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In first part of this work we consider the set of polynomial first integrals f1, . . . , fn,
which defines the bifurcational diagram Σ, and offer method how to construct new
polynomial integral Φ, such as Σ ∈ {Φ = 0}. We prove that, if we take this new
integral instead of the old one, new bifurcational diagram will become the union
of the plain and some fictitious singularities. Also in this work an explicit form of
Φ for some classical cases is given. This polynomial is closely related to Lax form
of integrable system and the conjecture is that Φ determines discriminant set for
spectral curve of corresponding Lax pair.

1. Bifurcational diagram

1.1. Liouville integrability and the momentum mapping

Consider 2n-dimensional symplectic manifold (M2n, ω) and Hamiltonian
system v = sgrad H with smooth Hamiltonian H.

Hamiltonian system v is called completely integrable, if there exist n func-
tionally independent commutating (up to Poisson bracket) smooth integrals
f1, . . . , fn, such as corresponding vector fields sgrad fi are complete.

Since f1, . . . , fn are preserved by flow of vector field v, their simultaneous
levels are invariant. Decomposition of M into connected components of
simultaneous levels is called Liouville foliation, corresponding the given
system.

Using this set of commutating integrals f1, . . . , fn, we can define momentum
mapping F : M2n −→ Rn,

F(x) = (f1(x), . . . , fn(x)).

Denote by K ⊂ M2n the set of critical points F . Then, bifurcational
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diagram of momentum mapping is the set

Σ = F(K).

According to Arnold-Liouville theorem[1], with supplementary condition of
compactness, preimage of point ξ ∈ Rn\Σ with momentum mapping F is
the disjoint union of several n-dimensional tori.

By the Sard lemma Σ forms the null subset in Rn, which is usually the
manifold with singularities. If n = 2, Σ consists of smooth curve segments
and, probably, isolated points. Bifurcational diagram divides Rn into con-
nected regions. Preimages of points of the same region are diffeomorphic
to disjoint unions equal number of tori. Preimage of point ξ ∈ Σ is the
singular fiber, which contains tori’s bifurcation.

1.2. Canonical first integral

Because of Poisson bracket properties, each function, depending on commu-
tating integrals f1, . . . , fn, also will be the first integral, commutating with
every fi. Thus, the set of commutating integrals, momentum mapping and
the bifurcational diagram of Hamiltonian system are not uniquely defined.
However, since Liouville foliation is determined by integral trajectories of
vector field v, the change of set of first integrals preserves foliation struc-
ture. Hence, the set of critical fibers of foliations where tori’s bifurcation’s
occur are also invariant. Conventionally all first integrals are the algebraic
functions of phase variables, so let us choose the special one.

Definition 1.1 Polynomial integral Φ is called canonical integral of given
system if it’s zero-level surface contains all tori’s bifurcations of correspond-
ing Liouville foliation.

This definition of canonical integral is nonconstructive. Though, if we al-
ready know some set of commutating integrals and it’s bifurcational dia-
gram then we can reduce the problem of describing critical tori to searching
the algebraic function which determines surface Σ in Rn. In classical ex-
amples of integrable systems such as Euler, Lagrange, Kovalewskaya and
Sretenskii cases explicit form of this function is given in paragraph 3.

If we take canonical integral as one of the set of integrals using for Liouville
integrability then corresponding bifurcational diagram will take on special
form, as described in the theorem below.

Theorem 1.1 Bifurcational diagram of momentum mapping

F ′ = f1 × . . . fn−1 × Φ : M2n −→ Rn(η)
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defining with canonical integral Φ decomposes into two parts: the subset of
coordinate plane Σ0 ⊂ {ηn(= Φ(x)) = 0} and additional surface ΣΦ, which
represents the envelope of certain family of surfaces (in polynomial case —
the discriminant surface of certain polynomial) and corresponds to set of
only ”fictitious” singularities — folds of some order of Liouville foliation.

