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After defining reduced minimum braid word and criteria for a braid family repre-
sentative, different braid family representatives are derived, and a correspondence
between them and families of knots and links given in Conway notation is estab-
lished.

1. Introduction

In the present article Conway notation [1,2,3,4] will be used without any
additional explanation. A braid-modified Conway notation is introduced in
Section 1, for a better understanding of the correspondence between braid
family representatives (BFRs) and families of knots and links (KLs) given
in Conway notation.

Minimum braids are defined, described, generated and presented in ta-
bles for knots up to ten crossings and oriented links up to nine crossings
by T. Gittings [5]. T. Gittings used them for studying graph trees, am-
phicheirality, unknotting numbers and periodic tables of KLs.

Since knots are 1-component links, the term KL will be used for both knots
and links.
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In Section 2 we define a reduced braid word, describe general form for all
reduced braid words with s = 2 strands, generate all braid family represen-
tatives of two-strand braids, and establish a correspondence between them
and families of KLs given in Conway notation. In Section 3 we consider
the same problem for s ≥ 3. In Section 4 some applications of minimum
braids [5] and braid family representatives are discussed. All computations
are made using the knot-theory program LinKnot written by the authors
[6], the extension of the program Knot2000 by M. Ochiai and N. Imafuji
[7].

2. Reduced Braid Words and Minimum Families of Braids
with s = 2

We use the standard definition of a braid and description of minimum braids
given by T. Gittings [5]. Instead of a . . . a, where a capital or lower case
letter a appears p times, we write ap; p is the degree of a (p ∈ N). It
is also possible to work with negative powers, satisfying the relationships:
A−p = ap, a−p = Ap. A number of strands is denoted by s, and a length
of a braid word by l.

The operation a2 → a applied on any capital or lower case letter a is
called idempotency. To every braid word we can apply the operation of
idempotency until a reduced braid word is obtained.

Definition 2.1 A reduced braid word is a braid word with degree of every
capital or lower case letter equal to 1.

By an opposite procedure, braid word extension, from every reduced braid
word we obtain all braid words that can be derived from it by assigning a
degree (that can be greater then 1) to every letter. In this case, a reduced
braid word plays a role of a generating braid word.

A braid word with one or more parameters denoting degrees greater then
one represents a family of braid words. If values of all parameters are equal
2, it will be called a source braid.

For the minimality of reduced braids we are using the following criteria:
(1) minimum number of braid crossings;
(2) minimum number of braid strands;
(3) minimum binary code for alternating braid crossings.

According to the first and second criterion minimal reduced braids are
the shortest reduced braids with a smallest as possible number of different
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letters among all equivalent reduced braids representing certain KL. A
binary code for any braid crossing can be generated by assigning a zero for
an alternating, and a one for a non-alternating crossing. Hence, a priority
will be given to alternating braids, and then to braids that differ from them
as low as possible. Analogous minimality criteria can be applied to source
braids.

Definition 2.2 Among the set of all braid families representing the same
KL family, the braid family representative (MFB) is the one that has the
following properties:

(1) minimum number of braid crossings;
(2) minimum reduced braid;
(3) minimum source braid.

These criteria are listed in descending order of importance for determining
BFRs.

Our definition of BFRs results in some fundamental differences with regard
to minimum braids, defined by T. Gittings [5]. Some members of BFRs
will be minimum braids, but not necessarily.

For example, the minimum braid of the link .2 1 : 2 (93
11 in Rolfsen [4])

is 9:03-05a AAbACbACb [5,Table 2]. According to the second BFR cri-
terion it will be derived from the generating minimum braid AbAbACbC

corresponding to the link .2 1 (82
13), and not from the non-minimum gen-

erating braid AbACbACb corresponding to the same link. Hence, to the
three-component link .2 1 : 2 (93

11) obtained as the first member of BFR

AbApbACbC for p = 2 will correspond the braid AbAAbACbC, that is not
a minimum braid according to the minimum braid criteria [5].

The third criterion: minimum source braid enables us to obtain KLs of a
certain family from a single BFR, and not from several different BFRs. For
example, applying this criterion, KLs .3.2.2 0, .2.3.2 0 and .2.2.3 0 belong-
ing to the same KL family .r.p.q 0 will be obtained from the single BFR

ApbAqbAbr. Otherwise, using the minimum braid criteria [5], the knot
.3.2.2 0 will be obtained from the family ApbAbqAbr, three-component link
.2.3.2 0 will be obtained from ApbAqbAbr, and the knot .2.2.3 0 will be ob-
tained from ApbAqbrAb for p = 3, q = 2, r = 2. Source braids correspond-
ing to the families ApbAbqAbr, ApbAqbAbr and ApbAqbrAb are A2bAb2Ab2,
A2bA2bAb2 and A2bA2b2Ab, respectively, and the second source braid is
minimal. Hence, the representative of the KL family .r.p.q 0 is BFR

ApbAqbAbr.
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According to this, to every BFR can be associated a single corresponding
family of KLs given in Conway notation and vice versa.

An overlapping of KL families obtained from BFRs can occur only at their
beginnings. For example, distinct BFRs AbApbACbC and ApbCbAbCb,
giving KL families .2 1 : p and .p 1 : 2, respectively, for p = 2 will have
as a joint member aforementioned three-component link .2 1 : 2 (93

11). Ac-
cording to the second BFR criterion, it will be derived from the min-
imum generating braid AbAbACbC, and not from AbACbACb. Hence,
BFR AbApbACbC giving KLs of the form .2 1 : p begins for p = 2, and
ApbCbAbCb giving KLs of the form for .p 1 : 2 begins for p = 3. In this
way, all ambiguous cases can be solved.

Every KL is algebraic (if its basic polyhedron is 1∗) or polyhedral, so
according to this criterion, all KLs are divided into two main categories:
algebraic and polyhedral. Since to every member of a BFR corresponds a
single KL, we can introduce the following definition:

Definition 2.3 An alternating BFR is polyhedral iff its corresponding KLs
are polyhedral. Otherwise, it is algebraic. A non-alternating BFR is poly-
hedral iff its corresponding alternating BFR is polyhedral. Otherwise, it
will be called algebraic.

