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Upper bounds on resolvent degree via
Sylvester’s obliteration algorithm

Curtis Heberle and Alexander J. Sutherland

Abstract. For each n, let RD(n) denote the minimum d for which there
exists a formula for the general polynomial of degree n in algebraic functions
of at most d variables. In this paper, we recover an algorithm of Sylvester
for determining non-zero solutions of systems of homogeneous polynomials,
whichwe present fromamodern algebro-geometric perspective. We then use
this geometric algorithm to determine improved thresholds for upper bounds
on RD(n).

Contents

1. Introduction 107
2. Resolvent degree, polar cones, and Tschirnhaus transformations 110
3. The obliteration algorithms 114
4. Upper bounds on resolvent degree 125
Appendix A. Python implementations of the obliteration algorithm

and related phenomena 134
References 144

1. Introduction
A classical problem inmathematics is to determine the roots of a general de-

gree n polynomial in one variable in terms of its coe�cients. Modern work on
this problem centers around resolvent degree, an invariant whose ideas perme-
ate classical work, but was not formally de�ned until the independent de�ni-
tions of Brauer [Bra1975, p.46] and Arnol’d and Shimura [AS1976, p.46]. Farb
andWolfson greatly expanded the context of resolvent degree in [FW2019, Def-
inition 2.3, Proposition 2.4, De�nition 3.1].

Following [Wol2021, Example 4.2], we denote the resolvent degree of the
general degree n polynomial by RD(n). Currently, non-trivial lower bounds on
RD(n) are unknown [FW2019, Section 1.5]; it is possible that RD(n) = 1 for
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all n. Nonetheless, Dixmier [Dix1993] noted that “Every reduction of RD(n)
would be serious progress,” andWolfson provided new upper bounds onRD(n)
[Wol2021, Theorems 5.6 and 5.8] by constructing a “bounding function” F(m)
such that RD(n) ≤ n − m for n ≥ F(m). The current best upper bounds on
RD(n) are given by [Sut2021C, Theorem3.27], where the second-named author
constructs an improved bounding function G(m) and shows that lim

m→∞

F(m)
G(m)

=
∞.

In this paper, we recover an algorithm from [Syl1887] (henceforth referred to
as the “obliteration algorithm”) for solving systems of equations using polyno-
mials of minimal degree. An additional modern description of the Sylvester’s
work and its relevance to resolvent degree is given in [Heb2021]. Here we
present the algorithm primarily from an algebro-geometric viewpoint using the
language of “polar cones” introduced in [Sut2021C, Section 2]. We then use the
obliteration algorithm to determine the following new upper bounds on resol-
vent degree:

Theorem 1.1 (Upper Bounds on Resolvent Degree).
(1) For n ≥ 5, 250, 199, RD(n) ≤ n − 13.
(2) For each 14 ≤ m ≤ 17 and n > (m−1)!

120
, RD(n) ≤ n − m.

(3) For n ≥ 381, 918, 437, 071, 508, 901, RD(n) ≤ n − 22.
(4) For each 23 ≤ m ≤ 25 and n > (m−1)!

720
, RD(n) ≤ n − m.

The above result is found as Theorem 4.6 in Section 4 and leads to the construc-
tion of a new bounding functionG′(m) such that RD(n) ≤ n−m for n ≥ G′(m)
and G′(m) ≤ G(m) in Corollary 4.9.

Historical Remarks. The second-named author uses twodistinctmethods to con-
struct G(m) [Sut2021C, Theorems 3.7, 3.10, 3.24]. For general m (Theorem
3.24), the second-named author uses a result of Debarre andManivel [DM1998,
Theorem 2.1] to improve on the construction of Wolfson which underlies
[Wol2021, Theorem 5.6]. For small m (Theorems 3.7 and 3.10), the second-
named author uses iterated polar cone methods which build upon the meth-
ods of [Wim1927], [Che1954], and [Seg1945] (note, however, that Wiman and
Chebotarev do not use the language of polars at all and Segre refers only to in-
dividual polars). An application of Sylvester’s obliteration algorithm to certain
small m cases is considered in [Heb2021]. By combining Sylvester’s obliter-
ation algorithm with the other methods described above, the authors believe
they have exhausted the classical methods related to the theory of Tschirnhaus
transformations; implications of this are discussed in Subsection 4.4.

Outline of the Paper. In Section 2, we recall the relevant background on resol-
vent degree, polar cones, and Tschirnhaus transformations. In Section 3, we
present a modern, geometric version of the obliteration algorithm and related
phemonena, as well as a summary of Sylvester’s original work. In Section 4, we



UPPER BOUNDS ON RESOLVENT DEGREE 109

apply the geometric obliteration algorithm to obtain upper bounds on resol-
vent degree. In Section 5, we discuss Python implementations of the geometric
obliteration algorithm used for computations relevant for Theorem 4.6.

Conventions.

(1) We restrict to �elds K which are �nitely generated ℂ-algebras. One
could instead �x an arbitrary algebraically closed �eld F of characteris-
tic zero (in lieu of ℂ) and the statements (relative to F) would hold.

(2) We follow the conventions of [Har1992] for algebraic varieties. In par-
ticular, a projective (respectively, a�ne) variety is de�ned to be a closed
algebraic set in ℙrK (respectively, Ar

K). When we say variety without a
speci�c modi�er, we mean a quasi-projective variety. Note that we do
not assume that varieties are irreducible.

(3) Given a, b ∈ ℤ≥0, we set [a, b] = {x ∈ ℤ | a ≤ x ≤ b}.
(4) Given a collection of homogeneous polynomials

S = {f1, … , fs} ⊆ K[x0, … , xr],

we write V(f1, … , fs) (and occasionally V(S)) for the subvariety of ℙrK
determined by the conditions f1 = ⋯ = fs = 0.

(5) Given a subvariety V ⊆ ℙrK , we write V(K) for the set of K-rational
points of V.

(6) Given points P0, … , Pl ∈ ℙr(K), we write Λ(P0, … , Pl) for the linear
subvariety of ℙrK that they determine. Additionally, we refer to a linear
subvariety Λ ⊆ ℙrk of dimension k ≥ 3 as a k-plane. We refer to lin-
ear subvarieties of dimension 1 (respectively, 2) as lines (respectively,
planes).

(7) We use the notation Kn to mean ℂ(a1, … , an), a purely transcendental
extension of ℂ with transcendence basis a1, … , an.

Note that for generic choices of f1, … , fs, V(f1, … , fs) is a complete inter-
section. However, there are examples of such choices which are not complete
intersections, such as the twisted cubic curve. Following the convention of
[Sut2021C], we refer to a subvariety V(f1, … , fs) as an intersection of hyper-
surfaces.

Consider a system of equations S where each polynomial has degree at most
d and where we denote the number of polynomials of degree j by lj. In such

a case, we say that S is of type [ d ⋯ 1
ld ⋯ l1

]. If lj = 0 for any j ∈ [1, d − 1],

the corresponding column may be omitted from the presentation. When d ≥ 2
and each lj = 1, we say S is of type (1, … , d).

When V = V (f1, … , fs), we say that the type of V is the type of the system
{f1, … , fs}. We note that the type of V explicitly depends on the presentation
in terms of f1, … , fs; it is not unique. However, we only consider the type of an
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intersection of hypersurfaces when it is de�ned by an explicit set of polynomi-
als.

Acknowledgements. The authors thank David Ishii Smyth and JesseWolfson for
their support. The second author thanks Joshua Jordan for helpful conversa-
tions. Additionally, the authors thank the anonymous referee for many helpful
comments and suggestions.

2. Resolvent degree, polar cones, and Tschirnhaus
transformations

2.1. Resolvent degree. We refer the reader to [FW2019] for general de�ni-
tions of resolvent degree (De�nitions 1.3, 2.3), a summary of its history (Section
1), and additional context. We only work over ℂ and thus provide de�nitions
in this context.

De�nition 2.1 (RD for Fields). Let K′∕K be an extension of ℂ-�elds. The re-
solvent degree of K′∕K, denoted RD (L∕K), is the minimal d for which there
exists a tower of �nite extensions

K = E0 ↪ E1 ↪⋯↪ El,

such thatK′ embeds intoEl overK and the essential dimension of eachEj+1∕Ej
is at most d.

De�nition 2.2 (RD for Maps). Suppose Y ⤏ X is a generically �nite, domi-
nant rational map of ℂ-varieties. The resolvent degree of Y ⤏ X, denoted
RD (Y ⤏ X), is the minimal d for which there exists a tower of generically �-
nite, dominant rational maps

El ⤏⋯⤏ E1 ⤏ E0 = X,

such that El ⤏ X factors as El ⤏ Y ⤏ X and the essential dimension of each
Ej+1 ⤏ Ej is at most d.

We �rst note that De�nitions 2.1 and 2.2 agree and is induced by sending
an irreducible a�ne variety X to the corresponding �eld of rational functions
ℂ(X). We refer the reader to [FW2019, De�nition 1.3] for a precise de�nition
of essential dimension, but note that we often approximate essential dimension
via the bounds ed

(
K′∕K

)
≤ tr.deg (K) and ed (Y ⤏ X) ≤ dim(X).

We write RD(n) for the resolvent degree of the general degree n polynomial,
which is given precisely as

RD(n) = RD (ℂn ⤏ ℂn∕Sn) ,

= RD
(
Kn[z]∕

(
zn + a1zn−1 +⋯an−1z + an

)
∕Kn

)
,

recalling the convention thatKn = ℂ (a1, … , an). Additionally, resolvent degree
is de�ned for �nite groups [FW2019, De�nition 3.1] and

RD(n) = RD (Sn) = RD (An)
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[FW2019, Theorem 3.3, Corollary 3.17].
While we restrict ourselves to working over ℂ, we do note lose any general-

ity. Theorem 1.2 of [Rei2022] yields that RDℂ (Sn) = RDK (Sn) for any �eld
K of characteristic zero and [Rei2022, Theorem 1.3] yields that RDℂ (Sn) ≥
RDK (Sn) for any �eld K, i.e. resolvent degree can only go down in positive
characteristic.

In Lemma 2.3, we summarize several basic results which will be used fre-
quently (and often without explicit reference). Item 1 is the �eld-theoretic ver-
sion of [FW2019, Lemma 2.7] and follows immediately from the de�nition of
resolvent degree. Items 2 and 3 are algebraic versions of [FW2019, Lemma 2.9]
and can be found explicitly as follows as [Sut2021C, Lemma 2.18, Proposition
2.19]. Note that items 2 and 3 follow directly from the primitive element theo-
rem.

Lemma 2.3 (Properties of Resolvent Degree).
(1) Let E0 ↪ E1 ↪⋯↪ El be a tower of �eld extensions. Then,

RD(El∕E0) = max
{
RD(Ej∕Ej−1) | j ∈ [1, l]

}
.

(2) Let K′∕K be a degree d �eld extension. Then, RD(K′∕K) ≤ RD(d).
(3) Let V ⊆ ℙrK be a degree d subvariety. Then, there is an extension K′∕K

with RD(K′∕K) ≤ RD(d) over which we can determine a K′-rational
point of V.

As a consequence of item 3, we say that we can determine a point of a degree d
subvariety V by solving a degree d polynomial.

