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Abstract
We construct a representation theory of a “quantum hyperboloid” in terms

of so-called braided modules. We treat these objects in the framework of
twisted Quantum Mechanics.

Résumé
Nous construisons une théorie de représentations pour « l’hyperboloïde

quantique » en termes de modules tressés. Nous traitons ces objets dans le
cadre de la mécanique quantique tordue.

1 Introduction

In the present paper we study a quantum hyperboloid from the point of view of the
generalized framework for quantum mechanics suggested in [GRZ]. The main idea
of that paper is the following. Quantizing a degenerate Poisson bracket we have, in
general, to modify the ordinary notions of quantum mechanics, namely, those of Lie
algebra, trace and conjugation (involution) operators.

Meanwhile, all objects and operators disscused in [GRZ] were connected to an
involutive S2 = id solution to the quantum Yang-Baxter equation (QYBE)

S12S23S12 = S23S12S23.

In particular, such objects arise as a result of a quantization of some Poisson brackets
(P.b.) generated by a skew-symmetric (R ∈ ∧2(g)) solution to the classical Yang-
Baxter equation (CYBE),

[[R,R]] = [R12, R13] + [R12, R23] + [R13, R23] = 0,

where g is a Lie algebra. Another family of examples of such a type of objects is
related to non-quasiclassical (or, in other words, non-deformational) solutions of the
QYBE, cf. [G1], [GRZ].
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More precisely, given a representation ρ : g → V ect(M) of a Lie algebra g in the
space of vector fields on a manifold or algebraic variety M , then the bracket

{f, g}R = µ < ρ⊗2(R), df ⊗ dg >, f, g ∈ Fun(M)

is Poisson. Hereafter µ denotes the product in the algebra under question and < , >

denotes the pairing between the vector fields and the differential forms extended on
their tensor powers. Quantizing this Poisson bracket, we get an algebra belonging to
a twisted, i.e., equipped with a Yang-Baxter twist S, tensor symmetric category
(“symmetric” means that this twist is involutive). Moreover, this algebra is S-
commutative, i.e., the product µ in it satisfies the relation µ = µS.
Thus, by deforming the commutative algebra Fun(M) “in the direction” of the

above P.b. we get a S-commutative algebra. It is more interesting to deform in
a similar way the non-commutative algebras, for example, those arising from a
quantization of the Kirillov-Kostant-Souriau (KKS) bracket on a given coadjoint
orbit in g∗.
Let us assume that ρ = ad∗. Then the bracket { , }R is well defined on g∗ as

well as on any orbit in g∗. It is not difficult to see that the KKS bracket and this
“R-matrix bracket” { , }R are compatible and this problem can be thought of as
one of simultaneous quantization of the whole of the Poisson pencil (P.p.) generated
by these two brackets.

In this connection the following question arises: what is a quantization of the
KKS bracket? There exist (at least) two ways to represent the quantum objects.
On the one hand it is possible to think of these objects as the quotient algebras of
the enveloping algebras U(g)h (h means here that this parameter is introduced as a
factor in the Lie bracket in the definition of the enveloping algebra).
On the other hand the quantum object can be represented into End(V ) where V

is a suitable Hilbert space. Such a representation can be constructed by means of a
geometric quantization method or by means of an orbit method, but in numerous
cases both approaches provide similar results.
We treat the algebra structure arising from the quantization of the KKS bracket

in one or in other way, and we are interested in a further deformation of this algebra.
In what follows the latter procedure will be called “twisting” to distinguish the two
types of quantization. Roughly speaking, a twisting is a passage to a twisted category
instead of the “classical” one. When a twisting arises from the above mentioned
solutions of the CYBE, it can be performed by means of an operator F = Fν

(represented as a series in a parameter ν) such that S = F−1σF where σ denotes
the flip. Existence of such a series F has been established by V.Drinfeld in [D].
As a result, the principal objects and operators of the ordinary quantum

mechanics can be twisted by means of Fν . In particular, a usual trace becomes
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S-commutative, i.e., such that tr(A ◦ B) = tr ◦ S(A ⊗ B) where ◦ denotes the
operator product. A Lie bracket turns into an S-Lie bracket in the sense of [G1],
[GRZ]. etc.

Our principal aim is to generalize this approach to the case when R is a solution
of the modified CYBE. This means that the above element [[R,R]] is g-invariant.
In this case the R-matrix bracket is Poisson only on certain orbits in g∗ which are
called, according to the terminology of [GP], the orbits of R-matrix type. However,
if g = sl(2), all orbits in g∗ are of the R-matrix type.