The division of non-alternating BFRs into algebraic and polyhedral does
not coincide with the division of the corresponding KLs [1,2,3], because
minimum number of braid crossings is used as the first criterion for the
BFRs. Accepting minimum reduced braid universe [5] as the first criterion,
all KLs derived from the basic polyhedron .1 will be algebraic, because
they can be represented by non-alternating minimal (but not minimum [5])
algebraic braids. E.g., the alternating knot .2.2 0 (816) with the polyhedral
braid A2bA2bAb can be represented as the algebraic knot (−3, 2) (3,−2)
with the corresponding algebraic braid A3b2a2B3. In this case, to the knot
816 corresponds algebraic braid A3b2a2B3 that reduces to AbaB, and not
A2bA2bAb that reduces to AbAbAb.

Another solution of this discrepancy is changing the definition of an alge-
braic KL into the following:

Definition 2.4 KL is algebraic if it has an algebraic minimum crossing
number representation.

In this case, all KLs derived from the basic polyhedron .1 (with Conway
symbols beginning with a dot) will be polyhedral KLs, because their min-
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imum crossing number representations are polyhedral.

We will consider only BFRs corresponding to prime KLs.

It is easy to conclude that every 1-strand BFR is of the form Ap, with the
corresponding KL family p in Conway notation.

Theorem 2.1 Every reduced BFR with s = 2 is of the form (Ab)n, n ≥ 2.

This BFR corresponds to the knot 2 2 and to the family of basic polyhedra
.1 = 6∗, 8∗, 10∗, 12∗ (or 12A according to A. Caudron [3]), etc. For n ≥ 3
all of them are n-antiprisms. Let us notice that the first member of this
family, the knot 2 2, is not an exception: it is an antiprism with two diagonal
bases.

Theorem 2.2 All algebraic alternating KLs with s = 2 are the members
of the following families:

p 1 2 with the BFR ApbAb (p ≥ 1);
p 1 1 q with the BFR ApbAbq (p ≥ q ≥ 2);
p, q, 2 with the BFR ApbAqb (p ≥ q ≥ 2);
p, q, r 1 with the BFR ApbAqbr (r ≥ 2, p ≥ q ≥ 2);
(p, r) (q, s) with the BFR ApbqArbs

(p, q, r, s ≥ 2, p ≥ r, p ≥ s, s ≥ q and if p = s, then r ≥ q).

Minimum braids include one additional braid (ApbqAbr) in the case of al-
gebraic alternating KLs with s = 2.

Alternating polyhedral KLs with s = 2 are given in the following table, each
with its BFR. KLs in this table are given in ”standard” Conway notation
(that is ”standardized” for knots with n ≤ 10 and links with n ≤ 9 crossings
according to Rolfsen’s book [4]). This table can be extended to an infinite
list of antiprismatic basic polyhedra (2n)∗ described by the BFRs (Ab)n,
n ≥ 3 and BFRs with s = 2 obtained as their extensions.

Table 1

Basic polyhedron .1 = 6∗

ApbAbAb .p (1) ApbAbAqbr r : p 0 : q 0 (7)
ApbAbAbq .p.q (2) ApbAbqArbs p.s.r.q (8)
ApbAqbAb .p.q 0 (3) ApbAqbArbs q 0.p.r 0.s 0 (9)
ApbAbqAb .p : q 0 (4) ApbAqbrAbs .p.s.r 0.q 0 (10)
ApbAqbAbr .r.p.q 0 (5) ApbAqbrAsbt p.t.s.r.q (11)
ApbAqbArb p : q : r (6) ApbqArbsAtbu p.q.r.s.t.u (12)



290

If we apply minimum braid criteria [5], we need to add ten braids for the ba-
sic polyhedron .1 = 6∗: (1’) ApbAbqAbr, (2’) ApbAqbrAb, (3’) ApbqAbAbr,
(4’) ApbAqbrAsb, (5’) ApbqAbArbs, (6’) ApbqAbrAbs, (7’) ApbqArbAbs, (8’)
ApbqAbrAsbt, (9’) ApbqArbAsbt, (10’) ApbqArbsAbt. Applying BFR cri-
teria, according to the minimum source braid criterion all KLs obtained
from the braids (1’) and (2’) will be obtained from BFR (5), KLs obtained
from (3’) will be obtained from (7), KLs obtained from (4’) and (6’) will be
obtained from (9), KLs obtained from (5’) and (7’) will be obtained from
(8), and KLs obtained from (8’), (9’) and (10’) will be obtained from (11).
Using minimum braid criteria [5], we need to make analogous additions to
all classes of BFRs considered in this paper.

For the basic polyhedron 8∗ we have:

Basic polyhedron 8∗

ApbAbAbAb 8∗p ApbAqbAbrAbs 8∗p : q : .r : s

ApbAbAbAbq 8∗p.q ApbAbqArbAbs 8∗p.s : .r.q

ApbAqbAbAb 8∗p : q ApbAqbArbAsb 8∗p : s : r : q

ApbAbAbqAb 8∗p : .q ApbAbAqbrAsbt 8∗p.t.s.r.q

ApbAbAqbAb 8∗p :: q ApbAqbAbrAsbt 8∗p.t.s.r : .q

ApbAqbAbAbr 8∗p.r :: .q ApbAqbrAsbAbt 8∗p : q.r.s : .t

ApbAbAqbAbr 8∗p.r : .q ApbAqbArbAsbt 8∗p.t.s : r : q

ApbAqbArbAb 8∗p : q : r ApbAqbArbsAbt 8∗p.t : s.r : q

ApbAqbAbrAb 8∗p : .r : .q ApbAbqArbsAtbu 8∗p.u.t.s.r.q

ApbAbAbAqbr 8∗p.r.q ApbAqbArbsAtbu 8∗p.u.t.s.r : q

ApbAbAbqArbs 8∗p.s.r.q ApbAqbrAsbAtbu 8∗p.u.t : s.r.q

ApbAqbAbArbs 8∗p.s.r :: q ApbAqbrAsbtAbu 8∗p : q.r.s.t : u

ApbAbqArbsAb 8∗p : .s.r.q ApbAqbrAsbtAubv 8∗p.v.u.t.s.r.q

ApbAqbrAbAbs 8∗p.s :: r.q ApbqArbsAtbuAvbw 8∗p.q.r.s.t.u.v.w

ApbAqbArbAbs 8∗p.s : .r : q

Trying to better understand the correspondence between BFRs and Con-
way symbols of KLs, we can introduce modified Conway notation. Most
of KLs can be given in Conway notation by several different symbols (and
this is the main disadvantage of Conway notation). In a similar way as with
the classical notation, where every KL is given by its place in knot tables,
we need to use some ”standard” code, according to the notation introduced
in the original Conway’s paper [2] and in the papers or books following it
[1,3,4]. For example, the same polyhedral knot .p can be given by ..p, : p,
: .p, . . ., or even as 6∗p, 6∗.p, 6∗ : .p, . . .
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Working with BFRs we introduce a braid-modified Conway notation that
will be more suitable for denoting KLs obtained from BFRs. We are trying
to have a same degree p at the first position of a braid, and as the first
element of Conway symbol corresponding to it. Whenever possible, the
order of degrees will be preserved in the corresponding Conway symbol.
By using this notation, we can recognize a very simple pattern for BFRs
derived from the generating minimum braids of the form (Ab)n: by denoting
in a Conway symbol corresponding to a given braid every sequence of single
letters of a length k by k + 1 dots, we obtain the Conway symbol of a
given braid. In order to recognize this pattern for KLs derived from basic
polyhedra, first we need to use only one basic polyhedron 6∗ with n = 6
crossings, and not two of them (.1 and 6∗). In this case, the Table 1 will
look as follows:

Basic polyhedron 6∗

ApbAbAb 6∗p ApbAbAqbr 6∗p :: q.r

ApbAbAbq 6∗p :: .q ApbAbqArbs 6∗p : .q.r.s

ApbAqbAb 6∗p : q ApbAqbArbs 6∗p : q : r.s

ApbAbqAb 6∗p : .q ApbAqbrAbs 6∗p : q.r : s

ApbAqbAbr 6∗p : q : .r ApbAqbrAsbt 6∗p : q.r.s.t

ApbAqbArb 6∗p : q : r ApbqArbsAtbu 6∗p.q.r.s.t.u

and for the basic polyhedron 8∗ we have:

Basic polyhedron 8∗

ApbAbAbAb 8∗p ApbAqbAbrAbs 8∗p : q : .r : s

ApbAbAbAbq 8∗p ::: .q ApbAbqArbAbs 8∗p : .q.r : .s

ApbAqbAbAb 8∗p : q ApbAqbArbAsb 8∗p : q : r : s

ApbAbAbqAb 8∗p :: .q ApbAbAqbrAsbt 8∗p :: q.r.s.t

ApbAbAqbAb 8∗p :: q ApbAqbAbrAsbt 8∗p : q : .r.s.t

ApbAqbAbAbr 8∗p : q :: .r ApbAqbrAsbAbt 8∗p : q.r.s : .t

ApbAbAqbAbr 8∗p :: q : .r ApbAqbArbAsbt 8∗p : q : r : s.t

ApbAqbArbAb 8∗p : q : r ApbAqbArbsAbt 8∗p : q : r.s : t

ApbAqbAbrAb 8∗p : q : .r ApbAbqArbsAtbu 8∗p : .q.r.s.t.u

ApbAbAbAqbr 8∗p ::: q.r ApbAqbArbsAtbu 8∗p : q : r.s.t.u

ApbAbAbqArbs 8∗p :: .q.r.s ApbAqbrAsbAtbu 8∗p : q.r.s : t.u

ApbAqbAbArbs 8∗p : q :: r.s ApbAqbrAsbtAbu 8∗p : q.r.s.t : u

ApbAbqArbsAb 8∗p : .q.r.s ApbAqbrAsbtAubv 8∗p : q.r.s.t.u.v

ApbAqbrAbAbs 8∗p : q.r :: s ApbqArbsAtbuAvbw 8∗p.q.r.s.t.u.v.w
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ApbAqbArbAbs 8∗p : q : r : .s

Unfortunately, it is not possible to express every family of KLs in the
braid-modified Conway notation. Another problem is that it strongly dif-
fers from the standard Conway notation. Therefore, the braid-modified
Conway notation is used only when after some slight modification standard
Conway symbols remained completely understandable to a reader familiar
with them.

In the same way, it is possible to continue with the derivation of BFRs
from basic polyhedra with a higher number of crossings.

Hence, we conclude that:

Corollary All alternating KLs with s = 2 are described by Theorem 2 and
by an infinite extension of Table 1.

From alternating BFRs we obtain non-alternating BFRs by crossing
changes. This way, from BFRs derived from the generating minimum
braid (Ab)2 we obtain the following families of non-alternating BFRs and
corresponding new KL families:

ApBaB (p − 1) 3 Apbaqbr p, (q − 1) 1,−(r + 1)
Apbaqb p, (q − 1) 1,−2 ApBAqBr p, q,−r 1
ApBAqB p, q,−2 ApBqarBs (−p, r) (q, s)
ApBaBq (p − 1) 2 q ApBqArBs (p, r) − (q, s)
ApBqaBr p − 1, q, r+

In the same way, we can derive non-alternating BFRs with s = 2 from the
generating BFR (Ab)n, n ≥ 3.

3. Braid Family Representatives with s ≥ 3

In order to continue derivation of BFRs and corresponding KLs for s ≥ 3
first we derive all different reduced minimum braid words. It is possible to
establish general construction rules for generating minimum braid words.