2.2. Polar cones and k-polar points. The original theory of polars for hy-
persurfaces is classical and a classical reference is [Ber1923]; a modern refer-
ence on polars is [Dol2012]. We now recall the key de�nitions and results of
[Sut2021C, Section 2]; we use the same notation and begin with the de�nition
of polars.

De�nition 2.4 (Polars and Polar Cones). Let f ∈ K[x0, … , xr] be a homoge-
neous polynomial of degree d and P ∈ ℙr(K). Observe that the set

I∗j ∶= HomSet ([1, j], [0, r])

indexes the (ordered) jtℎ partial derivatives of f for each j ∈ [0, d]. We also use
the shorthand

)j00 ⋯)jll = )j0+⋯+jl

)xj00 ⋯)xjll
.

For each j ∈ [0, d], the jtℎ polar of f at P is the homogeneous polynomial

t(j, f, P) ∶=
∑

�∈I∗d−j

()|�
−1(0)|

0 ⋯)|�
−1(r)|

r f)
|||||||P
x|�

−1(0)|
0 ⋯x|�

−1(r)|
r , (1)
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which is of degree d − j. Next, consider the hypersurface H = V(f). The jtℎ
polar ofH at P is

T(j, f, P) ∶= V(t(j, f, P)) ⊆ ℙrK .

Finally, the (�rst) polar cone ofH at P is

C(H; P) ∶=
d−1⋂

j=0
T(j, f, P).

Note that T(0, f, P) = H for all P and T(d, f, P) = ℙrK if P ∈ H(K). If H
is smooth at P, then T(d − 1, f, P) is the tangent hyperplane of H at P. Our
interest in polars stems from our interest in polar cones, which are themselves
motivated by the following classical result (which is stated as a fact in [Seg1945,
I.5, p.292]; Segre refers readers to [Ber1923, p.203]).

Lemma 2.5 (Bertini’s Lemma for Hypersurfaces). Let H ⊆ ℙrK be a hypersur-
face and P ∈ H(K). Then, C(H; P) ⊆ H is a cone with vertex P.

In particular, for any point Q ∈ C(H; P) ⧵ {P}, the line Λ(P, Q) lies inH.
Observe that for an intersection of hypersurfacesV(f1, … , fs), a lineΛ lies on

V(f1, … , fs) exactly when Λ lies on each hypersurface V(fj). This observation
motivates the following de�nition and lemma, which are originally given as
[Sut2021C, De�nition 2.10, Lemma 2.11].

De�nition 2.6 (Polar Cones for Intersections). Let V = V(f1, … , fs) ⊆ ℙrK be
an intersection of hypersurfaces and P ∈ V(K). The (�rst) polar cone of V at
P is

C(V; P) ∶=
s⋂

j=1
C(V(fj); P).

Lemma 2.7 (Bertini’s Lemma for Intersections). LetV ⊆ ℙrK be an intersection
of hypersurfaces and P ∈ V(K). Then, C(V; P) ⊆ V is a cone with vertex P.

Iterating the polar cone construction yields a method for determining k-
planes on intersections of hypersurfaces. We now recall the associated de�-
nitions, �rst given as [Sut2021C, De�nition 2.22].

De�nition 2.8 (Iterated Polar Cones and k-Polar Points). Let V ⊆ ℙrK be an
intersection of hypersurfaces and P0 ∈ V(K). First, set C1(V; P0) ∶= C(V; P0).
Given additional points P1, … , Pk−1 ∈ V(K) such that

Pl ∈ Cl(V; P0, … , Pl−1) ⧵ Λ (P0, … , Pl−1)

for l ∈ [1, k − 1], the ktℎ polar cone of V at P0, … , Pk−1 is

Ck(V; P0, … , Pk−1) ∶= C
(
Ck−1(V; P0, … , Pk−2); Pk−1

)
.

We refer to an ordered collection of such points (P0, … , Pk) as a k-polar point
of V.
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If the points P0, … , Pk−1 have already been chosen, we refer to
Ck(V; P0, … , Pk−1) as the ktℎ polar cone ofV. In the event that such points exist,
but have not been explicitly chosen, we refer to a ktℎ polar cone ofV. Addition-
ally, it is sometimes useful to refer to V itself as a zeroth polar cone of V (at any
of its K-points).

By noting that iterated polar cones are nested, i.e.

Ck(V; P0, … , Pk−1) ⊆ Ck−1(V; P0, … , Pk−2) ⊆ ⋯ ⊆ C(V; P0) ⊆ V,

and that the points P0, … , Pk de�ning a k-polar point (P0, … , Pk) are in general
position, we arrive at the following k-plane analogue of Lemma 2.7, which is
originally [Sut2021C, Lemma 2.24]:

Lemma 2.9 (Polar Point Lemma). Let V ⊆ ℙrK be an intersection of hypersur-
faces and let (P0, … , Pk) be a k-polar point of V. Then,

Λ(P0, … , Pk) ⊆ Ck(V; P0, … , Pk−1) ⊆ V

is a k-plane.

2.3. Tschirnhaus transformations. Weuse the notation and conventions of
[Sut2021C, Subsection 3.1] for Tschirnhaus transformations and refer the reader
there for details. Note also that Wolfson provides a more complete history
of Tschirnhaus transformations in [Wol2021, Section 2 and Appendix B]. Let
Kn = ℂ(a1, … , an) be a purely transcendental extension of ℂ with transcen-
dence basis a1, … , an.

De�nition 2.10 (General Polynomials). The general polynomial of degree
n is the polynomial

�n(z) = zn + a1zn−1 +⋯+ an−1z + an ∈ Kn[z].

De�nition 2.11 (Tschirnhaus Transformations). A Tschirnhaus transfor-
mation of the general degree n polynomial is an isomorphism of Kn-�elds

Υ ∶ Kn[z]∕(�n(z)) → Kn[z]∕( (z)),

where  (z) = zn +b1zn−1 +⋯+bn−1z + bn. We say that Υ has type (j1, … , jk)
if bj1 = ⋯ = bjk = 0.

As per Remark 3.3 of [Sut2021C], the space of all Tschirnhaus transforma-
tions of the general degree n polynomial (up to re-scaling) is

Tn
Kn
∶= ℙn−1Kn

⧵ [1 ∶ 0 ∶ ⋯ ∶ 0] ⊆ ℙn−1Kn
.

Note that each bj in De�nition 2.11 is a homogeneous polynomial of degree j
in a1, … , an.

De�nition 2.12 (Tschirnhaus Complete Intersections). Fix n ∈ ℤ≥1. For any
m ∈ [1, n − 1], themtℎ extended Tschirnhaus hypersurface is

�m ∶= V(bm) ⊆ ℙn−1Kn
,
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and themtℎ extended Tschirnhaus complete intersection is

�1,…,m ∶=
m⋂

j=1
�j ⊆ ℙn−1Kn

.

Additionally, themtℎ Tschirnhaus hypersurface is

�◦m ∶= �m ∩ Tn
Kn
= �m ⧵ {[1 ∶ 0 ∶ ⋯ ∶ 0]} ,

and themtℎ Tscihrnhaus complete intersection is

�◦1,…,m ∶= �1,…,m ∩ Tn
Kn
= �1,…,m ⧵ {[1 ∶ 0 ∶ ⋯ ∶ 0]} .

Remark 2.13 (Strategy for Upper Bounds on RD(n)). If we can determine a
K′-rational point of �◦1,…,m−1 over an extension K′∕Kn of su�ciently small re-
solvent degree, then we can conclude that RD(n) ≤ n − m. Notice that if we
can determine an (m − d − 1)-plane Λ ⊆ �◦1,…,d over an extension L∕Kn of low
resolvent degree, then we need only further pass to an extension K′∕L with
RD(K′∕L) ≤ RD

( (m−1)!
d!

)
, by Lemma 2.3.

Lemma 2.9 yields that every k-polar point determines a k-plane, hence Re-
mark 2.13 yields that it will su�ce to determine k-polar points on the Tschirn-
haus complete intersections �◦1,…,d.

3. The obliteration algorithms
In [Syl1887], Sylvester gives an algorithm to determine an upper bound on

the number of variables required to determine a non-trivial solution for a sys-
tem of homogeneous polynomials of given degrees by solving polynomials of
the same, or lower, degrees. The algorithm centers on Sylvester’s “formula
of obliteration” [Syl1887, p.475], which will be covered in detail in Corollary
3.12 and Proposition 3.15. Consequently, we refer to Sylvester’s method as the
“obliteration algorithm.” In Subsection 3.1, we give a modern description of
the obliteration algorithm via geometry (in terms of varieties, rational points,
and polar cones). In Subsection 3.2, we describe the obliteration algorithm in
terms of systems of homogeneous polynomials and explain Sylvester’s classical
language.

3.1. The Geometric obliteration algorithm. We now give a geometric con-
struction of Sylvester’s obliteration algorithm. More speci�cally, given an inter-
section of hypersurfaces V ⊆ ℙrK , we give a bound on the ambient dimension
required to be able to determine a point ofV over an extensionK′∕K of bounded
resolvent degree. Note that this bound depends only on the type of V.

De�nition3.1 (Minimal dimension bound). Theminimaldimensionbound

of type [ d ⋯ 1
ld ⋯ l1

], which we will denote by r(d; ld, … , l1), is the minimal
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r′ ∈ ℤ≥1 ∪ {∞} such that whenever r ≥ r′, we can determine a point of any in-

tersection of hypersurfaces of type [ d ⋯ 1
ld ⋯ l1

] in ℙrK over an extension K′∕K

with RD
(
K′∕K

)
≤ RD(d). Given an intersection of hypersurfaces V of type

[ d ⋯ 1
ld ⋯ l1

], we set r(V) ∶= r(d; ld, … , l1).

Remark 3.2 (Finiteness of the Minimal Dimension Bound). The main goal of
this section is to establish an upper bound on r(d; ld, … , l1). More speci�cally,
we introduce a recursive, combinatorial bound g(d; ld, … , l1) in De�nition 3.3
which we will show satis�es

r(d; ld, … , l1) ≤ g(d; ld, … , l1). (2)

The proof of inequality (2) is exactly the geometric version of the obliteration
algorithm.

We now give De�nition 3.3 and note that the underlying geometric intuition
is explained in Lemma 3.5 and Remark 3.6.

De�nition 3.3 (Geometric Dimension Bound). The geometric dimension

bound of type [ 1l1
] is g(1; l1) ∶= l1. Similarly, the geometric dimension

bound of type [2 1
1 l1

] is g(2; 1, l1) ∶= 1 + l1 and the geometric dimension

bound of type [ 2 1
l2 l1

] with l2 ≥ 2 is

g(2; l2, l1) ∶= g(2; l2 − 1, l2 + l1 + 1).

For d ≥ 3, the geometric dimension bound of type [d d − 1 ⋯ 2 1
1 ld−1 ⋯ l2 l1

] is

g(d; 1, ld−1, … , l2, l1)

∶= g
⎛
⎜
⎝
d − 1; ld−1, (ld−1 + ld−2), … ,

d−1∑

j=2
lj,

⎛
⎜
⎝

d−1∑

j=1
lj

⎞
⎟
⎠
+ 1

⎞
⎟
⎠
.

