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Expanding Context and Domain: A
Cross-Curricular Activity in Mathe-
matics and Physics

Claus Michelsen, Odense

Abstract: This article is based on my 15 years of experience as
a teacher of mathematics and physics in the Danish Gymnasium
(high school), and it gives an example of an interdisciplinary
course between mathematics and physics. The course is centered
around the concept of exponential functions. The starting point
is that concepts are rooted in practice and gain their meaning
through application, and the concept of a function is regarded as
a tool for modelling real-world situations. It is the intention to
teach a course that emphasizes factors that promote transfer of
the concept and use of the various representations of the concept,
to make it more practical and meaningful for the students. It is
concluded that a coordinated cross-curricular activity between
mathematics and physics, by offering a great variety of domain
relations and context settings, has a great potential for creating a
learning environment where the students, through applicational
and modelling activities, are engaged actively in constructing and
using knowledge.

Kurzreferat: Erweiterung von Kontext und Bereich: eine
ficheriibergreifende Aktivitit in Mathematik und Physik. Dieser
Beitrag, der auf 15 Jahren Erfahrung als Mathematik- und
Physiklehrer an didnischen Gymnasien basiert, stellt ein Beispiel
eines facheriibergreifenden Kurses in Mathematik und Physik
(Radioaktivitit) vor. Im Mittelpunkt des Kurses steht der Be-
griff der Exponentialfunktion. Es wird davon ausgegangen, daf}
Begriffe ihren Ursprung in der Praxis haben und ihre Bedeu-
tung durch Anwendung gewinnen. Der Funktionsbegriff wird
als Werkzeug zur Modellierung von Situationen der realen Welt
angesehen. Zweck des Kurses ist es, Faktoren hervorzuheben,
die einen Transfer des Begriffes und die Anwendung der ver-
schiedenen Begriffsdarstellungen fordern, um den Begriff fiir
die Schiiler handhabbarer und sinnvoller zu machen. Der Autor
kommt zu dem SchluB3, daB eine koordinierte facheriibergreifende
Aktivitdt zwischen Mathematik und Physik, die eine Vielfalt von
Beziehungen zwischen verschiedenen Bereichen und von Kon-
texten bietet, ein grofes Potential zur Schaffung einer Lernumge-
bung hat, in der die Schiiler durch Anwendungs- und Modell-
bildungsaktivititen aktiv Wissen aufbauen und anwenden.

ZDM-Classification: M10, M50

*Part 1 was published in ZDM 30 (1998) No. 2.
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Cross-curricular activities. Part 2*

1. Cross-curricular activities in the Danish Gymna-
sium

In the Danish school system the elementary school in-
cludes grades 1 to 9. After 9 or 10 years of elementary
school instruction, the students can visit three types of 3
years upper secondary schools, namely Technical School,
Commercial School and Gymnasium. The percentage at-
tending the different schools changed significantly over
the past two decades with a strong increase of the number
of students opting for Gymnasium. On average more than
30% of the students go to the Gymnasium now. When
entering Gymnasium, students have to opt for a linguistic
branch or a science branch.

In the Gymnasium, structure, organisation and tradition
play a dominant role for the possibility of cross-curricular
activities. During their three years of instruction the stu-
dents work on about 15 different subjects ranging from
physics and mathematics to music, arts, and sports. Each
subject has its own syllabus. Since the 1989 reform of the
Gymnasium, several subjects, for example mathematics
and physics, are taught on different levels, and some of the
levels are optional for the students. This structure greatly
hinders the possibilities of carrying out cross-curricular
activities. But there has been some valuable pragmatic
cooperation between for example mathematics and other
subjects.

A possible goal of a cross-curricular activity between
mathematics and other subjects could be to improve stu-
dents’ conceptual knowledge by using applications to take
advantage of their potential, in a cooperation between dif-
ferent subjects and domains. By a cross-curricular activity
I here mean a course where concepts, principles, tech-
niques, or reasoning methods from different subjects are
restructured from an educational perspective with a view
to organizing an integrated course. The process of inte-
gration is preceded by an analysis of the content structure
of the subject matter within each of the participating sub-
jects with the question of elementarizing the fundamental
concepts and principles as the focal point. This process
of differentiation within each of the subjects is then fol-
lowed by an integration based on didactical principles to
present the integrated topic as something accessible to the
intended learners.

