RSA Laboratories

PKCS#15 v1.0: Cryptographic Token Information For mat
Sandard

RSA Laboratories
April 23,1999

Table of Contents

1 N I 1 L0 L O I @]\ S 3
2 REFERENCESAND RELATED DOCUMENTS......coi ettt sttt 5
3 DEFINITIONS ..ttt s e st e e s re e sab e e st e e sabeesaseesateesaseesateesaseesatessnseesnseesnteesnneens 7
4 SYMBOLSAND ABBREVIATIONS ...ttt et ettt et s sneas 11
5 GENERAL OVERVIEW ...ttt ettt stae st saae e sate e saae e s nteesnae e snteesnneesnteennneennes 11
L0 A © = N =4 i Y, [o = 12........
I R © o 1= o A O =TSP URSSPSP 12
oISt I N o0 1= Y == OSSP 12
B.1.3 ACCESSIMELNOUSccuiiiiie ettt ettt e e e e st e e s ae e e s aa e e st e e saeeesaeeesateesaseesabeesseessnns 12
6 [C CARD FILE FORMAT oottt ettt sttt ettt a et et e e beeatesaaesaeesaeesteeneennesnnennas 13
B.1 OVERVIEW ..otiiiitie ittt e et et e e et e ettt e et e et e e et e e e et e e et e e et e e st e saneeataeaeannesennnssss s s 13.
6.2 |C CARD REQUIREMENTS. ...uuiitieitt ittt e ittt e ettt e ettt ee e et ee e et e e et e e st e eeaa e e aanaestaaestnassanaastaaeetnaessnneeennn 13
6.3 CARD FILE STRUCTURE ... ittt ittt ieit e et e et e et e e et e e et e e e et eeeat e e st e e e st e e eaa e s st aesta e eetnastaneestnaesnnaeeen 14
6.4 MFDIRECTORY CONTENTS......ctttttutuuuutiieseaeeetereesrsntntannataaaaeaeseesssststaasaaaaeaeseessssssnrnnnnaasaaeasseeeeennns 14
Lt {5 1 14
6.5 PKCS #15 APLICATION DIRECTORY CONTENTS. ...uuttttttiueerettiieeseesinseesestnnseesessnnsaesessnneeeeesnnnaaaees 15
LT R = (@ O 15
6.5.2 Private Key Directory Files (PrKDFS)cccoiciiieiriieee s 16
6.5.3 Public Key Directory FileS (PUKDFS) ...ttt 17
6.5.4 Secret Key Directory FileS (SKDFS) ..ottt 18
6.55 Certificate Directory FileS (CDFS)cccoiiiriiiiieinerieeeie ettt 18
6.5.6 Data Object Directory FileS (DODFS)ccoirririeiiirieieiesiei st 19
6.5.7 Authentication Object Directory FileS (AODFS)cccouriiririeinereeeeseeese e 19
6.5.8 EF(TOKENINO) ...ttt ettt 20
6.5.9 EF(UNUSEASDACE)veeieertireeieiteseeieste sttt sttt sttt s be bbb et b e s besb e eb b e ebesbeneen e 20
6.5.10 Other elementary filesin the PKCSH#15 dir€ClOrY.........ccorireiirenieienieniee e 21
8.6 FLE IDENTIFIERS. .. ettt iitteeiit ettt et e e ettt e et e e et e e e et ee et e e et e e eaan s esa e st e eeaa s saaeessaseessnessnneeesnsassnnaenran 21
6.7 PKCS #15 APLICATION SELECTION. ..uuuuittetttueeaetsstiseestastsnaeseestnnasesestnneeseesstaeesariaeeeeraaae 21
6.7.1 AID for the PKCS#H15 appliCationccoeerueerenineseee ettt 22

Copyright © 1991-1999 RSA Laboratories, a division of RSA Data Security, Inc., a Security Dynamics
Company. License to copy this document is granted provided that it is identified as “RSA Data Security,
Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or referencing this document.

003-903076- 100- 000- 000

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 2

5.8 OBIECT MANAGEMENT «.tttttttitaa e e e e e ae et eeeeetateaa e e e e e e e e e aeeeeee et bebaaa o s e e e e e aeeaeeeessbbaban e e eeeeaaaeeeeeesssnnnanns
6.8.1 Adding (Creating) NEW ObJECEScceruiiruirieiete ettt b e e be s ene s 22
6.8.2 REMOVING OJECTS ...ttt et b ettt sbenne e 23
6.8.3 MOIfYING ODJECES......c.cevireiuiitiiteeete ettt et b et b e et b e e ebesne e 24

7 INFORMATION SYNTAX IN ASN.L. ittt s 24

7.1 BASIC ASN.LIDEFINED TYPES ...uiieteeeteteeemnnnnnnu i aaaeeeaeeseeesesnnssn e s s e e eeaeeeeeasnsnsnn s aeaeeeeeeeeennnnnnnnnnn s
711 PKCSISIAENITIEN ..ottt et s b e bbb ae e e b 25
712 PKCSLIOREIBIENCE. ... ccuiiietite ittt ettt sttt se et se e bt e be e e et e e b e e b e naeesbe e 25
713 PKCSIELADELottt b bbbttt e et e nenre e 25
7.14 PKCSI15ReferencedValue and PKCSLSPAth ... 25
7.15 PKCSISODJECIVAIUR.......coiiieitiiterie ettt sttt se e b nne e 26
7.16 PKCSLISPAINOIODJECLS......ccoteieirtiriestieieeeeie sttt sttt se bbbt bt e e e b e b sbesae e 26
7.1.7 PKCSL5COMMONODECIALLITDULES.......ccvieieeece ettt 27
7.1.8 PKCSL5COMMONKEYALLITDULES........ccveiieeiiiesieiiesieeseestee st ete e sae e e e eesteeeesae e e sneeneeenes 27
7.1.9 PKCSL5ComMMONPrivateKeyALI TDULES.c.ciieieeiie ettt 29
7.1.10 PKCSL5ComMmMOoNPUbliCKEeYALIIDULES........ccveiee e 31
7.1.11 PKCSLI5ComMmMONSeCcr etKEYALITDULES.........ecieiieiee ettt 31
7112 PKCSISKEYINTOvieiieiieieieie ettt sttt bbb bt b e e e ne e e e e b e b e 31
7.1.13 PKCS15CommOoNnCertifiCateALLI TDULES.ccorviririetereeeeee e 32
7.1.14 PKCS15CommonDataObjectAttributes and PKCSL5Applicationldentifierccccouvnie.. 32
7.1.15 PKCSL5CommonAuthenticationObjeCtAttribDULES.........coocveecieeeeeee e 33
A T R o (O ST 15T o] = o TP URPR 33

7.2 THE PKCS IO MBIECTS TYPE . itteeuuruuuuuaiaeeeeteteeennsnnnnseasaaaaaeeeteteeesnsnnran s saeeeeetereenrnnnnnn e aaaaeeaaeeeees

7.3 THE PKCSISRIVATEKEY STYPE ..ciiiieitiuttiuiaaieseeeeeteeeeesnnnssiaa s s e s e e e aeseeeesnsnrnsaa s e e e eeeseeeenennnnnnn s 35
7.3 1 Private RSA KEY ODJECEScvieiiieiice ettt te s s e e ae s e e naesnaennaenreens 36
7.3.2 Private Elliptic Curve K&y ODJECLS.........ooiie et 36
7.3.3 Private Diffie-Hellman Key ODJECES........ocviiieceee e 37
7.3.4 Private Digital Sgnature AlgorithmKkey ObJECES........ceieeieeiecie e 38
7.35 Private KEA KEY ODJECES.......coiieiieie ettt e et e e enaesnaenreens 38

7.4 THE PKCSIORBLICKEY STYPE ...ttt iieieiiiieeeittttias s e s e e e e et e e eeets s e s e e e e et e e e eenrnrn s s s e e e e eeeeeeennrnnnnnan 39
741 PUDIICRSA KEY ODJECES.......cctieiieiece ettt ae s e e naeenaennaenraeas 39
7.4.2 Public EIliptic CUrve KeY ObJECES......iciiieiece ettt s sreenae e e 40
7.4.3 Public Diffie-Hellman Key ODJECLSoccviiiece e 41
7.4.4 Public Digital Signature Algorithm ODJECLS........ccceeiirii i 41
745 PUbliC KEAKEY ODJECES......ciieiieiiecie ettt te st s e e e ae e beenteensesnaenraeas 42

7.5 THE PKCS LS ECRETKEY STY PE. ...ttt iiiiiiitieeitriti s ss e e e e e e et eeeeetesr e r e e e e et e e e eeesnrn s s s e e e e eeeeeeeenrnnnnnas 42
751 GENEriC SECTEl KEY ODJECES......iiei ettt ee et eesaesreesreenrenraens 44
FA N A = Te [0 1= o [=Y o] o] o £SO 44
7.5.3 The PKCSL5OthEr KEY tYPE......eeciieiieieeecieseeseesteesteete e e st snaesnae e e sneesneenneennenns 44

7.6 THE PKCSIS5GERTIFICATES TYPE ..cittieetrttutnuiaaeseeeeetteeeennnnsseaassaaeeeaeseeeesnsnnnsa e s s eaeeeseseensnnnnnnnan s 44
7.6.1 X.509 certifiCate ODJECLS.......uiiee e 45
7.6.2 X.509 attribute certificate ODJECES.........ccceeieereeece e 46
7.6.3 SPKI (Smple Public Key Infrastructure) certificate ODjeCtScoevveceeneeiv e 46
7.6.4 PGP (Pretty Good Privacy) certificate ODJECES.........ccoovvveieesece e 47
7.6.5 WITLSCErtifiCate ODJECLScviiieceieiec e et este e sraen seeas 47
7.6.6 ANS X9.68 lightweight certificate ObJECESccuvceieiiciec e 47

7.7 THEPKCSL5DATAOBIECTS TYPE ...ciiiiieieeerntnsiasaseeeeeteeeeesnssssa s saaaeeeeeeeeenssnsnn i a s e s e e e eeseeeeennnrnnnnnas 48
7.7.1 Opaque data ODJECLScccui ettt re e e nraea 48
7.7.2 EXternal data ODJECLS......c.cccvieiiee e e 49
7.7.3 Dataobjectsidentified by OBJECT IDENTIFIERS..........cccoooiiiiinineeeeeee e 49

7.8 THEPKCSI15AITHENTICATIONOBUIECT TYPE ..utuiuuiisiieeeeeieteeennnnnsass s e e e eeeeeeeeennsnnnnsseseeeeeeeeeeennnnnnas 49
= T R = 1 W o] = ox P URRUPSP 50

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 3

7.9 THEPKCS #15 NFORMATION FILE, EF(TOKENINFO)uttiiiiieiiiitiiiiee e sttt e e 52
8 F N VIR Y 15 1 1 54
9 INTELLECTUAL PROPERTY CONSIDERATIONS......c oottt s 65
APPENDIX A: FILE ACCESS CONDITIONS (INFORMATIVE)...ccciiiiiieiieeseeeeieesese e sieseseenens 66
R s @ = P 66
YN = 7Y 02 e 210 U] o T PP 66......
A.3 READ-ONLY AND READ-WRITE CARDScciiiiiiiiiiiiiiiie ittt s e 66
APPENDIX B: AN ELECTRONIC IDENTIFICATION PROFILE OF PKCS#15 (NORMATIVE)
69
TR T o (ORI = 1w = =0 69
ST O 1 o = = T USRS 10...
B.3 CONSTRAINTS ON ASN L L TY PES. .t ituiiitiiteitiiit ettt et et ettt e et e et e et e et e et e et eetassteetestasstieraassnsesnaees 71
B.4 HLERELATIONSHIPSIN THE IC CARD CASE ..uuuituiiitiitiiitiiitteet et eeteetesasete st seae et eeaseaeeteraeeternns 71
B.5 ACCESS CONTROL RULES.cuiiitiitiiit ettt ie e ettt s e e s e et eeae e s e s e e s e st s eaa e et e saaeeaeetassansetnsetneesnestneren 72
APPENDIX C: EXAMPLES (INFORMATIVE) ..ottt ne 74
C.1 EXAMPLE OF EF(DIRY)etitiiiiiitiitie ettt ettt ettt e skttt e e sttt e e s e e e e e e s annnneeeee s 74
C.2 BEXAMPLE OF A WHOLE PKCSIE5APPLICATION ..eutiittittittiiitietnitstiesneetaesaneesnsssnsesnsstnessnsesesssesnesseees 74
C.2.1 EF(TOKENINTO) ...ttt ettt ettt sttt b bbb bt e b b e e b nneneas 75
O3 (@] TSRO 75
(O3 B (o o TSR 75
O3 (@ o TS 77
(O3 I (X0 1 TSRO 78
(O3 G (1@] ST 79
PN SO 1O N o O3 T 80

1 Introduction

Many cryptographic tokens such as Integrated Circuit Cards (IC cards or ‘smart cards’)
are intrinsically secure computing platforms ideally suited to providing enhanced security
and privacy functionality to applications. They can handle authentication information
such as digital certificates and capabilities, authorizations and cryptographic keys.
Furthermore, they are capable of providing secure storage and computational facilities for
sensitive information such as:

* Private keys and key fragments.
» Account numbers and stored value.
» Passwords and shared secrets.
* Authorizations and permissions.

At the same time, many of these tokens provides an isolated processing facility capable of
using this information without exposing it within the host environment where it is at

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 4

potential risk from hostile code (viruses, Trojan horses, and so on). This becomes
critically important for certain operations such as:

» Generation of digital signatures, using private keys, for personal identification.
» Network authentication based on shared secrets.

» Maintenance of electronic representations of value.

» Portable permissions for use in off-line situations.

Unfortunately, the use of these tokens for authentication and authorization purposes is
hampered by the lack of interoperability at several levels. First, the industry lacks
standards for storing a common format of digital credentials (keys, certificates, etc.) on
them. This has made it difficult to create applications that can work with credentials from
a variety of technology providers. Attempts to solve this problem in the application
domain invariably increase costs for both development and maintenance. They aso create
a significant problem for the end-user since credentials are tied to a particular application
running against a particular application-programming interface to a particular hardware
configuration.

Second, mechanisms to allow multiple applications to effectively share digital credentials
have not yet reached maturity. While this problem is not unique to cryptographic tokens -
it is aready apparent in the use of certificates with World Wide Web browsers, for
example - the limited room on many tokens together with the consumer expectation of
universal acceptance will force credential sharing on credential providers. Without
agreed-upon standards for credential sharing, acceptance and use of them both by
application developers and by consumers will be limited.

To optimize the benefit to both the industry and end-users, it isimportant that solutions to
these issues be developed in a manner that supports a variety of operating environments,
application programming interfaces, and a broad base of applications. Only through this
approach can the needs of constituencies be supported and the development of
credentials-activated applications encouraged, as a cost-effective solution to meeting
requirements in avery diverse set of markets.

The objectives of this document are therefore to:

* Enable interoperability among components running on various platforms
(platform neutral).

» Enable applications to take advantage of products and components from multiple
manufacturers (vendor neutral).

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 5

» Enable the use of advances in technology without rewriting application-level
software (application neutral).

» Maintain consistency with existing, related standards while expanding upon them
only where necessary and practical.

As a practical example, the holder of a token containing a digital certificate should be
able to present the token to any application running on any host and successfully use the
token to present the contained certificate to the application.

As afirst step to achieve these objectives, this document specifies a file and directory
format for storing security-related information on cryptographic tokens. The format builds
on the PKCS #11 specification.

2 Referencesand related documents

o ISO/IEC 7816-4:1995 Identification Cards - Integrated Circuit(s) cards with
contacts - Part 4: Interindustry commands for interchange.

o ISO/IEC 7816-5:1994 Identification Cards - Integrated Circuit(s) cards with
contacts - Part 5: Numbering system and registration procedure for application
identifiers.

o ISO/IEC 7816-6:1996 Identification Cards - Integrated Circuit(s) cards with
contacts - Part 6: Inter-industry data elements.

* ISO/IEC 7816-8:1999 Identification Cards — Integrated Circuit(s) cards with
contacts — Part 8: Security related interindustry commands.

 FCD ISO/IEC 7816-9:1999 Identification Cards — Integrated Circuit(s) cards with
contacts — Part 9: Security attributes and additional interindustry commands.

* ISO/IEC 8824-1:1995 Information technology — Abstract Syntax Notation One
(ASN.1) - Specification of basic notation.

* ISO/IEC 8824-1:1995/Amd.1:1995 Information technology — Abstract Syntax
Notation One (ASN.1) — Specification of basic notation — Amendment 1 — Rules
of extensibility.

* ISO/IEC 8824-2:1995 Information technology — Abstract Syntax Notation One
(ASN.1) - Information object specification.

e ISO/IEC 8824-2:1995/Amd.1:1995 Information technology — Abstract Syntax
Notation One (ASN.1) — Information object specification — Amendment 1 — Rules
of extensibility.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 6

e ISO/IEC 8824-3:1995 Information technology — Abstract Syntax Notation One
(ASN.1) - Constraint specification.

* ISO/IEC 8824-4:1995 Information technology — Abstract Syntax Notation One
(ASN.1) - Parameterization of ASN.1 specifications.

 ISO/IEC 8825-1:1995 Information technology — ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER)
and Distinguished Encoding Rules (DER).

* ISO/IEC 8825-2:1995 Information technology — ASN.1 encoding rules —
Specification of Packed Encoding Rules (PER).

e ISO/IEC 9594-2:1997 Information technology — Open Systems Interconnection —
The Directory: Models.

* ISO/IEC 9594-6:1997 Information technology — Open Systems Interconnection —
The Directory: Selected attribute types.

e ISO/IEC 9594-8:1997 Information technology - Open Systems Interconnection -
The Directory: Authentication framework.

* RSA Laboratories PKCS #1 v2.0: RSA Cryptography Standard.

* RSA Laboratories PKCS #3 v1.4: Diffie-Hellman Key-Agreement Standard.

* RSA Laboratories PKCS #5 v2.0: Password-Based Cryptography Standard.

* RSA Laboratories PKCS #7 v1.5: Cryptographic Message Syntax Standard.
* RSA Laboratories PKCS #8 v1.2: Private Key Information Syntax Standard.

* RSA Laboratories PKCS #11 v2.01: Cryptographic Token Interface Standard.

* RSA Laboratories PKCS #12 v1.0 (DRAFT): Personal Information Exchange
Syntax Standard.

* Wireless Application Protocol: Wireless Transport Layer Security Protocol
Specification, version 30-Apr-1998 (WTLS).

* D. Atkins, W. Stallings & P. ZimmermannPGP Message Exchange Formats,”
IETF RFC 1991, August 1996.

* T. Berners-Lee, R. Fielding, L. MasintetJriiform Resource Identifiers (URI):
Generic Syntax,” IETF RFC 2396, August 1998.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 7

S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels, " IETF
RFC 2119, March 1997.

* J. Linn, “Privacy Enhancement for Internet Electronic Mail: Part |: Message
Encryption and Authentication Procedures,” IETF RFC 1421, February 1993.

* D. Solo, R. Housley, W. Ford, T. Poldnternet X.509 Public Key Infrastructure
Certificate and CRL Profile,” IETF RFC 2459, January 1999.

* F. Yergeau, UTF-8, a transformation format of 1SO 10646,” IETF RFC 2279,
January 1998.

* ANSI X3.4-1968: Information Systems - Coded Character Sets - 7-Bit American
National Standard Code for Information Interchange (7-Bit ASCII).

* ANSI X9.42-1999 (DRAFT): Public Key Cryptography for The Financial Service
Industry: Agreement of Symmetric Keys on Using Diffie-Hellman and MQV
Algorithms.

* ANSI X9.62-1998: Public Key Cryptography For The Financial Services Industry:
The Elliptic Curve Digital Signature Algorithm (ECDSA).

3 Definitions

AlID: Application Identifier. A data element that identifies an application in a card. An
application identifier may contain a registered application provider number in which case
it is a unique identification for the application. If it contains no application provider
number, then this identification may be ambiguous.

ALW: Always. Access condition indicating a given function is always accessible.
ANSI: American National Standards Institute. An American standards body.

APDU: Application protocol data unit. A message between the card and the host
computer.

Application: The implementation of a well-defined and related set of functions that
perform useful work on behalf of the usdéirmay consist of software and or hardware
elements and associated user interfaces.

Application provider: An entity that provides an application.

ASN.1object: Abstract Syntax Notation object as defined in ISO/IEC 8824. A formal
syntax for describing complex data objects.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 8

ATR: Answer-to-Reset. Stream of data sent from the card to the reader in response to a
RESET condition.

AUT: Authenticated. Access condition indicating that a function is only available to
entities that have been authenticated (typically through a cryptographic protocol involving
the successful encryption of achallenge or aCHV, see below).

BCD: Number representation where a number is expressed as a sequence of decimal
digits and then each decimal digit is encoded as a four bit binary number. E.g. decimal 92
would be encoded as the eight bit sequence 1001 0010.

BER: Basic Encoding Rules. Rules for encoding an ASN.1 object into a byte sequence.
Cardholder: The person or entity presenting a smart card for use.
Card Issuer: The organization or entity that owns and provides a smart card product.