For d ≥ 3 and ld ≥ 2, the geometric dimension bound of type

[d d − 1 ⋯ 2 1
1 ld−1 ⋯ l2 l1

] is

g(d; ld, ld−1, … , l2, l1)

∶= g
⎛
⎜
⎝
d; ld − 1, (ld + ld−1) − 1, … ,

⎛
⎜
⎝

d∑

j=2
lj

⎞
⎟
⎠
− 1,

d−1∑

j=1
lj

⎞
⎟
⎠
.
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Finally, given an intersection of hypersurfaces V of type

[ d d − 1 ⋯ 2 1
ld ld−1 ⋯ l2 l1

], we set

g(V) ∶= g(d; ld, … , l1).

Remark 3.4 (Hyperplane Identities). The de�nitions of both the minimal and
geometric dimension bounds admit a “hyperplane identity,” whichweusewith-
out explicit reference:

1 + r(d; ld, … , l2, l1) = r(d; ld, … , l2, l1 + 1),
1 + g(d; ld, … , l2, l1) = g(d; ld, … , l2, l1 + 1).

Wenext state Lemma3.5, which is the technical underpinning of the geomet-
ric obliteration algorithm and which specializes to give the geometric version
of Sylvester’s formula of reduction.

Lemma 3.5 (The Reduction Lemma). Let V be an intersection of hypersurfaces

of type [ d ⋯ 1
ld ⋯ l1

] with d ≥ 2 and which is not a hypersurface. Take Vd to be

a degree d hypersurface and Vred to be an intersection of hypersurfaces of type

[ d ⋯ 1
ld − 1 ⋯ l1

]

if ld ≥ 2 and of type

[d − 1 ⋯ 1
ld−1 ⋯ l1

]

ifld = 1, such thatV = Vred∩Vd. LetP ∈ Vred(K) and takeH to be a hyperplane
which does not contain P. Then,

g(V) = g(H ∩ C(Vred; P)) = g(C(Vred; P)) + 1.

Proof. First, considerwhenld ≥ 2. FromDe�nition 2.6, observe thatC(Vred; P)
has type

⎡
⎢
⎢
⎣

d ⋯ 1

ld − 1 ⋯ (
d∑

j=1
lj) − 1

⎤
⎥
⎥
⎦

.

.
From De�nition 3.3, it follows that

g(V) = g(d; ld, … , l1)

= g
⎛
⎜
⎝
d; ld − 1, (ld + ld−1) − 1, … ,

⎛
⎜
⎝

d∑

j=2
lj

⎞
⎟
⎠
− 1,

d∑

j=1
lj

⎞
⎟
⎠

= g
(
C(Vred; P)

)
+ 1

= g
(
H ∩ C(Vred; P)

)
.
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Similarly, when ld = 1, we have

g(V) = g(d; ld, … , l1)

= g
⎛
⎜
⎝
d − 1; ld−1, (ld + ld−1), … ,

d∑

j=2
lj,

⎛
⎜
⎝

d∑

j=1
lj

⎞
⎟
⎠
+ 1

⎞
⎟
⎠

= g
(
C(Vred; P)

)
+ 1

= g
(
H ∩ C(Vred; P)

)
. �

Remark 3.6 (Geometric insight for the reduction lemma). The proof of Lemma
3.5 follows immediately fromDe�nition 3.3, butwewish to address the geomet-
ric reasoning underlying the lemma. Suppose our goal is to determine a point
Q of V over an extension of bounded resolvent degree. Observe that if we can
determine a lineΛ ⊆ Vred, thenwe need only solve a degree d polynomial to de-
termine a point of V. As Vred is V with Vd removed, it is already “less di�cult”
to determine the point P ∈ Vred(K) given by assumption (i.e. g(V) ≥ g(Vred)).
Additionally, we can determine a line Λ ⊆ Vred by determining a point P′ ≠ P
of C(Vred; P). As H is taken to be a hyperplane which does not contain P, it
su�ces to determine any point of C(Vred; P) ∩ H, which is also “less di�cult”
as C(Vred; P) is de�ned by fewer top degree hypersurfaces.

As in Lemma 3.5, wewill frequentlywant to split an intersection of hypersur-
faces V into parts analogous to Vred and Vd, and so we introduce the following
terminology and notation.

De�nition 3.7 (Reduction and Complement). Given an intersection of hyper-

surfaces V of type [ d ⋯ 1
ld ⋯ l1

] with ld ≥ 2, a reduction of V is an inter-

section of hypersurfaces Vred of type [ d d − 1 ⋯ 2 1
ld − 1 ld−1 ⋯ l2 l1

] such that

V = Vred ∩Vd for some degree d hypersurface Vd, we which refer to as a com-
plement of Vred for V.

If V is an intersection of hypersurfaces of type [ d ⋯ 1
ld ⋯ l1

] with ld = 1, a

reduction of V is an intersection of hypersurfaces Vred of type [d − 1 ⋯ 1
ld−1 ⋯ l1

]

such that V = Vred ∩ Vd for some degree d hypersurface Vd, we which refer to
as a complement of Vred for V.

With Lemma 3.5 and De�nition 3.7 in place, we now state the geometric
version of Sylvester’s “formula of reduction” [Syl1887, p.475].

Corollary 3.8 (Geometric Formula of Reduction). LetW be an intersection of

hypersurfaces of type [ d ⋯ 1
ld ⋯ l1

]. Then, for any P0 ∈ W(K), any reduction
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C(W; P0)red, and any P1 ∈ C(W; P0)red(K), we have

g (C(W; P0)) = g
(
C
(
C(W; P0)red; P1

))
+ 1.

Proof. This follows immediately as a special case of Lemma 3.5 applied toV =
C(W; P0). �

Wewill soonwant to successively iterate Lemma 3.5 so that we can eliminate
the hypersurfaces of largest degree from any intersection of hypersurfaces by
introducing many hypersurfaces of strictly lower degree. This is achieved in
Proposition 3.10. However, we �rst introduce additional language and notation
to refer to the varieties which arise in this process of reduction.

De�nition 3.9 (Sylvester Reductions). Let V be an intersection of hypersur-

faces of type [ d ⋯ 1
ld ⋯ l1

] with d ≥ 2 and which is not a hypersurface. A �rst

partial Sylvester reduction of V is

VSyl(d; 1) ∶= C(Vred; P0),

where Vred is any reduction of V and P0 ∈ Vred(K). Proceeding inductively, for
any j ∈ [2, ld], a jtℎ partial Sylvester reduction of V is

VSyl(d; j) ∶= C(Hj−1 ∩ V
Syl
j−1; Pk) = Hj−1 ∩ C(V

Syl
j−1; Pk),

whereHj−1 is a hyperplane which does not contain Pj−1 and Pj ∈(
Hk−1 ∩ V

Syl
k−1(d; j − 1)

)
(K).

When d ≥ 3, a �rst Sylvester reduction of V is

VSyl
1 ∶= VSyl(d; ld).

For each j ∈ [2, d−1], let �d−j+1 be the number of degree d−j+1hypersurfaces
de�ning a (j − 1)st Sylvester reduction VSyl

j−1. Then, a j
tℎ Sylvester reduction

of V is

VSyl
j ∶=

(
VSyl
j−1

)Syl
(d − j + 1; �d−j+1).

Continuing with the notation of De�nition 3.9, note that VSyl
j is a variety

obtained by repeatedly applying Lemma 3.5 toV to remove all hypersurfaces of
degree > d − j.

Proposition 3.10 (The Obliteration Proposition). Let V be an intersection of

hypersurfaces of type [ d ⋯ 1
ld ⋯ l1

]with d ≥ 2which is not a hypersurface. Then,

g(V) = g
(
VSyl
1

)
,

for any �rst Sylvester reduction VSyl
1 of V.
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Proof. From Lemma 3.5 and De�nition 3.9, it follows immediately that

g
(
VSyl(d; j)

)
= g

(
VSyl(d; j + 1)

)
,

for each j ∈ [1, ld −1]. Consequently, applying Lemma 3.5 to V and its partial
Sylvester reductions yields

g(V) = g
(
VSyl(d; 1)

)
= ⋯ = g

(
VSyl(d; ld)

)
= g

(
VSyl
1

)
. �

Remark 3.11 (Geometric Dimension Bound via Obliteration). From the de�-
nition of the jtℎ Sylvester reductions, we can iteratively apply Proposition 3.10
to observe that

g(V) = g
(
VSyl
1

)
= ⋯ = g

(
VSyl
d−2

)
= g

(
VSyl
d−1

)
,

which provides the most succinct description of the central argument of the
geometric obliteration algorithm.

We now arrive at the geometric version of Sylvester’s “formula of oblitera-
tion” as a specialization of Proposition 3.10.

Corollary 3.12 (Geometric Formula of Obliteration). LetW be an intersection

of hypersurfaces of type [ d ⋯ 1
ld ⋯ l1

] with d ≥ 2. For any P0 ∈ W(K) and any

Sylvester reduction C(W; P0)
Syl
1 , we have

g(C(W; P0)) = g
(
C(W; P0)

Syl
1

)
. (3)

Proof. This follows immediately as a special case of Proposition 3.10 withV =
C(W; P0). �

Remark 3.13 (Explicit numerics of the formula of obliteration). Sylvester’s for-
mula of obliteration [Syl1887, p.475], which we address in Proposition 3.15, is
givennumerically and, for notational reasons, he chooses towrite the statement
in terms of “linear solutions” ofC(W; P0)Syl(d; ld−1) instead of g

(
C(W; P0)

Syl
1

)
.

For this reason, we delay the discussion of numerics of the formula of oblitera-
tion to Subsection 3.2.

As we have established the reduction lemma and the obliteration proposi-
tion, which we used to recover Sylvester’s formula of reduction and formula of
obliteration, we proceed to prove inequality (2).

Proposition 3.14 (Minimal vs. Geometric Dimension Bound). For every type

[ d ⋯ 1
ld ⋯ l1

] of an intersection of hypersurfaces,

r(d; ld, … , l1) ≤ g(d; ld, … , l1) < ∞.

Proof: The Geometric Obliteration Algorithm. We proceed by ind-
uction on d. First, observe that when d = 1, it is immediate that

r(1; l1) = l1 = g(1; l1).
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We additionally consider the case d = 2 before considering the general case.
For the d = 2 case, we proceed via induction on l2. When l2 = 1, deg(V) = 2
and thuswe can determine a point ofV by solving a quadratic polynomial when

dim (V) ≥ r − (l1 + 1) = 0.

It follows that

r(2; 1, l1) = l1 + 1 = g(2; 1, l1).

Now, consider the case where l2 ≥ 2 is arbitrary. Our inductive hypothesis
yields

r(2; l2 − 1, �1) ≤ g(2; l2 − 1, �1),
for any �1 ≥ 0. Let Vred be a reduction of V with complement V2. As Vred

is of type [ 2 1
l2 − 1 l1

], we can determine a point P0 of Vred over an iterated

quadratic extension whenever r ≥ g(Vred). LetH be a hypersurface which does

not contain P0. Note thatH∩C(Vred; P0) is of type [ 2 1
l2 − 1 l2 + l1

] and so we

can similarly determine a point P1 ofH∩C(Vred; P0) over an iterated quadratic
extension whenever r ≥ g(Vred) + 1. From Lemma 2.7, we have that

Λ(P0, P1) ⊆ C(Vred; P0) ⊆ Vred.

