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We consider holomorphically projective mappings of parabolically-Kählerian
spaces and define holomorphically projective flat parabolically-Kählerian spaces.
We found the tensor characteristic of these spaces and obtained their metric ten-
sors.

1. Introduction

Many authors studied holomorphically projective mappings of Kählerian
spaces and their generalizations [1, 17]. Some facts from the theory of holo-
morphically projective mappings of parabolically-Kählerian spaces K

o(m)
n

were published in [2, 9]−[15].

A (pseudo-) Riemannian space K
o(m)
n is said to be parabolically-Kählerian

space if together with a metric tensor gij(x) it possesses an affinor structure
Fh

i (x) of rank m ≥ 2 satisfying the following relations

a) Fh
αFα

i = 0, b) giαFα
j + gjαFα

i = 0, c) Fh
i,j = 0, (1)
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where the comma denotes the covariant derivation.

2. Holomorphically projective mappings of
parabolically-Kählerian spaces

The following criteria from the papers [10, 13] hold for holomorphically
projective mappings from a parabolically-Kählerian space K

o(m)
n onto a

parabolically-Kählerian space K̄
o(m)
n .

An analytically planar curve of the parabolically-Kählerian space K
o(m)
n

is a curve defined by the equations xh = xh(t) which tangent vector
λh = dxh/dt, being translated, remains in the area element formed by
the tangent vector λh and its conjugate λαFh

α , i.e., the conditions

dλh

dt
+ Γh

αβλαλβ = ρ1(t)λh + ρ2(t)λαFh
α ,

are fulfilled. Here Γh
ij is the Christoffel symbol and ρ1, ρ2 are functions of

the argument t.

The diffeomorphism f of K
o(m)
n onto K̄

o(m)
n is a holomorphically projec-

tive mapping, if it transform all analytically planar curves of K
o(m)
n into

analytically planar curves of K̄
o(m)
n .

Consider a concrete mapping f : K
o(m)
n −→ K̄

o(m)
n , both spaces being re-

ferred to the general coordinate system x with respect to this mapping.
This is a coordinate system where two corresponding points M ∈ K

o(m)
n

and f(M) ∈ K̄
o(m)
n have equal coordinates x = (x1, x2, . . . , xn); the cor-

responding geometric objects in K̄
o(m)
n will be marked with a bar. For

example, Γh
ij and Γ̄h

ij are components of the Christoffel symbols on K
o(m)
n

and K̄
o(m)
n , respectively.

Structures of K
o(m)
n and K̄

o(m)
n are preserved under f , i.e. F̄h

i (x) =
Fh

i (x). Among others, the structure Fh
i is covariantly constant, and

ḡiαFα
j + ḡjαFα

i = 0 holds.

It is proved in [10, 13] that a parabolically-Kählerian space K
o(m)
n admits a

holomorphically projective mapping f onto a parabolically-Kählerian space
K̄

o(m)
n if and only if the following conditions (in the common coordinate

system x) hold:

Γ̄h
ij(x) = Γh

ij(x) + ψiδ
h
j + ψjδ

h
i + ϕiF

h
j + ϕjF

h
i , (2)

where ϕi is a covector, ψi = ϕαFα
i , and ψi(x) is a gradient, i.e. there is a

function ψ(x), such that ψi(x) = ∂ψ(x)/∂xi.
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If ϕi 6≡ 0 then a holomorphically projective mapping is called nontrivial;
otherwise it is said to be trivial or affine.

Condition (2) is equivalent to

ḡij,k = 2ψkḡij + ψiḡjk + ψj ḡik + ϕiḡjαFα
k + ϕj ḡiαFα

k . (3)

Under a holomorphically projective mapping f : K
o(m)
n −→ K̄

o(m)
n , the

following conditions hold:

R̄h
ijk = Rh

ijk + ψijδ
h
k − ψikδh

j + ϕijF
h
k − ϕikFh

j − (ϕjk − ϕkj)Fh
i , (4)

where Rh
ijk and R̄h

ijk are Riemannian tensors of K
o(m)
n and K̄

o(m)
n ,

ϕij = ϕi,j − ψiϕj − ϕiψj , ψij = ϕαjF
α
i (= ψji = ψi,j − ψiψj). (5)

3. Holomorphically projective flat parabolically-Kählerian
space

A parabolically-Kählerian space K
o(m)
n is said to be holomorphically pro-

jective flat, if it admits a holomorphically projective mapping onto a flat
space, i.e. the space with the vanishing Riemannian tensor.

We have the following theorem.

