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In this expository paper we review two recent estimates on the first eigenvalue of
the Laplacian acting on differential forms. We start by recalling the classical facts
on harmonic forms on closed manifolds; then we introduce the absolute and relative
boundary conditions and report on recent sharp estimates of the first eigenvalue
of convex Euclidean domains. Finally we give upper bounds for the first Hodge
eigenvalue of isometric immersions in the Euclidean space and in the canonical
sphere, discussing in particular minimal spherical immersions. Our purpose is
not to give an up-to-date, complete report on the research in this field, but is
rather an attempt to explain the geometric motivations of some problems which
are sometimes regarded as technical.
Complete proofs will appear elsewhere and can be found in the references.

1. Review of some classical facts

1.1. The Hodge Laplacian

Let M be a compact, connected, oriented Riemannian manifold without
boundary and ∆ the Laplace operator acting on functions. The spectrum
of the Laplacian is an important invariant of the manifold; as M is compact,
it is an increasing sequence of non-negative numbers

0 = λ0(M) < λ1(M) ≤ · · · ≤ λk(M) ≤ . . .

and λk(M) → ∞ as k → ∞. Clearly any constant function is an eigen-
function of ∆, associated to the eigenvalue 0; the first positive eigenvalue
is characterized by the variational property

λ1(M) = inf
{∫

M
‖∇f‖2∫
M

f2
: f ∈ C∞(M) \ {0},

∫

M

f = 0
}

,
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and in general the eigenvalues (resp. eigenfunctions) of the Laplacian are
the critical values (resp. critical points) of the quadratic form (energy
functional)

Q(f) =
∫

M

‖df‖2.

Let us now consider the extension of ∆ acting on differential p-forms, de-
noted by ∆p (or simply ∆) and often called the Hodge Laplacian of the
(Riemannian) manifold M :

∆pω = dδω + δdω,

where d is the exterior derivative and δ is the co-differential, i.e. the adjoint
of d with respect to the L2-scalar product of forms defined by the metric.

The Hodge Laplacian is then associated to the quadratic form:

Q(ω) =
∫

M

‖dω‖2 + ‖δω‖2.

It is self-adjoint and elliptic, hence it admits a discrete sequence of eigen-
values. The multiplicity of the zero eigenvalue has in fact an important
topological meaning.

1.2. Harmonic forms and topology

A form is harmonic if it is in the kernel of the Hodge Laplacian: ∆ω = 0.
The main motivation for considering this operator is that the dimension
of the vector space of harmonic p-forms, denoted Hp(M), is a topological
invariant, and in fact equals the p-th de Rham Betti number of M . This is
a consequence of the Hodge decomposition theorem (see for example [19]) :

Theorem 1.1 The space of differential p-forms splits as an orthogonal
direct sum

Λp(M) = Hp(M)⊕ d(Λp−1(M))⊕ δ(Λp+1(M)).

In particular, Hp(M) is isomorphic to the p-th de Rham cohomology space
of M , and each de Rham cohomology class has a unique harmonic repre-
sentative.

It follows that analytic estimates on the Hodge Laplacian and curvature
assumptions have interesting topological consequences; this idea is at the
basis of the Bochner method.
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1.3. The Bochner method

The classical Bochner formula relates the Laplacian of a form to its energy
and to the curvature of the manifold. For a 1-form ω, it reads:

〈∆ω, ω〉 = ‖∇ω‖2 +
1
2

∆(‖ω‖2) + Ric(ω, ω), (1.1)

where Ric is the Ricci curvature of M , viewed as a quadratic form on
Λ1(M). If ω is a harmonic 1-form, integrating on the manifold one gets:

0 =
∫

M

‖∇ω‖2 +
∫

M

Ric(ω, ω).

With this at hand the following consequence, first proved by Bochner, is
now easy to prove:

Theorem 1.2 Let M be an n-dimensional manifold without boundary and
b1(M) its first Betti number. Then:

(i) If the Ricci curvature is non-negative, then any harmonic 1-form
is parallel and b1(M) ≤ n.

(ii) If the Ricci curvature is non-negative, and positive somewhere, then
b1(M) = 0.

