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1. Introduction

Let V, R, R, and J denote the Levi-Civita connection, the curvature
operator, the curvature tensor, and the Jacobi operator, respectively, of a
pseudo-Riemannian manifold M := (M, g):

R(X,Y)=VxVy —VyVx —Vixy],
R(X,Y,Z,W) = g(R(X,Y)Z, W), and
J(@)y == R(y,r)z.

The relationship between algebraic properties of the Jacobi operator and
the underlying geometry of the manifold has been extensively studied in
recent years. For example, M is said to be Osserman if the eigenvalues of
J are constant on the pseudo-sphere bundles S* (M, g) of unit spacelike (+)
and timelike (—) tangent vectors; we refer to [2, 6] for a further discussion
in the pseudo-Riemannian context.

In this paper, we will focus our attention on a different algebraic property
of the Jacobi operator. One says M is Jacobi-Tsankov if one has that

J(@)T(y) = T(y) T (z) for all tangent vectors z,y. One says J is 2-step
Jacobi nilpotent if J(2)J (y) = 0 for all tangent vectors x,y. The notation
is motivated by the work of Tsankov [9)].

It is convenient to work in the algebraic setting.

Definition 1.1 Let V be a finite dimensional vector space.
(1) A€ ®*V*is an algebraic curvature tensor if A has the symmetries
of the curvature tensor:
(a) A(vi,v2,v3,0v4) = —A(v2,v1,03,04) = A(v3, V4,01, 2).
(b) A(v1,v2,v3,v1) + A(v2,v3,v1,04) + A(v3, v1,02,04) = 0.
Let 2(V) be the set of algebraic curvature tensors on V.

(2) M = (V,(-,-),A) is a 0-model if (-,-) is a non-degenerate inner
product of signature (p,q) on V and if A € (V). The associated
skew-symmetric curvature operator A(x,y) is characterized by

(Alz,y)z,w) = Az, y, 2, w),
and the associated Jacobi operator is given by J(z)y := A(y, x)x.
M is Jacobi-Tsankov it J(x)T (y) = T (y)T (x) for all z,y € V.
M is 2-step Jacobi nilpotent if J(x)J (y) =0 for all z,y € V.
M is skew-Tsankov if A(x1,z2)A(zs, 24) = A(zs, x4)A(x1, 22) for
all z; € V.. M is 2-step skew-curvature nilpotent if
Az, 22)A(rs,24) = 0 for all x; € V. M is mized-Tsankov if
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Alxy, 22)T (x3) = T(x3)A(x1,z2) for all z; € V. M is mized-
nilpotent-Tsankov if A(z1,x2)J (x3) = J(r3)A(x1,22) = 0 for all
z;, €V.

(6) The 0-model of M at P € M is given by setting

m(M,P) = (TPM, gp,Rp) .

(7) We say that M is a geometric realization of 9 and that M is
0-curvature homogeneous with model M if for any point P € M,
M(M, P) is isomorphic to I, i.e. if there exists an isomorphism
Op : TpM — V so that ©5{(:,-)} = gp and so that ©A = Rp.

The following results relate these concepts in the algebraic setting. They
show in particular that any Jacobi-Tsankov Riemannian (p = 0) or
Lorentzian (p = 1) manifold is flat:

Theorem 1.1 Let M := (V, (-,-), A) be a 0-model.
(1) Let MM be either Jacobi—Tsankov or mized-Tsankov. Then one has
that J ()% = 0. Furthermore, if p=0 or ifp=1, then A= 0.
(2) If M is Jacobi-Tsankov and if dim(V) < 14, M is 2-step Jacobi
nilpotent.
(3) The following conditions are equivalent if M is indecomposable:

(a) M is 2-step Jacobi nilpotent.

(b) M is 2-step skew-curvature nilpotent.

(c) We can decompose V.= W & W for W and W totally
isotropic subspaces of V and for A = Aw ® 0 where the
tensor Ay € A(W) is indecomposable.

Theorem 1.1 is sharp. There is a 14-dimensional model 914 which is
Jacobi—Tsankov but which is not 2-step Jacobi nilpotent. This example
will form the focus of our investigations in this paper. It may be defined as
follows; it is essentially unique up to isomorphism.