Here we use

Definition 1.2 Point P is said to be a fold of order k ≥ 2 of map
τ : Mn

1 −→ Mn
2 , if there exist coordinate systems in neighborhood of

P and τ(P ) such as map τ in these coordinates takes form

τ(x1, . . . , xn) = (x1, . . . , xn−1, x
k
n).

We need this simplest generalization of classical fold singularity definition[2]
to cover cases with order more then 2.

Thus, using constructed canonical integral Φ we can define canonical form
for bifurcational diagram of all completely integrable systems.

1.3. Discriminant and bifurcational diagram

Another important property of canonical integral is closely related to Lax
representation (paragraph 4). Using matrix form of differential equations
parameterized by complex spectral parameter we can determine new alge-
braic set in the image of momentum mapping — discriminant of spectral
curve.

Theorem 1.2 For integrable systems in Lagrange and Kovalewskaya cases
zero-level surface of computed canonical integral, considered as a polyno-
mial in complex variables f1, . . . , fn, coincides with discriminant of spectral
curve for corresponding Lax representation.

And using results about discriminants (see prp. 2.5.1 in M.Audin’s book[3]),
we can conclude that in these cases real part (i.e. a set of points which have
nonempty preimage by momentum mapping) of zero surface is precisely the
bifurcational diagram.

Y. Brailov in his paper[6] also studies the relative position of discriminant
and bifurcational diagram for integrable system given by argument shift
method on sl(n,C) and shows that they are coincide. Also he discusses
argument shift method on the basic series of compact semisimple Lie alge-
bras and their direct sums. For minimal representations of such algebras
the following holds:
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Theorem 1.3 (Brailov) Bifurcational diagram lies in the intersection
D ∩ F(g) of discriminant D and image of momentum mapping F(g).

However, the issue about nonemptyness of the set (D \ Σ) ∩ F(g) remains
open.

Thus, the problem of defining minimal algebraic integral correlates with
the question of interconnections between algebraic (using Lax’s pairs) and
integrable (using Arnold-Liouville theorem) approaches to Hamiltonian sys-
tems.

2. Proof of theorem 1.1

Let us give more precise formulation of the theorem 1.1.

We are given Liouville foliation, corresponding to the system v = sgrad H,
and the number of first integrals A = {f1=H, . . . , fn}. Let F be it’s mo-
mentum mapping. Denote by K the set of singularities and by Σ — bifur-
cational diagram of F .

Suppose there is a smooth function φ(ξ) : Rn −→ R such that Σ ⊂
{φ(ξ) = 0}. Let us determine function

Φ(x) = φ(f1(x), . . . , fn(x)) : M2n −→ R .

Then new set of functions A′ = {f1, . . . , fn−1,Φ} satisfies complete integra-
bility conditions, so Arnold-Liouville theorem can be applied. And there is
another momentum mapping F ′, based on this set.

Denote by K ′ the set of critical points of F ′ mapping:

K ′ = {x ∈ M2n : df1, . . . , dfn−1, dΦ are linearly dependent}.
But

dΦ =
∂Φ
∂f1

df1 + · · ·+ ∂Φ
∂fn

dfn,

so

K ′ = K ∪KΦ,

where K is the set of critical points of original mapping F , and where

KΦ = {x :
∂Φ
∂fn

(x) = 0}. Bifurcational diagram of the new momentum

mapping is a union

Σ′ = F ′(K ′) = F ′(K) ∪ F ′(KΦ) = Σ0 ∪ ΣΦ,

where Σ0 = F ′(K) ⊂ {η : ηn = 0}.
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Thus, theorem 1.1 is reduced to two statements.

Proposition 2.1 Liouville foliation singularities, which corresponds to ad-
ditional diagram ΣΦ, are only folds of some order.

