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In this paper, recent developments in the energy and the corrected energy of the
corresponding distributions on a compact oriented Riemannian manifold are given.

1. Introduction

In [8], Chacén, Naveira and Weston introduced the energy £(V) of a dis-
tribution. They studied the first and second variation of the energy and as
an application showed that the Hopf fibration S$% — S§47*3 — HP" is an
unstable critical point. The corresponding result in the case of the energy
of a vector field for the Hopf fibration S! — 8§27+ — CP™ is due to C.
M. Wood [19]. Wood showed that for n > 1, the critical point is unstable;
for n = 1 Brito [6] showed that this Hopf fibration is a minima.

Subsequently in [7], Chacén and Naveira introduced a corrected energy
D(V) for a g-dimensional distribution on a Riemannian manifold (M, g)
and proved that D(V) is > the integral of the sum of the mixed sectional
curvatures associated to a compatible basis. As a single application they
showed that the Hopf fibration S% — S§%"+t3 — HP" is a minimum of
D(V).

In [3], we showed that this application can be greatly generalized to the
natural fibrations on 3-Sasakian manifolds and on normal complex contact
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metric manifolds.In [18], we considered as a further application of the results
of [8], the Boothby-Wang fibration of the Iwasawa manifold S! x S —
H¢/T — C3/T. Making use of the complex contact structure on Hc/T'
we showed that this fibration is also unstable for the energy.

In [11], Gil-Medrano, Gonzélez-Dévila and Vanhecke studied conditions un-
der which the energy of a distribution, viewed as a map into the Grassmann
bundle, is a harmonic map or minimal immersion.

2. Geometry of Distributions

Let (M™,g) be a compact oriented Riemannian manifold with a ¢-
dimensional distribution or subbundle V and let H denote the orthogo-

nal complementary distribution of dimension p = n —¢. Let {e1,...,e,}
be a local orthonormal basis on M"™ such that {ei,...,e,} span H and
{ep+1,-..,€n} span V and adopt the index conventions: 1 < a,b < n,

1<4,j<p p+1<a B <n The second fundamental form of the
horizontal distribution H in the direction e, and that of the vertical distri-
bution V in the direction e; are given respectively by h; = —g(Ve,€a,€j),
his = —9(Ve,ei,ep). The mean curvature vectors of the horizontal and
vertical distributions are given respectively by

= Y (3 or)ea Av=3 (3 3 Ha)e
a=p+1 ¥ i=1 i=1 1 a=p+1

One can regard a distribution, such as V, as a section of the Grassmann
bundle, G(q, M™), of oriented g-planes in the tangent spaces of M™. The
geometry of this bundle was developed in [8]. We also view V as a map
&: M™ — G(q,M™) where £(x) is a unit g-vector with respect to the
induced metric on AY(M™), in particular £(z) = epy1(x) A+ - Aey(z). Note
that we have chosen a local orthonormal basis; in [19], the variation of unit
vector fields is through unit vector fields and the variations of distributions
in [8] are through unit g-vectors. The norm of the covariant derivative of £
is given in terms of the second fundamental forms of H and V by

S IVEP =D (07 + > (hhg). (1)

4,J,a i,a,B

The corrected energy of [7] is defined by

D) = [ (S5l + plo = 2wl + 11| ol
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We now define the energy of a distribution V as in [8] by

1 " n
EV) =3 /M ; ||V, ]2 dvol + S vol(M).
Denote by V*V¢ the rough Laplacian

VIVE=D (-Ve, Ve, £+ Vv, e,§)-

a=1

The main results of [7] and [8] are summarized as follows

Theorem 2.1 IfV is integrable, then
D(V) > / > ciadvol
M [N

where c¢;o, 1S the sectional curvature of the plane section spanned by e; € H
and e, € V.