(iii) If the Ricci curvature is non-negative and b1(M) = n then M is
isometric to a flat torus.

(The proof of the last statement requires an additional argument).

Here is another application to Killing fields. The starting point is to observe
that, if ω is the dual 1-form of a Killing field, then ∇ω is skew symmetric (in
particular, ω is co-closed) and ∆ω = 2Ric(ω) (now Ric is viewed as an en-
domorphism of Λ1(M)): the proof is easy by straightforward manipulation
and the Bochner formula. Then one has easily:

Theorem 1.3 Let M be a compact, oriented manifold with non-positive
Ricci curvature. Then:

(i) Every Killing field is parallel.
(ii) If in addition Ric < 0 at some point, then M has no non-trivial

Killing fields, and in particular its isometry group is finite.

For p-forms the Bochner (or Bochner-Weitzenböck) formula reads:

〈∆ω, ω〉 = ‖∇ω‖2 +
1
2

∆(‖ω‖2) + Wp(ω, ω) (1.2)
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where now the curvature term Wp(ω, ω) is more complicated to handle (of
course we have seen that W1 = Ric). However, an estimate by Gallot and
Meyer in [6] shows that

Wp(ω, ω) ≥ p(n− p)γ‖ω‖2, (1.3)

where γ is a lower bound of the eigenvalues of the curvature operator of
M . Recall that the curvature operator is the self-adjoint endomorphism R
of Λ2(TM) (endowed with its canonical inner product), defined by:

〈R(X ∧ Y ), Z ∧W 〉 = R(X, Y, Z,W ),

where R is the Riemann tensor and X,Y, Z,W are tangent vectors. If γ is a
lower bound of the eigenvalues of the curvature operator, then all sectional
curvatures are also bounded below by γ (however, the converse is not true).

1.4. The Gallot-Meyer eigenvalue estimate

Having discussed the kernel of the Hodge Laplacian, we now turn our at-
tention to its first positive eigenvalue, which we will denote by the symbol:

µ
[p]
1 (M).

Note that the superscript [p] refers to the degree of the eigenform involved.

The Gallot-Meyer estimate (1.3) and the Bochner formula are the main
tools in the proof of the following lower bound, also proved in [6]:

Theorem 1.4 Let Mn be a closed manifold with curvature operator having
eigenvalues bounded below by γ > 0. Then, for all p = 1, . . . , n− 1:

µ
[p]
1 (M) ≥ c(n, p)γ,

where c(n, p) = min{p(n − p + 1), (p + 1)(n − p)}. Equality holds for the
canonical sphere.

The inequality µ
[0]
1 (M) ≥ nγ under the assumption Ric ≥ (n − 1)γ had

already been proved by Lichnerowicz.

1.5. Boundary conditions

We now assume that M has a smooth boundary ∂M , with inner unit normal
vector denoted by N . We consider the absolute eigenvalue problem for the
Hodge Laplacian: {

∆ω = µω

iNω = 0, iNdω = 0 on ∂M.
(1.4)



455

Here iNω denotes interior multiplication of ω by the vector N . Let us say
that the form ω is tangential if iNω = 0 on the boundary (i.e. it vanishes
on vectors which are normal to the boundary). For the absolute boundary
conditions we then require that both ω and its exterior derivative dω are
tangential. For a form of degree 0, that is, for a function f , the absolute

boundary conditions reduce to
∂f

∂N
= 0 on ∂M . Hence:

Remark 1.1 The absolute boundary conditions for forms generalize the
Neumann boundary conditions for functions.

The dual eigenvalue problem is the relative one:
{

∆ω = λω

J∗ω = 0, J∗δω = 0 on ∂M.
(1.5)

where J∗ denotes restriction of a form to the boundary. For a function, one
asks f = 0 on the boundary. Hence:

Remark 1.2 The relative boundary conditions for forms generalize the
Dirichlet boundary conditions for functions.

For example, let us see the boundary conditions for 1-forms on the cylinder
M = [0, 1] × S1. In the coordinates (r, θ), where r ∈ [0, 1] and θ is the
angular coordinate on the unit circle, a 1-forms is expressed as follows:

ω = ω1(r, θ) dr + ω2(r, θ) dθ.

