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This talk presents a review of the results concerning the spectra of submersions
obtained during the time by the author and others. Let (M, g), (B, j) be two con-
nected compact Riemannian manifolds without boundary and let π : M −→ B
be a submersion. We investigate the relations between the spectra of the Laplace-
Beltrami operators acting on functions defined respectively on M , on B and on the
fibers Fx = π−1(x), x ∈ B. The problem is completely solved, via representation
theory, when the submersion is Riemannian and the fibers are totally geodesic sub-
manifolds of M . When the submersion is Riemannian and the fibers are minimal
submanifolds of M , another technique gives comparisons between the spectrum of
∆M and the one of ∆B . Some recent results concern Riemannian submersions with
fibers of basic mean curvature vector field and almost-Riemannian submersions.
In particular, the first non-zero eigenvalue of ∆M has a lower bound depending on
the geometry of B and on the volume of the fibers.

1. Introduction

1.1. Submersions

The concept of submersion is, in a certain sense, the converse of the concept
of immersion and it was introduced by B. O’Neill [13] in 1966. Submersions
were studied by several mathematicians, among them I would remember A.
Gray.

Let (M, g), (B, j) be two compact boundaryless Riemannian manifolds. A
surjective C∞ mapping π : M −→ B is a submersion if its differential
(dπ)y : TyM −→ Tπ(y)B is a surjective mapping of maximal rank n = dim B

at any point y ∈ M . The fibers Fx = π−1(x), x ∈ B, are regular p-
dimensional submanifolds of M (p = m−n, with m=dimM > n), and they
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are diffeomorphic to a model fiber F . A vector Xy ∈ TyM is vertical if it
is tangent at y to the fiber Fπ−1(π(y)). The subspace Vy ⊂ TyM of vertical
vectors is the vertical space; the horizontal space Hy is the orthogonal
complement of Vy in TyM with respect to the metric g:

Hy = V⊥y , TyM = Vy ⊕Hy , g(Vy,Hy) = 0. (1)

The space Hy is naturally isomorphic to Tπ(y)B. The submersion
π : (M, g) −→ (B, j) is Riemannian if the restriction of its differential
to horizontal vectors, (dπ)y |Hy : Hy −→ Tπ(y)B, is an isometry:

j ((dπ)y(X), (dπ)y(X)) = g(X, X) (2)

for any horizontal vector X ∈ Hy and any y ∈ M .

The simplest (and trivial) example is M = B × F , the product of two
Riemannian manifolds (B, j), (F, gF ) endowed with the product metric, and
where π = π1, the projection on the first factor.

1.2. Spectra

The Laplace-Beltrami operator ∆(M, g), briefly ∆M , acting on functions
f ∈ C∞(M) is defined by

∆Mf = δdf = −div gradf (3)

and it takes an important part in vibration theory (the wave equation is
∂2f
∂t2 + ∆Mf = h), in heat diffusion (the heat equation is ∂f

∂t + ∆Mf = h),
and in other problems. The classical methods of analysis lead to solve the
eigenvalues and eigenfunctions problem

∆Mf = λf (4)

with Dirichlet or Neumann boundary conditions when the manifold has a
nonempty boundary.

The Spectral Geometry studies the relations between the geometry of the
Riemannian manifold (M, g) and the spectrum of ∆M , consisting in a in-
finite increasing unbounded sequence of eigenvalues, each of them with
finite multiplicity. When the manifold is not compact, the spectrum of
∆M contains a bounded discrete part and a continuous part. The explicit
computation of the spectrum is in general very hard or impossible, but it is
often useful to obtain estimates of the eigenvalues. To do this, an idea is to
reduce the spectral problem from a big manifold to a smaller and simpler
one (the best should be a 1-dimensional manifold), and to compare the
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spectrum of the big manifold with the spectrum of the small. Then, for
a submersion π : (M, g) −→ (B, j) we are interested to establish the links
between the spectra of the Laplacians of the total space M , of the basis B

and of the fibers Fx.