Definition 3.1 For a given generating minimum braid word W = wL that
ends with a capital or lower case letter L, a replacement of L by a word w1

in W will be called extending by replacement. An addition of the word w1 to
W is extending by addition. The both operations are extending operations.

Definition 3.2 Let W = wLs and w1 = Ls+1LsLs+1 be generating min-
imum braids with s and s + 1 strings, where Ls denotes sth letter and
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Ls+1 denotes (s + 1)th letter. The word extending operations obtained
this way will be called, respectively, (s + 1)-extending by replacement, and
(s + 1)-extending by addition. The both operations are (s + 1)-extending
operations.

For example, the first operation applied on AbAb gives AbACbC, and the
other AbAbCbC.

The (s+1)-extending by replacement is sufficient for construction of gener-
ating minimum braids for a given s, with l = 2s, corresponding to KLs of
the form 2 . . . 2 = 2s, where 2 occurs s times. For 2 ≤ s ≤ 6 as the result
we obtain: AbAb, AbACbC, AbACbdCd, AbACbdCEdE, AbACbdCEdfEf

. . .

The generating minimum braids for given s, with l = 3s−2, corresponding
to KLs of the form 2 1 . . . 1 2 = 2 13s−6 2, where 1 occurs 3s−6 times, can be
obtained using only (s+1)-extension by addition. For 3 ≤ s ≤ 6 we obtain:
AbAbCbC, AbAbCbCdCd, AbAbCbCdCdEdE, AbAbCbCdCdEdEfEf . . .

Applying the same procedure, from A3 we obtain the series A3BaB,
A3BaBCbC, A3BaBCbCDcD, A3BaBCbCDcDEdE . . ., corresponding
to the knots 3 2, 5 2, 7 2, 9 2 . . .

Analogously, starting with w1 = AbAbCbdCd and using the (s + 1)-
extension by replacement, the generating minimum braids with l = 2s + 1,
corresponding to KLs of the form 2 2 1 . . . 1 2 = 22 12s−5 2 are obtained for
given s.

However, in order to exhaust all possibilities, all combinations of (s + 1)-
extending operations are used for derivation of reduced minimum braids.

Theorem 3.1 Every generating algebraic minimum braid can be derived
from AbAb by a recursive application of (s + 1)-extending operations.

The minimal generating braid words for s ≤ 5 with their corresponding
KLs are given in the following table:

s = 1 l = 1 A 1

s = 2 l = 4 AbAb 2 2

s = 3 l = 6 AbACbC 2 2 2
s = 3 l = 7 AbAbCbC 2 1 1 1 2

s = 4 l = 8 AbACbdCd 2 2 2 2
s = 4 l = 9 AbAbCbdCd 2 2 1 1 1 2
s = 4 l = 10 AbAbCbCdCd 2 1 1 1 1 1 1 2
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s = 5 l = 10 AbACbdCEdE 2 2 2 2 2
s = 5 l = 11 AbAbCbdCdEdE 2 2 2 1 1 1 2
s = 5 l = 11 AbACbCdCEdE 2 2 1 1 1 2 2
s = 5 l = 12 AbAbCbCdCEdE 2 2 1 1 1 1 1 1 2
s = 5 l = 12 AbAbCbdCdEdE 2 1 1 1 2 1 1 1 2
s = 5 l = 13 AbAbCbCdCdEcE 2 1 1 1 1 1 1 1 1 1 2

In the case of polyhedral generating minimum braid words it is also possible
to make generalizations. We have already considered the infinite class of
generating polyhedral minimum braid words (Ab)n with s = 2. The first
infinite class with s = 3 will be (Ab)n−1ACbC, with the corresponding KLs
of the form (2n)∗2 1 0.

Every BFR can be derived from a generating minimum braid by assigning
a degree (that can be greater then 1) to every letter.

For s = 3 there are two generating alternating algebraic minimum braid
words:

AbACbC, l = 6, with the corresponding link 2 2 2;
AbAbCbC, l = 7, with the corresponding knot 2 1 1 1 2,

that generate prime KLs.

From AbACbC we derived 17 alternating BFRs and their corresponding
families of KLs, given in the following table:

ApbACbC p 1 2 2 ApbAqCbrC (p, q) (r, 2+)
AbACbpC p, 2, 2+ ApbqArCbsC (p, r) (q, 2, s)
ApbACbqC p 1, q, 2+ ApbqACbrCs p 1, q, s 1, r

ApbAqCbC p, q, 2 2 ApbAqCbrCs (p, q) (r, s 1+)
ApbACbCq p 1 2 1 q ApbAqCrbCs (p, q) 2 (r, s)
AbpACbqC p, 2, q, 2 ApbqArCbsCt (p, r) (q, t 1, s)
ApbqACbrC p 1, q, r, 2 ApbAqCrbsCt (p, q), s, (t, r)+
ApbACbqCr p 1, q, r 1+ ApbqArCsbtCu (p, r), q, (u, s), t
ApbAqCbCr p, q, r 1 2

The next generating alternating algebraic minimum braid AbAbCbC of the
length 7, with s = 3, gives the following results:

ApbAbCbC p 1 1 1 1 2 ApbqAbCbrCs (p 1, q) 1 (s 1, r)
AbAbCbpC p, 2 1 1, 2 ApbAqbrCbsC (p, q) 1 r (2, s)
AbAbpCbC 2 1 p 1 2 ApbAqbrCbCs p, q, s 1 1 r 1
ApbqAbCbC p 1, q, 2 1 1 ApbAqbCrbCs (p, q) 1 1 1 (r, s)
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ApbAqbCbC p, q, 2 1 1 1 ApbAqbCbrCs (p, q) 1 1 (r, s 1)
ApbAbqCbC p 1 1 q 1 2 ApbAbqCbrCs p 1 1 q, r, s 1
ApbAbCbCq p 1 1 1 1 1 q ApbAbCqbrCs (p 1 1 1, r) (q, s)
AbAbpCbqC 2 1 p, q, 2 ApbqArbCbsC (p, r), q, (2, s) 1
AbpAbCbqC (p, 2) 1 (q, 2) ApbqAbrCbsC (p 1, q) r (2, s)
ApbqArbCbC (p, r) (q, 2 1 1) ApbqArbCbsCt (p, r), q, (t 1, s) 1
ApbqAbrCbC p 1, q, 2 1 r ApbqAbrCbsCt (p 1, q) r (t 1, s)
ApbqAbCbrC (p 1, q) 1 (r, 2) ApbAqbrCsbCt (p, q) 1 r 1 (s, t)
ApbAqbCbrC (p, q) 1 1 (2, r) ApbAqbrCbsCt (p, q) 1 r (s, t 1)
ApbAqbrCbC p, q, 2 1 r 1 ApbAqbCrbsCt (p, q) 1 1, (t, r), s
ApbAqbCbCr p, q, r 1 1 1 1 ApbAbqCrbsCt (p 1 1 q, s) (r, t)
ApbAbqCbrC p 1 1 q, r, 2 ApbqArbsCbtC (p, r), q, (t, 2) s

ApbAbqCbCr p 1 1 q 1 1 r ApbqArbsCbtCu ((p, r), q) s (u 1, t)
ApbAbCbqCr p 1 1 1, q, r 1 ApbqArbCsbtCu ((p, r), q) 1 ((u, s), t)
AbpAbqCbrC (p, 2) q (r, 2) ApbAqbrCsbtCu (p, q) 1 r ((u, s), t)
ApbqArbsCbC (p, r) (q, 2 1 s) ApbqArbsCtbuCv ((p, r), q) s ((u, t), v)

Except AbACbC and AbAbCbC, all generating minimum braids with s = 3
are polyhedral.

For s = 3 and l ≤ 12, the polyhedral generating braids and their corre-
sponding KLs are given in the following table, with the notation for basic
polyhedra with 12 crossings according to A. Caudron [3]:

l = 8 AbAbACbC .2 1 l = 11 AbAbAbAbCbC 8∗2 1 1
l = 8 AbCbAbCb .2 : 2 l = 11 AbAbAbCbCbC 11∗∗∗

l = 11 AbAbACbAbCb 10∗∗.2 0
l = 9 AbAbCbAbC 8∗2 0 l = 11 AbAbACbACbC 11∗∗

l = 9 AbAbAbCbC .2 1 1 l = 11 AbAbCbACbCb 11∗

l = 9 AbACbACbC 9∗

l = 12 AbAbAbAbACbC 10∗2 1 0
l = 10 AbAbAbCbCb .2 1 2 l = 12 AbAbAbACbCbC 12I
l = 10 AbAbAbACbC 8∗2 1 0 l = 12 AbAbAbCbACbC 12F
l = 10 AbAbACbAbC 9∗.2 l = 12 AbAbACbAbCbC 12H
l = 10 AbAbCbAbCb 9∗2 l = 12 AbAbCbAbACbC 12G
l = 10 AbAbACbCbC 10∗∗∗ l = 12 AbAbCbAbCbCb 12D
l = 10 AbAbCbACbC 10∗∗ l = 12 AbCbAbCbAbCb 12C

From them, BFRs without duplications are derived. E.g., for l = 8, the
generating minimum braid .2 1 gives 70 BFRs, and .2 : 2 gives 19 BFRs.
Overlapping of those families can occur only if all parameters are equal 2,
i.e., for source braids and source KLs corresponding to them. According
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to the minimality criteria, all those source braids will belong to the first
BFR. The generating minimum braid .2 1 gives the following BFRs:
ApbAbACbC .2 1.p 0 AbApbACqbCr .p : (q, r)1
AbApbACbC .2 1 : p AbApbqACbrC .p.q.(2, r)
AbAbACbpC .(p, 2) AbApbqACbCr .r 1 1.q.p
AbAbACbCp .p 1 1 AbAbpACbqCr .p.(r 1, q)
AbAbpACbC .2 1.p AbAbpACqbCr .p.(r, q) 1
ApbAqbACbC .2 1.p 0.q AbpAqbrACbC 2 1.p.r 0.q 0
ApbAbAqCbC 2 1 0 : p 0 : q 0 AbpAbqACbrC p : q : (2, r) 0
ApbAbACbqC .(2, q).p 0 AbpAbqACbCr q : p : r 1 1 0
ApbAbACbCq .q 1 1.p 0 ApbAqbArCbsC (2, s).p 0.r.q 0
ApbAbqACbC .q.2 1.p 0 ApbAqbArCbCs s 1 1 0 : r 0.q.p 0
ApbqAbACbC 2 1 : p : q 0 ApbAqbACbrCs .(s 1, r).p 0.q
AbApbACbqC .(2, q) : p ApbAqbACrbCs (s, r) 1 : p.q 0
AbApbACbCq .q 1 1 : p ApbAqbrAsCbC q.r.s.2 1 0.p
AbApbqACbC .2 1.q.p ApbAqbrACbsC .(s, 2).r.q.p 0
AbAbACbpCq .(q 1, p) ApbAqbrACbCs .s 1 1.r.q.p 0
AbAbACpbCq .(q, p) 1 ApbAbAqCbrCs (r, s 1) 0 : q 0 : p 0
AbAbpACbqC .(q, 2).p ApbAbAqCrbCs (s, r) 1 0 : q 0 : p 0
AbAbpACbCq .q 1 1.p ApbAbqArCbsC q.(2, s).r 0.p
AbpAbqACbC p : q : 2 1 0 ApbAbqArCbCs q.s 1 1.r 0.p
ApbAqbArCbC .2 1.p 0.q : r ApbAbqACbrCs .q.(s 1, r).p 0
ApbAqbACbrC .q.p 0.(r, 2) ApbAbqACrbCs .q.(s, r) 1.p 0
ApbAqbACbCr .r 1 1.p 0.q ApbqArbACbsC r.q.p.(2, s) 0
ApbAqbrACbC .2 1.r.q.p 0 ApbqArbACbCs r.q.p.s 1 1 0
ApbAbAqCbrC p 0 : q 0 : (r, 2) 0 ApbqArbsACbC s.r.q.p.210
ApbAbAqCbCr r 1 1 0 : q 0 : p 0 ApbqAbACbrCs (s 1, r) : p : q 0
ApbAbACbqCr .p.(r 1, q) 0 ApbqAbACrbCs (s, r) 1 : p : q 0
ApbAbACqbCr .p.(r, q) 1 0 ApbqAbrAsCbC s.r.q.p.2 1 0
ApbAbqArCbC q.2 1.r 0.p ApbqAbrACbsC p 0.(s, 2).q.r 0
ApbAbqACbrC .q.(2, r).p 0 ApbqAbrACbCs p 0.s 1 1.q.r 0
ApbAbqACbCr .q.r 1 1.p 0 AbApbqACbrCs .(r, s 1).q.p
ApbqArbACbC r.q.p.2 1 0 AbApbqACrbCs .(s, r) 1.q.p
ApbqAbACbrC p : (r, 2) : q 0 AbpAqbrACbsC (s, 2).p.r 0.q 0
ApbqAbACbCr r 1 1 : p : q 0 AbpAqbrACbCs s 1 1.r.p 0.q 0
ApbqAbrACbC p 0.2 1.q.r0 AbpAbqACbrCs q : p : (s 1, r) 0
AbApbACbqCr .p : (r 1, q) AbpAbqACrbCs p : q : (r, s) 1 0

