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Compositum of two number �elds
of prime degree

Paulius Virbalas

Abstract. In this paper by exploiting the properties of transitive permuta-
tion groups of prime degree we provide an answer to the following problem:
given two number �elds K and L both of prime degree p overℚ, what values
the degree of their compositumKL can take? We show that ifK and L are lin-
early disjoint over ℚ, then necessarily KL has degree p2 or, for example, if K
andL are number �elds of prime degreep such thatp = (qn−1)∕(q−1)with q
prime or a power of a prime, n ≥ 3, and some intermediate group between the
projective special linear group PSL(n, q) and the projective semilinear group
PΓL(n, q) is realizable over ℚ, then the degree of KL is pqn−1. In addition,
for any divisor s of p − 1, there exist number �elds K and L of prime degree
p such that their compositum KL has degree ps. As a numerical application,
we determine the complete list of values the degree of compositum KL can
take if K and L are two number �elds of degree 13. We also give an answer
to the related problem, namely, given two algebraic numbers � and � both of
prime degree p, what values the degree of � + � and �� can take?
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1. Introduction
A triplet of positive integers (a, b, c) ∈ ℕ3 is said to be compositum-feasible if

there exist number �elds K and L of degrees a and b over the �eld of rationals
ℚ such that the degree of their compositum KL is c. Equivalently, (a, b, c) ∈
ℕ3 is compositum-feasible if and only if there exist algebraic numbers � and

Received February 14, 2022.
2020Mathematics Subject Classi�cation. 11R04, 11R32, 12F05, 20B35.
Keywords and phrases. Algebraic numbers, compositum of two number �elds, transitive per-

mutation groups of prime degree, Galois groups.

ISSN 1076-9803/2023

171

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2023/Vol29.htm


172 PAULIUS VIRBALAS

� of degrees a and b over ℚ such that [ℚ(�, �) ∶ ℚ] = c. This de�nition
was introduced in [9] by Drungilas, Dubickas and Smyth. Among other things,
they found some su�cient but not necessary conditions for a triplet (a, b, c) to
be compositum-feasible and described all compositum-feasible triplets (a, b, c)
satisfying a ≤ b ≤ 6.

For two positive integers a and b, let lcm(a, b) denote their least common
multiple, and let gcd(a, b) denote their greatest common divisor. Clearly, if the
triplet (a, b, c) is compositum-feasible, then

c ≤ ab and lcm(a, b) | c. (1)
From (1) it immediately follows that if gcd(a, b) = 1 and the triplet (a, b, c) is
compositum-feasible, then c = ab. Note however, that condition (1) is not suf-
�cient for a triplet (a, b, c) to be compositum-feasible. For example, the triplet
(5, 5, 15) satis�es (1), but it was shown in [9, Theorem 36] that this triplet is
not compositum-feasible . In the follow-up paper by Drungilas, Dubickas and
Luca [8] it was noted that "even a natural question of describing which values
[KL ∶ ℚ] can take if K and L are two extensions of prime degree p over ℚ is
open". The purpose of this paper is to answer this question. Some partial re-
sults can be found in [8, Theorem 1.2], where it was established that the degree
of compositum KL over ℚ can never be equal to p(p − l), provided that l is a
positive integer satisfying 2 ≤ l < (1+

√
4p − 3)∕2. It is also clear from (1), that

[KL ∶ ℚ]must be divisible by p and be smaller than or equal to p2. Therefore
the problem can be restated as follows:

Problem. Find all compositum-feasible triplets of the form (p, p, ps) such that
p is prime and s ∈ {1, 2, ..., p}.

If s = p, then it is known that (p, p, ps) is compositum-feasible for any p [9,
Proposition 19]. On the the other hand, if s < p and (p, p, ps) is compositum-
feasible, then by applying a modi�ed version of [8, Theorem 1.4] we demon-
strate that there exists a transitive permutation group G of prime degree p,
which has two subgroupsH1 andH2 such that

[G ∶ H1] = [G ∶ H2] = p and [G ∶ H1 ∩ H2] = ps. (2)
All transitive permutation groups of prime degree p are classi�ed, therefore G
must be one of the groups listed in [6, Corollary 3.5]. In this particular case,
it is also relatively well-known what type of subgroups have index p in G. In
this paper, by applying certain properties of such subgroups, we determine all
possible values of p and s in (2).

In the context of groups, the notation A ≤ B is used to indicate that A is a
subgroup ofB. As usually, PSL(n, q) and PΓL(n, q) denote the projective special
linear group and the projective semilinear group, respectively, of dimension n
over the �nite �eld of q elements [5, Chapter 1.7]. Themain result of this paper
is the following:

Theorem 1.1. The triplet (p, p, ps) with p prime is compositum-feasible if and
only if one of the following conditions is satis�ed:
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(a) s = p,
(b) s | (p − 1),
(c) (p, s) = (11, 6),
(d) (p, s) = ((qn − 1)∕(q − 1), qn−1), where q is prime or a power of a prime,

n ≥ 3, and there exists a transitive permutation group G of prime degree
p satisfying PSL(n, q) ≤ G ≤ PΓL(n, q), which is realizable overℚ.

Parts (c) and (d) of Theorem 1.1 to a great extent follow from the result
�rst published by Feit [16, Corollary 4.5], namely that a group G has two non-
equivalent doubly transitive permutation representations of prime degree p
only if G = PSL(2, 11) and p = 11 or PSL(n, q) ≤ G ≤ PΓL(n, q) and p =
(qn − 1)∕(q − 1) for some n ≥ 3. The smallest example corresponding to
case (d) of Theorem 1.1 can be found in [8, Theorem 1.3], where the proper-
ties of the projective special linear group PSL(2, 7) were applied to prove that
(7, 7, 7 ⋅ 4) is compositum-feasible. Observe that 7 = (23 − 1)∕(2 − 1), thus
acoording to the notation used in Theorem 1.1, we have that qn−1 = 22 = 4
and PSL(3, 2) ≤ G ≤ PΓL(3, 2). Since PSL(3, 2) ≅ PSL(2, 7) is realizable overℚ
[13], the triplet (7, 7, 7 ⋅ 4) is compositum-feasible.

Consider the equation

p = qn − 1
q − 1 , (3)

where p is a prime, q is a prime or a power of a prime and n ≥ 3. For (3) to
hold some necessary conditions can be found in the work by Estes, Guralnick,
Schacher and Straus [14, Lemma 1]. Primes p satisfying (3) are examples of
repunit primes to base q (primes, which contain only the digit 1 in base q).
From the lists of repunit primes in theworks byDubner [11],Williams and Seah
[29] one can deduce that the only triplets (p, q, n) satisfying (3) with p < 1000
are

(7, 2, 3), (13, 3, 3), (31, 2, 5), (31, 5, 3), (73, 8, 3), (127, 2, 7), (307, 17, 3),
(757, 27, 3).

Thus, for primes p < 1000 there are eight examples for which part (d) of The-
orem 1.1 applies. However, this still leaves the question open whether the cor-
responding projective groups are realizable over ℚ, since at the present time
only the triplets (7, 2, 3) and (13, 3, 3) have been con�rmed to be compositum-
feasible. Finally, note that for p = 31 we have two cases to consider. In fact,
if the conjecture of Ratat and Goormaghtigh [23, Conjecture A] is true, then
p = 31 is the only prime for which (3) has two solutions.

