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Nǐs, Vǐsegradska 33, 18000 Nǐs, Serbia
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This paper deals with the surfaces of rotation with a given constant Gaussian
curvature and their representation by our software package. We give a survey of the
theory of these surfaces. Their visualizations involve an extension of Malkowsky’s
software package [12] for the visualization of mathematics [4, 5, 9, 10, 11, 13].
We also developed a Windows application which works independently of any other
software package, and describe its user interface.

1. Introduction

We developed a software package [12, 10, 11, 13] in Borland PASCAL and
DELPHI for visualizations and animations, mainly in the field of classical
differential geometry.

The main stream to represent surfaces in modern computer graphics
is their approximation by the faces of polyhedra, mainly by triangulation
or rectangulation. This approach yields very fast results, allows certain
transformations such as translations, rotations or scalings in real time. It
also enables fast transmissions on the Internet.

One problem of this approach is that the approximating polyhedra are
not smooth. It leads to the appearance of undesirable edges which do not
exist in reality, and shows clearly when the surfaces are printed. This disad-
vantage can be overcome by increasing the number of the polyhedra or by
rendering, for instance by shading or applying an illumination model. These
techniques give very good results. The time needed, however, increases to
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a multiple due to the much larger number of computations involved, in
particular for pictures of large sizes. Consequently those techniques are
normally applied at the end of the work when printing quality or smooth
appearance is needed.

Another problem in the approximation of surfaces by polyhedra arises
in the representation of curves on surfaces; they appear as if they are not
really on the surface. We are mainly interested in this task, since it is
important in differential geometry to be able to visualise certain classes of
curves on surfaces, such as asymptotic or geodesic lines, lines of curvature,
level lines, or the lines of intersection of surfaces.

This is why we use line graphics, and represent surfaces by families of
lines on them. We do not apply any rendering. Invisible parts of curves can
either be dotted or not be drawn at all. Our drawing process is slower than
that for the approximation by polyhedra, because we use many points for
each line. But the result has printing quality. It is, however, much faster
than rendering, because we do not need to compute the values of every
pixel or dot of the body.

This approach is first introduced by Endl [2, 3] in the late eighties of the
last century for some elementary geometrical bodies such as Platonic bodies,
cones, cylinders or spheres. From the early nineties, Malkowsky used the
same approach for many topics in differential geometry [12]. Later several
extensions were made in different fields, for instance in functional analysis,
topology, physics, chemistry and the engineering sciences [4, 5, 9, 10, 11,
13].

This paper involves an extension of Malkowsky’s software to the visu-
alization of surfaces of rotation with a given constant Gaussian curvature.
The theory of these surfaces is outlined in Sections 2 and 3. It can be found
in many text books on differential geometry [1, 6, 7, 8]. We also developed
a Windows application which is independent of any other software. Its user
interface is described in Section 4. All the geometrical figures in this paper
have been created by our software package.

2. Background and Notations

First we recall a few basic notations and results. Let S be a surface in IR 3

given by a parametric representation

~x(ui) = (x1(u1, u2), x2(u1, u2), x3(u1, u2)) ((u1, u2) ∈ D)

where D ⊂ IR 2 is a domain and the component functions xk : D → IR (k =
1, 2, 3) are of class Cr(D), that is they have continuous partial derivatives
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of order r ≥ 2 on D. We use the standard notations

~xk =
∂~x

∂uk
and ~xkj =

∂2~x

∂uk∂uj
(k,j=1,2),

and assume that the vectors ~x1 and ~x2 are linearly independent on D. Then
the surface normal vectors of S

~N(ui) =
~x1(ui)× ~x2(ui)
‖~x1(ui)× ~x2(ui)‖

exist for all (u1, u2) ∈ D. The functions gjk, Ljk : D → IR with

gjk(ui) = ~xj(ui) • ~xk(ui) and Ljk(ui) = ~xjk(ui) ~N(ui) (j, k = 1, 2)

are called the first and second fundamental coefficients of S; we write g =
g11g22 − g2