CHYV: CardHolder Verification. Also called the PIN. Typically a 4 to 8 digit number
entered by the cardholder to verify that the cardholder is authorized to use the card.

Command: A message sent by the terminal to the card that initiates an action and solicits
aresponse from the card.

Command/response pair: Set of two messages. a command to the card followed by a
response from the card.

Cryptogram: Result of a cryptographic operation.

Data element: Item of information as seen at the interface between a token and an
application for which are defined a name, a description of logical content, a format and a
coding. Defined in ISO/IEC 7816-4.

Data unit: The smallest set of bits that can be unambiguously referenced. Defined in
ISO/IEC 7816-4.

DER: Distinguished Encoding Rules for encoding ASN.1 objects in byte-sequences. A
special case of BER.

DF: Dedicated file. File containing file control information, and, optionally, memory
available for allocation. It may be the parent of elementary files and/or other dedicated
files. Defined in ISO/IEC 7816-4.

DIR file: Directory file. An optional elementary file containing a list of applications
supported by the card and optional related data el ements. Defined in ISO/IEC 7816-5.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 9

DO: Data Object. Information as seen at the interface between a card and an application.
Consists of atag, alength and avalue (i.e., adata element). Defined in ISO/IEC 7816-4.

EF: Elementary file. A set of data units or records that share the same identifier. It cannot
be a parent of another file. Defined in ISO/IEC 7816-4.

File control information (FCI): Logical, structural, and security attributes of a file as
defined in ISO/IEC 7816-4 and in FCD ISO/IEC 7816-9.

Fileidentifier: A 2-byte binary value used to address afile on a smart card.

Function: A process accomplished by one or more commands and resultant actions that
are used to perform al or part of atransaction.

ICC: Integrated Circuit Card. Another name for a smart card.

|EC: International Electrotechnical Commission.

Internal Elementary File: Elementary file for storing data interpreted by the card.

I SO: International Organization for Standardization

Level: Number of DFsin the path to afile, starting with the path from the master file.
Memory Card: A card with asimple memory chip with read and write capacity.

Message: String of bytes transmitted by the internal device to the card or vice versa,
excluding transmission-control characters.

MF: Master file. Mandatory unique dedicated file representing the root of the structure.
The MF typically has the file identifier 3F00s¢.

NEV: An access condition indicating a given function is never accessible.

Nibble: Half a byte. The most significant nibble of a byte consists of bits bs b7 bs bs and
the least significant of bits b, bs by b;.

Parent file: The MF or DF immediately preceding a given file within the hierarchy.

Password: Datathat may be required by the application to be presented to the card by its
user before data can be processed.

Path: Concatenation of file identifiers without delimitation. The Path type is defined in
ISO/IEC 7816-4 sub-clause 5.1.2. If the path starts with the MF identifier (Ox3F00), it is
an absolute path; otherwise it is a relative path. A relative path shall start with the
identifier 'Ox3FFF or with the identifier of the current DF.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 10

PER: Packed Encoding Rules for encoding ASN.1 objects in byte sequences. A specid
case of BER.

PIN: Persona Identification Number. See CHV.
PIN Pad: An arrangement of alphanumeric and command keys to be used for PIN entry.

Provider: Authority who has or who obtained the rights to create the MF or a DF in the
card.

Reader: As used in this specification, refers to a PC peripheral device that supports bi-
directional /0O to an ISO/IEC 7816 standard ICC.

Record: String of bytes that can be handled as a whole by the card and referenced by a
record number or by arecord identifier.

Record ldentifier: Vaue associated with a record that can be used to reference that
record. Severa records may have the same record identifier within an EF.

Record number: A sequential number assigned to each record that uniquely identifies
the record within its EF.

Response: A message returned by the ICC to the terminal after the processing of a
command message received by the ICC.

RID: Registered application provider identifier.
Stored Value Card: A smart card that stores non-bearer information like e-cash.

Template: Value field of a constructed data object, defined to give alogical grouping of
data objects. Defined in ISO/IEC 7816-6.

Token: In this specification, a portable device capable of storing persistent data.
Tokenholder: Analogous to cardholder.

Uniform Resource Identifiers: a compact string of characters for identifying an abstract
or physical resource. Described in RFC 2396.

The key words "must”, "must not", "required”, "shall", "shall not", "should", "should not",
"recommended"”, "may", and "optional" in this document are to be interpreted as described
in IETF RFC 2119.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 11

4

Symbols and Abbreviations

BER Basic Encoding Rules
DER Distinguished Encoding Rules

DF

Dedicated File

DF(X) Dedicated file with name ‘X’

DO
EF

Data Object
Elementary File

EF(X) Elementary file with name ‘X’
FCD Final Committee Draft
IDO Interindustry Data Object

MF
OD

Master File
F Object Directory File

PIN Personal Identification Number
TLV Tag-Length-Value

UR

L Uniform Resource Locator (a class of uniform resource identifiers)

In this document, ASN.1 types, definitions and values are written in bol d couri er.

5

General Overview

This document defines the PKCS #15 Cryptographic Token Information Format. The
format specifies how keys, certificates and application-specific data may be stored on an
ISO/IEC 7816 compliant IC card or other media. It has the following characteristics:

Dynamic structure enables implementations on a wide variety of media, including
stored value cards

When implemented on an IC card, it allows multiple applications to reside on the card
(even multiple PKCS #15 applications)

Supports storage of any PKCS #11 objects (keys, certificates and data)

Support for multiple PINs whenever the token supports it

In general, an attempt has been made to be flexible enough to allow for many different
token types, while still preserving the requirements for interoperability. A key factor for
this in the case of IC cards is the notion of ‘Directory FiléSee Section 6.5) which
provides a layer of indirection between objects on the token and the actual format of these
objects.

! Not to be misunderstood with | SO/IEC dedicated files ‘DFs’.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 12

51 Object Model

5.1.1 Object Classes

This document defines four general classes of objects: Keys, Certificates, Authentication
Objects and Data Objects. All these object classes have sub-classes, e.g. Private Keys,
Secret Keys and Public Keys, whose instantiations become objects actually stored on
tokens.

Thefollowing is afigure of the PKCS #15 object hierarchy:

PKCS#15

Top Object
(abstract)
Key Object Certificate Data Object Authentication
(abstract) Object (abstract) Object
(abstract) (abstract)
Private Key Secret Key Public Key X.509 Other External data PIN Object
(structural) (structural) (structural) Certificate Certificates objects (structural)
(structural) (structural) (structural)

Figure 1. PKCS #15 Object hierarchy (instances of abstract object classes does not exist on tokens).

5.1.2 Attributetypes

All objects have a number of attributes. Objects ‘inherits’ attribute types from their parent
classes (in particular, every object inherit attributes from the abstract PKCS #15
‘Common’ or ‘“Top’ object). Attributes are defined in detail in Section 7.

5.1.3 Access methods

Objects can be private, meaning that they are protected against unauthorized access, or
public. In the IC card case, access (read, write, etc) to private objects is defined by
Authentication Objects. Conditional access (from a cardholder’s perspective) is achieved

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 13

with PINS%. In other cases, such as when PKCS #15 is implemented in software, private
objects may be protected against unauthorized access by cryptographic means. Public
objects are not protected from read-access. Whether they are protected against
modifications or not depends on the particular implementation. This version of this
document does not distinguish between different ways of accessing objects; this feature
may be added in afuture version though.

6 |IC card File Format

This section describes how to implement the PKCS #15 application on IC cards.

6.1 Overview

In general, an IC card file format specifies how certain abstract, higher level elements

such as keys and certificates are to be represented in terms of more lower level elements

such as IC card files and directory structures. The format may also suggest how and under

which circumstances these higher level objects may be accessed by external sources and

how these access rules are to be implemented in the underlying representation (i.e. the

card’s operating system). However, since it is anticipated that this document will be used

in many types of applications, this latter task has been left to each application provider’'s
discretion. Some general suggestions can be found in Appendix A, though, and specific
requirements for an Electronic Identity Profile of this specification can be found in
Appendix B.

Note that the words “format” and “contents” shall be interpreted to mean ‘The way the
information appears to a host side application making use of a predefined set of
commands (ISO/IEC 7816-4 and perhaps the FCD of ISO/IEC 7816-8) to access this
data’. It may well be that a particular card is able to store the information described here
in a more compact or efficient way than another card, however the “card-edge”
representation of the information shall be the same in both cases. PKCS #15 is therefore a
“card-edge” specification.

6.2 |1C card requirements

This section of this document requiresthat compliant tokens have necessary support for
ISO/IEC 7816-4, 1SO/IEC 7816-5 and ISO/IEC 7816-6 (hierarchic logical file system,
direct or indirect application selection, access control mechanisms and read operations).

2 Other authentication methods, such as biometrics and/or challenge-response mechanisms are conceivable
but out of scope for this version of this document.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 14

6.3 Card File Structure

A card supporting this specification will have the following layout:
A -
D

Other
FYEFs...

Figure 2: Typical PKCS #15 Card Layout

The general file structure is shown above. The contents of the PKCS #15 Application
Directory is somewhat dependent on the type of IC card and its intended use, but the
following file structure is believed to be the most common:

e

Figure 3: Contents of DF(PKCS15) (Example).

The contents and purpose of each file and directory is described below.
6.4 MF directory contents

This section describes some EFs of the IC card’s master directory, MF. Currently, only
one EF in the MF might be affected by the PKCS #15 application, EF(DIR).

64.1 EF(DIR)

This optional file shall, if present, contain one or several application templates as defined
in ISO/IEC 7816-5. The application template (tag ‘0x61’) for a PKCS15 application shall
at least contain the following DOs:

% For the purpose of this document, EF(DIR) is only needed on IC cards which do not support direct
application selection as defined in ISO/IEC 7816-5 or when multiple PKCS #15 applications reside on a
single card.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 15

» Application Identifier (tag ‘Ox4F’), value defined in this document
» Path (tag ‘0x51’), value supplied by application issuer

Other tags from ISO/IEC 7816-5 may, at the application issuer’s discretion, be present as
well. In particular, it is recommended that application issuers include both the
‘Discretionary ASN.1 data objects’ data object (tag ‘Ox73’) and the ‘Application label’
data object (tag ‘0x50’). The application label shall contain an UTF-8 encoded label for
the application, chosen by the card issuer. The ‘Discretionary ASN.1 data objects’ data
object shall, if present, contain a DER-encoded value of the ASN. PrygsesDDO:

PKCS15DDO : : = SEQUENCE {
oi d OBJECT | DENTI FI ER,
odf Pat h PKCS15Pat h OPTI ONAL,

t okenl nfoPath [0] PKCS15Pat h OPTI ONAL,
unusedPat h [1] PKCS15Pat h OPTI ONAL,
- For future extensions

}

The oi d field shall contain an object identifier uniquely identifying the card issuer’s
implementation. Thedf Pat h, t okenl nf oPat h andunusedPat h fields shall, if present,
contain paths to elementary files EF(ODF), EF(TokenInfo) or EF(UnusedSpace)
respectively (see Section 6.5). This provides a way for issuers to use non-standard file
identifiers for these files without sacrificing interoperability. It also provides card issuers
with the opportunity to share TokeniInfo files between PKCS #15 applications, when
several PKCS #15 applications reside on one card. To summarize, each record in
EF(DIR) must be a value of the following ASN.1 type, conformant with ISO/IEC 7816-5:

PKCS15DI RRecord ::= [APPLI CATI ON 1] SEQUENCE ({
aid [APPLI CATI ON 15] OCTET STRI NG
| abel [APPLI CATI ON 16] UTF8String OPTI ONAL,
path [APPLI CATI ON 17] OCTET STRI NG
ddo [APPLI CATI ON 19] PKCS15DDO OPTI ONAL

}

The use of a DIR files will simplify application selection when several PKCS #15
applications reside on one card. An example of EF(DIR) contents may be found in
Appendix C.

6.5 PKCS#15 Application Directory Contents

This section describes the EFs of the PKCS #15 application directory, DF(PKCS15).

6.5.1 EF(ODF)

The mandatory Object Directory File (ODF) is an elementary file, which contains pointers
to other EFs (PrKDFs, PuKDFs, SKDFs, CDFs, DODFs and AODFs), each one

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 16

containing a directory over PKCS #15 objects of a particular class. The ASN.1 syntax for
the contents of EF(ODF) is described in Section 7.2.

—

PuKDF pointer

PrkDF pointer

CDF pointer

AODF pointer

DODF pointer

EF(ODF)

Figure 4: EF(ODF) points to other EFs. Dashed arrows indicate cross-references.

6.5.2 PrivateKey Directory Files (PrKDFs)

These elementary files can be regarded as directories of private keys known to the PKCS
#15 application. They are optional, but at least one PrK DF must be present on an IC card
which contains private keys (or references to private keys) known to the PKCS #15
application. They contain general key attributes such as labels, intended usage, identifiers,
etc. When applicable, they also contain cross-reference pointers to authentication objects
used to protect access to the keys. The rightmost arrow in Figure 4 indicates this.
Furthermore, they contain pointers to the keys themselves. There can be any number of
PrkKDFs in a PKCS #15 DF, but it is anticipated that in the normal case there will be at
most one. The keys themselves may reside anywhere on the card. The ASN.1 syntax for
the contents of PrK DFsis described in Section 7.3.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 17

Private key
Information about #1
private key #1

Information about

private key#2 /x_/' Privitze key

Information about | - ———————____
private key#n ~ >\ ;

S~o

~< _-

Figure 5: EF(PrKDF) contains private key attributes and pointers to the keys

6.5.3 Public Key Directory Files (PUKDFs)

These elementary files can be regarded as directories of public keys known to the PKCS
#15 application. They are optional, but at least one PUKDF must be present on an IC card
which contains public keys (or references to public keys) known to the PKCS #15
application. They contain general key attributes such as labels, intended usage, identifiers,
etc. Furthermore, they contain pointers to the keys themselves. When the private key
corresponding to a public key also resides on the card, the keys must share the same
identifier (thisisindicated with a dashed-arrow in Figure 4). There can be any number of
PUKDFsin a PKCS #15 DF, but it is anticipated that in the normal case there will be at
most one. The keys themselves may reside anywhere on the card. The ASN.1 syntax for
the contents of PUKDFsis described in Section 7.4.

Public key
Information about #1
public key #1

Information about

public key#2 Public key
#2 \

Information about | - ———————____
public key#n = > /

S~o

~< _-

Figure 6: EF(PUKDF) contains public key attributes and pointers to the keys

* The same is true when a certificate object on the token contains the public key; in this case the public key
object and the certificate object shall share the same identifier. This means that in some cases three objects
(a private key, a public key and a certificate) will share the same identifier.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 18

6.5.4 Secret Key Directory Files (SKDFs)

These elementary files can be regarded as directories of secret keys known to the PKCS
#15 application. They are optional, but at least one SKDF must be present on an IC card
which contains secret keys (or references to secret keys) known to the PKCS #15
application. They contain general key attributes such as labels, intended usage, identifiers,
etc. When applicable, they also contain cross-reference pointers to authentication objects
used to protect access to the keys. Furthermore, they contain pointers to the keys
themselves. There can be any number of SKDFsin a PKCS #15 DF, but it is anticipated
that in the norma case there will be a most one. The keys themselves may reside
anywhere on the card. The ASN.1 syntax for the contents of SKDFs is described in
Section 7.5.

Secret key

Information about #1
secret key #1

Information about

secret key#2 Secret key
#2 .

Information about | - ———————____
secret key#n [N 4

~< _-

Figure 7: EF(SKDF) contains secret key attributes and pointers to the keys

6.5.5 Certificate Directory Files (CDFs)

These elementary files can be regarded as directories of certificates known to the PKCS
#15 application. They are optional, but at least one CDF must be present on an IC card
which contains certificates (or references to certificates) known to the PKCS #15
application. They contain general certificate attributes such as labels, identifiers, etc.
When a certificate contains a public key whose private key also resides on the card, the
certificate and the private key must share the same identifier (this is indicated with a
dashed-arrow in Figure 4). Furthermore, certificate directory files contain pointers to the
certificates themselves. There can be any number of CDFs in a PKCS #15 DF, but it is
anticipated that in the normal case there will only be one or two (one for trusted
certificates and one which the cardholder may update). The certificates themselves may
reside anywhere on the card (or even outside the card, see Section 8). The ASN.1 syntax
for the contents of CDFsis described in Section 7.6.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 19

Certificate
Information about #1
certificate #1

Information about

certificate#2 /x_/'

Information about | - ——————_—____
certificate#n e >\ L

Certificate

~< _-

Figure 8: EF(CDF) contains certificate attributes and pointers to the certificates

6.5.6 Data Object Directory Files (DODFs)

These files can be regarded as directories of data objects (other than keys or certificates)
known to the PKCS #15 application. They are optional, but at least one DODF must be
present on an IC card which contains such data objects (or references to such data
objects) known to the PKCS #15 application. They contain general data object attributes
such as identifiers of the application to which the data object belongs, whether it is a
private or public object, etc. Furthermore, they contain pointers to the data objects
themselves. There can be any number of DODFs in a PKCS #15 DF, but it is anticipated
that in the normal case there will be at most one. The data objects themselves may reside
anywhere on the card. The ASN.1 syntax for the contents of DODFs is described in
Section 7.7.

Data object
Information about #1
data object #1

Information about

data object2 Data object
#2 N

Information about | - ———————____
data objec#n = > /

S~o

~< _-

Figure 9: EF(DODF) contains data object attributes and pointers to the data objects.

6.5.7 Authentication Object Directory Files (AODFs)

These elementary files can be regarded as directories of authentication objects (e.g. PINS)
known to the PKCS #15 application. They are optional, but at least one AODF must be
present on an IC card, which contains authentication objects restricting access to PKCS
#15 objects. They contain generic authentication object attributes such as (in the case of

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 20

PINs) allowed characters, PIN length, PIN padding character, etc. Furthermore, they

contain pointers to the authentication objects themselves (e.g. in the case of PINS,

pointers to the DF in which the PIN file resides). Authentication objects are used to

control access to other objects such as keys. Information about which authentication

object that protects a particular key is stored in the key's directory file, e.g. PrKDF
(indicated in Figure 4, the rightmost arrow). There can be any number of AODFs in a
PKCS #15 DF, but it is anticipated that in the normal case there will only be one. The
authentication objects themselves may reside anywhere on the card. The ASN.1 syntax
for the contents of the AODFs is described in Section 7.8.

Auth.
Information about object #1
auth. object #1

Information about

auth. object #2 /x_/'

Information about | - ———————____
auth. object #n R > /

Auth.
object #2

~< _-

Figure 10: EF(AODF) contains authentication object attributes and pointers to the authentication objects

6.5.8 EF(Tokenlnfo)

The mandatory TokenInfo elementary file shall contain generic information about the
token as such and it's capabilities, as seen by the PKCS15 application. This information
includes the token serial number, supported file types, algorithms implemented on the
token, etc. The ASN.1 syntax for the contents of the TokenlInfo file is described in detail
in Section 7.9.

6.5.9 EF(UnusedSpace)

The optional UnusedSpace elementary file is used to keep track of unused space in
already created elementary files. When present, it must initially contain at least one record
pointing to an empty space in a file that is possible to update by the cardholder. The use
of this file is described in more detail in Section 6.8. The file shall consist of DER-
encoded records each with the following ASN.1 syntax:

PKCS15UnusedSpace :: = SEQUENCE {
pat h PKCS15Pat h (W TH COVMPONENTS
.. i ndex PRESENT, |ength PRESENT}),
authl d PKCS15l dentifier OPTI ONAL

}

Thepat h field points to an area (botdex, i.e. offset, andengt h shall be present) that
is unused and may be used when adding new objects to the card.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 21

The aut hi D component, described in more detail in Section 7.1.7, signals that the unused
gpaceisin afile protected by a certain authentication object.

6.5.10 Other elementary filesin the PK CS#15 directory

These (optional) files will contain the actual values of objects (such as private keys,
public keys, secret keys, certificates and application specific data) referenced from within
PrkKDFs, SKDFs, PUKDFs, CDFs or DODFs. The ASN.1 format for the contents of these
files follows from the ASN.1 descriptionsin Section 7.

6.6 Fileldentifiers

The following file identifiers are defined for the PKCS15 files. Note that the RID (see
ISO/IEC 7816-5) is A0 00 00 00 63.

File DF File I dentifier (relativeto nearest DF)

MF X 0x3F00 (ISO/IEC 7816-4)

DIR 0x2F00 (ISO/IEC 7816-4)

PKCS15 X Decided by application issuer (AID is RID || "PKCS-15")
ODF 0x5031 by default (but see also Section 6.4.1)
TokenlInfo 0x5032 by default (but see also Section 6.4.1)
UnusedSpace 0x5033 by default (but see also Section 6.4.1)
AODFs Decided by application issuer

PrkKDFs Decided by application issuer

PuKDFs Decided by application issuer

SKDFs Decided by application issuer

CDFs Decided by application issuer

DODFs Decided by application issuer

Other EFs Decided by application issuer

- (Reserved) 0x5034 - 0x5100 (Reserved for future use)

Table 1: File Identifiers

6.7 PKCS#15 Application Selection

PKCS #15 compliant IC cards should support direct application selection as defined in
ISO/IEC 7816-4 Section 9 and ISO/IEC 7816-5, Section 6 (the full AID isto be used as

parameter for a SELECT FILE command). If direct application selection is not
supported, or several PKCS #15 applications reside on the card, an EF(DIR) file with

contents as specified in Section 6.4.1 must be used.

