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We discuss Massey products in a N-graded Lie algebra cohomology. One of the
main examples is so-called ”positive part” L1 of the Witt algebra W . Buchstaber
conjectured that H∗(L1) is generated with respect to non-trivial Massey products
by H1(L1). Feigin, Fuchs and Retakh represented H∗(L1) by trivial Massey prod-
ucts and the second part of the Buchstaber conjecture is still open. We consider
the associated graded algebra m0 of L1 with respect to the filtration by its descend-
ing central series and prove that H∗(m0) is generated with respect to non-trivial
Massey products by H1(m0).

1. Introduction

In the last thirty years cohomological Massey products have found a lot of
interesting applications in topology and geometry. The existence of non-
trivial Massey products in H∗(M,R) is an obstruction for a manifold M to
be Kähler. A Kähler manifold M is formal [8], i.e. its real homotopy type
is completely determined by the cohomology algebra H∗(M,R). In their
turn formal spaces have trivial Massey products.

An important feature of Massey products is the following: a blow-up of
a symplectic manifold along its submanifold inherits non-trivial Massey
products [3]. This idea was used by McDuff [20] in her construction of
a simply connected symplectic manifold with no Kähler structure. The
Massey products in cohomology of symplectic manifolds was the subject in
[7]. Babenko and Taimanov considered an interesting family of symplectic
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nilmanifolds related to finite-dimensional quotients of a ”positive part” L1

of the Witt algebra W . Applying to them the symplectic blow-up proce-
dure they constructed examples of simply connected non-formal symplectic
manifolds in dimensions ≥ 10 [2]. A few time ago an 8-dimensional ex-
ample was constructed by Fernandez and Muñoz [11] by means of another
techniques.

The present article is devoted to the study of n-fold classical Massey prod-
ucts in the cohomology of N-graded Lie algebras. We will focuss our atten-
tion to two main examples: L1 and m0. The infinite dimensional N-graded
Lie algebra L1 is filtered by the ideals of the descending central series and
one can consider its associated graded Lie algebra m0 = grCL1. The reason
of this interest comes from the relation of L1 to the Landweber-Novikov
algebra in the complex cobordisms theory discovered by Buchstaber and
Shokurov [5].

It follows from the Goncharova theorem [14] that the cohomology algebra
H∗(L1) has a trivial multiplication. Buchstaber conjectured that the alge-
bra H∗(L1) is generated with respect to the Massey products by H1(L1),
moreover the corresponding Massey products can be chosen as non-trivial
ones. The first part of Buchstaber’s conjecture was proved by Feigin, Fuchs
and Retakh [10]. However they represented Goncharova’s basic cocycles of
H∗(L1) using by trivial Massey products. Twelve years later Artel’nykh
represented some of Goncharova’s cocycles by non-trivial Massey products
and unfortunately his brief article does not contain the proofs. Hence the
original Buchstaber’s conjecture is still open.

It was pointed out to the author by May that it follows from the Corol-
lary 5.17 in [19] that the cohomology H∗(L1) is generated by H1(L1) with
respect to matric Massey products (generalized Massey products) and this
property holds for some class of graded Lie algebras. The question of triv-
iality or non triviality of corresponding matric Massey products have not
been studied.

We recall the necessary information on the cohomology of graded Lie al-
gebras in the first Section and study two main examples H∗(L1) [14] and
H∗(m0) [12] in the Section 3. In the Section 4 we present May’s approach
to the definition of Massey products, his notion of formal connection de-
veloped by Babenko and Taimanov [3] for Lie algebras, we introduce also
the notion of equivalent Massey products. The analogy with the classical
Maurer–Cartan equation is especially transparent in the case of Massey
products of 1-dimensional cohomology classes 〈ω1, . . . , ωn〉. The relation of
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this special case to the representations theory was discovered in [10, 9]. We
discuss it in the Section 5.

The main result of the present article is the Theorem 6.4 stating that the
cohomology algebra H∗(m0) is generated with respect to the non-trivial

Massey products by H1(m0). Another important result is the Theorem 6.3
that presents a list of equivalency classes of trivial Massey products of 1-
cohomology classes from H1(m0). We show that the Theorem 6.3 is related
to Benoist’s classification [4] of indecomposable finite-dimensional thread
modules over m0.

2. Cohomology of N-graded Lie algebras

Let g be a Lie algebra over K and ρ : g −→ gl(V ) its linear representation
(or in other words V is a g-module). We denote by Cq(g, V ) the space of
q-linear skew-symmetric mappings of g into V . Then one can consider an
algebraic complex:

V
d0−−−−→ C1(g, V ) d1−−−−→ C2(g, V ) d2−−−−→

. . .
dq−1−−−−→ Cq(g, V )

dq−−−−→ . . .

where the differential dq is defined by:

(dqf)(X1, . . . , Xq+1) =
q+1∑

i=1

(−1)i+1ρ(Xi)(f(X1, . . . , X̂i, . . . , Xq+1))+

+
∑

1≤i<j≤q+1

(−1)i+j−1f([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xq+1).
(1)

The cohomology of the complex (C∗(g, V ), d) is called the cohomology of
the Lie algebra g with coefficients in the representation ρ : g −→ V .

The cohomology of (C∗(g,K), d) (V = K and ρ : g −→ K is trivial) is called
the cohomology with trivial coefficients of the Lie algebra g and is denoted
by H∗(g).

One can remark that d1 : C1(g,K) −→ C2(g,K) of the (C∗(g,K), d) is the
dual mapping to the Lie bracket [ , ] : Λ2g −→ g. Moreover the condition
d2 = 0 is equivalent to the Jacobi identity for [, ].

Definition 2.1 A Lie algebra g is called N-graded, if it is decomposed to
a direct sum of subspaces such that

g = ⊕igi, i ∈ N, [gi, gj ] ⊂ gi+j , ∀ i, j ∈ N.
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Example 2.1 The Lie algebra m0 is defined by its infinite basis
e1, e2, . . . , en, . . . with commutator relations:

[e1, ei] = ei+1, ∀ i ≥ 2.

