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After defining reduced minimum braid word and criteria for a braid family repre-
sentative, different braid family representatives are derived, and a correspondence
between them and families of knots and links given in Conway notation is estab-
lished.

1. Introduction

In the present article Conway notation [1,2,3,4] will be used without any
additional explanation. A braid-modified Conway notation is introduced in
Section 1, for a better understanding of the correspondence between braid
family representatives (BF Rs) and families of knots and links (K Ls) given
in Conway notation.

Minimum braids are defined, described, generated and presented in ta-
bles for knots up to ten crossings and oriented links up to nine crossings
by T. Gittings [5]. T. Gittings used them for studying graph trees, am-
phicheirality, unknotting numbers and periodic tables of K Ls.

Since knots are 1-component links, the term K L will be used for both knots
and links.
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In Section 2 we define a reduced braid word, describe general form for all
reduced braid words with s = 2 strands, generate all braid family represen-
tatives of two-strand braids, and establish a correspondence between them
and families of K Ls given in Conway notation. In Section 3 we consider
the same problem for s > 3. In Section 4 some applications of minimum
braids [5] and braid family representatives are discussed. All computations
are made using the knot-theory program LinKnot written by the authors
[6], the extension of the program Knot2000 by M. Ochiai and N. Imafuji
[7].

2. Reduced Braid Words and Minimum Families of Braids
with s = 2

We use the standard definition of a braid and description of minimum braids
given by T. Gittings [5]. Instead of a...a, where a capital or lower case
letter a appears p times, we write a?; p is the degree of a (p € N). It
is also possible to work with negative powers, satisfying the relationships:
AP =aP, 7P = AP. A number of strands is denoted by s, and a length
of a braid word by .

The operation a2

called idempotency. To every braid word we can apply the operation of
idempotency until a reduced braid word is obtained.

— a applied on any capital or lower case letter a is

Definition 2.1 A reduced braid word is a braid word with degree of every
capital or lower case letter equal to 1.

By an opposite procedure, braid word extension, from every reduced braid
word we obtain all braid words that can be derived from it by assigning a
degree (that can be greater then 1) to every letter. In this case, a reduced
braid word plays a role of a generating braid word.
A braid word with one or more parameters denoting degrees greater then
one represents a family of braid words. If values of all parameters are equal
2, it will be called a source braid.
For the minimality of reduced braids we are using the following criteria:
(1) minimum number of braid crossings;
(2) minimum number of braid strands;

(3) minimum binary code for alternating braid crossings.

According to the first and second criterion minimal reduced braids are
the shortest reduced braids with a smallest as possible number of different
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letters among all equivalent reduced braids representing certain K L. A
binary code for any braid crossing can be generated by assigning a zero for
an alternating, and a one for a non-alternating crossing. Hence, a priority
will be given to alternating braids, and then to braids that differ from them
as low as possible. Analogous minimality criteria can be applied to source
braids.

Definition 2.2 Among the set of all braid families representing the same
KL family, the braid family representative (M F B) is the one that has the
following properties:

(1) minimum number of braid crossings;

(2) minimum reduced braid,

(3) minimum source braid.

These criteria are listed in descending order of importance for determining
BFRs.

Our definition of BF Rs results in some fundamental differences with regard
to minimum braids, defined by T. Gittings [5]. Some members of BF Rs
will be minimum braids, but not necessarily.

For example, the minimum braid of the link .21 : 2 (93, in Rolfsen [4])
is 9:03-05a AADACHACH [5,Table 2]. According to the second BFR cri-
terion it will be derived from the generating minimum braid AbAbACHC
corresponding to the link .21 (8%;), and not from the non-minimum gen-
erating braid AbACbOACH corresponding to the same link. Hence, to the
three-component link .21 : 2 (93,) obtained as the first member of BFR
AbAPHACHC for p = 2 will correspond the braid AbAAbACHC, that is not

a minimum braid according to the minimum braid criteria [5].

The third criterion: minimum source braid enables us to obtain K Ls of a
certain family from a single BF' R, and not from several different BF Rs. For
example, applying this criterion, K Ls .3.2.20, .2.3.20 and .2.2.30 belong-
ing to the same KL family .r.p.q0 will be obtained from the single BF R
APHATDAD". Otherwise, using the minimum braid criteria [5], the knot
.3.2.20 will be obtained from the family APbAbY Ab", three-component link
.2.3.20 will be obtained from APbAYbAb", and the knot .2.2.30 will be ob-
tained from APbAIH" Ab for p = 3, ¢ = 2, r = 2. Source braids correspond-
ing to the families APbAbIAb", APbAIbAD™ and APbAIL” Ab are A2bAbZAb?,
A2bA?bAb? and A2bA2b%Ab, respectively, and the second source braid is
minimal. Hence, the representative of the KL family .r.p.q0 is BFR
APHAIDAD".
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According to this, to every BF'R can be associated a single corresponding
family of K Ls given in Conway notation and vice versa.

An overlapping of K L families obtained from BF Rs can occur only at their
beginnings. For example, distinct BFRs AbAPbACHC and APHCHALCY,
giving KL families .21 : p and .p1 : 2, respectively, for p = 2 will have
as a joint member aforementioned three-component link .21 : 2 (93;). Ac-
cording to the second BFR criterion, it will be derived from the min-
imum generating braid AbAbACHC, and not from AbACHACSH. Hence,
BFR AbAPLACHC giving K Ls of the form .21 : p begins for p = 2, and
APHCHADCD giving K Ls of the form for .p1 : 2 begins for p = 3. In this
way, all ambiguous cases can be solved.