The operating system of the card must keep track of the currently selected application and

only allow the commands applicable to that particular application while it is selected.

When several PKCS #15 applications resides on one card, they shall be distinguished by
their object identifier in their application template in EF(DIR). It is recommended that the

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 22

application label (tag ‘0x50") also be present to simplify the man-machine interface (e.g.
vendor name in short form). See also Section 6.4.1.

6.7.1 AID for the PKCS#15 application

The Application Identifier (AID) data element consists of 12 bytes and its contents is
defined below. The AID is used as the filename for DF(PKCS15) in order to facilitate
direct selection of the PKCS #15 application on multi-application cards with only one
PKCS #15 application present.

The AID is composed of RID || PIX, where '||' denotes concatenation. RID is the 5 byte
globally ‘Registered Identifier’ as specified in ISO/IEC 7816-5. RID shall be set to A0 00
00 00 63 for the purposes of this specification. This RID has been registered with 1SO.
PIX (Proprietary application Identifier eXtension) shall be sePKCS- 15".

The full AID for the current version of this document is thus

A0 00 00 00 63 50 4B 43 53 2D 31 35

6.8 Object Management

Although the record-oriented format described in this document simplifies the problem of
managing objects in the PKCS #15 application, it does not eliminate it. This section
contains some guidelines for dealing with management (adding, removing and modifying)
of PKCS #15 objects.

6.8.1 Adding (Creating) new objects

The UnusedSpace file may be used to find suitable unused space on a token. After free
space has been found, and assuming sufficient privileges to a suitable object directory file
(e.g. a CDF in the case of a new certificate), the value of the new object is written to the
area pointed to from EF(UnusedSpace). After this, the used record in EF(UnusedSpace)
shall be updated to point to the first free byte after the newly written object. Finally, a
new record is added to the object directory file. If the object directory file (e.g. CDF) is a
true linear record file this will be a simple ISO/IEC 7816-4 commamePEND
RECORD). In the case of a transparent object directory file, URDATE BI NARY’ command

is suggested.

If no suitable free space can be found, garbage collection may be necessary, rewriting
object directory files as the objects they point to moves around, and updating
EF(UnusedSpace) in accordance.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 23

If EF(UnusedSpace) is not being used, the application may have to create a new
elementary file and write the value of the new object to this file before updating a suitable
object directory file.

In the case of replacing a previous object, space can be conserved in the object directory

file by updating the bytes previously used to hold information about that object. The

space can be found by searching for a record with a ‘00’ tag in the linear record file case,
or a ‘logical’ such record in the transparent file case. Since all records shall consist of
DER-encoded values, these ‘empty’ areas will be easy to find (‘00 is not a valid ASN.1
tag). This method is also consistent with ISO/IEC 7816-4 annex D.

Free space #1 /\ Certl Info
Free space #n.. Cert1 00

Empty area

EF(UnusedSpace) Elementary file EF(CDF)

Figure 11: Before adding anew certificate

Cert1l «——— — Certlinfo
Free space #1

\ Cert 2 -« Cert2 Info
Free space #n.. Empty area 00"

EF(UnusedSpace) p— EF(CDF)

Figure 12: After adding anew certificate

6.8.2 Removing objects

Once again, sufficient privileges are assumed. In particular, the object in question must be
‘modifiable’ (see Section 7.1.7), and if it is a ‘private’ object (again, see Section 7.1.7),
authorization requirements must be met (e.g. a correct PIN must have been presented
prior to the operation).

Removing a record from an object directory file is done by #WReTE RECORD or
‘“UPDATE RECORD' command in the linear record file case, and by the TE BI NARY’ or
‘UPDATE BI NARY’ command in the transparent file case. Records shall be erased be either
replacing the outermost tag with a ‘00’ byte or by re-writing the whole file with its new

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 24

information content. Just overwriting the tag but preserving the length bytes allows for
easy traversal of thefilelater on.

The following two figures shows an example in which a certificate is removed from the
PKCS #15 application and EF(UnusedSpace) is used to keep track of unused space.

Certl «— — Certlinfo
[3 Cert 2 Cert2 Info
[N Free space #1 «
Cert 3 «— Cert 3 Info
EF(UnusedSpace) EF(CDF)

Elementary file

Figure 13: Before removing certificate 2

Certl <«— | Certl Info

k] Free space #1 ‘00 L
Free space #2 (/(' Cert 3 . — Cert 3 Info
EF(UnusedSpace) EF(CDF)

Elementary file

Figure 14: After removing certificate 2

After having marked the entry in the object directory file as unused ('00’), a new record is
added to EF(UnusedSpace), pointing to the area that the object directory file used to point
to.

6.8.3 Maodifying objects

Once again, sufficient privileges as in the previous subsection are assumed. In the linear

record file case, the affected object directory file (e.g. EF(CDF), EF(DODF), etc) record

is simply updated (PDATE RECORD)). In the transparent file case, if the encoding of the
new information does not require more space than the previous information did, the
(logical) record may be updated. Alternatively, the whole file may be re-written, but this
may prove to be more costly.

7 Information Syntax in ASN.1

This section contains a detailed description on ASN.1 constructs to be used in PKCS #15
tokens. This section applies to 1SO/IEC 7816-4 compliant IC card implementations as

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 25

well as other implementations. If nothing else is mentioned, DER-encoding of values is
assumed.

7.1 Basic ASN.1 defined types

7.1.1 PKCS15ldentifier

PKCS15l dentifier ::= OCTET STRING (SIZE (0. .pkcsl5-ub-identifier))

The PKCS151 denti fier type is a constrained version of PKCS #11's CKA_ID. It is a
token-internal identifier. For cross-reference purposes, two or more objects may have the
samePKCS151 denti fi er value. One example of this is a private key and one or more
corresponding certificates.

7.1.2 PKCSI15Reference

PKCS15Ref erence ::= | NTEGER (0. .pkcsl5-ub-reference)

This type is used for generic reference purposes.

7.1.3 PKCSI15L abel

PKCS15Label ::= UTF8String (SIZE(O..pkcsl5-ub-1abel))

This type is used for all labels (i.e. user assigned object names).

714 PKCS15ReferencedValue and PKCS15Path

PKCS15Ref er encedVal ue ::= CHO CE {
pat h PKCS15Pat h,
url PrintableString

}

PKCS15Pat h :: = SEQUENCE {
pat h OCTET STRI NG,
i ndex | NTEGER (0. . pkcs15-ub-index) OPTI ONAL,
[ength | NTEGER (0. .pkcsl15-ub-index) OPTI ONAL
} (WTH COVMPONENTS {..., index PRESENT, |ength PRESENT}|
W TH COVPONENTS {..., index ABSENT, |ength ABSENT})

A PKCS15Ref er encedVal ue is a reference to a PKCS15 object value of some kind. This
can either be some external reference (captured by thelentifier) or a reference to a
file on the token (theat h identifier). In thePKcS15Pat h case, identifiers ndex and

| engt h may specify a specific location within the file. If the file in question is a linear
record file,i ndex shall be the record number (in the ISO/IEC 7816-4 definition) and
| engt h can be set tao’ (if the card’s operating system allows bBgparameter equal to

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 26

‘0’ in a “READ RECORD’ command). Lengths of fixed records may be found in the
PKCS15Tokenl nf o file as well (see Section 7.9).

If the file is a transparent file, themdex can be used to specify an offset within the file,
andl engt h the length of the segmenth@dex would then become paramefrand/orP,
and | engt h the parametet. in a ‘READ BI NARY' command). By using ndex and

| engt h, several objects may be stored within the same transparént file

If pat h is two bytes long, it references a file by its file identifierpdf h is longer than
two bytes, it references a file either by an absolute or relative path (i.e. concatenation of
file identifiers).

In theur | case, the given url must be in accordance with IETF RFC 2396.

7.1.5 PKCS150DbjectValue

PKCS15(hj ect Value { Type } ::= CHO CE {

i ndirect PKCS15Ref erencedVal ue,

direct [0] Type,

... -- For future extensions

} (CONSTRAINED BY {-- if indirection is being used,
-- then it is expected that the reference points
-- either to an object of type -- Type -- or (key
-- case) to a card-specific key file --})

The PKCS150bj ect Val ue type is intended to catch the choice which can be made
between storing a particular PKCS #15 object (key, certificate, etc) ‘in-line’ or by indirect
reference (i.e. by pointing to another location where the value resides). On tokens
supporting the ISO/IEC 7816-4 logical file organization (i.e. EFs and DFs), the indirect
alternative shall always be used. In other cases, any aHthe&E alternatives may be
used.

7.1.6 PKCS15PathOrObjects

PKCS15Pat hOr Obj ects {Ohbj ect Type} ::= CHO CE {
pat h PKCS15Pat h,
obj ects [0] SEQUENCE OF nj ect Type,
. -- For future extensions
}

> On some | C cards which supports having several keys in one EF, keys are referenced by an identifier when
used, but updating the EF requires knowledge of an offset and/or length of the data. In these cases, the
PKCS15CommonKeyAt t ri but es. keyRef er ence field shall be used for access to the key, and the
presence of the PKS15Pat h. i ndex and PKCS15Pat h. | engt h depends on the card issuer’s discretion
(they are not needed for card usage purposes, but may be used for modification purposes).

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 27

The PKCS15Pat hOr Obj ect s type is used to reference sequences of objects either residing

within the ODF or externdly. If the pat h aternative is used, then it is expected that the

file pointed to by path contain the value part of an object of type SEQUENCE OF

bj ect Type (that is, the SEQUENCE OF tag and length shall not be present in the file).
On cards supporting the ISO/IEC 7816-4 logical file organization (i.e. EFs and DFs), the
pat h alternative is strongly recommended. In other cases, any aHtheE alternatives

may be used.

7.1.7 PKCS15CommonObjectAttributes

This type is a container for attributes common to all PKCS #15 objects.

PKCS15ConmonCbj ect Attributes :: = SEQUENCE {

| abel PKCS15Label OPTI ONAL,

flags PKCS15Conmon(hj ect FI ags OPTI ONAL,

authld PKCS15Identifier OPTI ONAL,

... -- For future extensions

} (CONSTRAI NED BY {-- authld nust be present in the IC card
- case if flags.private is set. It nmust equal an
- authlD in one AuthRecord in the ACDF -- })

PKCS15ConmonChj ect Fl ags ::= BI T STRI NG {
private(0),
nodi fiable (1)
}

Thel abel is the equivalent of the CKA_LABEL present in PKCS #11, and is purely for
display purposes (man-machine interface), for example when a user have several
certificates for one key pair (e.g. “My bank certificate”, “My S/IMIME certificate”).

Thef 1 ags field indicates whether the particular object is private or not, and whether it is
of type read-only or not. As in PKCS #11pra vat e object may only be accessed after
proper authentication (e.g. PIN verification). If an object is markegbaisf i abl e, it
should be possible to update the value of the object. If an object iphotht e and
nodi fi abl e, updating is only allowed after successful authentication, however. Since
properties such gs i vat e andnodi fi abl e can be deduced by other means on IC cards,
e.g. by studying EFs FCI, this field is optional and not necessary when these
circumstances applies.

The aut hi d field gives, in the case of a private object, a cross-reference back to the
authentication object used to protect this object (For a description of authentication
objects, see Section 6.5.7).

7.1.8 PKCS15CommonKeyAttributes

This type contains all attributes common to PKCS #15 keys, except for the
PKCS15ConmonChj ect At tri but es.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 28

PKCS15ConmonKeyAttri butes :: = SEQUENCE {
iD PKCS151 denti fi er
usage PKCS15KeyUsageFl ags,
native BOOLEAN DEFAULT TRUE

accessFl ags PKCS15KeyAccessFl ags OPTI ONAL
keyRef erence PKCS15Ref erence OPTI ONAL,

startDate General i zedTi me OPTI ONAL,
endDat e [0] GeneralizedTi mne OPTI ONAL
... -- For future extensions
}
PKCS15KeyUsageFl ags ::= BI T STRI NG {
encrypt (0),
decrypt (1),
sign (2),
si gnRecover (3),
unwr ap (5),
verify (6),
verifyRecover (7),
derive (8),
nonRepudi ati on (9)
}
PKCS15KeyAccessFlags ::= BIT STRI NG {
sensitive (0),
extractabl e (1),

al waysSensitive (2),
never Extract abl e(3),
| ocal (4)
}

Thei D field must be unique for each key stored in the token, except when a public key
object and the corresponding private key object are stored on the token. In this case, the
keys must share the same identifier (which may also be shared with a certificate object,
See Section 7.1.13).

Theusage field (encrypt, decrypt, sign, signRecover, wap, unwap, verify,
verifyRecover, derive and nonRepudi ati on) signals the intended usage of the key
as defined in PKCS #11. To map between ISO/IEC 9594-8 (X.509) keyUsage flags for
public keys, PKCS #15 flags for public keys, and PKCS #15 flags for private keys, use
the following table:

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 29

Key usage flagsfor public keys | Corresponding Corresponding

in X.509 public key certificates | PKCS15K eyUsageFlagsfor PK CS15K eyUsageFlags for
public keys private keys

dataEncipherment encrypt decrypt

digitalSignature, keyCertSign, verify sign

cRLSign

digitalSignature, keyCertSign, verifyRecover signRecover

cRLSign

keyAgreement derive derive

keyEncipherment wrap unwrap

nonRepudiation nonRepudiation nonRepudiation

Table 2 : Mapping between PKCS #15 key usage flags and X.509 keyUsage extension flags

The native field identifies whether the token is able to use the key for hardware
computations or not (e.g. this field is by default true for all RSA keys stored in special
RSA key fileson an RSA capable IC card).

The semantics of the accessFl ags field’s sensi ti ve, extract abl e, al waysSensi tive,
never Ext ract abl e andl ocal identifiers is the same as in PKCS #11. This field is not
required to be present in cases where its value can be deduced by other means.

ThekeyRef er ence field is only applicable for IC cards with cryptographic capabilities. If
present, it contains a card-specific reference to the key in question (usually a small
integer, for further information see ISO/IEC 7816-4 and ISO/IEC 7816-8).

Thest art Dat e andendDat e fields have the same semantics as in PKCS #11.

7.1.9 PKCS15CommonPrivateK eyAttributes

This type contains all attributes common to PKCS #15 private keys, except for
PKCS15ConmonKeyAt t ri but es andPKCS15CommonCbj ect Attri but es.

PKCS15ConmonPri vat eKeyAttri butes ::= SEQUENCE {
subj ect Nane Nanme OPTI ONAL,
keyldentifiers [0] SEQUENCE OF PKCS15Keyl dentifier OPTI ONAL,
... -- For future extensions
}

® Implementations should verify that usage of key usage flags on a token is sound, i.e. that all key usage
flags for a particular key pair is consistent with Table 2.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 30

PKCS15Keyl dentifier ::= SEQUENCE {
i dType PKCS15KEY- | DENTI FI ER. & d ({ PKCS15Keyl dentifiers}),
i dVal ue PKCS15KEY- | DENTI FI ER. &Val ue ({PKCS15Keyl dentifiers}{@ dType})

}

The motivation for the fields of the PKCS15ConmonPr i vat eKeyAt t ri but es type aboveis
asfollows:

The subj ect Nane field, when present, shall contain the distinguished name of the owner
of the private key, as specified in a certificate containing the public key corresponding to
this private key.

The keyl denti fiers field: When receiving for example an enveloped message together
with information about the public key used for encrypting the message's session key, the
application needs to deduce which (if any) of the private keys present on the token that
should be used for decrypting the session key. In messages based on the PKCS #7 format,
the I ssuer AndSeri al Nurber construct may be used, in other schemes other types may
be used. This version of this document defines four possible ways of identifying a key
(for adefinition of the ASN.1 class PKCS15KEY- | DENTI FI ER see Section 9):

* pkcs15l ssuer AndSeri al Nunber @ The value of this type shall be a sequence of the
issuer’s distinguished name and the serial number of a certificate which contains the
public key associated with the private key.

* pkcs15Subj ect Keyl dentifier: The value of this type must be @aTET STRI NG
with the same value as the corresponding certificate extension in an X.509 v3
certificate which contains the public key associated with the private key.

* pkcsi15l ssuer AndSeri al Nunber Hash: As for pkcs151 ssuer AndSer i al Nurber , but
the value is al@CTET STRI NG which contains a SHA-1 hash value of this information
in order to preserve space.

* pkcs15Subj ect Publ i cKeyHash: A hash for the public key associated with the private
key. Inthe RSA case, the modulus of the public key shall b€, i the hash is to
be done on the (network-order or big-endian) integer representation of it. The hash-
algorithm shall be SHA-1. In the case of Elliptic Curves, it is recommended that the
hash be calculated on the x-coordinate of the public lEeyYs nt OCTET STRI NG.

As an alternative, the hash can also be used as the
PKCS15ConmonKeyAttributes.iD. This may simplify lookups of certificate —
private key pairs.

" Note: This is different from the hash method used e.g. in IETF RFC 2459, but it serves the purpose of
being independent of certificate format — alternative certificate formats not DER-encoding the public key
has been proposed.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 31

7.1.10 PKCS15CommonPublicK eyAttributes

This type contains all attributes common to PKCS #15 public keys, except for
PKCS15ConmonKeyAt t ri but es and PKCS15CommonCbj ect Attri but es.

PKCS15ConmonPubl i cKeyAttri butes ::= SEQUENCE ({
subj ect Nane Nane OPTI ONAL,
... -- For future extensions
}

The motivation for the fields of the PKCS15ComuonPubl i cKeyAt t ri but es type above is
asfollows:

The subj ect Nane field, when present, shall contain the distinguished name of the owner
of the public key asit appearsin a certificate containing the public key.

7.1.11 PKCS15CommonSecr etk eyAttributes

This type contains al attributes common to PKCS #15 secret keys, except for
PKCS15ConmonKeyAt t ri but es and PKCSConmonQbj ect Attri but es.

PKCS15ConmonSecr et KeyAttri butes ::= SEQUENCE ({
keyLen INTEGER OPTIONAL, — keylength (in bits)
... -- For future extensions

}

The motivation for the fields of the PKCS15ConmonSecr et KeyAt t ri but es type above is
asfollows:

The optional keyLen field signals the key length used, in those cases where a particular
algorithm can have a varying key length.

7.1.12 PKCS15K eylnfo

This type, which is an optiona part of each private and public key type, contains either
(IC card case) a reference to a particular entry in the EF(TokenInfo) file, or explicit
information about the key in question (parameters and operations supported by the token).
The suppor t edOper at i ons field is optional and can be absent on tokens, which do not
support any operations with the key. Note the distinction between PKCS15KeyUsageF| ags
and PKCS15Keyl nf o. par ans AndQOps. support edQper ati ons: The former indicates the
intended usage of the key, the latter indicates the operations (if any) the token can
perform with the key.

PKCS15KeyInfo {ParameterType, OperationsType} ::= CHOICE {
reference PKCS15Reference,
paramsAndOps SEQUENCE {
parameters ParameterType,

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 32

support edOperati ons Operati onsType OPTI ONAL}
}
7.1.13 PKCS15CommonCertificateAttributes

This type contains all attributes common to PKCS #15 certificates, except for the
PKCS15ConmonCbj ect Attri but es.

PKCS15ConmonCertificateAttri butes ::= SEQUENCE {
iD PKCS151 denti fi er,
aut hority BOOLEAN DEFAULT FALSE,
requestlid PKCS15Keyl denti fi er OPTI ONAL,

t hunbpr i nt [0] PKCS1500BCert Hash OPTI ONAL,
... -- For future extensions
}

The i D field is only present for X509 certificates in PKCS #11, but has for generality
reasons been “promoted” to a common certificate attribute in this document. When a
public key in the certificate in question corresponds to a private key also known to the
PKCS #15 application, they must share the same value foptheld. This requirement

will simplify searches for a private key corresponding to a particular certificate and vice
versa.

Theaut hori ty field indicates whether the certificate is for an authority (i.e. CA or AA)
or not.

Therequest I d field simplifies the search of a particular certificate, when the requester
knows (and conveys) some distinguishing information about the requested certificate.
This can be used, for example, when a user certificate has to be chosen and sent to a
server as part of a user authentication, and the server provides the client with
distinguishing information for a particular certificate. In this case, and in addition to the
identification methods defined in Section 7.1.9, a fifth alternative may be used:

* pkcsl5lssuerKeyHash: A hash of the public key used to sign the requested
certificate. This value may also, in the case of X.509 v3 certificates, be present in the
aut hori t yKeyl denti fi er extension in the user’s certificate.

The thunbprint field is useful from a security perspective when the certificate in
guestion is stored external to the token (the choice ofPKCS15Ref er encedVal ue),
since it enables a user to verify that no one has tampered with the certificate.