In describing the possibilities of cross-curricular activi-
ties it is convenient to distinguish between three ways of
organizing cross-curricular activities:
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a) a cross-curricular activity within one subject with a
perspective towards other subjects, where selected ele-
ments from the other subjects are adopted in the in-
struction, for example to provide the instruction in
mathematics with suitable sources for application.

b) a cross-curricular activity where coordinated instruc-
tional sequences of specific themes are arranged lo-
cally between two or more other subjects, for example
to coordinate differential calculus in mathematics and
kinematics in physics.

¢) an activity that goes beyond the subjects, for example
in a project work about the topic of pollution, where
the participating subjects become indistinguishable.

But as mentioned above, the structure of the Gymnasium
dictates the extent to which teachers can utilize cross-
curricular activities, so the first approach is carried out
regularly, the second rather sporadic, and the third only on
special occasions. Christiansen (1998) describes an exam-
ple of a cross-curricular activty within mathematics in the

Danish Gymnasium. I this article I will describe an ex-

ample of a coordinated cross-curricular activity between

mathematics and physics.

2. Interdisciplinary activities between mathematics
and physics
The fact that mathematics occurs in applied areas in many
other subjects, for example in physics, biology, economics
and commerce has made mathematics a suitable subject for
cross-curricular activities. In the Danish Gymnasium there
was a long period, i.e. from the sixties to the beginning
of the eighties, with close relations between mathematics
and physics instruction. Especially in grades 11 and 12,
coordinated cross-curricular activity between mathematics
and physics provided numerous opportunities for teaching
applied calculus. However, since the reform of 1989 these
relations have become weakened or disappeared in many
places. This is partly due to the opening of mathematics in-
struction to other applicational subjects than physics, but
also due to the above mentioned structure of the Gym-
nasium. In mathematics as well as in physics, there are
two teaching levels, so from grade 11 not all students
in a classroom follow the same courses in mathematics
and physics. This only leaves space for interdisciplinary
courses between mathematics and physics at the first year
of Gymnasium instruction. Of course another reason lies
in the fact that the number of teachers who teach both
mathematics and physics is decreasing.

Blum and Niss (1989) emphasize the importance of
maintaining the close instructional contact between math-
ematics and physics at school level:

“It may be said, somewhat paradoxically, perhaps, that the
more mathematics is being applied to areas and subjects outside
physics, the more important it is to have access to representative
cases from physics to shed light on possibilities, conditions, dif-
ficulties and pitfalls of application and modelling in fields with
smaller degrees of well-established mathematisation”. (Blum &
Niss, 1989, p. 17)

This prompts me to focus on the fact that in the teaching
of both mathematics and physics, and other subjects as
well, the modelling techniques that emphasize problem-
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solving processing and embedding this instruction in an
existing subject matter domain plays an increasing role.
It is a well-established view among the teachers of math-
ematics in the Danish Gymnasium that the incorporation
of modelling aspects is well suited to assist students in
acquiring mathematical concepts by providing the moti-
vation and relevance of mathematical instruction. Further-
more, it also contributes to training students to perform
mathematical techniques in different contexts, within and
outside mathematics. Also in the guidelines from the Min-
istry of Education, it is stated that the “model aspect”

“... must give students knowledge of the construction of mathe-
matical models as representations of reality and impressions of
the possibilities and limitations of applying mathematical mod-
els, and also equip them to accomplish a modelling process in
simple situations”. (Translated from Bekendtgerelse, 1997)

So during their three years of mathematics instruction, the
students are required to work with mathematical models.
The applicational aspect of mathematics has entered the
written examination, though only to a modest extent and
in the form where the task for students seems to be to
perform a standard mathematical exercise disguised in ap-
plicational clothes.

