JACOBI-TSANKOV MANIFOLDS WHICH ARE NOT 2-STEP NILPOTENT*

MIGUEL BROZOS-VÁZQUEZ †

Department of Geometry and Topology, Faculty of Mathematics, University of Santiago de Compostela, 15782 Santiago de Compostela, SPAIN Email:mbrozos@usc.es

PETER GILKEY[‡]

Mathematics Department, University of Oregon, Eugene, OR 97403, USA

 $Email: \ gilkey@uoregon.edu$

STANA NIKČEVIƧ

Mathematical Institute, SANU, Knez Mihailova 35, p.p. 367, 11001 Belgrade, SERBIA

 $Email:\ stanan@mi.sanu.ac.yu$

There is a 14-dimensional algebraic curvature tensor which is Jacobi–Tsankov (i.e. $\mathcal{J}(x)\mathcal{J}(y)=\mathcal{J}(y)\mathcal{J}(x)$ for all x,y) but which is not 2-step Jacobi nilpotent (i.e. $\mathcal{J}(x)\mathcal{J}(y)\neq 0$ for some x,y); the minimal dimension where this is possible is 14. We determine the group of symmetries of this tensor and show that it is geometrically realizable by a wide variety of pseudo-Riemannian manifolds which are geodesically complete and have vanishing scalar invariants. Some of the manifolds in the family are symmetric spaces. Some are 0-curvature homogeneous but not locally homogeneous.

Keywords: Jacobi operator, Jacobi-Tsankov manifold.

This paper is dedicated to the memory of our colleague Novica Blažić who passed away Monday 10 October 2005.

^{*} MSC 2000: 53C20.

 $^{^\}dagger$ Work supported by the project BFM 2003-02949 (Spain)

 $^{^{\}ddagger}$ Work supported by the Max Planck Inst. for the Math. Sciences (Leipzig, Germany)

 $[\]S$ Work supported by DAAD (Germany), TU Berlin, MM 1646 (Serbia) and by the project 144032D (Serbia)

1. Introduction

Let ∇ , \mathcal{R} , R, and \mathcal{J} denote the Levi-Civita connection, the curvature operator, the curvature tensor, and the Jacobi operator, respectively, of a pseudo-Riemannian manifold $\mathcal{M} := (M, g)$:

$$\mathcal{R}(X,Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]},$$

$$R(X,Y,Z,W) := g(\mathcal{R}(X,Y)Z,W), \text{ and }$$

$$\mathcal{J}(x)y := \mathcal{R}(y,x)x.$$

The relationship between algebraic properties of the Jacobi operator and the underlying geometry of the manifold has been extensively studied in recent years. For example, \mathcal{M} is said to be *Osserman* if the eigenvalues of \mathcal{J} are constant on the pseudo-sphere bundles $S^{\pm}(M,g)$ of unit spacelike (+) and timelike (-) tangent vectors; we refer to [2, 6] for a further discussion in the pseudo-Riemannian context.

In this paper, we will focus our attention on a different algebraic property of the Jacobi operator. One says \mathcal{M} is Jacobi-Tsankov if one has that $\mathcal{J}(x)\mathcal{J}(y)=\mathcal{J}(y)\mathcal{J}(x)$ for all tangent vectors x,y. One says \mathcal{J} is 2-step $Jacobi\ nilpotent$ if $\mathcal{J}(x)\mathcal{J}(y)=0$ for all tangent vectors x,y. The notation is motivated by the work of Tsankov [9].

It is convenient to work in the algebraic setting.

Definition 1.1 Let V be a finite dimensional vector space.

- (1) $A \in \otimes^4 V^*$ is an algebraic curvature tensor if A has the symmetries of the curvature tensor:
 - (a) $A(v_1, v_2, v_3, v_4) = -A(v_2, v_1, v_3, v_4) = A(v_3, v_4, v_1, v_2).$
 - (b) $A(v_1, v_2, v_3, v_4) + A(v_2, v_3, v_1, v_4) + A(v_3, v_1, v_2, v_4) = 0.$

Let $\mathfrak{A}(V)$ be the set of algebraic curvature tensors on V.

(2) $\mathfrak{M} := (V, \langle \cdot, \cdot \rangle, A)$ is a 0-model if $\langle \cdot, \cdot \rangle$ is a non-degenerate inner product of signature (p, q) on V and if $A \in \mathfrak{A}(V)$. The associated skew-symmetric curvature operator $\mathcal{A}(x, y)$ is characterized by $\langle \mathcal{A}(x, y)z, w \rangle = A(x, y, z, w)$,

and the associated Jacobi operator is given by $\mathcal{J}(x)y := \mathcal{A}(y,x)x$.

- (3) \mathfrak{M} is Jacobi-Tsankov if $\mathcal{J}(x)\mathcal{J}(y) = \mathcal{J}(y)\mathcal{J}(x)$ for all $x, y \in V$.
- (4) \mathfrak{M} is 2-step Jacobi nilpotent if $\mathcal{J}(x)\mathcal{J}(y) = 0$ for all $x, y \in V$.
- (5) \mathfrak{M} is skew-Tsankov if $\mathcal{A}(x_1, x_2)\mathcal{A}(x_3, x_4) = \mathcal{A}(x_3, x_4)\mathcal{A}(x_1, x_2)$ for all $x_i \in V$. \mathfrak{M} is 2-step skew-curvature nilpotent if $\mathcal{A}(x_1, x_2)\mathcal{A}(x_3, x_4) = 0$ for all $x_i \in V$. \mathfrak{M} is mixed-Tsankov if

 $\mathcal{A}(x_1, x_2)\mathcal{J}(x_3) = \mathcal{J}(x_3)\mathcal{A}(x_1, x_2)$ for all $x_i \in V$. \mathfrak{M} is mixed-nilpotent-Tsankov if $\mathcal{A}(x_1, x_2)\mathcal{J}(x_3) = \mathcal{J}(x_3)\mathcal{A}(x_1, x_2) = 0$ for all $x_i \in V$.

(6) The 0-model of \mathcal{M} at $P \in M$ is given by setting

$$\mathfrak{M}(\mathcal{M},P) := (T_P M, g_P, R_P).$$

(7) We say that \mathcal{M} is a geometric realization of \mathfrak{M} and that \mathcal{M} is 0-curvature homogeneous with model \mathfrak{M} if for any point $P \in M$, $\mathfrak{M}(\mathcal{M}, P)$ is isomorphic to \mathfrak{M} , i.e. if there exists an isomorphism $\Theta_P : T_P M \to V$ so that $\Theta_P^* \{\langle \cdot, \cdot \rangle\} = g_P$ and so that $\Theta_P^* A = R_P$.

The following results relate these concepts in the algebraic setting. They show in particular that any Jacobi-Tsankov Riemannian (p = 0) or Lorentzian (p = 1) manifold is flat:

Theorem 1.1 Let $\mathfrak{M} := (V, \langle \cdot, \cdot \rangle, A)$ be a 0-model.

- (1) Let \mathfrak{M} be either Jacobi-Tsankov or mixed-Tsankov. Then one has that $\mathcal{J}(x)^2 = 0$. Furthermore, if p = 0 or if p = 1, then A = 0.
- (2) If \mathfrak{M} is Jacobi–Tsankov and if $\dim(V) < 14$, \mathfrak{M} is 2-step Jacobi nilpotent.
- (3) The following conditions are equivalent if \mathfrak{M} is indecomposable:
 - (a) \mathfrak{M} is 2-step Jacobi nilpotent.
 - (b) \mathfrak{M} is 2-step skew-curvature nilpotent.
 - (c) We can decompose $V = W \oplus \overline{W}$ for W and \overline{W} totally isotropic subspaces of V and for $A = A_W \oplus 0$ where the tensor $A_W \in \mathfrak{A}(W)$ is indecomposable.

Theorem 1.1 is sharp. There is a 14-dimensional model \mathfrak{M}_{14} which is Jacobi–Tsankov but which is not 2-step Jacobi nilpotent. This example will form the focus of our investigations in this paper. It may be defined as follows; it is essentially unique up to isomorphism.

Definition 1.2 Let $\{\alpha_i, \alpha_i^*, \beta_{i,1}, \beta_{i,2}, \beta_{4,1}, \beta_{4,2}\}$ be a basis for \mathbb{R}^{14} for $1 \leq i \leq 3$. Let $\mathfrak{M}_{14} := (\mathbb{R}^{14}, \langle \cdot, \cdot \rangle, A)$ be the 0-model where the nonzero components of $\langle \cdot, \cdot \rangle$ and of A are given, up to the usual symmetries, by:

$$\begin{split} &\langle \alpha_i, \alpha_i^* \rangle = \langle \beta_{i,1}, \beta_{i,2} \rangle = 1 \text{ for } 1 \leq i \leq 3, \\ &\langle \beta_{4,1}, \beta_{4,1} \rangle = \langle \beta_{4,2}, \beta_{4,2} \rangle = -\frac{1}{2}, \quad \langle \beta_{4,1}, \beta_{4,2} \rangle = \frac{1}{4}, \\ &A(\alpha_2, \alpha_1, \alpha_1, \beta_{2,1}) = A(\alpha_3, \alpha_1, \alpha_1, \beta_{3,1}) = 1, \end{split}$$

$$A(\alpha_{3}, \alpha_{2}, \alpha_{2}, \beta_{3,2}) = A(\alpha_{1}, \alpha_{2}, \alpha_{2}, \beta_{1,2}) = 1,$$

$$A(\alpha_{1}, \alpha_{3}, \alpha_{3}, \beta_{1,1}) = A(\alpha_{2}, \alpha_{3}, \alpha_{3}, \beta_{2,2}) = 1,$$

$$A(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{4,1}) = A(\alpha_{1}, \alpha_{3}, \alpha_{2}, \beta_{4,1}) = -\frac{1}{2},$$

$$A(\alpha_{2}, \alpha_{3}, \alpha_{1}, \beta_{4,2}) = A(\alpha_{2}, \alpha_{1}, \alpha_{3}, \beta_{4,2}) = -\frac{1}{2}.$$
(1)

Let $\mathcal{G}(\mathfrak{M}_{14})$ be the group of symmetries of the model:

$$\mathcal{G}(\mathfrak{M}_{14}) = \{ T \in GL(\mathbb{R}^{14}) : T^*\{\langle \cdot, \cdot \rangle\} = \langle \cdot, \cdot \rangle, \ T^*A = A \}.$$

Let $SL_{\pm}(3):=\{A\in GL(\mathbb{R}^3): \det(A)=\pm 1\}$. In Section 2, we will establish:

Theorem 1.2 Let \mathfrak{M}_{14} be as in Definition 1.2.