Example 1.1 (trivial) In the case of the product M = B × F, π = π1

projection on the first factor, it is well known that the eigenvalues of ∆M

are the sums of the ones of ∆B and ∆F , and that the eigenfunctions are
the product of eigenfunctions of ∆B with the ones of ∆F .

In section 2, we consider a Riemannian submersion with totally geodesic
fibers: in this case, all the fibers are isometric to a model fiber (F, gF ). The
spectral problem was then completely solved, via representation theory, by
G. Besson and me (see [4], 1990). Namely, we gave an explicit method to
compute the eigenvalues with multiplicities and the eigenfunctions of ∆M

by the ones of ∆F and the ones of the horizontal Laplacian (Theorems 2.1,
2.2).

When the submersion is Riemannian with minimal fibers, the technique
used for totally geodesic fibers does not work because in the case in point
the fibers are only diffeomorphic, and not isometric, to a model fiber. How-
ever, we can apply a general theorem to produce comparisons between the
spectrum of ∆M and the spectrum of ∆B (section 3, Theorems 3.2, 3.3; see
[5], 1994, and [6], 2000). These estimates are not completely satisfactory
because in them does not appear the contribution of the fibers.

Surprisingly, better results hold under the weaker assumption that the fibers
have basic mean curvature vector field. In this case we get spectral esti-
mates for the eigenvalues of ∆M , in particular a lower bound for the first
non-zero eigenvalue, depending on the geometry of B and on the volume of
the fibers (section 4, Theorems 4.2, 4.5; see [7], 2005).

At last, section 5 presents how to compare the spectrum of the total space
of an almost Riemannian submersion with the spectrum of the total space
of the naturally associated Riemannian submersion (Proposition 5.1; see
[7]).

2. Riemannian submersions with totally geodesic fibers

The simplest case after products is a Riemannian submersion whose fibers
are all totally geodesic submanifolds of M , what corresponds to the fact
that the second fundamental form of the fibers vanishes:

II(X,Y ) = (∇M
X Y −∇Fx

X Y )y = 0 (5)
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for any vertical X,Y , for any y ∈ Fx and for any x ∈ B; here ∇M and ∇Fx

are the Levi-Civita connection of (M, g) and (Fx, gx) resp. (gx denotes the
metric induced on Fx by g). In this situation, all the fibers (Fx, gx), x ∈ B,
are isometric to a model fiber (F, gF ) endowed with a reference metric gF ,
see R. Hermann [11].

In 1982, L. Bérard Bergery and J. P. Bourguignon introduced [1] a decom-
position of the Laplacian:

∆M = ∆v + ∆h (6)

as a sum of two operators, vertical and horizontal, corresponding to the
natural decomposition of the metric g. As these two operators commute
in the case in point, the eigenvalues of ∆M are sums of eigenvalues of each
of them, but not all the sums are admissible, the choice depending on the
global geometry of the submersion.

The problem to determine which eigenvalues are in fact involved in the
above sums was completely solved by G. Besson and myself in 1990, [4],
via representation theory; we construct also an explicit Hilbertian basis of
eigenfunctions of ∆M .

The general theory says that for a submersion the fibration π is associated
to the principal bundle p : P −→ B of structural group G, the (compact) Lie
group of the isometries of the model fiber (F, gF ), see Kobayashi-Nomizu
[12], p. 54. The diagram of the fibration is

P × F
diag−−−−−→ M = P ×G Fypr1

yπ

P −−−−−→
p

B

where pr1 is the projection on the first factor and diag is the diagonal action
of the group G on the product P ×F : then M is the quotient of P ×F by
diag, quotient denoted P ×G F .

The idea was to search the eigenfunctions of the Laplacian ∆P×F which pass
to the quotient. To do this, denote R the set of unitary irreducible complex
representations of G: they are finite dimensional, since G is compact. As
G acts by isometries on P and on F , we have the decompositions

L2(P ) = ⊕ρ∈RL2
ρ(P ) , L2(F ) = ⊕ρ∈RL2

ρ(F ).