3. The concept of function in a cross-curricular activity
In mathematics education of the Danish Gymnasium the
concept of function is placed in the centre of attention. It
has a central and organizing role around which many other
important mathematical ideas resolve. In the majority of
textbooks used for instruction, a function is defined by
two sets A and B with a rule which assigns exactly one
member of B to each member of A. The textbooks are still
the primary organizer of the mathematics instruction in
the Gymnasium. This gives a restricted view of functions
by the dominance of an algebraic symbolism, where the
function is exclusively presented in the f(x) form.

It is rare that the students are given the opportunity to
acquire a perception of a function as an appropriate tool to
organize the physical world. Of course many teachers are
aware of this formalistic approach, and there are teachers
with a pragmatic view of the function concept as a tool
to model real-world situations by forming a mathematical
representation of the quantitative and qualitative relation-
ships in that situation. The view that functions should
first appear as models of relationships and that the text-
book definition of a function is too formal and abstract for
the student, is supported by Vinner (1991) and Sierpinska
(1994). In addition the formal approach gives the students
the impression, that a function has to be described by a
formula, and that the only possible actions on them are
algebraic. Although the function is described as a uni-
fying concept, functions appear and behave in different
ways. There are different representations, and according to
Schwarz & Dreyfus (1995) and Confrey & Doerr (1996)
research has shown that the rich diversity of multiple rep-
resentations leads to a more robust and flexible under-
standing of functions. The most common representations
of functions are graphical, algebraic and tabular represen-
tations. To my view the verbal representation of the func-
tion should also be among the common representations, to
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let the students develop the ability to reason qualitatively
about the concept. Actually concepts are rooted in practice
and gain meaning when they are subjected to negotiation,
interpretation and application.

I will here describe an example of a cross-curricular
activity between mathematics and physics, which presents
a view of the function concept as a tool to model real-
world situations.

4. An example: Exponential growth in 10th grade
The example is centered around a class of 28 15-16 year-
old students. The course was organized about introducing
the concept of exponential functions in mathematics and
radioactivity in physics to the students. At this time, the
students had been introduced to the function concept and
they were familiar with proportionality and linear func-
tions. The teachers of both subjects participated in the
course.

In the first lesson, after an orientation by the teacher
of physics, where a number of everyday life situations in
which the use of ionizing radiation might be an issue was
discussed, and the basic information and skills about the
nature, effects and sources of X-ray and radioactivity were
introduced. The random nature of the process of radioac-
tive decay was introduced by an analogy: The students
were asked to consider a situation where a large group of
students are in a room: Each student represents a radioac-
tive nucleus, and they all throw dice, saying “one to five
I stay, six I leave the room”, and the process is iterated.

In the following lesson the students worked with ion-
izing radiation. The starting point were two well-known
experiments from physics: Measuring with a monitor the
decay of a radioactive source and absorption of gamma
rays in metal. Students worked in groups of five, and their
first task was to collect the experimental data. Each group
had to carry out four experiments: absorption of gamma-
rays in lead and in aluminium plates of different thick-
ness and the decay of two different radioactive sources.
The data was put on tabular form, and the students now
had to discuss the relations between the variables of their
experiments. They plotted the points in a normal system
of co-ordinates, and many of the students seemed to be
in favour of assuming linearity, and the main topic of the
group discussions was whether or not it was reasonable to
assume this. However nearly all groups ended up with four
curved graphs, and in the following open class discussion
the groups presented their work, and they had to give a
verbal description and interpretation of their graphs. Also
models for the two processess were discussed. There was
agreement on a model for the decay processes, where the
change in the number of nuclei in a short time interval is
proportional to the number of nuclei present, and a model
for the absorption process, where the change of intensity
in a narrow metal plate is proportional to the intensity. By
discussing the similarities between the two models, it was
now possible to formulate “the exponential model”: The
relative change in the dependent variable equals a constant
value for a fixed increase in the independent variable.