Thus, we can determine a point of Λ(P0, P1) ∩ V2 ⊆ V over an additional qua-
dratic extension. From Lemma 3.5, it follows that

r(2; l2, l1) ≤ max {g(2; l2 − 1, l1), g(2; l2 − 1, l1 + l2)} ,
= g(2; l2 − 1, l1 + l2),
= g(2; l2, l1).

Now, let us return to our induction on d and consider the case of general
d ≥ 2. Our inductive hypothesis for d yields that r(d − 1; �d−1, … , �1) ≤ g(d −
1; �d−1, … , �1) for any �d−1 ≥ 1 and �j ≥ 0 for all j ∈ [1, d − 2]. We proceed
by induction on ld. Let Vred be a reduction of V with complement Vd. When
ld = 1, the inductive hypothesis on d yields that we can determine a point P0 of
Vred by solving polynomials of degree at most d − 1 when r ≥ g(Vred). Letting
H denote a hyperplane which does not contain P0, we can similarly determine
a point P1 ofH∩C(Vred; P0) over by solving polynomials of degree at most d−1
when r ≥ g

(
C(Vred; P0)

)
+ 1. It follows that

Λ(P0, P1) ⊆ C(Vred; P0) ⊆ Vred,

and so we can determine a point of Λ(P0, P1) ∩ Vd ⊆ V by solving a degree d
polynomial. As a result,

r(d; 1, ld−1, … , l1) ≤ max
{
g(Vred), g

(
C(Vred; P0)

)
+ 1

}
,

= g
(
C(Vred; P0)

)
+ 1,

= g(V),
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= g(d; 1, ld−1, … , l1).

Next, we consider the case of arbitrary ld ≥ 2. Our inductive hypothesis for
ld yields that

r(d; ld − 1, �d−1, … , �1) ≤ g(d; ld − 1, �d−1, … , �1),

for all �j ≥ 0, j ∈ [1, d − 1]. As a result, we can determine a point P0 of
Vred by solving polynomials of degree at most d when r ≥ g(Vred). Taking
H to be a hyperplane which does not contain P0, we can determine a point
P1 of H ∩ C(Vred; P0) by solving polynomials of degree at most d when r ≥
g
(
C(Vred; P0)

)
+ 1. Therefore,

Λ(P0, P1) ⊆ C(Vred; P0) ⊆ Vred,

and we can determine a point a point of Λ(P0, P1) ∩ Vd ⊆ V by solving an
additional degree d polynomial. Consequently,

r(d; ld, … , l1) ≤ max
{
g(Vred), g

(
C(Vred; P0)

)
+ 1

}
,

= g
(
C(Vred; P0)

)
+ 1,

= g(V),
= g(d; ld, … , l1).

Finally, we note that the polar cone construction introduces only �nitely
many hypersurfaces, all of which are strictly smaller degree. Consequently,
iterating Lemma 3.5 yields that g(d; ld, … , l1) is �nite for every type

[ d ⋯ 1
ld ⋯ l1

]. �

3.2. Sylvester’s obliteration algorithm. In [Syl1887], Sylvester writes
“In the following memoir I propose to present Hamilton’s pro-
cess under what appears to me to be a clearer and more easily
intelligible form, to extend his numerical results and to estab-
lish the principles of a more general method than that to which
he has con�ned himself.”

We now propose to serve the analogous role for Sylvester that Sylvester served
for Hamilton. Note that [Syl1887] begins with a “a somewhat more extended
statement of the Law of Inertia (Trägheitsgesetz) for quadratic forms” and pro-
vides a brief history of the theory of Tschirnhaus transformations, both ofwhich
we omit here. Sylvester’s law of inertia is well-known (see [Ost1959, Section 1])
and not necessary for our purposes. We refer the reader to [Wol2021, Section 2
and Appendix B] for a more complete history of Tschirnhaus transformations.

Throughout this subsection, we consider a system S = {f1, … , fs} of homo-
geneous polynomials. Given a solution P0 of S, the “�rst emanant” [Syl1887,
p.471] of S at P0 is

S(1; P0) ∶=
{
t(l, fj, P0) | j ∈ [1, s], l ∈ [0, deg(fj) − 1]

}
,
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where t(l, fj, P0) is as in equation (1) of De�nition 2.4. Given a solution P1
of S(1; P0), Sylvester’s sub-lemma [Syl1887, p.472] states that any linear com-
bination �0P0 + �1P1 (what he calls an “alliance” of P0 and P1) is a solution of
S(1; P0), where [�0 ∶ �1] ∈ ℙ1(K). Consequently, Sylvester says that P0 and P1
de�ne a “linear solution” of S(1; P0) (and thus also of S, since S ⊆ S(1; P0)).

Note that the geometric version of Sylvester’s sub-lemma [Syl1887, p.472] is
Lemma 2.7. The core algebraic computation reduces to the case of hypersur-
faces; see Lemma 2.8 of [Sut2021C]. Additionally, just as the second-named
author constructs iterated polar cones in [Sut2021C], Sylvester analogously in-
troduces “rtℎ emanants” [Syl1887, p.472] and “the Lemma”
[Syl1887, p.472] is the analogue of the polar point lemma (Lemma 2.9). His
proof follows from iterating the sub-lemma.

Sylvester now focuses on linear solutions [Syl1887, p.475] of systems of equa-
tions. First, he introduces “completed emanants” [Syl1887, p.475] to ensure
that P1 is distinct from P0 (and thus P0 and P1 determine a genuine linear
solution). More speci�cally, a completed emanant is a system of equations
T = S(1; P0) ∪ {g}, where g is a homogeneous linear polynomials such that

g(P0) ≠ 0. Next, let S be of type [ d ⋯ 1
ld ⋯ l1

]. Sylvester introduces nota-

tion [Syl1887, p.475] to denote the number of variables necessary to determine
a linear solution of S. We modify his notation slightly for clarity and write
[d; ld, … , l1] instead of [p, q, r, … , �, �]. Note that

[d; ld, … , l1] = r (C(V(S); P0)) + 1,

for any P0 ∈ V(S)(K). It follows that Sylvester’s formula of reduction [Syl1887,
p.475] is

[d; ld, … , l1] ≤
⎡
⎢
⎣
d; ld − 1, ld + ld−1, … ,

d∑

j=2
lj,

d∑

j=1
lj

⎤
⎥
⎦
+ 1,

when ld ≥ 2. When ld = 1, let d′ be the largest j ≤ d − 1 such that lj is
non-zero. Then, Sylvester’s formula of reduction is

[d; ld, … , l1] ≤
⎡
⎢
⎣
d′; ld′ , ld′ + ld′−1, … ,

d′∑

j=2
lj,

d′∑

j=1
lj

⎤
⎥
⎦
+ 1.

Sylvester then claims the his formula of obliteration [Syl1887, p.475] without
proof. We state his formula of obliteration and provide a proof, for the sake of
completeness.

Proposition 3.15 (Sylvester’s Formula of Obliteration). Let S be a system of

homogeneous polynomials of type [ d ⋯ 1
ld ⋯ l1

] with d ≥ 2 and ld ≥ 2. Then,

[d; ld, … , l1] ≤ [d − 1; �d−1, �d−2, … , �2, �1] + ld,
= [d − 1; �d−1, �d−2, … , �2, �1 + ld],
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where

�d−j =
(ld + j − 1

j

)jld + 1
j + 1 +

j−1∑

�=0

(ld + � − 1
�

)
ld−j+�.

Proof. It is straightforward to see that iteratively applying Sylvester’s formula
of reduction allows us to reduce to a system of equations of degree at most d−1.
For the explicit numerics, we give a proof via induction on ld. Note that to
determine a linear solution of S, it su�ces to determine a point solution of a
completed emanant T0 of S at some point solution P0. Additionally, we note
that the type of T0 is

⎡
⎢
⎢
⎣

d d − 1 ⋯ 2 1

ld ld + ld−1 ⋯
d∑

j=2
lj (

d∑

j=1
lj) + 1

⎤
⎥
⎥
⎦

.

Now, suppose that ld = 1. We can determine a point solution P1 of T0 by
determining a linear solution of the subsystem T′0, which is of type

⎡
⎢
⎢
⎣

d − 1 ⋯ 2 1

1 + ld−1 ⋯ 1 +
d−1∑

j=2
lj (1 +

d−1∑

j=1
lj) + 1

⎤
⎥
⎥
⎦

.

Futhermore, we see that

�d−j =
(1 + j − 1

j

)j(1) + 1
j + 1 +

j−1∑

�=0

(1 + � − 1
�

)
ld−j+�,

= 1 +
j−1∑

�=0
ld−j+�,

= 1 +
d−1∑

�=d−j
l�,

so the claim holds when ld = 1. Now, consider the case where ld ≥ 2 is
arbitrary. To determine a point solution of T0, it su�ces to determine a linear
solution of a subsystem T′0, which is of type

⎡
⎢
⎢
⎣

d d − 1 ⋯ 2 1

ld − 1 ld + ld−1 ⋯
d∑

j=2
lj (

d∑

j=1
lj) + 1

⎤
⎥
⎥
⎦

.

Thus,

[d; ld, … , l1] ≤
⎡
⎢
⎣
d; ld − 1, (ld + ld−1), … ,

⎛
⎜
⎝

d∑

j=2
ld

⎞
⎟
⎠
,
⎛
⎜
⎝

d∑

j=1
lj

⎞
⎟
⎠
+ 1

⎤
⎥
⎦
.

By induction, however, we have that
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[d; ld − 1, (ld + ld−1), … , (
d∑

j=2
ld) , (

d∑

j=1
lj) + 1]

≤ [d − 1; �d−1, … , �1 + ld],

where

�d−j

=
((ld − 1) + j − 1

j

)j(ld − 1) + 1
j + 1

+
j−1∑

�=0

((ld − 1) + � − 1
�

) ⎛
⎜
⎝

j∑

�=0
ld−j+�

⎞
⎟
⎠
,

=
(ld + j − 2

j

)jld − j + 1
j + 1 +

j−1∑

�=0

(ld + � − 2
�

) ⎛
⎜
⎝

j∑

�=0
ld−j+�

⎞
⎟
⎠
.

Note that for each �′ ∈ [0, j−1], there are exactly �′+1 summands containing
ld−j+�′ , namely

(ld − 2
0

)
l�′ ,

(ld − 1
1

)
l�′ , … ,

(ld + �′ − 2
�′

)
l�′ .

Additionally, there are exactly j summands containing ld, namely
(ld − 2

0

)
ld,

(ld − 1
1

)
ld, … ,

(ld + j − 3
j − 1

)
ld.

As a result,

�d−j

=
(ld + j − 2

j

)jld − j + 1
j + 1 +

j−1∑

�′=0

(ld + �′ − 2
�′

)
ld

+
j−1∑

�1=0

⎛
⎜
⎝

�1∑

�2=0

(ld + �2 − 2
�2

)⎞
⎟
⎠
ld−j+�1 ,

=
(ld + j − 2

j

)jld − j + 1
j + 1 +

(ld + j − 2
j − 1

)
ld +

j−1∑

�1=0

(ld + �1 − 1
�1

)
ld−j+�1 .