To this day all compositum-feasible triplets (a, b, c) satisfying a ≤ b ≤ 9
have been found [9, Theorem 5], [8, Corollary 1.5], [10, Theorem 1]. As an
application of Theorem 1.1, we �nd all compositum-feasible triplets (a, 13, c)
satisfying a ≤ 13.

Corollary 1.2. The triplet (a, 13, c), where a ≤ 13 is compositum-feasible if and
only if c = 13a or a = 13 and c = 13s with s ∈ {1, 2, 3, 4, 6, 9, 12}.
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Observe that the triplet (13, 13, 13 ⋅ 9) is the second smallest example of a
compositum-feasible triplet corresponding to part (d) of Theorem 1.1.

Knowing which values [KL ∶ ℚ] can take if K and L are two extensions of
degrees a and b overℚ is related to the following question posed inMathOver-
�ow[4]: given two algebraic numbers � and � of degrees a and b overℚ, respec-
tively, what are the possible values for the degree of �+� and ��? The research
on this matter began in [9], where the following de�nitions were introduced. A
triplet (a, b, c) ∈ ℕ3 is called sum-feasible (resp. product-feasible) if there exist
three algebraic numbers �, �, 
 with degrees a, b, c over ℚ respectively, such
that �+�+
 = 0 (resp. ��
 = 1). As opposed to compositum-feasible triplets,
if the triplet (a, b, c) is sum-feasible (resp. product-feasible), then clearly, for
any permutation {a′, b′, c′} of {a, b, c}, the triplet (a′, b′, c′) is also sum-feasible
(resp. product-feasible). Thus, the triplet (a, b, c) can be sum-feasible (resp.
product-feasible) even if c < max{a, b}, while if (a, b, c) is compositum-feasible,
then necessarily c ≥ max{a, b}, since c is divisible by lcm(a, b).

Let ℙF denote the set of all product-feasible triplets, SF - the set of all sum-
feasible triplets and ℂF - the set of all compositum-feasible triplets. Then

ℂF ⊂ SF ⊂ ℙF. (4)

Indeed, if the triplet is compositum-feasible triplet, then it is also sum-feasible
and product-feasible [9, Proposition 1]. Thus, for example, Corollary 1.2 im-
plies that there exist three algebraic numbers �, �, 
 satisfying � + � + 
 = 0
(resp. ��
 = 1) such that the degree of both � and � is 13while the degree of 

is 13 ⋅ 9. In [7, Theorem 1.1] it was proved that if the triplet is sum-feasible then
it is also product-feasible. On the other hand, consider the following algebraic
numbers

� = (−1 − i
√
3)∕4, � = 3

√
2, 
 = (−1 + i

√
3)∕ 3

√
2.

The degrees of �, �, 
 are equal to 2, 3, 3, respectively, and clearly, ��
 = 1.
Hence, the triplet (2, 3, 3) is product-feasible. However by [9, Theorem 5], the
triplet (2, 3, 3) is not sum-feasible. Another example is the triplet (4, 6, 6), which
by [9, Theorem 29.ii] is sum-feasible. However, it is not compositum-feasible,
as 4 does not divide 6.

From (4) it follows that every compositum-feasible triplet arising from The-
orem 1.1 is also sum-feasible and product-feasible. It turns out that with few
exceptions, there are no other sum-feasible or product-feasible triplets of the
type (p, p, l), where p is prime and l is some positive integer.

Theorem 1.3. If the triplet (p, p, l) with p prime is sum-feasible, then it is also
compositum-feasible or l = 1.

Assume, that � and � are two algebraic numbers, both of degree p over ℚ
and � + � ∉ ℚ. Then Theorem 1.3 tells us that the degree of � + � can only
take values equal to ps, where s is determined in Theorem 1.1. In the case of
product-feasible triplets we prove the following:
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Theorem1.4. If the triplet (p, p, l)withp prime is product-feasible, then it is also
compositum-feasible or l ∈ {1, p − 1}.

In Section 2, some known auxiliary results are provided related to our topic
as well as several new lemmas are formulated such as Lemma 2.4, Lemma 2.7
and Lemma 2.8. In Section 3, we determine the properties of non-solvable tran-
sitive permutation groups of prime degree, which will be essential in the proofs
of Theorem 1.1 and Theorem 1.3. In Section 4, we complete the proof of Theo-
rem 1.1 for compositum-feasible triplets and give a numerical example in Coro-
llary 1.2. In Section 5, Theorem 1.3 is proved for sum-feasible triplets. Finally
in Section 6, Theorem 1.4 is proved for product-feasible triplets.

2. Auxiliary results
Lemma 2.1. Let gcd(a, b) = 1. Then (a, b, c) ∈ ℕ3 is compositum-feasible if
and only if c = ab.

Proof. If the triplet (a, b, c) ∈ ℕ3 is compositum-feasible, then there exist al-
gebraic numbers � and � of degrees a and b, respectively, such that

[ℚ(�) ∶ ℚ] = a, [ℚ(�) ∶ ℚ] = b and [ℚ(�, �) ∶ ℚ] = c.

On the one hand,

c = [ℚ(�, �) ∶ ℚ] ≤ [ℚ(�) ∶ ℚ] ⋅ [ℚ(�) ∶ ℚ] = ab. (5)

On the other hand, from ℚ(�) ⊆ ℚ(�, �) and ℚ(�) ⊆ ℚ(�, �) together with
gcd(a, b) = 1, we get

lcm(a, b) = ab | c. (6)

Combining (5) and (6) we have that, c = ab. In the other direction, (a, b, ab) is
compositum-feasible by [9, Proposition 19]. �

Lemma 2.2 ([9, Proposition 2]). If the triplet (a, b, c) ∈ ℕ3 is sum-feasible and
two particular numbers from the list a, b, c are coprime, then the third number is
the product of these two.

Lemma 2.3 ([9, Proposition 1]). If the triplet (a, b, c) ∈ ℕ3 is compositum-
feasible, then it is also sum-feasible and product-feasible.

Let K and L be two �eld extensions of ℚ contained in some common �eld.
K is said to be linearly disjoint from L overℚ if every �nite set of elements of K
that is linearly independent overℚ is still so over L. LetMGal denote the Galois
closure of the number �eldM. The next lemma, which is due to P. Drungilas,
indicates that two number �elds of prime degree p are either linearly disjoint
over ℚ or their Galois closures coincide.

Lemma 2.4. Suppose that K and L are number �elds both of prime degree p. If
[KL ∶ ℚ] < p2, then KGal = LGal.
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Proof. Suppose on the contrary, that [KL ∶ ℚ] < p2 andKGal ≠ LGal. It follows
then that either K ⊈ LGal or L ⊈ KGal. Assume without loss of generality, that
K ⊈ LGal. The number �eldK∩LGal is a proper sub�eld ofK whose degree over
ℚ is a prime number. Therefore K ∩ LGal = ℚ, implying that K and LGal are
linearly disjoint overℚ [28, Lemma 3.4.17]. Since the subextensions of linearly
disjoint extensions are also linearly disjoint [22, Chapter 8, Proposition 3.1], it
follows that the number �eld K and a sub�eld L of LGal are linearly disjoint
over ℚ, which happens if and only if [KL ∶ ℚ] = [K ∶ ℚ] ⋅ [L ∶ ℚ] = p2 [28,
Lemma 3.4.16], a contradiction. Therefore, if [KL ∶ ℚ] < p2, thenKGal = LGal.
It is also evident that if KGal ≠ LGal, then [KL ∶ ℚ] = p2; i.e., K and L are
linearly disjoint. �

Lemma 2.5. Suppose thatK and L are number �elds both of prime degree p and
[KL ∶ ℚ] < p2. Then (KL)Gal = LGal = KGal.