- (1) \mathfrak{M}_{14} is Jacobi-Tsankov of signature (8,6).
- (2) \mathfrak{M}_{14} is neither 2-step Jacobi nilpotent nor skew-Tsankov.
- (3) There is a short exact sequence $1 \to \mathbb{R}^{21} \to \mathcal{G}(\mathfrak{M}_{14}) \to SL_{\pm}(3) \to 1$.
- (4) \mathfrak{M}_{14} is mixed-Tsankov.

In Section 3, we will show that the model \mathfrak{M}_{14} is geometrically realizable. Thus there exist Jacobi–Tsankov manifolds which are not 2-step Jacobi nilpotent. We introduce the following notation.

Definition 1.3 Let $\{x_i, x_i^*, y_{i,1}, y_{i,2}, y_{4,1}, y_{4,2}\}$ for $1 \le i \le 3$ be coordinates on \mathbb{R}^{14} . Suppose given a collection of functions $\Phi := \{\phi_{i,j}\} \in C^{\infty}(\mathbb{R})$ such that $\phi'_{i,1}\phi'_{i,2} = 1$. Let $\mathcal{M}_{\Phi} := (\mathbb{R}^{14}, g_{\Phi})$ where the non-zero components of g_{Φ} are, up to the usual \mathbb{Z}_2 symmetry, given by:

$$\begin{split} g_{\Phi}(\partial_{x_i},\partial_{x_i^*}) &= g_{\Phi}(\partial_{y_{i,1}},\partial_{y_{i,2}}) = 1 \text{ for } 1 \leq i \leq 3, \\ g_{\Phi}(\partial_{y_{4,1}},\partial_{y_{4,1}}) &= g_{\Phi}(\partial_{y_{4,2}},\partial_{y_{4,2}}) = -\frac{1}{2}, \qquad g_{\Phi}(\partial_{y_{4,1}},\partial_{y_{4,2}}) = \frac{1}{4}, \\ g_{\Phi}(\partial_{x_1},\partial_{x_1}) &= -2\phi_{2,1}(x_2)y_{2,1} - 2\phi_{3,1}(x_3)y_{3,1}, \quad g_{\Phi}(\partial_{x_2},\partial_{x_3}) = x_1y_{4,1}, \\ g_{\Phi}(\partial_{x_2},\partial_{x_2}) &= -2\phi_{3,2}(x_3)y_{3,2} - 2\phi_{1,2}(x_1)y_{1,2}, \quad g_{\Phi}(\partial_{x_1},\partial_{x_3}) = x_2y_{4,2}, \\ g_{\Phi}(\partial_{x_3},\partial_{x_3}) &= -2\phi_{1,1}(x_1)y_{1,1} - 2\phi_{2,2}(x_2)y_{2,2} \,. \end{split}$$

Theorem 1.3 Let $\mathcal{M}_{\Phi} := (\mathbb{R}^{14}, g_{\Phi})$ be as in Definition 1.3.

- (1) \mathcal{M}_{Φ} is geodesically complete.
- (2) For all $P \in \mathbb{R}^{14}$, \exp_P is a diffeomorphism from $T_P(\mathbb{R}^{14})$ to \mathbb{R}^{14} .
- (3) \mathcal{M}_{Φ} has 0-model \mathfrak{M}_{14} .
- (4) \mathcal{M}_{Φ} is Jacobi-Tsankov but \mathcal{M}_{Φ} is not 2-step Jacobi nilpotent.

If we specialize the construction, we can say a bit more. We will establish the following result in Section 4:

Theorem 1.4 Set $\phi_{2,1}(x_2) = \phi_{2,2}(x_2) = x_2$ and $\phi_{3,1}(x_3) = \phi_{3,2}(x_3) = x_3$ in Definition 1.3. Let $\{\phi_{1,1}, \phi_{1,2}\}$ be real analytic with $\phi'_{1,1}\phi'_{1,2} = 1$ and with $\phi''_{1,j} \neq 0$. Then

- (1) $\Xi := \{1 \phi'_{1,1}\phi'''_{1,1}(\phi''_{1,1})^{-2}\}^2$ is a local isometry invariant of \mathcal{M}_{Φ} .
- (2) If $\phi'_{1,1}(x_1) \neq be^{cx_1}$, then Ξ is not locally constant and hence \mathcal{M}_{Φ} is not locally homogeneous.

There are symmetric spaces which have model \mathfrak{M}_{14} .

Definition 1.4 Let $\{x_i, x_i^*, y_{i,1}, y_{i,2}, y_{4,1}, y_{4,2}\}$ for $1 \leq i \leq 3$ be coordinates on \mathbb{R}^{14} . Let $A := \{a_{i,j}\}$ be a collection of real constants. Let $\mathcal{M}_A := (\mathbb{R}^{14}, g_A)$ where the non-zero components of g_A are given, up to the usual \mathbb{Z}_2 symmetry, by:

$$\begin{split} g_A(\partial_{x_i},\partial_{x_i^*}) &= g_A(\partial_{y_{i,1}},\partial_{y_{i,2}}) = 1 \text{ for } 1 \leq i \leq 3, \\ g_A(\partial_{y_{4,1}},\partial_{y_{4,1}}) &= g_A(\partial_{y_{4,2}},\partial_{y_{4,2}}) = -\frac{1}{2}, \qquad g_A(\partial_{y_{4,1}},\partial_{y_{4,2}}) = \frac{1}{4}, \\ g_A(\partial_{x_1},\partial_{x_1}) &= -2a_{2,1}x_2y_{2,1} - 2a_{3,1}x_3y_{3,1}, \\ g_A(\partial_{x_2},\partial_{x_2}) &= -2a_{3,2}x_3y_{3,2} - 2a_{1,2}x_1y_{1,2}, \\ g_A(\partial_{x_3},\partial_{x_3}) &= -2a_{1,1}x_1y_{1,1} - 2a_{2,2}x_2y_{2,2}, \\ g_A(\partial_{x_1},\partial_{x_2}) &= 2(1-a_{2,1})x_1y_{2,1} + 2(1-a_{1,2})x_2y_{1,2} \\ g_A(\partial_{x_2},\partial_{x_3}) &= x_1y_{4,1} + 2(1-a_{3,2})x_2y_{3,2} + 2(1-a_{2,2})x_3y_{2,2}, \\ g_A(\partial_{x_1},\partial_{x_3}) &= x_2y_{4,2} + 2(1-a_{3,1})x_1y_{3,1} + 2(1-a_{1,1})x_3y_{1,1} \,. \end{split}$$

We will establish the following result in Section 5:

Theorem 1.5 Let \mathcal{M}_A be described by Definition 1.4. Then \mathcal{M}_A has 0-model \mathfrak{M}_{14} . Furthermore \mathcal{M}_A is locally symmetric if and only if

- (1) $a_{1,1} + a_{2,2} + a_{3,1}a_{3,2} = 2$.
- (2) $3a_{2,1} + 3a_{3,1} + 3a_{1,2}a_{1,1} = 4$.
- (3) $3a_{1,2} + 3a_{3,2} + 3a_{2,1}a_{2,2} = 4$.

2. The model \mathfrak{M}_{14}

We study the algebraic properties of the model \mathfrak{M}_{14} . Introduce the polarization

$$\mathcal{J}(x_1, x_2) : y \to \frac{1}{2} (\mathcal{A}(y, x_1) x_2 + \mathcal{A}(y, x_2) x_1).$$

Let $\{\beta_{\nu}\}$ be an enumeration of $\{\beta_{i,j}\}_{1\leq i\leq 4,1\leq j\leq 2}$. The following spaces are invariantly defined:

$$V_{\beta,\alpha^*} := \operatorname{Span}_{\xi_i \in \mathbb{R}^{14}} \{ \mathcal{J}(\xi_1) \xi_2 \} = \operatorname{Span} \{ \beta_{\nu}, \alpha_i^* \},$$

$$V_{\alpha^*} := \operatorname{Span}_{\xi_i \in \mathbb{R}^{14}} \{ \mathcal{J}(\xi_1) \mathcal{J}(\xi_2) \xi_3 \} = \operatorname{Span} \{ \alpha_i^* \}.$$

Proof of Theorem 1.1. We have

$$\mathcal{J}(x) = \mathcal{J}(x,x)$$
 and $\mathcal{J}(x,y)x = -\frac{1}{2} \mathcal{J}(x)y$.

If \mathfrak{M} is Jacobi–Tsankov, then $\mathcal{J}(x_1, x_2)\mathcal{J}(x_3, x_4) = \mathcal{J}(x_3, x_4)\mathcal{J}(x_1, x_2)$ for all x_i . We may show $\mathcal{J}(x)^2 = 0$ by computing:

$$0 = \mathcal{J}(x, y)\mathcal{J}(x)x = \mathcal{J}(x)\mathcal{J}(x, y)x = -\frac{1}{2}\mathcal{J}(x)\mathcal{J}(x)y.$$

Similarly, suppose that \mathfrak{M} is mixed-Tsankov, i.e.

$$\mathcal{A}(x_1, x_2)\mathcal{J}(x_3) = \mathcal{J}(x_3)\mathcal{A}(x_1, x_2)$$

for all $x_i \in V$. We show $\mathcal{J}(x)^2 = 0$ in this setting as well by computing:

$$0 = \mathcal{A}(x, y)\mathcal{J}(x)x = \mathcal{J}(x)\mathcal{A}(x, y)x = -\mathcal{J}(x)\mathcal{J}(x)y.$$

We have shown that if \mathfrak{M} is either Jacobi-Tsankov or mixed-Tsankov, then $J(x)^2=0$. Since the Jacobi operator is nilpotent, $\{0\}$ is the only eigenvalue of \mathcal{J} so \mathfrak{M} is Osserman. If p=0, then $\mathcal{J}(x)$ is diagonalizable. Thus $\mathcal{J}(x)^2=0$ implies $\mathcal{J}(x)=0$ for all x so A=0. If p=1, then \mathfrak{M} is Osserman so \mathfrak{M} has constant sectional curvature [1, 5]; $\mathcal{J}(x)^2=0$, A=0. This establishes Assertion (1). Assertions (2) and (3) of Theorem 1.1 follow from results in [4].