Every KL is algebraic (if its basic polyhedron is 1*) or polyhedral, so
according to this criterion, all K'Ls are divided into two main categories:
algebraic and polyhedral. Since to every member of a BF R corresponds a
single K L, we can introduce the following definition:

Definition 2.3 An alternating BF R is polyhedral iff its corresponding K Ls
are polyhedral. Otherwise, it is algebraic. A non-alternating BF R is poly-
hedral iff its corresponding alternating BF' R is polyhedral. Otherwise, it
will be called algebraic.

The division of non-alternating BF' Rs into algebraic and polyhedral does
not coincide with the division of the corresponding K Ls [1,2,3], because
minimum number of braid crossings is used as the first criterion for the
BF Rs. Accepting minimum reduced braid universe [5] as the first criterion,
all KLs derived from the basic polyhedron .1 will be algebraic, because
they can be represented by non-alternating minimal (but not minimum [5])
algebraic braids. E.g., the alternating knot .2.20 (816) with the polyhedral
braid A2bA2bAb can be represented as the algebraic knot (—3,2) (3, —2)
with the corresponding algebraic braid A3b%a?B3. In this case, to the knot
816 corresponds algebraic braid A%b%a?B? that reduces to AbaB, and not
A2bA%bAb that reduces to AbAbAb.

Another solution of this discrepancy is changing the definition of an alge-

braic KL into the following:

Definition 2.4 KL is algebraic if it has an algebraic minimum crossing
number representation.

In this case, all K'Ls derived from the basic polyhedron .1 (with Conway
symbols beginning with a dot) will be polyhedral K Ls, because their min-
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imum crossing number representations are polyhedral.
We will consider only BF Rs corresponding to prime K Ls.

It is easy to conclude that every 1-strand BF'R is of the form AP, with the
corresponding K L family p in Conway notation.

Theorem 2.1 FEvery reduced BF R with s = 2 is of the form (Ab)", n > 2.

This BF R corresponds to the knot 22 and to the family of basic polyhedra
1 =6%, 8%, 10%, 12* (or 12A according to A. Caudron [3]), etc. For n >3
all of them are n-antiprisms. Let us notice that the first member of this
family, the knot 2 2, is not an exception: it is an antiprism with two diagonal
bases.

Theorem 2.2 All algebraic alternating K Ls with s = 2 are the members
of the following families:

p12 with the BER APbAb (p > 1);

p11q with the BFR APbAVY (p > q > 2);

D, q,2 with the BFR APbAYb (p > q > 2);

p,q,7 1 with the BER APbA" (r > 2,p > q > 2);

(p,7) (q,8) with the BFR APb1A"b*

(p,q,r,8 >2,p>1rp>s,8>qandifp=s, thenr > q).

Minimum braids include one additional braid (APbYAb") in the case of al-
gebraic alternating K Ls with s = 2.

Alternating polyhedral K Ls with s = 2 are given in the following table, each
with its BFR. K Ls in this table are given in ”standard” Conway notation
(that is "standardized” for knots with n < 10 and links with n < 9 crossings
according to Rolfsen’s book [4]). This table can be extended to an infinite
list of antiprismatic basic polyhedra (2n)* described by the BF Rs (Ab)™,
n > 3 and BF Rs with s = 2 obtained as their extensions.

Table 1
Basic polyhedron .1 = 6*

APLADAL  p (1) APDADAIH" r:p0:qg0 (7)
APDADADT  pg (2) APDADVIATL®  p.s.rg (8)
APbATDAL  .p.q0 (3) APHATDA™LS  q0.pr0.s0 (9)
APDADIAL  p:q0 (4) APHAID" Ab® .p.sr0.g0 (10
APHATDAL"  .r.p.q0  (5) APBAI" At pit.srg (11
(6) (

APBAIDA™D p:iq:r APBIATHE AT p.g.r.s.tau



290

If we apply minimum braid criteria [5], we need to add ten braids for the ba-
sic polyhedron .1 = 6*: (1) APbAbIAb", (2°) APHAIL" Ab, (3') APbTALAL",
(47) APbAID" A®D, (5') APHIADATY, (67) APDIADT AL®, (T7) APDIATHADL®, (8)
APHIAb” ASHE, (97) APLIATDASH, (10°) APbYATHSAb'. Applying BFR cri-
teria, according to the minimum source braid criterion all K Ls obtained
from the braids (1’) and (2) will be obtained from BF R (5), K Ls obtained
from (3’) will be obtained from (7), K Ls obtained from (4’) and (6’) will be
obtained from (9), K Ls obtained from (5°) and (7’) will be obtained from
(8), and K Ls obtained from (8’), (9’) and (10’) will be obtained from (11).
Using minimum braid criteria [5], we need to make analogous additions to
all classes of BF'Rs considered in this paper.