Definition 1.2 Let {a;,af,Bi1,8i2,81.1,B12} be a basis for R for
1 <i <3 Let My = (R™ {-,-), A) be the 0-model where the non-
zero components of (-,-) and of A are given, up to the usual symmetries,
by:

(i, af) = (Bin, Biz) = 1for 1 <i <3,

<54,1,54,1> = <54,2,54,2> = _%a <54,1,54,2> = %7

Aaz, a1, a1,B21) = Alas, a1, 01, 831) = 1,
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A a1>a2aa27612
A
A

A 043»042,0427532

B

ag, 3,03, F2.2

N

aq, o, a3, a1

( ) = A( ) =
(o1, a3, a3,61,1) = A( )
( ) = A, a3,a2,011) =
( ) = A( ) =

l\')\»—‘ [\D\»—l

Ao, a3, a1, B42) = Alog, a1, a3, Ba2

Let G(9M14) be the group of symmetries of the model:
G(Ma) = {T € GL(RM) : T*{{, )} = ("), T"A = A}.

Let SL+(3) := {A € GL(R3) : det(A) = +1}. In Section 2, we will
establish:

Theorem 1.2 Let My4 be as in Definition 1.2.
(1) My is Jacobi-Tsankov of signature (8,6).
(2) My is neither 2-step Jacobi nilpotent nor skew-Tsankov.
(3) There is a short exact sequence 1 — R — G(Myy) — SL(3) — 1.
(4) My is mized—Tsankov.

In Section 3, we will show that the model 91y, is geometrically realizable.
Thus there exist Jacobi-Tsankov manifolds which are not 2-step Jacobi
nilpotent. We introduce the following notation.

Definition 1.3 Let {z;, 2}, ¥ 1,%i,2,Y4,1,Yya2} for 1 <i < 3 be coordinates
on R'. Suppose given a collection of functions ® := {¢; ;} € C>°(R) such
that ¢} ¢, , = 1. Let Mg := (R', gg) where the non-zero components of
go are, up to the usual Zy symmetry, given by:

98 (0r;, 027 ) = 9o (0y, ,, 0y, ,) = 1 for 1 <i < 3,
<6y4 19 1/4 1) = g®(8y4,278y4,2) = _%7 g<1>(ay4,176y4,2) = iv
90 (0p1,02,) = —202.1(x2) Y21 — 2031 (23)Y3,1, 90 (0zy» Ons) = T1Y4,1,
90(0pyy 02,) = —2032(23)y3,2 — 201,2(21)Y1,2, 9802y, Os) = T2y .2,
(313, :v;;) = *2¢1 1(x1)y1 1—2¢2 Q(Iz)y2,2 .

Theorem 1.3 Let Mg = (R14,g¢) be as in Definition 1.3.
(1) Mg is geodesically complete.
(2) For all P € R, expp is a diffeomorphism from Tp(R™) to R,
(8) Mg has 0-model Myy.
(4) Mg is Jacobi-Tsankov but Mg is not 2-step Jacobi nilpotent.
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If we specialize the construction, we can say a bit more. We will establish
the following result in Section 4:

Theorem 1.4 Set ¢2’1(1}2) = ¢272(.’E2) = T2 and ¢371((E3) = ¢3’2(£E3) = X3
in Definition 1.3. Let {¢1,1,¢12} be real analytic with ¢ ;¢ 5, = 1 and
with ¢ ; # 0. Then
(1) Z:={1— ¢} 107" (¢7 1) 7%} is a local isometry invariant of Mg.
(2) If ¢ 1(z1) # be®, then = is not locally constant and hence Mg is
not locally homogeneous.

There are symmetric spaces which have model 914.

Definition 1.4 Let {z;, 2}, y;1,Yi2,Ya1,ya2} for 1 < i < 3 be coordi-
nates on R'". Let A := {a;;} be a collection of real constants. Let
M4 = (R g4) where the non-zero components of g4 are given, up to the
usual Zy symmetry, by:
gA(amwawj) = gA(ayi,l’ayi.2) =1for1<i<3,
gA 8?44,1’8?44,1) = gA(ay4,zvay4,2) = _%a gA(ay4,1»ay4,2) = iv
Oy, 02,) = —2a2,1%2Y21 — 2G31%3Y3.1,
) = —2a3,2T3Y3,2 — 2a1,271Y1 2,
) = —2a1,121Y1,1 — 2a2,272Y2 2,
Oy, 02,) = 2(1 — az,1)71y21 + 2(1 — a1,2)T2y1 2
9A(Ozy; 0ry) = T1ya1 + 2(1 — a3 2)T2y3 2 + 2(1 — az2)T3y2,2,
)==x

We will establish the following result in Section 5:

Theorem 1.5 Let M 4 be described by Definition 1.4. Then M has 0-
model Myy. Furthermore M 4 is locally symmetric if and only if

(1) a11 + az2+asgiaz2 = 2.
(2) 3az;1 +3az;1 + 3a12a1,1 = 4.
(3) 3&1,2 + 304372 + 3a2,1a2,2 =4.

