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A Riemannian manifold M with associated curvature tensor R and Jacobi opera-
tors RX , X in TM , is said to be k-stein, k ≥ 1, if there exists a function µk on
M such that

tr(Rk
X) = µk |X|2k for all X in TM .

We study the k-stein condition on Damek-Ricci spaces: these spaces are Einstein
and 2-stein, since they are harmonic . We show that Damek-Ricci spaces are not
k-stein for any k ≥ 3, unless they are symmetric.

Let M be a Riemannian manifold, R its curvature tensor and RX the Jacobi
operator defined by RXY = R(Y, X)X, X a unit tangent vector in TM .
For any natural k ≥ 1, M is said to be k-stein (equivalently, M satisfies the
k-stein condition) if there exist a real-valued function µk on M such that

tr(Rk
X) = µk(p) |X|2k for all X in TpM .

Note the difference between this definition and the one given in [5]. The k-
stein conditions are related to the Osserman property as follows: A Rieman-
nian manifold M is Osserman if and only if M is k-stein for all k = 1, . . . ,

dim M − 1. A detailed proof is given in [4, Proposition 2.1] (see also [5,
Proposition 2.1]).

It is immediate that irreducible symmetric spaces of rank one are k-stein for
all k ≥ 1 (the eingenvalues of the Jacobi operators RX are constant for X ∈
TM, |X| = 1). The first examples of non-symmetric spaces we know that
are k-stein for some k ≥ 2 are the Damek-Ricci spaces; in this case for k = 2

∗MSC2000: 53C30, 53C55.
Keywords: Damek-Ricci spaces, Jacobi operators, k-stein condition, rank one symmetric
spaces.
† Partially supported by ANPCyT, CONICET and SECyT (UNC).

205



206

(also k = 1), since they are harmonic. Damek-Ricci spaces have sectional
curvature K ≤ 0 and they are the first examples of noncompact harmonic
spaces which are not symmetric, in case that the sectional curvature is not
strictly negative (see [3]).

We remark that in a locally symmetric space M the k-stein condition co-
incides with the so called kth-Ledger conditions for all k ≥ 1, satisfied for
harmonic spaces. The first of these is that of being Einstein (or 1-stein if
dim M ≥ 3) and the second one is the 2-stein condition (see [2]).

In this exposition we analyze the k-stein condition for k ≥ 3 on Damek-
Ricci spaces, which are a distinguished subclass in that of metric Lie groups
S of Iwasawa type. They contain the symmetric spaces of noncompact type
and rank one, and are defined as solvable extensions of codimension 1 of
Heisenberg type groups. The rank one symmetric spaces of noncompact
type are characterized among them as those whose sectional curvature is
strictly negative. See [1] for details.

We show that if a Damek-Ricci space satisfies the k-stein condition for some
k ≥ 3 then it is a symmetric space of noncompact type and rank one. In
this case it is k-stein for all k ≥ 1.

We refer to [4] where is proved that: If S is a Carnot space that is k-stein
for some k ≥ 2, then S is a Damek-Ricci space (Theorem 4.1).

1. Preliminaries

A Lie group S of Iwasawa type and rank one is a simply connected Lie
group with left invariant metric associated to a metric Lie algebra s of
Iwasawa type and rank one. That is, s is a solvable Lie algebra with inner
product 〈, 〉 satisfying the conditions:

(i) s = n⊕RH where n = [s, s] and H ⊥ n, |H| = 1.

(ii) adH |n is symmetric and has all positive eigenvalues.

The Levi Civita connection ∇ and the curvature tensor R associated to the
left invariant metric on S, can be computed by

2 〈∇XY, Z〉 = 〈[X,Y ], Z〉 − 〈[Y,Z], X〉+ 〈[Z,X], Y 〉
R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ] , for any X, Y, Z ∈ s.

In this case n decomposes n = z⊕ v, where z denote the center of n and v

is the orthogonal complement of z with respect to the metric 〈, 〉 restricted
to n. Moreover, z and v are invariant under adH .
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For any Z ∈ z, the skew-symmetric operator jZ : v → v is defined by

〈jZX,Y 〉 = 〈[X, Y ], Z〉 for all X, Y ∈ v,

and plays an important role for describing the geometry of n or s.

S is a Carnot space if its metric Lie algebra s = n⊕RH satisfies

adH |z = Id, adH |v =
1
2
Id.

Moreover, S is said to be a Damek-Ricci space if S is Carnot and

j2
Z = − |Z|2 Id for all Z ∈ z

holds, whenever v 6= 0. If v = 0, S corresponds to the real hyperbolic space.