For the basic polyhedron 8* we have:

Basic polyhedron 8*

APHADAbLAD 8*p APDAIHAL" Ab® 8p:q:.r:s
APHADAbLALY 8*p.q APHALIATHAD® 8*p.s : .rgq
APHATHAbAD 8p : ¢ APHAIHDATHA®D 8*p:s:1:4¢

APHAbADTL Ab 8p : .q  APbAbAIbL" Asp 8*p.t.s.r.q
APHAbAILAD 8p = q  APbAIDAb" Asb 8*p.t.sr : g
APDAIDADAL”  S*por g  APLAIL" AShAb 8p :qrs ..t
APDAbAIDAL”  S*por : .q APLAILATHASH 8*pts :r g
APDAIDATVAD  8*p 1 q : v APLAILATHS Ab 8*pt : sr g
APDAIDAD"Ab  8*p :.r:.q APLAVIATHS AbY 8*p.u.t.s.r.q
APHADALAID"  8*p.rq APDAIDATLS ALH 8*put.sr : g
APOADADIATD®  8*p.s.r.q APDAID" ASHALH 8*pau.t : sr.q
APHAIDABATD®  8*p.s.r i q  APHAILT ASHt AbY 8*p : qr.st:u
APBAVIATVSAb  8*p 1 .s.r.q  APDAILT ASHAYLY  8*pov.ut.s.r.g
APHAID" AbAD®  8*p.s i1 r.q  APVIATHS ALY AYDY  8*p.g.r.stuvaw
APHAIDATDAL® 8*p.s:.r:q

Trying to better understand the correspondence between BF Rs and Con-
way symbols of K Ls, we can introduce modified Conway notation. Most
of K Ls can be given in Conway notation by several different symbols (and
this is the main disadvantage of Conway notation). In a similar way as with
the classical notation, where every KL is given by its place in knot tables,
we need to use some ”standard” code, according to the notation introduced
in the original Conway’s paper [2] and in the papers or books following it
[1,3,4]. For example, the same polyhedral knot .p can be given by ..p, : p,
:.p, ..., or even as 6*p, 6*.p, 6% : .p, ...
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Working with BF' Rs we introduce a braid-modified Conway notation that
will be more suitable for denoting K Ls obtained from BF Rs. We are trying
to have a same degree p at the first position of a braid, and as the first
element of Conway symbol corresponding to it. Whenever possible, the
order of degrees will be preserved in the corresponding Conway symbol.
By using this notation, we can recognize a very simple pattern for BF' Rs
derived from the generating minimum braids of the form (Ab)™: by denoting
in a Conway symbol corresponding to a given braid every sequence of single
letters of a length k£ by k 4+ 1 dots, we obtain the Conway symbol of a
given braid. In order to recognize this pattern for K Ls derived from basic
polyhedra, first we need to use only one basic polyhedron 6* with n = 6
crossings, and not two of them (.1 and 6*). In this case, the Table 1 will
look as follows:

Basic polyhedron 6*

APHAbAb 6*p APLADATH” 6*p = q.r

APbADADL  6*p = g APHAbLIATb® 6*p : .q.r.s
APHAIDAL  6*p : ¢ APHAIHATH® 6*p 1 q: 1.8
APHALIAL  6*p : .q APHATL" Ab® 6*p:qr:s
APHAIDAD" 6*p:q: .1 APDAIL" ASHE 6*p : q.r.s.t
APDAIDATL 6*piq: T APHIATHS ADY  6*p.g.r.st.u

and for the basic polyhedron 8* we have:

Basic polyhedron 8*

APbADADAD 8*p APHAIHAL" Ab® 8p:q:.r:s
APHADAbALY 8p 1 q APHALIATHAD® 8p : .qr : .s
APHATHALAD 8p : ¢ APHAIHATHA®D 8p:q:1:s
APHhAbADTL Ab 8p = g APbAbAID" At 8p = qrst
APHAbATHAD 8p = ¢ APHAIDAD” At 8p :q: st
APHAIDALAY"  8*p i q . APHAIL” AShADE 8*p : qrs .t
APHALAILAY" 8 p i q : .r APHAIDATHASHE 8p:iqg:r: st
APHAIDATHDAD  8*p i q : T APHAIDATLS Abt 8p:iqg:rs:t
APHAIDAD"Ab 8 p : q : . APDABIATHS ALh 8*p : .q.r.s.tu
APHADALAID"™  8*p i qur APDAIDATHS ALH 8*p:q:rstu
APHADABIATH® 8*p :: .q.r.s APDAID" ASHALH 8*p:qrs:tu
APHAIDALATD® 8*p :q 1. APDAID" ASbE AbH 8*p:qr.st:u
APDAVIATHS AL 8*p : .q.r.s APDAID" ASHEAYDY  8*p : q.r.s.tuw

APHAID" ADAL® 8*p i qr s APDIATHE ALDYAYHY  8*p.q.r.s.tauv.w
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APHAIDATDAL® 8*p:q:rT:.s

Unfortunately, it is not possible to express every family of KLs in the
braid-modified Conway notation. Another problem is that it strongly dif-
fers from the standard Conway notation. Therefore, the braid-modified
Conway notation is used only when after some slight modification standard
Conway symbols remained completely understandable to a reader familiar
with them.

In the same way, it is possible to continue with the derivation of BF Rs

from basic polyhedra with a higher number of crossings.

Hence, we conclude that:

Corollary All alternating K Ls with s = 2 are described by Theorem 2 and
by an infinite extension of Table 1.

From alternating BF Rs we obtain non-alternating BF Rs by crossing
changes. This way, from BF Rs derived from the generating minimum
braid (Ab)? we obtain the following families of non-alternating BF Rs and
corresponding new K L families:

APBaB  (p — 1)3 APba’b” p(g—1)1,—(r+1)
APbadb p,(g—1)1,-2 APBAYB"  p,q,—r1

APBA'B Py q; —2 APBia"B* (_p7 ’I“) (Q78)
APBaB? (p — 1)2¢q APBIATB® (p,1) — (¢,8)

APBY%aB" p — 1l,q,7+

In the same way, we can derive non-alternating BF Rs with s = 2 from the
generating BFR (Ab)™, n > 3.