2. The model Mt 4

We study the algebraic properties of the model My4. Introduce the polar-
ization

T (w1,22) 1y — 5(A(y, m1)32 + Ay, m2)71) .
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Let {3, } be an enumeration of {f; ;}1<i<4.1<;<2. The following spaces are
invariantly defined:

V,B,oz* = Span§i€R14{\7(£l)£2} = Span{/BlM a?}v
Vs := Spang, cg1a{J (£1)T (€2)€3} = Span{a; } .
Proof of Theorem 1.1. We have

J(x)=T(x,x) and J(z,y)x = —% J(z)y.

If 9 is Jacobi-Tsankov, then J(z1, 22)J (z3, x4) = J (23, 24)T (21, x2) for
all z;. We may show J ()% = 0 by computing:

0= T(@,9)T (@) = T(@)T (w,y)r = 5 T@)T @)y
Similarly, suppose that 9 is mixed—Tsankov, i.e.
Ale1,22)7 (2) = T (w3) Ala, )
for all z; € V. We show J ()2 = 0 in this setting as well by computing:
0 = Az, 1) T (@) = T (@) A, y)o = —T (2)T ()y.

We have shown that if 90 is either Jacobi-Tsankov or mixed-Tsankov, then
J(z)? = 0. Since the Jacobi operator is nilpotent, {0} is the only eigenvalue
of J so M is Osserman. If p = 0, then J(x) is diagonalizable. Thus
J(x)? = 0 implies J(x) = 0 for all z so A = 0. If p = 1, then M is
Osserman so 9 has constant sectional curvature [1, 5]; J(x)? =0, A = 0.
This establishes Assertion (1). Assertions (2) and (3) of Theorem 1.1 follow
from results in [4].

Proof of Theorem 1.2 (1,2). It is immediate from the definition that
J(az)T (a2)ar = J(a3)Bi1 = o)

so 9y, is not 2-step Jacobi nilpotent.
We define 3 | and f3; 5 by the relations: (0] ;,B4,5) = di;. We then have:

8 4 4 8
51,1 = *554,1 - 554,2, ﬂi,z = *5/34,1 - 554,2~

Let A;; := A(a;, ;). We show that 94 is not skew-Tsankov by comput-
ing:

Ao Arzag = A12f1,2 = —as,
AisArpag = =3 A1s{Bi1 — Bio} = A1s{36u1 — 5012} = 305
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If £ € R™, then J(¢)a; C Vaar, T(€)By C Var, and J(€)a; = 0. Thus to
show J(2)J (y) = J(y)T (z) for all x,y, it suffices to show

T ()T (y)ei = T ()T ()
for all z,y,i. Since J(x)J (y)a; € Vyur, this can be done by establishing:
(T (@)ai, T (y)ey) = (T (Y) e, T (x)a;)

for all x,y,4,j. Since J(x1,z2)a; € Vo= if either 1 or o € V3 o+, we may
take 21 = o and 22 = ;. Let Jiji := J (o, aj)ar. We must show:

(Tivigisr Tj1jngs) = (Tinvinjss Tjrjais) Viilaizj172Js -
The non-zero components of J;jr = Jji are:
Jie = Bo2,  Juz =PB32,  Joo1 = P, Je23 = B3,
Tss1 = P2, Taz2=Po1,  Ji21 = — 3622, Jiz2 = — P11,
Tzt = —20s.2, Jizs = —2B1,2, Jase = —363,1, Josz = — 32,1,
Jis2 = 051 — 5852 = Bazs Jos1 = =301 + 3852 = Bat,
Ji23 = 30851+ 1010 = —Ba1 — Baz.

The non-zero inner products are:

(T2, Taz2) = 1, (Ti12, Jess) = — 3, (Ji21, Tas2) = —%, (Jio1, Joss) = 1,
(Tis, Jazs) = 1, (Ti1s, Jes2) = — 5, (Jis1, Jo2s) = — %, (Jase, Tis1) = 1,
(Jo21, Tz31) = 1, (Ja21, Jiss) = —5, (Ji22, Ts31) = — %, (Jr22, Thss) = 1,
(J123, J123) = *, (J123, J132) = % (Th2s, Ja1) = 5, (Jis2, Jis2) = *,
(J132, Jo31) = i, (J231, Jos1) =

The desired symmetries are now immediate:
(T2, Jazs) = —% = (Tu1s, Jes2),  (Jizs, Jisz) = + = (J122, Jiss),
(Tho1, Tzz2) = —% = (Ti22, Ts31),  (Ti2s, Jos1) = & = (Ji21, Jass),
(Tis1, Tazs) = —5 = (Tizs, Je21),  (Tise, Jes1) = 5 = (Jis1, Jes2) -

Proof of Theorem 1.2 (3,4). Let G = G(9M14) be the group of symme-
tries of the model 9M14. Note that the spaces Vg o+ and V,+ are preserved
by G, i.e.

