
Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

Amendments Proposals to

PKCS#11

for support of

Secondary PIN handling and WTLS

This document extends

Title Document No
PKCS#11 v2.11: Cryptographic
Token Interface Standard

RSA Laboratories November 2001
http://www.rsasecurity.com/rsalabs/PKCS/pkcs-
11/index.html

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

TABLE OF CONTENTS:

1 INTRODUCTION... 4
1.1 TERMINOLOGY .. 4
1.2 REVISION HISTORY.. 4
1.3 REFERENCES.. 4
1.4 YET TO DO ... 4

2 MODIFIED GENERAL OVERVIEW... 5
2.1 SECONDARY AUTHENTICATION... 5

2.1.1 Using keys protected by secondary authentication... 5
2.1.2 Generating private keys protected by secondary authentication.. 5
2.1.3 Changing the secondary authentication PIN value .. 6

3 NEW GENERAL DATA TYPES.. 7
3.1 NEW OBJECT TYPES ... 7
3.2 NEW DATA TYPES FOR MECHANISMS... 7
3.3 NEW FUNCTION TYPES... 7

4 MODIFIED OBJECTS .. 9
4.1 MODIFIED PRIVATE KEY OBJECTS.. 9

5 NEW FUNCTIONS .. 11
5.1 NEW FUNCTION RETURN VALUES .. 11
5.2 NEW OBJECT MANAGEMENT FUNCTIONS... 11

5.2.1 C_AuthenticateObject .. 11
5.2.2 C_SetAuthPIN .. 12

5.3 MODIFIED SIGNING AND MACING FUNCTIONS ... 13
5.3.1 C_SignInit .. 13

6 NEW MECHANISMS.. 14
6.1 TLS MECHANISM PARAMETERS .. 14

6.1.1 CK_TLS_PRF_PARAMS ... 14
6.2 TLS MECHANISMS... 14

6.2.1 PRF (pseudo random function) ... 14
6.3 WTLS MECHANISM PARAMETERS .. 14

6.3.1 CK_WTLS_RANDOM_DATA.. 14
6.3.2 CK_WTLS_MASTER_KEY_DERIVE_PARAMS .. 15
6.3.3 CK_WTLS_PRF_PARAMS.. 15
6.3.4 CK_WTLS_KEY_MAT_OUT... 16
6.3.5 CK_WTLS_KEY_MAT_PARAMS.. 16

6.4 WTLS MECHANISMS ... 17
6.4.1 Pre master secret key generation for RSA key exchange suite ... 17
6.4.2 Master secret key derivation.. 17
6.4.3 Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography 18
6.4.4 PRF (pseudo random function) ... 19
6.4.5 Server Key and MAC derivation.. 19
6.4.6 Client key and MAC derivation ... 20

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

1 Introduction
This document contains proposals for amendments to the PKCS#11 Cryptographic Token
Interface Standard. The purpose of these amendments is to provide support through a
standardized PKCS#11 interface for better secondary PIN handling and to provide support for
WTLS. We also propose an amendment for TLS support. New data types and mechanisms are
described.

The current official (and draft) version describes a solution for the secondary PIN handling which
is complex. The solution that is described here is simple yet adequate to handle secondary (or
non-repudiation) PINs on PKCS#15 based tokens.

In addition we suggest a standardized way to support WTLS a TLS derived transport security
layer that is used in WAP environments.

1.1 Terminology
Definition/Abbreviation Explanation
IV Initialization vector
PKCS Public-Key Cryptography Standards
PRF Pseudo random function
RSA The RSA public key crypto system
SW Software
TLS Transport Layer Security
WIM Wireless Identification Module
WTLS Wireless Transport Layer Security

1.2 Revision History
Revisions Date Changes since the former revision
A 2002-09-26 Matthias Esswein First version.

1.3 References
No Title Document No
1 PKCS#11 v2.11: Cryptographic Token Interface

Standard
RSA Laboratories November 2001
http://www.rsasecurity.com/rsalabs/
PKCS/pkcs-11/index.html

2 Wireless Transport Layer Security
Version 06-Apr-2001

Wireless Application Protocol
WAP-261-WTLS-20010406-a
http://www.wapforum.org/

3 The TLS Protocol Version 1.0 RFC 2246
The Internet Engineering Task
Force, January 1999
http://www.ietf.org/

1.4 Yet to do
•

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

2 Modified general overview
This chapter contains additions to Chapter 6 of [1].

2.1 Secondary authentication
This chapter replaces Chapter 6.7 of [1].

Cryptoki allows an application to specify that a private key should be protected by a secondary
authentication mechanism. This mechanism is additional to the standard login mechanism for
sessions described in Chapter 6.6 of [1].

