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This is a survey on some basic results concerning complex and, in particular, Kähler
submanifolds of a quaternionic Kähler manifold. Some problems which could be
interesting to consider are outlined.

1. Preliminaries on quaternionic Kähler manifolds

We shall give a survey on (immersed) submanifolds having some interest
to be considered into a quaternionic Kähler manifold. A quaternionic
Kähler manifold will be denoted by (M̃4n, g̃, Q), where g̃ is the Rie-
mannian metric and (g̃, Q) is the quaternionic Hermitian structure on
the 4n-dimensional manifold M̃ ≡ M̃4n ; the quaternionic structure Q,
which is parallel with respect to the Levi-Civita connection ∇̃ = ∇eg,
is locally generated by an admissible almost hypercomplex basis
H = (J1, J2, J3 = J1J2) and the following identities hold:

∇̃XJα = ωγ(X)Jβ − ωβ(X)Jγ , X ∈ TM

where α, β, γ is a cyclic permutation of 1, 2, 3 and the ωα, α = 1, 2, 3, are
local 1-forms (depending on the choice of an admissible basis (Jα)). See for
example [23],[1] for a basic introduction. Let us recall also that (M̃4n, g̃) is
an Einstein manifold and there is a decomposition of the curvature tensor
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of the form

R̃ = νRHP n + W̃

where RHP n is the curvature tensor of the quaternionic projective space
HPn with the standard metric, ν is a constant which is called the reduced
scalar curvature, such that K = 4n(n + 2)ν is the scalar curvature,
and W̃ is the quaternionic Weyl tensor which verifies the identity
[W̃ (X,Y ), Q] = 0 and has all contractions equal to zero.

For n = 1, 4-dimensional quaternionic Kähler manifolds are the same as
Einstein anti-self-dual manifolds.

The most basic 4n-dimensional quaternionic Kähler manifolds are respec-
tively the numerical quaternionic space Hn, ν = 0, the projective quater-
nionic space HPn, ν > 0, and its non compact dual, the hyperbolic quater-
nionic space HHPn, ν < 0, endowed with their canonical quaternionic
Hermitian structure.

The last two models fall into the important classes of Wolf spaces, i.e. the
compact quaternionic Kähler symmetric spaces, and of their non compact
duals respectively .

2. Special submanifolds in quaternionic Kähler manifolds
(M̃4n, g̃, Q)

Submanifolds M of primary interest in (M̃4n, g̃, Q), where Q is a (rank-3)
bundle of skew-symmetric endomorphisms, are the following.

Quaternionic submanifolds (M4m, Q′): the tangent bundle of M is Q-
invariant, QTM = TM , and Q′ = Q|TM .

By a classical result they are totally geodesic. Hence (M4m, g,Q′), where
g = g̃|TM , is a quaternionic Kähler manifold.

(Almost-) complex submanifolds (M2m, J1): the tangent bundle TM

is J1-invariant with respect to a section J1 ∈ Γ(Q|M ), J2
1 = −Id. Then

(M2m, g = g̃|TM , J = J1|TM ) is an (almost-) Hermitian manifold.

As usual, the adverb almost is skipped if the almost complex structure
J = J1|TM induced on M is integrable.

3. Complex submanifolds (M2m, J1)

Let (M2m, J1) be an almost complex submanifold of (M̃4n, g̃, Q). An
adapted basis for (M2m, J1) is an admissible basis H = (J1, J2, J3) de-
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fined around a point of M2m.

The problem of integrability of the almost complex structure J = J1|TM ,
i.e. the vanishing of the Nijenhuis tensor N(J), was studied in [2]. Let
assume that (J1, J2, J3) is an adapted basis and denote

ψ = (ω3 ◦ J1 − ω2)|TM .

Then:

- N(J) = 0 if and only if ψ = 0.

Let consider the orthogonal decomposition

TxM = T xM +Dx , x ∈ M,

where T xM = TxM∩J2TxM is the maximal quaternionic subspace of TxM .

- If N(J)x 6= 0 then Dx = span{g−1ψ, Jg−1ψ}.
- J is integrable if one of the following conditions holds:

dim(Dx) > 2
a) on an open dense set U ⊂ M

or
b) in a point x, if (M,J) is analytic.