Proof of Theorem 1.2 (1,2). It is immediate from the definition that

$$\mathcal{J}(\alpha_3)\mathcal{J}(\alpha_2)\alpha_1 = \mathcal{J}(\alpha_3)\beta_{1,1} = \alpha_1^*$$

so \mathfrak{M}_{14} is not 2-step Jacobi nilpotent.

We define $\beta_{4,1}^*$ and $\beta_{4,2}^*$ by the relations: $\langle \beta_{4,i}^*, \beta_{4,j} \rangle = \delta_{ij}$. We then have:

$$\beta_{4,1}^* = -\frac{8}{3}\beta_{4,1} - \frac{4}{3}\beta_{4,2}, \quad \beta_{4,2}^* = -\frac{4}{3}\beta_{4,1} - \frac{8}{3}\beta_{4,2}.$$

Let $\mathcal{A}_{ij} := \mathcal{A}(\alpha_i, \alpha_j)$. We show that \mathfrak{M}_{14} is not skew-Tsankov by computing:

$$\begin{split} &\mathcal{A}_{12}\mathcal{A}_{13}\alpha_3 = \mathcal{A}_{12}\beta_{1,2} = -\alpha_2^*, \\ &\mathcal{A}_{13}\mathcal{A}_{12}\alpha_3 = -\frac{1}{2}\mathcal{A}_{13}\{\beta_{4,1}^* - \beta_{4,2}^*\} = \mathcal{A}_{13}\{\frac{2}{3}\beta_{4,1} - \frac{2}{3}\beta_{4,2}\} = \frac{1}{3}\alpha_2^*. \end{split}$$

If $\xi \in \mathbb{R}^{14}$, then $\mathcal{J}(\xi)\alpha_i \subset V_{\beta,\alpha^*}$, $\mathcal{J}(\xi)\beta_{\nu} \subset V_{\alpha^*}$, and $\mathcal{J}(\xi)\alpha_i^* = 0$. Thus to show $\mathcal{J}(x)\mathcal{J}(y) = \mathcal{J}(y)\mathcal{J}(x)$ for all x, y, it suffices to show

$$\mathcal{J}(x)\mathcal{J}(y)\alpha_i = \mathcal{J}(y)\mathcal{J}(x)\alpha_i$$

for all x, y, i. Since $\mathcal{J}(x)\mathcal{J}(y)\alpha_i \in V_{\alpha^*}$, this can be done by establishing:

$$\langle \mathcal{J}(x)\alpha_i, \mathcal{J}(y)\alpha_i \rangle = \langle \mathcal{J}(y)\alpha_i, \mathcal{J}(x)\alpha_i \rangle$$

for all x, y, i, j. Since $\mathcal{J}(x_1, x_2)\alpha_i \in V_{\alpha^*}$ if either x_1 or $x_2 \in V_{\beta, \alpha^*}$, we may take $x_1 = \alpha_i$ and $x_2 = \alpha_j$. Let $\mathcal{J}_{ijk} := \mathcal{J}(\alpha_i, \alpha_j)\alpha_k$. We must show:

$$\langle \mathcal{J}_{i_1 i_2 i_3}, \mathcal{J}_{j_1 j_2 j_3} \rangle = \langle \mathcal{J}_{i_1 i_2 j_3}, \mathcal{J}_{j_1 j_2 i_3} \rangle \quad \forall i_1 i_2 i_3 j_1 j_2 j_3.$$

The non-zero components of $\mathcal{J}_{ijk} = \mathcal{J}_{jik}$ are:

$$\begin{split} &\mathcal{J}_{112}=\beta_{2,2}, \quad \mathcal{J}_{113}=\beta_{3,2}, \quad \mathcal{J}_{221}=\beta_{1,1}, \quad \mathcal{J}_{223}=\beta_{3,1}, \\ &\mathcal{J}_{331}=\beta_{1,2}, \quad \mathcal{J}_{332}=\beta_{2,1}, \quad \mathcal{J}_{121}=-\frac{1}{2}\beta_{2,2}, \, \mathcal{J}_{122}=-\frac{1}{2}\beta_{1,1}, \\ &\mathcal{J}_{131}=-\frac{1}{2}\beta_{3,2}, \, \mathcal{J}_{133}=-\frac{1}{2}\beta_{1,2}, \, \mathcal{J}_{232}=-\frac{1}{2}\beta_{3,1}, \, \mathcal{J}_{233}=-\frac{1}{2}\beta_{2,1}, \\ &\mathcal{J}_{132}=\frac{1}{4}\beta_{4,1}^*-\frac{1}{2}\beta_{4,2}^*=\beta_{4,2}, \qquad \mathcal{J}_{231}=-\frac{1}{2}\beta_{4,1}^*+\frac{1}{4}\beta_{4,2}^*=\beta_{4,1}, \\ &\mathcal{J}_{123}=\frac{1}{4}\beta_{4,1}^*+\frac{1}{4}\beta_{4,2}^*=-\beta_{4,1}-\beta_{4,2} \,. \end{split}$$

The non-zero inner products are:

$$\langle \mathcal{J}_{112}, \mathcal{J}_{332} \rangle = 1, \ \langle \mathcal{J}_{112}, \mathcal{J}_{233} \rangle = -\frac{1}{2}, \ \langle \mathcal{J}_{121}, \mathcal{J}_{332} \rangle = -\frac{1}{2}, \ \langle \mathcal{J}_{121}, \mathcal{J}_{233} \rangle = \frac{1}{4},$$

$$\langle \mathcal{J}_{113}, \mathcal{J}_{223} \rangle = 1, \ \langle \mathcal{J}_{113}, \mathcal{J}_{232} \rangle = -\frac{1}{2}, \ \langle \mathcal{J}_{131}, \mathcal{J}_{223} \rangle = -\frac{1}{2}, \ \langle \mathcal{J}_{232}, \mathcal{J}_{131} \rangle = \frac{1}{4},$$

$$\langle \mathcal{J}_{221}, \mathcal{J}_{331} \rangle = 1, \ \langle \mathcal{J}_{221}, \mathcal{J}_{133} \rangle = -\frac{1}{2}, \ \langle \mathcal{J}_{122}, \mathcal{J}_{331} \rangle = -\frac{1}{2}, \ \langle \mathcal{J}_{122}, \mathcal{J}_{133} \rangle = \frac{1}{4},$$

$$\langle \mathcal{J}_{123}, \mathcal{J}_{123} \rangle = \star, \ \langle \mathcal{J}_{123}, \mathcal{J}_{132} \rangle = \frac{1}{4}, \ \langle \mathcal{J}_{123}, \mathcal{J}_{231} \rangle = \frac{1}{4}, \ \langle \mathcal{J}_{132}, \mathcal{J}_{231} \rangle = \star.$$

The desired symmetries are now immediate:

$$\langle \mathcal{J}_{112}, \mathcal{J}_{233} \rangle = -\frac{1}{2} = \langle \mathcal{J}_{113}, \mathcal{J}_{232} \rangle, \quad \langle \mathcal{J}_{123}, \mathcal{J}_{132} \rangle = \frac{1}{4} = \langle \mathcal{J}_{122}, \mathcal{J}_{133} \rangle,$$

$$\langle \mathcal{J}_{121}, \mathcal{J}_{332} \rangle = -\frac{1}{2} = \langle \mathcal{J}_{122}, \mathcal{J}_{331} \rangle, \quad \langle \mathcal{J}_{123}, \mathcal{J}_{231} \rangle = \frac{1}{4} = \langle \mathcal{J}_{121}, \mathcal{J}_{233} \rangle,$$

$$\langle \mathcal{J}_{131}, \mathcal{J}_{223} \rangle = -\frac{1}{2} = \langle \mathcal{J}_{133}, \mathcal{J}_{221} \rangle, \quad \langle \mathcal{J}_{132}, \mathcal{J}_{231} \rangle = \frac{1}{4} = \langle \mathcal{J}_{131}, \mathcal{J}_{232} \rangle.$$

Proof of Theorem 1.2 (3,4). Let $\mathcal{G} = \mathcal{G}(\mathfrak{M}_{14})$ be the group of symmetries of the model \mathfrak{M}_{14} . Note that the spaces V_{β,α^*} and V_{α^*} are preserved by \mathcal{G} , i.e.

$$TV_{\alpha^*} \subset V_{\alpha^*}$$
 and $TV_{\beta,\alpha^*} \subset V_{\beta,\alpha^*}$ if $T \in \mathcal{G}$. (2)

Let $\tau: \mathcal{G} \to GL(3)$ be the restriction of T to $V_{\alpha^*} = \mathbb{R}^3$. We will prove Theorem 1.2 (3) by showing:

$$SL_{+}(3) = \tau(\mathcal{G})$$
 and $\ker(\tau) = \mathbb{R}^{21}$.