The algebra m0 has an infinite number of N-gradings:

m0 = ⊕i∈Nm0i, m01 = Span(e1, e2, . . . , ek), m0i = Span(ei+k−1), i ≥ 2.

Remark 2.1 We always omit the trivial commutator relations [ei, ej ] = 0
in the definitions of Lie algebras.

Example 2.2 Let us recall that the Witt algebra W is spanned by differ-
ential operators on the real line R1 with a fixed coordinate x

ei = xi+1 d

dx
, i ∈ Z, [ei, ej ] = (j − i)ei+j , ∀ i, j ∈ Z.

We denote by L1 the positive part of the Witt algebra, i.e. L1 is a subal-
gebra of W spanned by all ei, i ≥ 1.

Obviously W is a Z-graded Lie algebra with one-dimensional homogeneous
components:

W = ⊕i∈ZWi, Wi = Span(ei).

Thus L1 is a N-graded Lie algebra.

Let g be a Lie algebra. The ideals Ckg of the descending central sequence
determine a decreasing filtration C of the Lie algebra g

C1g = g ⊃ C2g ⊃ · · · ⊃ Ckg ⊃ . . . ; [Ckg, Clg] ⊂ Ck+lg.

One can consider the associated graded Lie algebra

grCg =
⊕

k≥1

(grCg)k, (grCg)k = Ckg/Ck+1g.

Proposition 2.1 We have the following isomorphisms:

grCL1
∼= grCm0

∼= m0.

Remark 2.2 (grCm0)1 = Span(e1, e2), (grCm0)i = Span(ei+1), i ≥ 2.

Let g = ⊕αgα be a Z-graded Lie algebra and V = ⊕βVβ is a Z-graded g-
module, i.e., gαVβ ⊂ Vα+β . Then the complex (C∗(g, V ), d) can be equipped
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with the Z-grading Cq(g, V ) =
⊕

µ Cq
(µ)(g, V ), where a V -valued q-form c

belongs to Cq
(µ)(g, V ) if and only if for X1 ∈ gα1 , . . . , Xq ∈ gαq we have

c(X1, . . . , Xq) ∈ Vα1+α2+...+αq+µ.

This grading is compatible with the differential d and hence we have Z-
grading in the cohomology:

Hq(g, V ) =
⊕

µ∈Z
Hq

(µ)(g, V ).

Remark 2.3 The trivial g-module K has only one non-trivial homogeneous
component K = K0.

The exterior product in Λ∗(g) induces a structure of a bigraded algebra in
the cohomology H∗(g):

Hq
k(g) ∧Hp

l (g) −→ Hq+p
k+l (g).

Let g = ⊕αgα be a N-graded Lie algebra and V = ⊕βVβ is a Z-graded
g-module.

One can define a decreasing filtration F of (C∗(g, V ), d):

F0C∗(g, V ) ⊃ · · · ⊃ FqC∗(g, V ) ⊃ Fq+1C∗(g, V ) ⊃ . . .

where the subspace FqCp+q(g, V ) is spanned by p+q-forms c in Cp+q(g, V )
such that

c(X1, . . . , Xp+q) ∈
⊕

α≥q

Vα, ∀X1, . . . , Xp+q ∈ g.

The filtration F is compatible with d.

Let us consider the corresponding spectral sequence Ep,q
r :

Proposition 2.2 [13, 10] Ep,q
1 = Vq ⊗Hp+q(g).

Proof. We have the following natural isomorphisms:

Cp+q(g, V ) = V ⊗ Λp+q(g∗)

Ep,q
0 = FqCp+q(g, V )/Fq+1Cp+q(g, V ) = Vq ⊗ Λp+q(g∗).

(2)

Now the proof follows from the formula for the dp,q
0 : Ep,q

0 −→ Ep+1,q
0 :

d0(v ⊗ f) = v ⊗ df,

where v ∈ V, f ∈ Λp+q(g∗) and df is the standard differential of the cochain
complex of g with trivial coefficients.
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3. Cohomology H∗(L1) and H∗(m0)

Goncharova calculated in 1973 the cohomology H∗(L1).

Theorem 3.1 [14] The Betti numbers dimHq(L1) = 2, for every q ≥ 1,
more precisely

dimHq
k(L1) =

{
1, if k = 3q2±q

2 ,

0, otherwise.

We will denote in the sequel by gq
± the generators of the spaces Hq

3q2±q
2

(L1).

The numbers 3q2±q
2 are so called Euler pentagonal numbers. A sum of

two arbitrary pentagonal numbers is not a pentagonal number, hence the
algebra H∗(L1) has a trivial multiplication.

Example 3.1
1) H1(L1) is generated by g1

− = [e1] and g1
+ = [e2];

2) the basis of H2(L1) consists of two classes g2
− = [e1∧e4] and

g2
+ = [e2∧e5 − 3e3∧e4] of gradings 5 and 7 respectively.

The cohomology algebra H∗(m0) was calculated by Fialowski and Million-
schikov [12].

There were introduced two operators in [12]:

1) D1 : Λ∗(e2, e3, . . . ) −→ Λ∗(e2, e3, . . . ),

D1(e2) = 0, D1(ei) = ei−1, ∀i ≥ 3, (3)

D1(ξ ∧ η) = D1(ξ) ∧ η + ξ ∧D1(η), ∀ξ, η ∈ Λ∗(e2, e3, . . . ).

2) and its right inverse D−1 : Λ∗(e2, e3, . . . ) −→ Λ∗(e2, e3, . . . ),

D−1e
i = ei+1, D−1(ξ∧ei) =

∑

l≥0

(−1)lDl
1(ξ)∧ei+1+l, (4)

where i ≥ 2 and ξ is an arbitrary form in Λ∗(e2, . . . , ei−1).

The sum in the definition (4) of D−1 is always finite because Dl
1 decreases

the second grading by l. For instance,

D−1(ei ∧ ek) =
i−2∑

l=0

(−1)lei−l∧ek+l+1.