Then, for the absolute boundary conditions, one requires that the functions

ω1 and
∂ω1

∂θ
− ∂ω2

∂r
vanish identically on ∂M , hence at all points (0, θ) and

(1, θ), with θ ∈ [0, 2π). For the relative boundary conditions, the same

vanishing must hold for the functions ω2 and
∂ω1

∂r
+

∂ω2

∂θ
.

The Hodge decomposition theorem for manifolds with boundary (see for
example [18] or [19]) has the following consequence, which motivates the
names given to the above boundary conditions:

Theorem 1.5 The vector space of harmonic p-forms satisfying the absolute
(resp. relative) conditions is isomorphic to the p-th absolute (resp. relative)
de Rham cohomology space of the pair (M, ∂M).

Let us now denote by µ
[p]
1 (M) the first positive eigenvalue of the Hodge

Laplacian for the absolute conditions, and by λ
[p]
1 (M) the first positive
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eigenvalue for the relative one. The Hodge ? operator exchanges the two
boundary conditions, hence

µ
[p]
1 = λ

[n−p]
1 .

We have the min-max principle, characterizing these eigenvalues:

µ
[p]
1 (M) is the infimum of the quotient

∫
M
‖dω‖2 + ‖δω‖2∫

M
‖ω‖2 , (1.6)

the infimum being taken over all non-vanishing p-forms ω which are tan-
gential and L2-orthogonal to the subspace H[p]

A (M) of all harmonic forms
satisfying the absolute boundary conditions. Note that in the min-max
principle above we only ask that iNω = 0: in fact, any eigenform realizing
the infimum automatically satisfies iNdω = 0.

As the Laplacian ∆ commutes with both d and δ, it leaves the subspace
of closed (resp. co-closed) forms invariant, hence the eigenvalue problem
splits naturally and one has:

µ
[p]
1 = min{µ[p]′

1 , µ
[p]′′

1 },

where µ
[p]′

1 (resp. µ
[p]′′

1 ) is the first positive eigenvalue of ∆ when acting on
closed (resp. co-closed) p-forms. Finally, differentiating eigenforms gives
µ

[p]′′

1 = µ
[p+1]′

1 .

We now give a geometric interpretation of the above boundary conditions,
the eigenvalues, and the variational principles for vector fields in the three
dimensional Euclidean space R3.

1.6. Vector fields in 3-space

Let Ω be a bounded domain (with smooth boundary) in R3. Given a 1-form
ω on Ω, we shall consider its dual vector field Wω defined by:

〈Wω, X〉 = ω(X),

for all vector fields X on Ω. The condition iNω = 0 on the boundary then
means that Wω is indeed tangent to the boundary at any point of it. Now,
the 1-form ?dω corresponds under duality to the vector field

curl Wω = ∇×Wω;

as the Hodge star operator intertwines the operators iN and J∗ one easily
verifies that iNdω = 0 if and only if curlWω is normal to the boundary.
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Therefore, the absolute boundary conditions for a vector field W are:

W tangent to ∂Ω and curlW normal to ∂Ω.

Similarly, the relative conditions are:

W normal to ∂Ω and divW = 0 on ∂Ω.

The Laplacian on vector fields is:

∆W = −grad divW − curl2W.

Since the ? operator is an isometry, one has ‖ ? dω‖2 = ‖dω‖2, and the
min-max principle gives:

µ
[1]
1 (Ω) is the infimum of the quotient

∫
Ω
‖curlW‖2 + |divW |2∫

Ω
‖W‖2 , (1.7)

taken over all non-vanishing vector fields W which are tangent to the bound-
ary and L2-orthogonal to the subspace H1

A(Ω) of all harmonic vector fields
satisfying the absolute boundary conditions (this space is known to have
dimension equal to the genus of ∂Ω).

Similarly,

µ
[1]′

1 (Ω) = inf
W

∫
Ω
|divW |2∫

Ω
‖W‖2 , (1.8)

where W is non-vanishing, curl-free, tangent to the boundary and L2-
orthogonal to H1

A(Ω); while

µ
[1]′′

1 (Ω) = inf
W

∫
Ω
‖curlW‖2∫
Ω
‖W‖2 , (1.9)

where now W is non-vanishing, divergence-free, tangent to the boundary
and L2-orthogonal to H1

A(Ω).