The result of the quantization of the above P.p. on a given orbit in g∗ can be
represented as a three parameter algebra Ach,q where h is a parameter of quantization
of the KKS bracket, q a parameter of twisting and c labels the orbits. c = 0

corresponds to the cone.

The algebras of such type have been considered in plenty of papers. We refer
the reader to [P] where these algebras (equipped with a traditional involution) have
appeared under the name of “quantum spheres” (see the discussion of involutions
in Section 5).

It was shown in [DG1] that these algebras represent flat deformations of their
classical counterparts. In this paper we realize the second step of the quantization
procedure and develop a representation theory for the algebras Ach,q in terms of
braided modules.

Roughly speaking, a braided module is a Uq(g)-module equipped with a
representation ρ : Ach,q → End(V ) in such a way that the map ρ is a Uq(g)-
morphism.

In this sense we treat the triple (Ach,q, V, ρ) as an object of twisted quantum
mechanics (more precisely, of the particular case, connected to the quantum group
Uq(g)). In the present paper we consider the simplest example of such twisted
quantum mechanics, namely, the one connected to the quantum hyperboloid and
its modules.

Although an axiomatic approach to such a version of quantum mechanics has not
yet been adequately developed, it is clear that the traditional involution approach
is not reasonable for such a type of objects, since the maps of these algebras into
End(Uk), where Uk are the braided modules mentioned above, do not respect such an
involution. In the present paper we suggest another way to coordinate the involution
with a braided structure.

The paper is organized as follows. In the next section we recall the constructions
of [DG1]. In Section 3 we develop a representation theory for this algebra in terms
of braided modules. In Section 4 we consider the so-called braided Casimir, i.e.,
an invariant (with respect to the action of the quantum group) element and assign
to it operators acting in braided modules. We prove that the latter operators are
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scalar, and we compute the eigenvalues of the braided Casimir. The last section is
devoted to a discussion of the braided (twisted) traces and involutions as ingredients
of twisted quantum mechanics.

Throughout the paper Uq(g)-Mod will denote the category of Uq(g)-modules.
We include in it, besides the finite-dimensional modules, their inductive limits. The
parameter q is assumed to be generic, and the basic field k is C or R (in the latter
case we consider the normal form of the Lie algebra g).
The authors want to thank B. Enriquez for helpful discussions and Y. Kosmann-

Schwarzbach for valuable remarks.

V.R. greatly aknowledges the hospitality of Centre de Mathématiques de l’Ecole
Polytechnique and of the Institute of Theoretical Physics of Uppsala University. His
work was partially supported by CNRS and by RFFR-MF-95-O1-01101.

2 Quantum hyperboloid: basic notions

To construct a quantum hyperboloid it is sufficient to fix a representation of the
quantum group Uq(sl(2)) into a three dimensional space V , decompose the space
V ⊗2 into a direct sum of irreducible Uq(sl(2))-modules and impose a few natural
equations on elements of V ⊗2 ⊕ V ⊕ k which are compatible with the action of the
quantum group Uq(sl(2)) and are similar to their classical counterparts.

Thus, let us consider the algebra Uq(sl(2)) generated by the elements H, X, Y

satisfying the well-known relations

[H,X ] = 2X, [H,Y ] = −2Y, [X,Y ] =
qH − q−H

q − q−1
.

Let us equip this algebra with a coproduct defined on the basic elements in the
following way

∆(X) = X ⊗ 1 + q−H ⊗X, ∆(Y ) = 1⊗ Y + Y ⊗ qH , ∆(H) = H ⊗ 1 + 1⊗H.

It is well-known that this algebra has a Hopf structure, being equipped with the
antipode γ defined by

γ(X) = −qHX, γ(H) = −H, γ(Y ) = −Y q−H .

Let us consider a linear space V with the base {u, v, w}, and turn V into a
Uq(sl(2))-module by setting

Hu = 2u, Hv = 0, Hw = −2w, Xu = 0, Xv = −(q + q−1)u, Xw = v,

Y u = −v, Y v = (q + q−1)w, Y w = 0.

Séminaires et Congrès 2



Quantum Hyberboloid and Braided Modules 107

It is easy to show that the above relations for H, X, Y are satisfied.
We want to stress that throughout this paper we deal with a coordinate

representation of module elements. We consider the endomorphisms as matrices
and their action as left-multiplication by these matrices.
Using the coproduct we can equip V ⊗2 with a Uq(sl(2))-module structure as

well. This module is reducible and can be decomposed into a direct sum of three
irreducible Uq(sl(2))-modules

V0 = span((q
3 + q)uw + v2 + (q + q−1)wu),

V1 = span(q
2uv − vu, (q3 + q)(uw − wu) + (1− q2)v2, −q2vw + wv),

V2 = span(uu, uv + q2vu, uw − qvv + q4wu, vw + q2wv, ww)

of spins 0, 1 and 2 (hereafter the sign ⊗ is omitted).