Proposition 3.1 The operators D1 and D−1 have the following properties:

dξ = e1 ∧D1ξ, e1 ∧ ξ = dD−1ξ, D1D−1ξ = ξ, ξ ∈ Λ∗(e2, e3, . . . ).
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Theorem 3.2 [12] The infinite dimensional bigraded cohomology
H∗(m0) = ⊕k,qH

q
k(m0) is spanned by the cohomology classes of e1, e2 and

of the following homogeneous cocycles:

ω(ei1∧ . . .∧eiq∧eiq+1) =
∑

l≥0

(−1)lDl
1(e

i1 ∧ · · · ∧ eiq ) ∧ eiq+1+l, (5)

where q ≥ 1, 2 ≤ i1<i2<. . .<iq.

Formula (5) determines a homogeneous closed (q+1)-form of the second
grading i1+. . .+iq−1+2iq+1. It has only one monomial in its decomposition
of the form ξ ∧ ei ∧ ei+1 and it is ei1∧ . . .∧eiq∧eiq+1.

The whole number of linearly independent q-cocycles of the second grading
k+ q(q+1)

2 is equal to

dimHq

k+
q(q+1)

2

(m0) = Pq(k)− Pq(k−1),

where Pq(k) denotes the number of (unordered) partitions of a positive
integer k into q parts.

Example 3.2

ω(e5∧e6∧e7) = e5∧e6∧e7 − e4∧e6∧e8 + (e3∧e6 + e4∧e5)∧e9

− (e2∧e6 + 2e3∧e5)∧e10 + (3e2∧e5 + 2e3∧e4)∧e11

− 5e2∧e4∧e12 + 5e2∧e3∧e13.

The multiplicative structure in H∗(m0) was also found in [12] explicitly. In
particular

[e1]∧ω(ξ∧ei∧ei+1) = 0, [e2]∧ω(ξ∧ei∧ei+1) = ω(e2∧ξ∧ei∧ei+1).

4. Massey products in cohomology.

In this section we follow [17] and [3] presenting the definitions of Massey
products. Let A = ⊕l≥0Al be a differential graded algebra over a field K.
It means that the following operations are defined: an associative multipli-
cation

∧ : Al ×Am −→ Al+m, l, m ≥ 0, l, n ∈ Z.

such that a ∧ b = (−1)lm b ∧ a for a ∈ Al, b ∈ Am, and a differential
d, d2 = 0

d : Al −→ Al+1, l ≥ 0,
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satisfying the Leibniz rule d (a ∧ b) = d a ∧ b + (−1)la ∧ d b for a ∈ Al.

Example 4.1 A = Λ∗(g) is the cochain complex of a Lie algebra.

For a given differential graded algebra (A, d) we denote by Tn(A) a space of
all upper triangular (n+1)×(n+1)-matrices with entries from A, vanishing
at the main diagonal. Tn(A) has a structure of a differential algebra with
a standard matrix multiplication, where matric entries are multiplying as
elements of A. A differential d on Tn(A) is defined by

dA = (d aij)1≤i,j≤n+1. (6)

An involution a → ā = (−1)k+1a, a ∈ Ak of A can be extended to an invo-
lution of Tn(A) as Ā = (āij)1≤i,j≤n+1. It satisfies the following properties:

Ā = A, AB = −ĀB̄, dA = −d Ā.

Also we have the generalized Leibniz rule for the differential (6)

d (AB) = (d A)B − Ā(dB).

The algebra Tn(A) has a two-sided center In(A) of matrices



0 . . . 0 τ

0 . . . 0 0
. . .

0 . . . 0 0


 , τ ∈ A.

Definition 4.1 [3] A matrix A ∈ Tn(A) is called the matrix of a formal
connection if it satisfies the Maurer-Cartan equation

µ(A) = dA− Ā ·A ∈ In(A). (7)

Proposition 4.1 [3] Let A be the matrix of a formal connection, then the
entry τ ∈ A of the matrix µ(A) ∈ In(A) in the definition (7) is closed.

Proof. We have the following generalized Bianchi identity for the Maurer-
Cartan operator µ(A) = dA− Ā ·A (A is an arbitrary matrix):

dµ(A) = µ(A) ·A + A · µ(A).

Indeed it’s easy to verify the following equalities:

dµ(A) = −d (Ā ·A) = −d Ā ·A + A · dA = dA ·A + A · dA

= (µ(A) + Ā ·A) ·A + A(µ(A) + Ā ·A)

= µ(A) ·A−A · Ā ·A + A · µA + A · Ā ·A
= µ(A) ·A + A · µ(A).
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Now let A be the matrix of a formal connection, then the matrix µ(A)
belongs to the center In(A) and hence dµ(A) = 0. One can think of µ(A)
as the curvature matrix of a formal connection A.

Let A be an upper triangular matrix from Tn(A). One can rewrite it in the
following notation:

A =




0 a(1, 1) a(1, 2) . . . a(1, n− 1) a(1, n)
0 0 a(2, 2) . . . a(2, n− 1) a(2, n)

. . . . . . . . . . . . . . . . . .

0 0 0 . . . a(n− 1, n− 1) a(n− 1, n)
0 0 0 . . . 0 a(n, n)
0 0 0 . . . 0 0




.

Proposition 4.2 A matrix A ∈ Tn(A) is the matrix of a formal connection
if and only if the following conditions on its entries hold on

a(i, i) = ai ∈ Api , i = 1, . . . , n;

a(i, j) ∈ Ap(i,j)+1, p(i, j) =
j∑

r=i

(pr − 1); (8)

d a(i, j) =
j−1∑

r=i

ā(i, r) · a(r + 1, j), (i, j) 6= (1, n).

Proof. The system (8) is the Maurer-Cartan equation rewritten in terms
of the entries of A and it coincides with the classical definition [15] of the
defining system for a Massey product.

Definition 4.2 [15] A collection of elements, A = (a(i, j)), for 1 ≤ i ≤
j ≤ n and (i, j) 6= (1, n) is said to be a defining system for the product
〈a1, . . . , an〉 if it satisfies (8).

In this situation the (p(1, n) + 2)-dimensional cocycle

c(A) =
n−1∑
r=1

ā(1, r)a(r + 1, n)

is called the related cocycle of the defining system A.