Proof. Since [KL ∶ ℚ] < p2, Lemma 2.4 implies that LGal = KGal. It is clear
that LGal = KGal ⊆ (KL)Gal ⊆ KGalLGal. By [12, Chapter 14, Corollary 20],

[KGalLGal ∶ ℚ] = [KGal ∶ ℚ][LGal ∶ ℚ]
[KGal ∩ LGal ∶ ℚ]

= [LGal ∶ ℚ][LGal ∶ ℚ]
[LGal ∶ ℚ]

= [LGal ∶ ℚ].

Therefore, LGal = KGalLGal and hence, LGal = KGal = (KL)Gal. �

Lemma 2.6 ([8, Theorem 1.4]). A triplet (a, b, c) ∈ ℕ3 is compositum-feasible
if and only if there exists an irreducible polynomial f(x) ∈ ℚ[x] of degree c such
that the Galois group G of its splitting �eld has two subgroups H1 and H2 such
that [G ∶ H1] = a, [G ∶ H2] = b and [G ∶ H1 ∩ H2] = c.

Lemma 2.6 shows that compositum-feasible triplets of the form (p, p, ps)
with p prime can be determined by checking all possible transitive permuta-
tion subgroups of the full symmetric group Sps, which occur as Galois groups
for some irreducible polynomial of degree ps inℚ[x]. Note that this method is
di�cult to apply in practice, as it requires knowing the complete list of Galois
groups of degreeps. However if s < p, the next lemma shows that it is su�cient
to know Galois groups only of prime degree p.

Lemma 2.7. Let p be a prime number and s ∈ {1, 2, ..., p−1}. A triplet (p, p, ps)
is compositum-feasible if and only if there exists an irreducible polynomialf(x) ∈
ℚ[x] of degree p such that the Galois group G of its splitting �eld has two sub-
groupsH1 andH2 such that [G ∶ H1] = p, [G ∶ H2] = p and [G ∶ H1∩H2] = ps.

Proof. Necessity. Suppose that a triplet (p, p, ps) is compositum-feasible. Then
there exist number �elds K and L, both of degree p over ℚ, such that their
compositumKL has degree ps overℚ. By the primitive element theorem, there
exists an algebraic number � such that K = ℚ(�). Let f(x) ∈ ℚ[x] be the
minimal polynomial of � over ℚ. Clearly, deg(f(x)) = p. Note that KGal is the
splitting �eld of f(x). Let G denote the Galois group of f(x); i.e.,

G = {� ∈ Aut(KGal) | �(t) = t for all t ∈ ℚ}.
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Since [KL ∶ ℚ] = ps < p2, Lemma 2.5 implies that KGal = (KL)Gal. Hence,
(KL)Gal has the Galois group isomorphic toG. Finally, by the fundamental the-
orem of Galois theory ([12, Chapter 14, Theorem 14]), the group G has two
subgroups H1 and H2 corresponding to �elds K and L such that [G ∶ H1] = p,
[G ∶ H2] = p and [G ∶ H1 ∩H2] = ps, whereH1 ∩H2 corresponds to composi-
tum KL.

Su�ciency. The su�ciency part does not require Lemma 2.5, therefore we
omit its proof as it is identical to that of Lemma2.6 provided in [8, Theorem1.4].

�

Lemma 2.7 implies that in order to �nd all compositum-feasible triplets
(p, p, ps) with p prime and s ∈ {1, 2, ..., p − 1} it is enough to study only Ga-
lois groups G of prime degree p instead of degree ps. Recall that if (p, p, ps) is
compositum-feasible, then s ≤ p. Also, as it was noted in the Introduction, the
case s = p is a trivial one. Therefore, for the rest of the paper we can assume
that s ∈ {1, 2, ..., p − 1}. Next, we state some results on transitive permutations
groups G of prime degree separating the cases when G is solvable and non-
solvable (for a de�nition of solvability see, for example, [28, De�nition 4.3.1]).
The following lemma is due P. Drungilas.

Lemma 2.8. Let p be a prime number and s ∈ {1, 2, ..., p − 1}.
(a) If G is a solvable transitive permutation group of prime degree p andH1,

H2 are two subgroups of G such that [G ∶ H1] = [G ∶ H2] = p, then
[G ∶ H1 ∩ H2] = ps and s | (p − 1).

(b) If s | (p−1), then there exists a solvable Galois groupG of prime degree p,
which has two subgroupsH1 andH2 such that [G ∶ H1] = [G ∶ H2] = p
and [G ∶ H1 ∩ H2] = ps.

Proof. (a) Since G is transitive of prime degree p, we have that |G| is divisi-
ble by p. On the other hand, solvability of G implies that |G| divides p(p − 1)
[28, Corollary A.1.8]. Thus, if H1 and H2 are two subgroups of G such that
[G ∶ H1] = [G ∶ H2] = p, then clearly [G ∶ H1 ∩ H2] = ps and s | (p − 1).
(b) Let s | (p − 1) and consider a �nite �eld Fp of p elements. It is well-known
that the multiplicative group F×p is cyclic of order p − 1. Let C be a cyclic sub-
group of F×p whose order is s. Consider the group G of invertible a�ne trans-
formations

fa,b ∶ F×p → F×p , a ∈ C, b ∈ Fp, fa,b(x) = ax + b.

It is well-known (see, e.g., Example 3.4.1 of [6]) that G is the Frobenius group
of degree p whose order is ps. Since ps | p(p − 1), the group G is solvable [28,
Corollary A.1.8]. Also, every Frobenius group is realizable over ℚ (see, e.g.,
Theorem 1 of [26]); i.e., G is a Galois group overℚ. Let c ∈ C be a generator of
C. LetH1 andH2 be the subgroups of G generated by fc,0 and fc,1, respectively.
One can easily check that both subgroups H1 and H2 are cyclic of order s and
that [G ∶ H1] = [G ∶ H2] = p and [G ∶ H1 ∩ H2] = ps. �
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From Lemma 2.7 applied to the result of Lemma 2.8 it follows that the triplet
(p, p, ps) with p prime and s | p − 1 is compositum-feasible, and there is no
other form of compositum-feasible triplets induced by solvable Galois groups of
prime degree p. The situation with non-solvable Galois groups of prime degree
is more subtle and will be dealt with in more depth in Section 3. Let Sp, Ap
andMp denote the symmetric, the alternating andMathieu groups of degree p,
respectively.

Lemma 2.9 ([16, Corollary 4.2]; see also [17, Corollary 2.39]). If G is a non-
solvable transitive permutation group of prime degree p, then:

(a) G = Ap or G = Sp,
(b) G = M11 with p = 11 or G = M23 with p = 23,
(c) G = PSL(2, 11) with p = 11,
(d) PSL(n, q) ≤ G ≤ PΓL(n, q)with p = (qn−1)∕(q −1), where q is a prime

or a power of a prime;

If G ≅ M23 or PSL(n, q) ≤ G ≤ PΓL(n, q) it is not known whether G is
realizable over ℚ, while all other groups in the list of Lemma 2.9 indeed occur
as Galois groups of prime degree p.