Theorem 2.2 A distribution V is a critical point of the energy if and only
if V*VE is orthogonal to all tangent vectors of & in \*(M™), i.e.,

V*VE = ||V§||2§+Ztermsoftype7-[/\’H/\V/\-~-/\V.

If &4 is a variation of a critical point V' through oriented distributions with
tangent fields

V= st and W = st ,
0s (s,£)=(0,0) Ot 1(s,t)=(0,0)
then
625(5515)
T ASSY — * * 1.
98 O ‘(070) /M (9(VasVailstl (0,0, V*VE) + g(W, V*VV))dvo

3. 3-Sasakian manifolds

By a contact manifold we mean a differentiable manifold M?2"*! together
with a 1-form 7 such that n A (dn)™ # 0. It is well known that given 7 there
exists a unique vector field &, such that dn(&, X) = 0 and n(§) = 1; £ is
called the characteristic vector field or Reeb vector field of the contact form
7.

A Riemannian metric g is an associated metric for a contact form 7 if, first
of all, n(X) = g(X, &) and secondly, there exists a field of endomorphisms ¢
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such that ¢? = —I+7n®¢ and dn(X,Y) = g(X, ¢Y). We refer to (¢,&,1,9)
as a contact metric structure and to M?*t! with such a structure as a
contact metric manifold.

An almost contact structure, (¢,&,n), consists of a field of endomorphisms
#, a vector field £ and a 1-form 7 such that ¢? = —I+7®¢ and 7(€) = 1 and
an almost contact metric structure includes a Riemannian metric satisfying
the compatibility condition g(¢X, ¢Y) = g(X,Y) — n(X)n(Y).

The product M?2"*+1 x R carries a natural almost complex structure defined
by

d d
()= (o - sean )

U OX — f&n(X)
and the underlying almost contact structure is said to be normal if J is
integrable. The normality condition can be expressed as N = 0 where N is

defined by
N(X,Y) =[¢,¢](X,Y) + 2dn(X,Y)E,

[, ¢] being the Nijenhuis tensor of ¢.

A Sasakian manifold is a normal contact metric manifold. In terms of the
covariant derivative of ¢ with respect to the Levi-Civita connection, the
Sasakian condition is

(Vx9)Y = g(X,Y)§ —n(Y)X.
As is well known, from this it is easily seen that
Vx§=—¢X

and in turn that £ is a Killing vector field, i.e. the contact metric structure is
K-contact. Tt is also well known that on a K-contact manifold the sectional
curvature of all plane sections containing £ are equal to +1 (see e.g. [2], p.
92).

A manifold admitting three almost contact structures, (¢a,E&n,"a),
a = 1,2, 3, satisfying

(b'y = ¢a¢5 — B ® & = _¢ﬁ¢a + Mo ® §B~

f’y = ¢a§ﬁ = _(bﬁfcw Ty = Na © (bﬁ = —MNpo Do

is said to have an almost contact 3-structure. Kuo [17] showed that given
such a structure there exists a Riemannian metric g compatible with each
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of the three almost contact structures giving us an almost contact metric 3-
structure (da, Ea, Nay g)- If each of the three structures is Sasakian we have a
3-Sasakian structure. A remarkable result of Kashiwada [15] is that if each
of the three almost contact metric structures (¢u,&q,7a,9g) is a contact
metric structure, then the structure is a 3-Sasakian structure. There are
many 3-Sasakian manifolds aside from the sphere S***3 including several
homogeneous spaces; see e.g. [2] pp. 218-220 or the survey of Boyer and
Galicki [5].

Using Vx&, = —¢oX one readily obtains on a 3-Sasakian manifold that
o €] = 2&,. Thus the distribution V determined by the tri-vector
§ = &a NEg NE, is integrable with totally geodesic leaves. The horizontal
distribution H is defined by 1, =0, a = 1,2, 3.

One of the main results of [3] is as follows.

Theorem 3.1 The vertical distribution V on a compact 3-Sasakian mani-
fold is a minima of the corrected energy D(V).