3. Braid Family Representatives with s > 3

In order to continue derivation of BF' Rs and corresponding K Ls for s > 3
first we derive all different reduced minimum braid words. It is possible to
establish general construction rules for generating minimum braid words.

Definition 3.1 For a given generating minimum braid word W = wL that
ends with a capital or lower case letter L, a replacement of L by a word w;
in W will be called extending by replacement. An addition of the word w; to
W is extending by addition. The both operations are extending operations.

Definition 3.2 Let W = wL, and wy = Lg41LsLs1+1 be generating min-
imum braids with s and s + 1 strings, where Lg denotes sth letter and
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Ls11 denotes (s + 1)th letter. The word extending operations obtained
this way will be called, respectively, (s + 1)-extending by replacement, and
(s + 1)-extending by addition. The both operations are (s + 1)-extending
operations.

For example, the first operation applied on AbAb gives AbACHC', and the
other AbAVCHC.

The (s+ 1)-extending by replacement is sufficient for construction of gener-
ating minimum braids for a given s, with [ = 2s, corresponding to K Ls of
the form 2 ... 2 = 2%, where 2 occurs s times. For 2 < s < 6 as the result
we obtain: AbAb, APACHC, AbDACHdCd, AbACbICEdE, AbPACbdCEdf E f

The generating minimum braids for given s, with | = 3s — 2, corresponding
to KLsoftheform21 ... 12 = 2135762 where 1 occurs 3s—6 times, can be
obtained using only (s+ 1)-extension by addition. For 3 < s < 6 we obtain:
AbALCHC, ABADCHCdCd, AbPADCHCACdEdE, AbAVCVCACAEIEfEf ...

Applying the same procedure, from A3 we obtain the series A%BaB,
A3BaBCbC, A3BaBCbCDcD, A*BaBCbCDcDEJE ..., corresponding
to the knots 32, 52, 72,92 ...

Analogously, starting with w; = AbAbCHICd and using the (s + 1)-
extension by replacement, the generating minimum braids with [ = 2s+1,
corresponding to K Ls of the form 221 ...12 = 221257°2 are obtained for
given s.

However, in order to exhaust all possibilities, all combinations of (s + 1)-

extending operations are used for derivation of reduced minimum braids.

Theorem 3.1 FEvery generating algebraic minimum braid can be derived
from AbAD by a recursive application of (s + 1)-extending operations.

The minimal generating braid words for s < 5 with their corresponding
K Ls are given in the following table:

s=1 1=1 A 1

s=2 =4 AbAb 22

s=3 1l=6 AbACLC 222

s=3 1=7 AbACHC 21112
s=4 [|= AbACHICd 2222
s=4 1=9 AbACHICd 221112
s=4 [=10 AbACHCICd 21111112
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s=5 =10 AbACLICEIE 22222

s=5 =11 AbAVCHICdEIE 2221112

s=5 (=11 AbACLCICEdIE 2211122
s=5 (=12 AbAVCHCICEJE 221111112
s=5 (=12 AbAVCbICdEJE 211121112
s=5 (=13 AbACHCACdEcE 21111111112

In the case of polyhedral generating minimum braid words it is also possible
to make generalizations. We have already considered the infinite class of
generating polyhedral minimum braid words (Ab)" with s = 2. The first
infinite class with s = 3 will be (Ab)"~!ACbHC, with the corresponding K Ls
of the form (2n)*210.

Every BF'R can be derived from a generating minimum braid by assigning
a degree (that can be greater then 1) to every letter.

For s = 3 there are two generating alternating algebraic minimum braid

words:

AbDACHC, | = 6, with the corresponding link 22 2;
AbALCHC, | = 7, with the corresponding knot 21112,

that generate prime K Ls.

From AbACHC we derived 17 alternating BF Rs and their corresponding
families of K Ls, given in the following table:

APVACKC  p122 APBAICH'C (p,q) (r,2+)
AbDACHC  p,2,2+ APHIATCHC  (p,r)(g,2,s)
APHACHIC  pl,q,2+ APHIACH C*  pl,q,s1,r
APDAICHC  p,q,22 APHAICH'C® (p,q) (r,514)
APACHC?  p121g APHAICTHOS  (p,q) 2 (1, )
AWV ACHIC  p,2,q,2 APYIATCLSCY  (p,7)(q,t1,5)
APVIACH C pl,q,r2 APLAICTHCE  (p,q), 5, (t,7)+
APOACHICT pl,q,r1+ APPIATCEDICY (p,1), q, (u, 5),t
APHAICHC" p,q,r12

The next generating alternating algebraic minimum braid AbAbCHC of the
length 7, with s = 3, gives the following results:

APHALCHC pl1112 APHIALCH"C® (pl,g)1(sl,7)
AbALCHC p,211,2 APHAID"CHC (p,q)17r(2,s)
AbAWCHC 21pl2 APHAID"CHC*® p,q,sllrl
APHIADCHC pl,q,211 APHAIDCTHC*® (p,q)111(r,s)



APLAIBCHC
APLAVICHC
APHABCHC
AbAYPCHIC
AP ADCHIC
APHIATLCHC
APHIAL"CHC
APHIABCHC
APDAIBCH"C
APDAIY"CHC
APDAIBCHC™
APDAVICHC
APLALICHC™
APLALCHICT
AbPABICH C
APVIATH*ChC

p,q,2111
pllqgl2
plllllgq
21p,q,2
(r,2)1(q,2)
(p,7)(¢q,211)
pl,qg,21r
(pl,q)1(r,2)
(p,q)11(2,7)
p,q,21r1
p,q,r1111
pllq,r 2
pllgllr
plll,qg,rl
(r,2)q(r,2)
(p,7)(g,215)

APDAIBCH"C*
APDAYICH"C?
APOALCID"C*
APHIATDCHC
APHIAL"CHC
APYIATHCHEC?
APY1 AL CHsC?
APH AT CEHC*
APH AT CH*C*
APHAICTH C*
APHABICTH* C*
APYIATH*CHIC
APYIATHCHICH
APYIATHCE B CH
APYAITCEHICH
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(p,q)11(r,s1)
pllqg,r,sl

Except ADACHC and AbAbCHC, all generating minimum braids with s = 3

are polyhedral.