Remark 4.1 We saw that the notion of the defining system is equivalent
to the notion of the formal connection. However one has to remark that
an entry a(1, n) of the matrix A of a formal connection does not belong
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to the corresponding defining system A, it can be taken as an arbitrary
element from A. In this event the only one possible nonzero entry τ of the
Maurer-Cartan matrix µ(A) is equal to −c(A) + da(1, n).

Definition 4.3 [15] The n-fold product 〈a1, . . . , an〉 is defined if there is
at least one defining system for it (a formal connection A with entries
a1, . . . , an at the second diagonal). If it is defined, then 〈a1, . . . , an〉 con-
sists of all cohomology classes α ∈ Hp(1,n)+2(A) for which there exists a
defining system A (a formal connection A) such that c(A) (−τ respectively)
represents α.

Theorem 4.1 [15, 3] The operation 〈a1, . . . , an〉 depends only on the co-
homology classes of the elements a1, . . . , an.

Proof. A changing of an arbitrary entry aij , j > i of the matrix A of a
formal connection to aij + db leads to a replacement of A by

A′ = A + db · Eij + A · b · Eij − b̄ · Eij ·A,

where Eij is a scalar matrix which has 1 on (i, j)-th place and zeroes on all
others. For the corresponding Maurer-Cartan matrix we will have

µ(A′) = µ(A) + d((A · b · Eij − b̄ · Eij ·A) ∩ In).

Definition 4.4 [15] A set of closed elements ai, i = 1, . . . , n from A rep-
resenting some cohomology classes αi ∈ Hpi(A), i = 1, . . . , n is said to
be a defining system for the Massey n-fold product 〈α1, . . . , αn〉 if it is
one for 〈a1, . . . , an〉. The Massey n-fold product 〈α1, . . . , αn〉 is defined if
〈a1, . . . , an〉 is defined, in which case 〈α1, . . . , αn〉 = 〈a1, . . . , an〉 as subsets
in Hp(1,n)+2(A).

Example 4.2 For n = 2 the matrix A of a formal connection has a form

A =




0 a c

0 0 b

0 0 0


 and the matrix Maurer-Cartan equation is equivalent to two

equations da = 0 and db = 0. Evidently 〈α, β〉 = ᾱ · β.

Example 4.3 (Triple Massey products) Let α, β, and γ be the cohomology
classes of closed elements a ∈ Ap, b ∈ Aq, and c ∈ Ar. The Maurer-Cartan
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equation for

A =




0 a f h

0 0 b g

0 0 0 c

0 0 0 0


 .

is equivalent to

d f = (−1)p+1 a ∧ b, d g = (−1)q+1 b ∧ c. (9)

Hence the triple Massey product 〈α, β, γ〉 is defined if and only if

α · β = β · γ = 0 in H∗(A).

If these conditions are satisfied then the Massey product 〈α, β, γ〉 is defined
as a subset in Hp+q+r−1(A) of the following form

〈α, β, γ〉 =
{
[(−1)p+1a ∧ g + (−1)p+qf ∧ c]

}
.

Since f and g are determined by (9) up to closed elements from Ap+q−1

and Aq+r−1 respectively, the triple Massey product 〈α, β, γ〉 is an affine
subspace of Hp+q+r−1(A) parallel to α ·Hq+r−1(A) + Hp+q−1(A) · γ.

Remark 4.2 We defined Massey products as the multi-valued operations
in general. More often in the literature the triple Massey product is defined
as a quotient-space 〈α, β, γ〉/(α·Hq+r−1(A)+Hp+q−1(A)·γ) and it is single-
valued in this case [13].

Definition 4.5 Let an n-fold Massey product 〈α1, . . . , αn〉 be defined. It
is called trivial if it contains the trivial cohomology class: 0 ∈ 〈α1, . . . , αn〉.

Proposition 4.3 Let a Massey product 〈α1, . . . , αn〉 is defined. Then all
Massey products 〈αl, . . . , αq〉, 1 ≤ l < q ≤ n, q − l < n − 1 are defined and
trivial.

Proof. It follows from (8).

Remark 4.3 The triviality of all Massey products 〈αl, . . . , αq〉, 1 ≤ l <

q ≤ n, q − l < n − 1 is only a necessary condition for a Massey product
〈α1, . . . , αn〉 to be defined. It is sufficient only in the case n = 3.

Let us denote by GTn(K) a group of non-degenerate upper triangular
(n+1, n+1)-matrices of the form:
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C =




a1,1 a1,2 . . . a1,n a1,n+1

0 a2,2 . . . a2,n a2,n+1

. . . . . . . . .

0 0 . . . an,n an,n+1

0 0 . . . 0 an+1,n+1




.

Proposition 4.4 Let A ∈ Tn(A) be the matrix of a formal connection and
C an arbitrary matrix from GTn(K). Then the matrix C−1AC ∈ Tn(A)
and satisfies the Maurer-Cartan equation, i.e. it is again the matrix of a
formal connection.

Proof.

d(C−1AC)− C̄−1ĀC̄ ∧ C−1AC = C−1
(
dA− Ā ∧A

)
C = 0.

Example 4.4 Let A ∈ Tn(A) be the matrix of a formal connection (defin-
ing system) for a Massey product 〈α1, . . . , αn〉. Then a matrix C−1AC

with

C =




1 0 . . . 0 0
0 x1 . . . 0 0

. . . . . . . . .

0 0 . . . x1. . .xn−1 0
0 0 . . . 0 x1. . .xn−1xn




is a defining system for 〈x1α1, . . . , xnαn〉 = x1 . . . xn〈α1, . . . , αn〉.

Definition 4.6 Two matrices A and A′ of formal connections from Tn(A)
are equivalent if there exists a matrix C ∈ GL(n+1,K) such that

A′ = C−1AC.