In the next section we will give sharp upper and lower estimates of µ
[p]
1 when

Ω is a convex body in Rn. For a nice exposition of the Hodge decomposition
for vector fields in 3-space, and related problems, we refer to [2].

2. Estimates for convex Euclidean domains

In this section Ω is a convex body in Rn. We discuss here the behavior of
the eigenvalues µ

[p]
1 and see how they depend on the geometry of Ω. Proofs

will appear in [16].
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It should be remarked that estimating the eigenvalues of the Laplacian on
forms is usually harder than estimating the eigenvalues for functions, be-
cause many of the tools valid for functions (like isoperimetry, symmetriza-
tion, etc.) do not extend to differential forms; for example, the classical
Faber-Krahn inequality, valid for the first Dirichlet eigenvalue on functions,
does not hold for p-forms, when p ≥ 1. It is also unclear whether a Cheeger-
type inequality can hold for forms. The spectral geometry of the Hodge
Laplacian looks more complicated (and often more interesting) than that
of the Laplacian on functions.

We restrict to convex domains because they have strong properties; coun-
terexamples show that it is in general impossible to extend the type of the
bounds given below to general domains.

Classically, the first eigenvalue on functions for the Dirichlet boundary con-
ditions, that is

λ
[0]
1 = µ

[n]
1 ,

is called the fundamental tone for the fixed problem on Ω; it is in fact the
lowest sound produced by Ω, seen as a vibrating drum which is fixed on
the boundary.

If the boundary is free to vibrate as well, then its lowest frequency (funda-
mental tone) is its first positive Neumann eigenvalue

µ
[0]
1 .

By abuse of language we will call

µ
[p]
1 ,

for p = 0, . . . , n, the fundamental p-tone of Ω. The problem we address in
this section is the following:

Knowing all fundamental p-tones, that is, the eigenvalues µ
[0]
1 , µ

[1]
1 , . . . , µ

[n]
1 ,

what can we say about the geometry of the (convex) domain Ω?

2.1. Known estimates for functions

We start with µ
[0]
1 . One has:

π2

diam(Ω)2
≤ µ

[0]
1 (Ω) ≤ nπ2

diam(Ω)2
, (2.1)

The lower bound is due to Payne and Weinberger [14] while the upper
bound follows easily from more general estimates found in [4]. The two
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bounds express the fact that µ
[0]
1 is equivalent to the squared inverse of the

diameter: in particular, it is large if the diameter is small, and viceversa it
is small if the diameter is large.

Remark 2.1 In what follows, we will say that the eigenvalue µ
[p]
1 (Ω) is

equivalent to a certain invariant I(Ω) if the quotient
µ

[p]
1 (Ω)
I(Ω)

is bounded

above and below by two positive constants which do not depend on Ω but
only on the degree p and the dimension n. In that case, µ

[p]
1 (Ω) → 0 (resp.

µ
[p]
1 (Ω) →∞) if and only if I(Ω) → 0 (resp. I(Ω) →∞).

Regarding µ
[n]
1 = λ

[0]
1 one has:

π2

4R(Ω)2
≤ µ

[n]
1 (Ω) ≤ µ

[n]
1 (Bn)
R(Ω)2

, (2.2)

where R(Ω) is now the inner radius of Ω (the radius of a largest ball sit-
ting inside the domain), and Bn is the unit ball. The lower bound is due
to Li and Yau [13] (and is valid, in greater generality, when the bound-
ary is mean convex and the Ricci curvature is non-negative), while the
upper bound follows immediately from the monotonicity property of the
first Dirichlet eigenvalue. Hence, the eigenvalue µ

[n]
1 (Ω) is equivalent to the

squared inverse of the inner radius of the domain.

Let us now turn to the eigenvalue µ
[p]
1 (Ω).

