points marked
with an 𝗑 have been ruled out by Proposition 6.5, increasing the
lower bound on 𝛾4 from 1 to 2.

Corollary 6.7. Let 𝑐 ≥ 1 and 𝐾 = 𝑐𝑇(5, 9)# − (𝑐 + 1)𝑇(5, 13) be the connected
sum of 𝑐 copies of𝑇(5, 9) and (𝑐+1) copies of−𝑇(5, 13). Then 𝑐 ≤ 𝛾4(𝐾) ≤ 3𝑐+1.

Proof. The leftmost inequality is a consequence of Proposition 6.5. The upper
bound follows from the fact that 𝛾4(𝑇(5, 9)) ≤ 2 and 𝛾4(𝑇(5, 13)) = 1. Perform-
ing a bandmove on each knot reveals upper bounds of 2 and 1 respectively. □
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7. Further remarks
We have seen that for some torus knots, for example 𝑇(2, 3) and 𝑇(3, 4), the

geography problem is completely solved. However, for many small knots there
are still several unknown values.
In cases where the two-fold branched cover of 𝑆3 branched over the knot is

a manifold which is well understood, it is possible that more can be said about
the geography problem, such as in the case of two-bridge knots.
While much is known about rational homology spheres bounding definite

manifolds (see, for instance, [4, 17, 18, 19]), the cases of semi-definite and in-
definite manifolds are more challenging.

Example 7.1. Consider thefigure-eight knot, 41. Because 41 is an amphicheiral
knot, 𝜎(41) = Υ41(1) = 0. Viro [24] showed that 41 does not bound a Möbius
band in the 4–ball. In Figure 2(b), we see that 41 does bound a punctured Klein
bottle 𝐹 and computation reveals that 𝑒(𝐹) = 4. Taking the mirror image, we
see that 41 also bounds a punctured Klein bottle with 𝑒 = −4. This results in
an (𝑒, ℎ)–graph with exactly one unknown point: (0, 2).
Question 7.2. Does the figure-eight knot bound a punctured Klein bottle 𝐹 with
𝑒(𝐹) = 0?
Note that Theorem 2.4 implies that, for such an 𝐹, sign(Σ(𝐹)) = 0 and so Σ(𝐹)
is not a definite manifold.
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