Lemma 2.10 ([6, Corollary 3.5.B]). A transitive permutation group of prime de-
gree p is doubly transitive or solvable.

Lemma 2.10 implies that all non-solvable groups of prime degree are doubly
transitive. If a group G acts on a set X, then for any x ∈ X, the stabilizer of x in
G is denoted by Gx.

Lemma 2.11. Let G be a non-solvable transitive permutation group acting on a
set X such that |X| = p and p is prime. Then [G ∶ Gxi ∩ Gxj ] = p(p − 1) for all
xi, xj ∈ X whenever xi ≠ xj .

Proof. G is non-solvable, hence, by Lemma 2.10, it is doubly transitive. Con-
sequently, Gxi is transitive on X ⧵ {xi} for any xi ∈ X. From the orbit-stabilizer
theorem [6, Theorem 1.4A] it follows easily that for xi ≠ xj we have

|G| = [G ∶ Gxi ][Gxi ∶ Gxi ,xj ]|Gxi ,xj | = p(p − 1) ⋅ |Gxi ,xj |, (7)

where Gxi ,xj = {g ∈ G | g ⋅ xi = xi and g ⋅ xj = xj}. Observe also that Gxi ,xj =
Gxi ∩ Gxj , therefore by rearranging (7) we get

[G ∶ Gxi ∩ Gxj ] = [G ∶ Gxi ,xj ] = |G|∕|Gxi ,xj | = p(p − 1).

�

Lemma 2.11 implies that the index of a two-point stabilizer in a doubly tran-
sitive permutation group of prime degree p is equal to p(p − 1). The following
lemma will be useful in Section 3.
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Lemma 2.12 ([5, Theorem 1.50]). Let V be an n-dimensional vector space over
the �nite �eldFq withq elements. For any 1 ≤ k ≤ n, the number ofk-dimensional
subspaces belonging to V is equal to

k−1∏
i=0
(qn − qi)

k−1∏
i=0
(qk − qi)

.

Finally, we state a theorem of Capelli, which will be applied in the proof of
Theorem 1.4.

Lemma 2.13 ([27, p. 92]). Let K be a �eld and let m ≥ 2 be an integer. The
polynomial xm − a, where a ∈ K, is irreducible over K except when, for some
b ∈ K, either a = −4b4 and 4 | m or a = bp with some prime p | m.

3. Non-solvable transitive permutation groups of prime degree
A linear representation of a group G on a vector space V over a �eld F is

a group homomorphism � ∶ G → GL(V). The general linear group GL(V)
is composed of all bijective linear transformations V → V. If V is of �nite
dimension nwith basis (e1, … en), it is common to identifyGL(V)withGL(n, F),
the group of all invertible n×nmatrices overF. The dimension ofV is called the
degree of the representation. Let V be a �nite-dimensional vector space over F
and let Tr(�(g)) denote the trace of a matrix �(g) with g ∈ G. The character
of � is the function �� ∶ G → F given by ��(g) = Tr(�(g)). The space of all
complex characters has an inner product structure de�ned as

⟨��, � ⟩G ∶=
1
|G|

∑

g∈G
��(g)� (g),

where the characters �� and � correspond to representations � and  of G,
respectively, and � (g) denotes the complex conjugate of � (g) [12, p. 870].

For the purpose of our analysis, of particular importance is the permutation
representation of a �nite group G associated with a set X of size n. In gen-
eral, the permutation representation of G on X is de�ned as a homomorphism
� ∶ G → Sym(X) such that �g is the permutation of X, which sends x ∈ X to
�g(x). In this case we say that G acts on X and the image of x we denote as gx.
A very useful observation is that every permutation representation can be ana-
lyzed as a linear representation. Indeed, if V denotes an n-dimensional vector
space with basis (ex)x∈X indexed by the elements of X, then the permutation
representation of G on X corresponds to a homomorphism � ∶ G → GL(V)
such that �g is a bijective linear transformation from V to V, which sends ex
to egx. The elements of �(G) in this case are the permutation matrices and the
character of � indicates the number of �xed points of X under the action of
�g on X. Thus, the language of linear representations and that of permutation
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groups can be used interchangeably when the permutation representation of a
group G is considered (see [12, Chapter 18.3, Example 3]).

Let � and  be two permutation representations of the same group G on sets
X and Y, respectively. These representations are called equivalent if there is a
bijection f ∶ X → Y such that f(�g(x)) =  g(f(x)); i.e., �(G) and  (G) per-
mutes elements in the same way on the setsX andY after two sets are matched
appropriately. Every transitive action of a group G is equivalent to an action of
G on some coset space G∕H, whereH is a subgroup of G. Assume thatH1 and
H2 are two subgroups of index n in G. Then two permutation representations
of G on G∕H1 and on G∕H2, respectively, are equivalent if and only if H1 and
H2 are conjugate subgroups in G [6, p. 22].

If V is the one-dimensional vector space and I is the identity automorphism
of V, then a homomorphism � ∶ G → GL(V) given by �(g) = I for all g ∈ G
is called the trivial representation of G with character �� denoted by 1G . It is
a well-known fact in the representation theory of groups, that the permutation
representation ofG on the coset spaceG∕H can be obtained as a representation
of G induced by the trivial representation of H [25, Chapter 3.3, Example 2].
The character of such induced representation is denoted by IndGH 1H . Since
[G ∶ H1] = [G ∶ H2] = n, the induced representations of G by the trivial
representations of H1 and H2, respectively, have the same degree. If n = p,
where p is a prime number, it turns out that any two such representations af-
ford the same character [15, Theorem 6.2]. This fact will be implicitly used in
the proof of Corollary 3.2, which shows that the analysis of non-solvable simple
groups can be narrowed to two types of groups as far as our research question
is concerned.

Lemma 3.1 ([16, Corollary 4.5]). Let p be a prime and suppose that G has two
non-equivalent doubly transitive permutation representations on p points which
a�ord the same character. Then either p = 11 and G = PSL(2, 11) or p = (qn −
1)∕(q − 1) for some n ≥ 3 and PSL(n, q) ≤ G ≤ PΓL(n, q).

Corollary 3.2. Suppose that p is a prime number and let G be a non-solvable
transitive permutation group on p points such that neither G ≅ PSL(2, 11) nor
PSL(n, q) ≤ G ≤ PΓL(n, q). Then G contains the unique conjugacy class of sub-
groups of index p, namely, point stabilizers.

Proof. Let H denote a point stabilizer in G. Clearly, [G ∶ H] = p. Since G
is transitive, all point stabilizers in G form a single conjugacy class [6, Corol-
lary 1.4A]. Thus, G has at least one conjugacy class of subgroups of index p.
Assume that G contains k > 1 conjugacy classes of subgroups of index p. It
follows then that G has k non-equivalent permutation representations of de-
gree p, which a�ord the same character. The group G is non-solvable, there-
fore by Lemma 2.10, it is doubly transitive. Hence, Lemma 3.1 implies that
G ≅ PSL(2, 11) or PSL(n, q) ≤ G ≤ PΓL(n, q), a contradiction. Consequently,
the set of all point stabilizers is the unique conjugacy class of subgroups of index
p in G. �
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Corollary 3.3. Suppose that p is a prime number and let G be a non-solvable
transitive permutation group on p points such that neither G ≅ PSL(2, 11) nor
PSL(n, q) ≤ G ≤ PΓL(n, q). If H1 and H2 are two subgroups of G such that
[G ∶ H1] = [G ∶ H2] = p, then [G ∶ H1 ∩ H2] = p(p − 1).