For a fixed d-dimensional representation ρ ∈ R, a canonical pair is a cou-
ple V ⊂ L2

ρ(P ) , W ⊂ L2
ρ(F ) of irreducible non trivial G-invariant sub-

spaces. Then by Schur’s lemma there exists a unique, up to a complex
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number of modulus one, equivariant isometry between V and W . Now if
Ψ = (ψ1, . . . , ψd) is an orthonormal basis of V and Φ = (ϕ1, . . . , ϕd) is the
orthonormal basis of W corresponding to Ψ, the scalar product

〈Ψ, Φ〉 :=
1
d

d∑

i=1

ψi · ϕi (7)

is a function on P × F invariant under the diagonal action of G, so it pass
to the quotient M , and it does not depend on the choice of Ψ.

Theorem 2.1 The family of functions 〈Ψ, Φ〉 forms a Hilbertian basis of
the space of the L2-functions on P × F invariant under the action of G,
i.e. of the space L2(M). This basis consists of eigenfunctions of ∆M .

As G acts by isometries, V and W are in fact included in some eigenspaces
of ∆P and of ∆F resp., related to certain eigenvalues α+β ∈ Spec∆P with
α ∈ Spec∆h

P , β ∈ Spec∆v
P and µ ∈ Spec∆F respectively.

Theorem 2.2 The eigenvalue of ∆M corresponding to the eigenfunction
〈Ψ, Φ〉 is α + µ. The multiplicity of an eigenvalue ν ∈ Spec∆M is given by

mult(ν) =
∑

ρ∈R

∑
α+µ=ν

mα(ρ) ·mµ(ρ)

where mα(ρ) is the multiplicity of the representation ρ in the eigenspace of
the horizontal Laplacian ∆h

P related to the eigenvalue α and mµ(ρ) is the
multiplicity of the representation ρ conjugate to ρ.

Notice that not all the sums α +µ are eigenvalues of ∆M : if α corresponds
to a representation ρ, µ must correspond to the conjugate representation
ρ. Notice also that the vertical Laplacian ∆v

P does not take any part in
computing the eigenvalues and that Spec∆h

P is substantially Spec∆B .

3. Riemannian submersions with minimal fibers

The second step is to consider Riemannian submersions whose fibers
Fx, x ∈ B, are minimal submanifolds of M . This is equivalent to the
fact that the mean curvature vector field H of the fibers is identically equal
to zero; recall that H is the trace of the vectorial secund fundamental form
of the fibers, (5). In this case, all the fibers are only diffeomorphic to a
model fiber F , but no more isometric.
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Lemma 3.1 If the fibers of the submersion are all minimal submanifolds,
they have same volume:

V (x) = Vol(Fx) =
∫

Fx

dvgx = constant

does not depend on x ∈ B.

It is always possible to split ∆M in vertical and horizontal Laplacians,
(6), but this technique does not produce results in this case. In order
to obtain spectral estimates, we can apply a general theorem of spectral
comparison, see [5]. Let T, T ′ be two self-adjoint semibounded operators
acting respectively on Hilbert spaces H and H ′, with associated quadratic
forms QT and QT ′ . We say that they satisfy Kato’s property with respect
to a mapping $ : H ′ −→ H if and only if $ maps the domain of T ′ into
the domain of T and

QT ($f) ≤ QT ′(f) , ∀ f ∈ D(T ′) (8)

($ does not increase energy). The general theorem gives a comparison
between SpecT ′ and SpecT in the general frame of measure spaces. Here we
consider directly a Riemannian submersion π : M −→ B and the operators
∆M , ∆B acting on the spaces L2(M), L2(B) respectively. As the fibers are
minimal submanifolds of M , they obey Kato’s inequality with respect to
the mapping $ defined by

($f)(x) :=
(∫

Fx

f(y)2 dvgx(y)
) 1

2

, f ∈ L2(M) and x ∈ B. (9)

Theorem 3.2 Let π : (M, g) −→ (B, j) be a Riemannian submersion with
minimal fibers. Then, for any integer N > 0, one has

(1) λN (∆M ) ≥ 1
8(p + 1)2

λk+1(∆B);

(2)
N∑

i=1

λi(∆M ) ≥ 1
2

k∑

j=1

λj(∆B) +
k

8(p + 1)
λk+1(∆B)

where p is the rank of the subspace spanned by the N first eigenfunction of
∆M and where k is the integer part of N

p+1 .