For s = 3 and [ < 12, the polyhedral generating braids and their corre-

sponding K Ls are given in the following table, with the notation for basic

polyhedra with 12 crossings according to A. Caudron [3]:

=8 AbALACLC 21
=8 AbCHALCD 2:2
=9 AbABCHADC 820
=9 AbALAVCHC 211
=9 AbACLACHC  9*
=10 AbALALCHCH 212
=10 AbALALACHC 8*210
[ =10 AbALACHLAVC 9*.2
=10 AbALCHABCH 9*2
=10 AbALACHCHC 10***
=10 AbAbCHACHC 10**

=11 AbABADAVCHC  8*211
=11 AbABADCHCHC — 11***
=11 AbABACDLAVCH  10**.20
=11 AbALACLACHC  11**
=11 AbABCLACHCH  11*
=12 AbAbABALACHC 10210
=12 AbALALACHCHC 121
=12 AbALABCLACHC 12F
=12 AbALACHALCHC 12H
=12 AbAbCHADACHC 12G
=12 AbABCHABCHCH 12D
=12 AbCHABCHALCH 12C

From them, BF Rs without duplications are derived. E.g., for [ = 8, the
generating minimum braid .21 gives 70 BF Rs, and .2 : 2 gives 19 BF'Rs.
Overlapping of those families can occur only if all parameters are equal 2,
i.e., for source braids and source K Ls corresponding to them. According
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to the minimality criteria, all those source braids will belong to the first

BFR. The generating minimum braid .21 gives the following BF Rs:

APHABACHC 21.p0 AbAPLACIHC™  p:(g,7)1
AbAPHACHC 21:p AbAPVIACH'C  p.q.(2,7)
AbALACHPC (p,2) AbAPHIACHC™  r11l.q.p
AbAbACHCP pll AbAVY ACHIC™  p.(rl,q)
AbAV’ ACHC 21.p AbAVW ACIHC"™  p.(r,q)1
APbAIDACHKC  21.p0.q AP A" ACHKC  21.p.r0.q0
APHABAICHC  210:p0:q0 AV AVIACH'C p:q:(2,7)0
APLADACHIC  .(2,q).p0 AP ALIACHC"™  q:p:7110
APLADACHCT  .q11.p0 APLATDATCHC (2, 5).p0.rq0
APHAVIACHC  .q.21.p0 APHAIBATCHC® 5110:70.q.p0
APPIADACHC  21:p:q0 APLATDACH C®  .(s1,7).p0.q
AbAPHACHIC  .(2,q) :p APHAIBACT™HC®  (s,7)1:p.q0
AbAPHACHCTY  ql11:p APHAIY" ASCHC  q.r.s.210.p
AbAPVIACHC  21.q.p APLA"ACHC  .(s,2).r.q.p0
AbABACHPCT  (q1,p) APHAI" ACHC®  .s11.r.q.p0
AbALACPHCY  (¢,p)1 APHALAICH"C®  (r,s1)0:q0:p0
AbABPACHIC  .(q,2).p APLALAICTHC?®  (s,7)10:¢0:p0
AbAVW ACHC? qll.p APHALIATCH’C  q.(2,5).r0.p
AP AVTACHC  p:q:210 APHABIATCHC® q.s11.r0.p
APpAIDA"CHC 21.p0.q:r APLAVIACHC®  .q.(s1,7).p0
APHATDACH"C  .q.p0.(1,2) APLALIACTHC®  .q.(s,7)1.p0
APHAIDACHC" r11.p0.q APYIATHACHC  1r.q.p.(2,5)0
APpAN" ACBC  21.r.q.p0 APBIA"BACHC® 1r.q.p.s110
APHALAICH"C p0:q0:(r,2)0 APHIATH* ACHC  s.7.q.p.210
APHABAICHC" r110:q0:p0 APYIADACH"C®  (s1,r):p:q0
APLADACHIC™  p.(r1,q)0 APYIADACTHC®  (s,r)1:p:q0
APHALACIHC™  .p.(r,q) 10 APHI A" A’COC s.r.q.p.210
APHABIATCHC q.21.r0.p APYI A" ACHC  p0.(s,2).q.r0
APLAYTIACH ' C  .q.(2,7).p0 APBIAL"ACHC® p0.s11.q.r0
APHAVIACHC™ .qr11.p0 AbAPVIACH C®  (r,s1).q.p
APHPIATHACHC 71.9.p.210 AbAPVIACTHC?®  .(s,7)1.q.p
APYIABACH ' C p: (r,2):q0 AP A" ACHC  (s,2).p.r0.q0
APHIABACHC™ r11:p:q0 AP AIB" ACHC®  s11.r.p0.q0
APHI A" ACHC  p0.21.q.70 AP AVIACH'C® q:p:(s1,7)0
AbAPHACHIC™ p:(rl,q) AV AVTACTVC? p:iq:(r,s)10
The generating minimum braid .2 : 2 gives the following BF Rs:
APbCHABCH pl:2 APHICHABC™D  r1.q0.p1