7.1.14 PKCS15CommonDataObjectAttributes and PK CS15Applicationl dentifier

The PKCS15ConmonDat aCbj ect Attri butes type contains all attributes common to
PKCS #15 data objects, except for Hx€S15ComonCbj ect At t ri but es.

PKCS15ConmonDat aGbj ect Attri butes ::= SEQUENCE {
appl i cati onName PKCS15Label OPTI ONAL,
applicationO D OBJECT | DENTI FI ER OPTI ONAL,

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 33

... -- For future extensions
} (WTH COVWPONENTS {..., applicati onNanme PRESENT} |
W TH COMPONENTS {..., applicationO D PRESENT})

The appl i cati onName field is intended to contain the name or the registered object
identifier for the application to which the data object in question “belongs”. In order to
avoid application name collisions, at least theplicationO D alternative is
recommended. As indicated in ASN.1, at least one of the components has to be present in
a value of typeKCS15ConmonDat albj ect At t ri but es.

7.1.15 PKCS15CommonAuthenticationObjectAttributes

This type contains all attributes common to PKCS #15 authentication objects, except for
the PKCS15ConmonQbj ect Att ri but es.

PKCS15ConmonAut henti cati onCbj ect Attri butes ::= SEQUENCE {
aut hl d PKCS151 dentifier,
... — For future extensions

The authid must be a unique identifier. It is used for cross-reference purposes from
private PK CS #15 objects.

7.1.16 PKCS150Dbject

Thistype is atemplate for all kinds of PKCS #15 objects. It is parameterized with object
class attributes, object subclass attributes and object type attributes.

PKCS15(hj ect {C assAttributes, SubC assAttributes, TypeAttributes} ::=

SEQUENCE {
commonObj ect Attri butes PKCS15CommonChj ect Attri butes,
cl assAttributes Cl assAttri butes,
subCl assAttributes [0] Subd assAttributes OPTI ONAL,
typeAttributes [1] TypeAttributes

7.2 The PKCS150bjectstype

Thistypeisaplaceholder for the various object types defined in this document.

PKCS15(hj ects ::= CHO CE {
privat eKeys [0] PKCS15Pri vat eKeys,
publ i cKeys [1] PKCS15Publ i cKeys,
trust edPubl i cKeys [2] PKCS15Publ i cKeys,
secr et Keys [3] PKCS15Secr et Keys,
certificates [4] PKCS15Certifi cates,

trustedCertificates [5] PKCS15Certificates,
useful Certificates [6] PKCSl15Certificates,
dat albj ect s [7] PKCS15Dat athj ect s,

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 34

aut hObj ect s [8] PKCS15Aut htbj ect s,
... -- For future extensions
}

PKCS15Pr i vat eKeys
PKCS15Secr et Keys
PKCS15Publ i cKeys :
PKCS15Certificates ::
PKCS15Dat a(bj ect s
PKCS15Aut hQbj ect s

PKCS15Pat hOr Cbj ect s { PKCS15Pr i vat eKey}
PKCS15Pat hOr (hj ects { PKCS15Secr et Key}
PKCS15Pat hOr Obj ect s { PKCS15Publ i cKey}
PKCS15Pat hOr Obj ects { PKCS15Certi ficat e}
PKCS15Pat hOr Cbj ect s { PKCS15Dat a}

PKCS15Pat hOr Cbj ect s { PKCS15Aut henti cati on}

In the IC card case, the intention is that EF(ODF) shall consist of a number of data objects
(records) of type PKCS150Qbj ect s, representing different object types. Each data object
should in the normal case reference a file containing a directory of objects of the
particular type. Since the path daternative of the PKCS15Pat hOr Cbject type is
recommended, this will result in arecord-oriented ODF, which simplifies updating’.

Examples of PKCS150bj ect s values can be found in Appendix C.

The trust edPubl i ckeys field is intended for implementations on IC cards supporting
the ISO/IEC 7816-4 logical file organization. In these cases, the card issuer might want to
include a number of trusted public keys on the card (and make sure that they are not
modified or replaced later on by an application). The PUKDF pointed to from this field
should therefore be protected from cardholder modifications, as should the public keys
pointed to from that PUKDF itself. Trusted public keys are most likely root CA keys that
can be used as trust chain origins.

Thecertificates field shall point to certificates issued to the cardholder. They may or
may not be possible to modify by the cardholder.

ThetrustedCertificates field isintended for implementations on IC cards supporting
the ISO/IEC 7816-4 logical file organization. Asfor t r ust edPubl i cKeys, the card issuer
might want to include a number of trusted certificates on the card (and make sure that
they are not modified or replaced later on by an application), while still allowing the
cardholder to add other certificates issued to himself/herself. The CDF pointed to from
this field should therefore be protected from cardholder modifications, as should the
certificates pointed to from that CDF itself. It is, however, conceivable that the card issuer
can modify the contents of this file (and the files it points to). Trusted certificates are
most likely root CA certificates, but does not have to be. Since the intention is that it
should be impossible for a cardholder to modify them, they can be regarded as trusted by
the cardholder, and can therefore be used as trust chain origins.

8 When it is known in advance that it will not be possible for the cardholder to modify e.g. EF(PrKDF) and
EF(AODF), an application may store these files withdihect option ofPkCS15Pat hOr Obj ect s.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 35

The useful Certificates field is aso intended for implementations on IC cards
supporting the ISO/IEC 7816-4 logical file organization. The intention is that the
cardholder may use this entry to store other end-entity or CA certificates that may be
useful, eg. signing certificates for colleagues, in order to simplify certificate path
validation.

7.3 ThePKCSI15PrivateK eystype

This type contains information pertaining to private key objects stored in the token. Since,

in the ISO/IEC 7816-4 IC card casg, the pat h dternative of the PKCS15Pat hOr Obj ect s

type is to be chosen, PKCS15Pri vat eKeys entries (records) in EF(ODF) points to
elementary files that can be regarded as directories of private keys, ‘Private Key Directory
Files’ (PrKDFs). The contents of an EF(PrKDF) must bevtdige of the DER encoding

of a SEQUENCE OF PKCS15PrivateKey (i.e. excluding the outermost tag and length
bytes). This gives the PrKDFs the same, simple structure as the ODF, namely a number of
TLV records.

In the case of tokens not supporting the ISO/IEC 7816-4 logical file organization, any of
theCHO CE alternatives oPKCS15Pat hOr Qbj ect s may be used.

Examples oPKCS15Pri vat eKey values can be found in Appendix C.

ThePKCS15Pri vat eKey structure is as follows:

PKCS15Pri vat eKey ::= CHO CE {

pri vat eRSAKey PKCS15Pri vat eKey(Cbj ect {
PKCS15Pr i vat eRSAKeyAt t ri but es},

privateECKey [0] PKCS15Privat eKeyQhject ({
PKCS15Pri vat eECKeyAt tri but es},

privateDHKey [1] PKCS15Pri vat eKeyObject {
PKCS15Pr i vat eDHKeyAt t ri but es},

privat eDSAKey [2] PKCS15Pri vat eKeyObj ect {
PKCS15Pr i vat eDSAKeyAt t ri but es},

privat eKEAKey [3] PKCS15Pri vat eKeyObj ect {
PKCS15Pr i vat eKEAKeyAt t ri but es},

-- For future extensions

PKCS15Pr i vat eKeyObj ect {KeyAttributes} ::= PKCS15(bject ({
PKCS15ConmonKeyAt t ri but es,
PKCS15ConmonPr i vat eKeyAttri but es,
KeyAt tri but es}

In other words, in the IC card case, each EF(PrKDF) shall consist of a number of context-
tagged elements representing different private keys. Each private key element shall
consist of a number of common object attributesC$15Commonbj ect At tri but es,
PKCS15ConmonKeyAt tri butes and PKCS15ConmonPrivat eKeyAttributes) and, in
addition the particular key type’s attributes.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 36

7.3.1 Private RSA key objects

PKCS15Pr i vat eRSAKeyAt tri butes ::= SEQUENCE ({
val ue PKCS15Mnj ect Val ue { PKCS15RSAPr i vat eKey},
nodul usLength | NTEGER, -- nodulus length in bits, e.g. 1024
keyl nfo PKCS15Keyl nf o { PKCS15RSAPar anet er s,
PKCS15Publ i cKeyQper ati ons} OPTI ONAL,
... — For future extensions

}
PKCS15RSAPrivateKey ::= SEQUENCE {
modulus [0] INTEGER OPTIONAL, -- n

publicExponent [1] INTEGER OPTIONAL, -- e
privateExponent [2] INTEGER OPTIONAL, -- d
primel [2] INTEGER OPTIONAL, -- p
prime2 [3] INTEGER OPTIONAL, -- g
exponentl [4] INTEGER OPTIONAL, -- d mod (p-1)
exponent2 [5] INTEGER OPTIONAL, -- d mod (g-1)
coefficient [6] INTEGER OPTIONAL -- inv(q) mod p
} (CONSTRAINED BY

{-- must be possible to reconstruct modulus and

-- privateExponent from selected fields --})

The semantics of the fieldsis as follows:

* PKCS15Privat eRSAKeyAttri but es. val ue: The value shadll, in the IC card case, be a
path to afile containing either a value of type PKCS15RSAPr i vat eKey or (in the case
of a card capable of performing on-chip RSA encryption) some card specific
representation of a private RSA key. As mentioned, this will be indicated in the
PKCS15ConmonKeyAt t ri but es. nati ve field. In other cases, the application issuer is
free to choose any alternative. Note that, besides the case of RSA capable IC cards,
although the PKCS15RSAPr i vat eKey typeis very flexible, it is still constrained by the
fact that it must be possible to reconstruct the modulus and the private exponent from
whatever fields present.

* PKCS15Privat eRSAKeyAt t ri but es. nodul usLengt h: On many tokens, one must be
able to format data to be signed prior to sending the data to the token. In order to be
able to format the data in a correct manner the length of the key must be known. The
length shall be expressed in bits, e.g. 1024.

* PKCS15Privat eRSAKeyAt tri but es. keyl nfo: Information about parameters that
appliesto thiskey (NULL in the case of RSA keys) and operations the token can carry
out with this key. In the IC card case, ther ef er ence aternative of a PKCS15Key! nf o
must be used, and the reference shall “point” to a particular entry in EF(TokenInfo),
see below. The field is not needed if the information is available through other means.

7.3.2 Private Elliptic Curvekey objects

PKCS15Pri vat eECKeyAttri butes ::= SEQUENCE {

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 37

val ue PKCS15Mnj ect Val ue { PKCS15ECPri vat eKey},
keyl nf o PKCS15Keyl nf o { PKCS15ECPar anet er s,
PKCS15Publ i cKeyQper ati ons} OPTI ONAL,

-- For future extensions

PKCS15ECPri vat eKey ::= | NTEGER

The semantics of these typesis as follows:

* PKCS15Pri vat eECKeyAttri butes. val ue: The value shall, in the IC card case, be a
path to afile containing either a value of type PKCS15ECPr i vat eKey or (in the case of
a card capable of performing on-chip EC operations) some card specific
representation of a private EC key. As mentioned, this will be indicated in the
PKCS15CommonKeyAt t ri but es. nati ve field. In other cases, the application issuer is
free to choose any alternative.

* PKCS15Privat eECKeyAttri butes. keyl nfo: Information about parameters that
applies to this key and operations the token can carry out with this key. In the IC card
case, ther ef er ence alternative of a PKCS15Key| nf o must be used, and the reference
shall “point” to a particular entry in EF(TokenInfo), see below. The field is not
needed if the information is available through other means.

7.3.3 Private DiffieeHellman key objects

PKCS15Pri vat eDHKeyAt tri butes ::= SEQUENCE {
val ue PKCS15Mnj ect Val ue { PKCS15DHPri vat eKey},
keyl nf o PKCS15Keyl nf o { PKCS15DHPar anet er s,
PKCS15Publ i cKeyQOper ati ons} OPTI ONAL,
-- For future extensions

}
PKCS15DHPr i vat eKey :: = | NTECER —- Diffie-Hellman exponent

The semantics of these typesis asfollows:

* PKCS15PrivateDHKeyAttributes.value : The value shall, in the IC card case, be a
path to afile containing either a value of type PKCS15DHPrivateKey or (in the case of
a card capable of performing on-chip Diffie-Hellman operations) some card specific
representation of a private Diffie-Hellman key. As mentioned, thiswill be indicated in
the PKCS15CommonKeyAttributes.native field. In other cases, the application issuer
is free to choose any aternative.

* PKCS15PrivateDHKeyAttributes.keylnfo : Information about parameters that
applies to this key and operations the token can carry out with this key. In the IC card
case, the reference alternative of a PKCS15Keyinfo must be used, and the reference
shall “point” to a particular entry in EF(TokenInfo), see below. The field is not
needed if the information is available through other means.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 38

7.3.4 Private Digital Signature Algorithm key objects

PKCS15Pr i vat eDSAKeyAt tri butes ::= SEQUENCE ({

val ue PKCS15Mnj ect Val ue { PKCS15DSAPr i vat eKey},
keyl nf o PKCS15Keyl nf o { PKCS15DSAPar anet er s,
PKCS15Publ i cKeyQper ati ons} OPTI ONAL,
... -— For future extensions

PKCS15DSAPrivateKey ::= INTEGER

The semantics of these typesis as follows:

PKCS15PrivateDSAKeyAttributes.value : The value shall, in the IC card case, be a
path to afile containing either a value of type PKCS15DSAPrivateKey or (in the case
of a card capable of performing on-chip DSA operations) some card specific
representation of a private DSA key. As mentioned, this will be indicated in the
PKCS15CommonKeyAttributes.native field. In other cases, the application issuer is
free to choose any alternative.

PKCS15PrivateDSAKeyAttributes.keylnfo . Information about parameters that
applies to this key and operations the token can carry out with this key. In the IC card
case, the reference alternative of a PKCS15Keyinfo must be used, and the reference
shall “point” to a particular entry in EF(TokenInfo), see below. The field is not
needed if the information is available through other means.

7.3.5 Private KEA key objects

PKCS15Pr i vat eKEAKeyAt tri butes ::= SEQUENCE ({

val ue PKCS15Mvj ect Val ue { PKCS15KEAPY i vat eKey},
keyl nf o PKCS15Keyl nf o { PKCS15KEAPar anet er s,
PKCS15Publ i cKeyQper ati ons} OPTI ONAL,
-- For future extensions

PKCS15KEAPr i vat eKey :: = | NTEGER

The semantics of these types is as follows:

PKCS15Pr i vat eKEAKeyAt t ri but es. val ue: The value shall, in the IC card case, be a
path to a file containing either a value of #&S15KEAPr i vat eKey type or (in the

case of a card capable of performing on-chip KEA operations) some card specific
representation of a private KEA key. As mentioned, this will be indicated in the
PKCS15CommonKeyAt t ri but es. nati ve field. In other cases, the application issuer is
free to choose any alternative.

PKCS15Pri vat eKEAKeyAt t ri but es. keyl nfo: Information about parameters that
applies to this key and operations the token can carry out with this key. In the IC card
case, the ef er ence alternative of @KCS15Keyl nf o must be used, and the reference

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 39

shall “point” to a particular entry in EF(TokenInfo), see below. The field is not
needed if the information is available through other means.

74 ThePKCSI15PublicKeystype

This data structure contains information pertaining to public key objects stored in the
token. Since, in the IC card case, paeh alternative of the\kCs15Pat hOr Obj ect s type

iS to be choserpKcsispubl i ckeys entries (records) in EF(ODF) points to elementary
files that can be regarded as directories of public keys, ‘Public Key Directory Files’
(PuKDFs). The contents of an EF(PuKDF) must bevtilge of the DER encoding of a
SEQUENCE OF PKCS15Publickey (i.e. excluding the outermost tag and length bytes).
This gives the PUKDFs the same, simple structure as the ODF, namely a number of TLV
records.

In the case of tokens not supporting the ISO/IEC 7816-4 logical file organization, any of
theCHO CE alternatives oPKCS15Pat hOr Obj ect s may be used.

PKCS15Publ i cKey ::= CHO CE {
publ i cRSAKey PKCS15Publ i cKeyhj ect {

PKCS15Publ i cRSAKeyAttri but es},
publ i cECKey [0] PKCS15PublicKeyhject {

PKCS15Publ i cECKeyAttri but es},
publ i cDHKey [1] PKCS15Publ i cKeyhject ({

PKCS15Publ i cDHKeyAt t ri but es},
publ i cDSAKey [2] PKCS15Publ i cKeyhj ect ({

PKCS15Publ i cDSAKeyAttri but es},
publ i cKEAKey [3] PKCS15Publ i cKeyhj ect {

PKCS15Publ i cKEAKeyAt tri but es},

-- For future extensions

PKCS15Publ i cKeyObj ect {KeyAttributes} ::= PKCS15(ject {
PKCS15ConmonKeyAt tri but es,
PKCS15ConmonPubl i cKeyAttri butes,
KeyAttri but es}

In other words, in the IC card case, each EF(PuKDF) shall consist of a number of context-
tagged elements representing different public keys. Each element shall consist of a
number of common object attributes PKES15CommonQbj ect At tri but es,
PKCS15ConmonKeyAttributes and PKCS15ConmonPublicKeyAttributes) and in
addition the particular public key type’s attributes.

7.4.1 Public RSA key objects

PKCS15Publ i cRSAKeyAttri butes ::= SEQUENCE {
val ue PKCS15Mnj ect Val ue { PKCS15RSAPubl i cKey},
nodul usLength | NTEGER, -- nodulus length in bits, e.g. 1024
keyl nfo PKCS15Keyl nf o { PKCS15RSAPar anet er s,

PKCS15Publ i cKeyQper ati ons} OPTI ONAL,
... — For future extensions

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 40

}
PKCS15RSAPubl i cKey ::= SEQUENCE ({

nmodul us | NTEGER, - -

n
publ i cExponent | NTEGER e
}

The semantics of the fieldsis as follows:

* PKCS15Publ i cRSAKeyAttri but es. val ue: The value shall, in the IC card case, be a
path to afile containing either a value of type PKCS15RSAPubl i cKey or (in the case of
a card capable of performing on-chip RSA public-key encryption) some card specific
representation of a public RSA key. As mentioned, this will be indicated in the
PKCS15ConmonKeyAt t ri but es. nati ve field. In other cases, the application issuer is
free to choose any alternative.

* PKCS15Publ i cRSAKeyAtt ri but es. nodul usLengt h: On many tokens, one must be
able to format data to be encrypted prior to sending the data to the token. In order to
be able to format the data in a correct manner the length of the key must be known.
The length shall be expressed in bits, e.g. 1024.

* PKCS15Publ i cRSAKeyAttri butes. keyl nfo: Information about parameters that
applies to this key (NULL in the case of RSA keys) and operations the token can carry
out with this key. In the IC card case, the r ef er ence aternative of a PKCS15Key! nf o
must be used, and the reference shall “point” to a particular entry in EF(TokenInfo),
see below. The field is not needed if the information is available through other means.

7.4.2 Public Elliptic Curvekey objects

PKCS15Publ i cECKeyAttri butes ::= SEQUENCE {
val ue PKCS15Mnj ect Val ue { PKCS15ECPubl i cKey},
keyl nf o PKCS15Keyl nf o { PKCS15ECPar anet er s,
PKCS15Publ i cKeyQper ati ons} OPTI ONAL,
-- For future extensions

PKCS15ECPubl i cKey ::= PKCS15ECPoi nt

The semantics of these types is as follows:

* PKCS15Publ i cECKeyAttri but es. val ue: The value shall, in the IC card case, be a
path to a file containing either a value of tyg&S15ECPubl i ckey or (in the case of a
card capable of performing on-chip EC public-key operations) some card specific
representation of a public EC key. As mentioned, this will be indicated in the
PKCS15CommonKeyAt t ri but es. nati ve field. In other cases, the application issuer is
free to choose any alternative.

* PKCS15Publ i cECKeyAttri but es. keyl nfo: Information about parameters that
applies to this key and operations the token can carry out with this key. In the IC card

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 41

case, ther ef er ence alternative of a PKCS15Key| nf o must be used, and the reference
shall “point” to a particular entry in EF(TokenInfo), see below. The field is not
needed if the information is available through other means.

7.4.3 Public DiffieeHellman key objects

PKCS15Publ i cDHKeyAt tri butes ::= SEQUENCE ({
val ue PKCS15Mnj ect Val ue { PKCS15DHPubl i cKey},
keyl nf o PKCS15Keyl nf o { PKCS15DHPar anet er s,
PKCS15Publ i cKeyQOper ati ons} OPTI ONAL,
-- For future extensions

PKCS15DHPubl i cKey :: = PKCS15Di ffi eHel | manPubl i cNunber

The semantics of these types is as follows:

* PKCS15Publ i cDHKeyAt tri but es. val ue: The value shall, in the IC card case, be a
path to a file containing either a value of tygs&s15DHPubl i cKey or (in the case of a
card capable of performing on-chip Diffie-Hellman public-key operations) some card
specific representation of a public Diffie-Hellman key. As mentioned, this will be
indicated in thePKCS15ComonKeyAttri butes. native field. In other cases, the
application issuer is free to choose any alternative.