Example 4.5 Triple products 〈α, β, γ〉 and 〈xα, yβ, zγ〉, where x, y, z 6= 0,
are equivalent with

C =




1 0 0 0
0 x 0 0
0 0 xy 0
0 0 0 xyz




and

〈xα, yβ, zγ〉 = xyz〈α, β, γ〉, x, y, z ∈ K.
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Remark 4.4 Following the original Massey work [16] some higher order
cohomological operations that we call now Massey products were introduced
in the 60s in [15] and [17]. The relation between Massey products and the
Maurer–Cartan equation was first noticed by May [17] and this analogy
was not developed until [3].

In the present article we deal only with Massey products of non-trivial
cohomology classes. It is possible to take some of them trivial, but in this
situation is more natural to work with so–called matric Massey products
that were first introduced by May [17].

5. Massey products and thread modules

Let Tn(K) be a Lie algebra of upper triangular (n + 1, n + 1)-matrices over
a field K of zero characteristic and ρ : g −→ Tn(K) be a representation of
a Lie algebra g.

Example 5.1 We take n = 1 and consider a linear map

ρ : x ∈ g −→
(

0 a(x)
0 0

)
.

It is evident that ρ is a Lie algebra homomorphism if and only if the linear
form a ∈ g∗ is closed

da(x, y) = a([x, y]) = a(x)a(y)− a(y)a(x) = 0, ∀x, y ∈ g.

In other words the matrix A =
(

0 a

0 0

)
satisfies the ”strong” Maurer-Cartan

equation dA− Ā ∧A = 0.

Remark 5.1 We recall that we defined in the Section 4 the involution of
a graded algebra A as ā = (−1)k+1a, a ∈ Ak. Thus for a matrix A with
entries from g∗ we have Ā = A. One has to remark that ā differs by the
sign from the definition of ā in [15], however in [18] one meets our sign rule.

Proposition 5.1 A matrix A with entries from g∗ defines a representation
ρ : g −→ Tn(K) if and only if A satisfies the strong Maurer-Cartan equation

dA− Ā ∧A = 0.

Proof. (dA− Ā ∧A)(x, y) = A([x, y])− [A(x), A(y)] , ∀x, y ∈ g.
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Example 5.2 For n = 2 the matrix A of a representation ρ has a form

A =




0 a c

0 0 b

0 0 0


 , where a, b, c ∈ g∗ and the strong Maurer-Cartan equation

is equivalent to the following equations on entries a, b, c:

da = 0, db = 0, dc = a ∧ b.

The Lie algebra Tn(K) has a one-dimensional center In(K) spanned by the
matrix




0 . . . 0 1
0 . . . 0 0

. . .

0 . . . 0 0


 .

One can consider an one-dimensional central extension

0 −−−−→ K ∼= In(K) −−−−→ Tn(K) π−−−−→ T̃n(K) −−−−→ 0.

Proposition 5.2 [10, 9] Fixing a Lie algebra homomorphism ϕ̃ : g −→
T̃n(K) is equivalent to fixing a defining system A with elements from
g∗ = Λ1(g). The related cocycle c(A) is cohomologious to zero if and only
if ϕ̃ can be lifted to a homomorphism ϕ : g −→ Tn(K), ϕ̃ = πϕ.

Taking a (n+1)-dimensional linear space V over K and a representation ϕ :
g −→ Tn(K) one gets a g-module structure of V defined in the coordinates
x = (x1, . . . , xn+1) with respect to some fixed basis v1, . . . , vn+1 of V

gv = ϕ(g)x, g ∈ g, v ∈ V.

Definition 5.1 Two representations ϕ : g −→ Tn(K) and ϕ′ : g −→ Tn(K)
are called isomorphic (equivalent) if there exist two bases v1, . . . , vn+1 and
v′1, . . . , v

′
n+1 in a (n+1)-dimensional linear space V such that the corre-

sponding g-module structures coincide ρ(g)v = ρ′(g)v. Or in other words,
if there exists a matrix C ∈ GL(n+1,K) such that

ϕ′(g) = C−1ϕ(g)C, ∀ g ∈ g.

It is evident that this definition is equivalent to the Definition 4.6 when we
consider a Massey product 〈ω1, . . . , ωn〉 of 1-cohomology classes ω1, . . . , ωn.

Proposition 5.3 [grCg, grCg] = ⊕i≥2(grCg)i.
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Proof. An inclusion [grCg, grCg] ⊂ ⊕i≥2(grCg)i is evident for the graded
Lie algebra grCg = ⊕i≥1(grCg)i. Hence it is sufficient to prove an inclusion
(grCg)i ⊂ [grCg, grCg] for an arbitrary i ≥ 2. The last one in its turn
follows from

(grCg)i = [g, Ci−1g] + Ci+1g = [g+C2g, Ci−1g+Cig].

Corollary 5.1 We have isomorphisms

H1(g) ∼= (g/[g, g])∗ ∼= (grCg)∗1 ∼= H1(grCg).

Definition 5.2 A homomorphism ρ : g −→ h of two N-graded Lie algebras
g = ⊕igi and h = ⊕ihi is called graded if

ρ(gi) ⊂ hi, ∀i ∈ N.

Definition 5.3 Let ρ : g −→ Tn(K) be a representation. We call a rep-
resentation of graded Lie algebras ρ̃ : grCg −→ grCTn(K), defined by the
rule

ρ̃(x+ Ck+1g) = ρ(x)+ Ck+1Tn(K), x + Ck+1g ∈ Ckg/Ck+1g, k ≥ 1,

an associated graded representation to ρ.

Remark 5.2 Let ρ̃ : g −→ Tn(K) be some representation of a Lie algebra
g such as g ∼= grCg. It is not hard to describe the corresponding matrix A

of a formal connection:

1) the first diagonal is of zeroes (like all matrices from Tn(K));
2) the second one contains only elements from g∗ of degree one;
3) the k-th diagonal consists only of elements of degree k − 1.

Example 5.3 We take n = 3 and a homomorphism ρ : m0 −→ T3(K) is
defined by

ρ(e1) =




0 0 0 1
0 0 1 0
0 0 0 1
0 0 0 0


 , ρ(e2) =




0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 .

On can to define ρ only on e1 and e2 because the algebra m0 is generated
by these two elements.
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The corresponding matrix A of a formal connection is equal to

A =




0 e2 −e3 e4 + e1

0 0 e1 e2

0 0 0 e1

0 0 0 0


 .