We argue as follows to show $SL_{\pm}(3) \subset \tau(\mathcal{G})$. Let $\beta_{4,3} := -\beta_{4,1} - \beta_{4,2}$. One may interchange the first two coordinates by setting:

$$T: \alpha_1 \leftrightarrow \alpha_2, \quad T: \alpha_3 \leftrightarrow \alpha_3, \quad T: \alpha_1^* \leftrightarrow \alpha_2^*, \quad T: \alpha_3^* \leftrightarrow \alpha_3^*,$$

 $T: \beta_{1,1} \leftrightarrow \beta_{2,2}, T: \beta_{1,2} \leftrightarrow \beta_{2,1}, T: \beta_{3,1} \leftrightarrow \beta_{3,2}, T: \beta_{4,1} \leftrightarrow \beta_{4,2}.$

One may interchange the first and third coordinates by setting:

$$T: \alpha_1 \leftrightarrow \alpha_3, \quad T: \alpha_2 \leftrightarrow \alpha_2, \quad T: \alpha_1^* \leftrightarrow \alpha_3^*, \quad T: \alpha_2^* \leftrightarrow \alpha_2^*,$$

$$T: \beta_{1,1} \leftrightarrow \beta_{3,1}, \quad T: \beta_{1,2} \leftrightarrow \beta_{3,2}, \quad T: \beta_{2,1} \leftrightarrow \beta_{2,2}, \quad T: \beta_{4,1} \leftrightarrow \beta_{4,3},$$

$$T: \beta_{4,2} \leftrightarrow \beta_{4,2}.$$

To form a rotation in the first two coordinates, we set

$$\begin{split} T_{\theta}: \alpha_{1} &\rightarrow \cos\theta\alpha_{1} + \sin\theta\alpha_{2}, & T_{\theta}: \alpha_{2} \rightarrow -\sin\theta\alpha_{1} + \cos\theta\alpha_{2}, \\ T_{\theta}: \alpha_{1}^{*} &\rightarrow \cos\theta\alpha_{1}^{*} + \sin\theta\alpha_{2}^{*}, & T_{\theta}: \alpha_{2}^{*} \rightarrow -\sin\theta\alpha_{1}^{*} + \cos\theta\alpha_{2}^{*}, \\ T_{\theta}: \alpha_{3} &\rightarrow \alpha_{3}, & T_{\theta}: \alpha_{3}^{*} \rightarrow \alpha_{3}^{*}, \\ T_{\theta}: \beta_{1,1} &\rightarrow \cos\theta\beta_{1,1} + \sin\theta\beta_{2,2}, & T_{\theta}: \beta_{1,2} \rightarrow \cos\theta\beta_{1,2} + \sin\theta\beta_{2,1}, \\ T_{\theta}: \beta_{2,1} &\rightarrow -\sin\theta\beta_{1,2} + \cos\theta\beta_{2,1}, & T_{\theta}: \beta_{2,2} \rightarrow -\sin\theta\beta_{1,1} + \cos\theta\beta_{2,2}, \\ T_{\theta}: \beta_{3,1} &\rightarrow \sin^{2}\theta\beta_{3,2} - 2\sin\theta\cos\theta\beta_{4,3} + \cos^{2}\theta\beta_{3,1}, \\ T_{\theta}: \beta_{3,2} &\rightarrow \cos^{2}\theta\beta_{3,2} + 2\cos\theta\sin\theta\beta_{4,3} + \sin^{2}\theta\beta_{3,1}, \\ T_{\theta}: \beta_{4,1} &\rightarrow \frac{1}{2}\sin\theta\cos\theta\beta_{3,2} - \frac{1}{2}\sin\theta\cos\theta\beta_{3,1} - \sin^{2}\theta\beta_{4,2} + \cos^{2}\theta\beta_{4,1}, \\ T_{\theta}: \beta_{4,2} &\rightarrow \frac{1}{2}\sin\theta\cos\theta\beta_{3,2} - \frac{1}{2}\sin\theta\cos\theta\beta_{3,1} + \cos^{2}\theta\beta_{4,2} - \sin^{2}\theta\beta_{4,1}. \end{split}$$

Finally, we show that the dilatations of determinant 1 belong to Range $\{\tau\}$. Suppose $a_1a_2a_3=1$. We set

$$T\alpha_{1} = a_{1}\alpha_{1}, \quad T\alpha_{2} = a_{2}\alpha_{2}, \quad T\alpha_{3} = a_{3}\alpha_{3}, \quad T\alpha_{1}^{*} = \frac{1}{a_{1}}\alpha_{1}^{*},$$

$$T\alpha_{2}^{*} = \frac{1}{a_{2}}\alpha_{2}^{*}, \quad T\alpha_{3}^{*} = \frac{1}{a_{3}}\alpha_{3}^{*}, \quad T\beta_{1,1} = \frac{a_{2}}{a_{3}}\beta_{1,1}, \quad T\beta_{1,2} = \frac{a_{3}}{a_{2}}\beta_{1,2},$$

$$T\beta_{2,1} = \frac{a_{3}}{a_{1}}\beta_{2,1}, \quad T\beta_{2,2} = \frac{a_{1}}{a_{3}}\beta_{2,2}, \quad T\beta_{3,1} = \frac{a_{2}}{a_{1}}\beta_{3,1}, \quad T\beta_{3,2} = \frac{a_{1}}{a_{2}}\beta_{3,2},$$

$$T\beta_{4,1} = \beta_{4,1}, \quad T\beta_{4,2} = \beta_{4,2}.$$

Since these elements acting on V_{α^*} generate $SL_{\pm}(3)$, $SL_{\pm}(3) \subset \tau(\mathcal{G})$. Conversely, let $T \in \mathcal{G}$. We must show $\tau(T) \in SL_{\pm}(3)$. As $SL_{\pm}(3) \subset \text{Range}(\tau)$, there exists $S \in \mathcal{G}$ so that $\tau(TS)$ is diagonal. Thus without loss of generality, we may assume $\tau(T)$ is diagonal and hence:

$$T\alpha_i = a_i \alpha_i + \sum_{\nu} b_i^{\nu} \beta_{\nu} + \sum_{j} c_i^{j} \alpha_j^*, \quad T\beta_{\nu} = b_{\nu} \beta_{\nu} + \sum_{i} d_{\nu}^{i} \alpha_i^*, \quad T\alpha_i^* = a_i^{-1} \alpha_i^*.$$

The relations

$$\begin{aligned} &-\frac{1}{2} = A(T\alpha_1, T\alpha_2, T\alpha_3, T\beta_{4,1}) = -\frac{1}{2}a_1a_2a_3b_{4,1}, \\ &-\frac{1}{2} = \langle T\beta_{4,1}, T\beta_{4,1} \rangle = -\frac{1}{2}b_{4,1}b_{4,1} \end{aligned}$$

show that $b_{4,1}^2 = 1$ and thus $a_1 a_2 a_3 = \pm 1$. Thus Range $(\tau) = SL_{\pm}(3)$.

We complete the proof of Assertion (3) by studying $\ker(\tau)$. If one has $T \in \ker(\tau)$, then

$$T\alpha_i = \alpha_i + \sum_{\nu} b_i^{\nu} \beta_{\nu} + \sum_i c_i^j \alpha_i^*, \quad T\beta_{\nu} = \beta_{\nu} + \sum_i d_{\nu}^i \alpha_i^*, \quad T\alpha_i^* = \alpha_i^*.$$

Using the relations $A(\alpha_i, \alpha_j, \alpha_k, \alpha_l) = 0$ then leads to the following 6 linear equations the coefficients b_i^{ν} must satisfy:

$$\begin{split} 0 &= A(T\alpha_2, T\alpha_1, T\alpha_1, T\alpha_2) \\ &= 2A(b_2^{2,1}\beta_{2,1}, \alpha_1, \alpha_1, \alpha_2) + 2A(b_1^{1,2}\beta_{1,2}, \alpha_2, \alpha_2, \alpha_1) = 2b_2^{2,1} + 2b_1^{1,2}, \\ 0 &= A(T\alpha_3, T\alpha_1, T\alpha_1, T\alpha_3) \\ &= 2A(b_3^{3,1}\beta_{3,1}, \alpha_1, \alpha_1, \alpha_3) + 2A(b_1^{1,1}\beta_{1,1}, \alpha_3, \alpha_3, \alpha_1) = 2b_3^{3,1} + 2b_1^{1,1}, \\ 0 &= A(T\alpha_3, T\alpha_2, T\alpha_2, T\alpha_3) \\ &= 2A(b_3^{3,2}\beta_{3,2}, \alpha_2, \alpha_2, \alpha_3) + 2A(b_2^{2,2}\beta_{2,2}, \alpha_3, \alpha_3, \alpha_2) = 2b_3^{3,2} + 2b_2^{2,2}, \\ 0 &= A(T\alpha_2, T\alpha_1, T\alpha_1, T\alpha_3) \\ &= A(b_2^{3,1}\beta_{3,1}, \alpha_1, \alpha_1, \alpha_3) + A(\alpha_2, \alpha_1, \alpha_1, b_3^{2,1}\beta_{2,1}) \\ &+ A(\alpha_2, b_1^{4,1}\beta_{4,1} + b_1^{4,2}\beta_{4,2}, \alpha_1, \alpha_3) + A(\alpha_2, \alpha_1, b_1^{4,1}\beta_{4,1} + b_1^{4,2}\beta_{4,2}, \alpha_3) \\ &= b_2^{3,1} + b_3^{2,1} - \frac{1}{2}b_1^{4,1} - \frac{1}{2}b_1^{4,1} + \frac{1}{2}b_1^{4,2}, \\ 0 &= A(T\alpha_1, T\alpha_2, T\alpha_2, T\alpha_3) \\ &= A(b_1^{3,2}\beta_{3,2}, \alpha_2, \alpha_2, \alpha_3) + A(\alpha_1, \alpha_2, \alpha_2, b_3^{1,2}\beta_{1,2}) \\ &+ A(\alpha_1, b_2^{4,1}\beta_{4,1} + b_2^{4,2}\beta_{4,2}, \alpha_2, \alpha_3) + A(\alpha_1, \alpha_2, b_2^{4,1}\beta_{4,1} + b_2^{4,2}\beta_{4,2}, \alpha_3) \\ &= b_1^{3,2} + b_3^{1,2} - \frac{1}{2}b_2^{4,2} + \frac{1}{2}b_2^{4,1} - \frac{1}{2}b_2^{4,2}, \\ 0 &= A(T\alpha_1, T\alpha_3, T\alpha_3, T\alpha_2) \\ &= A(b_1^{2,2}\beta_{2,2}, \alpha_3, \alpha_3, \alpha_2) + A(\alpha_1, \alpha_3, \alpha_3, b_2^{1,1}\beta_{1,1}) \\ &+ A(\alpha_1, b_3^{4,1}\beta_{4,1} + b_3^{4,2}\beta_{4,2}, \alpha_3, \alpha_2) + A(\alpha_1, \alpha_3, b_3^{4,1}\beta_{4,1} + b_3^{4,2}\beta_{4,2}, \alpha_2) \\ &= b_1^{2,2} + b_1^{1,1} + \frac{1}{12}b_2^{4,2} + \frac{1}{12}b_3^{4,1}. \end{split}$$

These equations are linearly independent so there are 18 degrees of freedom in choosing the b's. Once the b's are known, the coefficients d_{ν}^{i} are determined

$$0 = \langle T\alpha_i, T\beta_{\nu} \rangle = d_{\nu}^i + \sum_{\mu} \langle \beta_{\nu}, \beta_{\mu} \rangle b_i^{\mu}.$$

The relation $\langle T\alpha_i, T\alpha_j \rangle = \delta_{ij}$ implies $c_i^j + c_j^i = 0$; this creates an additional 3 degrees of freedom. Thus $\ker(\tau)$ is isomorphic to the additive group \mathbb{R}^{21} . Let $\xi_i \in V$. Since $\mathcal{R}(\xi_1, \xi_2) \mathcal{J}(\xi_3) = \mathcal{J}(\xi_3) \mathcal{R}(\xi_1, \xi_2) = 0$ if any of the $\xi_i \in V_{\beta,\alpha^*}$, we may work modulo V_{β,α^*} and suppose that $\xi_i \in \operatorname{Span}\{\alpha_i\}$. Since $\mathcal{R}(\xi_1, \xi_2) = 0$ if the ξ_i are linearly dependent, we suppose ξ_1 and ξ_2 are linearly independent.