Proof. By Corollary 3.2, both H1 and H2 are point stabilizers. Thus it follows
from Lemma 2.11 that [G ∶ H1 ∩ H2] = p(p − 1). �

In the following analysis we concentrate on subgroups of index p inG, when
G ≅ PSL(2, 11) or PSL(n, q) ≤ G ≤ PΓL(n, q). First, we need the following
lemma, which is a special case of a more general theorem of Tits [19].

Lemma 3.4. LetG be a doubly transitive permutation group on a setX such that
|X| = n and letH be a subgroup of index n in G. IfH is not transitive on X, then
H has exactly two orbits on X.

Proof. Let � be the permutation representation of G and � be the character of
�. Since G is doubly transitive, � decomposes into two irreducible characters
[25, Chapter 2.3, Exercise 2.6]:

� = 1G + � such that ⟨1G , �⟩G = ⟨�, 1G⟩G = 0, (8)

where 1G is the trivial character and � has degree n − 1. Let �H denote the
restriction of� toH and letResGH � denote the character of�H . If t is the number
of orbits ofH on X, then

⟨1H , ResGH �⟩H = ⟨ResGH �, 1H⟩H = 1
|H|

∑

ℎ∈H
ResGH �(ℎ) = t, (9)

(see [25, Chapter 2.3, Exercise 2.5 and Exercise 2.6]). Since H is not transitive
on X, we have t ≥ 2. Recall that IndGH 1H denotes the character of the repre-
sentation of G induced by 1H and it is equal to the character of the permutation
representation of G on the coset space G∕H [12, Chapter 19.3, Example 2]. By
the Frobenius reciprocity theorem [25, Chapter 7.2, Theorem 13] and orthogo-
nality relations for characters [25, Chapter 2.3, Theorem 3], we get

⟨IndGH 1H , 1G⟩G = ⟨1H , 1H⟩H = 1. (10)

Hence,
IndGH 1H = 1G + �′, (11)

where �′ has degree n − 1. By Frobenius reciprocity and (9), we have

2 ≤ t = ⟨1H , ResGH �⟩H = ⟨IndGH 1H , �⟩G . (12)

Using (8), (10), (11) and the fact that �′ and � both have degree equal to n − 1
with � being irreducible, we get

⟨IndGH 1H , �⟩G = ⟨IndGH 1H , 1G⟩G + ⟨IndGH 1H , �⟩G = 1 + ⟨IndGH 1H , �⟩G
= 1 + ⟨1G , �⟩G + ⟨�′, �⟩G = 1 + ⟨�′, �⟩G ≤ 2.

(13)

Consequently, from (12) and (13) it follows that �′ = � and t = 2. �
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Lemma 3.5. LetG be a transitive permutation group of prime degree p such that
PSL(n, q) ≤ G ≤ PΓL(n, q) and p = (qn − 1)∕(q − 1). Also let H1 and H2 be
subgroups of G such that [G ∶ H1] = [G ∶ H2] = p. Then one of the following
holds:

(a) [G ∶ H1 ∩ H2] = p(p − 1),
(b) [G ∶ H1 ∩ H2] = p(p − qn−1),
(c) [G ∶ H1 ∩ H2] = pqn−1.

Proof. Let q be a prime or a power of prime and let V = Fnq denote an n-
dimensional vector space over the �eld Fq. From Lemma 2.12 we see that V
contains (qn − 1)∕(q − 1) one-dimensional subspaces and (qn − 1)∕(q − 1)
hyperplanes (subspaces of codimension 1). It is also well-known that if p =
(qn − 1)∕(q − 1), where p is prime, q is prime or a power of a prime and n ≥ 3,
then G satisfying PSL(n, q) ≤ G ≤ PΓL(n, q), has two non-equivalent dou-
bly transitive permutation representations of prime degree p corresponding to
group action of G on the set of all one-dimensional subspaces of V or on the
set of all hyperplanes of V, respectively (see [3, Main Theorem]; cf. [1, Theo-
rem 1]). Thus, G has two conjugacy classes of subgroups of index p, namely,
stabilizers of a one-dimensional subspace of V and stabilizers of a hyperplane
of V. Note that if n = 2, one-dimensional subspaces of V coincide with hyper-
planes of V, therefore in this case G has only one conjugacy class of subgroups
of index p. Consequently, for any two such subgroups, sayH1 andH2, we have
that [G ∶ H1 ∩ H2] = p(p − 1) as a result of Lemma 2.11.

Suppose that n ≥ 3. Let X be the set of all one-dimensional subspaces of
V and let � be the natural permutation representation of G on X. Also let ⟨v⟩
denote a one-dimensional subspace of V generated by a vector v, G⟨v⟩ - the sta-
bilizer of ⟨v⟩ in G, ⟨v⟩G - the orbit of ⟨v⟩ under G, and GW - the stabilizer of a
hyperplaneW. By Lemma 2.12, the hyperplaneW ⊂ V contains

(qn−1 − 1)∕(q − 1) = (qn − 1)∕(q − 1) − qn−1 = p − qn−1

one-dimensional subspaces of V. Hence, if we restrict � to GW , for any one-
dimensional subspace ⟨w⟩ ⊂ W it holds that

|⟨w⟩GW | ≤ p − qn−1. (14)
From (14) it also follows that GW is not transitive on X. Since [G ∶ GW] = p,
Lemma 3.4 implies that GW has exactly two orbits on X. Let ⟨u⟩ denote a one-
dimensional subspace of V so that ⟨u⟩ ⊄ W. Clearly, ⟨u⟩ ∉ ⟨w⟩GW . Thus,

|⟨w⟩GW | + |⟨u⟩GW | = p. (15)
On the other hand, under the restriction of � to GW , the subspace ⟨u⟩ cannot
be sent to any of the one-dimensional subspaces belonging toW. Hence

|⟨u⟩GW | ≤ p − (p − qn−1) = qn−1. (16)
Combining (14) with (16) we get

⟨w⟩GW + ⟨u⟩GW ≤ (p − qn−1) + qn−1 = p. (17)
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Therefore, from (15) together with (17) it follows that

|⟨w⟩GW | = p − qn−1 and |⟨u⟩GW | = qn−1; (18)

i.e., GW has two orbits onX, one of size p−qn−1 and the other of size qn−1 (this
fact is also mentioned in [20, Example I.(i)]). Finally, note that the intersection
GW ∩ G⟨v⟩ is the stabilizer of ⟨v⟩ in GW . Hence, from [G ∶ GW] = p and the
orbit-stabilizer theorem applied to (18) we get

[G ∶ GW ∩ G⟨v⟩] = {p(p − qn−1), if ⟨v⟩ ⊂ W
pqn−1, if ⟨v⟩ ⊄ W.

(19)

Consequently, if H1 and H2 are two subgroups of index p in G belonging to
distinct conjugacy classes, then (19) implies that

[G ∶ H1 ∩ H2] = p(p − qn−1) or [G ∶ H1 ∩ H2] = pqn−1.