* PKCS15Publ i cDHKeyAt tri but es. keyl nfo: Information about parameters that
applies to this key and operations the token can carry out with this key. In the IC card
case, the ef er ence alternative of @KCS15Keyl nf o must be used, and the reference
shall “point” to a particular entry in EF(TokenInfo), see below. The field is not
needed if the information is available through other means.

7.4.4 Public Digital Signature Algorithm objects

PKCS15Publ i cDSAKeyAt tri butes ::= SEQUENCE ({
val ue PKCS15Mnj ect Val ue { PKCS15DSAPubl i cKey},
keyl nf o PKCS15Keyl nf o { PKCS15DSAPar anet er s,
PKCS15Publ i cKeyOper ati ons} OPTI ONAL,
-- For future extensions

PKCS15DSAPubl i cKey ::

| NTEGER

The semantics of these types is as follows:

* PKCS15Publ i cDSAKeyAttri but es. val ue: The value shall, in the IC card case, be a
path to a file containing either a value of tyg&S15DSAPubl i cKey or (in the case of
a card capable of performing on-chip DSA public-key operations) some card specific
representation of a public DSA key. As mentioned, this will be indicated in the

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 42

PKCS15CommonKeyAt t ri but es. nati ve field. In other cases, the application issuer is
free to choose any alternative.

* PKCS15Publ i cDSAKeyAttri butes. keyl nfo: Information about parameters that
applies to this key and operations the token can carry out with this key. In the IC card
case, ther ef er ence alternative of a PKCS15Key! nf o must be used, and the reference
shall “point” to a particular entry in EF(TokenInfo), see below. The field is not
needed if the information is available through other means.

745 Public KEA key objects

PKCS15Publ i cKEAKeyAt tri butes ::= SEQUENCE ({
val ue PKCS15Mnj ect Val ue { PKCS15KEAPubl i cKey},
keyl nf o PKCS15Keyl nf o { PKCS15KEAPar anet er s,
PKCS15Publ i cKeyQper ati ons} OPTI ONAL,
-- For future extensions

PKCS15KEAPuUbl i cKey :: = | NTEGER

The semantics of these types is as follows:

* PKCS15Publ i cKEAKeyAt t ri but es. val ue: The value shall, in the IC card case, be a
path to a file containing either a value of #€CS15KEAPUbI i cKey type or (in the
case of a card capable of performing on-chip KEA public-key operations) some card
specific representation of a public KEA key. As mentioned, this will be indicated in
the PKCS15CommonKeyAt t ri but es. nat i ve field. In other cases, the application issuer
is free to choose any alternative.

* PKCS15Publ i cKEAKeyAttri but es. keyl nfo: Information about parameters that
applies to this key and operations the token can carry out with this key. In the IC card
case, the ef er ence alternative of @KCS15KeyI nf o must be used, and the reference
shall “point” to a particular entry in EF(TokenInfo), see below. The field is not
needed if the information is available through other means.

7.5 ThePKCS15SecretK eystype

This data structure contains information pertaining to secret keys stored in the token.
Since, in the IC card case, tha h alternative of the@kcsi15Pat hOr bj ect s type is to be
chosenpPKcs15Secr et Keys entries (records) in EF(ODF) points to elementary files that
can be regarded as directories of secret keys, ‘Secret Key Directory Files’ (SKDFs). The
contents of an EF(SKDF) must be tiaue of the DER encoding of 8EQUENCE OF
PKCS15Secr et Key (i.e. excluding the outermost tag and length bytes). This gives the
SKDFs the same, simple structure as the ODF, namely a number of TLV records.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 43

In the case of tokens not supporting the ISO/IEC 7816-4 logical file organization, any of
the CHO CE aternatives of PKCS15Pat hOr Obj ect s may be used.

PKCS15Secret Key ::= CHO CE {
generi cSecr et Key PKCS15Secr et Keyhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
r c2key [0] PKCS15Secr et Keyhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
r cdkey [1] PKCS15Secr et Keyhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
desKey [2] PKCS15Secr et Keyhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
des2Key [3] PKCS15Secr et Keyhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
des3Key [4] PKCS15Secr et Keyhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
cast Key [5] PKCS15Secr et Keyhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
cast 3Key [6] PKCS15Secr et Keyhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
cast 128Key [7] PKCS15Secr et Keyhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
r c5Key [8] PKCS15Secr et Keyhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
i deaKey [9] PKCS15Secr et Keyhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
ski pj ackKey [10] PKCs15Secr et KeyOhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
bat onKey [11] PKCs15Secr et KeyOhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
j uni per Key [12] PKCs15Secr et KeyOhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
r c6Key [13] PKCs15Secr et Keyhj ect
{ PKCS15CGeneri cSecr et KeyAttri but es},
ot her Key [14] PKCS15Ct her Key,
... -- For future extensions
}
PKCS15Secr et KeyOhj ect {KeyAttributes} ::= PKCS15(ject {
PKCS15ConmonKeyAt tri but es,
PKCS15ConmonSecr et KeyAttri but es,
KeyAttri but es}
PKCS15Ct her Key :: = SEQUENCE {

keyType OBJECT | DENTI FI ER,
keyAttr PKCS15Secret KeyOhj ect { PKCS15Generi cSecret KeyAttri but es}

}

In other words, in the IC card case, each EF(SKDF) shall consist of a number of context-

tagged elements representing different secret keys. Each element shall consist of a
number of common object attributes (PKCS15CommonQbj ect Attri butes,
PKCS15CommonKeyAttributes and PKCS15ConmonSecr et KeyAttributes) and in
addition the particular secret key type’s attributes. All key types defined in this version
correspond to key types defined in PKCS #11, and they all contain the same attributes,
PKCS15Generi cSecr et KeyAtt ri but es, defined below.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 44

75.1 Generic secret key objects

These objects represent generic keys, available for use in various agorithms, or for
derivation of other secret keys.

PKCS15Generi cSecret KeyAttri butes ::= SEQUENCE {
val ue PKCS15Mnj ect Val ue { OCTET STRI NG },
-- For future extensions

The semantics of the field is as follows:

* PKCS15Generi cSecret KeyAttributes. val ue: The value shall, in the IC card case,
be a path to afile containing an OCTET STRI NG. In other cases, the application issuer
is free to choose any aternative offered by the PKCS15Mj ect Val ue type.

7.5.2 Tagged key objects

These key objects represent keys of various types. In the case of tokens capable of
performing cryptographic computations with keys of certain types, the key representation
is token gpecific (indicated by the PKCS15CommonKeyAttributes. native field).
Otherwise, the key shall be stored as an OCTET STRI NG, as indicated above.

75.3 ThePKCS150therKey type

This choice is intended to be a "catch-all" case, a placeholder for keys for which the
algorithm is not already represented by a defined tag. The PKCS15Qt her Key type shall
contain an object identifier identifying the type of the key and the usual secret key
attributes.

7.6 ThePKCSI15Certificatestype

This data structure contains information pertaining to certificate objects stored in the

token. Since, in the IC card case, the pat h aternative of the PKCS15Pat hOr Obj ect s type

is to be chosen, PKCS15Certi fi cat es entries (records) in EF(ODF) points to elementary

files that can be regarded as directories of certificates, ‘Certificate Directory Files’
(CDFs). The contents of an EF(CDF) must be vhkie of the DER encoding of a
SEQUENCE OF PKCS15Certificate (i.e. excluding the outermost tag and length bytes).
This gives the CDFs the same, simple structure as the ODF, namely a number of TLV
records.

In the case of tokens not supporting the ISO/IEC 7816-4 logical file organization, any of
theCHO CE alternatives oPKCS15Pat hOr Obj ect s may be used.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 45

Examples of this type can be found in Appendix C.

PKCS15Certificate ::= CHO CE {
x509Certificate PKCS15Certi ficate(hject {
PKCS15X509Cer tificat eAttri butes},
x509AttributeCertificate [0] PKCS15CertificateCbject {
PKCS15X509Attri buteCertificateAttri butes},

spki Certificate [1] PKCS15Certificatenject {
PKCS15SPKI CertificateAttributes},
pgpCertificate [2] PKCS15Certificateject {
PKCS15PGPCerti ficateAttri butes},
wtlsCertificate [3] PKCS15CertificateObject {
PKCS15WILSCertificateAttributes},
x9-68Certificate [4] PKCS15CertificateObject {

PKCS15X9-68CertificateAttri butes},
-- For future extensions

PKCS15CertificateCbject {CertAttributes} ::= PKCS15(hject {
PKCS15ConmonCertificateAttri butes,
NULL,

Cert Attri but es}

In other words, in the IC card case, each EF(CDF) shall consist of a number of context-
tagged elements representing different certificate objects. Each element shall consist of a
number of common object attributes (PKCS15ConmonChbjectAttributes and
PKCS15CommonCerti fi cat eAttri but es) and in addition the particular certificate type’s
attributes.

7.6.1 X.509 certificate objects

PKCS15X509CertificateAttributes ::= SEQUENCE {
val ue PKCS15Mnj ect Val ue { PKCS15X509Certificate },
subj ect Name OPTI ONAL,
i ssuer [0] Nane OPTI ONAL,

serial Nunber CertificateSerial Nunber OPTI ONAL,
-- For future extensions

The semantics of the fieldsis as follows:

* PKCS15X509CertificateAttributes. val ue: Thevalueshal, inthe IC card case, be
a PKCS15Ref erencedVal ue either identifying a file containing a DER encoded
certificate at the given location, or a url pointing to some location where the
certificate in question can be found. In other cases, the application issuer is free to
choose any alternative.

e PKCS15X509CertificateAttributes. subject,
PKCS15X509CertificateAttributes.issuer and
PKCS15X509Certi ficat eAttri butes. serial Nunber : The semantics of these fields
is the same as for the corresponding fields in PKCS #11. The reason for making them
optional is to provide some space-efficiency, since they aready are present in the
certificate itself.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 46

7.6.2 X.509 attribute certificate Objects

PKCS15X509Attri buteCertificateAttributes ::= SEQUENCE {
val ue PKCS15(nj ect Val ue { PKCS15Attri buteCertificate },
i ssuer Gener al Names OPTI ONAL,
serial Number CertificateSerial Nunber OPTI ONAL,

attrTypes [0] SEQUENCE OF OBJECT | DENTI FI ER OPTI ONAL,
.. -- For future extensions
}

The semantics of the fieldsis as follows:

* PKCS15X509AttributeCertificateAttributes.val ue: The value shal, in the IC
card case, be a PKCS15Ref er encedVal ue identifying either a file containing a DER
encoded attribute certificate at the given location, or a url pointing to some location
where the attribute certificate in question can be found. In other cases, the application
issuer is free to choose any aternative.

* PKCS15X509AttributeCertificateAttributes.issuer and
PKCS15X509At tri buteCertificateAttributes.serial Number: The vaues of
these fields should be exactly the same as for the corresponding fields in the attribute
certificate itself. They may be stored explicitly for easier lookup.

* PKCS15X509AttributeCertificateAttributes.attrTypes: This optiona field
shall, when present, contain a list of object identifiers for the attributes that are
present in this attribute certificate. This offers an opportunity for applications to
search for a particular attribute certificate without downloading and parsing the
certificate itself.

7.6.3 SPKI (Simple Public Key Infrastructure”) certificate objects

PKCS15SPKI CertificateAttributes ::= SEQUENCE {
val ue PKCS15(j ect Val ue { PKCS15- OPAQUE. &Type },
-- For future extensions

=
The semantics of the field is as follows:

* PKCS15SPKI CertificateAttributes. val ue: Thevalueshal, inthelC card case, be
a pkcs15Ref er encedVal ue identifying either a file containing a base64™® encoded
SPKI certificate at the given location, or a url pointing to some location where the
certificate can be found. In other cases, the application issuer is free to choose any
aternative.

° See the Internet working draft "draft-ietf-spki-cert-structure-05.txt" for more information.

1 See IETF RFC 1421.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 47

7.6.4 PGP (Pretty Good Privacy) certificate objects

PKCS15PGPCertificateAttributes ::= SEQUENCE {
val ue PKCS15Qbj ect Val ue { PKCS15- OPAQUE. &Type },
-- For future extensions

}. .
The semantics of the field is as follows:

* PKCS15PGPCertificateAttributes. val ue: The value shall, in the IC card case, be
apkcs15Ref er encedVal ue identifying either afile containing a base64 encoded PGP
certificate’ at the given location, or a url pointing to some location where the
certificate can be found. In other cases, the application issuer is free to choose any
alternative.

7.6.5 WTLScertificate objects

PKCS15WILSCertificateAttributes ::= SEQUENCE ({
val ue PKCS15Qbj ect Val ue { PKCS15- OPAQUE. &Type },
-- For future extensions

}. .
The semantics of the fieldsis as follows:

* PKCS15WILSCertificateAttributes. val ue: Thevalueshal, inthe IC card case, be
a PKCS15Ref er encedVal ue identifying either a file containing a WTLS encoded
certificate at the given location, or a url pointing to some location where the
certificate in question can be found. In other cases, the application issuer is free to
choose any alternative.

7.6.6 ANSI X9.68% lightweight certificate objects

PKCS15X9- 68CertificateAttributes ::= SEQUENCE {
val ue PKCS15Qbj ect Val ue { PKCS15- OPAQUE. &Type },
-- For future extensions

}. .
The semantics of the fieldsis as follows:

* PKCS15X9-68CertificateAttributes.val ue: The value shal, in the IC card case,
be a PKCS15Ref er encedVal ue identifying either a file containing a DER or PER
encoded ANSI X9.68 certificate at the given location, or a url pointing to some

1 As defined in Section 7 of IETF RFC 1991.

2 The exact format of X9.68 certificates is currently being defined by ANSI.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 48

location where the certificate in question can be found. In other cases, the application
issuer is free to choose any alternative.

7.7 ThePKCSl15DataObjectstype

This data structure contains information pertaining to data objects stored in the token.

Since, inthe IC card case, the pat h aternative of the PKCS15Pat hOr Qbj ect s typeisto be
chosen, PKCS15Dat atbj ect s entries (records) in EF(ODF) points to elementary files that

can be regarded as directories of data objects, ‘Data Object Directory Files’ (DODFs).
The contents of an EF(DODF) must be ¥hhie of the DER encoding of 8EQUENCE OF
PKCS15Dat atbj ect (i.e. excluding the outermost tag and length bytes). This gives the
DODFs the same, simple structure as the ODF, namely a number of TLV records.

In the case of tokens not supporting the ISO/IEC 7816-4 logical file organization, any of
theCHO CE alternatives oPKCS15Pat hOr Qbj ect s may be used.

Examples of this type can be found in Appendix C.

PKCS15Data ::= CHO CE {
opaqueDO PKCS15Dat aCbj ect { PKCS150paque},
ext ernal | DO [0] PKCS15Dat aChj ect {PKCS15External | DG},
oi dDO [1] PKCS15Dat athj ect {PKCS15Q0 dDC},
} -- For future extensions
PKCS15Dat aCbj ect {Dat aCbj ect Attributes} ::= PKCS15Mject ({
PKCS15ConmonDat aObj ect Att ri but es,
NULL,

Dat aCbj ect Attri but es}

In other words, in the IC card case, DODFs shall consist of a number of context-tagged
elements representing different data objects. Each element shall consist of a number of
common object attributes PKCS15Conmon(hj ect At t ri but es and
PKCS15ConmonDat aObj ect At t ri but es) and in addition the particular data object type’s
attributes.

7.7.1 Opaque data objects

Opaque data objects are the least specified data objects. PKCS #15 makes no
interpretation of these objects at all; it is completely left to applications accessing these
objects.

PKCS15Qpaque :: = PKCS150bj ect Val ue { PKCS15- OPAQUE. &Type}

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 49

7.7.2 External data objects

As an dternative, the DODF may contain information about one or severa externally
defined inter-industry data objects. These objects must follow a compatible tag alocation
scheme as defined in Section 4.4 of 1SO/IEC 7816-6.

PKCS15Ext ernal 1 DO : : = PKCS150hj ect Val ue { PKCS15- OPAQUE. &Type}
(CONSTRAI NED BY {-- Al data objects nust be defined in accordance
- with ISOIEC 7816-6 --})

In the IC card case, each ext er nal | DO entry in EF(DODF) will therefore point to afile
which must conform to ISO/IEC 7816-6. By using these data objects, applications
enhance interoperability.

7.7.3 Dataobjectsidentified by OBJECT IDENTIFIERS

This type provides a way to store, search and retrieve data objects with assigned object
identifiers. An example of this type of information isany ASN.1 ATTRI BUTE.

PKCS150 dDO : : = SEQUENCE {
id OBJECT | DENTI FI ER,
val ue PKCS15Mhj ect Val ue {PKCS15- OPAQUE. &Type}

7.8 ThePKCSI15AuthenticationObject type

This data structure, only relevant to tokens capable of authenticating token-holders,
contains information about how the token-holder authentication shall be carried out.

Since, inthe IC card case, the pat h aternative of the PKCS15Pat hOr Qbj ect s typeisto be

chosen, PKCS15Aut henticationObject entries (records) in EF(ODF) points to
elementary files that can be regarded as directories of authentication objects,
‘Authentication Object Directory Files’ (AODFs). The contents of an EF(AODF) must be
the value of the DER encoding of 8EQUENCE OF PKCS15Aut henti cati onObj ect (i.e.
excluding the outermost tag and length bytes). This gives the AODFs the same, simple
structure as the ODF, namely a number of TLV records.

Examples of this type can be found in Appendix C.

PKCS15Aut hentication ::= CHO CE {
pin PKCS15Aut henti cati onCbj ect { PKCS15Pi nAttri butes },
. -- For future extensions, e.g. bionetric authentication
-- objects
PKCS15Aut henti cati onCbj ect {AuthCbj ect Attributes} ::= PKCS15Chject {
PKCS15ConmonAut henti cati onObj ect Attri butes,
NULL,

Aut hCbj ect Attri but es}

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 50

In other words, in the IC card case, each EF(AODF) shall consist of a number of context-

tagged elements representing different authentication objects. Each element shall consist

of a number of common object attributes (PKCS15CommonCbject Attributes and
PKCS15ConmonAut hent i cati onObj ect Attributes) and in addition the particular
authentication object type’s attributes. Each authentication object must have a distinct
PKCS15CommonAut hent i cati onObj ect Attri butes. authl D, enabling unambiguous
authentication object lookup for private objects.

7.8.1 Pin Objects

PKCS15Pi nAttributes ::= SEQUENCE {
pi nFl ags PKCS15Pi nFl ags,
pi nType PKCS15Pi nType,
m nLengt h | NTEGER

(pkcs15-1 b-m nPi nLengt h. . pkcs15-ub- m nPi nLengt h),
storedLength | NTEGER
(pkcs15-1 b-m nPi nLengt h. . pkcs15- ub- st or edPi nLengt h),

maxLengt h I NTEGER OPTI ONAL,
pi nReference [0] PKCS15Reference OPTI ONAL,
padChar OCTET STRING (Sl ZE(1)) OPTI ONAL,
| ast Pi nChange GeneralizedTi me OPTI ONAL,
pat h PKCS15Pat h OPTI ONAL,
... -- For future extensions
}
PKCS15Pi nFl ags ::= BIT STRI NG {
case-sensitive ,
| ocal ;

change- di sabl ed
unbl ock- di sabl ed
initialized
needs- paddi ng
unbl ocki ngPi n
soPin
di sabl e- al | owed
} (CONSTRAINED BY { -- ‘unblockingPin’ and ‘soPIN’ cannot both
--beset--})

NSNS AN AN AN AN S N
O~NOUIRRWNEFLO
o e e

PKCS15PinType ::= ENUMERATED {bcd, ascii-numeric, utf8, ...
-- bcd = one nibble contains one digit
-- ascii-numeric = one byte contains one ASCII digit
-- utf8 = password is stored in UTF8 encoding

The semantics of thesefieldsis as follows:
* PKCS15PinAttributes.pinFlags : Thisfield signals whether the PIN is:
* case-sensitve , meaning that a user-given PIN shall not be converted to all-
uppercase before presented to the token (see below)
« local , meaning that the PIN islocal to the PK CS#15 application™

13 A pin which is not "local’ is considered 'global’. A local PIN may only be used to protect data within the
PKCS #15 application. For alocal PIN the lifetime of a verification is not guaranteed and it may have to be

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 51

* change-di sabl ed, meaning that it is not possible to change the PIN

* unbl ock- di sabl ed, meaning that it is not possible to unblock the PIN

* initialized, meaning that the PIN has beeninitialized

* needs- paddi ng, meaning that, depending on the length of the given PIN and
the stored length, the PIN may need to be padded before being presented to the
token

* unbl ocki ngPi n, meaning that the PIN may be used for unblocking purposes

* soPin, meaning that the PIN is a Security Officer PIN (in the PKCS #11
sense)“

* disabl e-al | owed, meaning that the PIN might be disabled.

* PKCS15Pi nAttri but es. pi nType: Thisfield determines the type of PIN:

* Dbed (Binary Coded Decimal, each nibble of a byte shall contain one digit of
the PIN),

» ascii-nuneric (Each byte of the PIN contain an ASCII encoded digit) or

» utf8 (Each character is encoded in accordance with UTFS).