Theorem 3.1 The parabolically-Kählerian space K
o(m)
n is holomorphically

projective flat if and only if the following conditions are true for the Rie-
mannian tensor

Rhijk = c (2FhiFjk + FhjFik − FhkFij) (6)

where c = const, Fij = giαFα
j .

Proof. Let a parabolically-Kählerian space K
o(m)
n admit a holomorphically

projective mapping onto a flat space V̄n (R̄h
ijk = 0), which should be a pa-

rabolically-Kählerian space K̄
o(m)
n same.

If R̄h
ijk = 0 then after omitting the index h (4) takes the form

Rhijk = −ψijgkh + ψikgjh − ϕijFhk + ϕikFhj + (ϕjk − ϕkj)Fhi. (7)

Let us symmetrize (7) at indices h and i. Then, using the properties of the
Riemannian tensor we get:

0 = −ψijgkh + ψikgjh − ϕijFhk + ϕikFhj − ψhjgki

+ ψhkgji − ϕhjFik + ϕhkFij .
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Analyzing of this formula, we obtain ψij = 0 and

ϕij = c Fij , (8)

where c is a certain function. Thus (8) takes the form (6).

On the basis (5), formula (8) takes the form

ϕi,j = ψiϕj + ϕiψj + c Fij . (9)

The condition of integrability takes the form: c,kFij − c,jFik = 0. From
foregoing one it is implied, that c,i = 0 and c = const.

So, we have shown that the Riemannian tensor at all holomorphically pro-
jective flat parabolically-Kählerian spaces K

o(m)
n satisfies (6).

It is easy to check that any parabolically-Kählerian space K
o(m)
n , in which

the Riemannian tensor satisfies (6), admits holomorphically projective map-
ping onto a flat space K̄

o(m)
n .

Make sure that the system of equations (3) and (9) is completely integrable
in this K

o(m)
n and has the solution ḡij(x), ϕi(x) for any initial conditions

ḡij(xo) =
o
ḡij and ϕi(xo) =

o
ϕ

i
(10)

for which det‖ o
ḡij‖ 6≡ 0,

o
ḡij =

o
ḡji and

o
ḡiαFα

j (xo)+
o
ḡjαFα

i (xo) = 0.

Consequently, the space K
o(m)
n admits a holomorphically projective map-

ping onto a space K̄
o(m)
n with the metric tensor ḡij(x) and the structure

Fh
i (x). Using (4) we can see, that R̄h

ijk = 0, hence K̄
o(m)
n is a flat space.

This completes the proof.

The direct analysis of (6) leads us to the following

Lemma 3.1 A holomorphically projective flat parabolically-Kählerian
space K

o(m)
n is a Ricci flat symmetric space, i.e. a Ricci tensor is van-

ishing and the Riemannian tensor is covariantly constant in this K
o(m)
n .

4. On isometries between holomorphically projective flat
parabolically-Kählerian spaces

We denote K
o(m,c)
n a holomorphically projective flat parabolically-Kähle-

rian space, which determined by (6), and prove the following theorem.

Theorem 4.1 Two holomorphically projective flat parabolically-Kählerian
spaces K

o(m,c)
n and K̄

o(m̄,c̄)
n are locally isometric if and only if m̄ = m, the

metric signatures are coincident, and the constants c and c̄ have the same
sign.
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Proof. Let us consider the given spaces K
o(m,c)
n and K̄

o(m̄,c̄)
n which are

related to the coordinate systems x and x̄ respectively. It is natural to
consider the case, when the constants c and c̄ are not equal to zero.

We will search an isometric mapping f : K
o(m,c)
n −→ K̄

o(m̄,c̄)
n . As it is

known, the mapping f : x̄h = x̄h(x1, x2, . . . , xn) is an isometric mapping if
and only if

gij(x) = ḡαβ(x̄(x))∂ix̄
α∂j x̄

β . (11)

Denote x̄h
i ≡ ∂ix̄

h. From (11) it follows that

∂ix̄
h = x̄h

i , ∂j x̄
h
i = Γ̄h

αβ x̄α
i x̄β

j − Γα
ij x̄

h
α, (12)

where Γh
ij and Γ̄h

ij are the Christoffel symbols of K
o(m,c)
n and K̄

o(m̄,c̄)
n .

The system (12) for the unknown functions x̄h(x), x̄h
i (x) has a solution

for initial conditions x̄h(xo) = x̄h
o and x̄h

i (xo) = yh
i , where the following

properties are satisfied

ḡαβ(x̄o)yα
i yβ

j = gij(xo), Fα
i (xo) yh

α =
√

c̄/c F̄h
α (x̄o) yα

i , (13)

where Fh
i and F̄h

i are the structures of K
o(m,c)
n and K̄

o(m,c)
n , respectively.