On the other hand, ifH1 andH2 are subgroups of index p in G belonging to the
same conjugacy class (i.e., bothH1 andH2 correspond to stabilizers of di�erent
one-dimensional subspaces of V or both subgroups correspond to stabilizers of
di�erent hyperplanes of V), then Lemma 2.11 implies that

[G ∶ H1 ∩ H2] = p(p − 1).

�

Next, we deal with the case p = 11 and G ≅ PSL(2, 11).

Lemma 3.6. Let G be a non-solvable transitive permutation group of prime de-
gree 11 such that G ≅ PSL(2, 11). Also letH1 andH2 be subgroups of G such that
[G ∶ H1] = [G ∶ H2] = 11. Then one of the following holds:

(a) [G ∶ H1 ∩ H2] = 11 ⋅ 10,
(b) [G ∶ H1 ∩ H2] = 11 ⋅ 6,
(c) [G ∶ H1 ∩ H2] = 11 ⋅ 5.

Proof. The proof is based on the subgroup structure of PSL(2, 11) provided in
a paper by Buekenhout, Cara and Vanmeerbeek [2, Figure 1]. Inside PSL(2, 11)
there are two conjugacy classes of subgroups of index 11, both classes comprised
of subgroups isomorphic to the alternating groupA5 and are denoted byAA

5 and
AB
5 , respectively. In fact, AA

5 and AB
5 correspond to point stabilizers from two

di�erent representations of PSL(2, 11) as a transitive permutation subgroup of
S11. Thus, if H1 and H2 are two subgroups of index 11 in PSL(2, 11) belonging
to the same conjugacy class, then by Lemma 2.11,

[PSL(2, 11) ∶ H1 ∩ H2] = 11 ⋅ 10 (20)

(alternatively,H1 ∩H2 ≅ S3, hence [PSL(2, 11) ∶ H1 ∩H2] = 660 ∶ 6 = 11 ⋅ 10).
On the other hand,

AA
5 ∩ AB

5 = D10 or AA
5 ∩ AB

5 = A4,
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where D10 denotes the dihedral group of order 10 and A4 the alternating group
of order 12. Consequently, ifH1 andH2 are subgroups of index 11 belonging to
distinct conjugacy classes, then

[PSL(2, 11) ∶ H1 ∩ H2] = [PSL(2, 11) ∶ D10] = 11 ⋅ 6

or
[PSL(2, 11) ∶ H1 ∩ H2] = [PSL(2, 11) ∶ A4] = 11 ⋅ 5.

�

4. Proofs of Theorem 1.1 and Corollary 1.2
Proof of Theorem 1.1. Let p be a prime number. If the triplet (p, p, ps) is
compositum-feasible, then s ≤ p. If s = p, then the triplet (p, p, p2) corre-
sponding to part (a) of Theorem 1.1 is compositum-feasible by [9, Proposition
19], which states that the triplet (a, b, ab) is compositum-feasible. Hence, by
taking a = b = p, we get the result. It remains to determine all compositum-
feasible triplets (p, p, ps) such that s ∈ {1, 2, ..., p − 1}. If s ∈ {1, 2, ..., p − 1},
then Lemma 2.7 states that the triplet (p, p, ps) is compositum-feasible if and
only if there exist Galois group G of prime degree p, which has two subgroups
H1 andH2 such that

[G ∶ H1] = [G ∶ H2] = p and [G ∶ H1 ∩ H2] = ps.

If G is solvable, then from Lemma 2.7 applied to the result of Lemma 2.8 it
follows that s | (p − 1) and that for any divisor s of (p − 1), the triplet (p, p, ps)
corresponding to part (b) of Theorem 1.1 is compositum-feasible.

The only candidates for non-solvable Galois group G of prime degree are
non-solvable transitive permutation groups of prime degree as indicated in
Lemma 2.9. Suppose that G is isomorphic to

Ap, Sp, M11 or M23. (21)

From Lemma 2.7 applied to Corollary 3.3 it follows that the groups in (21) can
induce compositum-feasible triplets only of the form (p, p, p(p − 1)). Since
these triplets are covered by part (b) of Theorem1.1, whether groupsmentioned
in (21) can actually occur as Galois groups over ℚ or not, has no e�ect on our
problem of determining all compositum-feasible triplets (as it was mentioned,
Ap, Sp andM11 are known to be realizable, while the case ofM23 is still unde-
cided).

Next, consider the non-solvable transitive permutation group G of degree 11
isomorphic to

PSL(2, 11). (22)

First, note that PSL(2, 11) is realizable over ℚ as it is the Galois group of the
following irreducible polynomial

x11 − 2x10 + 3x9 + 2x8 − 5x7 + 16x6 − 10x5 + 10x4 + 2x3 − 3x2 + 4x − 1
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(see a database of number �elds of degree 11 in [21]). Thus, from Lemma 2.7
applied to the result of Lemma 3.6 it follows that the full list of compositum-
feasible triplets induced by PSL(2, 11) is the following:

(11, 11, 11 ⋅ 10), (11, 11, 11 ⋅ 6), (11, 11, 11 ⋅ 5).
Observe that 5 | (11−1), thus (11, 11, 11⋅5) as well as (11, 11, 11⋅10) correspond
to part (b), while (11, 11, 11 ⋅ 6) corresponds to part (c) of Theorem 1.1.

Finally, suppose that G is such that

PSL(n, q) ≤ G ≤ PΓL(n, q) and p = (qn − 1)∕(q − 1). (23)

From Lemma 2.7 applied to the result of Lemma 3.5 it follows that groups in
(23) can induce compositum-feasible triplets only of the following form:

(p, p, p(p − 1)), (p, p, p(p − qn−1)), (p, p, pqn−1).
Observe that

p − qn−1 = (qn − 1)∕(q − 1) − qn−1 = (qn−1 − 1)∕(q − 1)
and

p − 1 = (qn − 1)∕(q − 1) − 1 = q((qn−1 − 1)∕(q − 1)).
Hence, the triplet (p, p, p(p − qn−1)) and obviously the triplet (p, p, p(p − 1))
can be written as (p, p, ps) subject to s | (p − 1). Note that such triplets are
covered by part (b) of Theorem 1.1, as they arise from solvable Galois groups.
On the other hand, since qn−1 does not divide p−1 = q((qn−1−1)∕(q − 1)) for
n ≥ 3, the triplet (p, p, pqn−1) can be induced only from the groupsG indicated
in (23) with the condition that n ≥ 3. Unless p = (qn − 1)∕(q − 1) is small, it
is not known whether G occurs as a Galois group for some polynomial overℚ.
In conclusion, (p, p, pqn−1) is compositum-feasible if and only ifG is realizable
over ℚ. This completes the proof of part (d) of Theorem 1.1.