Corollary 3.1 If dim(M) = 4k and N(J) 6= 0 on U dense in M then M4k

is a totally geodesic quaternionic submanifold.

Corollary 3.2 Let be ν > 0.
If (M4k, g, J) is analytic and g = g̃|TM is complete then (M4k, g, J) is
Hermitian.

Some problems:

- Construction of examples of almost complex submanifolds which
are not complex (m > 1). Also from the quoted results, it seems
that such examples are rather rare.

- Construction of pseudo-quaternionic submanifolds (non-holonomic
quaternionic submanifolds M4k+i, i = 1, 2, 3, whose bundle QTM

has minimal quaternionic rank k + 1; see [17], [6]). These subman-
ifolds deserve some interest since they behave as submanifolds of a
quaternionic submanifold M4(k+1) of minimal possible dimension.
Of particular interest are the low dimensional cases M2,M3.
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- Evolution of almost complex surfaces M2 following the mean cur-
vature vector. In [17] it was proved that such vector always belongs
to the characteristic quaternionic line bundle QTM2 (see also [3]);
hence the evolution of M2, eventually under appropriate hypothe-
sis, could be useful to find a minimal surface as a limit (in this line
of research, let see also [9]) or to generate a pseudo-quaternionic
3-submanifold M3. In turn, since a pseudo-quaternionic M3 has
parallel characteristic quaternionic line bundle QTM3, the evolu-
tion of M3 following the mean curvature vector could produce a
minimal 3-dimensional submanifold as a limit or generate a quater-
nionic submanifold M4.

By referring (see [3]) to the twistor bundle of a quaternionic Kähler
manifold,

Z π→ M̃4n ,

where the twistor space Z is a complex contact manifold, it is natural to
ask whether an almost complex submanifold (M2m, J1) of M̃4n is super-
complex, i.e. it is the projection by π of a complex submanifold of Z.
In fact it was proved that, for m > 1, this happens exactly if and only if
(M2m, J1) is complex. (The case of a complex surface (M2, J1) is a little
more delicate to handle).

4. Kähler submanifolds

Let (M2m, J1) be an almost complex submanifold of (M̃4n, g̃, Q).

We note first that if ν 6= 0 and m 6= 3 (which is still an open problem)
the almost Hermitian submanifold (M2m, g = g̃|TM , J = J1|TM ) is almost
Kähler if and only if it is Kähler, see [2].

In [3] the following definition was proposed.

Definition 4.1 (M2m, J1) is Kähler if ∇̃XJ1 = 0 , X ∈ TM .

A standard example of Kähler submanifold of a quaternionic Kähler man-
ifold is

CPn ↪→ HPn .

It was also proved that

- a Kähler surface (M2, J1) is superminimal, i.e. supercomplex
and minimal.



329

- if m > 1,

(M2m, J1) is Kähler if and only if (M2m, g = g̃|TM , J = J1|TM ) is
a Kähler manifold;

- if ν 6= 0,

(M2m, J1) is Kähler if and only if (M2m, J1) is totally complex,
i.e.

J2TM⊥TM .

Remark 4.1 A more general definition of ”totally complex” submani-
fold (M2m, J1) could be considered by assuming only that: QX * TM,

∀ X ∈ TM .

Kähler submanifolds (M,J1) have interesting properties (see [13], [3]) being

- minimal,

in fact

- pluriminimal i.e. h(X, Y ) + h(JX, JY ) = 0 , ∀X,Y ∈ TM,

where h = 2nd fundamental form. It follows from the stronger condition

h(JX, Y )− J1h(X,Y ) = 0 , ∀X, Y ∈ TM.

If ν 6= 0, an (M2m, J1) pluriminimal and (super)complex is Kähler or
quaternionic (h=0).

Problem: What can be said by using only ”pluriminimality”?

In a quaternionic Kähler manifold with ν 6= 0:

dim(M2m, J1) ≤ 2n .

Definition 4.2 If ν 6= 0, (M2n, J1) = maximal Kähler submanifold.

(McLean, F.E. Burstall call it a complex-Lagrangian submanifold,
[16]).