Another approach consists in showing that $ is a symmetrization in the
sense of G. Besson [2]. As $ obeys Kato’s inequality when the fibers are
minimal, a generalized Beurling-Deny principle give the following domina-
tion theorem (see [6]):
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Theorem 3.3 Let π : (M, g) −→ (B, j) be a Riemannian submersion with
minimal fibers. Then the resolvent operator (∆B + λ)−1 and the heat oper-
ator e−t∆B dominate (∆M + λ)−1 and e−t∆M respectively, for any positive
t and λ.

Recall that T ′ dominates T if T ($f) ≥ $(T ′f) , ∀ f ∈ D(T ′).

4. Riemannian submersions with fibers of basic mean
curvature

A horizontal vector field X ∈ Γ(TM) is basic if it is projectable by π, i.e.
if its image by the differential (dπ)y is the same vector Xx ∈ TxB for all
points y in the fiber Fx = π−1(x), x ∈ B. In other words, X is basic if and
only if it is the lift of a vector field X ∈ Γ(TB). The inner product of two
basic vector fields X, Y is constant along any fiber Fx:

〈Xy, Yy〉 = 〈(dπ)y(X), (dπ)y(Y )〉 = 〈Xx, Y x〉 ∀ y ∈ Fx (10)

(from now on, we shall write briefly 〈 , 〉 to denote inner products). For
any fixed x ∈ B, let us denote by gx the restriction of the metric g to the
fiber Fx, by vgx the induced canonical measure on Fx, and by V (x) the
corresponding volume of Fx, V (x) =

∫
Fx

dvgx . When X is the (basic) lift
of X ∈ Γ(TB), then for any function f ∈ C∞(M) one has (cf. G. Besson
[3]):

X

(∫

Fx

f(y)dvgx(y)
) ∫

Fx

(Xf)ydvgx(y)−
∫

Fx

f(y)〈Hy, Xy〉dvgx(y)

where Hy is the mean curvature vector at y ∈ Fx of the fiber Fx, i.e. the
trace of the vectorial second fundamental form of Fx at y.

We shall assume in the sequel that H is basic, and denote H its projection.

Lemma 4.1 Let π : (M, g) −→ (B, j) be a Riemannian submersion with
fibers of basic mean curvature vector field. Then the measure vgx

V (x) , x ∈ B,

is invariant by the holonomy of the fibration.

Let us define Ec, E0 to be the subspaces of the Sobolev space H1(M) con-
sisting of the functions f ∈ H1(M) which are constant on the fibers, re-
spectively of zero average on the fibers:

Ec = {f : M −→ R, f ∈ H1(M)| f = u ◦ π with u : B −→ R},
E0 = {h : M −→ R, h ∈ H1(M)|

∫

Fx

h(y)dvgx(y) = 0}. (11)
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Theorem 4.2 Let π : (M, g) −→ (B, j) be a Riemannian submersion with
fibers of basic mean curvature vector field. Then:

(1) the space H1(M) splits into the direct sum H1(M) = Ec ⊕ E0;

(2) the decomposition in (1) is simultaneously L2-orthogonal and q-
orthogonal, where q is the quadratic form

q(f) :=
∫

M

|∇f |2gdvg

(∇f denotes the gradient of f);

(3) the spaces Ec and E0 are stable under the action of the Laplace-
Beltrami operator ∆M ,

∆c := ∆M |Ec : Ec −→ Ec and ∆0 := ∆M |E0 : E0 −→ E0,

hence

Spec(∆M ) = Spec(∆c) ∪ Spec(∆0);

(4) the heat operator on M splits: exp−t∆M = exp−t∆c ⊕ exp−t∆0 (in
the sense that, if f = u ◦ π + h ∈ Ec ⊕ E0, then

exp−t∆M (f) = exp−t∆c(u ◦ π) + exp−t∆0(h),

and thus

Trace
(
exp−t∆M

)
= Trace

(
exp−t∆c

)
+ Trace

(
exp−t∆0

)
.