Next, we see that
(ld + j − 2

j

)jld − j + 1
j + 1 =

(ld + j − 2
j

)jld + 1
j + 1 −

(ld + j − 2
j

) j
j + 1,

and
(ld + j − 2

j − 1

)
ld =

(ld + j − 2
j − 1

)jld + 1
j + 1 +

(ld + j − 2
j − 1

)ld − 1
j + 1 .
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Noting that
(ld+j−2

j

)
+

(ld+j−2
j−1

)
=

(ld+j−1
j

)
, it follows that

�d−j =
(ld + j − 1

j

)jld + 1
j + 1 +

(ld + j − 2
j − 1

)ld − 1
j + 1

−
(ld + j − 2

j

) j
j + 1 +

j−1∑

�1=0

(ld + �1 − 1
�1

)
ld−j+�1 .

However,
(ld + j − 2

j − 1

)ld − 1
j + 1 −

(ld + j − 2
j

) j
j + 1

=
(ld + j − 2)!(ld − 1)
(j − 1)!(ld − 1)!(j + 1)

−
(ld + j − 2)!j

j!(ld − 2)!(j + 1)
,

=
(ld + j − 2)!

(j − 1)!(ld − 2)!(j + 1)
−

(ld + j − 2)!
(j − 1)!(ld − 2)!(j + 1)

,

= 0,

and thus

�d−j =
(ld + j − 1

j

)jld + 1
j + 1 +

j−1∑

�1=0

(ld + �1 − 1
�1

)
ld−j+�1 = �d−j,

which proves the claim. �

Sylvester then applies his formula of obliteration to the question of determin-
ing non-zero solutions of equations which de�ne the Tschirnhaus complete in-
tersections �1,…,m−1, including his Triangle of Obliteration. We omit his discus-
sion here as the bounds he obtains are succeeded by the bounds of [Bra1975],
[Wol2021], [Sut2021C], and the next section.

4. Upper bounds on resolvent degree
4.1. Previous bounds. The current upper bounds onRD(n)were determined
by the second-named author in [Sut2021C, Theorem 3.27], which improved
upon those of Wolfson [Wol2021, Theorem 5.6]. The general framework used
by both the second-named author (with polar cones) andWolfson (without po-
lar cones) for constructing their respective bounding functions G(m) and F(m)
was outlined in Remark 2.13. We de�ne G(m) below, but �rst we highlight the
function’s key properties (and recall that property 1, which bothF(m) andG(m)
share, is why we refer to F(m) and G(m) as bounding functions).

Theorem 4.1 (Theorem 1.3 of [Sut2021C]). The function G(m) of
[Sut2021C, De�nition 3.26] has the following properties:

(1) For eachm ≥ 1 and n ≥ G(m), RD(n) ≤ n − m.
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(2) For each d ≥ 4, G(2d2 + 7d + 6) ≤ (2d2+7d+5)!
d!

. In particular, for d ≥ 4

and n ≥ (2d2+7d+5)!
d!

,

RD(n) ≤ n − 2d2 − 7d − 6.
(3) For each m ≥ 1, G(m) ≤ F(m) with equality only when m belongs to

{1, 2, 3, 4, 5, 15, 16} and

lim
m→∞

F(m)
G(m)

= ∞.

We will now numerically de�ne G(m) (which will require two additional
functions) and then a summary of the construction ofG(m). We refer the reader
to [Sut2021C, Section 3] for the full construction ofG(m) and proofs of the state-
ments in Theorem 4.1.

De�nition 4.2 (The Function G(m)). We �rst de�ne # ∶ ℤ≥3 ×ℤ≥1 → ℤ≥1 so
that #(d, k) is the minimal r ∈ ℤ≥1 such that

(k + 1)(r − k) −
d∑

j=2

(k + i
i

)
≥ 0.

Explicitly, we have

#(d, k) = k + ⎡
⎢

1
k + 1

(
(k + d + 1

d

)
− (k + 2))⎤

⎥
.

Next, we de�ne ' ∶ ℤ≥15 × ℤ≥1 → ℤ≥1 by setting '(d, k) equal to

max {
(d + k)!
d!

,
(#(d, k) + d + 1

d

)
− (#(d, k) + 1)2 − (#(d, k) + d)} .

Finally, we de�ne G ∶ ℤ≥1 → ℤ≥1. Form ∈ [1, 14], we de�ne G(m) by
m 1 2 3 4 5 6 7 8 9 10

G(m) 2 3 4 5 9 21 109 325 1681 15121
m 11 12 13 14

G(m) 151,201 1,663,201 19,958,401 259,459,201
and form ≥ 15 by

G(m) = 1 +min {'(d,m − d − 1) | 4 ≤ d ≤ m − 1} .

The values of G(m) for m ∈ [1, 5] are classical and described in [Wol2021,
Appendix B]. In [Che1954], Chebotarev gave an argument that RD(n) ≤ n − 6
forn ≥ 21, however his argument had a gapwhichwas�xed by [Sut2021C, The-
orem3.7]. More speci�cally, Chebotarev (likeWimanbefore him in [Wim1927])
assumed certain intersections of hypersurfaces were generic without proof.

For m ∈ [6, 14], the second-named author determined k-polar points on
extended Tschirnhaus complete intersections �◦1,…,d [Sut2021C, Theorems 3.7,
3.10]. However, the degrees of iterated polar cones grow exponentially and this
method could not be further extended [Sut2021C, Remark 3.19]. For general
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m, the second-named author was able to improve on the bounds of Wolfson by
using [DM1998, Theorem 2.1] tominimize the ambient dimension required for
Wolfson’s algorithm [Sut2021C, Theorem 3.24].

4.2. New bounds. We will now improve on G(m) form ∈ [13, 17] ∪ [22, 25].
For m ∈ [7, 16], G(m) is obtained by determining an (m − 5)-plane on �◦1,2,3,4.
Additionally, for m ∈ [17, 24], G(m) is obtained by determining an (m − 6)-
plane on �◦1,2,3,4,5. Finally, form ∈ [25, 33], G(m) is obtained by determining an
(m − 7)-plane on �◦1,2,3,4,5,6.

Our improvements will come from determining an (m−6)-plane on �◦1,2,3,4,5
for m ∈ [13, 17] and from determining an (m − 7)-plane on �◦1,2,3,4,5,6 for m ∈
[22, 25]. Note that in each of these cases, one can apply the geometric oblit-
eration algorithm to obtain improved bounds. However, we will use a slight
modi�cation which allows for a minor optimization.

Remark 4.3 (A Modi�cation of the Geometric Obliteration Algorithm). Let

V ⊆ ℙrK be an intersection of hypersurfaces of type [ d ⋯ 1
ld ⋯ l1

]. Recall that

successive uses of Proposition 3.10 yield that

g(V) = g
(
VSyl
1

)
= ⋯ = g

(
VSyl
d−3

)
= g

(
VSyl
d−2

)
,

and thatVSyl
d−2 is an intersection of type [ 2 1

�2 �1
]. In the spirit of the obliteration

algorithm, we could indeed continue to apply Lemma 3.5 until there is a single
quadric left, at which point we need only solve a �nal quadratic polynomial.

However, we also note that deg
(
VSyl
d−2

)
is 2�2 and thus we can determine a

point ofWV by solving a polynomial of degree 2�2 whenever r ≥ �2+�1. Conse-
quently, we obtain a slight improvement in the forthcoming bounds on RD(n)
by reducing only to a jtℎ partial Sylvester reduction of VSyl

d−2 for some j < �2
instead of VSyl

d−1.

De�nition 4.4 (Optimal Reduction of Tschirnhaus Complete Intersections).
For each d ≥ 3 andm ≥ d + 2, consider

W =
(
Cm−d−1(�1,…,d; P0, … , Pm−d−2)

)Syl
d−2 ,

a (d − 2)nd Sylvester reduction of an (m − d − 1)st polar cone of �1,…,d, which

is of type [ 2 1
�2 �1

]. For each j ∈ [1, �2 − 1], note that a jtℎ partial Sylvester

reductionWSyl(2; j) ofW has type
⎡
⎢
⎢
⎣

2 1

�2 − j �1 +
�2−1∑

�=�2−j
�

⎤
⎥
⎥
⎦

. Further,

deg
(
WSyl(2; j)

)
= 2�2−j.
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For each such j, set �(m, d; j) equal to

max
⎧

⎨
⎩

(m − d + 1) + (�2 − j) +
⎛
⎜
⎝
�1 +

�2−1∑

�=�2−j
�
⎞
⎟
⎠
, 2�2−j + 1

⎫

⎬
⎭

.

The optimal reduction bound of �1,…,d form, is

Ξ(m, d) ∶= min {�(m, d; j) | j ∈ [0, �2 − 1]} .

In particular, Ξ(m, d) is de�ned exactly so that for n ≥ Ξ(m, d), we can de-
termine an (m − d − 1)tℎ polar point of �◦1,…,d in ℙ

n−1
Kn

over an extension K′∕Kn
with RD(K′∕Kn) ≤ RD(Ξ(m; d)).

Remark 4.5 (Ξ(m, d) is Non-Decreasing in m). We note that Ξ(m, d) is non-
decreasing in m for �xed d. This can be seen geometrically from the fact if
(P0, … , Pm−d−1) is an (m − d − 1)st polar point of �1,…,d, then (P0, … , Pm−d−2)
must be an (m − d − 2)nd polar point of d, so Ξ(m, d) ≥ Ξ(m − 1, d).

We are now ready to state and prove the main theorem.

Theorem 4.6 (Bounds from the Geometric Obliteration Algorithm).
(1) For n ≥ 5, 250, 198, RD(n) ≤ n − 13.
(2) For eachm ∈ [14, 17] and n > (m−1)!

120
, RD(n) ≤ n − m.

(3) For n ≥ 381, 918, 437, 071, 508, 900, RD(n) ≤ n − 22.
(4) For eachm ∈ [23, 25] and n > (m−1)!

720
, RD(n) ≤ n − m.

Proof. We continue to use the notation established in De�nition 4.4. For each
m ∈ [13, 17], we set

G′(m) = max {Ξ(m, 5),
(m − 1)!
120 + 1} ,

and for eachm ∈ [22, 25], we set

G′(m) = max {Ξ(m, 6),
(m − 1)!
720 + 1} .

In each case, it su�ces to show the claim when n = G′(m). Further, note that
G′(m) = Ξ(m, 5) exactly when m = 13 and G′(m) = Ξ(m, 6) exactly when
m = 22; this claim is justi�ed by explicit computation and is given in the tables
at the end of the proof. Recall that the space of Tschirnhaus transformations
up to re-scaling is ℙG

′(m)−1
KG′(m)

.

Let us �rst consider the case of m ∈ [13, 17] and let H ⊆ ℙG
′(m)−1

Kn
be a

hyperplane which does not contain [1 ∶ 0 ∶ ⋯ ∶ 0]. Note that H ≅ ℙG
′(m)−2

Kn
andH∩�1,…,5 = H∩�◦1,…,5. Since Ξ(m, 5) ≥ Ξ(m−1, 5), we can assume that we
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have an (m − 7)-polar point (P0, … , Pm−7) of H ∩ �◦1,…,5. Consider the minimal
j such that Ξ(m, 5) = �(m, 5; j). By de�nition of �(m, 5; j), we have that

dim((
(
Cm−6(H ∩ �◦1,…,5; P0, … , Pm−7)

)Syl
3

)
Syl

(2; j)) ≥ m − 6.