Now the context and domain was changed. The groups
had to work with deposit on a bank account with a fixed
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rate of interest and with the reduction of the value of a
car by a fixed percentage every year. Most of the groups
used their calculators to set up a tabular representation,
and then plotted the graphs. But several of the students
were familiar with calculations with percentage, so they
were able to set up the formula for extrapolation of the
account, k,, = ko(147)", and correspondingly for the car
value, k,, = ko(1 — )", where n stands for the setting
period, r for the percentage divided by 100, ko for the
start deposit account/value, and k,, for the deposit/value
after n settings. When discussing the results of the group
work, focus was on the exponent in the expressions for
k. Until this moment the students were only familiar with
powers of integer values, and it caused problems when the
students for example wanted to calculate the deposit on the
account after 2 years and 5 months. The students had to
realize that their original conception was inadequate, and
the job of the teachers was to help the students to expand
the concept of power to a situation with a real valued
exponent.

Later on the students worked out standard problems to
be familiar with the new concepts. Then the teachers again
turned the students’ attention to the expressions for k,,
and the relationship between the two variables n and &,
pointed towards the concept of function. The students now
were able to write down the well-known algebraic formula
for the exponential functions: f(x) = ba®.

Several of the students had already noticed the simi-
larities between the graphs from their experimental work
and the graphs of k,, versus n, and the students were now
asked to substantiate their statement. By interpreting their
results in group discussion the students made backward
references to the original “exponential model”, and expo-
sure to the new concept of exponential functions. In this
work the students were also introduced to the semi log-
arithmic paper. Focus was not on the construction of the
logarithmic axes, but on the different aspects of a graph,
for example, individual points versus more global features.
Finally in the class with the teacher mainly functioning
as a chalkholder, it was concluded that for an exponen-
tial function the relative change of the dependent variable
equals a constant value for a fixed increase of the in-
dependent variable. Now the students could classify the
processes of absorption and decay, and write formulae for
the intensity I, and the number of nuclei N : I = Iya®
and N = Nya!, where x stands for thickness of the met-
alplates, t for time, and [y and N for the starting values.
By looking on the semilogarithmic plots, concepts like half
life and half length were introduced.

When discussing the formulae for the intensity and the
number of nuclei, some students asked the question: So
the numbers we observed at the display window when we
were measuring the decay were the number of radioactive
nuclei? After discussing this question the students agreed
that it is an impossible task to count the numbers of nuclei.
But by making reference to the experimental equipment,
especially the monitor and the fact that the students had
knowledge about charged particles, the focus was now
turned on the number of nuclids decaying in some fixed
interval of time, and the concept of activity. There was
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general agreement about proportionality between activity
and the number of nuclei. After the formulation of the ap-
propriate algebraic formula for the activity as a function
of time, some of the students turned attention to the con-
stant determined by the conditions of the situation when
the value of time is zero. The effect of “starting the watch
at another time” was discussed. So the introduction of the
concept of activity offered an opportunity to study two
processes on the exponential functions: multiplying by a
constant and translation of the independent variable.

In the following class lessons the results were summa-
rized and concepts as dose and absorbed dose were in-
troduced. In the discussion the students revealed a wide
knowledge and interest about radiation effects. Especially
the Tjernobyl nuclear power plant accident turned up sev-
eral times and the following question put into the dis-
cussion: What is the effect of taking iodine pills after a
nuclear power plant accident? This was the starting point
for focusing on a radioactive decay chain consisting of a
radioactive nucleus decaying to a radioactive nucleus (io-
dine), which again decays to a stable nucleus. The teachers
refered to the analogy from the start of the course: The stu-
dents leaving the room go to another room and throw dice,
saying: “One to four, I stay. Five or six, I leave”, and the
process here too is iterated. It was now decided to round
off the course with modelling the decay-chain.

In the groups the students using the concepts previously
discussed pursued a number of approaches to determine
more facts about the decay-chain. The students had to re-
vise the construction of the model for the decay process,
and nearly all the groups were able to describe the prob-
lem. But especially the first step in the decay-chain caused
problems. It was difficult for the students to cope with
a situation, where a number of nuclei had to be added,
caused by the decay of the first member of the chain, and
at the same time were decreased by an exponential factor.
The students were very uncomfortable with this situation,
so when one of the groups by revising the original model
of the decay process was able to reformulate the problem
to a set of difference equations, it was decided that the
whole class should go on with this idea. The system of
equations could be programmed directly with a spread-
sheet, so by the end of the course all groups were able to
present a graphical representation of the problem, show-
ing the exponential decrease in the number of the first
group of nuclei and after about a week a maximum of the
number of nuclei from the second group (iodine).