Recall that Damek-Ricci spaces S contain the symmetric spaces of noncom-
pact type and rank one, which are those satisfying ∇R = 0. Indeed, they
are given by either v = 0 or dim z = 1, 3 and 7; in these cases s corresponds
to the solvable part of the Iwasawa decomposition of the Lie algebra of
the isometry group of the real hyperbolic space RHn+1, the complex hy-
perbolic space CHn+1, the quaternionic hyperbolic space QHn+1 and the
Cayley hyperbolic plane CayH2, respectively (see [1] for details).

In what follows we assume that S is a Damek-Ricci space.

1.1. The k-stein condition

We say that S is k-stein, or s satisfies the k-stein condition, if for some
constant µk

tr(Rk
X) = µk |X|2k for all X ∈ s.

Note that for k = 1, it means that S is Einstein.

Let Z ∈ z and X ∈ v be unit vectors and set n = dim z, m = dim v. Recall
that v decomposes as an orthogonal direct sum

v = ker adX |v ⊕ jzX.

We express s = s0 ⊕ s∗ ⊕ v∗ where s0, s∗ and v∗ are defined by

s0 = span {Z, X, jZX,H}, s∗ = z ∩ Z⊥ ⊕ jz∩Z⊥X

v∗ = ker adX |v ∩X⊥, respectively.

Note that s0 and z ⊕ RH are totally geodesic subalgebras of s; that is
∇UV ∈ s0 (z ⊕ RH) whenever U, V ∈ s0 (z ⊕ RH). Moreover, s0 is the
metric Lie algebra of Iwasawa type associated to the symmetric space CH2
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(n = 1, m = 2) and z ⊕RH, as subalgebra of s, has associated Lie group
that corresponds to the real hyperbolic space RHn+1.

We remark that any symmetric space of noncompact type and rank one is k-
stein for all k ≥ 1 (see [4, Section 2]). In particular, the Lie algebras z⊕RH

and s0, as defined above, satisfy the k-stein condition. Consequently, for
any unit vectors Z ∈ z, X ∈ v and real numbers r, s, with r2 + s2 = 1 we
have that for all k ≥ 1,

tr
(

Rk
rZ+sH

∣∣
z⊕RH

)
= tr( −ad2

H

∣∣
z⊕RH

)k

and

tr
(

Rk
rZ+sX

∣∣
s0

)
= tr( −ad2

H

∣∣
s0

)k.

1.2. The curvature formulas

For all unit vectors Z ∈ z and X ∈ v, using the curvature formulas, we get

RZ |z⊕RH∩Z⊥ = −Id, RZ |v = −1
4

Id, RH = −ad2
H ,

RX |z⊕RH = −1
4

Id, RX |ker adX |v∩X⊥ = −1
4

Id, RX |jzX = −Id,

for all unit vectors Z ∈ z and X ∈ v.

1.3. Properties of the operator j(.).

For all X, Y ∈ v and Z, Z∗ ∈ z

j2
Z = − |Z|2 Id, [Y, jZ∗Y ] = |Y |2 Z∗,

〈jZY, jZ∗Y 〉 = |Y |2 〈Z,Z∗〉 , 〈jZX,Y 〉+ 〈X, jZY 〉 = 0,

jZ ◦ jZ∗ + jZ∗ ◦ jZ = −2 〈Z, Z∗〉 Idv.

Recall that the symmetric spaces of noncompact type and rank one are
characterized in the class of Damek-Ricci spaces, as those satisfying the so
called J2-condition; that is,

jZ∗jZX ∈ jzX for all X ∈ v and Z ⊥ Z∗ in z

unit vectors. See [1, Chapter 4] for details.
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2. Damek-Ricci spaces and the k-stein condition

Next we show in Theorem 2.1 that a Damek-Ricci space S is not k-stein
for any k ≥ 3, unless S is symmetric. Let S be a Damek-Ricci space with
metric Lie algebra s = z ⊕v ⊕ RH, |H| = 1. Let Z ∈ z and X ∈ v be
unit vectors and set n = dim z, m = dim v. We use the same notation as in
Preliminaries.

In what follows we fix unit vectors Z ∈ z and X ∈ v and take r, s real
numbers such that r2 + s2 = 1. We express

RrZ+sX = r2RZ + s2RX + rsT,

where T is the symmetric operator on s defined by T (·) = R(·, Z)X +
R(·, X)Z.

We compute

T (Z∗) =
3
4
jZ∗jZX, T (Y ) =

3
4
[jZX, Y ],

for any Z∗ ⊥ Z in z and Y ⊥ X in v ∩(jZX)⊥. It is a direct computation
to see that

T 2
∣∣
z∩Z⊥ =

9
16

Id and T 2
∣∣
j
z∩Z⊥ (jZX)

=
9
16

Id.