Then only the following relations imposed on the elements of the space V ⊗2⊕V ⊕k
are compatible with the Uq(sl(2))-action:

Cq = (q
3 + q)uw + vv + (q + q−1)wu = c, q2uv − vu = −2hu,

(q3 + q)(uw − wu) + (1− q2)v2 = 2hv, −q2vw + wv = 2hw

with arbitrary h and c. The element Cq will be called a braided Casimir.
Therefore it is natural to introduce a quantum hyperboloid as the quotient algebra

of the free tensor algebra T (V ) over the ideal generated by elements

(q3 + q)uw + v2 + (q + q−1)wu − c, q2uv − vu+ 2hu,

(q3 + q)(uw − wu) + (1− q2)v2 − 2hv, −q2vw + wv − 2hw.

This quotient algebra will be denoted by Ach,q.
The quotient algebra of T (V ) over the ideal generated by the latter three elements

will be denoted byAh,q. This algebra is another (compared with the quantum algebra
Uq(sl(2))) q-analogue of the enveloping algebra U(sl(2)).

In [DG2] it has been shown that both algebras Ach,q and Ah,q represent the flat
deformations of their classical counterparts. Let us make some comments on the
proof.
Concerning the algebra Ach,q, the proof of flatness is based on the two following

statements:

1. The algebra A00,q is Koszul (see [BG] for definition). This fact was proved in
[DG1] “by hands”. Now there exists (for the case q = 1 and hence for a generic q

since the deformation A00,1 → A00,q is flat) a more conceptual proof valid for any
simple Lie algebra (see [Be], [Bo]).
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2. It is possible to describe the algebra Ach,q as the enveloping algebra of a
generalized Lie algebra in the following sense which is slightly different from that of
[DG2]. Let us consider the space I = V1 ⊕ V0 and introduce two maps, α : I → V

and β : I → k, as follows: α : V0 → 0, β : V1 → 0,

α(q2uv − vu) = −2hu, α((q3 + q)(uw − wu) + (1 − q2)v2) = 2hv,

α(−q2vw + wv) = 2hw, β((q3 + q)uw + v2 + (q + q−1)wu) = c.

It is easy to see that the data (V, I ⊂ V ⊗2, α, β) satisfies the following relations
a. Im(α⊗ id− id⊗ α)(I ⊗ V

⋂
V ⊗ I) ⊂ I,

b. (α(α ⊗ id− id⊗ α) + β ⊗ id− id⊗ β)(I ⊗ V
⋂

V ⊗ I) = 0,

c. β(α⊗ id− id⊗ α)(I ⊗ V
⋂

V ⊗ I) = 0.

Then, in virtue of the main result of [BG], we can deduce that its graded adjoint
algebra GrAch,q is isomorphic to A00,q, in spirit of the PBW theorem.

Let us remark that the above conditions a., b., c. represent the most general
analogue of the Jacobi identity related to deformation theory. However, they are
useless from the representation theory point of view. On the contrary, the Jacobi
identity presented in the next Section is related to representation theory of the
algebra Ah,q.

As for the algebraAh,q itself, the proof of its flatness follows the same outline. The
only difference is that the space V1 plays the role of I, and only the map α : I → V

is considered. Then the result of [BG] mentioned above can be applied, assuming β

to be equal zero, since the algebra GrAh,q is also Koszul (cf. [DG1]).

It is not difficult to see that the quasiclassical terms of these flat deformations are
just the Poisson pencils under consideration, where the R-matrix bracket is given
by R = 1/2X ∧ Y .

Remark 2.1. For other simple Lie algebras g, it is possible to define algebras that
are analogous to Ah,q (cf. [DG2]). However, these algebras are no longer flat
deformations of their classical counterparts. The only hope is to prove that some
of their quotient algebras are flat deformations of their classical analogues which
correspond to the orbits in g∗ of R-matrix type according to the terminology of
[GP].

Let us consider more closely the algebra Ac0,q, arising from quantization of the
R-matrix bracket. It possesses a particular property: it is a commutative algebra in
the category Uq(sl(2))-Mod in the following sense.