Since the groups mentioned in (21), (22) and (23) exhaust all groups indi-
cated in Lemma 2.9, there is no other form of compositum-feasible triplets,
which could be induced bynon-solvableGalois groups of primedegreep. There-
fore, Theorem 1.1 is proved. �

Proof of Corollary 1.2. If a < 13, Lemma 2.1 implies that the triplet (a, 13, c)
is compositum-feasible if and only if c = 13a. If a = 13, then (a, 13, c) is
of the form (13, 13, 13s) and Theorem 1.1 can be applied. Firstly, part (a) of
Theorem 1.1 implies that (13, 13, 13 ⋅ 13) is compositum-feasible. Secondly, the
triplets
(13, 13, 13 ⋅ 1), (13, 13, 13 ⋅ 2), (13, 13, 13 ⋅ 3), (13, 13, 13 ⋅ 4), (13, 13, 13 ⋅ 6),
(13, 13, 13 ⋅ 12)

are compositum-feasible by part (b) of Theorem 1.1. Since 1, 2, 3, 4, 6, 12 are
the only divisors of 13−1 = 12, there are nomore compositum-feasible triplets
corresponding to part (b) of Theorem 1.1. Finally, it is easy to check that if q is
a prime or a power of a prime, the equation 13 = (qn −1)∕(q − 1) has a unique
solution, namely q = 3 and n = 3. Thus, qn−1 = 9. By part (d) of Theorem 1.1,
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the triplet (13, 13, 13 ⋅ 9) is compositum-feasible if and only if there exists a
realizable non-solvable group G so that PSL(3, 3) ≤ G ≤ PΓL(3, 3). Since the
polynomial

x13 − x12 − 3x11 − 7x10 + 37x9 − 9x8 − 168x7 + 24x6 + 396x5 + 20x4

− 128x3 + 192x2 − 176x − 16
has Galois group isomorphic to PSL(3, 3) (see a database of number �elds of
degree 13 in [21]), we conclude that (13, 13, 13⋅9) is compositum-feasible. There
are nomore triplets (13, 13, 13s) satisfying one of the conditions of Theorem1.1,
therefore Corollary 1.2 is proved. �

5. Proof of Theorem 1.3
Proof. With p being prime, all triplets of the form (p, p, l) = (p, p, ps) satisfy-
ing one of the conditions of Theorem 1.1 are compositum-feasible, sum-feasible
and product feasible as a consequence of Lemma 2.3. Suppose that the triplet
(p, p, l) is sum-feasible (resp. product-feasible) but is not compositum-feasible.
Then there exists three algebraic numbers �, �, 
 of degrees p, p, l, respectively,
such that � + � + 
 = 0 (resp. ��
 = 1). It is also clear that ℚ(�) ⊆ ℚ(�, �),
thus [ℚ(�, �) ∶ ℚ] is divisible by p. It follows then that [ℚ(�, �) ∶ ℚ] = ps
for some positive integer s. Also, note that ℚ(� + �) (resp. ℚ(��)) ⊆ ℚ(�, �)
and ℚ(� + �) = ℚ(−
) = ℚ(
) (resp. ℚ(��) = ℚ(
−1) = ℚ(
)). Thus,
ℚ(
) ⊆ ℚ(�, �) and therefore, l | ps. We have the following diagram.

ℚ(�)
s

ℚ

p

l

p

ℚ(
)
(ps)∕l

ℚ(�, �)

ℚ(�)
s

The proof is divided into two cases, namely

gcd(p, l) > 1 and gcd(p, l) = 1.
Lemma5.1. If gcd(p, l) > 1, then there is no sum-feasible (resp. product-feasible)
triplet (p, p, l), which is not compositum-feasible.

Proof. From gcd(p, l) > 1 it follows that l = pk for some positive integer k.
Since l | ps, we get

k | s. (24)
Note that (p, p, ps) is compositum-feasible triplet, therefore by Theorem 1.1:

(a) s = p,
(b) s | (p − 1),
(c) s = 6 and p = 11,
(d) s = qn−1 and p = (qn − 1)∕(q − 1) with n ≥ 3.
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Assume �rstly that s = p. Then (24) implies that k = 1 or k = p. Thus,
(p, p, l) = (p, p, p ⋅ 1) or (p, p, l) = (p, p, p ⋅ p). In both cases (p, p, l) is
compositum-feasible by Theorem 1.1, which contradicts our assumption that
(p, p, l) is not compositum-feasible. If s | (p − 1), then from k | s we get that
k | (p − 1). Thus, the triplet (p, p, l) = (p, p, pk) is compositum-feasible, a
contradiction.

If s = 6 and p = 11, then from the proof of Theorem 1.1 it follows that the
Galois closure of ℚ(�, �) has Galois group isomorphic to PSL(2, 11). Note that
if k = 1, k = 2 or k = 6, then (p, p, l) = (p, p, pk) is compositum-feasible by
Theorem 1.1, a contradiction. The only remaining value of k satisfying (24) is
k = 3. In this case l = 11 ⋅ 3 and [ℚ(
) ∶ ℚ] = 33. Thus, from the fundamental
theorem of Galois theory it follows that there exists subgroup J of index 33 in
PSL(2, 11). However, from [2, Figure 1] we see that PSL(2, 11) does not have
subgroup of index 33, a contradiction.

The only remaining case is s = qn−1 with p = (qn − 1)∕(q − 1) and n ≥ 3.
Since by assumption (p, p, l) = (p, p, pk) is not compositum feasible and k | s,
it follows that k = qr for some 0 < r < n − 1. Thus, l = pqr and we have the
following diagram.

ℚ(�)
qn−1

ℚ

p

pqr

p

ℚ(
) qn−1−r ℚ(�, �)

ℚ(�)
qn−1

From the proof of Theorem 1.1 it follows that the Galois closure ofℚ(�, �) has
Galois group isomorphic toG such that PSL(n, q) ≤ G ≤ PΓL(n, q). LetV = Fnq
be the n-dimensional vector space over Fq, X - the set of all one-dimensional
subspaces of V and let � denote the natural permutation representation of G
on X. Using the same notation as in the proof of Lemma 3.5, we can assume
that sub�elds ℚ(�), ℚ(�) and ℚ(�, �) correspond to subgroups GW , G⟨v⟩ and
GW ∩ G⟨v⟩, respectively. By the fundamental theorem of Galois theory, there
exists subgroup J corresponding to sub�eld ℚ(
) such that

GW ∩ G⟨v⟩ ≤ J ≤ G and [G ∶ J] = pqr. (25)

Since [G ∶ GW ∩ G⟨v⟩] = pqn−1, we get

[J ∶ GW ∩ G⟨v⟩] =
pqn−1
pqr = qn−1−r. (26)

Note also that the compositum of ℚ(
) and ℚ(�) is equal to ℚ(�, �), which is
the compositumofℚ(�) andℚ(�). Thus, by the fundamental theoremofGalois
theory

J ∩ G⟨v⟩ = GW ∩ G⟨v⟩. (27)
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Observe that
GW ∩ G⟨v⟩ = GW,⟨v⟩ and J ∩ G⟨v⟩ = J⟨v⟩, (28)

where GW,⟨v⟩ denotes the stabilizer of ⟨v⟩ under the restriction of � to GW and
J⟨v⟩ denotes the stabilizer of ⟨v⟩ under the restriction of � to J. From (26), (27),
(28) and the orbit-stabilizer theorem we have that

[J ∶ J⟨v⟩] = qn−1−r and |⟨v⟩J| = qn−1−r.