The generating minimum braid .2 : 2 gives the following BFRs:

ApbCbAbCb .p 1 : 2 ApbqCbAbCrb .r 1.q 0.p 1
AbpCbAbCb .2.p 0.2 ApbqCbrAbCb 2.q 0.r.p 1 0
ApbqCbAbCb .p 1.q 0.2 ApbCbAqbCrb .r 1 : (p, q)
ApbCbAqbCb .(p, q) : 2 AbpCbAbqCbr 2.p 0.r.2 0.q
ApbCbAbCqb .p 1 : q 1 ApbqCbArbsCb .(p, r).s 0.2.q 0
AbpCbAbqCb .p.2 0.q.2 0 ApbqCbArbCsb .s 1.q 0.(p, r)
AbpCbAbCbq 2.p 0.q.2 0 ApbqCbArbCbs (r, p).q 0.s.2 0
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ApbqCbArbCb .2.q 0.(p, r) ApbqCbAbrCsb .p 1.r 0.s 1.q 0
ApbqCbAbrCb .p 1.r 0.2.q 0 ApbqCbAbCrbs p 1.s 0.q.r 1 0
ApbqCbAbCbr p 1.q 0.r.2 0

In the same way, from all generating minimum braid words with s = 3,
it is possible to derive alternating and non-alternating BFRs and their
corresponding families of KLs.

As the example, the following table contains non-alternating BFRs with at
most two parameters, derived from the minimum reduced braid AbACbC:

ApBacBc (p− 1) 3 2 ApbaqCbC p, 2 2,−q

ApBacBcq (p− 1) 3 1 q ApBAqcBc p, 2 1 1,−(q − 1) 1
ApbACBqC p 1, (q − 1) 1, 2 AbpACBqC p, 2, 2,−q

ApBacBqc p− 1, q, 2 + + AbpAcBqc p, 2,−q,−2
ApbACBqC p 1, (q − 1) 1, 2 AbpAcbqc p, q, 2,−2
ApbACbcq p 1 3 (q − 1) ABpACBqC p, q,−2,−2
ApBacBCq (p− 1) 4 (q − 1) ABpACbqC p, 2, q,−2

From the generating minimum braid word W = (Ab)n (n ≥ 2), that defines
the family of basic polyhedra (2n)∗, by word extension w1 = CbACbC

we obtain the second family of basic polyhedra 9∗ (AbACbACbC), 10∗∗

(AbAbCbACbC), 11∗∗ (AbAbACbACbC), 12F (AbAbAbCbACbC), etc.

The third family of basic polyhedra 10∗∗∗ (AbAbACbCbC), 11∗∗∗

(AbAbAbCbCbC), 12I (AbAbAbACbCbC), etc., is derived from W = (Ab)n

(n ≥ 3) for w1 = CbCbC.

In the same way, for W = (Ab)n (n ≥ 1), w1 = CbAbCbAbCb the family of
basic polyhedra beginning with 12C (AbCbAbCbAbCb) is obtained;

for W = (Ab)n (n ≥ 2), w1 = CbAbCbCb the family of basic poly-
hedra beginning with 12D (AbAbCbAbCbCb) is obtained;
for W = (Ab)n (n ≥ 2), w1 = CbAbACbC the family of basic
polyhedra beginning with 12G (AbAbCbAbACbC) is obtained;
for W = (Ab)n (n ≥ 2), w1 = CbAbCbC the family of basic polyhe-
dra beginning with 12H (AbAbACbAbCbC) is obtained, etc.

Among them it is possible to distinguish subfamilies obtained using exten-
sions by replacing or by adding.

Theorem 3.2 For s = 4 generating algebraic minimum braids are:

AbACbdCd, l = 8, with the corresponding link 2 2 2 2,
AbAbCbdCd, l = 9, with the corresponding link 2 2 1 1 1 2,
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AbAbCbCdCd, l = 10, with the corresponding knot 2 1 1 1 1 1 1 2.

All other generating minimum braid words with s = 4 are polyhedral.