Since dim (Λ(P0, … , Pm−7)) = m − 7, we can determine a point of

Cm−6
(
H ∩ �◦1,…,5; P0, … , Pm−7

)
⧵ Λ (P0, … , Pm−7) ,

by solving a polynomial of degree atmostΞ(m; 5). By construction (P0, … , Pm−6)
is an (m−6)-polar point and Lemma 2.9 yields thatΛ = Λ(P0, … , Pm−6) ⊆ �◦1,…,5
is an (m − 6)-plane. We can then determine a point of Λ∩ �◦1,…,m−1 by solving a

polynomial of degree (m−1)!
120

.

We now consider the similar case of m ∈ [22, 25]. Let H ⊆ ℙG
′(m)−1

Kn
be a

hyperplane which does not contain [1 ∶ 0 ∶ ⋯ ∶ 0]. Note that H ≅ ℙG
′(m)−2

Kn
andH∩�1,…,5 = H∩�◦1,…,5. Since Ξ(m, 6) ≥ Ξ(m−1, 6), we can assume that we
have an (m − 8) polar point (P0, … , Pm−8) of H ∩ �◦1,…,6. Consider the minimal
j such that Ξ(m, 6) = �(m, 6; j). Observe that

dim((
(
Cm−7(H ∩ �◦1,…,6; P0, … , Pm−8)

)Syl
4

)
Syl

(2; j)) ≥ m − 7,

and so we can determine a point Pm−6 of

Cm−7
(
H ∩ �◦1,…,6; P0, … , Pm−8

)
⧵ Λ (P0, … , Pm−8) ,

by solving a polynomial of degree at most Ξ(m; 6). it follows that
(P0, … , Pm−7) is an (m − 7)-polar point of �◦1,…,6 and so Λ =
Λ(P0, … , Pm−7) ⊆ �◦1,…,6 is an (m − 7)-plane. Consequently, we can determine a

point of Λ ∩ �◦1,…,m−1 by solving a polynomial of degree (m−1)!
720

.
We now show that G′(m) = Ξ(m, 5) exactly when m = 13 and G′(m) =

Ξ(m, 6) exactly when m = 22. In the following tables, we note the values of
Ξ(m, 5) and (m−1)!

120
+ 1 for m ∈ [13, 17] and the approximate values of Ξ(m, 6)

and (m−1)!
720

+1 form ∈ [22, 25]. The exact values of Ξ(m, 5) form ∈ [13, 17] and
of Ξ(m, 6) form ∈ [22, 25] were computed using Algorithm A.6, which can be
found in Subsection A.4.

m Ξ(m, 5) (m−1)!
120

+ 1
13 5,250,198 3,991,681
14 12,253,482 51,891,841
15 26,357,165 726,485,761
16 53,008,668 10,897,286,401
17 100,769,994 174,356,582,401



130 CURTIS HEBERLE AND ALEXANDER J. SUTHERLAND

m Ξ(m, 6) (m−1)!
720

+ 1
22 ∼ 3.819 × 1017 ∼ 7.096 × 1016
23 ∼ 9.526 × 1017 ∼ 1.561 × 1018
24 ∼ 2.262 × 1018 ∼ 3.591 × 1019
25 ∼ 5.137 × 1018 ∼ 8.617 × 1020

�

4.3. Obstruction to further bounds via the geometric obliteration algo-
rithm. Unfortunately, the proof strategy of Theorem 4.6 does not yield further
bounds on RD(n). Recall that form ≥ 15, G(m) is de�ned by

G(m) = 1 +min {'(d,m − d − 1) | d ∈ [4,m − 1]} ,

where '(d, k) equals

max {
(d + k)!
d!

,
(#(d, k) + d + 1

d

)
− (#(d, k) + 1)2 − (#(d, k) + d)} .

For each d, the values of m for which G(m) = 1 + '(d,m − d − 1) is a set of
consecutive integers. Equivalently, there are positive integersmd andm′

d such
that G(m) = 1 + '(d,m − d − 1) if and only if m ∈

[
md, m′

d

]
; see [Sut2021C,

Lemma 3.33] for details.
Similarly, we brie�y introduce the notation

%(d, k) = max {Ξ(d + k + 1, d),
(d + k)!
d!

+ 1}

for d ≥ 4 and k ≥ 1, as well as

H(m) = min {%(d,m − d − 1) | d ∈ [4,m − 1]}

form ≥ 13. For �xed d, note thatΞ(m, d) is a polynomial inm, whereas (d+k)!
d!

=
(m−1)!
d!

grows factorially. It follows that for each d, there are positive integersMd

andM′
d such thatH(m) = %(d,m − d − 1) if and only ifm ∈ [Md,M′

d].
In the following table, we compare the valuesmd andMd for d = 5, 6, 7, 8.

d md Md
5 17 13
6 25 22
7 34 41
8 44 78

This provides further evidence, along with [Sut2021C, Remark 3.19], that
iterated polar conemethods aremost e�ective for intersections of hypersurfaces
of small types. Next, we determine an explicit lower bound on Ξ(m, d).

Lemma 4.7 (LowerApproximation). LetV ⊆ ℙrK be an intersection of hypersur-

faces of type [ dld
] with d ≥ 3 and ld ≥ 2. Denote the type of a (d − 2)nd Sylvester
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reduction VSyl
d−2 by [ 2 1

�2 �1
]. Then,

�1 ≥ �2 ≥
⌈
25−2d (ld − 1)2d−4

⌉
.

Proof. Note that the number of degree d − 1 hypersurfaces of VSyl
1 is

�d−1 =
ld−1∑

j=1
ld − j = 1

2(ld − 1)ld ≥
⌈1
2(ld − 1)2

⌉
.

The same argument yields that the number of degree d − 2 hypersurfaces of
VSyl
2 is

�d−2 ≥
⎡
⎢
⎢

1
2

⌈1
2(ld − 1)2

⌉2⎤
⎥
⎥
≥

⌈
2−3(ld − 1)4

⌉
.

Proceeding similarly, we see that

�2 = �2 ≥
⌈
25−2d (ld − 1)2d−4

⌉
.

Finally, note that �1 ≥ �2 follows immediately from the polar cone construc-
tion. �

Corollary 4.8 (Lower Bound for Ξ(m, d)). Let d ≥ 4 andm ≥ d + 2. Then,

Ξ(m, d) ≥ ⎡
⎢
⎢
4 (m − d − 1

2 )
2d−4⎤

⎥
⎥
.

Proof. First, [Sut2021C, Proposition 2.26] yields that an (m − d − 1)tℎ polar
cone of �1,…,d is of type

[
d d − 1 ⋯ 2 1
1

(m−d
1

)
⋯

(m−3
d−2

) (m−2
d−1

)] .

Thus, the number of degree d − 1 hypersurfaces of V =
(
�1,…,d

)Syl
1 ism−d. Let

�(m, d) be as in De�nition 4.4. It follows from Lemma 4.7 that

�1 ≥ �2 ≥
⌈
25−2d(m − d − 1)2d−4

⌉
.

Moreover, for each j,

�(m, d; j) ≥ �1 + �2 ≥
⌈
25−2d(m − d − 1)2d−4

⌉
+

⌈
25−2d(m − d − 1)2d−4

⌉
,

≥ ⎡
⎢
⎢
4 (m − d − 1

2 )
2d−4⎤

⎥
⎥
,

and thus it follows that

Ξ(m, d) = min {�(m, d; j) | 0 ≤ j ≤ �2 − 1} ≥ ⎡
⎢
⎢
4 (m − d − 1

2 )
2d−4⎤

⎥
⎥
. �
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While we do not provide a full comparison here, we note that the key ob-
struction to obtaining further bounds on RD(n) using the methods of Theorem
4.6 is that Ξ(m, d) has a lower bound which grows exponentially in d and that
m − d − 1 grows much more quickly than d (for example, m − d − 1 ≥ 19 for
m ≥ 26).

Having indicated the obstruction to obtaining further upper bounds onRD(n)
using these methods, we now combine Theorems 4.1 and 4.6 to immediately
construct a new bounding function with the same key properties of G(m).
Corollary 4.9 (The New Bounding Function). Let G′ ∶ ℤ≥2 → ℤ≥1 be the
function with

G′(m) = max {Ξ(m, 5),
(m − 1)!
120 + 1} ,

form ∈ [13, 17], with

G′(m) = max {Ξ(m, 6),
(m − 1)!
720 + 1} ,

for m ∈ [22, 25], and with G′(m) = G(m) for m ∉ [13, 17] ∪ [22, 25]. Then,
G′(m) has the following properties:

(1) For eachm ≥ 1 and n ≥ G′(m), RD(n) ≤ n − m.
(2) For each d ≥ 4, G′(2d2 + 7d + 6) ≤ (2d2+7d+5)!

d!
. In particular, for d ≥ 4

and n ≥ (2d2+7d+5)!
d!

,

RD(n) ≤ n − 2d2 − 7d − 6.

4.4. Remainingquestions. To the best of the authors’ knowledge, the bound-
ing functionG′(m) ofCorollary 4.9 exhausts the techniques andmethods for de-
termining upper bounds on resolvent degree from the classical literature
(including [Bri1786, Che1954, Ham1836, Hil1927, Seg1945, Syl1887, SH1887,
SH1888, Tsc1683, Wim1927]), as well as the modern insights from [Bra1975,
Sut2021C, Wol2021].

The bounding functions of Brauer, Hamilton, Sylvester, Wolfson, and the
second-named author are constructed by determining points on the Tschirn-
haus complete intersections �◦1,…,m−1 over extensions of bounded resolvent de-
gree. However, there are solutions of the quintic and the sextic which use alter-
native constructions of Tschirnhaus transformations (see [Kle1884, Kle1905]
for the respective original works or [Mor1956, Sut2019] for the respective Eng-
lish translations). We believe it would be insightful to understand whether
one can reduce the general question of determining RD(n) to the more spe-
ci�c question of determining points on the Tschirnhaus complete intersections
�◦1,…,m−1.

Question 4.10 (Optimal Formulas via Tschirnhaus Complete Intersections).
For every n, let mn be such that RD(n) ≤ n − mn. Is there a formula in n − mn
variables for the general degree n polynomial obtained by determining a point of
�◦1,…,mn−1

over an extension K′∕Kn of bounded resolvent degree?
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For general m, the de�nition of G′(m) = G(m) uses the combinatorial con-
dition of [DM1998, Theorem 2.1] to guarantee the existence of k-planes on the
�◦1,…,d and thenuses the dimension of the relevantmoduli space [Sut2021C, Sub-
section 3.3]. Notably, this combinatorial condition is non-constructive and re-
lies only on the type of �◦1,…,d. One might hope that such formulas could be
determined using constructive methods and one approach may be to leverage
the speci�c geometry of the �◦1,…,d (e.g., using more information than its type).

Question 4.11 (RD Bounds via Explicit Constructions of k-Planes). Is there
a bounding function G(m) with G(m) ≤ G′(m) which arises from an explicit
construction ofk-planes on the �◦1,…,d? If so, is it possible to determine the bounding
functionG(m) such that

lim
m→∞

G(m)
G(m)

= lim
m→∞

G′(m)
G(m)

= ∞?