Proof. Let η ∈ ΣΦ (ηn 6= 0), then

(F ′)−1(η) = {x : f1(x) = η1, . . . , fn−1(x) = ηn−1, Φ(x) = ηn} =

=
⊔

t∈φ−1(ηn)

F−1(η1, . . . , ηn−1, t),

where φ is considered as function of only one variable:

φ(·) = φ(η1, . . . , ηn−1, · ).
For mentioned t point (η1, . . . , ηn−1, t) does not belong to Σ. So preimage
of this point with mapping F is disjoint tori’s union. According to Arnold-
Liouville theorem[1] each torus has a neighborhood, where angle coordi-
nates ψ1, . . . , ψn on torus are supplemented with coordinates (f1, . . . , fn)
up to nonsingular coordinate system. Using this coordinates mapping F ′
can be written as

F ′ : M2n −→ Rn, F ′(f1, . . . , fn, ψ1, . . . ψn) = (f1, . . . , fn−1, φ(f1, . . . , fn))

Denote by k the smallest natural number, such as

∂kφ

(∂fn)k

∣∣∣∣
(η1,...,ηn−1,t)

6= 0.

Then mapping F ′ is diffeomorphically equivalent, i.e. can be reduced using
convenient change of basis, to the following:

G : M2n −→ Rn, G(f1, . . . , fn, ψ1, . . . ψn) = (f1, . . . , fn−1, f
k
n).

Hence critical point is a fold singularity of order k.
To formulate the second statement recall one algebraic definition.

Definition 2.1 Discriminant [4] of polynomial P in one variable x,
P (x) = amxm + · · ·+ a0, is the function

∆x(P ) =
∏

i<j

(xi − xj), where xi are the roots of polinomial P .

Since it is a symmetric polynomial in roots P , discriminant can be written
as a polynomial in terms of coefficients of P .
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So the second part of theorem 1.1 is:

Proposition 2.2 Additional bifurcation diagram ΣΦ is the envelope of fam-
ily of surfaces and, in algebraic case, represents discriminant of certain
polynomial.

Proof. Let us consider function

St(η) = φ(η1, . . . , ηn−1, t)− ηn.

And it follows from definition that η ∈ ΣΦ if and only if




St = 0,

∂St

∂t
= 0.

These equations describe the envelope of parameterized family of surfaces
Γt = {St(η) = 0}. Since St is polynomial in t, these conditions determine
surface of multiple roots of function St as a polynomial in only one variable
t.

Using definition 2.1 one can easily get that condition η ∈ ΣΦ is equivalent
to equality ∆t(St(η)) = 0, which is the equation on variables η1, . . . , ηn.

Thus, in polynomial case additional diagram forms algebraic hypersurface
in Rn(η).

3. Classical integrable cases

Examples of integrable systems came from mechanics. There is a standard
method to reduce the law of motion of a rigid body to the Hamiltonian
system on the manifold

TS2 = { (S1, S2, S3, R1, R2, R3) ∈ R6 :

R2
1 + R2

2 + R2
3 = 1, S1R1 + S2R2 + S3R3 = g}.

For more details see, for example, Golubev’s book[5]. In this 4-dimensional
manifold we need only one additional integral K, commutating with given
Hamiltonian H. Bifurcational diagrams of such cases are obtained (list of
results is given in A. V. Bolsinov and A. T. Fomenko book[1]) and have
sufficiently complicated structure — there are some curve segments on the
plane R2(h, k), given in parametrical form. How can we get φ ?
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3.1. Method of calculations

Suppose bifurcation diagram is given in parametric form

Σ = {(h, k) ∈ R2 : h = P (t), k = Q(t)},

where P and Q are the polynomials in t with degrees m and n respectively,
and m ≥ n. In fact we have to eliminate t from system of equations





P0(t, h, k) def= P (t)− h = 0,

Q0(t, h, k) def= Q(t)− k = 0.

Let P0(t) = a
(0)
m tm + · · ·+ a

(0)
0 , Q0(t) = b

(0)
n tn + · · ·+ b

(0)
0 . Using transfor-

mations such as

P1 = b(0)
n P0 − a(0)

m tm−nQ0

we can decrease degrees of polynomials as long as we get polynomial Pr with
degree 0 in t. With respect to variables h and k it is also the polynomial
function. Since polynomial coefficients depend on h and k every transfor-
mation leads us to nonequivalent system. So set of solutions of equation
Pr(h, k) = 0 contains not only bifurcational diagram. If we can decompose
this set in union of algebraic varieties we have to reject unnecessary parts.