4. Complex contact manifolds

A complex contact manifold is a complex manifold of odd complex dimen-
sion 2n+1 together with an open covering {{} by coordinate neighborhoods
such that
(1) On each U, there is a holomorphic 1-form 6 with 0 A (d8)™ # 0.
(2) OnUNU’ # B there is a non-vanishing holomorphic function f such
that 8" = f6.

The complex contact structure determines a non-integrable distribution H
by the equation § = 0. A complex contact structure is given by a global
1-form if and only if its first Chern class vanishes [4]. On the other hand let
M be a Hermitian manifold with almost complex structure J, Hermitian
metric ¢ and an open covering by coordinate neighborhoods {U}; M is
called a complex almost contact metric manifold if it satisfies the following
two conditions:
(1) In each U there exist 1-forms v and v = w o J, with dual vector
fields U and V = —JU and (1,1) tensor fields G and H = GJ such
that

H>=G*=-IT+uU+vV, GJ=—-JG, GU =0,

9(X,GY) = —g(GX,Y).
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(2) OnUNU" # 0, we have
v =au—bv, v =but+av, G =aG —-bH, H =bG+aH
where a and b are functions on U NU’ with a® + b = 1.

Since u and v are dual to the vector fields U and V, we easily see from
the second condition that on U NU’', U’ = aU — bV and V' = bU + aV.
Also since a2 +b> =1, U AV = UAV. Thus U and V determine a
global vertical distribution V by £ = U AV which is typically assumed to
be integrable.

A complex contact manifold admits a complex almost contact metric struc-
ture for which the local contact form 6 is u — iv to within a non-vanishing
complex-valued function multiple and the local tensor fields G and H are
related to du and dv by

du(X,Y) = g(X,GY)+(cAv)(X,Y), dv(X,Y) =g(X,HY)—(cAu)(X,Y)

where o(X) = g(VxU,V), V being the Levi-Civita connection of ¢g (Ishi-
hara and Konishi [14], Foreman [9]). We refer to a complex contact metric
manifold with a complex almost contact metric structure satisfying these
conditions as a complex contact metric manifold.

Ishihara and Konishi [12], [13] introduced a notion of normality for complex
contact structures. Their notion is the vanishing of the two tensor fields S
and T given by

S(X,Y) =[G,Gl(X,Y) 4+ 29(X,GY)U —29(X,HY)V + 2(v(Y)HX
—v(X)HY)+o(GY)HX — o(GX)HY
+ o(X)GHY —o(Y)GHX,
T(X,Y)=[H H|(X,)Y) - 29(X,GY)U +2g(X, HY )V + 2(u(Y)GX
—u(X)GY) +0(HX)GY —o(HY)GX
+ o(X)GHY —o(Y)GHX.
However this notion is too strong; among its implications is that the under-
lying Hermitian manifold (M, g) is Kéhler. Thus while indeed one of the
canonical examples of a complex contact manifold, the odd-dimensional
complex projective space, is normal in this sense, the complex Heisenberg
group, is not. In [16] B. Korkmaz generalized the notion of normality and

we adopt her definition here. A complex contact metric structure is said to
be normal if

S(X,Y)=T(X,Y) =0, for every X, Y € H
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S(U,X)=T(V,X) =0, for every X.

Even though the definition appears to depend on the special nature of
U and V, it respects the change in overlaps, U NU’, and is therefore a
global notion. With this notion of normality both odd-dimensional complex
projective space and the complex Heisenberg group with their standard
complex contact metric structures are normal.

One important consequence of normality for us is that the sectional curva-
ture of a plane section spanned by a vector in V and a vector in H is equal
to +1 (cf. Korkmaz [16]). Another consequence of normality is that

VxU =-GX +o(X)V, VxV =—-HX —o(X)U. (2)
Another important result of [3] is the following.