There are 2 cases to be considered. We first suppose $\xi_3 \in \text{Span}\{\xi_1, \xi_2\}$. The argument given above shows that a subgroup of \mathcal{G} isomorphic to $SL_{\pm}(3)$ acts $\text{Span}\{\alpha_i\}$. Thus we may suppose $\text{Span}\{\xi_1, \xi_2\} = \text{Span}\{\alpha_1, \alpha_2\}$ and that $\xi_3 = \alpha_1$. Since $\mathcal{A}(\xi_1, \xi_2) = c\mathcal{A}(\alpha_1, \alpha_2)$, we may also assume $\xi_1 = \alpha_1$ and $\xi_2 = \alpha_2$. Let $\mathcal{A}_{ij} := \mathcal{A}(\alpha_i, \alpha_i)$ and $\mathcal{J}_k := \mathcal{J}(\alpha_k)$. We establish the desired result by computing:

$$\begin{split} & \mathcal{A}_{12}\mathcal{J}_{1}\alpha_{1} = 0, & \mathcal{J}_{1}\mathcal{A}_{12}\alpha_{1} = -\mathcal{J}_{1}\beta_{2,2} = 0, \\ & \mathcal{A}_{12}\mathcal{J}_{1}\alpha_{2} = \mathcal{A}_{12}\beta_{2,2} = 0, & \mathcal{J}_{1}\mathcal{A}_{12}\alpha_{2} = \mathcal{J}_{1}\beta_{1,1} = 0, \\ & \mathcal{A}_{12}\mathcal{J}_{1}\alpha_{3} = \mathcal{A}_{12}\beta_{3,2} = 0, & \mathcal{J}_{1}\mathcal{A}_{12}\alpha_{3} = \frac{1}{2}\mathcal{J}_{1}(-\beta_{4,1}^{*} + \beta_{4,2}^{*}) = 0 \,. \end{split}$$

On the other hand, if $\{\xi_1, \xi_2, \xi_3\}$ are linearly independent, we can apply a symmetry in \mathcal{G} and rescale to assume $\xi_i = \alpha_i$. We complete the proof of Theorem 1.2 by computing:

$$\begin{split} \mathcal{A}_{12}\mathcal{J}_{3}\alpha_{1} &= \mathcal{A}_{12}\beta_{1,2} = -\alpha_{2}^{*}, & \mathcal{J}_{3}\mathcal{A}_{12}\alpha_{1} &= -\mathcal{J}_{3}\beta_{2,2} = -\alpha_{2}^{*}, \\ \mathcal{A}_{12}\mathcal{J}_{3}\alpha_{2} &= \mathcal{A}_{12}\beta_{2,1} = \alpha_{1}^{*}, & \mathcal{J}_{3}\mathcal{A}_{12}\alpha_{2} &= \mathcal{J}_{3}\beta_{1,1} = \alpha_{1}^{*}, \\ \mathcal{A}_{1,2}\mathcal{J}_{3}\alpha_{3} &= 0, & \mathcal{J}_{3}\mathcal{A}_{1,2}\alpha_{3} &= \frac{1}{2}\mathcal{J}_{3}(-\beta_{4,1}^{*} + \beta_{4,2}^{*}) = 0. \end{split}$$

Remark 2.1 If $\{e_1, e_2\}$ is an oriented orthonormal basis for a non-degenerate 2-plane π , one may define $\mathcal{R}(\pi) := \mathcal{R}(e_1, e_2)$ and one may define $\mathcal{J}(\pi) := \langle e_1, e_1 \rangle \mathcal{J}(e_1) + \langle e_2, e_2 \rangle \mathcal{J}(e_2)$. These operators are independent of the particular orthonormal basis chosen. Stanilov and Videv [8] have shown that if \mathcal{M} is a 4-dimensional Riemannian manifold, then $\mathcal{R}(\pi)\mathcal{J}(\pi) = \mathcal{J}(\pi)\mathcal{R}(\pi)$ for all oriented 2-planes π if and only if \mathcal{M} is Einstein. Assertion (4) of Theorem 1.2 shows \mathfrak{M}_{14} has this property.

3. A geometric realization of \mathfrak{M}

We begin the proof of Theorem 1.3 with a general construction:

Definition 3.1 Let $\{x_i, x_i^*, y_\mu\}$ be coordinates on \mathbb{R}^{2a+b} where $1 \leq i \leq a$ and $1 \leq \mu \leq b$. We suppose given a non-degenerate symmetric matrix $C_{\mu\nu}$ and smooth functions $\psi_{ij\mu} = \psi_{ij\mu}(\vec{x})$ with $\psi_{ij\mu} = \psi_{ji\mu}$. Consider the

pseudo-Riemannian manifold $\mathcal{M}_{C,\psi} := (\mathbb{R}^{2a+b}, g_{C,\psi})$, where:

$$g_{C,\psi}(\partial_{x_i},\partial_{x_j}) = 2\sum_k y_\mu \psi_{ij\mu}, \quad g_{C,\psi}(\partial_{x_i},\partial_{x_i^*}) = 1, \quad g_{C,\psi}(\partial_{y_\mu},\partial_{y_\nu}) = C_{\mu\nu} \,.$$

Lemma 3.1 Let $\mathcal{M}_{C,\psi} = (\mathbb{R}^{2a+b}, g_{C,\psi})$ be as in Definition 3.1. Then

- (1) $\mathcal{M}_{C,\psi}$ is geodesically complete.
- (2) For all $P \in \mathbb{R}^{2a+b}$, \exp_P is a diffeomorphism from $T_P(\mathbb{R}^{2a+b})$ to \mathbb{R}^{2a+b} .
- (3) The possibly non-zero components of the curvature tensor are, up to the usual \mathbb{Z}_2 symmetries given by:

$$\begin{split} R(\partial_{x_i}, \partial_{x_j}, \partial_{x_k}, \partial_{y_\nu}) &= -\partial_{x_i} \psi_{jk\nu} + \partial_{x_j} \psi_{ik\nu}, \\ R(\partial_{x_i}, \partial_{x_j}, \partial_{x_k}, \partial_{x_l}) &= \sum_{\nu\mu} C^{\nu\mu} \left\{ \psi_{ik\mu} \psi_{jl\nu} - \psi_{il\mu} \psi_{jk\nu} \right\} \\ &+ \sum_{\nu} y_{\nu} \left\{ \partial_{x_i} \partial_{x_k} \psi_{jl\nu} + \partial_{x_j} \partial_{x_l} \psi_{ik\nu} - \partial_{x_i} \partial_{x_l} \psi_{jk\nu} - \partial_{x_j} \partial_{x_k} \psi_{il\nu} \right\} \,. \end{split}$$

Proof. The non-zero Christoffel symbols of the first kind are given by:

$$g(\nabla_{\partial_{x_i}}\partial_{x_j}, \partial_{x_k}) = \sum_{\mu} \{\partial_{x_i}\psi_{jk\mu} + \partial_{x_j}\psi_{ik\mu} - \partial_{x_k}\psi_{ij\mu}\} y_{\mu},$$

$$g(\nabla_{\partial_{x_i}}\partial_{x_j}, \partial_{y_{\nu}}) = -\psi_{ij\nu},$$

$$g(\nabla_{\partial_{x_i}}\partial_{y_{\nu}}, \partial_{x_k}) = g(\nabla_{\partial_{y_{\nu}}}\partial_{x_i}, \partial_{x_k}) = \psi_{ik\nu},$$

and the non-zero Christoffel symbols of the second kind are given by:

$$\begin{split} &\nabla_{\partial_{x_i}}\partial_{x_j} = \sum_{\mu} y_{\mu} \{\partial_{x_i}\psi_{jk\mu} + \partial_{x_j}\psi_{ik\mu} - \partial_{x_k}\psi_{ij\mu}\}\partial_{x_k^*} - \sum_{\mu\nu} C^{\nu\mu}\psi_{ij\nu}\partial_{y_{\mu}}, \\ &\nabla_{\partial_{x_i}}\partial_{y_{\nu}} = \nabla_{\partial_{y_{\nu}}}\partial_{x_i} = \sum_{k} \psi_{ik\nu}\partial_{x_k^*}. \end{split}$$

This shows that \mathcal{M} is a generalized plane wave manifold; Assertions (1) and (2) then follow from results in [7]. Assertion (3) now follows by a direct calculation.