For the associated graded representation ρ̃ : m0 −→ T3(K) we have

Ã =




0 e2 −e3 e4

0 0 e1 0
0 0 0 e1

0 0 0 0


 .

We recall that elements e1 and e2 have grading one, e3 and e4 have gradings
2 and 3 in Λ∗(m0) = Λ∗(grCm0) respectively.

Identifying the spaces H1(g) and H1(grCg) we come to the following propo-
sition:

Proposition 5.4 Let a Massey product 〈ω1, ω2, . . ., ωn〉 be defined and triv-
ial in H2(g) for some 1-cohomology classes ωi ∈ H1(g) of a Lie algebra g.
Then 〈ω1, ω2, . . ., ωn〉 is also defined and trivial in H2(grCg).

Proposition 5.5 Let g be a Lie algebra such that g ∼= grCg and a Massey
product 〈ω1, ω2, . . ., ωn〉 be defined and trivial for some ωi ∈ H1(g). Then
there exists a graded defining system A (the matrix A of a graded formal
connection) for 〈ω1, ω2, . . ., ωn〉.

Definition 5.4 A thread module over a N-graded Lie algebra g = ⊕igi is
a N-graded g-module V = ⊕i∈NVi such as

dim Vi = 1, giVj ⊂ Vi+j , ∀i, j ∈ N.

Fixing a basis {fj}, j = 1, . . . , n+1, in a (n+1)-dimensional thread module
V = ⊕n+1

j=1 Vj , such that fj ∈ Vj , gives us a representation of g by lower
triangular matrices. Taking the dual module V ∗

(
ρ∗(g)f̃

)
(v) = f̃(ρ(g)v)

with a basis f j ∈ V ∗
j , j = 1, . . . , n+1 we will get a representation

ρ∗ : g −→ Tn(K) by upper triangular matrices.

Or one can change the ordering of the basis of V considering a new basis
v′1 = vn+1, . . . , v

′
n+1 = v1.
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Proposition 5.6 Let a Massey product 〈ω1, ω2, . . ., ωn〉 be defined and triv-
ial in H2(g) for some 1-cohomology classes ωi ∈ H1(g) of a Lie algebra g.
Then 〈x1ω1, x2ω2, . . ., xnωn〉 is also defined and trivial for any choice of
non-zero constants x1, x2, . . ., xn.

6. Massey products in H∗(L1) and H∗(m0)

We recall that the algebra H∗(L1) has a trivial multiplication. Buch-
staber conjectured that the algebra H∗(L1) is generated with respect to
the Massey products by H1(L1), moreover all corresponding Massey prod-
ucts can be chosen non-trivial. The first part of Buchstaber’s conjecture
was proved by Feigin, Fuchs and Retakh [10].

Theorem 6.1 [10] For any q ≥ 2

gq
− ∈ K〈gq−1

+ , e1, . . . , e1

︸ ︷︷ ︸
2q−1

〉, gq
+ ∈ K〈gq−1

+ , e1, . . . , e1

︸ ︷︷ ︸
3q−1

〉.

Remark 6.1 It follows from more general result by May and Gugenheim
(Corollary 5.17 in [19]) that H∗(L1) is generated by H1(L1) with respect
to matric Massey products.

The second part of the Buchstaber conjecture was not treated in [10], more-
over it follows from the Proposition 4.3 that the 2q-fold Massey product
〈gq−1

+ , e1, . . . , e1

︸ ︷︷ ︸
2q−1

〉 from the Theorem 6.1 is trivial.

In 2000 Buchstaber’s PhD-student Artel’nykh considered the second part of
the Buchstaber conjecture. In particular he claimed the following theorem.

Theorem 6.2 [1] There are non-trivial Massey products

gq
− ∈ K〈e2, . . . , e2

︸ ︷︷ ︸
q−1

, gq−1
+ , e1〉, q ≥ 2, g2l+1

+ ∈ K〈e2, . . . , e2

︸ ︷︷ ︸
3l+1

, g2l
+ 〉, l ≥ 1.

One can see that the cohomology classes g2l
+ were not represented by means

of non-trivial Massey products. On the another hand Artel’nykh’s article
contain only a brief sketch of the proof.

We have mentioned that the Massey products in H∗(g) and H∗(grCg) are
closely related. Recall that grCL1

∼= m0. We came to the problem of
description of Massey products in the cohomology H∗(m0). The special
question is the description of equivalency classes of trivial Massey products
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〈ω1, . . . , ωn〉 of 1-cohomology classes ω1, . . . , ωn. The purpose of this inter-
est is to consider Massey products of the form 〈ω1, . . . , ωn,Ω〉, where Ω is
an element from H∗(g).

An infinite dimensional space H2(m0) is spanned by the cohomology classes
of following 2-cocycles [12]

ω(e2∧e3) = e2∧e3, ω(e3∧e4) = e3∧e4 − e2∧e5,

ω(e4∧e5) = e4∧e5 − e3∧e6 + e2∧e7, . . . , (10)

ω(ek∧ek+1) =
k−2∑

l=0

(−1)lek−l∧ek+1+l, . . .

All of the cocycles (10) can be represented as Massey products. Namely let
consider the following matrix of a formal connection

A =




0 e2 −e3 . . . (−1)kek (−1)k+1ek+1 0
0 0 e1 0 . . . 0 ek+1

0 0 0 e1 0 . . . ek

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 e1 e3

0 0 0 0 . . . 0 e2

0 0 0 0 0 . . . 0




.

For the related cocycle c(A) we have

c(A) =
k+1∑

l=2

(−1)lel ∧ ek+3−l = 2ω(ek∧ek+1).

Thus we have proved the following

Proposition 6.1

2ω(ek∧ek+1) ∈ 〈e2, e1, . . . , e1

︸ ︷︷ ︸
2k−3

, e2〉, k ≥ 2.

Example 6.1 We take k = 2 and the matrix A of a formal connection that
corresponds to 〈e2, e1, e2〉

A =




0 e2 −e3 0
0 0 e1 e3

0 0 0 e2

0 0 0 0


 .
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The related cocycle c(A) is equal to

c(A) = 2e2∧e3 = 2ω(e2∧e3).