The category Uq(sl(2))-Mod is balanced, cf. [CP], page 154. This yields the fact
that for any two finite dimensional objects, U1, U2, of this category, there exists an
involutive Uq(sl(2))-morphism S̃ : U1 ⊗ U2 → U2 ⊗ U1 which is a deformation of
the flip. For example, if U1 = U2 = V , then S̃ = id (resp.S̃ = −id) restricted
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to V0 ⊕ V2 (resp.V1). Decomposing the algebra Ach,q into a direct sum of finite

dimensional Uq(sl(2))-modules, we can define the operator S̃ : (Ach,q)
⊗2 → (Ach,q)

⊗2.

Then the product operator µ in this algebra satisfies the relation µS̃ = µ.

This property is established in fact in [DS] where a formal deformational
quantization of the R-matrix bracket is represented. It only remains to show that
our quantization is equivalent to that constructed in [DS] (the details are left to the
reader).

Let us remark that although the algebra Ach,q belongs to the category Uq(sl(2))-
Mod for any h, the case h = 0 is an exceptional point from the representation theory
point of view, as in the classical case. It is well known that the representation theory
of the algebra U(g)h is different for the case h = 0 and h �= 0. In the next sections,
we shall disregard the case h = 0.

3 q-Lie bracket and braided modules

We will recall first of all the construction of braided (or q-)Lie bracket introduced
in [DG1] for the sl(2)-case and in [DG2] for other simple Lie algebras.

Attempts to find a proper definition of Lie algebra-like objects connected to the
quantum groups Uq(g) or, more generally, to non-involutive solutions to the QYBE
are known since the creation of quantum group theory. We shall disregard here all
these approaches. We only want to remark that one usually looks for such a type
of object as a subset in Uq(g) itself. On the contrary, we do not need any quantum
group. We only use it to define the objects and morphisms of the category, but it is
possible, to define them in another way without using Uq(g).

Roughly speaking, we define a q-Lie bracket as a Uq(g)-morphism V ⊗2 → V, V =

g deforming the usual Lie bracket. As a first step we equip the Lie agebra g with
a structure of a Uq(g)-module, which is a deformation of g-module structure with
respect to the adjoint action. Then the q-Lie bracket is defined in a unique way (up
to a constant) if g �= sl(n), n > 2. (For the sl(n)-case, see [DG2].)

In the sl(2)-case, the q-Lie bracket is defined in the following way. We set [ , ] = α

on I and [ , ] = 0 on V2. Thus, the bracket [ , ] is well defined on the whole V ⊗2

and it is a Uq(sl(2))-morphism. It is evident that for q = 1 we get the ordinary sl(2)

bracket, up to a factor.

In [DG1] a multiplication table for this bracket has been calculated in the base
{u, v, w}. Let us reproduce the result

[u, u] = 0, [u, v] = −q2Mu, [u,w] = (q + q−1)−1Mv,

[v, u] =Mu, [v, v] = (1− q2)Mv, [v, w] = −q2Mw,
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110 J. DONIN, D. GUREVICH & V. RUBTSOV

[w, u] = −(q + q−1)−1Mv, [w, v] =Mw, [w,w] = 0,

where M = 2h(1 + q4)−1.

The space V equipped with this bracket will be called a braided (or q-) Lie algebra
and is denoted by sl(2)M . The classical Lie algebra sl(2) corresponds to q = 1 and
M = 2.
A natural question arises: what is a reasonable definition of an enveloping algebra

for it? Or, in other words, what is a suitable choice of a factor τ if we define the
enveloping algebra of sl(2)M as a quotient algebra,

T (V )/{q2uv − vu+ τu, (q3 + q)(uw − wu) + (1− q2)v2 − τv, −q2vw + wv − τw}.

Definition 3.1 — We say that this quotient is enveloping algebra of the braided
Lie algebra given by the above multiplication table if the left adjoint operator,
ρ(x)z = [x, z], defines a representation of this quotient algebra, i.e., the following
relations are satisfied:

q2ρ(u)ρ(v)− ρ(v)ρ(u) = −τρ(u), (q3 + q)(ρ(u)ρ(w) − ρ(w)ρ(u))+

(1− q2)ρ(v)2 = τρ(v), −q2ρ(v)ρ(w) + ρ(w)ρ(v) = τρ(w)

The envelopping algebra of the braided Lie algebra sl(2)M will be denoted by
U(sl(2)M ).

It is easy to find this value of the parameter: τ =M(1− q2 + q4). Let us remark
that, in the classical case, q = 1, τ =M .
Let us note that the algebra U(sl(2)M ) coincides in fact with Ah,q when the

parameter h is replaced by τ/2.