* PKCS15Pi nAttri butes. mi nLengt h: Minimum length (in characters) of new PINs (if
allowed to change).

* PKCS15Pi nAttributes. storedLengt h: Stored length on token (in bytes). Used to
deduce the number of padding characters needed.

* PKCS15Pi nAttri but es. maxLengt h: On some tokens, PINs are not padded, and there
is therefore a need to know the maximum PIN length (in characters) allowed.

* PKCS15Pi nAttributes. pi nRef erence: This optional field is a token-specific
reference to the PIN in question. It is anticipated that it can be used as a ‘P2’
parameter in the ISO/IEC 7816-ERI FY’ command, when applicable.

* PKCSL15Pi nAttri but es. padChar : Padding character to use (usually i&®©r ‘004').

Not needed ifpi nFl ags indicates that padding is not needed for this token. If the
PKCS15Pi nAt t ri but es. pi nType IS of typebcd, thenpadChar should consist of two
nibbles of the same value, any nibble could be used as the “padding nibble”. E.g.,
‘65,6’ is allowed, meaning padding with ‘0191but ‘34,6’ is illegal.

* PKCS15Pi nAttri butes. | ast Pi nChange: This field is intended to be used in
applications that requires knowledge of the date the PIN last was changed (e.g. to
enforce PIN expiration policies). When the PIN is not set (or never has been changed)
the value shall be (using the value-notation defined in ISO/IEC 8824-1)

re-verified on each use. In contrast to this, a successful verification of a global PIN means that the
verification remains in effect until the card has been removed or reset, or until a new verification of the
same PIN fails. An application which has verified a global PIN can assume that the PIN remains valid, even
if other applications verify their own, local PINS, select other DFs, etc.

! Since PINs are PK CS #15 objects they may be protected by other authentication objects. This gives a way

to specify the PIN that can be used to unblock another PIN - let the "authiD’ of a PIN point to an unblocking
PIN.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 52

‘000000000000Z’. As another example, a PIN changed on January 6, 1999 at 1934 (7
34 PM) UTC would have Bast Pi nChange value of 19990106193400Z’.

e PKCS15Pi nAttributes. path: Path to the DF in which the PIN resides. The path
shall be selected by a host application before doing a PIN operation, in order to enable
a suitable authentication context for the PIN operation. If not present, a token-holder
verification must always be possible to perform without a pEBLECT’ operation.

7.8.1.1 Transformingasupplied PIN

The steps taken to transform a user-supplied PIN to something presented to the token
shall be asfollows:

1. Convert the PIN in accordance with the PIN type:

a) If the PIN is autf8 PIN, transform it to UTF8 [RFC 2279k = UTF8(PIN).
Then, if the case-sensitive flag is off, convert x to uppercase:
X = NLSUPPERCASE(X) (NLSUPPERCASE = locale dependent uppercase)

b) If the PIN is abcd PIN, verify that each character is a digit and pack the characters
as BCD (see Section 3) digits= BCD(PIN)

c) If the PIN is anascii-nuneric PIN, verify that each character is a digit in the
current codepage and —if needed— convert the characters tddigit:
x = ASCII(PIN)

2. If indicated in thepi nFl ags field, padx to the right with the padding character,
padChar, to stored lengthtoredLength: x = PAD(x, padChar, storedLength).

Example: (ascii-) Numeric PIN ‘1234, stored length 8 bytes, and padding character
‘FF16" gives that the value presented to the token will be ‘31323334FFFREFFF

7.9 ThePKCS#15 Information File, EF(Tokenlnfo)

This file, only relevant to ISO/IEC 7816-4 compliant IC cards, contains general
information about the PKCS #15 application and the token it resides on. It's data structure
is defined as follows:

PKCS15Tokenl nfo ::= SEQUENCE {
version I NTEGER {v1(0)} (vi,...),
seri al Nurrber OCTET STRI NG
manuf act urer | D PKCS15Label OPTI ONAL,
| abel [0] PKCS15Label OPTI ONAL,
t okenf | ags PKCS15TokenFl ags,

15 See ANSI X3.4.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 53

selnfo SEQUENCE OF PKCS15SecurityEnvironmentlnfo OPTI ONAL,

recordl nfo PKCS15Recor dl nf o OPTI ONAL,

supportedAl gorithns [1] SEQUENCE OF PKCS15Al gorithm nfo OPTI ONAL,

... -- For future extensions

} (CONSTRAINED BY { -- Each PKCS15Al gorithm nfo.reference val ue nust
be unique --})

PKCS15TokenFl ags ::= BI T STRING {
readonl y (0),
| ogi nRequired (1),
prnGeneration (2),
ei dConpl i ant (3)

}
PKCS15Securi tyEnvironnent I nfo ::= SEQUENCE ({
se I NTEGER (0. .127),

owner OBJECT | DENTI FI ER,
-- For future extensions

PKCS15Recordl nfo ::= SEQUENCE {
oDFRecor dLengt h [0] INTEGER (O0..pkcsl5-ub-recordLength) OPTI ONAL,
pr KDFRecor dLength [1] | NTEGER (0. . pkcs15-ub-recordLength) OPTI ONAL,
puKDFRecor dLengt h [2] | NTEGER (0. .pkcsl5-ub-recordLength) OPTI ONAL,
sKDFRecordLength [3] I NTEGER (O..pkcsl5-ub-recordlLength) OPTI ONAL,
cDFRecor dLengt h [4] INTEGER (O0..pkcsl5-ub-recordLength) OPTI ONAL,
dODFRecordLength [5] | NTEGER (O..pkcsl15-ub-recordLength) OPTI ONAL,
aODFRecordLength [6] | NTEGER (O..pkcsl5-ub-recordLength) OPTI ONAL

}
PKCS15Al gorithm nfo ::= SEQUENCE {
ref erence PKCS15Ref er ence,
al gorithm PKCS15- ALGORI THM &i d({ PKCS15Al gorit hnfSet }),
par anmet ers PKCS15- ALGORI THM &Par amnet er s(

{ PKCS15Al gorithnset}{ @l gorithn}),
support edOper ati ons PKCS15- ALGORI THM &Oper at i ons(

{ PKCS15Al gorithnmtet }{ @l gorithnt)
}

The interpretation of these fields should be as follows:

* PKCS15Tokenl nf o. versi on: Thisfield contains the number of the particular version
of this specification the token application is based upon. For this version of this
document, the value of ver si on shall be O (v1).

e PKCS15Tokenl nfo. seri al Nunber : This field shall contain the token’s unique serial
number, for IC card issued in accordance with ISO/IEC 7812-1 and coded in
accordance with ISO/IEC 8583. An example of this field can be found in Appendix C.

* PKCS15Tokenl nf o. manuf act ur er | D: This optional field shall, when present, contain
identifying information about the application issuer, UTF8-encoded.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 54

PKCS15Tokenl nf o. | abel : This optional field shall, when present, contain identifying
information about the application.

PKCS15Tokenl nf o. t okenf | ags: This field contains information about the token per
se. Flags include: If the whole PKCS #15 application is read-only, if login (i.e.
authentication) is required before accessing any data, if the token supports pseudo-
random number generation and if the token conforms to the electronic identification
profile of this specification, specified in Annex B.

PKCS15Tokenl nf o. sel nfo: This optiona field is intended to convey information
about pre-set security environments on the card, and the owner of these environments.
The definition of these environmentsiis currently out of scope for this document.

PKCS15Tokenl nf o. recor dI nf o: This optional field has two purposes:

» to indicate whether the elementary files ODF, PrKDF, PUKDF, SKDF, CDF,
DODF and AODF are linear record files or transparent files (if the field is present,
they shall be linear record files, otherwise they shall be transparent files); and

» if they arelinear record files, whether they are of fixed-length or not (if they are of
fixed length, corresponding values in PKCS15Recordl nfo are present and not
equal to zero and indicates the record length. If some files are linear record files
but not of fixed length, then corresponding values in PKCS15Recor di nfo can
either be absent or set to zero.

PKCS15Tokenl nf o. support edAl gori t hns: The intent of this optional field is to
indicate cryptographic agorithms, associated parameters and operations supported by
the card. Ther ef er ence field of PKCS15Al gori t hm nf o is aunique reference that is
used for crossreference purposes from PrKDFs and PuKDFs. Vaues of the
support edCper ati ons field (conput e-checksum conput e-si gnature, verify-
checksum verify-signature, encipher, decipher, hash and derive-key)
identifies operations the token can perform with a particular algorithm.

8 ASN.1Module

This section includes all ASN.1 type, value and information object class definitions
contained in this document, in the form of the ASN.1 module PKCS15Framework.

PKCS15Fr amewor k {i so(1) menber-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-15(15) nodul es(1) pkcsl5-framework(1)}

- This nodul e has been checked for conformance with the ASN. 1 standard
- by the OSS ASN. 1 Tool s

DEFINITIONS I MPLICI T TAGS :: =

BEG N

- EXPORTS Al --
- Al types and values defined in this nodule is exported for use in other

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD

-- ASN. 1 nodul es.
| MPORTS

i nf ormati onFramewor k, aut henti cati onFramework, certificateExtensions
FROM Usef ul Definitions {joint-iso-itu-t(2) ds(5) nodul e(1)
useful Definitions(0) 3}

Nanme
FROM | nf or mat i onFr anewor k i nf or mat i onFr anewor k

Certificate, AttributeCertificate, CertificateSerial Nunber
FROM Aut henti cati onFranewor k aut henti cati onFr amewor k

Gener al Nares
FROM Certi fi cat eExt ensions certificat eExt ensi ons

ECPoi nt, Paraneters
FROM ANSI - X9- 62 {iso(1) nenber-body(2) us(840)
ansi - x962(10045) nodul e(4) 1}

Di ffi eHel | manPubl i cNunber, Domai nPar anet er s
FROM ANSI - X9-42 {iso(1l) nenber-body(2) us(840)
ansi - x942(10046) nodul e(5) 1}

QOOBCer t Hash
FROM PKI XCMP {iso(1) identified-organization(3) dod(6)
internet(1) security(5) nechanisnms(5) pkix(7) id-nod(0)

id-nmod-cnmp(9)};
-- Constants
pkcs15-ub-identifier I NTEGER ::= 32
pkcs15- ub-reference I NTECGER :: = 255
pkcs15- ub-i ndex I NTEGER :: = 65535
pkcs15- ub- | abel I NTEGER :: = pkcs15-ub-identifier
pkcs15-1 b-m nPi nLengt h INTEGER ::= 4
pkcs15- ub- mi nPi nLengt h INTEGER ::= 8
pkcs15- ub- st oredPi nLength | NTEGER :: = 64
pkcs15- ub-recordLengt h I NTEGER ::= 16383
-- (bject ldentifiers
pkcs1l5 OBJECT I DENTIFIER ::= { iso(1) menber-body(2) us(840) rsadsi(113549) pkcs(1)

pkcs-15(15)}

{pkcs15 1} -- Mddul es branch
{pkcsl5 2} -- Attribute branch
{pkcsl5 3} -- Content type branch

pkcs15-nmo OBJECT | DENTI FI ER ::
pkcs15-at OBJECT | DENTI FI ER ::
pkcs15-ct OBJECT | DENTI FIER ::

-- Basic types

PKCS15l dentifier ::= OCTET STRING (S| ZE (0. .pkcs15-ub-identifier))
PKCS15Ref erence ::= | NTEGER (0..pkcs15-ub-reference)

PKCS15Label ::= UTF8String (Sl ZE(O..pkcsl5-ub-Iabel))

PKCS15Ref er encedVal ue ::= CHO CE {
pat h PKCS15Pat h,
url PrintableString

}

PKCS15Pat h :: = SEQUENCE {
pat h OCTET STRI NG
i ndex I NTEGER (0. .pkcs15-ub-index) OPTI ONAL,
length [0] INTEGER (O0..pkcsl5-ub-index) OPTI ONAL
} (WTH COVMPONENTS {..., index PRESENT, |ength PRESENT}|
W TH COVPONENTS {..., index ABSENT, |ength ABSENT})

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD

PKCS15(hj ect Val ue { Type } ::= CHA CE {
i ndi rect PKCS15Ref erencedVal ue,
direct [0] Type
} (CONSTRAINED BY {-- if indirection is being used,
-- then it is expected that the reference points
-- either to an object of type -- Type -- or (key
-- case) to a card-specific key file --})

PKCS15Pat hOr Cbj ects {Cbj ect Type} ::= CHO CE {
pat h PKCS15Pat h,
obj ects [0] SEQUENCE OF (bj ect Type

-- Attribute types

PKCS15CommonChj ect Attri butes :: = SEQUENCE {
| abel PKCS15Label OPTI ONAL,
flags PKCS15CommonChj ect Fl ags OPTI ONAL,
authld PKCS151 dentifier OPTI ONAL,
... -- For future extensions
} (CONSTRAI NED BY {-- authld nmust be present in the IC card
-- case if flags.private is set. It nust equal an
-- authlDin one AuthRecord in the ACDF -- })

PKCS15CommonCbj ect Fl ags ::= BI T STRI NG {
private(0),
nodi fiable (1)

}

PKCS15CommonKeyAt tri butes ::= SEQUENCE {
iD PKCS151 denti fi er,
usage PKCS15KeyUsageF! ags,
native BOOLEAN DEFAULT TRUE,

accessFl ags PKCS15KeyAccessFl ags OPTI ONAL,
keyRef erence PKCS15Ref erence OPTI ONAL,

startDate General i zedTi me OPTI ONAL,
endDat e [0] GeneralizedTi ne OPTI ONAL,
... -- For future extensions
}
PKCS15KeyUsageFl ags ::= BI T STRI NG {
encrypt (0),
decrypt (1),
sign (2),
si gnRecover (3),
wrap (4,
unwr ap (5),
verify (6),
verifyRecover (7),
derive (8),
nonRepudi ation (9)
}
PKCS15KeyAccessFl ags ::= BIT STRING {
sensitive (0),
extractabl e (1),

al waysSensitive (2),
never Ext r act abl e(3),
| ocal (4)

}

PKCS15ConmonPri vat eKeyAttri butes ::= SEQUENCE {
subj ect Narre Nanme OPTI ONAL,
keyldentifiers [0] SEQUENCE OF PKCS15Keyl dentifier OPTI ONAL,
. -- For future extensions
}

PKCS15Keyl denti fier ::= SEQUENCE {
i dType PKCS15KEY-|DENTI FI ER &i d ({ PKCS15Keyl dentifiers}),

Copyright © 1999 RSA Laboratories.

56

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD

i dVal ue PKCS15KEY- | DENTI FI ER. &Val ue ({PKCS15Keyl dentifiers}{@dType})
}

PKCS15Keyl denti fi ers PKCS15KEY- | DENTI FIER :: = {
pkcs151 ssuer AndSeri al Nunber |
pkcs15Subj ect Keyl denti fi er |
pkcs151 ssuer AndSer i al Number Hash|
pkcs15Subj ect KeyHash|
pkcs151 ssuer KeyHash,
-- For future extensions

}

PKCS15KEY- | DENTI FI ER :: = CLASS {
& d | NTEGER UNI QUE,
&Val ue

} WTH SYNTAX {
SYNTAX &Val ue | DENTI FI ED BY & d
}

pkcs151 ssuer AndSer i al Nunber PKCS15KEY- | DENTI FI ER: : =
{ SYNTAX PKCS15- OPAQUE. &Type | DENTI FI ED BY 1}
-- As defined in RFC [Qvg]
pkcs15Subj ect Keyl denti fi er PKCS15KEY- | DENTI FI ER :: =
{ SYNTAX OCTET STRI NG | DENTI FI ED BY 2}
-- From x509v3 certificate extension
pkcs151 ssuer AndSeri al Nunber Hash PKCS15KEY- | DENTI FI ER : : =
{ SYNTAX OCTET STRI NG | DENTI FI ED BY 3}
-- Assumes SHA-1 hash of DER encoding of |ssuerAndSeri al Nurber
pkcs15Subj ect KeyHash PKCS15KEY- | DENTI FI ER :: =
{ SYNTAX OCTET STRI NG | DENTI FI ED BY 4}
-- Hash method defined in Section 7.
pkcs151 ssuer KeyHash PKCS15KEY- | DENTI FI ER :: =
{ SYNTAX OCTET STRI NG | DENTI FI ED BY 5}
-- Hash nmethod defined in Section 7.

PKCS15CommonPubl i cKeyAttri butes ::= SEQUENCE {
subj ect Nane Nane OPTI ONAL,
-- For future extensions

}
PKCS15CommonSecr et KeyAttri butes ::= SEQUENCE {
keyLen I NTEGER OPTI ONAL, -- keylength (in bits)
... -- For future extensions
}
PKCS15Keyl nf o {Paranet er Type, OperationsType} ::= CHO CE {

ref erence PKCS15Ref erence,

par ansAndOps SEQUENCE {
paraneters Par amet er Type,
supportedQperati ons Operati onsType OPT|I ONAL}

}
PKCS15ConmonCertificateAttri butes ::= SEQUENCE {
iD PKCS15l dentifier,
authority BOOLEAN DEFAULT FALSE,
requestld PKCS15Keyl denti fi er OPTI ONAL,
t hunbpri nt [0] PKCS1500BCert Hash OPTI ONAL,
-- For future extensions
}
PKCS15CommmonDat aCbj ect Attri butes :: = SEQUENCE {

appl i cati onName PKCS15Label OPTI ONAL,
applicationO D OBJECT | DENTI FI ER OPTI ONAL,
.. -- For future extensions
} (WTH COVPONENTS {..., applicati onName PRESENT} |
W TH COMPONENTS {..., applicationOD PRESENT})

PKCS15ConmonAut hent i cat i onObj ect Attri butes ::= SEQUENCE {
aut hl d PKCS15l dentifier,

Copyright © 1999 RSA Laboratories.

57

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD

... -- For future extensions
}
-- PKCS15 nj ects

PKCS15Chj ect {Cl assAttributes, SubC assAttributes, TypeAttributes} ::=

SEQUENCE {

commonChj ect Attri butes PKCS15CommonChj ect Attri but es,
classAttributes Cl assAttri butes,
subd assAttributes [0] Subd assAttributes OPTI ONAL,
typeAttributes [1] TypeAttributes
}

PKCS15(bj ects ::= CHA CE {
privat eKeys [0] PKCS15Pri vat eKeys,
publ i cKeys [1] PKCS15Publ i cKeys,
trust edPubl i cKeys [2] PKCS15Publ i cKeys,
secr et Keys [3] PKCS15Secr et Keys,
certificates [4] PKCS15Certificates,

trustedCertificates [5] PKCS15Certificates,
useful Certificates [6] PKCS15Certificates,
dat albj ect s [7] PKCS15Dat athj ect s,
aut hObj ect s [8] PKCS15Aut h(oj ect s,
... -- For future extensions

}

PKCS15Pr i vat eKeys
PKCS15Secr et Keys
PKCS15Publ i cKeys

PKCS15Pat hOr Obj ect s { PKCS15Pri vat eKey}
PKCS15Pat hOr (bj ect s { PKCS15Secr et Key}
PKCS15Pat hOr (bj ect s { PKCS15Publ i cKey}
PKCS15Certificates ::= PKCSl15Pat hOr Obj ects {PKCS15Certifi cate}
PKCS15Dat aChj ect s : = PKCS15Pat hOr Obj ect s { PKCS15Dat a}

PKCS15Aut hCoj ects :: = PKCS15Pat hOr Obj ect s { PKCS15Aut henti cati on}

PKCS15Pri vateKey ::= CHO CE {
pri vat eRSAKey PKCS15Pr i vat eKeyOhj ect {

PKCS15Pr i vat eRSAKeyAt t ri but es},
privat eECKey [0] PKCS15Privat eKeyChject {

PKCS15Pr i vat eECKeyAt t ri but es},
privateDHKey [1] PKCS15Privat eKeyChject {

PKCS15Pr i vat eDHKeyAt t ri but es},
privat eDSAKey [2] PKCS15Privat eKeyChj ect {

PKCS15Pr i vat eDSAKeyAt t ri but es},
pri vat eKEAKey [3] PKCS15Pri vat eKeyObj ect {

PKCS15Pri vat eKEAKeyAt tri but es},

-- For future extensions

}
PKCS15Pri vat eKeyObj ect {KeyAttributes} ::= PKCS150(bject {
PKCS15ConmonKeyAt tri but es,
PKCS15ConmonPri vat eKeyAt tri but es,
KeyAt tri but es}
PKCS15Pri vat eRSAKeyAttri butes ::= SEQUENCE {
val ue PKCS15(hj ect Val ue { PKCS15RSAPri vat eKey},
nodul usLength | NTEGER, -- nodulus length in bits, e.g. 1024
keyl nf o PKCS15Keyl nf o { PKCS15RSAPar anet er s,

PKCS15Publ i cKeyOper at i ons} OPTI ONAL,
-- For future extensions

}
PKCS15RSAPri vat eKey :: = SEQUENCE {
nodul us [0] INTEGER OPTIONAL, -- n
publ i cExponent [1] | NTEGER OPTI ONAL, -- e
privat eExponent [2] | NTEGER OPTI ONAL, -- d
primel [3] INTEGER OPTIONAL, -- p
pri me2 [4] INTEGER OPTIONAL, -- ¢
exponent 1 [5] INTEGER OPTIONAL, -- d nod (p-1)
exponent 2 [6] INTEGER OPTIONAL, -- d nod (g-1)
coefficient [7] INTEGER OPTIONAL -- inv(qg) nod p

Copyright © 1999 RSA Laboratories.