The intent of secondary authentication is to provide a means for a cryptographic token to produce
digital signatures for non-repudiation with reasonable certainty that only the authorized user
could have produced that signature. This capability is becoming increasingly important as digital
signature laws are introduced worldwide.

The secondary authentication is based on the following principles:

• The owner of the private key must be authenticated to the token before secondary
authentication can proceed (i.e. C_Login must have been called successfully).

• If a private key is protected by a secondary authentication PIN, then the token must
require that the PIN be presented before each use of the key for any purpose.

The secondary authentication mechanism adds a couple of subtle points to the way that an
application presents an object to a user and generates new private keys with the additional
protections. The following sections detail the minor additions to applications that are required to
take full advantage of secondary authentication.

2.1.1 Using keys protected by secondary authentication
Using a private key protected by secondary authentication uses a slightly modified process, and
call sequence, as using a private key that is only protected by the login PIN.

When a cryptographic operation, such as a digital signature, is started using a key protected by
secondary authentication, the required PIN value will be gathered by means of the function
C_AuthenticateObject described in Chapter 5.2.1. If the PIN is correct, then the operation is
allowed to complete. Otherwise, the function will return an appropriate error code.

The application can detect when Cryptoki and the token will gather a PIN for secondary
authentication by querying the key for the CKA_SECONDARY_AUTH attribute (see Chapter
4.1). If the attribute value is TRUE, then the application can present a prompt to the user. The
second possibility is that the operation using a private key protected by secondary authentication
will fail with the new return value CKR_SECONDARY_AUTHENTICATION_REQUIRED
if the PIN wasn’t verified for this usage. So this value can trigger the application to prompt for
the required PIN.

2.1.2 Generating private keys protected by secondary authentication
To generate a private key protected by secondary authentication, the application supplies the
CKA_SECONDARY_AUTH attribute with value TRUE and the CKA_AUTH_PIN and
CKA_AUTH_PIN_LEN attributes in the private key template. If the attributes do not exist in
the template or has the value FALSE, then the private key is generated with the normal login
protection. See Chapter 11.14 of [1] and Chapter 4.1 for more information about key generation
functions and private key templates respectively. Additionally the attribute
CKA_AUTH_PIN_FLAGS is supplied. The CKA_AUTH_PIN_FLAGS attribute will among
other things be used to indicate that the PIN of the private key was verified for the next operation
to be done (see Chapter 4.1).

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

2.1.3 Changing the secondary authentication PIN value
The application causes the device to change the secondary authentication PIN on a private key
using the C_SetAuthPIN function. For details see Chapter 5.2.2.

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

3 New general data types
This chapter contains additions to Chapter 9 of [1].

3.1 New object types
This chapter contains additions to Chapter 9.4 of [1].

The following table defines the flags for secondary authentication PINs:

Bit Flag Mask Meaning
CKF_AUTH_PIN_COUNT_LOW 0x00000001 TRUE if an incorrect

secondary authentication PIN
has been entered at least once
since the last successful
authentication.

CKF_AUTH_PIN_FINAL_TRY 0x00000002 TRUE if supplying another
incorrect secondary
authentication PIN will result
in the PIN becoming locked.

CKF_AUTH_PIN_LOCKED 0x00000004 TRUE if the secondary
authentication PIN has been
locked. The secondary PIN
protected private key can no
longer be used.

CKF_AUTH_PIN_TO_BE_CHANGED 0x00000008 TRUE if the secondary
authentication PIN value has
to be changed.

CKF_AUTH_PIN_AUTHENTICATED 0x00000010 TRUE if the verification of
the secondary authentication
PIN for an operation was
successful. Will be reset if the
operation is executed.