Definition 3.2 — We say that a map ρ : V → End(U) where U is a Uq(sl(2))-
module is an almost representation of the q-Lie algebra sl(2)M if it is a Uq(sl(2))-
morphism and there exists a factor ν �= 0 such that

q2ρ(u)ρ(v)− ρ(v)ρ(u) = ν(−ρ(u)), (q3 + q)(ρ(u)ρ(w) − ρ(w)ρ(u))+

(1− q2)ρ(v)2 = νρ(v),−q2ρ(v)ρ(w) + ρ(w)ρ(v) = νρ(w)

An almost representation will be called a representation if ν = τ .

Thus, by the above construction, we obtain at least one representation of the
braided Lie algebra sl(2)M , namely, the adjoint one. Let us represent the above
relations from Definition 3.1 in the following form

q2[u, [v, z]]− [v, [u, z]] = −τ [u, z], (q3 + q)([u, [w, z]]− [w, [u, z]]+

(1− q2)[v, [v, z]] = τ [v, z], −q2[v, [w, z]] + [w, [v, z]] = τ [w, z].
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This is another q-analogue of the Jacobi identity which is valid for the braided
Lie algebra sl(2)M . However, unlike the above form of Jacobi identity related to
a deformation theory the latter one is connected to a representation theory of
the braided Lie algebra sl(2)M . A similar form of Jacobi identity for “braided
counterparts” of other simple Lie algebras is discussed in [G2].

Now we will describe a method to construct the other representations of sl(2)M .
In the classical case, if we have a representation of a Lie algebra then by means
of Leibniz rule we can construct a series of other ones (namely, whose spins are
multiples of the spin of the initial module). In the q-case there exists a “truncated
version” of the Leibniz rule, which is discussed in [G2]. Here we want to discuss
another way of constructing all spin representations of the braided Lie algebra
sl(2)M .

This way is based on the following observation: if we have an almost represen-
tation ρ of the braided Lie algebra sl(2)M with the factor ν, then by rescaling,
i.e., passing to the map τν−1ρ, we get a representation of the q-Lie algebra under
question. Thus, it suffices for us to construct almost representations of all spins.

Let us fix a spin k-irreducible Uq(sl(2))-module, U = Uk, and consider the
space End(U) of endomorphisms of U as an Uq(sl(2))-module. This means that
if ρ : Uq(sl(2))→ End(U) is a representation of the quantum group Uq(sl(2)), then
ρEnd : Uq(sl(2))→ End(End(U)) is defined as follows:

ρEnd(a)M = ρ(a1) ◦M ◦ ρ(γ(a2)), a ∈ Uq(sl(2)),M ∈ End(U),

where ◦ denotes the matrix product, γ is the antipode in Uq(sl(2)) and a1 ⊗ a2 is
the Sweedler’s notation for ∆(a).

Let us remark that this structure of Uq(sl(2))-module on End(V ) is compatible
with the matrix product, i.e.,

ρEnd(a)(M1 ◦M2) = ρEnd(a1)M1 ◦ ρEnd(a2)M2.

Let us give the explicit form of the representation ρEnd:

ρEnd(X)M = ρ(X) ◦M − ρ(q−H) ◦M ◦ ρ(qH) ◦ ρ(X),

ρEnd(H)M = ρ(H) ◦M −M ◦ ρ(H), ρEnd(Y )M = (ρ(Y ) ◦M −M ◦ ρ(Y )) ◦ ρ(q−H).

Let us decompose the Uq(sl(2))-module End(U) into a direct sum of irreducible
Uq(sl(2))-modules. It is evident that, for any spin k in this decomposition, there is
a unique module isomorphic to V .

Let us define in a natural way a Uq(sl(2))-morphism ρ : V → End(U) sending V

to the mentioned component of End(U). This morphism is defined up to a factor.
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Proposition 3.3 — The map ρ is an almost representation (for generic q).

Proof. By construction, ρ is a Uq(sl(2))-morphism. It is evident that the elements

q2ρ(u)ρ(v) − ρ(v)ρ(u), (q3 + q)(ρ(u)ρ(w)− ρ(w)ρ(u)) + (1 − q2)ρ(v)2,

−q2ρ(v)ρ(w) + ρ(w)ρ(v) ∈ End(U)

generate a Uq(sl(2))-module isomorphic to V and therefore that they coincide
respectively with −ρ(u), ρ(v), ρ(w), up to a factor, since the component of End(V )

isomorphic to V is unique. This factor is non-trivial for generic q since it is so for
q = 1. This completes the proof.
Let us consider two examples. The map

ρ(u) =

(
0 1

0 0

)
, ρ(v) =

(
q−1 0

0 −q

)
, ρ(w) =

(
0 0

q−1 0

)

is a spin 1/2 almost representation of sl(2)M . It becomes a representation if we
multiply it by the factor M(1 − q2 + q4)(q3 + q−1)−1. A spin 1-representation is
given by the following matrices

(q + q−1)−1M


0 q2 0

0 0 1

0 0 0

 , M


1 0 0

0 1− q2 0

0 0 −q2

 , M


0 0 0

1 0 0

0 1 0

 .