58

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD

} (CONSTRAI NED BY
{-- must be possible to reconstruct nodul us and
-- privateExponent fromselected fields --})

PKCS15Pri vat eECKeyAttri butes ::= SEQUENCE {
val ue PKCS15(hj ect Val ue {PKCS15ECPri vat eKey},
keyl nfo PKCS15Keyl nf o { PKCS15ECPar anet ers,
PKCS15Publ i cKeyOper ati ons} OPTI ONAL,
... -- For future extensions
}
PKCS15ECPri vat eKey ::= | NTEGER

PKCS15Pri vat eDHKeyAttri butes :: = SEQUENCE {
val ue PKCS15(hj ect Val ue {PKCS15DHPri vat eKey},
keyl nfo PKCS15Keyl nf o { PKCS15DHPar anet er s,
PKCS15Publ i cKeyOper ati ons} OPTI ONAL,
... -- For future extensions
}
PKCS15DHPri vat eKey ::= I NTEGER -- Diffie-Hell man exponent

PKCS15Pri vat eDSAKeyAttri butes ::= SEQUENCE {
val ue PKCS150bj ect Val ue { PKCS15DSAPri vat eKey},
keyl nfo PKCS15Keyl nfo { PKCS15DSAPar anet ers,
PKCS15Publ i cKeyOper ati ons} OPTI ONAL,
... -- For future extensions
}
PKCS15DSAPri vat eKey ::= | NTEGER

PKCS15Pri vat eKEAKeyAttri butes :: = SEQUENCE {
val ue PKCS150bj ect Val ue { PKCS15KEAPri vat eKey},
keyl nfo PKCS15Keyl nfo { PKCS15KEAPar anet ers,
PKCS15Publ i cKeyOper ati ons} OPTI ONAL,
-- For future extensions

}
PKCS15KEAPr i vat eKey ::= | NTEGER
PKCS15Publ i cKey ::= CHO CE {
publ i cRSAKey PKCS15Publ i cKeyOhj ect {

PKCS15Publ i cRSAKeyAt t ri but es},
publ i cECKey [0] PKCS15Publ i cKeyObhject {

PKCS15Publ i cECKeyAttri but es},
publ i cDHKey [1] PKCS15Publ i cKeyObj ect {

PKCS15Publ i cDHKeyAt tri but es},
publ i cDSAKey [2] PKCS15Publ i cKeyObj ect {

PKCS15Publ i cDSAKeyAt t ri but es},
publ i cKEAKey [3] PKCS15Publ i cKeyOhj ect {

PKCS15Publ i cKEAKeyAt t ri but es},

-- For future extensions

}
PKCS15Publ i cKeyOhj ect {KeyAttributes} ::= PKCS150hj ect {
PKCS15CommonKeyAt tri but es,
PKCS15ConmonPubl i cKeyAt tri but es,
KeyAttri but es}
PKCS15Publ i cRSAKeyAttri butes ::= SEQUENCE {
val ue PKCS15(hj ect Val ue { PKCS15RSAPubl i cKey},
nodul usLength | NTEGER, -- nmodulus length in bits, e.g. 1024
keyl nf o PKCS15Keyl nf o { PKCS15RSAPar anet er s,
PKCS15Publ i cKeyOper at i ons} OPTI ONAL,
... -- For future extensions
}
PKCS15RSAPubl i cKey :: = SEQUENCE {
nodul us INTEGER, -- n

Copyright © 1999 RSA Laboratories.

59

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD

publ i cExponent |INTEGER -- e
}
PKCS15Publ i cECKeyAttri butes ::= SEQUENCE {

val ue PKCS150bj ect Val ue {PKCS15ECPubl i cKey},
keyl nfo PKCS15Keyl nf o { PKCS15ECPar anet ers,
PKCS15Publ i cKeyOper ati ons} OPTI ONAL,
-- For future extensions

}
PKCS15ECPubl i cKey :: = PKCS15ECPoI nt
PKCS15Publ i cDHKeyAttri butes :: = SEQUENCE {

val ue PKCS150bj ect Val ue {PKCS15DHPubl i cKey},
keyl nfo PKCS15Keyl nf o { PKCS15DHPar anet er s,
PKCS15Publ i cKeyOper ati ons} OPTI ONAL,
-- For future extensions

}
PKCS15DHPubl i cKey :: = PKCS15Di f fi eHel | manPubl i cNurber
PKCS15Publ i cDSAKeyAttri butes ::= SEQUENCE {

val ue PKCS15(bj ect Val ue {PKCS15DSAPubl i cKey},
keyl nfo PKCS15Keyl nf o { PKCS15DSAPar anet ers,
PKCS15Publ i cKeyOper ati ons} OPTI ONAL,
-- For future extensions

}
PKCS15DSAPubl i cKey ::= | NTEGER
PKCS15Publ i cKEAKeyAttri butes ::= SEQUENCE {

val ue PKCS15(hj ect Val ue {PKCS15KEAPubI i cKey},
keyl nfo PKCS15Keyl nfo { PKCS15KEAPar anet ers,
PKCS15Publ i cKeyOper ati ons} OPTI ONAL,
-- For future extensions

}
PKCS15KEAPuUbI i cKey :: = | NTEGER
PKCS15Secret Key ::= CHO CE {

generi cSecr et Key PKCS15Secr et KeyObj ect

{ PKCS15Ceneri cSecr et KeyAttri but es},
rc2key [0] PKCS15Secr et KeyOhj ect

{ PKCS15Ceneri cSecr et KeyAttri but es},
rcdkey [1] PKCS15Secr et KeyOhj ect

{ PKCS15Ceneri cSecr et KeyAttri but es},
desKey [2] PKCS15Secr et KeyOhj ect

{ PKCS15Ceneri cSecr et KeyAttri but es},
des2Key [3] PKCS15Secr et KeyOhj ect

{ PKCS15Ceneri cSecr et KeyAttri but es},
des3Key [4] PKCS15Secr et KeyOhj ect

{ PKCS15Ceneri cSecr et KeyAttri but es},
cast Key [5] PKCS15Secr et KeyOhj ect

{ PKCS15Ceneri cSecr et KeyAttri but es},
cast 3Key [6] PKCS15Secr et KeyObj ect

{ PKCS15Generi cSecret KeyAttri but es},
cast 128Key [7] PKCS15Secr et KeyObj ect

{ PKCS15Generi cSecr et KeyAttri but es},
r c5Key [8] PKCS15Secr et KeyObj ect

{ PKCS15Generi cSecret KeyAttri but es},
i deaKey [9] PKCS15Secr et KeyObj ect

{ PKCS15Generi cSecret KeyAttri but es},
ski pj ackKey [10] PKCS15Secr et KeyObj ect

{ PKCS15Generi cSecret KeyAttri but es},
bat onKey [11] PKCS15Secr et KeyObj ect

{ PKCS15CGeneri cSecret KeyAttri but es},
j uni per Key [12] PKCS15Secr et KeyObj ect

{ PKCS15Ceneri cSecr et KeyAttri but es},
r c6Key [13] PKCS15Secr et KeyObj ect

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD

{ PKCS15Ceneri cSecr et KeyAttri but es},
ot her Key [14] PKCS15C her Key,
... -- For future extensions
}

PKCS15Secr et KeyObhj ect {KeyAttributes} ::= PKCS150bj ect {
PKCS15CommonKeyAt tri but es,
PKCS15ConmonSecr et KeyAt t ri but es,
KeyAttri but es}

PKCS15Generi cSecret KeyAttributes ::= SEQUENCE {
val ue PKCS15(hj ect Val ue { OCTET STRING },
... -- For future extensions
}

PKCS15C her Key :: = SEQUENCE {
keyType OBJECT | DENTI FI ER,
keyAttr PKCS15Secret KeyObj ect {PKCS15Generi cSecret KeyAttri but es}

}
PKCS15Certificate ::= CHO CE {
x509Certificate PKCS15Certifi cat eChject {

PKCS15X509CertificateAttri butes},
x509Attri buteCertificate [0] PKCS15CertificateChject {
PKCS15X509At tri buteCertificateAttri butes},

spki Certificate [1] PKCS15Certifi cat eChject
PKCS15SPKI CertificateAttri butes},
pgpCertificate [2] PKCS15CertificateChject {
PKCS15PGPCer ti fi cateAttri butes},
wtlsCertificate [3] PKCS15CertificateChject {
PKCS15WILSCertificateAttri butes},
x9-68Certificate [4] PKCS15CertificateChject {

PKCS15X9- 68CertificateAttri butes},
-- For future extensions

}
PKCS15CertificateChject {CertAttributes} ::= PKCS15Chject ({
PKCS15CommonCerti ficat eAttri butes,
NULL,
CertAttributes}
PKCS15X509CertificateAttri butes ::= SEQUENCE {
val ue PKCS150hj ect Val ue { PKCS15X509Certificate },
subj ect [0] Name OPTI ONAL,
i ssuer [1] Name OPTI ONAL,

seri al Nunmber CertificateSerial Nunmber OPTI ONAL,
-- For future extensions

}
PKCS15X509At tri buteCertificateAttributes ::= SEQUENCE {
val ue PKCS15(hj ect Val ue { PKCS15Attri buteCertificate },
i ssuer Gener al Names OPTI ONAL,
serial Nunmber CertificateSerial Number OPTI ONAL,
attr Types [0] SEQUENCE OF OBJECT | DENTI FI ER OPTI ONAL,
... -- For future extensions
}
PKCS15SPKI CertificateAttributes ::= SEQUENCE {

val ue PKCS15(bj ect Val ue { PKCS15- OPAQUE. &Type 1},
... -- For future extensions
}

PKCS15PGPCertificateAttributes ::= SEQUENCE {
val ue PKCS15(bj ect Val ue { PKCS15- OPAQUE. &Type 1},
... -- For future extensions
}

PKCS15WILSCertificateAttributes ::= SEQUENCE {

Copyright © 1999 RSA Laboratories.

61

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD

val ue PKCS15(bj ect Val ue { PKCS15- OPAQUE. &Type 1},
... -- For future extensions
}

PKCS15X9- 68CertificateAttributes ::= SEQUENCE {
val ue PKCS15(bj ect Val ue { PKCS15- OPAQUE. &Type 1},
-- For future extensions

}
PKCS15Data ::= CHO CE {
opaqueDO PKCS15Dat athj ect { PKCS15Qpaque},
ext er nal | DO [0] PKCS15Dat athj ect {PKCS15Ext ernal | DG},
oi dDO [1] PKCs15Dat aChj ect {PKCS15G dDG,
... -- For future extensions
}
PKCS15Dat aChj ect {Dat aChj ect Attri butes} ::= PKCS15Chject {
PKCS15CommonDat aChj ect Attri but es,
NULL,
Dat aCbj ect Attri but es}
PKCS150paque :: = PKCS15Mnj ect Val ue { PKCS15- OPAQUE. &Type}
PKCS15Ext ernal | DO : : = PKCS15Mhj ect Val ue { PKCS15- OPAQUE. &Type}

(CONSTRAI NED BY {-- Al data objects nust be defined in accordance
-- with ISOIEC 7816-6 --})

PKCS150 dDO : : = SEQUENCE {
id OBJECT | DENTI FI ER,
val ue PKCS15(bj ect Val ue { PKCS15- OPAQUE. &Type}

}

PKCS15Aut henti cation ::= CHO CE {
pi n PKCS15Aut henti cati onCbj ect {PKCS15Pi nAttri but es},
. -- For future extensions, e.g. bionetric authentication

-- objects
}
PKCS15Aut hent i cati onObj ect {Aut hCbj ect Attributes} ::= PKCS150bj ect {
PKCS15CommonAut hent i cati onCbj ect Attri but es,
NULL,
Aut hCbj ect At tri but es}
PKCS15Pi nAttri butes ::= SEQUENCE {
pi nFl ags PKCS15Pi nFl ags,
pi nType PKCS15Pi nType,
m nLengt h I NTEGER

(pkcs15-1 b-m nPi nLengt h. . pkcs15- ub- m nPi nLengt h),
storedLength | NTEGER
(pkcs15-1 b-m nPi nLengt h. . pkcs15- ub- st or edPi nLengt h),

maxLengt h | NTEGER OPTI ONAL,
pi nReference [0] PKCS15Ref erence OPTI ONAL,
padChar OCTET STRING (S| ZE(1)) OPTI ONAL,
| ast Pi nChange GeneralizedTi me OPTI ONAL,
pat h PKCS15Pat h OPTI ONAL,
... -- For future extensions
}
PKCS15Pi nFl ags ::= BI T STRI NG {
case-sensitive (0),
| ocal (1),

change-di sabled (2),
unbl ock- di sabl ed (3),
initialized (4),
needs- paddi ng (5),
unbl ocki ngPi n (6),

soPin (7),
di sabl e-al | oned (8)
} (CONSTRAI NED BY { -- 'unbl ockingPin’ and ’'soPIN cannot both

Copyright © 1999 RSA Laboratories.

62

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD

-- be set --})

PKCS15Pi nType ::= ENUMERATED {bcd, ascii-nuneric, utf8,
-- bcd = one nibble contains one digit
-- ascii-numeric = one byte contains one ASCI| digit
-- utf8 = password is stored in UTF8 encodi ng

PKCS15Tokenl nfo ::= SEQUENCE {
ver si on I NTEGER {v1(0)} (vi,...),
seri al Nunmber OCTET STRI NG
manuf acturer| D PKCS15Label OPTI ONAL,
| abel [0] PKCsl15Label OPTI ONAL,
t okenf | ags PKCS15TokenFl ags,
sel nfo SEQUENCE OF PKCS15Securit yEnvironment| nfo OPTI ONAL,
recordl nfo [1] PKCS15Recordl nfo OPTI ONAL,

supportedAl gorithms [2] SEQUENCE OF PKCS15Al gorithm nfo OPTI ONAL,

... -- For future extensions

} (CONSTRAI NED BY { -- Each PKCS15Al gorithml nfo.reference val ue
-- nust be unique --})

PKCS15TokenFl ags ::= BI T STRI NG {
readonly (0),
| ogi nRequired (1),
prnCeneration (2),
ei dConpl i ant (3)

}
PKCS15Securi t yEnvi ronment I nfo :: = SEQUENCE {
se I NTEGER (0. .127),

owner OBJECT | DENTI FI ER,
... -- For future extensions
}

PKCS15Recordl nfo ::= SEQUENCE {
oDFRecor dLengt h [0] I NTEGER (O..pkcsl5-ub-recordLength) OPTI ONAL,
pr KDFRecordLengt h [1] | NTEGER (0. . pkcsl15-ub-recordLength) OPTI ONAL,
puKDFRecordLength [2] | NTEGER (0. .pkcsl5-ub-recordLength) OPTI ONAL,
sKDFRecordLength [3] | NTEGER (0..pkcsl1l5-ub-recordLength) OPTI ONAL,
cDFRecor dLengt h [4] I NTEGER (O..pkcsl5-ub-recordLength) OPTI ONAL,
dODFRecordLength [5] | NTEGER (0..pkcs15-ub-recordLength) OPTI ONAL,
aODFRecordLength [6] | NTEGER (0..pkcs15-ub-recordLength) OPTI ONAL

}
PKCS15AI gorithm nfo ::= SEQUENCE {
reference PKCS15Ref er ence,
al gorithm PKCS15- ALGORI THM &i d({ PKCS15Al gori t hnfSet }),
paraneters PKCS15- ALGORI THM &Par anet er s({ PKCS15Al gori t hnSet } { @l gori t hn}),

support edOper ati ons PKCS15- ALGORI THM &Oper at i ons({ PKCS15Al gorit hnSet }{ @l gorithnt)
}

PKCS15- ALGORI THM : : = CLASS {
& d | NTEGER UNI QUE,
&Par anet er s,
&per ati ons PKCS15QCper ati ons
} WTH SYNTAX {
PARAMETERS &Par anet ers OPERATI ONS &Oper ations | D & d}

pkcs15-al g- nul | PKCS15- ALGORI THM : : = {
PARAMETERS NULL OPERATI ONS {{gener ate-key}} 1D -1}
pkcs15-al g-rsa PKCS15- ALGORI THM : : = {

PARAMETERS PKCS15RSAPar anet er s OPERATI ONS
{ PKCS15Publ i cKeyQper ati ons} | D 0}

pkcs15- al g- dsa
PARAMETERS
{ PKCS15Publ

pkcs15- al g- dh
PARAMETERS
{ PKCS15Publ

PKCS15- ALGORI THM : : = {
PKCS15DSAPar anet ers OPERATI ONS
i cKeyOperations} |1D 1}

PKCS15- ALGORI THM : : = {
PKCS15DHPar anet ers OPERATI ONS
i cKeyOperations} |ID 2}

Copyright © 1999 RSA Laboratories.

63

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD

pkcs15-al g-ec PKCS15- ALGORI THM : : = {
PARAMETERS PKCS15ECPar aneters OPERATI ONS
{ PKCS15Publ i cKeyOperations} 1D 3}

pkcs15-al g- kea PKCS15- ALGORI THM : : = {
PARAMVETERS PKCS15KEAPar anet ers OPERATI ONS
{ PKCS15Publ i cKeyOperati ons} 1D 5}

PKCS15Al gori t hnSet PKCS15- ALGORI THM : : = {

pkcs15-al g- nul | |

pkcs15-al g-rsa |

pkcs15-al g-ec |

pkcs15-al g-dh |

pkcs15-al g-dsa |

pkcs15-al g- kea,

... -- For future extensions

}
PKCS15Publ i cKeyOperati ons ::= PKCS15Qperati ons
PKCS15Cperations ::= BI T STRI NG {
conput e-checksum (0), -- H Wconputation of checksum
conpute-signature (1), -- H Wconputation of signature
verify-checksum (2), -- HWverification of checksum
verify-signature (3), -- HWverification of signature
enci pher (4), -- HWencryption of data
deci pher (5), -- HWdecryption of data
hash (6), -- H Whashing
gener at e- key (7) -- HWkey generation
}
PKCS1500BCer t Hash ::= O0BCertHash -- See | ETF RFC 2510
PKCS15RSAPar anet ers ::= NULL
PKCS15ECPar aneters ::= Paraneters -- See ANSI X9.62
PKCS15DHPar aneters ::= Donmai nParanmeters -- See ANSI X9.42
PKCS15DSAPar anet ers ::= Donmai nParanmeters -- See ANSI X9.42
PKCS15KEAPar anet ers ::= Domai nParameters -- See ANSI X9.42
PKCS15ECPoi nt ;1= ECPoint -- See ANSI X9.62
PKCS15Di ffi eHel | manPubl i cNunber ::= DiffieHel | manPubl i cNumber -- See ANSI X9.42
PKCS15X509Certificate ::= Certificate -- See X 509
PKCS15AttributeCertificate ::= AttributeCertificate -- See X 509
PKCS15- OPAQUE :: = TYPE- | DENTI FI ER
-- Msc
PKCS15DI RRecord ::= [APPLI CATI ON 1] SEQUENCE {

ai d [APPLI CATI ON 15] OCTET STRI NG,

| abel [APPLI CATI ON 16] UTF8String OPTI ONAL,
path [APPLI CATION 17] OCTET STRI NG

ddo [APPLI CATI ON 19] PKCS15DDO OPTI ONAL

}

PKCS15DDO : : = SEQUENCE {
oi d OBJECT | DENTI FI ER,
odf Pat h PKCS15Pat h OPTI ONAL,

t okenl nfoPath [0] PKCS15Pat h OPTI ONAL,
unusedPat h [1] PKCS15Pat h OPTI ONAL,
. -- For future extensions

}

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 65

PKCS15UnusedSpace :: = SEQUENCE {
pat h PKCS15Pat h (W TH COVMPONENTS
{..., index PRESENT, |ength PRESENT}),
aut hl d PKCS15!1 dentifier OPTI ONAL

}
END

9 Intellectual property considerations

RSA Data Security makes no patent claims on the general constructions described in this
document, although specific underlying techniques may be covered.

RC2 and RC5 are trademarks of RSA Data Security.

License to copy this document is granted provided that it is identified as “RSA Data
Security, Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

RSA Data Security makes no representations regarding intellectual property claims by
other parties. Such determination is the responsibility of the user.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 66

Appendix A: File Access Conditions (I nfor mative)

A.1 Scope

This appendix is only applicable to IC card implementations.

A.2 Background

Since this document is intended to be independent of particular IC card brands and
models, we define “generic” IC card access methods which should be straightforward to
map to actual IC card operating system-native commands (assuming the card is an
ISO/IEC 7816-4 compliant IC card).

A.3 Read-Only and Read-Write cards

Access conditions for files in the PKCS15 application can be set up differently depending
on if the application is to be read-only or read-write. A read-only card might be desired
for high-security purposes, for example when it has been issued using a secure issuing
process, and it is to be certain that it can not be manipulated afterwards.