TVar CVor and TVgar CVgor if TEG. (2)
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Let 7 : G — GL(3) be the restriction of T to V,« = R3. We will prove
Theorem 1.2 (3) by showing:

SLi(3)=7(G) and ker(r) = R*'.
We argue as follows to show SLy(3) C 7(G). Let 843 := —84.1 — Ba,2- One
may interchange the first two coordinates by setting:
T:ap a0, T:oge—as, T:af a3 T:o0f< a3,
T:P1g < P22, T: B2 Bon, T P31 < P32, T: a1 < Paz-
One may interchange the first and third coordinates by setting:

T:oqg a3, T:ageoay, T:af —oaz, T:o5< 03,
T:p1a« P31, T: P12 B32,T: 021 B2z, T: 811 Pags,
T: 54,2 — 54,2 .
To form a rotation in the first two coordinates, we set
Ty : vy — cosBaq + sin O, Ty : g — —sinfBay + cosbas,
Ty : af — cosfaj +sinfas, Ty : oy — —sinfaj + cosfas,
Ty : az — as, Teia§—>a§,

Ty :B1,1 — cosOB1,1 +sinffao, Tp: P12 — cosOfyo+sindfBs,

Ty : fPo,1 — —sinbB1,2 +costfB21, Ty : Bap — —sindfB,1 + cos 082,

Ty : B31 — sin® 035 — 2sin 6 cos 034 3 + cos? 033 1,

Ty : P32 — cos? 0832+ 2cosfsinff, 3 + sin? 0831,

Ty : fag — 2sinfcosfBs 2 — 5 sinfcoshfs — sin? 0349 + cos? 0841,

Ty : a2 — 2sinbfcosfB3 2 — 3 sinfcos0fBs1 + cos? 032 — sin? 0341 .
Finally, we show that the dilatations of determinant 1 belong to Range{7}.
Suppose ajasaz = 1. We set

Tay =ar0q, Toas=asas, Taz=azas, Taj= ailaf,

Tas = a3, Toaj= Lo, Th=2p11, Thiz= %0,
TBo1 = 2P0, Th22 = GtP2,2, T30 = 2 P31, Ths2 = 33,2,

TBs1 = Ba1, TPaz=Pagz.

Since these elements acting on V,« generate SL1(3), SL+(3) C 7(G). Con-
versely, let T € G. We must show 7(T') € SL1(3). As SLy(3) C Range(T),
there exists S € G so that 7(T'S) is diagonal. Thus without loss of general-
ity, we may assume 7(7T) is diagonal and hence:

Ta; = a0+, bi”ﬁy—l—zj cgoz;‘, TB, =b,Bu+>, dia;, Tal = ai_loz;‘ .
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The relations
= A(Ton,Tas, Tas, Tu1) = —saiasasby 1,
= (T'B4,1,TB1,1) = —5ba,1ba;y

show that b7 ; = 1 and thus ajazas = £1. Thus Range(r) = SL+(3).

N[—= N|—

We complete the proof of Assertion (3) by studying ker(r). If one has
T € ker(7), then

To;=a; + Y, 08, +Y,cdat, T8, =8,+Y,daf, Taf=a;.

Using the relations A(a;, o, ax, ;) = 0 then leads to the following 6 linear
equations the coefficients b} must satisfy:

0= 14(TO(27 TOél, TOél, TO[Q)
= 2A(b§71ﬁ2,17 1,0, O[Q) + 2A(b},261,27 Ao, (2, Oél) = 2b§71 + 2b1727
0= A(TO(3,T(11,TO¢1,TO(3)

= 2A(b3" B3,1, 1, an, az) + 2A(by Br 1, g, s, ) = 2651 + 2677,
0= A(Ta3,Ta2,TOéQ,Ta3)

= 2A(b§’2ﬂ3,2,o¢2, o, a3) + 2A(b§’26272,a3, ag, Q) = 2b§’2 + 2027,
0=A(Tay, Tay,Tay, Tas)