3.2 New data types for mechanisms
This chapter contains additions to Chapter 9.5 of [1].

The following specific mechanism types are defined1:
#define CKM_WTLS_PRE_MASTER_KEY_GEN 0x80000001
#define CKM_WTLS_MASTER_KEY_DERIVE 0x80000002
#define CKM_WTLS_MASTER_KEY_DERVIE_DH_ECC 0x80000003
#define CKM_WTLS_PRF 0x80000004
#define CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE 0x80000005
#define CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE 0x80000006
#define CKM_TLS_PRF 0X80000007

3.3 New function types
This chapter contains additions to Chapter 9.6 of [1].

1 The numbering is to be changed. Here we use the numbers used for proprietary mechanisms.

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

The following Ericsson Mobile Platforms specific return values are defined:
#define CKR_SECONDARY_AUTHENTICATION_REQUIRED 0x80000001

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

4 Modified Objects
This chapter contains additions to Chapter 10 of [1].

4.1 Modified private key objects
This chapter contains additions to Chapter 10.9 of [1].

The following table lists the modifications to table 34 of [1]:

Attribute* Data type Meaning
CKA_SECONDARY_AUTH CK_BBOOL TRUE if the key requires a

secondary authentication to
take place before its use is
allowed. (default FALSE)

CKA_AUTH_PIN_FLAGS2,4,6 CK_FLAGS Mask indicating the current
state of the secondary
authentication PIN. If
CKA_SECONDARY_AUTH
is FALSE, then this attribute is
zero.

CKA_AUTH_PIN1,3,5,7,8 UTF8 char
array

Secondary authentication PIN. If
CKA_SECONDARY_AUTH is
FALSE, then this attribute is zero.

CKA_AUTH_PIN_LEN1,3,5,7,8 CK_ULONG Length in bytes of the secondary
PIN. If
CKA_SECONDARY_AUTH is
FALSE, then this attribute is zero.

If the CKA_SECONDARY_AUTH attribute is TRUE, then the Cryptoki implementation will
associate the new private key object with a PIN that is stored in CKA_AUTH_PIN and
CKA_AUTH_PIN_LEN. The new PIN must be presented to the token each time the key is used
for a cryptographic operation. See Chapter 2.1 for the complete usage model. If
CKA_SECONDARY_AUTH is TRUE, then CKA_EXTRACTABLE must be FALSE and
CKA_PRIVATE must be TRUE. Attempts to copy private keys with
CKA_SECONDARY_AUTH set to TRUE in a manner that would violate the above conditions
must fail. An application can determine whether the setting the CKA_SECONDARY_AUTH
attribute to TRUE is supported by checking to see if the
CKF_SECONDARY_AUTHENTICATION flag is set in the CK_TOKEN_INFO flags.

The CKA_AUTH_PIN_FLAGS attribute indicates the current state of the secondary
authentication PIN. This value is only valid if the CKA_SECONDARY_AUTH attribute is
TRUE. The valid flags for this attribute are CKF_AUTH_PIN_COUNT_LOW,
CKF_AUTH_PIN_FINAL_TRY, CKF_AUTH_PIN_LOCKED,
CKF_AUTH_PIN_TO_BE_CHANGED and CKF_AUTH_PIN_AUTHENTICATED
defined in Chapter 3.1. CKF_AUTH_PIN_COUNT_LOW and
CKF_AUTH_PIN_FINAL_TRY may always be set to FALSE if the token does not support the
functionality or will not reveal the information because of its security policy. The
CKF_AUTH_PIN_TO_BE_CHANGED flag may always be FALSE if the token does not
support the functionality.

* The meaning of the footnotes in this column is described in table 24 of [1].

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

The CKA_AUTH_PIN and CKA_AUTH_PIN_LEN attributes contain the secondary
authentication PIN itself. They are only valid if the CKA_SECONDARY_AUTH attribute is
TRUE.

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

5 New functions
This chapter contains additions to Chapter 11 of [1].

5.1 New function return values
This chapter contains additions to Chapter 11.1 of [1].

• CKR_SECONDARY_AUTHENTICATION_REQUIRED: This value can only be
returned by the function C_SignInit. It means that the private key used for signing is
protected by secondary authentication. Thus the secondary authentication PIN has to be
verified before the signing operation can be executed.