Take some one-dimensional subspace ⟨u⟩ ≠ ⟨v⟩ such that ⟨u⟩ ∈ ⟨v⟩J . Consider
the two-point stabilizer J⟨v⟩,⟨u⟩. If the orbit of ⟨u⟩ under the restriction of � to
J⟨v⟩ has lengthm, then

m = |⟨u⟩J⟨v⟩| ≤ |⟨u⟩J| = |⟨v⟩J| = qn−1−r ≤ qn−2. (29)

From the orbit-stabilizer theorem it follows that

[G ∶ J⟨v⟩,⟨u⟩] = [G ∶ J⟨v⟩][J⟨v⟩ ∶ J⟨v⟩,⟨u⟩] = pqn−1 ⋅ m.

On the other hand, J⟨v⟩,⟨u⟩ is a subgroup of G⟨v⟩,⟨u⟩. Since G is doubly transitive,
Lemma 2.11 implies that [G ∶ G⟨v⟩,⟨u⟩] = p(p − 1). Hence,

|G⟨v⟩,⟨u⟩|
|J⟨v⟩,⟨u⟩|

= pqn−1m
p(p − 1)

∈ ℤ.

Taking into account that p − 1 = q(qn−1 − 1)∕(q − 1) we see that

pqn−1m
p(p − 1)

= pqn−1m(q − 1)
pq(qn−1 − 1)

= qn−2m(q − 1)
qn−1 − 1 ∈ ℤ.

Clearly, qn−2 is coprime to qn−1 − 1. Hence, m(q − 1) is divisible by qn−1 − 1.
However, from (29) we get that

m(q − 1) ≤ qn−2(q − 1) < qn−1 − 1,

a contradiction. Therefore, there is no such subgroup J in G, which satis�es
(25). Consequently, there is no sum-feasible (resp. product-feasible) triplet
(p, p, l) = (p, p, pk) with k | qn−1, which is not-compositum-feasible.

We have checked all the possible candidates for the value of l = pk, therefore
Lemma 5.1 is proved. �

Lemma 5.2. Suppose gcd(p, l) = 1. Then (p, p, l) is sum-feasible if and only if
(p, p, l) = (p, p, 1).

Proof. If gcd(p, l) = 1, then by Lemma 2.2, pl = p. Therefore, l = 1. Clearly,
the triplet (p, p, 1) is sum-feasible, but is not compositum-feasible. �

By combining Lemma 5.1 with Lemma 5.2, Theorem 1.3 is proved. �
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6. Proof of Theorem 1.4
Proof. From Lemma 5.1 it follows that it is enough to consider only the case
gcd(p, l) = 1. By Lemma 5.2, (p, p, 1) is sum-feasible. Thus, it is also product-
feasible [7, Theorem 1.1]. Assume that l ≠ 1. Obviously, (p, p, l) is product-
feasible if and only if (l, p, p) is product feasible.

Lemma 6.1. Let gcd(p, l) = 1 and l ≠ 1. Then (l, p, p) is product-feasible if and
only if l = p − 1.

Proof. Identically as in the proof of Theorem1.3, if the triplet (l, p, p) is product-
feasible, then there exist algebraic numbers �, �, 
 such that

[ℚ(�) ∶ ℚ] = l, [ℚ(�) ∶ ℚ] = p and [ℚ(
) ∶ ℚ] = p.
Since gcd(p, l) = 1, we get that [ℚ(�, �) ∶ ℚ] = pl. Thus, we have the following
diagram.

ℚ(�)
p

ℚ

l

p

p

ℚ(
) l ℚ(�, �)

ℚ(�)
l

Let �1 ∶= �, �2, ..., �p be all conjugates of �. Clearly, the numbers

��1, ��2, .., ��p (30)

are all di�erent. By [9, Proposition 21], all numbers in (30) are conjugates of
��. By multiplying all of them we get

�p�1�2…�p ∈ ℚ.
Since �1�2…�p ∈ ℚ, it follows that �p ∈ ℚ. Let �p = q for some q ∈ ℚ. Then
� is a root of

f(x) = xp − q.
Assume g(x) is the minimal polynomial of �. It follows that

g(x) | f(x).
Since deg(g(x)) = l and gcd(l, p) = 1, the polynomial f(x) is reducible overℚ.
Hence, from Lemma 2.13 it follows that q = qp1 for some q1 ∈ ℚ. Then

f(x) = xp − q = xp − qp1

= (x − q1) ⋅ q
p−1
1 ⋅ (( xq1

)
p−1

+ ( xq1
)
p−2

+ … + 1) .
(31)

Since the polynomial
xp−1 + xp−2 + … + 1
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is irreducible over ℚ [28, Example 4.1.8], the polynomial

( xq1
)
p−1

+ ( xq1
)
p−2

+ … + 1

is irreducible too. Recall that deg(g(x)) = l ≠ 1 by assumption. Thus, in light
of (31), we conclude that theminimal polynomial of �, namely g(x), has degree
p − 1; i.e., l = p − 1. On the other hand, by [24, Theorem 4], the triplet (p −
1, p, p) is product-feasible. For example, one can take � = 1∕�, � = 1∕ p

√
2 and


 = p
√
2 ⋅ �, where � = e2�i∕p is a primitive ptℎ root of unity. �

Clearly, the triplet (p, p, p−1) is product-feasible. On the other hand, (p, p, p−
1) is neither compositum-feasible as p − 1 < p nor it is sum-feasible as a re-
sult of Lemma 5.2. By combining Lemma 5.1 with Lemma 6.1, Theorem 1.4 is
proved. �

We remark that Lemma 6.1 implies that the triplet (4, 7, 7) is not product-
feasible. This was left undecided in [24].

Acknowledgements. The author is grateful to A. Dubickas for pointing out
many helpful suggestions, and to P. Drungilas for the proofs of Lemma 2.4 and
Lemma 2.8. The author also thanks the referee for valuable comments.

References
[1] Bannai, Eiichi. Doubly transitive permutation representations of the �nite projective spe-

cial linear groups PSL(n, q).OsakaMath. J. 8 (1971), 437–445. MR0313412, Zbl 0253.20007.
182

[2] Buekenhout, Francis; Cara, Philippe; VanmeerbeekKoen. Geometries of the group
PSL(2, 11). Geom. Dedicata 83 (2000), no. 1-3, 169–206. MR1800018, Zbl 0969.51018,
doi: 10.1023/A:1005204612043. 183, 187

[3] Curtis, Charles W.; Kantor, William M.; Seitz, Gary M. The 2-transitive permu-
tation representations of the �nite Chevalley groups. Trans. Amer. Math. Soc. 218 (1976),
1–59. MR0422440, Zbl 0374.20002, doi: 10.2307/1997427. 182

[4] Delanoy, Ewan. What is the set of possible values of the degree of the
sum of two algebraic numbers with �xed degrees? MathOver�ow, 2010.
https://mathover�ow.net/questions/30151/. 174

[5] Ding, Cunsheng; Tang, Chunming. Designs from linear codes. Second edition.
World Scienti�c Publishing Co. Pte. Ltd., Hackensack, NJ, 2022. xvii+521 pp. ISBN:
978-981-125-132-0; 978-981-125-133-7; 978-981-125-134-4. MR4451270, Zbl 1477.94006,
doi: 10.1142/12697. 172, 179

[6] Dixon, JohnD.; Mortimer, Brian. Permutation groups. Graduate Texts inMathematics,
163. Springer-Verlag, New York, 1996. xii+346 pp. ISBN: 0-387-94599-7. MR1409812, Zbl
0951.20001, doi: 10.1007/978-1-4612-0731-3. 172, 177, 178, 180
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