= A(bg"lﬂal, a,ar,a3) + Aag, g, o, bg’lﬂz,l)

+A(az, 5%71/34,1 + b%’254,27 ar,az) + A(ag, o, bzll’lﬁz;,l + béf’zﬂzx,z, az)
B A B
A(Tay, Tag, Tas, Tas)
A(b?’253,2, g, a2, a3) + A, ag, g, b§’251,2)
+A(a, by Bag + by Baa, s, as) + Alan, as, by Bag + by Ba 2, as)
et
A(Ton,Tas, Tas, Tas)
A(bT? B2, a3, a3, a2) + Alar, az, a3, by B 1)
+A(r, by Bag +b3y% B2, s, an) + Alar, oz, by Bt + b3 Baa, as)
=b7% + byt + 305 + b5

0

0

These equations are linearly independent so there are 18 degrees of free-
dom in choosing the b’s. Once the b’s are known, the coefficients d!, are
determined

O = <T04i,Tﬁy> = d,l/ + Zu<ﬁuaﬁu>b5 .
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The relation (Te;, Tar;) = J;; implies cz + c;'- = 0; this creates an additional
3 degrees of freedom. Thus ker(7) is isomorphic to the additive group R?!.
Let & € V. Since R(£1,£2)T(&3) = J(&3)R(€1,&2) = 0 if any of the
& € Vgo-, we may work modulo Vs .+ and suppose that & € Span{«;}.
Since R(&1,&2) = 0 if the &; are linearly dependent, we suppose & and &
are linearly independent.

There are 2 cases to be considered. We first suppose &3 € Span{&1,&2}. The
argument given above shows that a subgroup of G isomorphic to SL4(3)
acts Span{a;}. Thus we may suppose Span{{;,&} = Span{a;,as} and
that £3 = ay. Since A(&1,&2) = cA(aq, ), we may also assume & = a3
and & = ag. Let A;; := Aoy, ) and Ji = J(ai). We establish the
desired result by computing:

ApJion =0, JiAean = —=J1622 =0,
AjoJiag = Aj2f22 =0, Ji Ao = J1p11 =0,
Aoz = A12332 = 0, TiAzas = $J1(=B5, + Bia) = 0.
On the other hand, if {£;,&2,&3} are linearly independent, we can apply a
symmetry in G and rescale to assume & = «;. We complete the proof of
Theorem 1.2 by computing:
ATz = A1251,2 = *0437 Tz Ap0 = *\7352,2 = *043,
ATz = A12f21 = of, T3 A200 = J3611 = of,
A1 2J303 =0, T3 A1 03 = $T5(—Bi, + Bia) = 0.

Remark 2.1 If {ej,es} is an oriented orthonormal basis for a non-
degenerate 2-plane m, one may define R(w) := R(ej,ez) and one may
define J(7) := {e1,e1)T(e1) + (e2,e2)T(e2). These operators are inde-
pendent of the particular orthonormal basis chosen. Stanilov and Videv
[8] have shown that if M is a 4-dimensional Riemannian manifold, then
R(m)T(m) = J(w)R(w) for all oriented 2-planes 7 if and only if M is
Einstein. Assertion (4) of Theorem 1.2 shows 9114 has this property.

3. A geometric realization of 21
We begin the proof of Theorem 1.3 with a general construction:
Definition 3.1 Let {z;,z},y,} be coordinates on R20+b where 1 <i < a

and 1 < pu < b. We suppose given a non-degenerate symmetric matrix
C\ and smooth functions ¢, = ;. (&) with ¥;;, = j;,. Consider the
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pseudo-Riemannian manifold Mc y := (R?**?, gc ), where:
9C,p(On;s On;) = 23 5 Yuijus QC,w(arwam:) =1, 9c,4(9y,,0y,)=Cu .
Lemma 3.1 Let Mc .y = (R go ) be as in Definition 3.1. Then

(1) Mg,y is geodesically complete.

(2) For all P € R?%%? expp is a diffeomorphism from Tp(R2) to
R2a+b‘

(3) The possibly non-zero components of the curvature tensor are, up
to the usual Zo symmetries given by:

R(aml ’ azj y azk ; ay,,) = *aml 'l/)jku + a:cj wikua
R(axb 5 awj 5 8wk 3 8@) = Eyu cvH {wikuwjlu - wilu¢jky}
+ Zy Yv {aziazk¢jlv + 8a:j 3111/%1/ - axiamleku - azjazk¢ilu} .