5.2 New object management functions
This chapter contains additions to Chapter 11.7 of [1].

5.2.1 C_AuthenticateObject
CK_DEFINE_FUNCTION(CK_RV, C_AuthenticateObject)(

CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hPrivateKeyObject,
CK_UTF8CHAR_PTR pPin,
CK_ULONG ulPinLen

);
C_AuthenticateObject verifies the secondary authentication PIN of a private key object.
hSession is the session’s handle; hPrivateKeyObject is the private key object’s handle, pPin
points to the PIN that shall be verified against the secondary authentication PIN; ulPinLen is the
length of the PIN to be verified. This standard allows PIN values to contain any valid UTF8
character, but the token may impose subset restrictions.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set,
then that means that there is some way to be authenticated to the private key object without
having the application send a PIN through the Cryptoki library. One such possibility is that the
user enters a PIN on a PINpad on the token itself, or on the slot device. Or the user might not
even use a PIN - authentication could be achieved by some fingerprint-reading device, for
example. To log into a token with a protected authentication path, the pPin parameter to
C_AuthenticateObject should be NULL_PTR. When C_AuthenticateObject returns, whatever
authentication method supported by the token will have been performed; a return value of
CKR_OK means that the user was successfully authenticated, and a return value of
CKR_PIN_INCORRECT means that the user was denied access.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_PIN_EXPIRED, CKR_PIN_INCORRECT, CKR_PIN_INVALID, CKR_PIN_LOCKED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY_EXISTS.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPrivateKeyObject;
CK_UTF8CHAR PIN[] = {“MyPIN”};
CK_RV rv;

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

rv = C_AuthenticateObject(hSession, hPrivateKeyObject, PIN,
sizeof(PIN));

if (rv == CKR_OK)
{

.

.

.
}

}

5.2.2 C_SetAuthPIN
CK_DEFINE_FUNCTION(CK_RV, C_SetAuthPIN)(

CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hPrivateKeyObject,
CK_UTF8CHAR_PTR pOldPin,
CK_ULONG ulOldLen,
CK_UTF8CHAR_PTR pNewPin,
CK_ULONG ulNewLen

);
C_SetAuthPIN modifies the secondary authentication PIN of the specified private key object.
hSession is the session’s handle; hPrivateKeyObject is the private key object’s handle, pOldPin
points to the old PIN; ulOldLen is the length in bytes of the old PIN; pNewPin points to the new
PIN; ulNewLen is the length in bytes of the new PIN. This standard allows PIN values to contain
any valid UTF8 character, but the token may impose subset restrictions.

C_SetAuthPIN can only be called in the “R/W User Functions” state. An attempt to call it from
a session in any other state fails with error CKR_SESSION_READ_ONLY or
CKR_USER_NOT_LOGGED_IN depending on the sessions state.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set,
then that means that there is some way some way to be authenticated to the private key object
without having the application send a PIN through the Cryptoki library. One such possibility is
that the user enters a PIN on a PINpad on the token itself, or on the slot device. To modify the
specified secondary authentication PIN on a token with such a protected authentication path, the
pOldPin and pNewPin parameters to C_SetAuthPIN should be NULL_PTR. During the
execution of C_SetAuthPIN, the current user will enter the old PIN and the new PIN through the
protected authentication path. It is not specified how the PINpad should be used to enter two
PINs; this varies.

If the token has a protected authentication path other than a PINpad, then it is token-dependent
whether or not C_SetAuthPIN can be used to modify the specified secondary authentication
PIN.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_INVALID, CKR_PIN_LEN_RANGE,
CKR_PIN_LOCKED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_USER_NOT_LOGGED_IN,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example:

CK_SESSION_HANDLE hSession;

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

CK_OBJECT_HANDLE hPrivateKeyObject;
CK_UTF8CHAR oldPin[] = {“OldPIN”};
CK_UTF8CHAR newPin[] = {“NewPIN”};
CK_RV rv;

rv = C_SetPIN(hSession, hPrivateKeyObject, oldPin,
sizeof(oldPin), newPin, sizeof(newPin));

if (rv == CKR_OK) {
.
.
.

