
Division Algebras on �2 of Odd Index, Ramified
Along a Smooth Elliptic Curve Are Cyclic

Michel Van den BERGH∗

Abstract
The simplest non-trivial division algebras that can be constructed over a

rational function field in two variables are those that ramify along a divisor of
degree three. In this note we give a precise structure theorem for such division
algebras. It follows in particular that they are cyclic if the ramification locus
is singular or if the index is odd.

Résumé
Les corps gauches non-triviaux les plus simples que l’on peut construire sur

un corps de fonctions rationnelles à deux variables sont ceux qui se ramifient
lelong d’un diviseur de degré trois. Dans cette note, nous donnons un théorème
de structure précis pour de tels corps gauches. En particulier, il en résulte qu’ils
sont cycliques si le lieu de ramification est singulier ou si l’indice est impair.

1 Introduction

Let R be a discrete valuation ring with quotient field K and residue field l. We
assume that both l and K are of characteristic zero. Then it is classical [5] that
there is an exact sequence

0→ Br(R)→ Br(K)
ram
−−→ H1(l,�/�)→ 0

Here H1(l,�/�) is the set of couples (l′, σ) where l′ is a cyclic extension of l and σ
is a generator of Gal(l′/l). The ramification map, denoted by ram, is as described
in [5]. Assume [D] ∈ Br(K). Then there is an unramified finite Galois extension
L/K splitting D. Let S be the integral closure of R in L. S is a semi-local Dedekind
domain. Let Div(S) be the group of divisors of S. Associating to f ∈ L∗ its divisor
S yields a homomorphism

L∗ → Div(S)(1.1)
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Clearly Div(S) = �G/G� where G = Gal(L/K) and G� is the stabilizer of a prime
divisor � of S. Alternatively G� = Gal

(
(S/�)/l

)
. Taking Galois cohomology of (1.1)

yields a map

H2(G,L∗)→ H2(G,Div(S)) ∼= H2(G�,�) ∼= H1(G�,�/�)(1.2)

where the first isomorphism is Shapiro’s lemma. The composition of the maps in (1.2)
is the ramification map. Now let k be an algebraically closed field of characteristic
zero and let Y be a simply connected surface over k. According to [2] there is a long
exact sequence

0→ Br(Y )→ Br(K(Y ))
⊕ ramC−−−−−→

⊕

C⊂Y
irr. curve

H1(K(C),�/�)
⊕
x∈C

rC,x

−−−−−−→
⊕

x∈Y

µ−1
∑

−→ µ−1 → 0

(1.3)

Here µ−1 =
⋃
nHom(µn,�/�) where µn is the group of n’th roots of unity. Hence,

non-canonically, µ−1 ∼= �/�. As aboveH1(K(C),�/�)→ µ−1 is given by the cyclic
extensions of K(C). Given such a cyclic extension one may measure its ramification
at a point y of the normalization C̄ of C in terms of an element of µ−1. rC,x is
defined as the sum of the ramifications of the points y ∈ C̄ lying above x. For
D ∈ Br(K(Y )) we write

R =
⋃
C

{C ⊂ Y | ramC(D) �= 0}

and we call R the ramification locus of D. By construction R is a reduced divisor
in Y . In the rest of this note we specialize to Y = �2k. In that case Br(Y ) = 0 and
so (1.3) allows us to compute Br(K(Y )) = Br(k(u, v)). The following result easily
follows

Lemma 1.1 — Let D,R, Y be as above and assume that D is non-trivial. Then

1. degR ≥ 3.

2. If degR = 3 then there are the following possibilities

(a) R is a union of three lines, not passing through one point.

(b) R is a union of a line and a conic, not tangent to one another.

(c) R is a nodal elliptic curve.

(d) R is a smooth elliptic curve.

A long standing question, due to Albert, is whether every division algebra of
prime index is cyclic. Given the seemingly rather tractable nature of division algebras
ramified along a cubic divisor, some people have suggested that these might be used
to answer Albert’s question negatively. See for example [11]. In this note we show
that this is not so. That is, we show
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Division Algebras on �2 Ramified Along a Smooth Elliptic Curve 45

Proposition 1.2 — Let D be a non-trivial central division algebra over K(�2k) and
let R be its ramification divisor. Assume that degR = 3 and that one of the following
hypotheses holds.

1. R is singular.

2. R is smooth and the period of D in the Brauer group is odd.

Then D is cyclic and has period equal to index.