Proof. The non-zero Christoffel symbols of the first kind are given by:

g(va” 3"@78"%) = Zu{aziwjk,u + amjwik,u - axk7/)¢ju}ym
9(Va,,0z,;,0y,) = —Viju,
g(vam ay,, Y axk) = g(vayy 8&77;) a:bk) = wikua

and the non-zero Christoffel symbols of the second kind are given by:

vawi azj = ZM y#{amiwjkﬂ + an'l/)ik,u - afﬂkujmﬂ}afz - ZHV CVHT,[)ijvayw
Vo, 0y, = Va,,0n, = 31 VikvOay -

This shows that M is a generalized plane wave manifold; Assertions (1) and
(2) then follow from results in [7]. Assertion (3) now follows by a direct
calculation. D

Proof of Theorem 1.3 (1)-(3) Assertions (1) and (2) of Theorem 1.3
follow by specializing the corresponding results of Lemma 3.1. We use
Assertion (3) of Lemma 3.1 to see that the possibly non-zero components
of the curvature tensor defined by the metric of Definition 1.3 are:

R(ax” bl 87,‘,‘,2 ) 6(1);'3 Y a

Tiy

a:cl ) aﬂcz 3 ay‘z,l ) aml) = amg ¢2,1, R(aml 5 81:3a ayg,l ’ afl) - 813¢3,17

):*a
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We introduce the following basis as a first step in the proof of Assertion
(3). Let the index ¢ range from 1 to 3 and the index j run from 1 to 2. Set:

Q; = azia 05;( = arfv B4,j = ay4,ja Bi,j = {Qﬁfi,j}ilayi,j : (3)

Since ¢; ; - ¢} 5, = 1, the relations of Equation (1) are satisfied. However,
we still have the following potentially non-zero terms to deal with:

g(@,a;) =+ and R(ay,d;,ax, ) = *.
To deal with the extra curvature terms, we introduce a modified basis
setting:
&y = ay + R(au, aa, a3, @1)Bay — 3R(0u, Ao, G2, 1)1 2,
G 1= @o + R(aw, &, as, G2)Ba2 — 2 R(G0, as, as, G2)fa,2,
3 := @y — 2R(@s, Ay, G2, 03) P11 — 3 R(an, g, &3, 1) P51,
P11 = P11+ sR(aq, @, Ga, 1) o, B2 = P12
B2 = Bay + R( , @3, G, Qi) 003 B22 = PBa.2, (4)
B2 = P32+ L R(u, &3, as, 1) asd, P31 = P31,
Ban = Pan + 2R(an, Ao, a3, a1)af — R(ag, 0n, &g, o) o3
—R(as, a1, 02, az)az,
54,2 = 64,2 - i (

07 2,0[3,0{1)0[1 + R(O{Q,O&l,a370[2)a2
+% ( 3,(11,@2,0{3)@3.

All the normalizations of Equation (1) are satisfied except for the unwanted
metric terms g(&;, &;). To eliminate these terms and to exhibit a basis with
the required normalizations, we set:

o=@ — 3 > 9(as, a5)a; . (5)

4. Isometry Invariants
We now turn to the task of constructing invariants.
Lemma 4.1 Adopt the assumptions of Theorem 1.4. Let {a, By,a5} be
defined by Equations (3)-(5). Set ¢1:= ¢ 1 and ¢z = ¢} 5.
(1) VR(v1,v2,v5,v4;v5) = 0 if at least one of the v; € Vi
(2) VR(v1,v2,v3,v4;v5) = 0 if at least two of the v; € Vg o-.
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(3) VFR(a1, as, s, f12; 01, ...;01) = ¢2_1¢g€)-
(4) VkR(ahaS;a?nﬁl,l;al, "'7a1) = ¢;1¢§k)

(5) VR(wv, o, ag, Busayy,...;qq,) = 0 in cases other than those given
in (3) and (4) up to the usual Zs symmetry in the first 2 entries.

Proof. Let v; be coordinate vector fields. To prove Assertion (1), we
suppose some v; € V,». We may use the second Bianchi identity and the
other curvature symmetries to assume without loss of generality v; € Vg-.
Since V,, v1 = 0 and since R(vy, -, -,-) = 0, Assertion (1) follows. The proof
of the second assertion is similar and uses the fact that R(-,-,,-) = 0 if
2-entries belong to V3 o+. The proof of the remaining assertions is similar
and uses the particular form of the warping functions ¢; ;; the factor of ¢f;
arising from the normalization in Equation (3). O

Definition 4.1 We say that a basis B := {a, 3, &’} is 0-normalized if
the normalizations of Equation (1) are satisfied and 1-normalized if it is
0-normalized and if additionally

VR(&1, a3, a3, 51,13 61) = —VR(a3, &1, a3, f1,1561) # 0,
VR(a1,Ga, Ga, f1,2;01) = —VR(Aa, &1, @, B1.2; 1) # 0,

VR(&i, &j, a, By; @) =0 otherwise.