The following is a table of different possible access methods, which is a superset of the
PKCS15Qper at i ons type. These are generic methods which should be possible to map to
all different IC card types (sometimes the mapping might turn out to be a “No-Op”,
because the card does not support any similar operation). The exact access methods, and
their meaning, varies for each IC card type. In the table, a **" indicates that the access
method is only relevant for files containing keys. These methods are abbreviated to
‘CRYPT’ in Table5.

Filetype Access method M eaning
DF Create Allows new files, both EFs and DFs to be created in the DF.
Del ete Allows files in the DF to be deleted. Relevant only for cards
which support deletion.
EF Read Itisallowed to read the file’s contents.
Updat e It is allowed to update the file’s contents.
Append It is allowed to append information to the file (usually oply
applicable to linear record files).
Conput e * The contents of the file can be used when computing a

checksum

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 67

checksum

Conput e * The contents of the file can be used when computing a

Verify * The contents of the file can be used when verifying a

checksum checksum

Verify * The contents of the file can be used when verifying a

Enci pher * The contents of the file can be used in an enciphering

. operation

Deci pher * The contents of the file can be used in a deciphering

operation

Table 3: File access methods

Note that it is the directory’s access methods, and not the files’, which decide if files in
the directory are allowed to be created or deleted.

Each access method can have the following conditions. These are also generic and should
be possible to implement on all IC card types.

Type M eaning

NEV The operation is never allowed, not even after cardholder verification.

ALW The operation is always allowed, without cardholder verification.

cHv The operation is allowed after a successful card holder verification.

SYS The operation is allowed after a system key presentation, typically available only to the card
issuer (The Security Officer case), e XTERNAL AUTHENTI CATE’

Table 4: Possible access conditions

The following access conditions are recommended for files related to the PKCS #15
application™:

File DF R/O card R/W card

MF X Create: SYS Create: SYS
Del ete: NEV Del ete: SYS

DIR Read: ALW Same as for R/O card.
Update: SYS
Append: SYS

PIN files Read: NEV Read: NEV
Update: NEV Update: CHV
Append: NEV Append: NEV

8 A “" in the table stands for “or”, i.e. the card issuer may choose any Boolean expression of available
options. E.g. UPDATE of an EF(ODF) on a R/W card may be permitted only after correct cardholder
verification (‘'CHV’) AND an external authentication (‘'SYS’).

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 68

PKCS15 X Create: SYS Create: CHV SYS
Del ete: NEV Delete: CHV | SYS
Tokenlnfo Read: ALW Same as for R/O card.
Update: NEV
Append: NEV
ODF Read: ALW Read: ALW
Update: NEV Update: SYS | NEV
Append: SYS | NEV Append: SYS | NEV
AODFs Read: ALW Read: ALW
Update: NEV Update: CHV | SYS | NEV
Append: NEV Append: CHV | SYS | NeV
PrkDFs, Read: ALW | CHV Read: ALW | CHV
Update: NEV Update: CHV
Eggf;‘dsm':s' Append: SYS | NEV Append: CHV
DODFs
Trusted CDFs Read: ALW | CHV Read: ALW | CHV
Updat e: NEV Update: SYS | NEV
Trusted PuKDFs Append: SYS | NEV Append: SYS | NEV
Key files" Read: NEV Read: NEV
Update: NEV Update: CHV | SYS | NEV
Append: NEV Append: CHV | SYS | NEV
Crypt: CHV Crypt: CHV
Other EFs Read: ALW | CHV Read: ALW | CHV
Update: NEV Update: CHV
Append: SYS | NEV Append: CHV

Table 5: Recommended file access conditions

The difference between a read-only and a read-write (R-W) card is basically as follows.
For an R-W card, new files can be created (to allow addition of new objects) and some
EFs (e. g. CDFs only containing references to public objects) are alowed to be updated
(to allow adding info about new objects) after correct cardholder verification. It is aso
possible to replace files on an R-W card.

It is recommended that all cards be personalized with the read-write access control
settings, unless they are issued for an environment with high security requirements.

! Files containing private or secret keys and the token supports crypto-related commands for these files

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 69

Appendix B: An Electronic I dentification Profile of PK CS #15
(Normative)

This section describes a profile of PKCS #15 suitable for electronic identification (EID)
purposes and requirements for it. Implementations may claim compliance with this
profile. The profile includes requirements both for tokens and for host-side applications
making use of EID tokens.

B.1 PKCS#15 objects

Private Keys: A PKCS #15 token issued for EID purposes should contain at least two

private keys, of which one should be used for digital signature purposes only. At least

one of the other keys should have the value ‘decrypt’ set in its key usage flags.
Authentication objects or encryption must protect all private keys. On tokens
supporting on-chip digital signature operations, it is recommended that the signature-
only key be protected from modifications. It must be protected from read-access.
Usage of the signature-only key should furthermore require tokenholder verification
with an authentication object used only for this key. The key length must be sufficient
for intended purposes (e.g. 1024 bits or more in the RSA case and 160 bits or more in
the EC case, assuming all other parameters has been chosen in a secure manner).

Allowed private key types for this profile are:
» RSA keys

» Elliptic Curve keys (This profile places no restrictions on the domain parameters
other than the ones mentioned above)

* DSA keys

Host-side applications claiming full conformance to this profile must recognize all
these key types and be able to use them. Tokens must contain keys of at least one of
these types.

Secret Keys: No requirements. Objects of this type may or may not be present on the
token, depending on the application issuer’s discretion. There is no requirement for
host-side applications to handle these keys.

Public Keys: No requirements. Objects of this type may or may not be present on the
token, depending on the application issuer’s discretion. There is no requirement for
host-side applications to handle these keys.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 70

B.2

Certificates: For each private key at least one corresponding certificate should be
stored in the token. The certificates must be of type PKCS15X509Certificate. If an
application issuer stores CA certificates on a token which supports the ISO/IEC 7816-
4 logical file organization, and which has suitable file access mechanisms, then it is
recommended that they are stored in a protected file. Thisfile shall be pointed to by a
CDF file which is only modifiable by the token issuer (or not modifiable at all). This
implies usage of thetrustedCertifi cat es choice in the PKCS150bj ect s type. User
certificates for which private keys exist on the token should be profiled in accordance
with IETF RFC 2459. Host-side applications are required to recognize and be able to
use the PKCS15X509Cer t i fi cat e type.

Data objects: No requirements. Objects of this type may or may not be present on the
token, depending on the application issuer’s discretion.

Authentication objects: As follows from the description above, in the case of an IC
card capable of protecting files with authentication objects, at least one authentication
object must be present on the card, protecting private objects. As stated above, a
separate authentication object should be used for the signature-only key, if such a key
exist. Any use of the signature-only private key shall require a new user
authentication, if technically possible. In the case of PIN cBdesy positive
verification of one PIN code shall not enable the use of security services associated
with another PIN code. Consecutive and incorrect verifications of a certain user PIN
code shall block all security services associated with that PIN code. It is left to the
application issuers to decide the number of consecutive incorrect verifications that
triggers a blocking of the token.

PINs must be at least 4 characters (BCD, UTF8 or ASCII) long.

When a PIN is blocked through after consecutive incorrect PIN verifications, the PIN
may only be unblocked through a special unblocking procedure, defined by the
application issuer.

Other files

Use of an EF(UnusedSpace) is recommended if the tokenholder is allowed to update the
contents of the PKCS #15 application.

18 Future versions of this profile may also include support for biometric authenti cation methods.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 71

B.3 Constraintson ASN.1 types

Unless otherwise mentioned, conforming applications are required to recognize™ and
parse all oPTI ONAL fields. The following constraints applies for tokens and applications
claiming conformance to this EID profile:

* PKCS15CommonQbj ect Attri but es. | abel must be present for al certificate objects.
e PKCS15ComonKeyAttri but es. start Dat e must not be present.

* PKCS15ComonKeyAttri but es. endDat e must not be present.

e PKCS15ComonPri vat eKeyAttri but es. subj ect Name must not be present.

* PKCS15CommonPrivat eKeyAttributes. keyl dentifiers must be recognized by
host-side applications but need not be interpreted.

* PKCS15ComonCertificateAttributes.requestl D must be recognized by host-
side applications but need not be interpreted.

* PKCS15X509CertificateAttributes.subject mustnot be present.

e PKCS15X509CertificateAttributes.issuer mustnot be present.

* PKCS15X509CertificateAttributes.serial Number must not be present.

* PKCS15PinAttributes.|astPinChange must be recognized by host-side
applications but need not be interpreted.

B.4 Filerelationshipsin thelC card case

The purpose of the following figure is to show the relationship between certain files
(EF(ODF), EF(PrKDF), EF(AODF) and EF(CDF)) in the DF(PKCS15) directory.

Note that it is possible for PKCS15Pat h pointers in EF(ODF) to point to locations inside

the EF(ODF) itself. For example, if a card issuer intends to ‘lock’ EF(ODF), EF(PrkKDF)
and EF(AODF), they can all be stored within the same (physical) EF, EF(ODF). The
advantage of this is that feweELECT’ and ‘READ’ operations need to be done in order to

read the contents of these files. There should be no need for host side applications to be
modified due to this fact, however, since ordinary path pointers should be used anyway.

19 °Recognize’ means "being able to proceed also when the field is present, but not necessarily being able to
interpret the field's contents.”

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD

72

AODF \’
Er[I;FDF \ .-®| PIN 1info
7’ .
3 ;//, PIN 2 info
EF(ODF) - Key 1info —
RO Key 2info -7 EF(AGDF)
- - _I— -
/’ - ! .
B¢ ! EF(PrKDF) Private key 1
{ \
\ S~
\
N Cert 1 info Private key 2
S o == Cert 2info
EF(CDF
Certl ()

Cert 2

Figure 15: IC card file relationships in DF(PKCS15). Dashed arrows indicate cross-references.

B.5 Access Control Rules

Private keys must be private objects, and should be marked as ‘sensitive’. Files, which
contain private keys, should be protected against removal and/or overwriting. Using the
definitions in Appendix A, the following access conditions shall be set for files in the
PKCS #15 application directory (as in Appendix A, a “|” in the table stands for “or”, i.e. a
card issuer is free to make any choice, including Boolean expressions of available

options).

File Access Conditions, R-O token Access Conditions. R-W token

ME Create: SYS Create: SYS
Del ete: NEV Del ete: SYS

EF(DIR) Read: ALW Read: ALW
Update: SYS Update: SYS
Append: SYS Append: SYS

PIN files Read: NEV Read: NEV
Update: NEV Update: CHV
Append: NEV Append: NEV

DF(PKCS15) Create: SYS Create: CHV | SYS
Del ete: NEV Del ete: SYS

EF(Tokeninfo) Read: ALW Read: ALW
Update: NEV Update: NEV
Append: NEV Append: NEV

EF(ODF) Read: ALW Read: ALW
Update: NEV Update: SYS
Append: NEV Append: SYS

AODFs Read: ALW Read: ALW
Update: NEV Update: NEV
Append: NEV Append: CHV | SYS

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD

73

PrkDFs, PUKDFs, | Read: ALW | CHV Read: ALW| CHV
KDFs. CDF Update: NEV Update: CHV | SYS | NEV
SROFS, CDFsand | opend: SYS | NEV Append: SYS | CHV
Trusted CDFs Read: ALW | CHV Read: ALW | CHV
Update: NEV Update: SYS | NeV
Append: SYS | NEV Append: SYS | NEV
Key files (see Read: NEV Read: NEV
footnote for Updat e: NEV Update: CHV | SYS | NEV
Tabl e 5) Append: NEV Append: CHV | SYS | NeV
Cypt: CHV Crypt: CHV
Other EFs in the Read: ALW | CHV Read: ALW | CHV
PKCS15 director Updat e: NEV Update: CHV | SYS | NEV
ey | pppend: SYS | NEV Append: CHV | SYS | NEV
Crypt: CHV (when applic.) [Cypt: CHV (when applic.)

Table 6: File access conditions for the EID profile of PKCS #15

Note: If an application issuer wants to protect an object directory file with an
authentication object, then by default the first authentication object in EF(AODF) shall be
used. Obviously, EF(ODF) and EF(AODF) cannot be protected in this manner.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 74

Appendix C: Examples (Informative)

Note that, similar to Section 6.1, when this section talks about or describes “contents’ of

IC card files, this is just a shorthand notation for “the contents of files as it appears to
someone using standard IC card commands in accordance with ISO/IEC 7816-4 to access
them”.

All examples are shown both in the formal value notation defined in ISO/IEC 8824-1 and
in DER encoding.

C.1 Exampleof EF(DIR)

Example contents for a PKCS #15 application template on an IC card using indirect
application selection. A non-standard file path for EF(UnusedSpace) is defined,
/ 3FO0/ 5015/ 4320.

Value notation:

{
aid " A000000063504B43532D3135’ H,

| abel "RSA DSI", -- UTF8 Encoded
path ' 3F005015' H,
ddo {

oid {iso(l) nenber-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-15(15) applications(4) eid(1)},
— Example OID, not for actual use
unusedPath {
path '3F0050154320'H

}
}
}

DER encoding:

61354F0C A0000000 63504B43 532D3135 50075253 41204453 4951043F 00501573
16060A2A 864886F7 0DO10F04 01A10804 063F0050 154320

C.2 Example of awhole PKCS15 application

The IC card in this example has on-chip support for RSA and DES-EDE-CBC agorithm
computation in addition to pseudo-random number generation. It is assumed that this
information can be deduced from the card’'s ATR string. As a consequence of this, the
TokenInfo file contains nGupportedAl gorithns field. The PKCS15 application is
profiled for use in an electronic identification environment, in compliance with Appendix

B, and has two RSA key pairs and two certificates. One private key is for digital signature
purposes only and is protected with a separate authentication object (a PIN). There is also
a private data object belonging to an application named ‘APP’. The total overhead for

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 75

storing the PKCS #15 relevant information is in this case 374 bytes, but without the data
object belonging to the ‘APP’ application it would have been 333 bytes.

C.2.1 EF(TokenInfo)

Value notation:

{
version vl,
seri al Nunber ' 159752222515401240' H,
manuf acturer! D "Acne, Inc.",
tokenfl ags {prnCGeneration, eidConpliant}
}

DER encoding:
301E0201 00040915 97522225 15401240 0C0A4163 6D652C20 496E632E 03020430

Thetotal size of the datais 32 bytes.

C.2.2 EF(ODF)

Value notation:

{
privateKeys : path : {
path " 4401'H -- Reference by file identifier
H
certificates : path : {
path '4402'H -- Reference by file identifier
H
dataCbjects : path : {
path '4403'H -- Reference by file identifier
}1
aut hObjects : path : {
path '4404'H -- Reference by file identifier
}
}

DER encoding (as specified, outerms=sQUENCE OF omitted):

A0063004 04024401 A4063004 04024402 A7063004 04024403 A8063004 04024404

As can be seen, the ODF simply consists of four records, and the total size of the data is
32 bytes.

C.2.3 EF(PrKDF)

Value notation:

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 76

{
privat eRSAKey : {
commonObj ect Attri butes {
| abel "KEY1",
flags {private},
authld "01'H
1
classAttributes {
iD " 45’ H,
usage {decrypt, sign, unw ap},
-- By default 'native RSA key
subC assAttributes {
keyldentifiers {
i dType 4, -- Subject key hash
i dVal ue OCTET STRING : '4321567890ABCDEF H
-- Faked val ue
}
}
b
typeAttributes {
value indirect : path : {
path "4B01'H -- Reference by file identifier
H
nmodul usLengt h 1024
}
H
privat eRSAKey : {
commonObj ect Attri butes {
| abel "KEY2",
flags {private},
authld '02'H
classAttributes {
iD " 46" H,
usage {nonRepudi ation, sign},
-- By default ’'native RSA key
H
subC assAttributes {
keyldentifiers {
i dType 4, -- Subject key hash
i dval ue OCTET STRING : ' 1234567890ABCDEF H
-- Faked val ue
}
}
},
typeAttributes {
value indirect : path : {
path "4B02'H -- Reference by file identifier
H
nmodul usLengt h 1024
}
}
}

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 77

DER encoding (as specified, outermost SEQUENCE OF omitted):

303B300D 0C044B45 59310302 07800401 01300704 01450302 0264A013 3011A00F
300D0201 04040843 21567890 ABCDEFA1 0C300A30 0404024B 01020204 00303C30
0D0C044B 45593203 02078004 01023008 04014603 03062040 A0133011 AOOF300D
02010404 08123456 7890ABCD EFA10C30 0A300404 024B0202 020400

The content of files 3F00/5015/4B01 and 3F00/5015/4B02 is completely card-specific.
Operations possible to perform with keys in these files may either be deduced by looking
at the contents of the Tokeninfo file or by external knowledge of the card in question
(ATR). The size of the data is 123 bytes (one record of 61 bytes and one record of 62

bytes).

C.2.4 EF(CDF)

Value notation:

{
x509Certificate : {

commonObj ect Attri butes {
| abel " CERT1",
flags {}, -- Not private, read-only

classAttributes {
i D "45'H
-- By default not an authority
H
typeAttributes {
value indirect : path : {
path '4331'H -- Reference by file identifier
}

}
}1
x509Certificate : {
commonObj ect Attri butes {
| abel " CERT2",
flags {}, -- Not private, read-only

ci assAttributes {
iD "46’ H
-- By default not an authority

}1
typeAttributes {
value indirect : path : {
path '4332'H -- Reference by file identifier
}

}

DER encoding (as specified, outermost SEQUENCE OF omitted):

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 78

301B300A 00054345 52543103 01003003 040145A1 08300630 04040243 31301B30
0A0C0543 45525432 03010030 03040146 A1083006 30040402 4332

Files 3F00/5015/4331 and 3F00/5015/4332 should contain DER-encoded certificate
structures in accordance with 1ISO/IEC 9594-8. The size of the data is 58 bytes (two
records of 29 bytes each).

C.2.5 EF(AODF)

Value notation:

{
pin: {
commonObj ect Attri butes {
| abel "PINL",
flags {private}
1
classAttributes {
authld "01'H -- Binds to KEY1

H
typeAttributes {
pi nFl ags {change-di sabl ed, initialized, needs-padding},
pi nType bcd,
m nLengt h 4,
storedLength 8,
padChar "FF' H
-- path not given, inplicitly PINfile in M
}
)
pin :
commonObj ect Attri butes {
| abel "PIN2",
flags {private}
classAttributes {
authld "02'H -- Binds to KEY1
H
typeAttributes {
pi nFl ags {change-di sabled, initialized, needs-padding},
pi nType bcd,
nm nLengt h 4,
storedLength 8,
padChar "FF H,
pat h {
pat h ' 3F0050150100' H -- Reference by absol ute path
}
}
}

}

DER encoding (as specified, outermost SEQUENCE OF omitted):

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 79

3025300A 00045049 4E310302 07803003 040101A1 12301003 02022CO0A 01000201
04020108 0401FF30 2F300A0C 0450494E 32030207 80300304 0102A11C 301A0302
022C0A01 00020104 02010804 01FF3008 04063F00 50150100

The content of files 3F00/5015/0100 and 3F00/0000 is card specific and not specified in
PKCS #15. The total size of the data is 88 bytes (one record of length 39 bytes, the other
of length 49 bytes).

C.2.6 EF(DODF)

Value notation:

{
opaqueDO : {

commonObj ect Attri butes {
| abel "OBJECT1",
flags {private, nodifiable},
authld "02'H -- Binds to PIN2

I

classAttributes {
appl i cati onNane " APP"

H

typeAttributes indirect : path : {
path "4431'H, -- Reference by file identifier
i ndex 64,
| ength 48

}

}
DER encoding (outermost SEQUENCE OF omitted, as specified):

30273010 0CO74F42 4AA54354 31030206 C0040102 30050C03 415050A1 0C300A04
02443102 01408001 30

The size of the data is 41 bytes (one record). The data entry in file 3F00/5015/4431 is to
be found 64 bytes from the beginning of the file and is 48 bytes long.

Copyright © 1999 RSA Laboratories.

PKCS #15 v1.0: CRYPTOGRAPHIC TOKEN INFORMATION FORMAT STANDARD 80

About PKCS

The Public-Key Cryptography Sandards are specifications produced by RSA
Laboratories in cooperation with secure systems devel opers worldwide for the purpose of
accelerating the deployment of public-key cryptography. First published in 1991 as a
result of meetings with a small group of early adopters of public-key technology, the
PKCS documents have become widely referenced and implemented. Contributions from
the PKCS series have become part of many forma and de facto standards, including
ANSI X9.45, PKIX, SET, SSMIME, and SSL.

Further development of PKCS occurs through mailing list discussions and occasional
workshops, and suggestions for improvement are welcome. For more information,
contact:

PKCS Editor

RSA Laboratories

20 Crosby Drive

Bedford, MA 01730 USA

(781) 687-7000

(781) 687-7213 (fax)

pkcs-edi tor @sa. com
http://ww.rsa.com rsal abs/ pubs/ PKCS

Copyright © 1999 RSA Laboratories.