The space H1(m0) is spanned by e1 and e2 and hence every n-fold Massey
product of elements from H1(m0) has a form

〈α1e
1 + β1e

2, α2e
1 + β2e

2, . . . , αne1 + βne2〉︸ ︷︷ ︸
n

.

A product e1 ∧ e2 = de3 is cohomologicaly trivial, hence a triple product

〈ω1, ω2, ω3〉 = 〈α1e
1 + β1e

2, α2e
1 + β2e

2, α3e
1 + β3e

2〉
is defined for any choice of constants αi, βi ∈ K, i = 1, 2, 3.

A =




0 ω1 γ1e
3 0

0 0 ω2 γ2e
3

0 0 0 ω3

0 0 0 0


 , γ1 = α1β2 − α2β1, γ2 = α2β3 − α3β2,

The related cocycle c(A) = γ2ω1∧e3 − γ1ω3∧e3 is trivial if and only if

β1(α2β3 − α3β2)− β3(α1β2 − α2β1) = 0. (11)

We have mentioned above that if n-fold Massey product 〈ω1, ω2, . . ., ωn〉
is defined than all (p + 1)-fold Massey products 〈ωi, ωi+1, . . . , ωi+p〉 for
1 ≤ i ≤ n− 1, 1 ≤ p ≤ n− 2, i + p ≤ n are defined and trivial.

Theorem 6.3 Up to an equivalence the following trivial n-fold Massey
products of non-zero cohomology classes from H1(m0) are defined:

name Massey product parameters

An+1
λ 〈αe1+βe2, αe1+βe2, . . . , αe1+βe2〉︸ ︷︷ ︸

n

n ≥ 3, λ = (α, β) ∈ KP 1

Bn+1
α,β 〈λ1e

1+e2, λ2e
1+e2, . . ., λne1+e2〉︸ ︷︷ ︸

n

n ≥ 3, λi = iα+β,

α, β ∈ K, α 6= 0

Cn+1
l,α 〈e1, . . ., e1

︸ ︷︷ ︸
l

, e2+αe1, e1, . . . , e1〉︸ ︷︷ ︸
n−l−1

α ∈ K, n ≥ 3,

0 ≤ l ≤ n−1

D2k+3
α,β 〈e2 + αe1, e1, . . . , e1

︸ ︷︷ ︸
2k

, e2 + βe1〉 k ≥ 1, α, β ∈ K
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Proof. The statement of the present theorem is equivalent to Benoist’s
classification [4] of indecomposable thread modules over m0 (m0 is graded as
grCm0

∼= m0). More precisely we consider a finite-dimensional m0-module
V with a basis v1, . . . , vn+1 such that

e1vi = αivi−1, e2vi = βivi−1, i = 1, . . . , n + 1.

In the last formula we assume that v0 = 0. It is sufficient to define only an
action of e1 and e2 on V because the algebra m0 is generated by them.

Taking the corresponding matrix A of this representation with respect to
the basis v1, . . . , vn+1 we see that it has elements ωi = αie

1 + βie
2 at its

second diagonal. One can regard A as a defining system of the Massey
product 〈ω1, . . . , ωn〉︸ ︷︷ ︸

n

, ωi = αie
1+βie

2. Obviously V is decomposable as

a direct sum of thread modules if and only if e1vi = e2vi = 0 for some
i, 1 ≤ i ≤ n+1. The last condition means that ωi = 0 at the second
diagonal of the matrix A.

We will prove this theorem by induction and start with triple products.
First of all let consider the case when all βi 6= 0, i = 1, 2, 3. Taking an
equivalent defining system one can assume that βi = 1, i = 1, 2, 3. In terms
of representations it means that one can choose a base v1, . . . , v4 of V such
as

e2vi = vi−1, i = 1, . . . , 4.

The equation (11) in our case looks in a following way

2α2 − α1 − α3 = 0,

and it means that the numbers α1, α2, α3 form an arithmetic progression
and we have either a type B4

α,β or A4
λ with λ = (α, 1). We keep Benoist’s

notations [4] of types of thread modules.

The equation (11) implies that if one constant from β1, β2, β3 is equal to
zero, then at least another one βi is trivial also.

The case when β1 = β2 = β3 = 0 is equivalent to 〈e1, e1, e1〉, i.e. to
the type A4

1,0 from the table above. The remaining three possibilities are
C4

l,α, l = 0, 1, 2.

Let a n-fold product 〈ω1, . . . , ωn〉 be defined and trivial then (n − 1)-fold
product 〈ω1, . . . , ωn−1〉 is also trivial and by our inductive assumption is
equivalent to some case from the table above.
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The triple Massey product 〈ωn−2, ωn−1, ωn〉 is trivial in its turn and one
can write out the equation (11) for all classes 〈ω1, . . . , ωn−1〉:

〈ω1, . . . , ωn−1〉 equation (11) for 〈ωn−2, ωn−1, ωn〉 〈ω1, . . . , ωn〉
An

λ, λ = (α, β) αββn = β2αn An+1
λ , Cn+1

n−1,ρ

Bn
α,β (αn + β)βn = αn Bn+1

α,β

Cn
l,α

0 = 0, l < n−2;
2βn = 0, l = n−2;
−βn = 0, l = n−1.

?
Cn+1

l,α

Cn+1
l,α

D2k+3
α,β −βn = 0 ?

Lemma 6.1 The following Massey products

〈e2 + αe1, e1, . . . , e1

︸ ︷︷ ︸
2k

, e2 + βe1, e1〉, 〈e1, e2 + αe1, e1, . . . , e1

︸ ︷︷ ︸
2k

, e2 + βe1〉

are defined and non-trivial.