Theorem 4.6 was proved using a consequence of the geometric obliteration
algorithm, namely that r(V) ≤ g(V) for any intersection of hypersurfaces V.
Further examination of the relationship between r(V) and g(V) is of interest.

Question 4.12 (Minimal vs. Geometric Dimension Bound). For which inter-
sections of hypersurfaces V is the inequality r(V) ≤ g(V) strict? Are there classi-
cal examples of types of intersections of hypersurfaces where the inequality is not
strict?

Let us now brie�y consider a cubic hypersurface H = V(f) ⊆ ℙrK . When
r = 3 and H is smooth, the Cayley-Salmon theorem yields that H contains
exactly 27 lines. The resolvent degree of determining a line on H is at most 3,
as was established by Farb and Wolfson [FW2019, Theorem 8.2]. Additionally,
that H has exactly 27 lines is consistent with [DM1998, Theorem 2.1], which
states that the Fano variety of lines of a cubic surface in ℙ3K is non-empty and
has dimension 0. In particular, when r = 3, most points P ∈ H(K) do not lie on
a line of H over an algebraic closure K. When r = 4, however, any polar cone
C(V; P) has dimension at least one and thus every point P ∈ V(H) lies on at
least one line Λ = Λ(P, Q) ⊆ H over an algebraic closure K. To determine such
a point Q directly, we must solve a polynomial of degree 6 = 3! = deg(C(V; P)).
Hence, we can determine a line through any point P over an extension with
K′∕K with RD(K′∕K) ≤ RD(6) ≤ 2.

Additionally, observe that

g(C(V; P)) = g(3; 1, 1, 1) = g(2; 1, 3) = 5.

Thus, when r ≥ 5, we can determine a point Q ∈ C(V; P) ⧵ {P} over an ex-
tension determined by solving at most cubic polynomials (i.e., over a solvable
extension).
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Now, let V ⊆ ℙrK be an intersection of hypersurfaces of type [ d ⋯ 1
ld ⋯ l1

].

For each k ≥ 1, take sk(V) to be the minimal s such that

(k + 1)(s − k) −
d∑

j=1
lj

(k + j
j

)
≥ 0.

One implication of Theorem 2.1 of [DM1998] is thatV contains a k-plane for
all r ≥ sk(V). We expect sk(V) to be the minimal ambient dimension required
forV to contain a k-plane; however, we expect the resolvent degree of determin-
ing such a k-plane to be large. Conversely, we expect r

(
Ck(V; P0, … , Pk−1)

)
+k,

the ambient dimension required to determine a k-polar point over an extension
K′∕K of small resolvent degree (RD(K′∕K) ≤ RD(d)), to be large.

Question 4.13 (Minimizing Ambient Dimension vs. Minimizing RD of Exten-
sions). Let V be an intersection of hypersurfaces. How do
g
(
Ck(V; P0, … , Pk−1)

)
+ k, r

(
Ck(V; P0, … , Pk−1)

)
+ k, and sk(V) compare?

Finally, we recall that we have worked entirely in characteristic zero (more
speci�cally, overℂ). As we discussed in 2.1, we do not lose any generality from
the perspective of resolvent degree, as

RD(n) = RDℂ (Sn) ≥ RDK (Sn)
by [Rei2022, Theorem 1.3], with equality when K has characteristic zero by
[Rei2022, Theorem 1.2]. The foundational result for the polar cone framework
we use is the technical lemma [Sut2021C, Lemma 2.8]. For those who wish
to work in characteristic p, one would need to be careful of how the relevant
combinatorics, such as [Sut2021C, Proposition 2.26], change. Additionally, the
modern reference for Tschirnhaus transformations [Wol2021] works over ℤ.
To consider Tschirnhaus transformations in characteristic p, one would need
to give extra consideration to the Tschirnhaus hypersurfaces of degree pk.

Appendix A. Python implementations of the obliteration
algorithm and related phenomena

In Appendix A.1, we provide an implementation of the geometric oblitera-
tion algorithm in Python (Algorithm A.1). In Appendix A.2, we prove several
lemmata which make the computations for the proof of Theorem 4.6 feasible.
Algorithm A.5 in Appendix A.3 takes the same input and provides the same
output as Algorithm A.1, but uses the lemmata of Appendix A.2 to decrease
computation time. Finally, Algorithm A.6 in Appendix A.4 computes the in-
formation necessary for Theorem 4.6.
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A.1. The geometric obliteration algorithm. We begin with an implemen-
tation of the geometric obliteration algorithm in Python (Algorithm A.1)

Algorithm A.1. (The Geometric Obliteration Algorithm)

∙ Input: An intersection of hypersurfaces V of type

[ d d − 1 ⋯ 2 1
ld ld−1 ⋯ l2 l1

] with d ≥ 2, encoded as the list

DegreeList = [ld, ld−1, … , l2, l1].
∙ Output: The geometric dimension bound g(d; ld, … , l1).

The functionComputePolarCone inputs a list which contains the type of
an intersection of hypersurfacesW. It then returns a list which contains the
type of a polar cone C(W; P). In particular, recall that for each d′ < d, each
hypersurface H with deg(H) > d′ de�ningW contributes exactly one new
degree d′ hypersurface de�ning C(W; P) and each hypersurface de�ning
C(W; P) arises in this manner.

1: function ComputePolarCone(List):
2: counter = List[0]
3: ReturnList = [counter]
4: for index in range(1,len(List)):
5: counter += List[index]
6: ReturnList.append(counter)
7: end for
8: return ReturnList
9: end function

The function ObliterateLargestDegreeHypersurfaces inputs a list
which contains the type of an intersection of hypersurfacesWwhose largest
degree hypersurface has degree d ≥ 3. It identi�es the number of hyper-
surfaces of largest degree and proceeds to iteratively remove a hypersurface
H of largest degree and compute a polar cone of the remaining intersection
of hypersurfacesW′ (with an additional hyperplane included).

Note that an additional hyperplane is added each time to avoid repeated
polar cone points, i.e. if P was the cone point of the previous polar cone
point, we pass to a hyperplane which does not contain P to ensure that the
cone point Q of the next polar cone satis�es Q ≠ P. Also, the polar cone of
a hyperplane plane at any point is just the hyperplane itself, so to compute
the combinatorics, it su�ces to add one after computing the polar cone
instead of doing it beforehand.
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As taking the polar cone of a hypersurface H introduces only hypersur-
faces of strictly smaller degree, this process terminates and Obliterate-
LargestDegreeHypersurfaces returns a list whose data is the multi-
degree of an intersection of hypersurfaces V′ whose largest degree hyper-
surface has degree d − 1.

10: function ObliterateLargestDegreeHypersurfaces(List):
11: while List[0] > 0:
12: List[0] -= 1
13: TempList = ComputePolarCone(List)
14: List = TempList
15: List[len(List)-1] += 1
16: end while
17: ReturnList = []
18: for index in range(1,len(List):
19: ReturnList.append(List[index])
20: end for
21: return ReturnList
22: end function

The function ObliterateQuadricsViaLoops works similarly to
ObliterateLargestDegreeHypersurfaces, but the input is themulti-

degree of an intersection of hypersurfaces of type [ 2 1
l2 l1

] and the loop

ends with a single quadric remaining instead of zero quadrics remaining.

23: function ObliterateQuadricsViaLoops(List):
24: while List[0] > 1:
25: List[0] -= 1
26: TempList = ComputePolarCone(List)
27: List = TempList
28: List[len(List)-1] += 1
29: end while
30: return [List[0],List[1]]
31: end function

The procedure Main inputs the multi-degree of an intersection of hyper-
surfaces V as the list DegreeList and proceeds to successively “obliterate”
the hypersurfaces of largest degree. The �nal step of the procedure is to
return a list of the form [1, �], which is the requisite intersection of a single
quadric and � hyperplanes.
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32: procedureMain(DegreeList):
33: for index in range(1,len(DegreeList)-1):
34: TempDegreeList = ObliterateLargestDegreeHypersur

faces(DegreeList)
35: DegreeList = TempDegreeList
36: end for
37: FinalList = ObliterateQuadricsViaLoops(DegreeList)
38: Sum = FinalList[0] + FinalList[1]
39: return Sum
40: end procedure

A.2. Lemmata for computational improvements. In this appendix, we give
explicit numerics for Proposition 3.10 when d = 2, 3, 4.

Lemma A.2 (Obliterating Quadrics). Consider an intersection of hypersurfaces

V of type [ 2 1
l2 l1

]. Then,

g(V) = 1 + l1 +
1
2(l2 − 1)(l2 + 2).

Proof. First, observe that VSyl(2; 1) has type

[ 2 1
l2 − 1 l1 + l2

] ,

by De�nition 3.9. Similarly, VSyl(2; 2) has type

[ 2 1
l2 − 2 l1 + l2 + l2 − 1] .

Proceeding in this manner yields that VSyl(2; �2 − 1) has type

⎡
⎢
⎢
⎣

2 1

1 l1 +
l2−1∑

j=1
(l2 − j + 1)

⎤
⎥
⎥
⎦

,

and we note that
l2−1∑

j=1
(l2 − j + 1) = 1

2 (l2 − 1) (l2 + 2) .

From Lemma 3.5 and De�nition 3.9, we see that

g(V) = g
(
VSyl(2; �2 − 1)

)
= 1 + l1 +

1
2 (l2 − 1) (l2 + 2) . �

Lemma A.3 (Obliterating Cubics). Consider an intersection of hypersurfacesV

of type [ 3 2 1
l3 l2 l1

]. Then, VSyl
1 is of type [ 2 1

�3 �3
], where

�3 = l2 +
1
2(l3 − 1)l3,
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�3 = l1 + l2l3 +
1
2l3(l3 + 1) + 1

6l3
(
2l23 − 3l3 + 1

)
.

Proof. An argument analogous to the proof of Lemma A.2 yields that

�3 = l2 +
l3∑

j=1
(l3 − j) = l2 +

1
2(l3 − 1)l3.

Next, observe that VSyl(3; j) has type

⎡
⎢
⎢
⎣

3 2 1

l3 − j l2 +
j∑

k=1
(l3 − k) �j

⎤
⎥
⎥
⎦

.

Consequently,

�j+1 = �j + (l3 − j − 1) +
⎛
⎜
⎝
l2 +

j∑

k=1
(l3 − k)

⎞
⎟
⎠
+ 1.

Combined with the initial condition �0 = l1, we obtain that

�3 = l1 +
⎛
⎜
⎝

l3∑

j1=1
(l3 − j1 + 1)

⎞
⎟
⎠
+

⎛
⎜
⎝

l3∑

j2=1
l2 +

l3∑

j3=2

j4−1∑

j4=1
l3 − j4

⎞
⎟
⎠
,

= l1 +
1
2l3(l3 + 1) +

⎛
⎜
⎝
l2l3 +

l3∑

j3=2

j3−1∑

j4=1
l3 − j4

⎞
⎟
⎠
,

= l1 + l2l3 +
1
2l3(l3 + 1) +

l3∑

j3=2

j3−1∑

j4=1
(l3 − j2),

= l1 + l2l3 +
1
2l3(l3 + 1) + 1

6l3
(
2l23 − 3l3 + 1

)
. �

Lemma A.4 (Obliterating Quartics). Consider an intersection of hypersurfaces

V ⊆ ℙrK of type [ 4 3 2 1
l4 l3 l2 l1

]. Then, VSyl
1 is of type [ 3 2 1


4 �4 �4
], where


4 = l3 +
1
2(l4 − 1)l4,

�4 = l2 + l3l4 +
1
2(l4 − 1)l4 +

1
6l4

(
2l24 − 3l4 + 1

)
,

�4 = l1 + l4 (l2 + l3 +
1
2(l4 + 1)) + l4 (

1
2l3(l4 + 1) + 1

3
(
2l24 − 3l4 + 1

)
)

+ 1
24(l4 − 2)(l4 − 1)l4(3l4 − 1).