Part (1) of this proposition has already been proved by T. Ford using somewhat
different methods [9]. Furthermore in [15] it is shown that if R is smooth then D
is similar to a tensor product of three cyclic algebras. Finally, with R still smooth,
it has been shown in [11] (under considerably weaker hypotheses on k) that D is
cyclic if its period is 5 or 7. Proposition 1.2 is a corollary of the following theorem

Theorem 1.3 — Let D be a central division algebra over K(�2k) and let R be its
ramification locus. Assume that degR = 3. Then the following holds

1. If R is singular then as k-algebras

D ∼= k(x, y; yx = ωxy)(1.4)

where ω is a root of unity.

2. If R is smooth then as k-algebras

D ∼= K(S)(x, τ)H(1.5)

where

– S is an unramified cyclic covering of R (hence in particular S is an elliptic
curve).

– τ is a generator for Gal(S/R).

– H = {1, σ} with σ(u) = −u for u ∈ S (for a choice of group law on S)
and σ(x) = x−1.

That Proposition 1.2 follows from Theorem 1.3 is clear in the singular case, and
in the smooth case it follows from [14]. I wish to thank Burt Fein, Zinovy Reichstein
for some valuable comments and for pointing out an error in an earlier version
of this note. I also wish to thank Colliot-Thélène for some private communication
concerning the case where k is not algebraically closed. This is reproduced in the
appendix.

2 Proof of Theorem 1.3

Let us first recall the following result
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Proposition 2.1 — Let l be a field of characteristic zero. Then there is an exact
sequence

0→ Br(l)→ Br(K(�1l ))
⊕ ramx−−−−→

⊕
x∈�1l

H1(l(x),�/�)
⊕ corl(x)/l
−−−−−−→ H1(l,�/�)→ 0

(2.1)

Here x ∈ �1l runs through the closed points of �1l .

Proof. This is a version of the Faddeev-Auslander-Brumer sequence where one keeps
track of the point at infinity. It is also very closely related to various exact sequences
occurring in [7]. Let us quickly recall the proof. Let l̄ be the algebraic closure of l
and let Prin(�1

l̄
), Div(�1

l̄
) respectively stand for the principal divisors and the Weil

divisors on �1
l̄
. We have exact sequences of G = Gal(l̄/l) modules

0→ l̄∗ → K(�1l̄ )
∗ → Prin(�1l̄ )→ 0

0→ Prin(�1l̄ )→ Div(�1l̄ )
deg
−−→ �→ 0

Both these sequences are (non-canonically) split. This is clear for the second one. For
the first one we send f ∈ K(�1

l̄
)∗ to the first non-zero coefficient of the Taylor series

expansion of f around 0 (for a G invariant uniformizing element). Hence applying
H2(G,−) to these exact sequences, and afterwards combining them, yields a long
exact sequence

0→ Br(l)→ Br(K(�1l ))→ H2(G,Div(�1l ))
deg
−−→ H2(G,�)→ 0

taking into account thatH2(G, l̄∗) = Br(l) and by Tsen’s theoremH2(G,K(�1
l̄
)∗) =

Br(K(�1l )). Now Div(�1
l̄
) =

⊕
x∈�1

l
�G/Gx where Gx = Gal(l̄/l(x)). So by

Shapiro’s lemma H2(G,Div(�1
l̄
)) =

⊕
xH

2(Gx,�). It is now clear that the resulting
map

⊕
x

H2(Gx,�)
deg
−−→ H2(G,�)

is obtained by applying H2(G,−) to the “sum map” �G/Gx → � and then
invoking Shapiro’s lemma. It follows from [6, Prop. III.6.2] that this is precisely
the corestriction. To obtain the exact form of (2.1) we use H2(G,�) = H1(l,�/�),
H2(Gx,�) = H1(l(x),�/�). That the map Br(K(�1l )) →

⊕
H1(l(x),�/�) is⊕

ramx follows by looking at the commutative diagram

0 −−−−→ l∗ −−−−→ K(�1
l̄
)∗ −−−−→ Prin(�1

l̄
) −−−−→ 0�

�
�

0 −−−−→ �∗
�1
l̄
,x
−−−−→ K(�1

l̄
)∗ −−−−→ Div(��1

l̄
,x) −−−−→ 0
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Theorem 2.2 — Assume that l is a field of characteristic zero with trivial Brauer
group, containing a primitive nth root of unity. Let D be a central division algebra
of period n over K(�1l ).

1. If D is ramified in at most two points of degree one then as l-algebras

D ∼= L(x, τ)(2.2)

where L/l is cyclic of dimension n and τ is a generator of Gal(L/l).