It is interesting to compare the spin 1/2-representation of the quantum hyper-
boloid and that of the quantum group Uq(sl(2)). Both algebras are represented into
the same space, but the former algebra is represented by the above matrices and
the latter one by the same matrices as the Lie algebra sl(2).

4 Braided Casimir

Now, once we have constructed the representations of the algebra Uq(sl(2)), we can
assign to any element a ∈ U(sl(2)M ) its image with respect to a given representation.
We are interested in the distinguished element Cq. We call this element braided
Casimir.
It differs from the so-called quantum Casimir which belongs to the quantum group

Uq(sl(2)). In some sense the braided Casimir looks rather like a super-Casimir.

In this section we will generalize to the braided case the well-known property
of the ordinary Casimir element showing that its image is a scalar operator in any
irreducible sl(2)-module, and computing the corresponding values of the braided
Casimir.
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Proposition 4.1 — Let ρ = ρk : Ah,q → End(Uk) be the spin k representation of the
algebra Ah,q in module Uk.

Then the image ρ(Cq) of the braided Casimir is a scalar, nontrivial operator (let
us recall that q is generic).

Proof. Since ρ is a Uq(sl(2))-morphism and Cq generates the trivial Uq(sl(2))-
module,

ρ(ρ(a)Cq)) = ρEnd(a)ρ(Cq) = 0, a ∈ Uq(sl(2)),

where ρ : Uq(sl(2))→ End(Uk) is a representation of the quantum group Uq(sl(2)).
For generic q, the elements ρEnd(a), a ∈ Uq(sl(2)), generate the algebra End(Uk).
Using the above explicit form of the representation ρEnd it is easy to see that
ρ(Cq) commutes with all elements of End(Uk). This yields the conclusion of the
proposition.
It is well-known that dimUk = l + 1, where l = 2k. Let us introduce some

notations.
We denote by diag(a1, a2, ..., al+1) the diagonal matrices, by diag+(a1, a2, ..., al)

the matrices with main overdiagonal (a1, a2, ..., al) and by diag−(a1, a2, ..., al) the
matrices with main subdiagonal (a1, a2, ..., al).
Let us fix the base in the Uq(sl(2))-module Uk such that the corresponding

representation, ρ = ρk : Uq(sl(2))→ End(Uk), is of the form

ρ(X) = diag+(1, 1, ..., 1), ρ(H) = diag(l, l − 2, ...,−l),

ρ(Y ) = diag−(y1, y2, ..., yl),

where yi can be found by solving the following system,

y1 = bl, y2 − y1 = bl−2, ..., yl − yl−1 = b−l+2, −yl = b−l, bi = (q
i − q−i)(q − q−1)−1.

It is easy to show that the matrix U = diag+(q
2(l−1), q2(l−2), ..., 1) satisfies the

following conditions: ρEnd(X)U = 0 and ρEnd(H)U = 2U . Let us consider two
matrices V and W such that −V = ρEnd(Y )U, (q + q−1)W = ρEnd(Y )U . One can
see that V = diag(v1, v2, ..., vl+1) and W = diag−(w1, ..., wl).

Using the explicit form of the representation ρEnd given above, it is possible to
find the values of all vi and wi, but we need only those of v1 and v2. We obtain
v1 = y1q

l−2, v2 = y2q
l−2 − y1q

l.
Let us consider the map u → U, v → V, w → W . It defines an almost

representation. Therefore the relations

q2UV − V U = −θU, (q3 + q)(UW −WU) + (1− q2)V 2 = θV,

−q2WV −WV = θW
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are satisfied for some θ. Let us compute this factor.
Substituting U and V in the first relation and computing the first non-trivial

matrix element, we obtain

θ = v1 − q2v2 = y1q
l−2 − q2(y2q

l−2 − y1q
l) = y1(q

l+2 + ql−2)− y2q
l = q2l+1 + q−1.

By the same argument we obtain (q3+ q)u1w1+(1− q2)v21 = θ v1, using the second
relation.
Therefore the first matrix element of the scalar operator (q3+ q)UW +V 2+(q+

q−1)WU is equal to

(q3 + q)u1w1 + v21 = θv1 + q2v21 = y1q
l−2(θ + y1q

l) = blbl+2q
2l−2.