Proof. In order to simplify the notations we are going to consider only
the first Massey product with k = 1, the general case can be treated anal-
ogously. We will write only non-trivial entries of the defining system A

(so-called the Massey triangle)

e2 + α e1 −e3 + . . . e4 + . . . (α−β) e5+ . . .

e1 0 + . . . . . . − 3 e5+ . . .

e1 e3 + . . . −2e4 + . . .

e2 + βe1 −e3 + . . .

e1

The related cocycle c(A) is equal to

c(A) = 3e3∧e4 − 3e2∧e5 + · · · = 3ω(e3∧e4) + . . . ,

where dots stand everywhere instead of summands of lower gradings.

Hence one can conclude that a trivial Massey product of type D is not ex-
tendable to a higher fold trivial Massey product. The same arguments show
that Cn

l,α is extended only to Cn+1
l,α if l > 0 and we have two possibilities in

the case C2k+1
0,β . They are C2k+2

0,β and Dk
α,β respectively.
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Theorem 6.4 The cohomology algebra H∗(m0) is generated with respect
to the non-trivial Massey products by H1(m0), namely

ω(e2∧ei2∧. . .∧eiq∧eiq+1) = e2∧ω(ei2∧. . .∧eiq∧eiq+1),

2ω(ek∧ek+1) ∈ 〈e2, e1, . . . , e1

︸ ︷︷ ︸
2k−3

, e2〉,

(−1)i1ω(ei1∧ei2∧. . .∧eiq∧eiq+1) ∈ 〈e2, e1, . . . , e1

︸ ︷︷ ︸
i1−2

, ω(ei2∧. . .∧eiq∧eiq+1)〉,

Proof. First of all we present a graded defining system (a graded formal
connection) A for a Massey product 〈e2, e1, . . . , e1, ω(ei2∧. . .∧eiq∧eiq+1)〉.
To simplify the formulas we will write ω instead of ω(ei2∧. . .∧eiq∧eiq+1).

One can verify that the following matrix A with non-zero entries at the
second diagonal, first line and first row gives us an answer.

A =




0 e2 −e3 e4 . . . (−1)i1ei1 0
0 0 e1 0 . . . 0 Di1−2

−1 ω

0 0 0 e1 . . . 0 Di1−3
−1 ω

. . .

0 0 0 0 . . . e1 D−1ω

0 0 0 0 . . . 0 ω

0 0 0 0 . . . 0 0




.

The proof follows from

d(Dk
−1ω) = e1∧Dk−1

−1 ω, d((−1)kek) = (−1)k−1ek−1∧e1.

The related cocycle c(A) is equal to

c(A) =
i1∑

l≥2

(−1)lel ∧Di1−l
−1 ω = (−1)i1

i1−2∑

k≥0

(−1)kDk
1ei1 ∧Dk

−1ω

Example 6.2 We take 〈e2, e1, ω(e4∧e5)〉.

A =




0 e2 −e3 0
0 0 e1 D−1ω(e4∧e5)
0 0 0 ω(e4∧e5)
0 0 0 0


 .

One can verify the computations of its related cocycle c(A)

c(A) = e2 ∧D−1ω(e4∧e5)− e3 ∧ ω(e4∧e5)

= e2 ∧ (e4∧e6 − 2e3∧e7 + 3e2∧e8)− e3 ∧ (e4∧e5 − e3∧e6 + e2∧e7)

= −e3∧e4∧e5 + e2∧e4∧e6 − e2∧e3∧e7 = −ω(e3∧e4∧e5).
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Lemma 6.2
∑

k≥0

(−1)kDk
1ei1 ∧Dk

−1ω = ω(ei1∧ei2∧. . .∧eiq∧eiq+1)

Proof. This lemma is almost evident. Both parts of the equality
are closed forms. One has to compare the monomials of the form
ej1∧ej2∧. . .∧ejq∧ejq+1 in the decompositions of the left-hand and right-
hand sides. The operator D−1 strictly increases the difference between two
last superscripts of monomials

D−1(ej1∧ej2∧. . .∧ejq∧ejq+1) =
∑

k≥0

(−1)kDk
1 (ej1∧ej2∧. . .∧ejq )∧Dk+1

−1 ejq+1.

Hence there is the only one monomial of the form we are looking for
on the left-hand side and the same one on the right-hand side and it is
ei1∧ei2∧. . .∧eiq∧eiq+1.

Lemma 6.3 Let Ã be an arbitrary defining system (the matrix of a for-
mal connection) for 〈e2, e1, . . . , e1, ω(ei2∧. . .∧eiq∧eiq+1)〉. Then its related
cocycle c(Ã) is equal to

(−1)i1ω(ei1∧. . .∧eiq∧eiq+1) +
∑

j1<i1

λj1,...,jqω(ej1∧. . .∧ejq∧ejq+1)+e1∧Ω,

for some constants λj1,...,jq and q-form Ω.

Proof. We will rewrite our defining system Ã in the form of a Massey
triangle of the defining system Ã.

e2 −e3 + ρ1
1 e4 + ρ2

1 . . . (−1)i1ei1 + ρi1−2
1

e1 ρ1
2 . . . . . . Di1−2

−1 ω + . . . +Ωi1−2

. . . . . . . . . . . .

e1 ρ1
i1−2 D2

−1ω + . . . +Ω2

e1 D−1ω + Ω1

ω

Ωi are some closed q-forms. 1-forms ρ1
1, . . . , ρ

1
i1−2 standing at the second

diagonal are also closed and therefore they are linear combinations of e1

and e2. Continue this procedure and using the Maurer-Cartan equation
and an inductive assumption it is easy to see that ρl

k is a linear com-
bination of e1, . . . , el+1. Hence the maximal value of superscript that
we can meet at the first line of our triangle is i1. Thus one can con-
clude that we have the only one monomial of the form ei1∧. . .∧ej∧ej+1,
i1< . . .<j in the decomposition of the related cocycle c(Ã). It comes
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from the summand (−1)i1(ei1+ρi1−2
1 )∧ω in the formula of c(Ã) and it is

(−1)i1ei1∧. . .∧eiq∧eiq+1.

The Lemma 6.3 provides us with a proof of non-triviality of the Massey
products 〈e2, e1, . . . , e1, ω(ei2∧. . .∧eiq∧eiq+1)〉. The proof in the case
〈e2, e1, . . . , e1, e2〉 can be obtained by the same arguments.
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