For any fixed x ∈ B, denote λ1(Fx) = λ1(Fx, gx) the first non-zero eigen-
value of the Laplace-Beltrami operator ∆Fx of the fiber Fx, and define

Λ := inf
x∈B

λ1(Fx). (12)

Corollary 4.3 Any eigenvalue λj ∈Spec(∆M ) belonging to Spec(∆0) satis-
fies

λj ≥ Λ.

It follows that if λj is an eigenvalue of ∆M such that λj < Λ, then
λj ∈Spec(∆c). Thus, in order to estimate ”small” eigenvalues of ∆M ,
it suffices to estimate the eigenvalues of ∆c, where ”small” means less than
a lower bound of Λ.

In some cases, one can find such a lower bound. For instance, assume that
the fibers Fx are diffeomorphic to a fiber-type F , endowed with a reference
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metric gF , and that the metric on Fx is gx = (b(x))2gF (typical example:
manifolds of revolution). Then the min-max principle gives

λi(Fx, gx) =
1

(b(x))2
λi(F, gF ),

in particular λ1(Fx, gx) = 1
(b(x))2 λ1(F, gF ) ≥ 1

supx∈B(b(x))2 λ1(F, gF ).

Example 4.1 Assume that Fx is a closed curve, i.e. Fx diffeomorphic to
S1, and that the metric on Fx is gx = (b(x))2dθ2, where dθ2 is the canonical
metric of S1. As the length of Fx is `(x) = `(Fx) =

∫ 2π

0
b(x)dθ = 2πb(x),

one has b(x) = `(x)
2π and thus

λ1(Fx, gx) =
4π2

(`(x))2
≥ 4π2

supx∈B(`(x))2

(recall that λ1(S1, dθ2) = 1).

Another situation in which it is possible to find a lower bound of Λ is when
the fibers Fx have Ricci curvature bounded from below by −(p−1)k2, where
p is the dimension of the fibers, and diameter bounded from above by D:
in this case one get

λ1(Fx) ≥ Γ(p, k,D)

where Γ is an explicit constant, see P. Li and S.T. Yau [10] and S. Gallot
[8].

Proposition 4.4 The mapping Ec −→ H1(B) which maps the function
f = u ◦ π onto the function u is bijective and maps:

• the L2-norm ‖f‖2L2(M) =
∫

M
f2(y)dvg(y) onto the quadratic form

‖u‖20 =
∫

B

V (x)u(x)2dvj(x);

• the quadratic form q(f) =
∫

M
|∇f |2ydvg(y) onto the quadratic form

q0(u) =
∫

B

V (x)|∇u|2xdvj(x).

Let us call R(u) the Rayleigh quotient of a function u with respect to the
canonical L2-norm and R0(u) the Rayleigh quotient of u of the quadratic
form q0 with respect to the L2

0-norm:

R0(u) =
q0(u)
‖u‖20

=

∫
B

V (x)|∇u|2xdvj(x)∫
B

V (x)u(x)2dvj(x)
.
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Assume that the volume V (x) = V ol(Fx) of the fibers is bounded when x

ranges over B: 0 < V0 ≤ V (x) ≤ V1 < +∞. As q(f) = q0(u) ≥ V0q(u) and
‖f‖2L2(M) = ‖u‖20 ≤ V1‖u‖2L2(B), one has

R(f) = R0(u) ≥ V0

V1
R(u) and R(f) = R0(u) ≤ V1

V0
R(u).