In some cases one can get required polynomial in more natural way, using
some specific properties of given system.

3.2. Examples

3.2.1. Euler case

Hamiltonian function and additional integral are

H =
S2

1

2A1
+

S2
2

2A2
+

S2
3

2A3
, K = S2

1 + S2
2 + S2

3 , where A1 ≥ A2 ≥ A3.

Bifurcational diagram Σ = τ0 ∪ τ1 ∪ τ2 ∪ τ3, where

τ0 = {k = g2,
g2

2A1
≤ h ≤ g2

2A3
}, τ1 = {k = 2A1h, k ≥ g2},

τ2 = {k = 2A2h, k ≥ g2}, τ3 = {k = 2A3h, k ≥ g2}.
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Since in this case bifurcational diagram contains parts of straight lines,
minimal surface is given by the product of their equations.

φ(h, k) = (k − g2)(k − 2A1h)(k − 2A2h)(k − 2A3h)

= k4 − 2(A1 + A2 + A3)k3h− g2k3 + 2g2(A1 + A2 + A3)k2h

+ 4(A1A2 + A2A3 + A1A3)k2h2 − 4g2(A1A2 + A2A3 + A1A3)kh2

− 8A1A2A3kh3 + 8g2A1A2A3h
3.

3.2.2. Lagrange top

Hamiltonian and additional integral are

H =
1
2
(S2

1 + S2
2 +

S2
3

β
) + R3, K = S3.

Bifurcational diagram Σ is the set

{h = Wg,k(x) : W ′
g,k(x) = 0, x ∈ (−1, 1)},

where Wg,k(x) =
(g + k)2

4(1 + x)
+

(g − k)2

4(1− x)
+ x +

k2(1− β)
2β

(1)

and two points h1 = g2

2β + 1, k1 = g and h2 = g2

2β − 1, k2 = −g.

Condition (1) means the existence on interval (−1, 1) multiple root of func-
tion h − Wg,k considered as function of one variable x. Let us consider
instead of rational function the polynomial V (h, k, x) = (1 − x)(1 + x)
(h−Wg,k). Existence of multiple root of this polynomial can be written in
terms of discriminant.

Hence

Σ ⊂ {(h, k) : ∆x(V (h, k, x)) = 0}.
∆ is a polynomial, so we can take it for φ.

φβ(h, k) = ∆x(V ) = −k8 − g2k6β + 8hk6β + 3k8β + 8k4β2 + 6g2hk4β2

− 24h2k4β2 + 20gk5β2 + 2g2k6β2 − 18hk6β2 − 3k8β2 + 36g2k2β3

− 32hk2β3 − 12g2h2k2β3 + 32h3k2β3 + 18g3k3β3 − 80ghk3β3

+ 20k4β3 − 8g2hk4β3 + 36h2k4β3 − 22gk5β3 − g2k6β3 + 12hk6β3

+ k8β3 − 16β4 + 27g4β4 − 72g2hβ4 + 32h2β4 + 8g2h3β4 − 16h4β4

+ 48gkβ4 − 36g3hkβ4 + 80gh2kβ4 − 30g2k2β4 − 40hk2β4

+ 8g2h2k2β4 − 24h3k2β4 − 2g3k3β4 + 44ghk3β4 − k4β4

+ 2g2hk4β4 − 12h2k4β4 + 2gk5β4 − 2hk6β4.

The direct method described in 3.1 give us the same function.
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3.2.3. Kovalewskaya case

Hamiltonian and additional integral are

H =
1
2
(S2

1 + S2
2 + 2S2

3) + R1, K = (
S2

1 − S2
2

2
−R1)2 + (S1S2 −R2)2.