12 and L = L11L22 − L2
12. Finally, the function K : D → IR with

K(ui) =
L(ui)
g(ui)

((u1, u2) ∈ D)

is called the Gaussian curvature of S.
Now let γ be a curve with a parametric representation ~x(s) =

(r(s), 0, h(s)) where s ∈ I ⊂ IR is the arc length along γ, and r(s) > 0
and |r′(s)| + |h′(s)| > 0 on I. Furthermore, let RS(γ) be the surface of
rotation generated by rotating γ around the x3–axis. Putting u1 = s and
denoting the angle of rotation by u2, we obtain the following parametric
representation for RS(γ) on D = I × (0, 2π)

~x(ui) = (r(u1) cos u2, r(u1) sin u2, h(u1)). (2.1)

The first and second fundamental coefficients of RS(γ) depend on the
parameter u1 only, and are given by

g11(u1) = (r′(u1))2 + (h′(u2))2 = 1 (since u1 is the arc length along γ),
g12(u1) = 0, g22(u1) = r2(u1),
L11(u1) = r′(u1)h′′(u1)− r′′(u1)h′(u1), L12(u1) = 0,

L22(u1) = r(u1)h′(u1).

Omitting the argument u1, we obtain the Gaussian curvature of RS(γ)

K =
(r′h′′ − r′′h′)h′

r
,

and since (r′)2 + (h′)2 = 1 implies r′r′′ + h′h′′ = 0, this yields

K =
r′h′′h′ − r′′(h′)2

r
= − ((r′)2 + (h′)2)r′′

r
= −r′′

r
,
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If we assume that K : I → IR is a given function and write u = u1, for
short, then the surface of rotation that has K as its Gaussian curvature is
given by

r′′(u) + K(u)r(u) = 0 and h(u) = ±
∫ √

1− (r′(u))2 du. (2.2)

We may choose the sign ”+” for h without loss of generality.
The surface of rotation on the left hand side of Figure 1 is given by

r(t) =
∫ t

0.1
f(t) dt, f(x) = cos

(
tα+1

α+1

)

h(t) =
∫ t

0.1
g(t) dt, g(x) = sin

(
tα+1

α+1

)

where α = −0.25, on the interval I = (0.1, 10)× (π/4, π).
The right hand side of Figure 1 illustrates three intersecting surfaces of
rotation obtained from klothoids rotated around the x–, y– and z–axes. A
klothoid is a planar curve with its curvature proportional to its arc length
s. Its parametric representation is

~x(s) =
(∫ s

0

cos
cx2

2
dx,

∫ s

0

sin
cx2

2
dx

)
. (2.3)

Here we choose c = π/2 and s ∈ I = (−5.5, 5.5).

Figure 1. Surfaces of rotation
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3. Spherical and Pseudo–spherical Surfaces

In this section, we discuss surfaces of rotation with a given constant Gaus-
sian curvature; they are called spherical or pseudo–spherical surfaces de-
pending on whether K > 0 or K < 0.

First, we assume K = 0. Then, it immediately follows from (2.2) that
r(u) = c1u + c2 with constants c1 and c2. If we choose c1 = 0, then
h′(u) = ±1 implies h(u) = ±u + d with some constant d, and we obtain a
circular cylinder. If we choose c1 6= 0, then (r′(u))2 + (h′(u))2 = 1 implies
|c1| ≤ 1. For |c1| = 1, we have h′ ≡ 0, hence h ≡ const, and we obtain a
plane. For 0 < |c1| < 1 and a suitable choice of the coordinate system, we
have r(u) = c1u and h(u) = d1u for some constant d1 with c2

1 +d2
1 = 1, and

we obtain a circular cone.

3.1. Spherical surfaces

Now we assume K > 0 and put K = 1/c2 for some constant c > 0.
Then the general solution of the differential equation in (2.2) is r(u) =
λ · cos (u/c + u0) with constants λ and u0, and, by a suitable choice of the
arc length, we may assume

r(u) = λ cos
(u

c

)
with λ > 0 and obtain h(u) =

∫ √
1− λ2

c2
sin2

(u

c

)
du.