Proof of Theorem 1.3 (1)-(3) Assertions (1) and (2) of Theorem 1.3 follow by specializing the corresponding results of Lemma 3.1. We use Assertion (3) of Lemma 3.1 to see that the possibly non-zero components of the curvature tensor defined by the metric of Definition 1.3 are:

$$\begin{split} R(\partial_{x_{i_{1}}},\partial_{x_{i_{2}}},\partial_{x_{i_{3}}},\partial_{x_{i_{4}}}) &= \star, \\ R(\partial_{x_{1}},\partial_{x_{2}},\partial_{y_{2,1}},\partial_{x_{1}}) &= \partial_{x_{2}}\phi_{2,1}, \quad R(\partial_{x_{1}},\partial_{x_{3}},\partial_{y_{3,1}},\partial_{x_{1}}) &= \partial_{x_{3}}\phi_{3,1}, \\ R(\partial_{x_{2}},\partial_{x_{3}},\partial_{y_{3,2}},\partial_{x_{2}}) &= \partial_{x_{3}}\phi_{3,2}, \quad R(\partial_{x_{2}},\partial_{x_{1}},\partial_{y_{1,2}},\partial_{x_{2}}) &= \partial_{x_{1}}\phi_{1,2}, \\ R(\partial_{x_{3}},\partial_{x_{1}},\partial_{y_{1,1}},\partial_{x_{3}}) &= \partial_{x_{1}}\phi_{1,1}, \quad R(\partial_{x_{3}},\partial_{x_{2}},\partial_{y_{2,2}},\partial_{x_{3}}) &= \partial_{x_{2}}\phi_{2,2}, \\ R(\partial_{x_{2}},\partial_{x_{1}},\partial_{y_{4,1}},\partial_{x_{3}}) &= R(\partial_{x_{3}},\partial_{x_{1}},\partial_{y_{4,1}},\partial_{x_{2}}) &= -\frac{1}{2}, \\ R(\partial_{x_{1}},\partial_{x_{2}},\partial_{y_{4,2}},\partial_{x_{3}}) &= R(\partial_{x_{3}},\partial_{x_{2}},\partial_{y_{4,2}},\partial_{x_{1}}) &= -\frac{1}{2}. \end{split}$$

We introduce the following basis as a first step in the proof of Assertion (3). Let the index i range from 1 to 3 and the index j run from 1 to 2. Set:

$$\bar{\alpha}_i := \partial_{x_i}, \quad \alpha_i^* := \partial_{x_i^*}, \quad \bar{\beta}_{4,j} := \partial_{y_{4,j}}, \quad \bar{\beta}_{i,j} := \{\phi'_{i,j}\}^{-1}\partial_{y_{i,j}}.$$
 (3)

Since $\phi'_{i,1} \cdot \phi'_{i,2} = 1$, the relations of Equation (1) are satisfied. However, we still have the following potentially non-zero terms to deal with:

$$g(\bar{\alpha}_i, \bar{\alpha}_j) = \star$$
 and $R(\bar{\alpha}_i, \bar{\alpha}_j, \bar{\alpha}_k, \bar{\alpha}_l) = \star$.

To deal with the extra curvature terms, we introduce a modified basis setting:

$$\begin{split} \tilde{\alpha}_{1} &:= \bar{\alpha}_{1} + R(\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}, \bar{\alpha}_{1}) \bar{\beta}_{4,1} - \frac{1}{2} R(\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{2}, \bar{\alpha}_{1}) \bar{\beta}_{1,2}, \\ \tilde{\alpha}_{2} &:= \bar{\alpha}_{2} + R(\bar{\alpha}_{2}, \bar{\alpha}_{1}, \bar{\alpha}_{3}, \bar{\alpha}_{2}) \bar{\beta}_{4,2} - \frac{1}{2} R(\bar{\alpha}_{2}, \bar{\alpha}_{3}, \bar{\alpha}_{3}, \bar{\alpha}_{2}) \bar{\beta}_{2,2}, \\ \tilde{\alpha}_{3} &:= \bar{\alpha}_{3} - 2 R(\bar{\alpha}_{3}, \bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}) \bar{\beta}_{4,1} - \frac{1}{2} R(\bar{\alpha}_{1}, \bar{\alpha}_{3}, \bar{\alpha}_{3}, \bar{\alpha}_{1}) \bar{\beta}_{3,1}, \\ \beta_{1,1} &:= \bar{\beta}_{1,1} + \frac{1}{2} R(\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{2}, \bar{\alpha}_{1}) \alpha_{1}^{*}, & \beta_{1,2} &:= \bar{\beta}_{1,2} \\ \beta_{2,1} &:= \bar{\beta}_{2,1} + \frac{1}{2} R(\bar{\alpha}_{2}, \bar{\alpha}_{3}, \bar{\alpha}_{3}, \bar{\alpha}_{2}) \alpha_{2}^{*}, & \beta_{2,2} &:= \bar{\beta}_{2,2}, \\ \beta_{3,2} &:= \bar{\beta}_{3,2} + \frac{1}{2} R(\bar{\alpha}_{1}, \bar{\alpha}_{3}, \bar{\alpha}_{3}, \bar{\alpha}_{1}) \alpha_{3}^{*}, & \beta_{3,1} &:= \bar{\beta}_{3,1}, \\ \beta_{4,1} &:= \bar{\beta}_{4,1} + \frac{1}{2} R(\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}, \bar{\alpha}_{1}) \alpha_{1}^{*} - \frac{1}{4} R(\bar{\alpha}_{2}, \bar{\alpha}_{1}, \bar{\alpha}_{3}, \bar{\alpha}_{2}) \alpha_{2}^{*} \\ & - R(\bar{\alpha}_{3}, \bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}) \alpha_{3}^{*}, \\ \beta_{4,2} &:= \bar{\beta}_{4,2} - \frac{1}{4} R(\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}, \bar{\alpha}_{1}) \alpha_{1}^{*} + \frac{1}{2} R(\bar{\alpha}_{2}, \bar{\alpha}_{1}, \bar{\alpha}_{3}, \bar{\alpha}_{2}) \alpha_{2}^{*} \\ & + \frac{1}{2} R(\bar{\alpha}_{3}, \bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}) \alpha_{3}^{*}. \end{split}$$

All the normalizations of Equation (1) are satisfied except for the unwanted metric terms $g(\tilde{\alpha}_i, \tilde{\alpha}_j)$. To eliminate these terms and to exhibit a basis with the required normalizations, we set:

$$\alpha_i := \tilde{\alpha}_i - \frac{1}{2} \sum_j g(\tilde{\alpha}_i, \tilde{\alpha}_j) \alpha_j^*. \tag{5}$$

4. Isometry Invariants

We now turn to the task of constructing invariants.

Lemma 4.1 Adopt the assumptions of Theorem 1.4. Let $\{\alpha_i, \beta_{\nu}, \alpha_i^*\}$ be defined by Equations (3)-(5). Set $\phi_1 := \phi'_{1,1}$ and $\phi_2 := \phi'_{1,2}$.

- (1) $\nabla R(v_1, v_2, v_3, v_4; v_5) = 0$ if at least one of the $v_i \in V_{\alpha^*}$.
- (2) $\nabla R(v_1, v_2, v_3, v_4; v_5) = 0$ if at least two of the $v_i \in V_{\beta, \alpha^*}$.

- (3) $\nabla^k R(\alpha_1, \alpha_2, \alpha_2, \beta_{1,2}; \alpha_1, ..., \alpha_1) = \phi_2^{-1} \phi_2^{(k)}$.
- (4) $\nabla^k R(\alpha_1, \alpha_3, \alpha_3, \beta_{1,1}; \alpha_1, ..., \alpha_1) = \phi_1^{-1} \phi_1^{(k)}$.
- (5) $\nabla R(\alpha_i, \alpha_j, \alpha_k, \beta_{\nu}; \alpha_{l_1}, ..., \alpha_{l_k}) = 0$ in cases other than those given in (3) and (4) up to the usual \mathbb{Z}_2 symmetry in the first 2 entries.

Proof. Let v_i be coordinate vector fields. To prove Assertion (1), we suppose some $v_i \in V_{\alpha^*}$. We may use the second Bianchi identity and the other curvature symmetries to assume without loss of generality $v_1 \in V_{\alpha^*}$. Since $\nabla_{v_5} v_1 = 0$ and since $R(v_1, \cdot, \cdot, \cdot) = 0$, Assertion (1) follows. The proof of the second assertion is similar and uses the fact that $R(\cdot, \cdot, \cdot, \cdot) = 0$ if 2-entries belong to V_{β,α^*} . The proof of the remaining assertions is similar and uses the particular form of the warping functions $\phi_{i,j}$; the factor of $\phi_{1,j}^{-1}$ arising from the normalization in Equation (3).

Definition 4.1 We say that a basis $\tilde{\mathcal{B}} := \{\tilde{\alpha}_i, \tilde{\beta}_{\nu}, \tilde{\alpha}_i^*\}$ is 0-normalized if the normalizations of Equation (1) are satisfied and 1-normalized if it is 0-normalized and if additionally

$$\nabla R(\tilde{\alpha}_{1}, \tilde{\alpha}_{3}, \tilde{\alpha}_{3}, \tilde{\beta}_{1,1}; \tilde{\alpha}_{1}) = -\nabla R(\tilde{\alpha}_{3}, \tilde{\alpha}_{1}, \tilde{\alpha}_{3}, \tilde{\beta}_{1,1}; \tilde{\alpha}_{1}) \neq 0,$$

$$\nabla R(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \tilde{\alpha}_{2}, \tilde{\beta}_{1,2}; \tilde{\alpha}_{1}) = -\nabla R(\tilde{\alpha}_{2}, \tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \tilde{\beta}_{1,2}; \tilde{\alpha}_{1}) \neq 0,$$

$$\nabla R(\tilde{\alpha}_{i}, \tilde{\alpha}_{i}, \tilde{\alpha}_{k}, \tilde{\beta}_{\nu}; \tilde{\alpha}_{l}) = 0 \quad \text{otherwise}.$$

Lemma 4.2 Adopt the assumptions of Theorem 1.4. Then:

- (1) There exists a 1-normalized basis.
- (2) If $\tilde{\mathcal{B}}$ is a 1-normalized basis, then there exist constants a_i so $a_1a_2a_3 = \varepsilon$ for $\varepsilon = \pm 1$ and so that exactly one of the following conditions holds:

$$\begin{split} (a) \ \ \tilde{\alpha}_1 &= a_1\alpha_1, \ \tilde{\alpha}_2 = a_2\alpha_2, \ \tilde{\alpha}_3 = a_3\alpha_3, \\ \ \ \tilde{\beta}_{1,1} &= \varepsilon \frac{a_2}{a_3}\beta_{1,1}, \ \tilde{\beta}_{1,2} = \varepsilon \frac{a_3}{a_2}\beta_{1,2}. \\ (b) \ \ \tilde{\alpha}_1 &= a_1\alpha_1, \ \tilde{\alpha}_2 = a_3\alpha_3, \ \tilde{\alpha}_3 = a_2\alpha_2, \\ \ \ \tilde{\beta}_{1,1} &= \varepsilon \frac{a_3}{a_2}\beta_{1,2}, \ \tilde{\beta}_{1,2} = \varepsilon \frac{a_2}{a_3}\beta_{1,1}. \end{split}$$

Proof. We use Equations (3), (4), and (5) to construct a 0-normalized basis and then apply Lemma 4.1 to see this basis is 1-normalized. On the other hand, if $\tilde{\mathcal{B}}$ is a 1-normalized basis, we may expand:

$$\begin{split} \tilde{\alpha}_1 &= a_{11}\alpha_1 + a_{12}\alpha_2 + a_{13}\alpha_3 + \ldots, \\ \tilde{\alpha}_2 &= a_{21}\alpha_1 + a_{22}\alpha_2 + a_{23}\alpha_3 + \ldots, & \tilde{\beta}_{1,2} &= b_{21}\beta_{1,1} + b_{22}\beta_{1,2} + \ldots \\ \tilde{\alpha}_3 &= a_{31}\alpha_1 + a_{32}\alpha_2 + a_{33}\alpha_3 + \ldots, & \tilde{\beta}_{1,1} &= b_{11}\beta_{1,1} + b_{12}\beta_{1,2} + \ldots. \end{split}$$

Because

$$0 \neq \nabla R(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \tilde{\alpha}_{2}, \tilde{\beta}_{1,2}; \tilde{\alpha}_{1})$$

$$= a_{11} \left\{ (a_{11}a_{22} - a_{12}a_{21})a_{22}b_{22})\phi_{2}^{-1}\phi_{2}' + (a_{11}a_{33} - a_{13}a_{31})a_{33}b_{21})\phi_{1}^{-1}\phi_{1}' \right\},$$

we have $a_{11} \neq 0$. Because

$$0 = \nabla R(\tilde{\alpha}_1, \tilde{\alpha}_2, \tilde{\alpha}_2, \tilde{\beta}_{1,2}; \tilde{\alpha}_2) = \frac{a_{21}}{a_{11}} \nabla R(\tilde{\alpha}_1, \tilde{\alpha}_2, \tilde{\alpha}_2, \tilde{\beta}_{1,2}; \tilde{\alpha}_1),$$

we have $a_{21} = 0$; similarly $a_{31} = 0$. Since $\operatorname{Span}\{\alpha_i\} = \operatorname{Span}\{\tilde{\alpha}_i\} \mod V_{\beta,\alpha^*}$,

$$a_{22}a_{33} - a_{23}a_{32} \neq 0$$
.

By hypothesis $R(\tilde{\alpha}_1, \tilde{\alpha}_2, \tilde{\alpha}_3, \beta; \tilde{\alpha}_1) = 0$ if $\beta \in \text{Span}\{\tilde{\beta}_{\nu}, \tilde{\alpha}_i^*\} = V_{\beta, \alpha^*}$ so

$$0 = R(\tilde{\alpha}_1, \tilde{\alpha}_2, \tilde{\alpha}_3, \beta_{1,2}; \tilde{\alpha}_1) = a_{11}^2 a_{22} a_{32} \phi_2^{-1} \phi_2',$$

$$0 = R(\tilde{\alpha}_1, \tilde{\alpha}_2, \tilde{\alpha}_3, \beta_{1,1}; \tilde{\alpha}_1) = a_{11}^2 a_{23} a_{33} \phi_1^{-1} \phi_1'.$$

Suppose that $a_{22} \neq 0$. Since $a_{11}^2 a_{22} a_{32} = 0$ and $a_{11} \neq 0$, $a_{32} = 0$. Since $a_{22} a_{33} - a_{23} a_{32} \neq 0$, $a_{33} \neq 0$. Since $a_{11}^2 a_{23} a_{33} = 0$, we also have $a_{23} = 0$. Since the basis is also 0-normalized, $diag(a_{11}^{-1}, a_{22}^{-1}, a_{33}^{-1}) \in SL_{\pm}(3)$ from the discussion in Section 2. Thus $\varepsilon := a_{11} a_{22} a_{33} = \pm 1$, $b_{11} = \varepsilon \frac{a_{33}}{a_{22}}$, and $b_{22} = \varepsilon \frac{a_{22}}{a_{33}}$. These are the relations of Assertion (2a). The argument is similar if $a_{32} \neq 0$; we simply reverse the roles of $\tilde{\alpha}_2$ and $\tilde{\alpha}_3$ to establish the relations of Assertion (2b).

Proof of Theorem 1.4. Let

$$\Xi(\mathcal{B}) := \frac{1}{4} \left\{ \frac{\nabla^2 R(\tilde{\alpha}_1, \tilde{\alpha}_2, \tilde{\alpha}_2, \tilde{\beta}_{1,2}; \tilde{\alpha}_1, \tilde{\alpha}_1)}{\{\nabla R(\tilde{\alpha}_1, \tilde{\alpha}_2, \tilde{\alpha}_2, \tilde{\beta}_{1,2}; \tilde{\alpha}_1)\}^2} - \frac{\nabla^2 R(\tilde{\alpha}_1, \tilde{\alpha}_3, \tilde{\alpha}_3, \tilde{\beta}_{1,1}; \tilde{\alpha}_1, \tilde{\alpha}_1)}{\{\nabla R(\tilde{\alpha}_1, \tilde{\alpha}_3, \tilde{\alpha}_3, \tilde{\beta}_{1,1}; \tilde{\alpha}_1)\}^2} \right\}^2$$

We apply Lemma 4.2. Suppose the conditions of Assertion (2a) hold. Then:

$$\nabla R(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \tilde{\alpha}_{2}, \tilde{\beta}_{1,2}; \tilde{\alpha}_{1}) = a_{1}\phi_{2}^{-1}\phi_{2}',$$

$$\nabla^{2}R(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \tilde{\alpha}_{2}, \tilde{\beta}_{1,2}; \tilde{\alpha}_{1}, \tilde{\alpha}_{1}) = a_{1}^{2}\phi_{2}^{-1}\phi_{2}'',$$

$$\nabla R(\tilde{\alpha}_{1}, \tilde{\alpha}_{3}, \tilde{\alpha}_{3}, \tilde{\beta}_{1,1}; \tilde{\alpha}_{1}) = a_{1}\phi_{1}^{-1}\phi_{1}',$$

$$\nabla^{2}R(\tilde{\alpha}_{1}, \tilde{\alpha}_{3}, \tilde{\alpha}_{3}, \tilde{\beta}_{1,1}; \tilde{\alpha}_{1}, \tilde{\alpha}_{1}) = a_{1}^{2}\phi_{1}^{-1}\phi_{1}'',$$

$$\Xi(\mathcal{B}) = \frac{1}{4} \left\{ \frac{\phi_2 \phi_2''}{\phi_2' \phi_2'} - \frac{\phi_1 \phi_1''}{\phi_1' \phi_1'} \right\}^2.$$

The roles of ϕ_1 and ϕ_2 are reversed if Assertion (2b) holds. It now follows that Ξ is a local isometry invariant. Since $\phi_2 = \phi_1^{-1}$, $\phi_2' = -\phi_1^{-2}\phi_1'$,

 $\phi_2'' = 2\phi_1^{-3}\phi_1'\phi_1' - \phi_1^{-2}\phi_1''$, we may establish Assertion (1) of Theorem 1.4 by computing

$$\frac{\phi_2\phi_2''}{\phi_2'\phi_2'} = \frac{\phi_1^{-1}(2\phi_1^{-3}\phi_1'\phi_1' - \phi_1^{-2}\phi_1'')}{\phi_1^{-4}\phi_1'\phi_1'} = 2 - \frac{\phi_1\phi_1''}{\phi_1'\phi_1'} \,.$$

Consequently

$$\Xi = \frac{1}{4} \left\{ 2 - 2 \frac{\phi_1 \phi_1''}{\phi_1' \phi_1'} \right\}^2.$$

If \mathcal{M}_{Φ} is locally homogeneous, then Ξ must be constant. Conversely, if Ξ is constant, then $\phi_1\phi_1''=k\phi_1'\phi_1'$ for some $k\in\mathbb{R}$. The solutions to this ordinary differential equation take the form $\phi_1(t)=a(t+b)^c$ if $k\neq 1$ and $\phi_1(t)=ae^{bt}$ if k=1 for suitably chosen constants a and b and for c=c(k). The first family is ruled out as ϕ_1 and ϕ_1' must be invertible for all t. Thus $\phi_1(t)$ is a pure exponential; Assertion (2) of Theorem 1.4 follows.

5. A symmetric space with model \mathfrak{M}_{14}

We give the proof of Theorem 1.5 as follows. Let \mathcal{M}_A be as described in Definition 1.4. By Lemma 3.1 one has that:

$$\begin{split} R(\partial_{x_2},\partial_{x_1},\partial_{x_1},\partial_{y_{2,1}}) &= R(\partial_{x_3},\partial_{x_1},\partial_{x_1},\partial_{y_{3,1}}) = 1, \\ R(\partial_{x_3},\partial_{x_2},\partial_{x_2},\partial_{y_{3,2}}) &= R(\partial_{x_1},\partial_{x_2},\partial_{x_2},\partial_{y_{1,2}}) = 1, \\ R(\partial_{x_1},\partial_{x_3},\partial_{x_3},\partial_{y_{1,1}}) &= R(\partial_{x_2},\partial_{x_3},\partial_{x_3},\partial_{y_{2,2}}) = 1, \\ R(\partial_{x_1},\partial_{x_2},\partial_{x_3},\partial_{y_{4,1}}) &= R(\partial_{x_1},\partial_{x_3},\partial_{x_2},\partial_{y_{4,1}}) = -\frac{1}{2}, \\ R(\partial_{x_2},\partial_{x_3},\partial_{x_1},\partial_{y_{4,2}}) &= R(\partial_{x_2},\partial_{x_1},\partial_{x_3},\partial_{y_{4,2}}) = -\frac{1}{2}. \end{split}$$

The same argument constructing a 0-normalized basis which was given in the proof of Theorem 1.2 can then be used to construct a 0-normalized basis in this setting and establish that $\mathcal{M}_{\mathcal{A}}$ has 0-model \mathfrak{M}_{14} .