It has been proved by Guerini and Savo [9] that µ
[p]′′

1 ≥ µ
[p]′

1 for all p, hence
the sequence of fundamental tones is always non-decreasing, and actually

µ
[0]
1 = µ

[1]
1 ≤ µ

[2]
1 · · · ≤ µ

[n]
1 . (2.3)

Note the equality at the first step; it follows because µ
[1]′′

1 ≥ µ
[1]′

1 and
µ

[0]
1 = µ

[1]′

1 (obtained by differentiating the first Neumann eigenfunction).
Hence, for a convex domain the significant fundamental tones are exactly
n, that is µ

[1]
1 , µ

[2]
1 , . . . , µ

[n]
1 . As an immediate corollary of (2.1)-(2.3) we

have that, for all p:

π2

diam(Ω)2
≤ µ

[p]
1 (Ω) ≤ µ

[n]
1 (Bn)
R(Ω)2

.

However, we want to give a more precise estimate, and find a geometric
invariant which is equivalent to µ

[p]
1 . This invariant is related to the John

ellipsoid of Ω.
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2.2. The John ellipsoid

In 1948, F. John proved the following result (see [12] or also [1]):

Theorem 2.1 Let Ω be a convex body in Rn. Then there is a unique
ellipsoid E of maximal volume contained in Ω. Moreover, one has:

Ω ⊂ nE .

(Here the homothety is taken with respect to the center of E).
E is called the John ellipsoid of Ω. In some sense, it is the included ellipsoid
which best approximates Ω. The inclusion expresses the fact that, if

γ(Ω) = inf{t ≥ 1 : Ω ⊂ tE},
then γ(Ω) ≤ n for all Ω. The invariant γ(Ω) is also called the Banach-Mazur
distance of Ω from the unit ball.

2.3. The main estimate

Let then Ω be a convex body and E the John ellipsoid of Ω. Let Dk(E) be
the k-th principal axis of E , and assume the ordering:

D1(E) ≥ D2(E) ≥ · · · ≥ Dn(E).

By abuse of language, we will call Dk(E) the k-th principal axis of Ω. By
John’s theorem, D1(E) is equivalent to the diameter and Dn(E) is equivalent
to the inner radius, because:

D1(E) ≤ diam(Ω) ≤ nD1(E) and Dn(E) ≤ 2R(Ω) ≤ nDn(E).

With that in mind, we observe that the classical estimates for functions can
be stated as follows (recall that µ

[0]
1 = µ

[1]
1 ):

µ
[1]
1 is equivalent to D1(E)−2 and µ

[n]
1 is equivalent to Dn(E)−2.

Our main result is that this fact holds in all degrees:
For all degrees p the eigenvalue µ

[p]
1 is equivalent to Dp(E)−2.

Here is the precise statement with explicit constants (this is the main result
in [16]).

Theorem 2.2 Let Ω be a convex body in Rn, n ≥ 3, and E the John
ellipsoid of Ω, with principal axes: D1(E) ≥ D2(E) ≥ · · · ≥ Dn(E). Then,
for all p = 2, . . . , n− 1 one has:

an,p

Dp(E)2
< µ

[p]
1 (Ω) <

a′n,p

Dp(E)2
,
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where

an,p =
1

n2 · ( n
p−1

) , a′n,p = p(n + 2)nn.

The strict inequality expresses the fact that the numerical constants are
not sharp. We now observe some consequences.

2.4. Collapsing

Let us say that the sequence of convex domains Ωα, α > 0 in Rn collapses
to Rm (here m < n) if, for large α, Ωα is contained in an arbitrarily small
tubular neighborhood of an m-dimensional subspace of Rn. By John’s
theorem, it is clear that, if Eα is the John ellipsoid of Ωα, then:
Ωα collapses to Rm iff, as α →∞, Dp(Eα) → 0 for all p ≥ m + 1.

Therefore, by the theorem,
Ωα collapses on Rm iff, as α →∞, µ

[p]
1 (Ωα) →∞ for all p ≥ m + 1.

In particular, one can detect collapsing, and the dimension of the subspace
on which it takes place, just by counting the number of fundamental tones
which diverge to infinity.

2.5. Spectral geometry of convex domains

The last statement is typical in inverse spectral geometry: recover geometric
properties of a manifold by the sole knowledge of its spectrum (for functions,
or forms).