2. If D is ramified in one point u of degree two then as l-algebras

D ∼= L(x, τ)H(2.3)

where L/l is a dihedral extension of dimension 2n containing l(u), τ is a
generator of Gal(L/l(u)), H = Gal(l(u)/l) = {1, σ} (with action lifted in a
arbitrary way to L) and σ(x) = x−1.

Proof. The proof consists in showing that the division algebras on the right side of
(2.2) and (2.3) have the same ramification as D.

1. This part can be deduced from [8, Prop. 2.1]. For completeness we give a
proof. We can choose an affine coordinate y on �1l such that D is ramified on
y = 0,∞. Let (L, τ) = ram0(D) and put E = L(x, τ). Then Z(E) = k(xn)

and if we put y = xn then E is ramified in y = 0,∞ with ram0(E) = (L, τ).
Hence D,E have the same ramification data and thus D ∼= E.

2. Assume k(u) = k(
√
t). We can now choose an affine coordinate y on �1l

such that D is ramified in the prime (y2 − t). Put (L, τ) = ramu(D). We
claim that L/l is dihedral. By Kummer theory L = l(u)(n

√
a). Since u is the

only place where D ramifies, the corestriction of L must be trivial by (2.1).
According to [15, lemma 0.1] this corestriction is given by l(n

√
a σa) where

Gal(l(u)/l) = {1, σ}. So a σa = qn, q ∈ l. This allows us to lift the action of σ
to L by putting σ(n

√
a) = q/n

√
a. Hence L/l is dihedral.

Put E1 = L(x, τ), E = EH1 . Then Z(E1) = l(u)(xn) and since H acts non-

trivially on l(u)(xn), Z(E) = Z(E1)
H = k

(√
t(xn−1)
xn+1

)
. Put y =

√
t(xn−1)
xn+1 .

Then using the definition of the ramification map, one easily verifies that E is
only ramified in u = (y2 − t) and furthermore ramu(E) = (L, τ). Hence once
again D and E have the same ramification data and thus D ∼= E.

Proof of Theorem 1.3. As an example we will discuss the cases where R is a nodal
or a smooth elliptic curve. The other two cases in lemma 1.1 are similar. Throughout
n is the period of D in the Brauer group.

R a nodal elliptic curve. Let y ∈ R be the singular point and let B ⊂ �2k be
a line not passing through y. Our aim is to project from �2k to B with center y.
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48 Michel Van den BERGH

To do this properly we first blow up y to obtain a rational surface Y . Let E be the
exceptional curve and let R̃ be the strict transform of R in Y . Clearly D defines a
Brauer class on K(Y ) = K(�2k) ramified on R̃ and possibly on E.

Let l be the function field of B. Then K(Y ) = K(�1l ). So D gives a Brauer class
on �1l ramified in at most two points of degree one (corresponding to the projections
R̃ → B, E → B). According to Theorem 2.2 D = L(x, τ) and ramR̃(D) = (L, τ).
Hence to finish the proof in this case we have to determine L.

Now R̃ ∼= E = �1k and |R̃ ∩E| = 2. Hence L is the function field of a covering of
degree n of �1k, ramified in two points. From the fact that the fundamental group of
�1k −{two points} is � we deduce that L is unique. So we can assume that the field
extension L/K(�1k) is of the form �(y)/�(yn) for some y ∈ L, and with τ acting as
y �→ ω−1y. This yields that D is of the form (1.4).

R a smooth elliptic curve. In this case we let y be an arbitrary point of E. We
use the notations B, R̃, E, l in the same way as above. Since |R̃∩E| = 1 and E ∼= �1l
there can be no extension of K(E), ramified in only one point. So D is unramified
on E. Hence if we view D as an element of Br(�1l ) then it is only ramified on the
point of order 2 corresponding to the covering R = R̃→ B. Thus as in Theorem 2.2
D = L(x, τ)H with (L, τ) = ramR̃(D) = ramR(D), Now it follows from (1.3) that L
is the function field of an unramified covering S of degree n of R. The map R→ B

is a quotient by an involution of R. We can choose the origin for the group law on
R in such a way that this involution is given by u �→ −u. We can lift this involution
to one of the same form on S. This shows that L and hence D have the required
form.

A Some remarks in the case that k is not algebraically
closed

This appendix contains some personal communication by Colliot-Thélène concerning
the case where k is not algebraically closed. Any errors or inaccuracies are mine. The
main result is Theorem A.1 which provides a very partial substitute to (1.3). The
insertion of the hypotheses that k is of characteristic zero is due to me. It allowed
me to smoothen the proof, but it is very likely unnecessary.