We can also apply Lemma 3.1 to see:

$$\begin{split} R(\partial_{x_1},\partial_{x_2},\partial_{x_2},\partial_{x_1}) &= -a_{3,1}a_{3,2}x_3^2, \\ R(\partial_{x_1},\partial_{x_3},\partial_{x_3},\partial_{x_1}) &= -\frac{1}{3}(2+3a_{2,1}a_{2,2})x_2^2, \\ R(\partial_{x_3},\partial_{x_2},\partial_{x_2},\partial_{x_3}) &= -\frac{1}{3}(2+3a_{1,1}a_{1,2})x_1^2, \\ R(\partial_{x_2},\partial_{x_1},\partial_{x_1},\partial_{x_3}) &= (1-a_{1,1}-a_{1,2}+a_{1,1}a_{1,2}+a_{2,1}-a_{2,1}a_{2,2}+a_{3,1}-a_{3,1}a_{3,2})x_2x_3, \\ R(\partial_{x_1},\partial_{x_2},\partial_{x_2},\partial_{x_3}) &= (1+a_{1,2}-a_{2,1}-a_{1,1}a_{1,2}-a_{2,2}+a_{2,1}a_{2,2}+a_{3,2}-a_{3,1}a_{3,2})x_1x_3, \\ R(\partial_{x_1},\partial_{x_3},\partial_{x_3},\partial_{x_2}) &= (\frac{2}{3}+a_{1,1}-a_{1,1}a_{1,2}+a_{2,2}-a_{2,1}a_{2,2}-a_{3,1}-a_{3,2}+a_{3,1}a_{3,2})x_1x_2. \end{split}$$

The Christoffel symbols describing $\nabla_{\partial_{x_i}} \partial_{x_j}$ are given by:

$$\begin{split} &\nabla_{\partial_{x_1}}\partial_{x_1} = (2-a_{2,1})y_{2,1}\partial_{x_2^*} + (2-a_{3,1})y_{3,1}\partial_{x_3^*} + a_{2,1}x_2\partial_{y_{2,2}} \\ &+ a_{3,1}x_3\partial_{y_{3,2}}, \\ &\nabla_{\partial_{x_2}}\partial_{x_2} = (2-a_{1,2})y_{1,2}\partial_{x_1^*} + (2-a_{3,2})y_{3,2}\partial_{x_3^*} + a_{1,2}x_1\partial_{y_{1,1}} \\ &+ a_{3,2}x_3\partial_{y_{3,1}}, \\ &\nabla_{\partial_{x_3}}\partial_{x_3} = (2-a_{1,1})y_{1,1}\partial_{x_1^*} + (2-a_{2,2})y_{2,2}\partial_{x_2^*} + a_{2,2}x_2\partial_{y_{2,1}} \\ &+ a_{1,1}x_1\partial_{y_{1,2}}, \\ &\nabla_{\partial_{x_1}}\partial_{x_2} = -a_{2,1}y_{2,1}\partial_{x_1^*} - a_{1,2}y_{1,2}\partial_{x_2^*} + \frac{y_{4,1}+y_{4,2}}{2}\partial_{x_3^*} \\ &+ (a_{1,2}-1)x_2\partial_{y_{1,1}} + (a_{2,1}-1)x_1\partial_{y_{2,2}}, \\ &\nabla_{\partial_{x_1}}\partial_{x_3} = -a_{3,1}y_{3,1}\partial_{x_1^*} + \frac{y_{4,1}-y_{4,2}}{2}\partial_{x_2^*} - a_{1,1}y_{1,1}\partial_{x_3^*} \\ &+ (a_{1,1}-1)x_3\partial_{y_{1,2}} + (a_{3,1}-1)x_1\partial_{y_{3,2}} + \frac{2x_2}{3}\partial_{y_{4,1}} + \frac{4x_2}{3}\partial_{y_{4,2}}, \\ &\nabla_{\partial_{x_2}}\partial_{x_3} = \frac{-y_{4,1}+y_{4,2}}{2}\partial_{x_1^*} - a_{3,2}y_{3,2}\partial_{x_2^*} - a_{2,2}y_{2,2}\partial_{x_3^*} \\ &+ (a_{2,2}-1)x_3\partial_{y_{2,1}} + (a_{3,2}-1)x_2\partial_{y_{3,1}} + \frac{4x_1}{3}\partial_{y_{4,1}} + \frac{2x_1}{3}\partial_{y_{4,2}}. \end{split}$$

It is now easy to show that the non-zero components of ∇R are:

$$\begin{split} \nabla R(\partial_{x_1},\partial_{x_2},\partial_{x_2},\partial_{x_1};\partial_{x_3}) &= -2(-2+a_{1,1}+a_{2,2}+a_{3,1}a_{3,2})x_3, \\ \nabla R(\partial_{x_1},\partial_{x_3},\partial_{x_3},\partial_{x_1};\partial_{x_2}) &= -\frac{2}{3}(-4+3a_{1,2}+3a_{3,2}+3a_{2,1}a_{2,2})x_2, \\ \nabla R(\partial_{x_2},\partial_{x_3},\partial_{x_3},\partial_{x_2};\partial_{x_1}) &= -\frac{2}{3}(-4+3a_{2,1}+3a_{3,1}+3a_{1,1}a_{1,2})x_1, \\ \nabla R(\partial_{x_2},\partial_{x_3},\partial_{x_3},\partial_{x_2};\partial_{x_1}) &= (2-a_{1,1}-a_{1,2}+a_{2,1}-a_{2,2}+a_{3,1}-a_{3,2}+a_{1,1}a_{1,2}-a_{2,1}a_{2,2}-a_{3,1}a_{3,2})x_3, \\ \nabla R(\partial_{x_2},\partial_{x_1},\partial_{x_1},\partial_{x_3};\partial_{x_3}) &= (2-a_{1,1}-a_{1,2}+a_{2,1}-a_{2,2}+a_{3,1}-a_{3,2}+a_{1,1}a_{1,2}-a_{2,1}a_{2,2}-a_{3,1}a_{3,2})x_2, \\ \nabla R(\partial_{x_1},\partial_{x_2},\partial_{x_3};\partial_{x_3}) &= (2-a_{1,1}+a_{1,2}-a_{2,1}-a_{2,2}-a_{3,1}a_{3,2})x_3, \\ \nabla R(\partial_{x_1},\partial_{x_2},\partial_{x_2},\partial_{x_3};\partial_{x_1}) &= (2-a_{1,1}+a_{1,2}-a_{2,1}-a_{2,2}-a_{3,1}a_{3,2})x_3, \\ \nabla R(\partial_{x_1},\partial_{x_2},\partial_{x_2},\partial_{x_3};\partial_{x_3}) &= (2-a_{1,1}+a_{1,2}-a_{2,1}-a_{2,2}-a_{3,1}a_{3,2})x_1, \\ \nabla R(\partial_{x_1},\partial_{x_2},\partial_{x_2},\partial_{x_3};\partial_{x_3}) &= (2-a_{1,1}+a_{1,2}-a_{2,1}-a_{2,2}-a_{3,1}a_{3,2})x_1, \\ \nabla R(\partial_{x_1},\partial_{x_3},\partial_{x_3},\partial_{x_2};\partial_{x_1}) &= (\frac{2}{3}+a_{1,1}-a_{1,2}-a_{2,1}+a_{2,2}-a_{3,1}a_{3,2})x_2, \\ \nabla R(\partial_{x_1},\partial_{x_3},\partial_{x_3},\partial_{x_2};\partial_{x_2}) &= (\frac{2}{3}+a_{1,1}-a_{1,2}-a_{2,1}+a_{2,2}-a_{2,1}+a_{2,2}-a_{3,1}-a_{3,2}-a_{1,1}a_{1,2}-a_{2,1}a_{2,2}+a_{3,1}a_{3,2})x_1. \end{split}$$

We set $\nabla R = 0$ to obtain the desired equations of Theorem 1.5; the first 3 equations generate the last 6.

References

1. N. Blažić, N. Bokan, and P. Gilkey, A Note on Osserman Lorentzian manifolds, Bull. London Math. Soc., 29 (1997), 227–230.

- N. Blažić, N. Bokan, and Z. Rakić, Osserman pseudo-Riemannian manifolds of signature (2, 2), Aust. Math. Soc. 71 (2001), 367–395.
- 3. M. Brozos-Vázquez and P. Gilkey, Manifolds with commuting Jacobi operators; math.DG/0507554.
- 4. M. Brozos-Vázquez and P. Gilkey, Pseudo-Riemannian manifolds with commuting Jacobi operators, preprint.
- E. García-Río, D. Kupeli, and M. E. Vázquez-Abal, On a problem of Osserman in Lorentzian geometry, Differential Geometry and its Applications 7 (1997), 85–100.
- E. García-Río, D. Kupeli, and R. Vázquez-Lorenzo, Osserman Manifolds in Semi-Riemannian Geometry, Lecture Notes in Math., 1777, Springer-Verlag, Berlin, 2002.
- P. Gilkey and S. Nikčević, Generalized plane wave manifolds, Kragujevac J. Math., 28 (2005), 113–138.
- 8. G. Stanilov and V. Videv, On the commuting of curvature operators, Mathematics and Education in Mathematics (In: Proceedings of the Thirty Third Spring Conference of the Union of Bulgarian Mathematicians Borovtes, April 1-4, 2004), Union of Bulgarian Mathematicians, Sofia (2004), 176–179.
- Y. Tsankov, A characterization of n-dimensional hypersurface in ℝⁿ⁺¹ with commuting curvature operators, Banach Center Publ. 69 (2005), 205– 209