Some properties of T related with the Jacobi operators RZ and RX are given
in the following lemma, which is very useful for the proof of Proposition
2.1. See the proofs in [4, Lemma 3.2 and Proposition 3.3].

We fix {Z∗i : i = 1, ..., n− 1} an orthonormal basis of z ∩ Z⊥ and set

tr
(

(−RX)i
∣∣∣
j
z∩Z⊥ (jZX)

)
=

n−1∑

l=1

〈
(−RX)i (jZ∗l jZX), jZ∗l jZX

〉
for any i ≥ 1.

Lemma 2.1 If Z ∈ z and X ∈ v are unit vectors of the Lie algebra s with
n = z⊕ v then,

(i) for all odd k ≥ 1 and j, l ≥ 1,

tr
(
(r2RZ + s2RX)j T k

(
r2RZ + s2RX

)l
)

= 0.

(ii)
∣∣∣∣tr

(
Rj

XTRi
XT

∣∣∣
s∗⊕v∗

)∣∣∣∣ =

=
9
16

1
4i+j

(
4itr

(
(−RX)i

∣∣
j
z∩Z⊥ (jZX)

)
+ 4jtr

(
(−RX)j

∣∣
j
z∩Z⊥ (jZX)

))

≤ 9
16

(n− 1)
(

4i + 4j

4i+j

)
.
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Proposition 2.1 Let S be a Damek-Ricci space that is k-stein for some
k ≥ 3. Then, for any unit vectors Z ∈ z and X ∈ v the operators RZ , RX

and the associated T defined by T (·) = R(·, Z)X + R(·, X)Z, are related by
the following condition

0 = ktr
(
RZRk−1

X − (−ad2
H

)k
)∣∣∣

s∗⊕v∗
+ ktr

(
Rk−2

X T 2
)∣∣

s∗⊕v∗

+
k−3∑

l=1

k−3−l∑

i=0

tr
(
Ri+l

X TRk−2−l−i
X T

)∣∣
s∗⊕v∗+

k−3∑

i=1

tr
(
Ri

XTRk−2−i
X T

)∣∣
s∗⊕v∗ .

Theorem 2.1 Let S be a Damek-Ricci space. If S is k-stein for some
k ≥ 3, then S is a symmetric space of noncompact type and rank one.

Proof. Assume that S is k-stein for some k ≥ 3 and we will prove that
S is symmetric. To that end we will show that the J2-condition (see 1.3)
is satisfied. Let Z ∈ z and X ∈ v be unit vectors; we use the terminology
given at the beginning of this section.

Next, we express the condition given by Proposition 2.1. For this purpose
we compute:

(i) tr
(
Rk−1

X RZ −
(−ad2

H

)k
)∣∣∣

v∗
= 0,

which is immediate since RZ |v∗ = RX |v∗ = − 1
4 Id= −ad2

H

∣∣
v∗ .

(ii) tr
(
Rk−1

X RZ −
(−ad2

H

)k
)∣∣∣

s∗⊕v∗
= 3(n− 1)(−1)k

(
1− 4k−1

4k

)
.

In fact, since

tr
(
Rk−1

X RZ

)∣∣
s∗ = tr

(
Rk−1

X RZ

)∣∣
z∩Z⊥ + tr (Rk−1

X RZ)
∣∣
j
z∩Z⊥ (X)

= −tr
(

Rk−1
X

∣∣
z∩Z⊥

)
+ (−1

4
) tr

(
Rk−1

X

∣∣
j
z∩Z⊥ (X)

)

= −(n− 1)

((
−1

4

)k−1

+
1
4
(−1)k−1

)

= (n− 1)(−1)k

(
1 + 4k−2

4k−1

)

and

tr
(
(−ad2

H)k
∣∣
s∗

)
= (n− 1)

(
(−1)k +

(
−1

4

)k
)

= (n− 1)(−1)k

(
4k + 1

4k

)
,
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it follows that

tr
(
Rk−1

X RZ −
(−ad2

H

)k
)∣∣∣

s∗
= (n− 1)(−1)k

(
1 + 4k−2

4k−1
− 4k + 1

4k

)

= 3(n− 1)(−1)k

(
1− 4k−1

4k

)
.

The assertion follows from (i) above.

(iii) tr
(
Rk−2

X T 2
)∣∣

s∗⊕v∗ = (−1)k

(
9
16

(n− 1)
(

1 + 4k−2

4k−2

)

+
(

1− 4k−2

4k−2

)
tr

(
T 2

∣∣
v∗

))
.