Thus, we see that the image of the braided Casimir under the above almost
representation is equal to blbl+2q

2l−2 Id. We obtain a representation of the braided
Lie algebra sl(2)M if we put

ρEnd(u) = τθ−1U, ρEnd(v) = τθ−1V, ρEnd(w) = τθ−1W.

This leads to the following

Proposition 4.2 — The value of the braided Casimir Cq corresponding to the braided
sl(2)M -module Uk is equal to

ck = blbl+2q
2l−2(τθ−1)2, where θ = q2l+1 + q−1, l = 2k.

By this method we have constructed a series of representations of the algebra
Ackh,q where ck is given by the formula above where τ is replaced by 2h.

5 Discussion: braided trace and braided involution

Let us remark that the non-braided algebra Ach,1 is multiplicity free, that is the
multiplicity of any sl(2)-module in Ach,1 is at most 1. In fact only the integer-
spin modules “live” in this algebra. The algebra Ach,q has a similar property. So
there exists a unique (up to a factor) way compatible with the Uq(sl(2))-action to
introduce a braided (twisted) trace in this algebra as a non-trivial operator Ach,q → k,
killing all Uq(sl(2))-modules apart from the trivial one. We will denote this operator
trch,q. It is defined up to a normalization.
Let us remark that if h = 0, this trace is an analogue of the integral over a

sphere with respect to a symplectic measure. In this sense we prefer to work with
the compact form of the Lie algebra sl(2). However, in our setting (we are dealing
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only with polynomials on braided homogeneous space), a concrete real form of a
homogeneous space under consideration has no importance.

By a method of [NM] it is easy to obtain the following

Proposition 5.1 — In the algebra Ac0,q one has

trc0,qv
m =

q2 − 1

2(q2m+2 − 1
)(1 + (−1)m)(q

√
c)−m trc0,q1.

Using a modification of the method from [NM] it is also possible to obtain a
similar formula for trch,q for all h, but it is much more complicated and we do not
reproduce it.

It is evident that the trace trckh,q regarded in the space End(Uk) is just the
famous quantum trace (cf. f.e. [CP], page 122). It would be interesting to calculate
it directly using this fact. This calculation can be useful from a hypothetical braided
(or quantum) orbit method point of view.

It is well known that in the framework of the orbit method one assigns to some
orbits in g∗ for a Lie algebra g certain g-modules. Meanwhile, the character formula
compares the integrals of some special functions on these orbits with the traces
of their images in the corresponding modules. We do not know what may be a
reasonable analogue of the above correspondence in the braided case. As for a
braided version of the character formula, it must be much more complicated.

We complete this section with a discussion of involution operators in the algebras
under consideration. As we mentioned, the involution of the algebraAch,q constructed
in [P] is not respected by the above respresentations.

What is a reasonable way to introduce an involution into the space End(V )

where V is a (finite-dimensional) object of a twisted category? Let us assume for the
moment that the category is symmetric and there exists a pairing V ⊗2 → k which
is a morphism in the category. This means that it commutes with the twist S. Then
the spaces V ⊗2 and End(V ) can be canonically identified, and the involution ∗ is
the image of the twist S : V ⊗2 → V ⊗2 under this identification.

This yields the fact that such an involution satisfies the relations ∗µ = µ(∗⊗ ∗)S

and S(id⊗∗) = (∗⊗id)S. Then, taking into account the fact that the “S-Lie bracket”
[ , ] is defined in the space End(V ) by µ(id− S), we obtain the relation

[ , ](∗ ⊗ ∗) = − ∗ [ , ].(1)

More precisely, we consider the space V over the field k = R and assume the twist
S to be real. Then we extend it to the space V ⊗2C where VC = V ⊗ C by linearity.
Under an involution (conjugation) we mean an involutive operator ∗ : VC → VC
such that (λz)∗ = λz∗, λ ∈ C, z ∈ VC .
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Definition 5.2 — We say that the involution ∗ is compatible with the q-Lie bracket
[ , ] if relation (1) is satisfied.

The following proposition is a straightforward calculation:

Proposition 5.3 — The odd elements with respect to this involution (i.e. z∗ = −z)
form a subalgebra, that is the element [a, b] is odd if a and b are.

Remark. One often considers involutions which differ from ours by a sign. For such
involutions we have to change the sign in relation (1) and consider the even elements
instead of odd ones in Proposition 5.3.

Now we will classify all involutions ∗ : VC → VC compatible with the q-Lie
bracket.