Let us recall that the spectrum of a manifold (say, for the Laplacian on
functions and the Dirichlet boundary conditions) determines many impor-
tant invariants, like the dimension, the volume, the volume of the boundary
and, more generally, the whole set of heat invariants (i.e. the coefficients of
the asymptotic expansion of the heat trace). So, having a perfect ear (that
is, being able to detect exactly the infinitely many characteristic frequen-
cies of the manifold) we can measure the above invariants with absolute
precision.

Our point of view here is different: if we have only a rough ear (by that
we mean: we can only detect the n fundamental tones of Ω) then we can
roughly determine the John ellipsoid of Ω, where rough now means: up to
(explicit) constants depending only on the degree and the dimension. In
that sense, we can roughly hear the John ellipsoid of Ω.

In fact, the main estimate can be restated as follows: if Dp(E) is, as usual,
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the p-th longest principal axis of the John ellipsoid of Ω, then
√

an,p

µ
[p]
1 (Ω)

≤ Dp(E) ≤
√

a′n,p

µ
[p]
1 (Ω)

, (2.4)

where the constants are given in the main theorem. (One could also say

that Dp(E) is equivalent to the p-th fundamental wavelength 1/

√
µ

[p]
1 ). By

again using John’s theorem, we can see that Ω lies between two suitable
ellipsoids depending only on the fundamental tones:

E−spec ⊆ Ω ⊆ nE+
spec, (2.5)

where, for p = 1, . . . , n: E−spec is the ellipsoid of principal axes:

Dp(E−spec) =
√ an,p

µ
[p]
1 (Ω)

and E+
spec is the ellipsoid of principal axes:

Dp(E+
spec) =

√
a′n,p

µ
[p]
1 (Ω)

.

2.6. Volume of cross-sections

Our results imply that we can roughly hear also the maximal volume of a
p-dimensional cross-section of Ω. Precisely, let:

vol[p](Ω) = sup{vol(Σ) : Σ = π ∩ Ω, π is a p-dimensional plane}.
Clearly vol[1] is the diameter of the domain, and vol[n] is its usual
n−dimensional volume. Now, for an ellipsoid E the above invariant is a
constant multiple of the product of the longest p principal axes:

vol[p](E) = 2−pvol(Bp)D1(E) · · ·Dn(E).

Since the invariant vol[p] is monotonic with respect to inclusion, we get, by
our main estimate and John’s theorem:

cn,p√
µ

[1]
1 · · ·µ[p]

1

≤ vol[p](Ω) ≤ c′n,p√
µ

[1]
1 · · ·µ[p]

1

, (2.6)

for explicit constants cn,p, c
′
n,p not depending an the domain, but only on

the degree and the dimension.

As the sequence of fundamental p-tones is non-decreasing, one also gets the
weaker inequality:

µ
[p]
1 (Ω) ≥

(
cn,p

vol[p](Ω)

)2/p

.
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2.7. Vector fields in 3-space

Let Ω be a convex domain in the three dimensional Euclidean space, and
E its John ellipsoid with principal axes D1(E) ≥ D2(E) ≥ D3(E). Recall
the variational characterization of the Hodge eigenvalues in terms of vector
fields, given in the previous section. As µ

[1]
1 = µ

[0]
1 one has from (1.7) and

the Payne-Weinberger inequality (2.1):

∫

Ω

‖curlW‖2 + |divW |2 ≥ π2

diam(Ω)2

∫

Ω

‖W‖2, (2.7)

for all vector fields W which are tangent to the boundary. (Note that we
could have equivalently used D1(E) in the lower bound).

On the other hand, if W is divergence-free and tangent to the boundary,
then, as µ

[1]′′

1 = µ
[2]
1 one has, by the main theorem applied for p = 2:

∫

Ω

‖curlW‖2 ≥ 4
27D2(E)2

∫

Ω

‖W‖2. (2.8)

which is better than (2.7) because D2 might be much smaller than the
diameter. In fact, when Ω collapses onto a segment (so that both D2 and
D3 tend to zero) the quotient

∫
Ω
‖curlW‖2/ ∫

Ω
‖W‖2 will become infinite,

no matter how big is D1, hence the diameter.