In (M̃4n, g̃, Q), ν 6= 0, there are many maximal Kähler submani-
folds: it follows from a generalization of Bryant construction for
CP 3 → S4 ≡ HP 1 to the twistor bundle Z π→ M̃4n. By the projec-
tion π, there is a correspondence between Legendrian submanifolds of
Z (i.e. maximal holomorphic horizontal submanifolds) and maximal Kähler
submanifolds of M̃4n, [3].
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Totally geodesic maximal Kähler submanifolds of Wolf spaces were
studied by M. Takeuchi, [25]. For classical Wolf spaces HPn, G2(Cn+2),
Gr+

4 (Rn+4) the situation is the following, where the inclusions have a na-
tural geometrical content:

CPn ↪→ HPn

CP k × CPn−k ↪→ G2(Cn+2)
G+

2 (Rn+2) ↪→ G2(Cn+2)

G2(Cn+2) ↪→ Gr+
4 (R2n+4)

Qp(C)×Qn−p(C)/Z2 ↪→ Gr+
4 (Rn+4)

(Qp(C) = SO(p+2)
SO(p)×SO(2) = Complex hyperquadric).

In the following let assume ν 6= 0.

A remarkable fact concerning a maximal Kähler submanifold M ≡ M2n is
the identification:

J2 : T⊥M
∼→ TM .

Then the Gauss-Codazzi equations can be expressed in terms of the tangent
space TM , [2].

In particular, the second fundamental form h (locally) is identified with the
shape tensor C on M defined by

C(X,Y, Z) = 〈J2h(X,Y ), Z〉
which is symmetric with respect to X, Y, Z and satisfies the identities

C(JX, Y, Z) = C(X, JY, Z) = C(X, Y, JZ) .

(Note: the shape tensor C is defined even if M is not maximal).a

5. Parallel Kähler submanifolds

If the Kähler submanifold (M2m, J1) is parallel, i.e. ∇′
h = 0, then the

complex line bundle L generated by the shape tensor C (which is canonically
defined and independent from the local section J2) is a parallel line bundle.

aAdded in proof: Recently K. Tsukada, [27], by basing on such Gauss-Codazzi equations
and following a conjecture in [2], proved the fundamental theorem on the existence
and uniqueness of isometric totally complex immersions for Kähler manifolds M2n as
submanifolds of HP n and HHn
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Let us first consider the case of a maximal Kähler submanifold which is
parallel, but not totally geodesic.

Tsukada classified such submanifolds in HPn, [26].

Parallel maximal Kähler submanifolds of HPn

reducible

M2n =
SOn+1

SO2 · SOn−1
×CP 1, (M4 = CP 1×CP 1,M6 = CP 1×CP 1×CP 1)

M8 = Sp2
U2

× CP 1

irreducible

M2 = CP 1 , M12 =
Sp3

U3
, M18 =

SU6

S(U3 × U3)
, M30 =

SO12

U6
, M54 =

E7

T · E6
.

The same classification holds for Kähler submanifolds which could be im-
mersed as parallel maximal Kähler submanifolds into a quaternionic Kähler
manifold with ν > 0 and in the case of a quaternionic Kähler manifold with
ν < 0 the analogous classification result is obtained by considering as mo-
dels the dual symmetric spaces of such M2n, as one can prove by arguing
as follows, [2].

If the Kähler submanifold (M2n, J1) is parallel then the complex line bundle
L generated by the shape tensor C is a parallel line bundle, cubic (i.e. Lx ⊂
S3V

∗, V = holomorphic tangent space T 1,0M), of type ν (i.e. the curvature
form of the induced connection of L is proportional to the Kähler form of
(M2n, J1) with coefficient of proportionality iν, RL = iνΩ). Then the
classification of Kähler manifolds with parallel cubic line bundle reduces
to the determination of the irreducible holonomy Lie algebras h of Kähler
manifolds such that the representation of h′ = [h, h] in V = T 1,0M has non
trivial invariant quadratic or cubic form, i.e. S2(V ∗)h′ 6= 0, S3(V ∗)h′ 6= 0.