Thus the spherical surfaces are given by parametric representations (2.1)
with

r(u) = λ cos
(

u
c

)
and h(u) =

∫ √
1− λ2

c2
sin2

(
u
c

)

where λ > 0, c =
1√
K

for all u with
∣∣sin (

u
c

)∣∣ ≤ c

λ
;

(3.1)

the integral for h is called elliptic integral. We obtain three different types
of spherical surfaces corresponding to the cases λ = c, λ > c or λ < c.

Case 1. λ = c
In this case the surface has a parametric representation

~x(ui) =
(
c cos

(
u1

c

)
cosu2, c cos

(
u1

c

)
sin u2, c sin

(
u1

c

))

for ((u1, u2) ∈ (−π/2, π/2)× (0, 2π)).

This is a sphere with radius c and centre in the origin.
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Case 2. λ > c

The corresponding surfaces are called hyperbolic spherical surfaces. Now
the integral for h in (3.1) only exists for values of u with

∣∣sin (
u
c

)∣∣ ≤ c

λ
, that is u ∈ Ik =

[−c arcsin
(

c
λ

)
+ kπ, c arcsin

(
c
λ

)
+ kπ

]

for k = 0,±1,±2, . . . (left in Figure 2).

Every interval Ik defines a region of the surface. The radii of the circles
of the u2–lines are minimal at the endpoints of the intervals Ik and equal
to r =

√
λ2 − c2, whereas the maximum radius R = λ is attained in the

middle of each region (left in Figure 4).
Case 3. λ < c

The corresponding surfaces are called elliptic spherical surfaces. Now the
integral for h in (3.1) exists for all u and the radii r of the circles of the
u2–lines attain all values r ≤ λ (right in Figure 2).

Figure 2 illustrates a hyperbolic and an elliptic spherical surface.

Figure 2. Spherical surfaces

left: hyperbolic, K = 1, c = 1 and λ =
3

2
; right: elliptic, K = 1, c = 1 and λ =

3

5
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3.2. Pseudo–spherical surfaces

Now we assume K < 0 and put K = −1/c2 for some constant c > 0. The
general solution of the differential equation in (2.2) is

r(u) = C1 cosh
(u

c

)
+ C2 sinh

(u

c

)
with constants C1 and C2. (3.2)

Case 1. C1 = −C2 = λ 6= 0
The corresponding surfaces are called parabolic pseudo–spherical surfaces.
Now we obtain r(u) = λe−( u

c ) from (3.2), and the surface has a parametric
representation (2.1) with

r(u1) = λ exp
(
−u1

c

)
and h(u1) =

∫ √
1− λ2

c2
exp

(− 2u1

c

)
du1

for u1 > c log (|λ|/c) (left in Figure 3).

Case 2. C2 = 0 and C1 = λ 6= 0
The corresponding surfaces are called hyperbolic pseudo–spherical surfaces.
They have a parametric representation (2.1) with

r(u1) = λ cosh
(

u1

c

)
and h(u1) =

∫ √
1− λ2

c2
sinh2

(
u1

c2

)
du1

for |u1| ≤ c · arsinh
(

c
|λ|

)
= c log

(
c
|λ| +

√
c2

λ2 + 1
)

(middle in Figure 3);

(3.3)
the integral for h in (3.3) is an elliptic integral. The radii r of the circles of
the u2–lines satisfy |λ| ≤ r ≤ √

λ2 + c2 (right in Figure 4).
Case 3. C1 = 0 and C2 = λ 6= 0

The corresponding surfaces are called elliptic pseudo–spherical surfaces.
They have a parametric representation (2.1) with

r(u1) = λ sinh
(

u1

c

)
and h(u1) =

∫ √
1− λ2

c2
cosh2

(
u1

c

)
du1

for all u1 with cosh
(

u1

c

)
≤ c

|λ| ;
(3.4)