When the course was completed, each of the groups was
asked to deliver a written report about their work in the
course. The students were requested to evaluate and crit-
icize their models in the report. Here the students first of
all pointed towards the unrealistic situation of consider-
ing the rate of interest as a constant for a longer period.
But several groups also mentioned that radioactive pollu-
tion from a nuclear power is a rather complex problem
to model as you have to include factors like wind force,
wind direction, distance, etc.
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5. Formation of the concept of exponential functions
The goal of the course was to give the students under-
standing and insight into the concept of exponential func-
tions through experience gained from their own experi-
mental activities. The students were dealing with a collec-
tion of objects belonging to the areas studied, and then, by
the process of mathematization, these were transfered into
mathematical objects and relations. This mathematization
is an essential part of the curriculum, argues Freudenthal
(1973). Through the processes of application of the expo-
nential model, the students gradually developed the con-
cept of exponential functions. In the example presented,
the students were forced to explore the experimental sit-
uations and to develop a model resulting in the required
concept. This process of conceptual mathematization will,
according to de Lange (1996), help the students to bet-
ter acquire and understand mathematical concepts. Based
on the students’ source knowledge gained through actions
by reflection and generalizing, the students will develop a
more complete concept on which the more formal mathe-
matical notion can be based.

A current view is based on the idea that any develop-
ment of a mathematical concept is a process that starts
with an action on objects. Recent focus has been on the
process of acquisition of a mathematical concept, and there
are several theories (Dubinsky 1991, Sfard 1991, Schwarz
and Dreyfus 1995) assuming that the acquisition of knowl-
edge starts with actions, some of which become processes
and then later are conceived as objects, which on a higher
level are starting points of new actions. The theories of
concept formation by Dubinsky and Sfard all contain an
aspect of decomposing the subject matter into a learning
sequence with several levels of understanding. To con-
struct the concept, the students have to pass through these
levels.

According to the theory of Sfard, a mathematical con-
cept, e.g. a function, has an inherent process-object du-
ality, and the concept can therefore be conceived in two
fundamentally different ways: operationally as processes
and structurally as objects. This model of concept forma-
tion implies that a mathematical concept like exponential
functions should only be regarded as fully developed when
it can be conceived both operationally and structurally.
Sfard emphasizes that the operational view of a concept
in terms of a process to be carried out seems to precede the
structural view using objects and formal definition, both
in the cognitive and historical development of the con-
cept. Here, one should only add that after all the historical
starting point of many mathematical concepts is more or
less a practical problem. The formation of the concepts
is described by a hierarchical scheme composed of three
stages: interiorization, condensation and reification.

At the stage of interiorization the students get acquainted
with the processes which will give rise to the concept.
With the physical experimentation as a starting point in
the example, the students are engaged in gathering data
and posing conjectures about the relevant variables and
their relations.

In the phase of condensation, the learner becomes capa-
ble of seeing the process as a whole, and capable of al-
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ternating between different representations of the concept.
In the example, the instruction of the students is based
on a systematic use of several representations of the func-
tion concept, and the process of switching representations
is stressed from the beginning in order to let the students
grasp the view that verbal, graphical, algebraic and tabular
representations of the function are distinct representations
of a single object.

Reification of a given process occurs when the process
solidifies into an object, and simultaneously with the in-
teriorization of a higher-level process. Reification is the
final stage in the acquisition of the concept, and it brings
relational understanding of a concept. It is argued by Sfard
that reifying is a difficult process, and that great effort is
required to achieve it. In the example, the emphasis is on
the representations giving the students the time demanded
to get through the phase of condensation. But also the
first operations on the object take place, i.e. translation of
the independent variable and multiplying with a constant
value. So some of the activities in the condensation phase
are already directed towards reification. And in the final
part of the course, the students perform more complex op-
erations on the exponential functions, when forming their
models of the radioactive decay chain.

