RSA Laboratories

PKCS #5 v2.0: Password-Based Cryptography Standard

RSA Laboratories
March 25, 1999

Table of Contents

TABLE OF CONTENTS ...ttt e et e e e e e e e e e e e e e e e e e e et bbbttt e et e e e eeeaaeaaaaeeeeaaanas 1
1. INTRODUCGTION .ottt et et e e e e e e e e e e et e e e e e e e e s bbb ae bbbt e ettt e ettt eeeeeeaaaaaaaaaaaaasssaaaaaannnnnnne 2
2 V[7N [@ PP 3
3. OVERVIEW .ottt et e oo ettt ettt e et e aaanns 4.......
4 SALT AND ITERATION COUNT ..oittiiiiiiiiiiitt ettt e e e e e e e e e e e aeaaeaeaaeaeseaaanns 5
R Y I PPN 5
4.2 ITERATION COUNT: 1. utttunetetu ettt e aett e eeta e eeta e aeea e aeta e e et e e e et e e e ea e e e ea e ee b e e e eba e eeba e eeba e eesbaeaesaneaebnneennnns 7
5. KEY DERIVATION FUNCTIONS ...oiiiiiiiiiiiitiiiiiiiiee ettt e e e e e e e e e e e e e s s e e st e e e e e e eaaaaaaaaaaeaens 7
B.L PBIKDF L.ttt e e e e e e e e e e e e e e e bbb b e e e s seeanan L.
5.2 PBIKDF2... ettt ettt e e e e e e e e e e e b e e s eeeeean 8....
6. ENCRYPTION SCHEMESoooiiiiiiiiiiiiiae ettt e annanes 10
B.1 PBE S ..ot ettt e e e e e e e e e e oo bbb bbb b e aaaaaaaaaaaaas 10
L2000 A =3 o o3V o) o g o] o 1T = Vo] o SO 10.......
(20 2 B T=Tod oY/ o1 o] o] o 1= T = U1 o] o F PP RTS 11.......
8.2 PBE S ..ot e e e e bbb eaeaaaaaaaaaaas 12
(20720 R =3 o (o1 Vo) (o) g W] o 1] - Vi [o] o [U OR 12.......
(I N D 1= Tol oY/ o 11 o] g o] o T=T = 11 o] o VTS 13.......
7. MESSAGE AUTHENTICATION SCHEMESuutiiiiiiiiiiiiiiiieeaee e 13
A R = =] O PP PP U PP TP U PR 14
% S R VX O o =Y g 1= = 1 o o S 14.......
7.1.2 MAC VEIfICAION ..ceviiiiiiiieeeee ettt 14.....
T] N I R N I PP PPPPPRTPTN 16
F N R o =1 B L PP PUPPUPPPPRS 16....
A2 PBKDF2.....ceetttet ettt e e e e e e e e e e e e 16....
AL PBEST ..ttt et e e et s ammmmmmmmnnn s 17
AL PBES2...oieieeeeeeee et e e eeeeeeeeeaan s 18

Copyright © 1991-1999 RSA Laboratories, a division of RSA Data Security, Inc., a Security Dynamics
Company. License to copy this document is granted provided that it is identified as “RSA Data Security,
Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or referencing this
document.

003-903020-200-000-000

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 2

ST =1 1Y/ X o 19

B. SUPPORTING TECHNIQUES ..ottt e e e e e e e e e aan s 19
B.1l PSEUDORANDOM FUNCTIONS 11 et ttuttttttttttttetttesntstenesssnestensssnssesssesstessttenetitetienestrestreseeesaenssns 20
[T R o Y N O o At 20
B.2 ENCRYPTION SCHEMES. et uttuttuttutneueueattestsnesssasaeaeata et eans s seataseastteessassssnssnseneenseaestaennns 21
2 R B | T O =T O = = o [T 21
B.2.2 DES-EDES-CBC-PAU.......cicuiiiiiiiiiiie ettt e e e e e e et e e e eaans 21
B.2.3 REC2-CBC-PAM.... .ottt e e e e e e e et e e e e eaeeens 22
B.2.4 RCBE-CBC-PAM.... oottt e e e e e e e e et e e e e ens 22
B.3 MESSAGE AUTHENTICATION SCHEMES .uuttutttitntutnentsesesssesssnssnsensenstseessassssnssnsenseneenssreens 23
ST A o 1Y A O o At 23

C. ASNLL MODULE ... e et et et et e e et et e e e e e e e et e ea s eae et e e s aneens 24

D. INTELLECTUAL PROPERTY CONSIDERATIONS ..ot 27

| = Y Y (@A o 1S 1O 1 3 T 27
== ESY (] NS R O 1 2SN 20........
V== 1] Lo 1 PN

AV == 1] [] N 1 < T PN

N ERSION 2.0 ettt et e ettt et e e et e e et e et e b et e e e e e e e a e eh e e et e e e et eneea s s s—— 27

. REFERENCES ... oo e e et e e e et et et e e e e e e ee s s 28

(T AN = @ 10 I I = 1 5 T 29

1. Introduction

This document provides recommendations for the implementation of password-based
cryptography, covering the following aspects:

» key derivation functions

* encryption schemes

* message-authentication schemes

* ASN.1 syntax identifying the techniques

The recommendations are intended for general application within computer and

communications systems, and as such include a fair amount of flexibility. They are

particularly intended for the protection of sensitive information such as private keys, as in
PKCS #8 [25]. It is expected that application standards and implementation profiles based
on these specifications may include additional constraints.