(since cosh u1 ≥ 1 for all u1, we must have |λ| ≤ c) (right in Figure 3); the
integral for h in (3.4) is elliptic. The radii r of the circles of the u2–lines
satisfy 0 ≤ r ≤ √

c2 − λ2.
Figure 3 illustrates a parabolic, a hyperbolic and an elliptic pseudo–

spherical surface.
Figure 4 illustrates a hyperbolic spherical and hyperbolic pseudo–

spherical surface with the u2–lines of minimal and maximal radii.
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Figure 3. Pseudo–spherical surfaces for K = −1 and c = 1

left: parabolic, λ =
3

2
; middle: hyperbolic, λ =

3

4
; right: elliptic λ =

1

2

Figure 4. A hyperbolic spherical and hyperbolic pseudo–spherical surface with the u2–
lines of minimal and maximal radii

4. The User Interface

Our software package includes a Windows application for the visualization
of spherical and pseudo–spherical surfaces. The application allows a user
to simply change a number of the parameters for the surfaces, without
programming. The visualization is then done independently of any other
software package.

The Object window appears in the Windows application, after the initial
introductory window. Here the type of the surfaces and all their parameters
can be chosen. After pressing the button Draw, the Image window appears
and the drawing process automatically starts.

The Object window is organized in the page control manner due to the
large number of controls in it. The page control has a number of tab sheets
organized by the subjects and roles they play in the application.
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The tab sheets are
Parameters, for choosing the surface type, K and λ,
Intervals, for the intervals for u1 and u2,
Drawing, for the resolution, background color and

for the decision to the draw the u1, u2 or contour lines,
U1, for the number, color, thickness, visibility and the

parameters for the technique of drawing
which is not subject of this paper (such as
approximation of line or steps of interpolation),

U2, the same as for the u1 lines,
Contour, the same as for u1 lines,
World Interval, for the 3D–box which the whole object is placed in;

this can be done automatically or by the user,
Projection, for the center of projection and the projection plane

of the central projection,
Output, for the types of output files,
Description, for a short description of the parameters.

The tab sheet Parameters is for setting the type of the surface and
the parameters K and λ. First we choose between spherical and pseudo-
spherical surfaces. Inside the group, we choose whether we want to draw a
sphere/parabolic, hyperbolic or elliptic surface.

Once we have chosen the surface type, the program automatically takes
the default parameters. This is useul because it is not very easy to find the
suitable parameters for a good result. The program automatically computes
the interval for u1 by applying the rules given in Section 3, and displays it
in the tab sheets Parameters and Intervals. Changing the parameters later
leads to a re-computation of the interval.

Although the interval for u1 is made correctly, it may happen that it
cannot be used to the very ends, due to the numerical approximations of the
intermediate functions and computer limits. To overcome this problem, we
introduced some corrections of the endpoints of the interval. The theoretical
maximal and chosen interval boundaries are displayed.

The parameters can be saved in a file with the extension the MVG and
loaded from it later.

Figures 5 and 6 illustrate the tab sheets Parameters and Intervals of the
user interface of the Windows application.
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Figure 5. A tab sheet Parameters

Figure 6. Tab sheet Intervals

5. Conversions

Our figures can be exported to several formats such as BMP, PS, or PLT.
The images in these formats can be further converted to a number of other
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formats by means of any image converter software, for instance, to a GIF file
which can be included in an HTML file, an EPS file which can be included
in a TEX or LATEX file, or a PNG or PDF file which can be included in a
TEX or LATEX file which is directly converted into a PDF file by means of
PDFLATEX.

We use the software package Animagic GIF 32 to create an animation in
animated GIF format from a sequence of our figures stored in GIF format,
and include the animation as an animated GIF image in an HTML file.

6. Conclusions

The software package described in this paper can be a basis for the future
work for producing the figures which can be part of TEX or LATEX files.
They can be published on the Internet as GIF or animated GIF files, or to
illustrate certain properties of the surfaces of rotation with a given constant
Gaussian curvature.
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