The question arises, how can the teacher be sure that
the students have reified the concept of exponential func-
tion? It is of course difficult, if not impossible, to observe
the actual transition from one stage to the next, so the
teacher has to focus on which stage the students are in. In
that connection I want to stress that qualtitative reasoning
is an important qualification. Students regularily solve a
problem posed in explicitly quantitative terms, but they
are seldom asked for a qualitative analysis of the same
problem. To strengthen the qualitative aspect in the exam-
ple, the verbal representation of the function was placed
among the common representation, and the students were
discussing with other students and with the teachers, and
in written reports, motivated, and forced, to interpret and
seek meaning throughout the course. In addition qualita-
tive reasoning of the students allows the teacher to probe
for students’ conceptual understanding, and allows stu-
dents to work on tasks that require them to explore their
reasoning. This will offer the teacher a splendid possibility
to identify the students’ stage of concept formation.

6. Competences of transfer and broadening
In the learning activities of the example, the students con-
structed the concept in an applied environment with the
perception of a function as an appropriate tool for organiz-
ing the physical world. This is in agreement with the func-
tion model proposed by O’Callaghan (1998). Rooted in a
problem-solving enviroment, the model consists of four
component competencies: modelling, interpreting, trans-
lating, and reifying. But also the competences of transfer
and broadening should be mentioned. Transfer refers to
the situation where the concept is transferred to other con-
text settings, and broadening to process of expanding the
domain of concept validity.

It is a well-known fact that the context in which knowl-
edge develops influences the extent to which the knowl-
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edge can be applied in other contexts. Greeno (1992)
draws attention to the fact that what he calls inert knowl-
edge cannot be applied in contexts other than the formal
context in which it was learned. In the example, the con-
cept was first introduced in a simple modelling context,
followed by a more formal mathematical context, and then
in a more complex modelling context, to let the students
acquire a repertoire of significant conceptual and procedu-
ral knowledge, but also an ability to transfer their knowl-
edge from the specific contexts in which it is presented to
a new and apparently different setting.

By the learning activities of the example, the students
were led to construct the concept of exponential functions
by a process, where the individual student synthesizes dif-
ferent aspects of the concept in different domains. Dreyfus
(1991) emphasizes the process of synthesis and the need
for activities designed to lead the students to synthesize
different aspects of a concept, or different concepts within
a domain or even within different domains. By introduc-
ing the exponential functions as a model of absorption of
gamma-rays, a model of calculation of interest etc., the do-
mains of validity for the concept are gradually broadened.
This perspective is emphasized by Niss (1997, chapter 2,
p.8) in
“The First Main Finding of the Didactics of Mathematics: When
a pupil or student engages in learning mathematics, the specific
nature, content, range, and flavour of a mathematical notion or
concept that he or she is acquiring or building up are greatly in-
fluenced, if not determined, by the domains in which that notion
or concept is anchored and imbedded for that particular person”.

So the more extended the contexts and the richer the set of
domain relations, the more comprehensive and multifaced
will the concept be. Here we have the power of interdis-
ciplinary activities. They offer a rich set of domains, and
a wide range of different context settings.

7. Creation of knowledge in the classroom

The view of learning presented in this example is to con-
sider learning as an active process of acquiring knowledge,
where the students experience the process of constructing
knowledge not only by reading about results from other
people, but first of all by being actively engaged in knowl-
edge construction themselves. It is, on one hand, an active,
strictly personal process of mastering the subject matter,
but also an active social process experienced during dis-
cussions with other students and teachers.

Molander (1993) introduces the concepts of technical
knowledge and directive knowledge as analytical tools for
understanding knowledge. Types of technical knowledge
are instrumental knowledge and mastery of technique. It
is characteristic for these types of knowledge that they
do not themselves lead to direct action. It is the type of
knowledge brought into play when the students are solving
standard exercises, and perceive the quantitative aspect of
the solution as being primary. Focus is not on analysis and
understanding of the question posed, but on the answer. It
is an educational idea of acceptance of answers without
questions, which is often present in the problems of the
written national examination held at the end of grade 12.
Here we have only to cite Cobb (1988, p.4):
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“... students who have constructed instrumental beliefs about
mathematics (...) anticipate that future classroom mathematical
experiences will ‘fit’ these beliefs. They intend to rely on an
authority as a source of knowledge, they expect to solve tasks
by employing procedures that have been explicitly taught, they
expect to identify superficial cues when they read problem state-
ments, and so forth. Alternative ways of operating do not occur
to them”.