AV CHALCH 2.p0.2 APYICHY" AbCH  2.q0.r.p10
APHICHALCH  .pl.q0.2 APLCHATC™  r1: (p,q)
APLCLATDCH  .(p,q) : 2 AVPCHAYICH  2.p0.r.20.q
APBCHABCID  pl:ql APYICHLATHCb  .(p,1).50.2.40
APCOLAVICH  p.20.q.20 APYICHATHC®b  .s1.q0.(p,T)
AVPCHALCH!  2.p0.q.20 APYICHLA"BCH®  (1r,p).q0.5.20
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APHICHA™BCH  .2.q0.(p,T) APHICHAL"C®b .p1.r0.s1.q0
APHICHAD"Ch .p1.r0.2.40 APHICHABC"H® pl1.50.q.r10
APHICHALCY p1.g0.r.20

In the same way, from all generating minimum braid words with s = 3,
it is possible to derive alternating and non-alternating BF Rs and their
corresponding families of K Ls.

As the example, the following table contains non-alternating BF Rs with at
most two parameters, derived from the minimum reduced braid AbACHC'"

AP BacBc (p—1)32 APbalCHC p,22,—q
APBacBe?  (p—1)31¢q APBA%cBe  p,211,—(¢—-1)1
APHACBIC pl,(¢—1)1,2 APACBIC  p,2,2,—q
APBacBic p-—1,¢,2++ AbP AcBic p,2,—q,—2
APPACBIC pl,(¢g—1)1,2 AbP Achlc p,q,2,—2
APLACHA  pl3(q—1) ABPACBIC p,q,—2,—2
APBacBC? (p—1)4(¢—1) ABPACHIC p,2,q,—2

From the generating minimum braid word W = (Ab)" (n > 2), that defines
the family of basic polyhedra (2n)*, by word extension w; = CbACHC
we obtain the second family of basic polyhedra 9* (AbACHACHC), 10**
(AbABCHACHC), 11** (ADABACHACHC), 12F (AbABALCHACHC), etc.
The third family of basic polyhedra 10*** (AbALACHCHC), 11***
(AbALABCDHCHC), 121 (AbADALACHCHC), ete., is derived from W = (Ab)"
(n > 3) for wy = CLCHC.
In the same way, for W = (Ab)" (n > 1), w; = CbALCHADCY the family of
basic polyhedra beginning with 12C (AbCbAbCHAbCY) is obtained;
for W = (Ab)" (n > 2), w; = CbAbCHCH the family of basic poly-
hedra beginning with 12D (AbAbCbAbCHCD) is obtained;
for W = (Ab)™ (n > 2), wy = CbAbACHC the family of basic
polyhedra beginning with 12G (AbAbCHAbACHC) is obtained,;
for W = (Ab)" (n > 2), w; = CbALCHC the family of basic polyhe-
dra beginning with 12H (AbAbACHALCHC) is obtained, etc.

Among them it is possible to distinguish subfamilies obtained using exten-
sions by replacing or by adding.

Theorem 3.2 For s = 4 generating algebraic minimum braids are:

AbACHICd, | = 8, with the corresponding link 2222,
AbALCHACd, | =9, with the corresponding link 221112,
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AbAVCHCACd, | = 10, with the corresponding knot 21111112.
All other generating minimum braid words with s = 4 are polyhedral.

For s = 4 and [ < 12, the polyhedral generating braids and their corre-
sponding K Ls are given in the following table, with the notation for basic
polyhedra with 12 crossings according to A. Caudron [3]:

=10 AbAbLACHICd 221 =12 AbADACHICICd 12]

=10 AbACHCbHACd 21.21 =12 AbADACICHCAC 11*** : 20

=10 AbACHICHIC .21:210 =12 AbAbBCHALACHd  9*22

=10 AbACACHLCIC 22:2 =12 AbABCHCACHCd 8*211 :: 20
=12 AbALCHACHCIC  8*2110 : .20

=11 AbAPACHCACd 21111 =12 AbABCHICbACd  9*211

=11 AbALCHCHICd 211.210 I =12 AbAVCACLCACd 8*21110

=11 AbALCHIACHAC 211:21 =12 AbACLAACHICd 12L

=11 AbALCACHCAC  2111:2 =12 AbACHCHCHICd 8*210.210

=11 AbACHLACHACd 9*210 =12 AbACLCbHACHCd 9*.21 : .2

=11 AbACHCICHCd 8%210::20 =12 AbACHCbHACbIC  8*210 : .210

=11 AbACHCACdCd 2211 =12 AbACLCACHCAC 9*21 : 2

=11 AbACHICHCAC  8%21:.20 =12 AbACHCACHLICd 10** 210

=11 AbACICHCdCd 8*220 =12 AbACLICHCICd 10**.21
=12 AbACHICHICAC 10** : 21

=12 AbALALACHLICdA 8*2210 =12 AbCHLABCACHCd 10** :20: .20

=12 AbALACHLALICd 9*.22 =12 AbCLACHACHCd 10**20 :: .20

For W = (Ab)™ (n > 2), w1 = ACbdCdCd the family of basic polyhedra
beginning with 12J (AbAbACHICdCd) is obtained, and for W = (Ab)"
(n>1), wy = ACbAdCbdCd the family of basic polyhedra beginning with
12L (AbACHAdCHACd) is obtained.