Therefore, λi(∆c) is equal to the i-th eigenvalue of the diagonalization of
q0 with respect to the L2

0-norm. Moreover, the min-max and max-min
principle give:

V0

V1
λi(B) ≤ λi(∆c) ≤ V1

V0
λi(B). (13)

In a similar way, from R(f) = R0(u) ≥ q0(u)
V1‖u‖2

L2(B)
, it follows

λi(∆c) ≥ 1
V1

λi(q0) (14)

where now q0 is diagonalized with respect to the canonical L2-norm and no
more with respect to the L2

0-norm. Sobolev and Hölder inequalities give
Theorem 4.5 Let π : (M, g) −→ (B, j) be a Riemannian submersion with
fibers of basic mean curvature vector field. The first non-zero eigenvalue of
∆M verifies:

λ1(∆M ) ≥ Γ−1

V1

(∫

B

V (x)−
n
2 dvj(x)

)− 2
n

where Γ = Γ(n, k, D, V ) is a positive constant depending on the geometry
of B: n is the dimension, k is a lower bound of the Ricci curvature, Ric ≥
−(n− 1)k, D is the diameter, and V is the volume; V (x) is the volume of
the fiber Fx, and V1 is its lower bound.

Notice that this estimate is optimal by its dependance on the power of 1
V ,

cf. S. Gallot and D. Meyer [9].

Remark 4.1 When all the fibers of the submersions are minimal subman-
ifolds of M , which means H ≡ 0, Lemma 3.1 shows that they have the
same volume: V (x) = constant. Then the inequality of Theorem 4.5 takes
the simplified form:

λ1(∆M ) ≥ C (15)

where the constant C = C(n, k, D, V ) is equal to Γ−1V − 2
n .
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5. Approximating an almost Riemannian submersion by a
Riemannian one.

Let (M, g′), (B, j) be two compact boundaryless Riemannian manifolds and
let π : M −→ B be a submersion. We shall say that π : (M, g′) −→ (B, j) is
an almost-Riemannian submersion when the restriction of g′ to horizontal
vectors is an almost isometry, i.e. there exist two real constants a and b

(not depending on the point y ∈ M) such that

a2j ((dπ)y(X), (dπ)y(X)) ≤ g′(X,X) ≤ b2j ((dπ)y(X), (dπ)y(X)) (16)

for any horizontal vector X ∈ Hy.

Define on M the Riemannian metric g at any y ∈ M by gy|Vy
= g′y|Vy

,
by gy(X, V ) = 0 for any horizontal X and vertical V , and by
gy(X, Y ) = (π∗jx)(X, Y ) = jx ((dπ)y(X), (dπ)y(Y )) for any horizontal X

and Y . In substance, the metric g preserves the orthogonality between
vertical and horizontal vectors, it reduces to the old metric g′ for vertical
vectors, and it is the metric of the basis B for horizontal vectors. Then
π : (M, g) −→ (B, j) is a Riemannian submersion and

a2g(X, X) ≤ g′(X, X) ≤ b2g(X,X) (17)

for any horizontal X.

Let us denote by {λi(M, g)}i=0,1,2,... the spectrum of the Laplace-Beltrami
operator ∆(M,g) (each eigenvalue is repeated according to its multiplicity).
The min-max and max-min principle give:

Proposition 5.1 The eigenvalues of ∆(M,g) and of ∆(M,g′) satisfy, for any
i = 0, 1, 2, . . . :

bm

am+2
λi(M, g) ≥ λi(M, g′) ≥ am

bm+2
λi(M, g)

where m =dim(M).

Proposition 5.1 implies for the traces of the heat kernels the following in-
equality:

Z(M,g′)(t) ≤ Z(M,g)

(
am

bm+2
t

)
(18)

for any positive t, where Z(M,g′)(t) =
∑+∞

i=0 exp−λi(M, g′)t.

We should also consider the case when π is an almost-Riemannian submer-
sion only outside a subset A of zero capacity in B. It is not hard to see
that cap(A)=0 implies cap(π−1(A))=0. A priori the capacity of a subset
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A′ in M depends on the metric, but when g and g′ are almost isometric
according to (17) the capacity of A′ with respect to g is equal to zero if
and only if the capacity of A′ with respect to g′ is equal to zero. Then, we
could settle and prove the analogous of Proposition 5.1 and of (18) for the
Neumann problem on M \ π−1(A).
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entre spectre. Applications, Ann. Sci. Éc. Norm. Supér., IV Sér. 21 (1988),
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