Opposite to the technical knowledge is the idea of a di-
rected knowledge-forming process taking place in a dy-
namic question-and-answer frame of increasing skill, in-
sight and enlightment. In my example, the concept of ex-
ponential functions is formed in an interdisciplinary envi-
ronment directed towards applications of the concept in a
broad range of circumstances, and in a variety of different
situations. It is an integrated modelling process that em-
phasizes questions as well as answers, and the construction
of the appropriate concepts and laws as they are needed.
The goal is to encourage students to seek answers by trying
to make sense out of the questions through reflection and
through interactions with the teacher and other students.
This will offer students the opportunity to make conjec-
tures, to interpret and to integrate existing knowledge.

Following the view that acquiring knowledge must be
a dynamic, directive and orientated process, it is the task
of the teacher to create a learning enviroment which pro-
vides the students with space for inquiry and interpretation
in situations that are meaningful for the students. In their
model of constructive learning, Glyn & Duit (1995) ar-
gue that learning meaningfully calls for five conditions to
be present: (a) existing knowledge is activated, (b) exist-
ing knowledge is related to educational experiences, (c)
intrinsic motivation is developed, (d) new knowledge is
constructed, and (e) new knowledge is applied, evaluated,
and revised.

8. Conclusion

This example shows that cross-curricular activities be-
tween mathematics and other subjects need not necessarily
be centered around the use of mathematics as a tool for
calculations. By describing an interdisciplinary activity be-
tween mathematics and physics, I want to point out that
cross-curricular activities have a large potential for creat-
ing a learning environment in which the students, through
applicational and modelling activities, are engaged ac-
tively in constructing and using knowledge. Regarding the
concept of function as a tool for modelling real-world sit-
uations, the interdisciplinary activity offers a variety of
different contexts and a rich set of domains to let the stu-
dents investigate a broad range of circumstances to prop-
erly refine models and develop the concept. Using this
framework, conceptual development is promoted by plac-
ing emphasis on the students’ discussions of the questions.
And the role of the teacher is to help the students to pay
attention to those ideas that will help them reach a satis-
factory conclusion.

In my opinion, an important goal of teaching mathemat-
ics, and other subjects too, is to create meaningful situ-
ations, where the students through exploratory activities
develop conceptual knowledge. Cross-curricular activities
offer such situations, so the curriculum must create the
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space that is needed to encourage cross-curricular activi-
ties. Also, in the Danish Gymnasium it is a well-known
fact that instruction is greatly influenced by assessment
methods. Strangely enough, a test of the students’ abil-
ity to perform active modelling processes and to transfer
skills learned with one set of problems to a different set of
problems is only very seldom on the agenda of assessment
in the Gymnasium. Of course it is important to focus on
assessment methods to take into account that the students
now solve many problems using technological support,
but why not bring up for debate how the evaluation pro-
cedures could be broadened so that the students are also
given exam credit for reasoning? In my view students’
written reports and students’ portfolios constitute a rea-
sonable category of tasks and activities to be subjected
to an assessment — i.e. the students are given credit for
inquiry, reasoning and interpretation.

Finally, I want briefly to touch on the following prob-
lem: Even teachers who have been exposed to the ideas of
cross-curricular activities have seldom had the opportunity
to carry out such activities. The structural organization of
the Danish Gymnasium calls for creativity of the teach-
ers to organize a cross-curricular activity between two, or
more, subjects. Nor is there any time in the hectic school
day to design such activities. If teachers are expected to
apply their ideas into practice, they need to be knowledge-
able about educationally relevant theory, and to have the
time to design interdisciplinary instruction.
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