Lemma 4.2 Adopt the assumptions of Theorem 1.4. Then:

(1) There exists a 1-normalized basis.

(2) If B is a 1-normalized basis, then there exist constants a; so
ajasaz = € for ¢ = +£1 and so that exactly one of the following
conditions holds:

(a) &1 = aron, do = azae, &3 = azas,
1,1 = E%ﬂl,l; 1,2 = 5%51,2

(b) &1 = araq, G2 = azas, d3 = aza,
Pia=elbi2 2=z bia.

Proof. We use Equations (3), (4), and (5) to construct a 0-normalized
basis and then apply Lemma 4.1 to see this basis is 1-normalized. On the
other hand, if B is a 1-normalized basis, we may expand:

a1 = ap1aq + ajpan + azas + ..,
G = G210 + a2 + a3z + ..., Bro = ba1 S +baofro + ...

a3 = az1oq + azoz +azzaz + ..., P =0bnfi1+bi2Bia+ ...
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Because
0 # VR(Gy, &z, G2, B1,2;01)
= a1 {(a11a22 — 12021 )a29b22) by Bl
+ (a11a33 — a13a31)a33b21)¢1_1¢’1} )
we have a1 # 0. Because
0= VR(&1, @z, Gy, B1,2;4) = 2LV R(n, G, Aa, F1 .23 41,
we have ag; = 0; similarly asz; = 0. Since Span{e;} = Span{&;} mod V3 4.,
a22a33 — az3a32 # 0.

By hypothesis R(&1, &2, a3,0;601) =01if § € Span{By,&f} = Vp,ax 80

0 = R(a1, Go, &3, B1,2;61) = afas2az205 " dh,

0 = R(a1, &o, &3, B1,1361) = af,aszasspy ¢ -
Suppose that ass # 0. Since a?;azeazs = 0 and aj; # 0, azz = 0. Since
922033 — A23A32 7é 0, ass 75 0. Since a%1a23a33 = 0, we also have a23 = 0.
Since the basis is also O-normalized, diag(a;i,as; ,a33) € SL+(3) from
the discussion in Section 2. Thus ¢ := ajja92a33 = *1, by; = 5%, and
boy = s%. These are the relations of Assertion (2a). The argument is

similar if azo # 0; we simply reverse the roles of as and s to establish the
relations of Assertion (2b). O

Proof of Theorem 1.4. Let
- - 2
=(B) = 1 | V2R(au, a9, a2, P12;G01,01)  V2R(&u, a3, a3, 011341, 1)
4 | {VR(a1, a2, a2, B1,2;01)}2 {VR(du,as, as, B1,1;61)}?
We apply Lemma 4.2. Suppose the conditions of Assertion (2a) hold. Then:
VR(a1, a2, G2, P1,2;G1) = a1y ' ¢h,
V2R(61, Ga, Gz, P25 61, 61) = adgy ' b,
VR(G,d3,d3, f1,1;61) = a167 8],

~ ~ ~ P ~ ~ —1
V2R(a1, as, ds, B1,1;01,01) = aig] ¢,

[1]

(8) = + {dwg et }2 .
4 1 a9y N1
The roles of ¢; and ¢o are reversed if Assertion (2b) holds. It now fol-

/

lows that = is a local isometry invariant. Since ¢o = d)fl, oh = _¢1—2 1
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oy = 2¢1_3¢’1q§’1 — ¢1_2 Y, we may establish Assertion (1) of Theorem 1.4
by computing

208 _ &1 (201°0101 — 6170Y) _,  énél

% A ¢

-1 {2_2¢1¢>’1’}2

o4 D

If Mg is locally homogeneous, then = must be constant. Conversely, if
E is constant, then ¢1¢] = k¢| ¢} for some k& € R. The solutions to this
ordinary differential equation take the form ¢ (t) = a(t + b)¢ if k # 1 and
#1(t) = ae® if k = 1 for suitably chosen constants a and b and for ¢ = c(k).
The first family is ruled out as ¢; and ¢} must be invertible for all . Thus
¢1(t) is a pure exponential; Assertion (2) of Theorem 1.4 follows.