}

5.3 Modified signing and MACing functions
This chapter contains additions to Chapter 11.11 of [1].

5.3.1 C_SignInit
An additional return value: CKR_SECONDARY_AUTHENTICATION_REQUIRED

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

6 New mechanisms
This chapter contains additions to Chapter 12 of [1].

6.1 TLS mechanism parameters
Details can be found in [3].

6.1.1 CK_TLS_PRF_PARAMS
CK_TLS_PRF_PARAMS is a structure, which provides the parameters to the
CKM_TLS_PRF mechanism. It is defined as follows:
typedef struct
{

CK_BYTE_PTR pLabel;
CK_ULONG ulLabelLen;
CK_ULONG ulOutputLen;

} CK_TLS_PRF_PARAMS;

The fields of the structure have the following meanings:
pLabel pointer to the identifying label

ulLabelLen length in bytes of the identifying label

ulOutputLen length in bytes that the output to be created shall
have

CK_TLS_PRF_PARAMS_PTR is a pointer to a CK_TLS_PRF_PARAMS.

6.2 TLS mechanisms
Details can be found in [3].

6.2.1 PRF (pseudo random function)
PRF (pseudo random function) in TLS, denoted CKM_TLS_PRF, is a mechanism used to
produce a secure digest protected by a secret key. It is used to produce an output of arbitrary
length. The keys it uses are generic secret keys.

It has a parameter, a CK_TLS_PRF_PARAMS structure, which provides an identifying label
that is linked with the input seed.

6.3 WTLS mechanism parameters
Details can be found in [2].

6.3.1 CK_WTLS_RANDOM_DATA
CK_WTLS_RANDOM_DATA is a structure, which provides information about the random
data of a client and a server in a WTLS context. This structure is used by the
CKM_WTLS_MASTER_KEY_DERIVE mechanism. It is defined as follows:
typedef struct
{

CK_BYTE_PTR pClientRandom;
CK_ULONG ulClientRandomLen;

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

CK_BYTE_PTR pServerRandom;
CK_ULONG ulServerRandomLen;

} CK_WTLS_RANDOM_DATA;

The fields of the structure have the following meanings:
pClientRandom pointer to the clients random data

ulClientRandomLen length in bytes of the clients random data

pServerRandom pointer to the servers random data

ulServerRandomLen length in bytes of the servers random data

6.3.2 CK_WTLS_MASTER_KEY_DERIVE_PARAMS
CK_WTLS_MASTER_KEY_DERIVE_PARAMS is a structure, which provides the
parameters to the CKM_WTLS_MASTER_KEY_DERIVE mechanism. It is defined as
follows:
typedef struct
{

CK_MECHANISM_TYPE DigestMechansim;
CK_WTLS_RANDOM_DATA RandomInfo;
CK_BYTE_PTR pVersion;

} CK_WTLS_MASTER_KEY_DERIVE_PARAMS;

The fields of the structure have the following meanings:
DigestMechanism the mechanism type of the digest mechanism to

be used (possible types can be found in [2])

RandomInfo clients and servers random data information

pVersion pointer to a CK_BYTE which receives the
WTLS protocol version information

CK_WTLS_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a
CK_WTLS_MASTER_KEY_DERIVE_PARAMS.

6.3.3 CK_WTLS_PRF_PARAMS
CK_WTLS_PRF_PARAMS is a structure, which provides the parameters to the
CKM_WTLS_PRF mechanism. It is defined as follows:
typedef struct
{

CK_MECHANISM_TYPE DigestMechanism;
CK_BYTE_PTR pLabel;
CK_ULONG ulLabelLen;
CK_ULONG ulOutputLen;

} CK_WTLS_PRF_PARAMS;

The fields of the structure have the following meanings:
DigestMechanism the mechanism type of the digest mechanism to

be used (possible types can be found in [2])

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

pLabel pointer to the identifying label

ulLabelLen length in bytes of the identifying label

ulOutputLen length in bytes that the output to be created shall
have

CK_WTLS_PRF_PARAMS_PTR is a pointer to a CK_WTLS_PRF_PARAMS.

6.3.4 CK_WTLS_KEY_MAT_OUT
CK_WTLS_KEY_MAT_OUT is a structure that contains the resulting key handles and
initialization vectors after performing a C_DeriveKey function with the
CKM_WTLS_SEVER_KEY_AND_MAC_DERIVE or with the
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:
typedef struct
{

CK_OBJECT_HANDLE hMacSecret;
CK_OBJECT_HANDLE hKey;
CK_BYTE_PTR pIV;

} CK_WTLS_KEY_MAT_OUT;

The fields of the structure have the following meanings:
hMacSecret key handle for the resulting MAC secret key

hKey key handle for the resulting secret key

pIV Pointer to a location which receives the
initialisation vector (IV) created (if any)

CK_WTLS_KEY_MAT_OUT _PTR is a pointer to a CK_WTLS_KEY_MAT_OUT.