From the previous sections it appears that the most interesting elements of
Br(K(�2k)) are those that are ramified along a smooth curve, so we will be concerned
with those. Let R be a smooth curve in �2k and let U be its complement. Then we
are interested in Br(U). The ramification of an element of Br(U) can be viewed as
an element of H1et(R,�/�) and we want to understand when, conversely, an element
of H1et(R,�/�) can be lifted to one of Br(U). To state the main result we need a few

Séminaires et Congrès 2



Division Algebras on �2 Ramified Along a Smooth Elliptic Curve 49

notions from the theory of etale cohomology. We state these in the least generality
possible. Let C be a smooth projective curve and let D be an effective divisor on
C. Then associated to D there is a map ψD which is the composition

H1et(C,�/n)→ H1(D,�/n)→ H1(k,�/n)

The first arrow is the restriction map (inverse image), and the last arrow is the trace
map (direct image) [1]. ψD is additive in D [1, XVII.6.3.27]. This yields a pairing

〈 , 〉 : H1(C,�/n)×Div(C)/n→ H1(k,�/n) : (z,D)→ ψD(z)(A.1)

If f : C → C′ is a finite morphism then it follows from [1, XVII.6.3.19] that the
pairing (A.1) satisfies the compatibilities

〈f∗u,E〉 = 〈u, f
∗E〉(A.2)

〈v, f∗F 〉 = 〈f
∗v, F 〉(A.3)

Assume that D = (f) is a principal divisor. Then f defines a map f : C → �1

and D is the inverse image under f of E = (0) − (∞). Applying (A.2) with this
E we find 〈u,D〉 = 〈f∗u, (0)〉 − 〈f∗u, (∞)〉. Now we claim that 〈f∗u, (p)〉 for a
rational point p ∈ �1 is independent of p. This shows that ψD only depends on the
divisor class of D. The claim amounts to proving that if f, g : Spec k → �1 are two
embeddings then f∗ = g∗. It is clear that to prove this we may replace �1 by �1.
Let h : �1 → Spec k be the projection. Then hf = hg and hence f∗h∗ = g∗h∗.
However h∗ is an isomorphism (“homotopy invariance”). Therefore f∗ = g∗. Hence
(A.1) factors to yield a pairing

H1et(C,�/n) × Pic(C)/n→ H1(k,�/n)(A.4)

Below, if A is an abelian group then we denote by nA the subgroup consisting of
elements annihilated by n. One now has the following result :

Theorem A.1 — Assume that k has characteristic zero. Let L be a line in �2k and
put D = R ∩ L Then there is an exact sequence

0→ n Br(k)→ n Br(U) −→ H1et(R,�/n)
ψD−−→ H1et(k,�/n)(A.5)

Proof. We sketch the proof, leaving some details to the reader. We put Y = �2k. All
cohomology will be etale cohomology. Consider the commutative diagram given by
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localization sequences

0

��

0

��

0

��

Pic(Y )/n //

��

Pic(U)/n //

��

H2R(Y,�m)/n

��

H2(Y, µn) //

��

H2(U, µn) //

��

H3R(Y, µn)
//

��

H3(Y, µn) // H3(U, µn)

0 //
nBr(Y ) //

��

nBr(U) //

��

nH
3
R(Y,�m)

��

0 0 0

(A.6)

(this diagram comes from considering the homology of a certain 3 × 3-square of
complexes of injectives, and hence the squares involving two connecting maps are
actually only commutative up to sign). The columns and the middle row are clearly
exact. Since Y is smooth, the map Br(Y )→ Br(U) is injective and hence the lower
row in (A.6) is exact since it is obtained from applying Hom(�/n,−) to the exact
sequence

0→ Br(Y )→ Br(U)→ H3R(Y,�m)

Finally, again because Y is smooth we have that H2R(Y,�m) = 0 [10, (6.5)].
Combining all this, and taking into account that Br(Y ) = Br(k) we obtain the
following long exact sequence

0→ n Br(k)→ n Br(U)→ H3R(Y, µn)→ H3(Y, µn)→ H3(U, µn)(A.7)

By purity we have H3R(Y, µn) = H1(R,�/n) and the Leray spectral sequence
Epq2 = Hp(k̄, Hq(Yk̄, µn))⇒ Hn(Y, µn) yields an exact sequence

0→ H3(k, µn)→ H3(Y, µn)→ H1(k,H2(Yk̄, µn))

The part H3(k, µn) survives in H3(U, µn) since it even survives in the function field
of U (which is rational). Using the fact that H2(Yk̄, µ) = �/n we now easily obtain
an exact sequence like (A.5), where the last map is given by the composition

H1(R,�/n)
purity
−−−−→ H3R(Y, µn)→ H3(Y, µn)→ H1(k,H2(Yk̄, µn)) = H1(k,�/n)

(A.8)
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and we have to show that this is equal to ψD. We now assume that L is not tangent to
R. The fact that we can do this follows from the hypotheses that k is of characteristic
zero and hence is “big enough”. It follows that D is smooth over k.