Consequently

5. A symmetric space with model 91,4

We give the proof of Theorem 1.5 as follows. Let M4 be as described in
Definition 1.4. By Lemma 3.1 one has that:

R(al’za 311,8931 , ay2,1) = R(al’;;) 81178x1 y ays.,l) =1,
R(arsa T2 rz’ayg.,z) :R(axla Tos Iz?ayl,Q) =1,
R(aacl 5 azs, 3gc3 s aym) = R(aﬂtza azs, 89c3 ) ay2,2) =1,
R(0z,, 004,025, 0y,,) = R(0z,, 0y, 00y, 0y, ) = f%,
ROy 024, 001,031 2) = RO, 0y 00y, Oy ) = — 5.

The same argument constructing a 0-normalized basis which was given in
the proof of Theorem 1.2 can then be used to construct a O-normalized
basis in this setting and establish that M 4 has 0-model 91 4.

We can also apply Lemma 3.1 to see:

R(0y,, 0y, 00y, 05,) = —ag a3 223,

R(9zy, 00y, 0y, 00, ) = —5(2+ 3ag1a2,2)23,

R(a‘r%, 812, 6932,613) = —%(2 + 3011710/172)%%,

R(0z,,02,,05,,0z,) = (L —a11 —a12 +ai1a1,2 + az1
—ag1G22 + a3,1 — 03,1032)T2T3,

R(0y,,004,02,,04,) = (L 4+a12 —az1 —ar1a12 — az2
+ag 022 + az2 — a3 1a32)T123,

R(aa?uafﬂsv 8963»812) = (% ‘a1 —ai1012+aze
—02,1022 — Q31 — 432 + a3,1a3,2)$1$2~
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The Christoffel symbols describing Vo, 0., are given by:
Vo, Oz, = (2= a21)Y2,10:; + (2 — a3,1)y3,10z3 + a2,1720y, ,
+a371:1733y312,
Vo,, 0, = (2 = a12)y1,202; + (2 — a32)y3,20:3 + a1,2710y, ,
+asz 230y, ,,

Vo,,0u5 = (2= a11)y1,10z; + (2 — a2,2)y2,20.3 + a2,2720y, ,
+a1,1210y, ,,

+
Vo, Ou, = —021Y2,10; — a1,2Y1,20z; + 225720,
+(a1,2 — 1)x20y, , + (a2,1 — 1)210y, ,,
Vawlars = *a3,1y3,18x; + 7%’1;/4’2 % - a1,1y1,15z;
2x 4x
+(a171 - 1)x38y1,2 + (a3,1 - 1)xlay3,2 + TQay4,1 + 728?;4,27
_ —Ya1tyas
Vo, Opy, = =520, — 03,2Y3,2025 — 02,2Y2,20,>
2 2 1 2 3

+<a2,2 - 1)x3ay2,1 + (a’372 - 1)x28y3,1 + 4%8?;14,1 + 2%8?;4,2'

It is now easy to show that the non-zero components of VR are:

VR(0z,,0p5,005,05,;0zs) = —2(—2+ a11 + ag2 + a3 1a32)T3,
VR(82ys 005,004,003 00,) = —2(—4 + 3a12 + 3az 2 + 3az,102,2) 22,
VR(9zy, 004,00y, 02,302, ) = —2(—4 + a1 + 3as;1 + 3a1,1a1,2)21,
VR(Opy, 0,502,502y 0p,) = (2—a11 —a12 +azy — az2

+as1 —asa +ai1a1,2 — 02,1022 — A3,103,2)T3,
VR(Ozyy0pys0p,,054305,) = (2—a11 —a12+az1 — azp
+as —az2 +a1,101,2 — 21022 — A3,103,2)T2,
VR(axlvaﬁfmaxza 5'x3;3x1) = (2 —ap1taj2—az1 — a2
—a31 +az 2 —a1,101,2 + a2,102.2 — 03,103 2)T3,
VR(Ozy,0p,,0p,,05,;05,) = (2—a1,1+a1,2 —as1 — azp
—az1 +asz2 —a1,101,2 + a2,1022 — a3,1032)%1,
VR(Oyy»Opys Ongs Ong; Oz, ) = (% +aj1—a12 —az1 t+az2
—ag1 —asz2 —ai101,2 — G21022 + 03,103,2)$2,
VR(0z,, 004, 004,025300,) = (3 4+ a11 — a12 — az1 + az2
—a3,1 —G32 — A1,101,2 — A2,1022 + 43,1032)T1.
We set VR = 0 to obtain the desired equations of Theorem 1.5; the first 3
equations generate the last 6.
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