6.3.5 CK_WTLS_KEY_MAT_PARAMS
CK_WTLS_KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_WTLS_SEVER_KEY_AND_MAC_DERIVE and the
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:
typedef struct
{

CK_MECHANISM_TYPE DigestMechanism;
CK_ULONG ulMacSizeInBits;
CK_ULONG ulKeySizeInBits;
CK_ULONG ulIVSizeInBits;
CK_ULONG ulSequenceNumber;
CK_BBOOL bIsExport;
CK_WTLS_RANDOM_DATA RandomInfo;
CK_WTLS_KEY_MAT_OUT_PTR pReturnedKeyMaterial;

} CK_WTLS_KEY_MAT_PARAMS;

The fields of the structure have the following meanings:
DigestMechanism the mechanism type of the digest mechanism to

be used (possible types can be found in [2])

ulMacSizeInBits the length (in bits) of the MACing keys agreed

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

upon during the protocol handshake phase

ulKeySizeInBits the length (in bits) of the secret keys agreed upon
during the handshake phase

ulIVSizeInBits the length (in bits) of the IV agreed upon during
the handshake phase. If no IV is required, the
length should be set to 0.

ulSequenceNumber The current sequence number used for records
sent by the client and server respectively

bIsExport a boolean value which indicates whether the keys
have to be derived for an export version of the
protocol. If this value is true (i.e. the keys are
exportable) then ulKeySizeInBits is the length of
the key in bits before expansion. The length of
the key after expansion is determined by the
information found in the template sent along with
this mechanism during a C_DeriveKey function
call (either the CKA_KEY_TYPE or the
CKA_VALUE_LEN attribute).

RandomInfo client’s and server’s random data information

pReturnedKeyMaterial points to a CK_WTLS_KEY_MAT_OUT
structure which receives the handles for the keys
generated and the IVs

CK_WTLS_KEY_MAT_PARAMS_PTR is a pointer to a
CK_WTLS_KEY_MAT_PARAMS.

6.4 WTLS mechanisms
Details can be found in [2].

6.4.1 Pre master secret key generation for RSA key exchange suite
Pre master secret key generation for the RSA key exchange suite in WTLS denoted
CKM_WTLS_PRE_MASTER_KEY_GEN, is a mechanism, which generates a variable length
secret key. It is used to produce the pre master secret key for RSA key exchange suite used in
WTLS. This mechanism returns a handle to the pre master secret key.

It has one parameter, a CK_BYTE, which provides the client’s WTLS version.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the
template). Other attributes may be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the
object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute indicates the length of the pre master secret key.

For this mechanism, the ulMinKeySize field of the CK_MECHANISM_INFO structure
indicate 20 bytes.

6.4.2 Master secret key derivation

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

Master secret derivation in WTLS, denoted CKM_WTLS_MASTER_KEY_DERIVE, is a
mechanism used to derive a 20 byte generic secret key from variable length secret key. It is used
to produce the master secret key used in WTLS from the pre master secret key. This mechanism
returns the value of the client version, which is built into the pre master secret key as well as a
handle to the derived master secret key.

It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which
allows for the mechanism type of the digest mechanism to be used as well as the passing of
random data to the token as well as the returning of the protocol version number which is part of
the pre master secret key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the
template). Other attributes may be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the
object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute has value 20. However, since these facts are all implicit in the
mechanism, there is no need to specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key
can both be specified to be either TRUE or FALSE. If omitted, these attributes each take on some
default value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE,
then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set
to TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 20 bytes.

Note that the CK_BYTE pointed to by the CK_WTLS_MASTER_KEY_DERIVE_PARAMS
structure’s pVersion field will be modified by the C_DeriveKey call. In particular, when the call
returns, this byte will hold the WTLS version associated with the supplied pre master secret key.

Note that this mechanism is only useable for key exchange suites that use a 20-byte pre master
secret key with an embedded version number. This includes the RSA key exchange suites, but
excludes the Diffie-Hellman and Elliptic Curve Cryptography key exchange suites.

6.4.3 Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography
Master secret derivation for Diffie-Hellman and Elliptic Curve Cryptography in WTLS, denoted
CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC, is a mechanism used to derive a 20 byte
generic secret key from variable length secret key. It is used to produce the master secret key
used in WTLS from the pre master secret key. This mechanism returns a handle to the derived
master secret key.