2.8. Polarization of eigenforms

The estimates needed to prove the main theorem also give some informa-
tion on the behavior of eigenforms under collapsing. We limit ourselves to
the three dimensional example above, and assume that the convex domain
Ω collapses onto a 2-plane; this happens when D3 → 0 and D1, D2 stay
bounded below by a fixed positive constant. By the theorem, µ

[3]
1 tends to

infinity and µ
[1]
1 , µ

[2]
1 stay bounded above. Let W be an eigen-vector field

associated to µ
[1]′′

1 = µ
[2]
1 . It can be shown that, if e3 is a unit vector in the

direction of D3 (which is the direction of collapsing), then:
∫
Ω
〈W, e3〉2∫
Ω
‖W‖2 tends to zero,

showing that W tend to polarize (in the L2-sense) along the plane orthog-
onal to the direction of collapsing. The polarization can be estimated by
explicit constants.



464

3. Estimates for submanifolds

It is of interest, in spectral geometry, to relate the eigenvalues of the Lapla-
cian to the extrinsic geometry of an isometric immersion. A classical result
in this regard was given by Reilly in 1977 (see [15]): if Mn is a compact
manifold without boundary and Mn −→ Rm+n is an isometric immersion,
then

µ
[0]
1 (M) ≤ n

vol(M)

∫

M

‖H‖2, (3.1)

where µ
[0]
1 (M) is the first positive eigenvalue of the Laplacian on functions

and H is the mean curvature vector of the immersion. The equality holds
for the canonical immersion Sn −→ Rn+1.

In our paper [17] we extended Reilly’s estimate to the Laplacian on forms
and we proved the following upper bound.

Theorem 3.1 Let Mn −→ Rm+n be an isometric immersion. For all
p = 1, . . . , n one has:

µ
[p]′

1 (M) ≤ 1
vol(M)

∫

M

[
pn‖H‖2 − p(p− 1)

n(n− 1)
scal

]
,

where scal is the scalar curvature of Mn. The equality holds for the cano-
nical immersion Sn −→ Rn+1.

Here µ
[p]′

1 (M) denotes the first positive eigenvalue of the Laplacian re-
stricted to the subspace of closed p-forms; then µ

[p]
1 (M) ≤ µ

[p]′

1 (M). The
Reilly estimate (3.1) is recovered by setting p = 1, because µ

[1]′

1 = µ
[0]
1 .

The next estimate is obtained by composing an isometric immersion
Mn −→ Sm+n with the canonical immersion Sm+n −→ Rm+n+1:

Corollary 3.1 Let Mn −→ Sm+n be an isometric immersion. Then:

µ
[p]′

1 (M) ≤ pn +
1

vol(M)

∫

M

[
pn‖H‖2 − p(p− 1)

n(n− 1)
scal

]
.

3.1. Minimal immersions into a sphere.

It is interesting to observe that, if Mn is minimally immersed into Sm+n,
then the corollary gives:

µ
[p]′

1 (M) ≤ pn− p(p− 1)
n(n− 1)

· 1
vol(M)

∫

M

scal.
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The question is whether it is possible to have an upper bound of type:

µ
[p]
1 (M) ≤ c(n, p)

for a constant depending only on p and n, that is: is µ
[p]
1 bounded above

uniformly in the class of spherical minimal immersions? Note that the
above corollary would give such a bound if the functional

1
vol(M)

∫

M

scal

is bounded below uniformly (in the class of spherical minimal immersions);
however this is not true, at least in dimension 2, due to examples given
by Lawson of minimal immersions in S3 having arbitrarily large genus and
volume bounded above.

Minimal immersions into a sphere are of greatest interest. A result of
Takahashi states that, if Mn is minimal into Sm+n, then any coordinate
function restricts to an eigenfunction on Mn associated to the eigenvalue n.
Therefore µ

[0]
1 (Mn) ≤ n, and the well-known Yau conjecture asserts that

in fact, if Mn is a minimal embedded hypersurface, then µ
[0]
1 (Mn) = n.

Choi and Wang [5] proved in that case the inequality:

µ
[0]
1 (Mn) ≥ n

2
.

It would be interesting to see whether a lower bound of type:

µ
[p]
1 (Mn) ≥ c′(n, p) > 0

is possible in a suitable class of spherical minimal embeddings.
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