Theorem 4.1 If M is a compact normal complex contact metric manifold,
then the vertical distribution is a minima of the corrected energy, i.e.

D(V) = /M > ciadvol.

5. Complex Heisenberg group and the Iwasawa manifold

The complex Heisenberg group is the closed subgroup Hc¢ of GL(3,C) given
by

122 z3
He = 01 2, 2’1,2’2,23€C %(C3.
001

As we have seen, a complex contact manifold admits a complex contact
structure. Here Hc 22 C3 and 6 = 1(dz3 — z2d21) is global, so the structure
tensors may be taken globally. With J denoting the standard almost com-
plex structure on C3, we may give a complex almost contact structure to
H¢ as follows. Since 6 is holomorphic, set § = u — iv,v = uw o J; also set
48%3 = U +¢V. Then, with respect to the metric g below,

U(X):g(UvX)v U(X):g(‘/vX)



520

Since we will work in real coordinates, G and H are given by

001 0 00]
000 —100
~100 0 00
G= 010 0 00
001’2 Y2 00
_OOyg—xQOO_

[0 0 0 100]
00 1 000
0 -1 0 000
-10 0 000

0 0 —y2$200

_0 0 X9 yQOO_

Moreover relative to the coordinates (x1,y1, 2, ¥y2,x3,y3) the Hermitian
metric

_1+x§+y§ 0 007.’52 7y2_

0 142349300 yo —xo
1 0 0 10 0 O
9714 0 0 010 0
—T2 Y2 00 1 0

L —Y2 —T2 00 O 1 ]

In addition {ey, e+, €2, e+, €3, €3+ } is an orthonormal basis where

IV g2 )
Y T T T P

P P ) P
€2 8$2 , €2 ayz , €3 U 81'3 , €3 v 8y3 (3)

For the purpose of computation we give the Levi-Civita connection of g.
For the Lie algebra of the Lie group H¢ we have

le1, e2] = —2e3, [e1,e2+] = —2e3+, [e1,€2] = —2e3+, [e1+, €2:] = 2e3 (4)

and the other Lie brackets are zero.The non-zero covariant derivatives of
the basis elements are the following

Ve,e3 = veg* €3x = —€1, ve2* €3 = —Ve, €3, = €1+,
Ve, e3 = Ve, .3 = €2, Ve €3+ = =V, .3 = €+,
7V6162 = Vel* €ox = €3, Veleg* = Vcl*eg = —€3*.

In [16] (see also [2] p.203) B. Korkmaz computed the covariant derivatives
of G and H as

(Vx G)Y = g(X,Y)U—u(Y)X —g(X,JY)V —v(Y)JX +20(X)GHY (5)
(Vx H)Y = g(X,Y)V—v(Y)X+g(X, JY)U+u(Y)JX —2u(X)GHY. (6)
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In [1] and [2] the following are also listed for the complex Heisenberg group

g(VxU, V) =0, VxU = -GX, VxV = —HX (7)
Now let
1v2 s
I'= 01y | |vw=mp+ing,mp,ny €Z;;
001

I' is a subgroup of Hc = C3 and the 1— form dzs — zdz; is invariant
under the action on I'. Hence the quotient H¢/T' is a compact complex
contact manifold with a global complex contact form. H¢/T is known as the
Twasawa manifold and it fibres over a complex torus C2/I" with € = U AV
giving the vertical distribution V. Moreover the integral submanifolds of V
are tori S! x S*; this fibration is known as the Boothby-Wang fibration of
H¢/T [10]. The Iwasawa manifold has no Kéhlerian structure, but it does
have an indefinite Kéhlerian structure and it has symplectic forms.

The main results of [18] are summarized as follows.

Theorem 5.1 The vertical distribution V of the complex contact structure
on the Iwasawa manifold is a critical point of the energy.

Theorem 5.2 The Boothby-Wang fibration S* x S1 — H¢/T' — C?/T is
an unstable critic point of the energy.
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