Initial conditions yh
i from (13) exist if only if m̄ = m, the signatures of the

metric g and ḡ are coincident, and the constants c and c̄ have the same
sign. Conditions (13) follow from (11) and from an integrability condition
of system (12): Rhijk = R̄αβγδx̄

α
h x̄β

i x̄γ
j x̄δ

k.

5. Holomorphically projective mappings of holomorphically
projective flat parabolically-Kählerian spaces

We can prove the next theorem in the similar way as Theorem 3.1.

Theorem 5.1 If the holomorphically projective flat parabolically-Kählerian
space K

o(m,c)
n admits a holomorphically projective mapping onto some para-

bolically-Kählerian space K̄
o(m)
n , then K̄

o(m)
n is a holomorphically projective

flat parabolically-Kählerian space K̄
o(m,c̄)
n too.

In addition the next theorem holds

Theorem 5.2 Any holomorphically projective flat parabolically-Kählerian
space K

o(m,c)
n admits a nontrivial holomorphically projective mapping onto

some holomorphically projective flat parabolically-Kählerian space K̄
o(m,c̄)
n

with a given constant c̄ and a given signature of the metric ḡij.
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Proof. The availability of this theorem follows from the existence of the
solutions ḡij(x) and ϕi(x) of equations (3) and

ϕi,j = ψiϕj + ϕiψj + c Fij − c̄ F̄ij ,

where F̄ij = ḡiαFα
j , for any initial conditions (10) for which det ‖ o

ḡij‖ 6= 0,
o
ḡij =

o
ḡji and

o
ḡiαFα

j (xo)+
o
ḡjαFα

i (xo) = 0, in the space K
o(m,c)
n .

Theorem 5.3 Between any holomorphically projective flat parabolically-
Kählerian spaces it is possible to establish a nontrivial holomorphically pro-
jective mapping.

Proof. Let us have two arbitrary holomorphically projective flat parabo-
lically-Kählerian spaces K

o(m,c)
n and K̄

o(m,c̄)
n . By Theorem 5.2, there exists

some space K̃
o(m,c)
n with a signature of a metric of K̄

o(m,c̄)
n , on which K

o(m,c)
n

admits nontrivial holomorphically projective mapping. By Theorem 4.1,
the spaces K̄

o(m,c̄)
n and K̃

o(m,c)
n are isometric, which prove the theorem.

6. Metric of holomorphically projective flat
parabolically-Kählerian spaces

In a symmetric space its a metric tensor may be rebuilt in some Riemannian
coordinate system (y1, y2, . . . yn) at a point xo by the known formulas [5]

gij =
o
g
ij

+
1
2

∞∑

k=1

(−1)k 22k+2

(2k + 2)!
mσ1

i mσ2
σ1
· · · mσk−1j , (14)

where mij =
o

R
iαjβ

yαyβ , mi
j = miα

o
gαi and

o
gij ,

o
gij and

o

Rhijk are the com-
ponents of the metric, its inverse and Riemannian tensors at the point xo.

Taking into account the representation of Riemannian tensor (6) and prop-
erties of structures Fh

i the formulas (14) take the form:

gij =
o
g
ij
− c FiFj , (15)

where Fi =
o

F
iα

yα,
o

F
ij

are the components of tensor Fij at xo.

Note, that for a given point xo of holomorphically projective flat parabo-
lically-Kählerian space K

o(m,c)
n the metric and structure tensors may be

simultaneously reduced to the form:

o
g
ij

=




0 0 bab

0
∗
e 0

bT
ab 0 0


 and

o

Fh
i =




0 0 0
0 0 0

Em 0 0


 ,
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where bT
ab is a transposed matrix bab, a, b = 1,m, Em is the identity matrix,

bab =




0 1
−1 0

0

0 1
−1 0

. . .

0
0 1
−1 0




and
∗
e =




e1 0
e2

. . .
0 en−2m


 , ea = ±1.

Thus, we proved the following theorem.

Theorem 6.1 In the holomorphically projective flat parabolically-Kähle-
rian space K

o(m,c)
n there exists a coordinate system y in which the metric

tensor has the form (15).

Not neglecting generality of reasons, on basic of theorem 4.1 we can consider
c = 0,±1 that is, spaces K

o(m,0)
n , K

o(m,+1)
n and K

o(m,−1)
n .
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