Expressing

tr
(
Rk−2

X T 2
)∣∣

s∗⊕v∗ = tr
(
Rk−2

X T 2
)∣∣

z∩Z⊥ + tr
(
Rk−2

X T 2
)∣∣

j
z∩Z⊥ (X)⊕v∗ ,

we compute these two terms separately, by taking orthonormal bases
{Z∗i : i = 1, ..., n − 1} of z ∩ Z⊥ and {Yj : j = 1, ..., m − n − 1} of v∗.
We set

tr
(
T 2

∣∣
v∗

)
=

m−n−1∑

j=1

〈
T 2(Yj), Yj

〉
=

m−n−1∑

j=1

|T (Yj)|2

Thus,

tr
(
Rk−2

X T 2
)∣∣

z∩Z⊥ =
n−1∑

l=1

〈
Rk−2

X T 2(Z∗l ), Z∗l
〉

=
9
16

n−1∑

l=1

〈
Rk−2

X (Z∗l ), Z∗l
〉

=
9
16

(n− 1)
(
−1

4

)k−2

=
9
16

(n− 1)(−1)k 1
4k−2

and

tr
(
Rk−2

X T 2
)∣∣

j
z∩Z⊥X⊕v∗ =

=
n−1∑

l=1

〈
T 2Rk−2

X (jZ∗l X), jZ∗l X
〉

+
m−n−1∑

j=1

〈
T 2Rk−2

X (Yj), Yj

〉
,
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which gives

= (−1)k−2
n−1∑

l=1

〈
T 2(jZ∗l X), jZ∗l X

〉
+

(
−1

4

)k−2 m−n−1∑

j=1

〈
T 2(Yj), Yj

〉

= (−1)k

(
tr T 2

∣∣
j
z∩Z⊥ (X)⊕v∗ +

(
1

4k−2
− 1

)
tr

(
T 2

∣∣
v∗

))

= (−1)k

(
tr T 2

∣∣
s⊥0 ∩v

+
(

1
4k−2

− 1
)

tr
(
T 2

∣∣
v∗

))

= (−1)k

(
9
16

(n− 1) +
(

1− 4k−2

4k−2

)
tr

(
T 2

∣∣
v∗

))
,

since tr
(

T 2
∣∣
s⊥0 ∩v

)
= tr

(
T 2

∣∣
j
z∩Z⊥ (jZX)

)
= 9

16 (n− 1).

(iv)
∣∣∣tr

(
Ri+l

X TRk−2−l−i
X T

)∣∣
s∗⊕v∗

∣∣∣ ≤ 9
16

(n− 1)
(4i+l + 4k−2−l−i)

4k−2

This is a direct application of Lemma 2.1 (ii). Moreover, we remark that

tr
(
Ri+l

X TRk−2−l−i
X T

)∣∣
s∗⊕v∗ =

=
9
16

(−1)k
( 1

4i+l
tr (−RX)k−2−l−i)

∣∣
j
z∩Z⊥ (jZX)

+
1

4k−2−l−i
tr (−RX)i+l)

∣∣
j
z∩Z⊥ (jZX)

)

= (−1)k
∣∣∣tr

(
Ri+l

X TRk−2−l−i
X T

)∣∣
s∗⊕v∗

∣∣∣ , since (−1)k = (−1)k−2.

Now, taking into account the above remark and substituting the equalities
given by (ii), (iii) in the condition given by Proposition 2.1, we obtain

0 = 3k(n− 1)(−1)k

(
1− 4k−1

4k

)

+ (−1)kk

(
9
16

(n− 1)
(

1 + 4k−2

4k−2

)
+

(
1− 4k−2

4k−2

)
tr

(
T 2

∣∣
v∗

))

+ (−1)k
k−3∑

l=1

k−3−l∑

i=0

∣∣∣tr
(
Ri+l

X TRk−2−l−i
X T

)∣∣
s∗⊕v∗

∣∣∣

+ (−1)k
k−3∑

i=1

∣∣∣tr
(
Ri

XTRk−2−i
X T

)∣∣
s∗⊕v∗

∣∣∣ ,
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which in turn is equivalent to

0 = k

(
1− 4k−2

4k−2

)
tr

(
T 2

∣∣
v∗

)
+ 3k(n− 1)

(
1− 4k−1

4k

)
(1)

+
9
16

(n− 1)k
(

1 + 4k−2

4k−2

)

+
k−3∑

l=1

k−3−l∑

i=0

∣∣∣tr
(
(RX)i+lT (RX)k−2−l−iT

)∣∣
s∗⊕v∗

∣∣∣

+
k−3∑

i=1

∣∣∣tr
(
(RX)iT (RX)k−2−iT

)∣∣
s∗⊕v∗

∣∣∣ .