6. Parallel maximal Kähler submanifolds of Wolf spaces
and their dual spaces

Definition 6.1 A submanifold M ⊂ M̃ of a Riemannian manifold (M̃, g̃)
is called
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- curvature invariant if R̃(TxM, TxM)TxM ⊂ TxM, ∀x ∈ M ;

- normal curvature invariant if R̃(T⊥x M,T⊥x M)T⊥x M ⊂ T⊥x M, ∀x ∈ M .

It is known that: (by Codazzi-Mainardi) a parallel submanifold is curvature
invariant and (by Gauss) a parallel submanifold of a locally symmetric space
is itself a locally symmetric space.

Definition 6.2 Let M̃ = G/K be a homogeneous Riemannian manifold.
Fix an orbit V of the isometry group G in the Grassmann bundle Grk(TM̃)
of tangent k-planes of M̃ .
A k-dimensional submanifold M ⊂ M̃ is called a V-submanifold if TxM ∈
V for any x ∈ M . If V is (normal) curvature invariant, then any V-
submanifold is (normal) curvature invariant.

([5]): Any curvature invariant (in particular, any parallel) maximal
Kähler submanifold (M2n, J1) of a quaternionic Kähler symmetric space
M̃4n 6= HPn is totally geodesic. The proof bases on

- remark that the curvature identity

g̃(R̃(J2X, J2Y )J2Z, J2T ) = g̃(R̃(X,Y )Z, T )

holds for any complex structure J2 ∈ Q;

- results of H. Naitoh:
- ([18]) in a simply connected Riemannian symmetric space M̃

a submanifold M is parallel and normal curvature invariant
if and only if it is extrinsically symmetric;

- ([19]) up to a short list of exceptions, a parallel normal cur-
vature invariant, i.e. extrinsically symmetric, V-submanifold
of a symmetric space is in fact totally geodesic.

Sketch proof. By the curvature identity above, M is also normal cur-
vature invariant; hence, by [18], ∀x ∈ M there exists an involutive isom-
etry s0 s.t. (s0)∗|TxM = −Id, (s0)∗|T⊥x M = Id and the totally geodesic
submanifold M(x) = exp(TxM) is an extrinsically symmetric maximal
Kähler submanifold; then it follows that TxM belongs to one of finitely
many orbits V = G(V ) ⊂ Gr2nT (G/K) and, by continuity reason, M is
a V-submanifold; by [19] one can conclude that M is totally geodesic if
M̃ 6= HPn.

An elementary proof for G2(Cn+2) is also avalable, [4].



333

Theorem 6.1 Let (M2m, J1) be a totally complex submanifold of a
quaternionic Kähler manifold M̃4n. Assume that M is parallel. Then
the first normal bundle N1M ≡ h(TM, TM) is totally complex, i.e.
〈h(X, Y ), J2h(V, Z)〉 = 0 ∀X, Y V,Z ∈ TM . Moreover, if ν 6= 0 there
are two cases:

1) C ≡ 0 , i.e. N1M⊥J2TM

2) C 6= 0 , and M is a locally symmetric Hermitian manifold with
parallel cubic line bundle of type ν.

The classification of parallel Kähler submanifolds in a quaternionic Kähler
symmetric space reduces to the classification of parallel Kähler submani-
folds in Hermitian or quaternionic Kähler symmetric spaces.

Theorem 6.2 ([5]) Let (M2m, J1) be a geodesically complete parallel
Kähler submanifold of (M̃4n, g̃, Q), ν 6= 0, and M the minimal totally
geodesic submanifold of M̃4n containing M2m.

1) If C ≡ 0 then M is an Hermitian symmetric space and (M2m, J)
is a full parallel Kähler submanifold in M ;

2) If C 6= 0, and hence (M2m, J) is a Kähler manifold with parallel
cubic line bundle, then M is a quaternionic symmetric space of
dimension 4m and (M2m, J) is full in M .

An important class, also for physicists, of quaternionic Kähler manifolds
which are homogeneous, but not necessarily symmetric, are the Alek-
seevskian spaces, [10].

Problem. Classify parallel Kähler submanifolds in Alekseevskian quater-
nionic homogeneous spaces.
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