For s = 4 and l ≤ 12, the polyhedral generating braids and their corre-
sponding KLs are given in the following table, with the notation for basic
polyhedra with 12 crossings according to A. Caudron [3]:

l = 10 AbAbACbdCd .2 2 1 l = 12 AbAbACbdCdCd 12J
l = 10 AbACbCbdCd .2 1.2 1 l = 12 AbAbACdCbCdC 11∗∗∗ : .2 0
l = 10 AbACbdCbdC .2 1 : 2 1 0 l = 12 AbAbCbAbdCbd 9∗2 2
l = 10 AbACdCbCdC .22 : 2 l = 12 AbAbCbCdCbCd 8∗2 1 1 :: 2 0

l = 12 AbAbCbdCbCdC 8∗2 1 1 0 : .2 0
l = 11 AbAbACbCdCd .2 1 1 1 1 l = 12 AbAbCbdCbdCd 9∗2 1 1
l = 11 AbAbCbCbdCd .2 1 1.2 1 0 l = 12 AbAbCdCbCdCd 8∗2 1 1 1 0
l = 11 AbAbCbdCbdC .2 1 1 : 2 1 l = 12 AbACbAdCbdCd 12L
l = 11 AbAbCdCbCdC .2 1 1 1 : 2 l = 12 AbACbCbCbdCd 8∗2 1 0.2 1 0
l = 11 AbACbACbdCd 9∗2 1 0 l = 12 AbACbCbdCbCd 9∗.2 1 : .2
l = 11 AbACbCdCbCd 8∗2 1 0 :: 2 0 l = 12 AbACbCbdCbdC 8∗2 1 0 : .2 1 0
l = 11 AbACbCdCdCd .2 2 1 1 l = 12 AbACbCdCbCdC 9∗2 1 : 2
l = 11 AbACbdCbCdC 8∗2 1 : .2 0 l = 12 AbACbCdCbdCd 10∗∗ : 2 1 0
l = 11 AbACdCbCdCd 8∗2 2 0 l = 12 AbACbdCbCdCd 10∗∗.2 1

l = 12 AbACbdCbdCdC 10∗∗ : 2 1
l = 12 AbAbAbACbdCd 8∗2 2 1 0 l = 12 AbCbAbCdCbCd 10∗∗ : 20 :: .2 0
l = 12 AbAbACbAbdCd 9∗.2 2 l = 12 AbCbACbdCbCd 10∗∗2 0 :: .2 0

For W = (Ab)n (n ≥ 2), w1 = ACbdCdCd the family of basic polyhedra
beginning with 12J (AbAbACbdCdCd) is obtained, and for W = (Ab)n

(n ≥ 1), w1 = ACbAdCbdCd the family of basic polyhedra beginning with
12L (AbACbAdCbdCd) is obtained.

4. Applications of Minimum Braids and BFRs

4.1. Graph Trees

A rational KL in Conway notation is any sequence of natural numbers
not beginning or ending with 1, where each sequence is identified with its
inverse. From this definition is computed the number of rational KLs with
n crossings. It is given by the formula

2n−4 + 2[n/2]−2

that holds for every n ≥ 4. This very simple formula is derived first
by C. Ernst and D.W. Sumners in another form [8], and later indepen-
dently by S. Jablan [9,10]. For n ≥ 4 we can compute the first 20 num-
bers of this sequence. After prepending to it the first three numbers 1
for n = 1, 2, 3, the result is the sequence: 1, 1, 1, 2, 3, 6, 10, 20, 36,
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72, 136, 272, 528, 1056, 1080, 4160, 8256, 16512, 32986, 65792, 131328,
262656, 524800, . . . This sequence is included in On-Line Encyclopedia of
Integer Sequences (http://www.research.att.com/∼njas/sequences/) as the
sequence A005418. The number of rational knots with n crossings (n ≥ 3)
is given by the formula

2n−3 + 2[ n
2 ]−2(n−1) (mod 2)

+ (−1)(n−1)[ n
2 ] (mod 2)

3
so we can simply derive the formula for the number of rational links with
n crossings as well.

A graph-theoretical approach to knot theory is proposed by A. Caudron
[3]. T. Gittings established a mapping between minimum braids with s

strands and trees with s + 1 vertices and conjectured that the number of
graph trees of n vertices with alternating minimum braids is equal to the
number of rational KLs with n crossings [5, Conjecture 1].

4.2. Amphicheiral KLs

KL is achiral (or amphicheiral) if its ”left” and ”right” forms are equiv-
alent, meaning that one can be transformed to the other by an ambient
isotopy. If an oriented knot or link L can be represented by an antisym-
metrical vertex-bicolored graph on a sphere, whose vertices with the sign
+1 are white, and vertices with the sign −1 are black, it is achiral. In this
case, for an oriented knot or link L there exists an antisymmetry (sign-
changing symmetry) switching orientations of vertices, i.e., mutually ex-
changing vertices with the signs +1 and −1 [9,10]. In the language of braid
words, this means that its corresponding braid word is antisymmetric (or
palindromic): there exist a mirror antisymmetry transforming one letter to
another and vice versa and changing their case (i.e., transforming capital
to lower case letters and vice versa). For example, the reduced braid words
Ab |Ab or ABac |BDcd are palindromic, where the anti-mirror is denoted
by |. Hence, we believe that the origin of all oriented achiral KLs are
palindromic reduced braids.

Conjecture An oriented KL is achiral iff it can be obtained from a palin-
dromic reduced braid by a symmetric assigning of degrees.