By using the inequality obtained in (iv) we have that

k−3∑

l=1

k−3−l∑

i=0

∣∣∣tr
(
Ri+l

X TRk−2−l−i
X T

)∣∣
s∗⊕v∗

∣∣∣ +
k−3∑

i=1

∣∣∣tr
(
Ri

XTRk−2−i
X T

)∣∣
s∗⊕v∗

∣∣∣

≤ 9
16

(n− 1)
1

4k−2

(
k−3∑

l=1

k−3−l∑

i=0

(
4i+l + 4k−2−l−i

)
+

k−3∑

i=1

(
4i + 4k−2−i

)
)

.

Therefore, since k
(

1+4k−2

4k−2

)
is exactly the sum of the k terms equal to

1+4k−2

4k−2 in the sum

1
4k−2

k−2∑

l=0

k−2−l∑

i=0

(
4i+l + 4k−2−l−i

)
,

corresponding to the values l = 0, i = 0, i = k−2 and for each 1 ≤ l ≤ k−2,

i = k − 2− l, we have

9
16

(n− 1)k
(

1 + 4k−2

4k−2

)
+

k−3∑

l=1

k−3−l∑

i=0

∣∣∣tr
(
Ri+l

X TRk−2−l−i
X T

)∣∣
s∗⊕v∗

∣∣∣ (2)

+
k−3∑

i=1

∣∣∣tr
(
Ri

XTRk−2−i
X T

)∣∣
s∗⊕v∗

∣∣∣

≤ 9
16

(n− 1)
1

4k−2

k−2∑

l=0

k−2−l∑

i=0

(
4i+l + 4k−2−l−i

)
= 3k(n− 1)

(
4k−1 − 1

4k

)
,

provided that

k−2∑

l=0

k−2−l∑

i=0

1
4k−2

(
4k−2−l−i + 4i+l

)
=

1
3

k
4k−1 − 1

4k−2
.
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This formula was showed in [4, Section 3].

Therefore, condition (1) implies that

0 = k

(
1− 4k−2

4k−2

)
tr

(
T 2

∣∣
v∗

)
+ 3k(n− 1)

(
1− 4k−1

4k

)
+ A,

where

0 ≤ A ≤ 3k(n− 1)
(

4k−1 − 1
4k

)
.

Thus, equality occurs in (2) and also

k

(
4k−2 − 1

4k−2

)
tr

(
T 2

∣∣
v∗

)
= 0.

Hence, since k ≥ 3 we have that

tr
(
T 2

∣∣
v∗

)
= 0.

From this condition, it follows that for any unit vectors Z ∈ z and
X ∈ v the associated operator T satisfies T (Y ) = 3

4 [jZX, Y ] = 0 for all
Y ∈ v∗ = ker adX |v ∩X⊥. Thus, for all Z∗ ⊥ Z in z and Y ∈ ker adX |v ,

〈[jZX, Y ], Z∗〉 = 0 or equivalently,

〈jZ∗jZX, Y 〉 = 0 for all Y ∈ ker adX |v .

Hence, jZ∗jZX ∈ (ker adX |v)⊥ = jzX. This fact means that n satisfies the
J2-condition, which in turn is equivalent for S to be a symmetric space.
The assertion of the theorem is proved.

Example 2.1 Any non symmetric Damek-Ricci space provides examples
of homogeneous spaces S which are Einstein and 2-stein but are not k-stein
for any other k ≥ 3.

In particular, an example in dimension seven is obtained when we put
n = 2, m = 4. Assume that {Z1, Z2} and {X, Y, jZ1X, jZ2X} are or-
thonormal bases of z and v, respectively, with Y = jZ1jZ2X. Here, jZi

i = 1, 2, are skew-symmetric operators on v satisfying j2
Zi

= −Id and
jZ1jZ2 = −jZ2jZ1 . Let s be the Lie algebra spanned by the orthonormal
basis {Z1, Z2, X, Y, jZ1X, jZ2X, H} with bracket

[Z1, Z2] = [X, Y ] = 0, [X, jZiX] = Zi, i = 1, 2,

[Y, jZ1X] = −Z2, [Y, jZ2X] = Z1,

adH |z = Id, adH |v =
1
2

Id.

Then S, the simply connected Lie group associated to s, is a homogeneous
space of dimension 7 satisfying the required properties.
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