It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which
allows for the passing of the mechanism type of the digest mechanism to be used as well as
random data to the token. The pVersion field of the structure must be set to NULL_PTR since the
version number is not embedded in the pre master secret key as it is for RSA-like key exchange
suites.

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the
template). Other attributes may be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the
object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute has value 20. However, since these facts are all implicit in the
mechanism, there is no need to specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key
can both be specified to be either TRUE or FALSE. If omitted, these attributes each take on some
default value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE,
then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set
to TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 20 bytes.

Note that this mechanism is only useable for key exchange suites that do not use a fixed length
20-byte pre master secret key with an embedded version number. This includes the Diffie-
Hellman and Elliptic Curve Cryptography key exchange suites, but excludes the RSA key
exchange suites.

6.4.4 PRF (pseudo random function)
PRF (pseudo random function) in WTLS, denoted CKM_WTLS_PRF, is a mechanism used to
produce a secure digest protected by a secret key. It is used to produce an output of arbitrary
length. The keys it uses are generic secret keys.

It has a parameter, a CK_WTLS_PRF_PARAMS structure, which provides the mechanism type
of the digest mechanism to be used and an identifying label that is linked with the input seed.

6.4.5 Server Key and MAC derivation
Server key, MAC and IV derivation in WTLS, denoted
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE, is a mechanism used to derive the
appropriate cryptographic keying material used by a cipher suite from the master secret key and
random data. This mechanism returns the key handles for the keys generated in the process, as
well as the IV created.

It has a parameter, a CK_WTLS_KEY_MAT_PARAMS structure, which allows for the
passing of the mechanism type of the digest mechanism to be used as well as random data as well
as the characteristic of the cryptographic material for the given cipher suite and a pointer to a
structure which receives the handles and IV which were generated. This structure is defined in
Section 6.3.4

This mechanism contributes to the creation of two distinct keys on the token and returns one IV
(if an IV is requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

Filename: E:\ecsbess\SecurityModule\Doc\amendments_to_PKCS#11_b.doc Create Date: 02-09-25 16:36 Print Date: 02-10-01 20:01

The MACing key (server write MAC secret) is always given a type of
CKK_GENERIC_SECRET. It is flagged as valid for signing, verification and derivation
operations.

The other key (server write key) is typed according to information found in the template sent
along with this mechanism during a C_DeriveKey function call. By default, it is flagged as valid
for encryption, decryption, and derivation operations.

An IV (server write IV) will be generated and returned if the ulIVSizeInBits field of the
CK_WTLS_KEY_MAT_PARAMS field has a nonzero value. If it is generated, its length in
bits will agree with the value in the ulIVSizeInBits field

Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key.
The template provided to C_DeriveKey may not specify values for any of these attributes that
differ from those held by the base key.

Note that the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure’s pReturnedKeyMaterial field will be modified
by the C_DeriveKey call. In particular, the two key handle fields in the
CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly-created
keys; in addition, the buffer pointed to by the CK_WTLS_KEY_MAT_OUT structure’s pIV
field will have the IV returned in them (if an IV is requested by the caller). Therefore, this field
must point to a buffer with sufficient space to hold any IV that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned
information. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a
result of a successful completion. However, since the
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE mechanism returns all of its key
handles in the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be created on
the token.

6.4.6 Client key and MAC derivation
Client key, MAC and IV derivation in WTLS, denoted
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE, is a mechanism used to derive the
appropriate cryptographic keying material used by a cipher suite from the master secret key and
random data. This mechanism returns the key handles for the keys generated in the process, as
well as the IV created.

For this mechanism all applies as described in the Chapter 6.4.5 except for that the names server
write MAC secret, server write key and server write IV have to be replaced by client write MAC
secret, client write key and client write IV.

REMARK: When comparing the existing TLS mechanisms in Cryptoki with these extensions to
support WTLS one could argue that there would be no need to have distinct handling of the client
and server side of the handshake. However since in WTLS the server and client have different
sequence numbers for the server and the client. There could be instances where WTLS is used to
protect asynchronous protocols and where sequence numbers on the client and server side
therefore would not be necessarily aligned, and hence this motivates the introduced split..