4. Applications of Minimum Braids and BF Rs
4.1. Graph Trees

A rational KL in Conway notation is any sequence of natural numbers
not beginning or ending with 1, where each sequence is identified with its
inverse. From this definition is computed the number of rational K Ls with
n crossings. It is given by the formula

2%—4 + 2[”/2]—2

that holds for every n > 4. This very simple formula is derived first
by C. Ernst and D.W. Sumners in another form [8], and later indepen-
dently by S. Jablan [9,10]. For n > 4 we can compute the first 20 num-
bers of this sequence. After prepending to it the first three numbers 1
for n = 1,2,3, the result is the sequence: 1, 1, 1, 2, 3, 6, 10, 20, 36,
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72, 136, 272, 528, 1056, 1080, 4160, 8256, 16512, 32986, 65792, 131328,
262656, 524800, ... This sequence is included in On-Line Encyclopedia of
Integer Sequences (http://www.research.att.com/™~njas/sequences/) as the
sequence A005418. The number of rational knots with n crossings (n > 3)
is given by the formula

on—=3 4 2[%],2(7171) (mod 2) i (71)(7171)[%} (mod 2)
3
so we can simply derive the formula for the number of rational links with

n crossings as well.

A graph-theoretical approach to knot theory is proposed by A. Caudron
[3]. T. Gittings established a mapping between minimum braids with s
strands and trees with s 4+ 1 vertices and conjectured that the number of
graph trees of n vertices with alternating minimum braids is equal to the
number of rational K Ls with n crossings [5, Conjecture 1].

4.2. Amphicheiral KLs

KL is achiral (or amphicheiral) if its ”left” and "right” forms are equiv-
alent, meaning that one can be transformed to the other by an ambient
isotopy. If an oriented knot or link L can be represented by an antisym-
metrical vertex-bicolored graph on a sphere, whose vertices with the sign
+1 are white, and vertices with the sign —1 are black, it is achiral. In this
case, for an oriented knot or link L there exists an antisymmetry (sign-
changing symmetry) switching orientations of vertices, i.e., mutually ex-
changing vertices with the signs +1 and —1 [9,10]. In the language of braid
words, this means that its corresponding braid word is antisymmetric (or
palindromic): there exist a mirror antisymmetry transforming one letter to
another and vice versa and changing their case (i.e., transforming capital
to lower case letters and vice versa). For example, the reduced braid words
Ab|Ab or ABac|BDcd are palindromic, where the anti-mirror is denoted
by |. Hence, we believe that the origin of all oriented achiral KLs are
palindromic reduced braids.

Conjecture An oriented KL is achiral iff it can be obtained from a palin-
dromic reduced braid by a symmetric assigning of degrees.

For s = 2 all alternating BF Rs are of the form (Ab)™ (n > 2), defining a
series of the basic polyhedra (2n)*, beginning with 22, .1 = 6*, 8%, 10*,
12*, ete. All of them are achiral K Ls, representing a source of other achiral
K Ls. From 4:1-01 AbAb (22 or 4;) by a symmetric assigning of degrees we
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can derive achiral alternating knots with n < 10 crossings: 6:1-02 A2bAb?
(2112 or 63), 8:1-05 A3bAb® (3113 or 8y), 10:1-017 A3b2A%b3 ((3,2) (3,2)
or 1079), and one achiral alternating link with n < 9 crossings: 8:3-05a
AZp2 A% ((2,2)(2,2) or 83), ete. In general, from AbAb the following
families of achiral alternating K Ls are derived:

APbAW pllp APHIAYP  (p,q) (p,q)

Borromean rings 6:3-02 AbAbAb (.1 = 6* or 63) are the origin of achi-
ral alternating knots 8:1-07 A2bAbAbB? (.2.2 or 817), 10:1-020 A%2bA%b Ab?
(.2.2.20.20 or 10g9), 10:1-022 A2b?AbA%b? (2.2.2.2 or 101¢9), and of the
link 8:3-04a Ab2AbA%b (.2 : 20 or 83), etc. In general, from AbAbAD the
following families of achiral alternating K Ls are derived:

APHAbALP .p.p APhA9DHT AbP .p.p.q0.q0

AbP AbAPH .p:p0 APHIATH" ATWP  p.q.r.r.q.p

APHIALAIY  p.q.q.p

Achiral basic polyhedron AbAbAbAb (8%) is the origin of the following fam-
ilies of alternating achiral K Ls:

APHAbADALP 8*p.p APpAbLT ATD AP 8*p.q:.q.p
AbAPHADP Ab 8*p:.p APHIATHAL” ATLP  8*p.q.r.r.q.p
APVIADALAILP  8*p.q.q.p APDAIH" ATDIAWP  8*p.q.q.p:r.r

APHAIDALIADP 8*.p:q.q:p

In the same way it is possible to derive achiral alternating K Ls from all
achiral basic polyhedra (Ab)™ for n > 5.