Proposition 5.4 — For a real q �= 1 there exist only two involutions in the space
VC compatible with the q-Lie bracket, namely, a∗ = −a for any a ∈ VC , and
u∗ = u, v∗ = −v, w∗ = w.

Proof. Choose a decomposition of u∗, v∗, w∗ over the base

u∗ = α1u+ β1v + γ1w

v∗ = α2u+ β2v + γ2w

w∗ = α3u+ β3v + γ3w,

where αi, βi, γi, i = 1, 2, 3 are complex coefficients. We want to find them in
accordance with the compatibility condition (1).

It is easy to see that the relation

[u∗, u∗] = −[u, u]∗ = 0

implies β1 = 0. Similarly, from

[w∗, w∗] = −[w, w]∗ = 0

we obtain β3 = 0.

From the relation

[v∗, v∗] = −[v, v]∗ = −(1− q2)Mv∗

we deduce that β22 + β2 = 0, i.e. β2 = 0 or β2 = −1.

The relation
[w∗, u∗] = −[w, u]∗ = (q + q−1)−1v∗

implies α2 = γ2 = 0. If β2 = 0, then v∗ = 0, hence β2 = −1.
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Finally, from

[u∗, v∗] = −[u, v]∗ = q2Mu∗ and [w∗, v∗] = −[w, v]∗ = −Mw∗

we obtain γ1 = α3 = 0.

Thus, we have v∗ = −v, u∗ = α1u, w
∗ = γ3w. It is easy to see that only two

cases are possible α1 = γ3 = −1 and α1 = γ3 = 1. This yields the conclusion.

Although these conjugations are rather trivial, they are, together with the above
traces, the ingredients of the twisted quantum mechanics in the sense of the following
definition.

Definition 5.5 — We say that an associative algebra is an object of twisted quantum
mechanics if it belongs to a twisted category, is represented in the space End(V )

equipped with a twisted Lie bracket, a trace and a conjugation as above and if the
representation map is a morphism in this category.

We cannot give a complete axiomatic system for twisted quantum mechanics.
However, we want to stress that the quantum hyperboloid provides us with a
completely new type of representation theory (and hence of quantum mechanics).
It would be interesting to generalize this approach to infinite dimensional algebras
and to use the above ingredients of twisted quantum mechanics in calculations of
partition functions.

References

[Be] R. Bezrukavnikov, Koszul property of algebra of functions on the minimal
orbit, alg-geom/9502021.

[Bo] R. Bögvad, Some homogeneous coordinate rings that are Koszul algebras,
alg-geom/9501011.

[BG] A. Braverman, D. Gaitsgory, Poincaré-Birkhoff-Witt theorem for quadratic
algebras of Koszul type, hep-th/9411113.

[CP] V. Chari, A. Pressley, A guide to Quantum Groups, Cambrige University
Press, 1994.

[D] V. Drinfeld, On constant, quasiclassical solution of the Yang-Baxter equa-
tion, Soviet Math. Dokl. 28 (1983), pp. 667–671.

[DG1] J. Donin, D. Gurevich, Braiding of the Lie algebra sl(2), Amer. Math. Soc.
Transl. (2) 167 (1995), pp. 23–36.

[DG2] , Quantum orbits of R-matrix type, Lett. Math. Phys. 35
(1995), pp. 263–276.

Société Mathématique de France



118 J. DONIN, D. GUREVICH & V. RUBTSOV

[DS] J. Donin, S. Shnider, Quantum symmetric spaces, J. Pure and App. Algebra
100 (1995), pp. 103–115.

[G1] D. Gurevich, Algebraic aspects of the quantum Yang-Baxter equation,
Leningrad Math. J. 2 (1991), pp. 801–828.

[G2] , Braided modules and reflection equations, in “Quantum
Groups and Quantum Spaces”, Banach Center Publications, v. 40, Institute
of Mathematics, Polish Academy of Sciences, Warsaw, 1997.

[GRZ] D. Gurevich, V. Rubtsov, N. Zobin,Quantization of Poisson pairs: R-matrix
approach, JGP 9 (1992), pp. 25–44.

[GP] D. Gurevich, D. Panyushev, On Poisson pairs associated to modified R-
matrices, Duke Math. J. 73 (1994), pp. 249–255.

[NM] M. Noumi, K. Mimachi, Quantum 2-Spheres and Big q-Jacobi Polynomials,
Communications in Mathematical Physics 128 (1990), pp. 521–531.

[P] P. Podles, Quantum sphere, Lett. Math. Phys. 14 (1987), pp. 193–202.

Séminaires et Congrès 2