Bifurcational diagram Σ = τ1 ∪ τ2 ∪ τ3, where

τ1 = {k = 0, h > g2},

τ2 = {k = (h− g2)2,
g2

2
− 1 ≤ h ≤ g2 +

1
2g2

},

τ3 = {k = 1 + tg +
t4

4
, h =

t2

2
− g

t
, t ∈ (−∞, 0) ∪ (g,∞)}.

φg(h, k) = k · (k − (h− g2)2) · (4 + 27g4 − 36g2h + 8h2 − 4g2h3 + 4h4

− 12k + 36g2hk − 16h2k − 4h4k + 12k2 + 8h2k2 − 4k3).

3.2.4. Sretenskii case

Hamiltonian and additional integral are

H =
1
2
(S2

1 + S2
2 + 4(S3 + λ)2) + R1, K = (S3 + 2λ)(S2

1 + S2
2)− S1R3.

Bifurcational diagram Σ = τ1 ∪ τ2 ∪ τ3, where

τ1 = {k = 0, h ≥ −1},

τ2 = {h =
3t2

2
+ 4λt + 2λ2 + 1, k = t3 + 2λt2},

τ3 = {h =
3t2

2
+ 4λt + 2λ2 − 1, k = t3 + 2λt2}.

Required polynomial is a product φ = φ1 · φ2 · φ3, where

φ1 = k,

φ2 = −8 + 24h− 24h2 + 8h3 − 27k2 + 72kλ− 72hkλ

− 32λ2 + 64hλ2 − 32h2λ2 + 16kλ3 − 32λ4 + 32hλ4,

φ3 = 8 + 24h + 24h2 + 8h3 − 27k2 − 72kλ− 72hkλ

− 32λ2 − 64hλ2 − 32h2λ2 + 16kλ3 + 32λ4 + 32hλ4.

Thus, we reduce problem of canonical representation of bifurcational dia-
gram to choice of function Φ, such as it’s zero level surface include’s all
singular fibers of given foliation. The supplementary condition for Φ is the
polynomial form. These conditions do not determine unique function, so
we have to find the “minimal” one (in some way).
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4. Lax representation

There is another approach to study singularities of integrable systems. It
also give us construction of algebraic set in the image of momentum map-
ping. It is based on the special form of equations.

4.1. Lax equations

Let’s leave the integrability question for a while.

Definition 4.1 Lax equations is the system

d

dt
Aλ = [Aλ, Bλ] ,

where Aλ and Bλ are matrices smoothly depend on spectral parameter λ,
and [ · , · ] is usual matrix bracket.

This equation is equivalent to existence of invertible matrix U(t) such as
Aλ can be written in form

Aλ(t) = U(t)Aλ(t0)(U(t))−1
.

System like that has evident polynomial first integrals f1, . . . , fm —
coefficients of characteristic polynomial Aλ or, for example, functions
det Aλ, det A2

λ, . . . .

Consider characteristic polynomial P (λ, µ) = det(Aλ−µE). For every point
of origin configuration space equation P (λ, µ) = 0 determine certain alge-
braic curve in C2(λ, µ), which can be extended for curve C on CP1×CP1.
It’s called spectral curve of given Lax equation. Coefficients of spectral
curve are the first integrals of system, so each simultaneous level surface
goes with only one curve. Let Cξ be the spectral curve corresponding to
surface Tξ = {x : f1(x) = ξ1, . . . , fm(x) = ξm}.

Definition 4.2 Discriminant of spectral curve is the set

D = {ξ ∈ Cm : Cξ has singularities}.

Case of completely integrable systems

Now suppose system has both Lax pair and sufficient number of first in-
tegrals. In over words, the set of non-trivial integrals f1, . . . , fn, obtained
as coefficients of characteristic polynomial, satisfies conditions (1)− (4) of
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complete integrability and n equals to the half of phase space dimension.
Then one can consider momentum mapping

F = f1 × · · · × fn : M2n −→ Rn.