Proof. The proofs of Lemmata A.2 and A.3 generalize to determine 
4 and �4
in a straightforward manner. It remains to determine �4. Note that VSyl(4; j)
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has type

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 3 2 1

l4 − j l3 +
j∑

k1=1
(l4 − k1) l2 + (

j∑

k2=1
l4 − k2) �j

+
j∑

k3=1
(l3 +

j−1∑

k4=1
(l4 − k4))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

As a result,

�j+1 = �j + (l4 − j − 1) +
⎛
⎜
⎝
l3 +

j∑

k=1
(l4 − k)

⎞
⎟
⎠

+
⎛
⎜
⎝
l2 +

⎛
⎜
⎝

j∑

k1=1
l4 − k1

⎞
⎟
⎠
+

j∑

k2=1

⎛
⎜
⎝
l3 +

j−1∑

k3=1
(l4 − k3)

⎞
⎟
⎠

⎞
⎟
⎠
+ 1.

Given the initial condition �0 = l1, it follows that

�4 = l1 +
⎛
⎜
⎝

l4∑

j1=1
l4 − j1 + 1

⎞
⎟
⎠
+

⎛
⎜
⎝

l4∑

j2=1
l3 +

l4∑

j3=2

j3−1∑

j4=1
(l4 − j4)

⎞
⎟
⎠

+ (
l4∑

j5=1
l2 +

l4∑

j6=2

j6−1∑

j7=1
(l4 − j7) +

l4∑

j8=2

j8−1∑

j9=1
l3

+
l4∑

j10=3

j10−1∑

j11=2

j11−1∑

j12=1
(l4 − j12)),

= l1 + (12l4(l4 + 1)) + (l3l4 +
1
6l4

(
2l24 − 3l4 + 1

)
) + (l2l4

+ 1
6l4

(
2l24 − 3l4 + 1

)
+ 1
2(l4 − 1)l4l3 +

l4∑

j10=3

j10−1∑

j11=2

j11−1∑

j12=1
(l4 − j12)),

= l1 + l4 (l2 + l3 +
1
2(l4 + 1)) + l4 (

1
2l3(l4 − 1) + 1

3
(
2l24 − 3l4 + 1

)
)

+
l4∑

j10=3

j10−1∑

j11=2

j11−1∑

j12=1
(l4 − j12),

= l1 + l4 (l2 + l3 +
1
2(l4 + 1)) + l4 (

1
2l3(l4 + 1) + 1

3
(
2l24 − 3l4 + 1

)
)

+ 1
24(l4 − 2)(l4 − 1)l4(3l4 − 1). �
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A.3. Thegeometric obliterationalgorithmwithcomputational improve-
ments.

Algorithm A.5. (The Geometric Obliteration Algorithm with Computa-
tional Improvements)

∙ Input: An intersection of hypersurfaces V of type

[ d d − 1 ⋯ 2 1
ld ld−1 ⋯ l2 l1

] with d ≥ 2, encoded as the list

DegreeList = [ld, ld−1, … , l2, l1].
∙ Output: The geometric dimension bound g(d; ld, … , l1).

We will use the same functions ComputePolarCone and Obliterate-
LargestDegreeHypersurfaces which were originally de�ned in Algo-
rithm A.1.

We now implement Lemmata A.4, A.3, and A.2 via the following three
functions, respectively.

1: function ObliterateQuartics(List):
2: a = List[0]
3: b = List[1]
4: c = List[2]
5: d = List[3]
6: gammafour = b + (1/2)*(a-1)*a
7: betafour = c + a*b + (1/2)*a*(a+1) + (1/6)*(a-1)*a*(2*a-1)
8: alphafour = d + a*(b+c+(1/2)*(a+1))

+ a*((1/2)*b*(a-1)+(1/3)*((2*(a**2))-(3*a)+1))
+ (1/24)*(a-2)*(a-1)*a*(3*a-1)

9: return [gammafour,betafour,alphafour]
10: end function

11: function ObliterateCubics(List):
12: a = List[0]
13: b = List[1]
14: c = List[2]
15: betathree = b + (1/2)*(a-1)*a
16: alphathree = c + a*b + (1/2)*a*(a+1) + (1/6)*a*((2*(a**2))-(3*a)+1)
17: return [betathree,alphathree]
18: end function

19: function ObliterateQuadrics(List):
20: a = List[0]
21: b = List[1]
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22: alphatwo = b + (1/2)*a*(a+1)
23: return [1,alphatwo]
24: end function

The Main procedure works very similarly to its counterpart in Algorithm
A.1, with the only di�erences being the use of specialized functions to oblit-
erate quartic, cubic, and quadric hypersurfaces.

25: procedureMain(DegreeList):
26: if len(DegreeList) == 2: then
27: FinalDegreeList = ObliterateQuadrics(DegreeList)
28: Sum = FinalDegreeList[0] = FinalDegreeList[1]
29: return Sum
30: else if len(DegreeList) == 3: then
31: TempDegreeList = ObliterateCubics(DegreeList)
32: DegreeList = TempDegreeList
33: TempDegreeList = ObliterateQuadrics(DegreeList)
34: FinalDegreeList = TempDegreeList
35: Sum = FinalDegreeList[0] = FinalDegreeList[1]
36: return Sum
37: else if len(DegreeList == 4: then
38: TempDegreeList = ObliterateQuartics(DegreeList)
39: DegreeList = TempDegreeList
40: TempDegreeList = ObliterateCubics(DegreeList)
41: DegreeList = TempDegreeList
42: TempDegreeList = ObliterateQuadrics(DegreeList)
43: FinalDegreeList = TempDegreeList
44: Sum = FinalDegreeList[0] = FinalDegreeList[1]
45: return Sum
46: else:
47: for index in range(1,len(DegreeList)-3):
48: TempDegreeList = ObliterateLargestDegreeHyper-

surfaces(DegreeList)
49: DegreeList = TempDegreeList
50: end for
51: TempDegreeList = ObliterateQuartics(DegreeList)
52: DegreeList = TempDegreeList
53: TempDegreeList = ObliterateCubics(DegreeList)
54: DegreeList = TempDegreeList
55: TempDegreeList = ObliterateQuadrics(DegreeList)
56: FinalDegreeList = TempDegreeList
57: Sum = FinalDegreeList[0] = FinalDegreeList[1]
58: return Sum
59: end if
60: end procedure



142 CURTIS HEBERLE AND ALEXANDER J. SUTHERLAND

A.4. The geometric obliteration algorithm for
Cm−d−1(�1,…,d; P0, … , Pm−d−1).

Algorithm A.6. (The Geometric Obliteration Algorithm for

Cm−d−1(�1,…,d; P0, … , Pm−d−1))
∙ Imported Packages: scipy.special, math
∙ Input: A positive integer d and and another positive integerm ≥ d+2.
∙ Output: The optimal reduction bound of �1,…,d form, Ξ(m, d).

We will use the same functions ComputePolarCone and Obliterate-
LargestDegreeHypersurfaces which were originally de�ned in Algo-
rithm A.1, as well as the functions ObliterateQuartics and Obliter-
ateCubics which originally de�ned in Algorithm A.5.

We �rst implement a closed form for the type of an (m−d−1)st polar cone
of �1,…,d, which is Proposition 2.26 of [Sut2021C].

1: function PolarConeOfTschirnhausType(Type,Level):
2: ReturnList = [1]
3: for counter in range(1,Type):
4: NewTerm = scipy.special.comb((Level+counter), counter, ex-

act=True)
5: OutputList.append(NewTerm)
6: end for
7: return ReturnList
8: end function

This function takes the type of an (m − d − 1)st polar cone of �1,…,d as an
input and outputs Ξ(m, d).

9: function ObliterateAMinimalNumberOfQuadrics(List):
10: a = List[0]
11: b = List[1]
12: Dimension = b + (1/2)*(a**2 + a - 2)
13: NumberOfQuadrics = 1
14: DimensionList = [Dimension]
15: while 2**NumberOfQuadrics < Dimension:
16: NumberOfQuadrics += 1
17: Dimension = NumberOfQuadrics + (1/2)*(a**2 + a

- NumberOfQuadrics**2 - NumberOfQuadrics)
18: DimensionList.append(Dimension)
19: end while



UPPER BOUNDS ON RESOLVENT DEGREE 143

20: MaxList1 = [2**(NumberOfQuadrics-1)+1, DimensionList[Number
OfQuadrics-2]+m-d+1]

21: MaxList2 = [2**NumberOfQuadrics+1, DimensionList[NumberOf
Quadrics-1]+m-d+1]

22: Max1 = max(MaxList1[0], MaxList1[1])
23: Max2 = max(MaxList2[0], MaxList2[1])
24: if Max2 <Max1: then
25: if MaxList2[1] <MaxList2[0]: then
26: returnMaxList2[0]
27: else:
28: returnMaxList2[1]
29: end if
30: else:
31: if MaxList1[1] <MaxList1[0]: then
32: returnMaxList1[0]
33: else:
34: returnMaxList1[1]
35: end if
36: end if
37: end function

The Main procedure functions similarly to its counterpart in Algorithm
A.5. The two di�erences are that the degree list is computed based on m
and d and the use of ObliterateAMinimalNumberQuadrics instead
of ObliterateQuadrics.

38: procedureMain(m,d):
39: PolarConeLevel = m-d-1
40: DegreeList = PolarConeOfTschirnhausType(d,PolarConeLev

el)
41: if len(DegreeList) == 2: then
42: return ObliterateAMinimalNumberQuadrics(DegreeList)
43: else if len(DegreeList) == 3: then
44: TempDegreeList = ObliterateCubics(DegreeList)
45: DegreeList = TempDegreeList
46: return ObliterateAMinimalNumberQuadrics(DegreeList)
47: else if len(DegreeList == 4: then
48: TempDegreeList = ObliterateQuartics(DegreeList)
49: DegreeList = TempDegreeList
50: TempDegreeList = ObliterateCubics(DegreeList)
51: DegreeList = TempDegreeList
52: return ObliterateAMinimalNumberQuadrics(DegreeList)
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53: else:
54: for index in range(1,len(DegreeList)-3):
55: TempDegreeList = ObliterateLargestDegreeHyper-

surfaces(DegreeList)
56: DegreeList = TempDegreeList
57: end for
58: TempDegreeList = ObliterateQuartics(DegreeList)
59: DegreeList = TempDegreeList
60: TempDegreeList = ObliterateCubics(DegreeList)
61: DegreeList = TempDegreeList
62: return ObliterateAMinimalNumberQuadrics(DegreeList)
63: end if
64: end procedure
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