From the antisymmetry condition it follows that every palindromic braid
has an even number of strands. For s = 4 and [ < 12 palindromic algebraic
generating braids are:

AbACHICd, | = 8 with the corresponding achiral link 2222,
AbALCHCACd, I = 10, with the corresponding achiral knot 21111112.
The palindromic polyhedral generating braids are:

ADACHCHIC, I = 10, with the corresponding achiral knot .21.21,
AbAbACHACACd, | = 12, with the corresponding achiral link 12J,
AbACHAICHIACd, | = 12, with the corresponding achiral knot 12L,
AbACHCHCHICd, | = 12, with the corresponding achiral link 8%210.210,
AbCHALCICHCd, I = 12, with the corresponding achiral knot 10** : 20 ::
20,

AbCHACHICHCd, I = 12, with the corresponding achiral knot 10**20 :: .20.
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From the generating braid AbACbdCd following families of alternating achi-
ral K Ls are derived:
APbACHICdP  p1221p APLAICTHdICAP  (((p,q),7)+) (P, q),7)+)

AbACPWPACd (p,2+) (p,2+) APVIACTH"dCIdP (¢,p1,7) (g, p1, r)
AW ACHIACPd (p,,2) (p,0,2) APBIATCSHA"CIdP (g, (p,7),5) (g, (p,7), )

From the same palindromic non-alternating generating braid the following
families of achiral K Ls are obtained:

APBacBDcd? pp AP BacBDcd?P 2pp2
AbAPBPdCd  (p,2)(q,2) APbAc'B1dCdP  (pl,q)(pl,q)

In the same way is possible to continue the derivation of achiral K Ls from
other palindromic reduced braids.

The family of achiral odd crossing number knots discovered by J. Hoste,
M. Thistlethwaite and J. Weeks in 1998 [11] can be extended to the two-
parameter BF'R defined by the palindromic braid ABaBYCP BAdcbPc? Ded
corresponding to the family of non-alternating achiral odd-crossing knots
with n = 7+ 4p + 4q crossings

10%*(=2p) 0. — 1. — 20.(2¢) : (=2p) 0. — 1. — 20.(2q).

4.3. Unlinking Numbers and Unlinking Gap

T. Gittings [5] noticed that it might be possible to calculate unlinking
numbers from minimum braids. Unfortunately, this is true only for K Ls
with n < 10 crossings, including the link 414 (93) and the Nakanishi-Bleiler
example 514 (10g) with an unlinking gap [12].

Definition 4.1 The minimum braid unlinking gap is the positive difference
between the unlinking number obtained from a minimum braid up(L) and
unlinking number (L) of a link L, i.e.,

op = UB(L) — U(L) > 0.
The unlinking gap [12] for minimum braids appears for n = 11. The follow-

ing alternating links given in Conway notation, followed by their minimum
braids have the minimum braid unlinking gap:

5.2 APhAbAY? 8%3.2 A3bAbAbAY?
3.4 A*bALAY? 8*3:2 A3bAZbAbAb
8*4 A*bAbAbAD 8%2.2:.2 A%bAbA2DAD?

2.3.30 A3bA3bAb? 10*2 A% AbAbAbAD
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For the links .5.2, .3.4 the value of minimum braid unlinking gap is dp = 2,
and for other links from this list 65 = 1. Hence, minimum braid unlinking
number is different from the unlinking number and represents a new KL
invariant.

4.4. Periodic Tables of KLs

Periodic tables of K Ls can be established in three ways: starting with fam-
ilies of K Ls given in Conway notation [9,10,13], with minimum braids [5],
or with BF Rs. Since we have established correspondence between BF Rs
and K Ls in Conway notation, it follows that the same patterns (with re-
gard to all KL polynomial invariants and K L properties) will appear in all
cases. For example, for every family of K Ls is possible to obtain a general
formula for Alexander polynomials, with coefficients expressed by numbers
denoting tangles in Conway symbols, or from their corresponding parame-
ters from minimum braids or from BF Rs. The same holds not only for KL
polynomials, but for all other properties of K Ls: writhe, amphicheirality,
number of projections, unlinking number, signature, periods, etc. [9,10,13].

5. Acknowledgements

We would like to express our gratitude to Thomas Gittings for his critical
reading of the manuscript, corrections, advice and suggestions.

References

1. C. C. Adams, The Knot Book, Freeman, New York, 1994.

2. J. Conway, An enumeration of knots and links and some of their related
properties, In:  Computational Problems in Abstract Algebra, Proc. Conf.
Oxford 1967 (Ed. J. Leech), Pergamon Press, New York (1970) 329-358.

3. A. Caudron, Classification des nceuds et des enlancements, Public. Math.
d’Orsay 82. Univ. Paris Sud, Dept. Math., Orsay, 1982.

4. D. Rolfsen, Knots and Links, American Mathematical Society, AMS Chelsea
Publishing, 2003.

5. T. Gittings, Minimum braids: a complete invariant of knots and links,
(http://arxiv.org/math/0401051).

6. S. Jablan and R. Sazdanovié¢, LinKnot, http://www.mi.sanu.ac.yu/ vis-
math/linknot/ (2003).

7. M. Ochiai and N. Imafuji, Knot2000, http://amadeus.ics.nara-wu.ac.jp/
~ochiai/freesoft.html

8. C. Ernst and D. W. Sumners, The growth of the number of prime knots,
Math. Proc. Cambridge Math. Soc. 102 (1987), 303-315.



10.
11.

12.
13.

303

S. V. Jablan, Ordering knots, Visual Mathematics 1, 1 (1999), http: //mem-
bers.tripod.com/vismath/sl/index.html

S. V. Jablan, Geometry of links, Novi Sad J. Math. 29, 3 (1999), 121-139.
J. Hoste, M. Thistlethwaite and J. Weeks, The first 1,701,936 knots, Math.
Intalligencer 20 (1998), 33—48.

S. Jablan and R. Sazdanovié, Uninking number and unlikng gap, (to appear).
S. V. Jablan, New knot tables, Filomat (Ni§), 15, 2 (2002), 141-152 (http:
//members.tripod.com/modularity /knotab/index.html).