There are two special sets in the image of momentum mapping:

DR = {ξ ∈ Rn : ∃(λ, µ) ∈ CP1×CP1,

Pξ(λ, µ) =
∂Pξ

∂λ
(λ, µ) =

∂Pξ

∂µ
(λ, µ) = 0}

Σ = {ξ ∈ Rn : ∃x ∈ F−1(ξ), dxf1, . . . , dxfn linearly dependent }.
We are interested in their positional relationship.

4.2. Proof of Theorem 1.2

The proof of the theorem in fact consists in direct computation respective
discriminant curves and comparing them with results of paragraphs 3.2.2
and 3.2.3. Discriminants for both cases are computed by M. Audin, [3].
Let us consider, for example, Lagrange case.

Motion of symmetric top is described by the following system of equations
on R6((S1, S2, S3, R1, R2, R3))

{
Γ̇ = [Γ, Ω ],

Ṁ = [M, Ω ] + [Γ, L ],
(∗)

where

Γ = (R1, R2, R3)T is a unit vertical vector, taken in moving frame,

J is the tensor of inertia, which is considered to have form

J = diag{1, 1, β},
M = (−S1,−S2,−S3)T is angular momentum, which is equal to

M = J (Ω),

L is constant vector, determines axis of the top, L = (0, 0, 1)T .

It is the Hamiltonian system with Hamiltonian

H =
1
2

M · Ω + Γ · L

which has on M4
1,g = {R2

1 + R2
2 + R2

3 = 1, S1R1 + S2R2 + S3R3 = g} an
additional integral

K = M · L.
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So it represents classical Lagrange case of integrability. But there exists
also Lax pair.

Proposition 4.1 (T. Ratiu, P. van Moerbeke, [7]) Equations (∗) are equiv-
alent to the following:

·︷ ︸︸ ︷
Γ · λ−1 + M + L · λ = [Γ · λ−1 + M + L · λ, Ω + L · λ].

Proof. It is sufficient to open the brackets and to compute coefficients of
respective powers of λ.

From this form of equations we can get that spectral curve equation can be
written as

P (λ, µ) = µ(µ2 + Q(λ)) = 0 , where Q(λ) = ‖Γ · λ−1 + M + L · λ‖2.
In terms of integrals Q(λ) takes on form

Q(λ) = λ−2 + 2gλ−1 + (2h + (1− 1
β

)k2) + 2kλ + λ2.

Spectral curve equation determines curve on CP 1(µ)× CP 1(λ) so one can
shift exponents of λ2. Discriminant of spectral curve D is the set of points
(h, k) ∈ C2, such as for these values spectral curve has singularities. In
our case spectral curve has singularities if and only if λ2Q(λ) has multiple
root. Using definition 2.1 for discriminant of one-variable polynomial one
can find precisely the same function as we compute in 3.2.2, in other words
D = {φ(h, k) = 0}, where φ is considering as a polynomial in complex
variables.

5. Conclusion

Finally, polynomial, constructed using the set of arbitrary first integrals,
serves as internal characteristic of Liouville foliation corresponding given
system. It defines integral surface containing all critical tori’s bifurcations.
Bifurcational diagram form given by theorem 1.1 can be considered as it’s
canonical representation.

In most cases of completely integrable systems bifurcational diagram is
defined as discriminant of some polynomial. For systems having Lax rep-
resentation A. T. Fomenko and Y. Brailov set up a conjecture:

Conjecture 5.1 (for 2-dimensional diagrams) The set of points of spec-
tral curve discriminant such as they have nonempty pre-image is equal to
bifurcational diagram.
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In Lagrange, Kovalewskaya and sl(n,C) cases this statement is proved.
There exists contrary instance for systems with three degrees of freedom.
Though discriminant and diagram can be regarded as cell complexes and
in terms of cells the statement takes on following form:

Conjecture 5.2 (for an arbitrary dimension) Spectral curve discriminant
coincide with bifurcational diagram in the cells of maximum dimension.

Also the open question is what does canonical integral represent in case
when integrable system does not allow Lax form.
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