For s = 2 all alternating BFRs are of the form (Ab)n (n ≥ 2), defining a
series of the basic polyhedra (2n)∗, beginning with 2 2, .1 = 6∗, 8∗, 10∗,
12∗, etc. All of them are achiral KLs, representing a source of other achiral
KLs. From 4:1-01 AbAb (2 2 or 41) by a symmetric assigning of degrees we
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can derive achiral alternating knots with n ≤ 10 crossings: 6:1-02 A2bAb2

(2 1 1 2 or 63), 8:1-05 A3bAb3 (3 1 1 3 or 89), 10:1-017 A3b2A2b3 ((3, 2) (3, 2)
or 1079), and one achiral alternating link with n ≤ 9 crossings: 8:3-05a
A2b2A2b2 ((2, 2) (2, 2) or 83

4), etc. In general, from AbAb the following
families of achiral alternating KLs are derived:

ApbAbp p 1 1 p ApbqAqbp (p, q) (p, q)

Borromean rings 6:3-02 AbAbAb (.1 = 6∗ or 63
2) are the origin of achi-

ral alternating knots 8:1-07 A2bAbAb2 (.2.2 or 817), 10:1-020 A2bA2b2Ab2

(.2.2.2 0.2 0 or 1099), 10:1-022 A2b2AbA2b2 (2.2.2.2 or 10109), and of the
link 8:3-04a Ab2AbA2b (.2 : 2 0 or 83

6), etc. In general, from AbAbAb the
following families of achiral alternating KLs are derived:

ApbAbAbp .p.p ApbAqbqAbp .p.p.q 0.q 0
AbpAbApb .p : p 0 ApbqArbrAqbp p.q.r.r.q.p

ApbqAbAqbp p.q.q.p

Achiral basic polyhedron AbAbAbAb (8∗) is the origin of the following fam-
ilies of alternating achiral KLs:

ApbAbAbAbp 8∗p.p ApbAbqAqbAbp 8∗p.q : .q.p

AbApbAbpAb 8∗p : .p ApbqArbAbrAqbp 8∗p.q.r.r.q.p

ApbqAbAbAqbp 8∗p.q.q.p ApbAqbrArbqAbp 8∗p.q.q.p : r.r

ApbAqbAbqAbp 8∗.p : q.q : p

In the same way it is possible to derive achiral alternating KLs from all
achiral basic polyhedra (Ab)n for n ≥ 5.

From the antisymmetry condition it follows that every palindromic braid
has an even number of strands. For s = 4 and l ≤ 12 palindromic algebraic
generating braids are:

AbACbdCd, l = 8 with the corresponding achiral link 2 2 2 2,
AbAbCbCdCd, l = 10, with the corresponding achiral knot 2 1 1 1 1 1 1 2.

The palindromic polyhedral generating braids are:

AbACbCbdCd, l = 10, with the corresponding achiral knot .2 1.2 1,
AbAbACbdCdCd, l = 12, with the corresponding achiral link 12J,
AbACbAdCbdCd, l = 12, with the corresponding achiral knot 12L,
AbACbCbCbdCd, l = 12, with the corresponding achiral link 8∗2 1 0.2 1 0,
AbCbAbCdCbCd, l = 12, with the corresponding achiral knot 10∗∗ : 20 ::
.2 0,
AbCbACbdCbCd, l = 12, with the corresponding achiral knot 10∗∗2 0 :: .2 0.
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From the generating braid AbACbdCd following families of alternating achi-
ral KLs are derived:

ApbACbdCdp p 1 2 2 1 p ApbAqCrbrdqCdp (((p, q), r)+) (((p, q), r)+)
AbACpbpdCd (p, 2+) (p, 2+) ApbqACrbrdCqdp (q, p 1, r) (q, p 1, r)
AbpACqbqdCpd (p, q, 2) (p, q, 2) ApbqArCsbsdrCqdp (q, (p, r), s) (q, (p, r), s)

From the same palindromic non-alternating generating braid the following
families of achiral KLs are obtained:

ApBacBDcdp p p ApBacBDcdp 2 p p 2
AbAcpBpdCd (p, 2) (q, 2) ApbAcqBqdCdp (p 1, q) (p 1, q)

In the same way is possible to continue the derivation of achiral KLs from
other palindromic reduced braids.

The family of achiral odd crossing number knots discovered by J. Hoste,
M. Thistlethwaite and J. Weeks in 1998 [11] can be extended to the two-
parameter BFR defined by the palindromic braid ABaBqCpBAdcbpcqDcd

corresponding to the family of non-alternating achiral odd-crossing knots
with n = 7 + 4p + 4q crossings

10∗∗(−2p) 0.− 1.− 2 0.(2q) : (−2p) 0.− 1.− 2 0.(2q).

4.3. Unlinking Numbers and Unlinking Gap

T. Gittings [5] noticed that it might be possible to calculate unlinking
numbers from minimum braids. Unfortunately, this is true only for KLs
with n ≤ 10 crossings, including the link 4 1 4 (92

4) and the Nakanishi-Bleiler
example 5 1 4 (108) with an unlinking gap [12].

Definition 4.1 The minimum braid unlinking gap is the positive difference
between the unlinking number obtained from a minimum braid uB(L) and
unlinking number u(L) of a link L, i.e.,

δB = uB(L)− u(L) > 0.

The unlinking gap [12] for minimum braids appears for n = 11. The follow-
ing alternating links given in Conway notation, followed by their minimum
braids have the minimum braid unlinking gap:

.5.2 A5bAbAb2 8∗3.2 A3bAbAbAb2

.3.4 A4bAbAb3 8∗3 : 2 A3bA2bAbAb

8∗4 A4bAbAbAb 8∗2.2 : .2 A2bAbA2bAb2

.2.3.3 0 A3bA3bAb2 10∗2 A2bAbAbAbAb
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For the links .5.2, .3.4 the value of minimum braid unlinking gap is δB = 2,
and for other links from this list δB = 1. Hence, minimum braid unlinking
number is different from the unlinking number and represents a new KL

invariant.

4.4. Periodic Tables of KLs

Periodic tables of KLs can be established in three ways: starting with fam-
ilies of KLs given in Conway notation [9,10,13], with minimum braids [5],
or with BFRs. Since we have established correspondence between BFRs
and KLs in Conway notation, it follows that the same patterns (with re-
gard to all KL polynomial invariants and KL properties) will appear in all
cases. For example, for every family of KLs is possible to obtain a general
formula for Alexander polynomials, with coefficients expressed by numbers
denoting tangles in Conway symbols, or from their corresponding parame-
ters from minimum braids or from BFRs. The same holds not only for KL

polynomials, but for all other properties of KLs: writhe, amphicheirality,
number of projections, unlinking number, signature, periods, etc. [9,10,13].
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