Using the compatibility with restriction of the isomorphism given by purity and
the Leray spectral sequence yields a commutative diagram where the vertical arrows
are restriction maps.

H1(R,�/n) −−−−→ H1(k,H2(Yk̄, µn)) = H1(k,�/n)�
�

H1(D,�/n) −−−−→ H1(k,H2(Lk̄, µn)) = H1(k,�/n)

(A.9)

We claim that the restriction map �/n = H2(Yk̄, µn) → H2(Lk̄, µn) = �/n is
an isomorphism. This can be seen for example by taking a point p outside L and
putting V = Y − p. Then one has V = L×�1. By the localization sequence there is
an isomorphism H2(Yk̄, µn) = H2(Vk̄, µn). By the Kunneth theorem the projection
V → L yields an isomorphism H2(Lk̄, µn) → H2(Vk̄, µn). Since the composition of
the inclusion L→ V and the projection V → L is an isomorphism we are through.
Hence we now have to show that the bottom arrow of (A.9), is given by the trace
map. This arrow is the composition of the two upper horizontal maps and the
rightmost vertical map of the diagram

H1(D,�/n) −−−−→ H3D(L, µn) −−−−→ H3(L, µn)�
�

�
H1(k,H0(Dk̄,�/n)) −−−−→ H1(k,H2Dk̄(Lk̄, µn)) −−−−→ H1(k,H2(Lk̄, µn))

Here the vertical maps are obtained from the Leray spectral sequence. Hence we
have to show that H1(k,−) applied to the composition

H0(Dk̄,�/n)
purity
−−−−→ H2Dk̄(Lk̄, µn)→ H2(Lk̄, µn) = �/n(A.10)

is given by the trace map. Dk̄ is a finite number of distinct points, equipped with a
Galois action. Say Dk̄ = {p1, . . . , pl}. Then (A.10) becomes the composition

⊕
i

H0(pi,�/n)
purity
−−−−→

⊕
i

H2pi(Lk̄, µn)→ H2(Lk̄, µn)

The localization sequence shows that

H2pi(Lk̄, µn)→ H2(Lk̄, µn)

is an isomorphism. Hence (A.10) becomes as, Galois modules,
⊕
i

(�/n)pi
=
−→
⊕
i

(�/n)pi −→ �/n
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where the last map is the sum map. It is now standard that H∗(k,−) applied to the
sum map yields the trace map.

Remark A.2. Presumably the restriction that k has characteristic zero is unneces-
sary in the previous theorem. Assuming that n is prime to the characteristic should
be enough.

Corollary A.3 — We use the notations of the previous theorem. Assume that R has
degree m and that f : R′ → R is an unramified cover of degree n, representing an
element z of H1(R,�/n). Assume that the divisor class of D is in the image of
f∗ : Pic(R

′)→ Pic(R). Then ψD(z) = 0 and hence z lifts to an element of Br(U).

Proof. Assume that [D] = f∗[E] for some divisor E on R′. By construction f∗z = 0.
Hence according (A.3) we have

ψD(z) = 〈z,D〉 = 〈f
∗z, E〉 = 0

which shows what we want.

Example A.4. Assume that we have a triple (R′, τ,�′) where R′ is a smooth
projective curve of genus one, τ is a translation of order n and �′ is a line bundle
of degree 3 on R′. With the help of Corollary A.3 we will construct a division
algebra D(R′, τ,�′) with center a rational field of transcendence degree two, which
is presumably the same as the one which can be obtained taking the function field of
a three dimensional Sklyanin algebra [3, 4, 12, 13] associated to the data (R′, τ,�′).
In this way we obtain a construction using Brauer group theory (at least in char.
zero) of these division algebras (which are very interesting for ring theory). Put
R = R′/〈τ〉 and let f : R′ → R be the quotient map. Then the pair (R′, τ) defines
an element z of H1(R,�/n�). Let � be the norm of �′ and use �′ to embed R in
�2k. As before let U be the complement of R. Then by Corollary A.3 we can lift z
to an element A of Br(U). The generic fiber of A is of the form Mt(D). Then we
define D(R′, τ,�′) = D.
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