Other cryptographic techniques based on passwords, such as password-based key entity
authentication and key establishment protocols [4][5][26] are outside the scope of this
document. Guidelines for the selection of passwords are also outside the scope.

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 3

This document supersedes PKCS #5 version 1.5 [24], but includes compatible technigues.

2. Notation

C ciphertext, an octet string

C iteration count, a positive integer

DK derived key, an octet string

dkLen length in octets of derived key, a positive integer
EM encoded message, an octet string

Hash underlying hash function

hLen length in octets of pseudorandom function output, a positive integer
I length in blocks of derived key, a positive integer
vV initialization vector, an octet string

K encryption key, an octet string

KDF key derivation function

M message, an octet string

P password, an octet string

PRF underlying pseudorandom function

PS padding string, an octet string

psLen length in octets of padding string, a positive integer
S salt, an octet string

T message authentication code, an octet string

Ty, ..., Ti, Uy, ..., Uc intermediate values, octet strings

01,02, ...,08 octets with value 1, 2, ..., 8
\xor bit-wise exclusive-or of two octet strings
[O] octet length operator

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 4

| concatenation operator

<i.j> substring extraction operator: extracts octeélsoughj, 0<i <

3. Overview

In many applications of public-key cryptography, user security is ultimately dependent on
one or more secret text valuespaisswordsSince a password is not directly applicable as

a key to any conventional cryptosystem, however, some processing of the password is
required to perform cryptographic operations with it. Moreover, as passwords are often
chosen from a relatively small space, special care is required in that processing to defend
against search attacks.

A general approach to password-based cryptography, as described by Morris and
Thompson [8] for the protection of password tables, is to combine a passwordsaith a

to produce a key. The salt can be viewed as an index into a large set of keys derived from
the password, and need not be kept secret. Although it may be possible for an opponent to
construct a table of possible passwords (a so-called “dictionary attack”), constructing a
table of possible keys will be difficult, since there will be many possible keysaiti
password. An opponent will thus be limited to searching through passwords separately for
each salt.

Another approach to password-based cryptography is to construct key derivation
techniques that are relatively expensive, thereby increasing the cost of exhaustive search.
One way to do this is to include ateration countin the key derivation technique,
indicating how many times to iterate some underlying function by which keys are derived.
A modest number of iterations, say 1000, is not likely to be a burden for legitimate parties
when computing a key, but will be a significant burden for opponents.

Salt and iteration count formed the basis for password-based encryption in PKCS #5 v1.5,
and adopted here as well for the various cryptographic operations. Thus, password-based
key derivation as defined here is a function of a password, a salt, and an iteration count,
where the latter two quantities need not be kept secret.

From a password-based key derivation function, it is straightforward to define password-
based encryption and message authentication schemes. As in PKCS #5 vl1.5, the
password-based encryption schemes here are based on an underlying, conventional
encryption scheme, where the key for the conventional scheme is derived from the
password. Similarly, the password-based message authentication scheme is based on an
underlying conventional scheme. This two-layered approach makes the password-based
techniques modular in terms of the underlying techniques they can be based on.

It is expected that the password-based key derivation functions may find other applications
than just the encryption and message authentication schemes defined here. For instance,
one might derive a set of keys with a single application of a key derivation function, rather

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 5

than derive each key with a separate application of the function. The keys in the set would
be obtained as substrings of the output of the key derivation function. This approach might
be employed as part of key establishment in a session-oriented protocol. Another
application is password checking, where the output of the key derivation function is stored
(along with the salt and iteration count) for the purposes of subsequent verification of a
password.

Throughout this document, a password is considered to be an octet string of arbitrary
length whose interpretation as a text string is unspecified. In the interest of
interoperability, however, it is recommended that applications follow some common text
encoding rules. ASCIlI and UTF-8 [27] are two possibilities. (ASCII is a subset of UTF-
8.)

Although the selection of passwords is outside the scope of this document, guidelines have
been published [17] that may well be taken into account.

4. Salt and iteration count

Inasmuch as salt and iteration count are central to the techniques defined in this document,
some further discussion is warranted.

4.1 Salt

A salt in password-based cryptography has traditionally served the purpose of producing a
large set of keys corresponding to a given password, among which one is selected at
random according to the salt. An individual key in the set is selected by applying a key
derivation functiorkKDF, as

DK =KDF (P, S
whereDK is the derived keyR is the password, arfslis the salt. This has two benefits:

1. It is difficult for an opponent to precompute all the keys corresponding to a
dictionary of passwords, or even the most likely keys. If the salt is 64 bits long, for
instance, there will be as many &8 keys for each password. An opponent is thus
limited to searching for passwords after a password-based operation has been
performed and the salt is known.

2. It is unlikely that the same key will be selected twice. Again, if the salt is 64 bits
long, the chance of “collision” between keys does not become significant until
about 3% keys have been produced, according to the Birthday Paradox. This
addresses some of the concerns about interactions between multiple uses of the
same key, which may apply for some encryption and authentication techniques.

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 6

In password-based encryption, the party encrypting a message can gain assurance that
these benefits are realized simply by selecting a large and sufficiently random salt when
deriving an encryption key from a password. A party generating a message authentication
code can gain such assurance in a similar fashion.

The party decrypting a message or verifying a message authentication code, however,
cannot be sure that a salt supplied by another party has actually been generated at random.
It is possible, for instance, that the salt may have been copied from another password-
based operation, in an attempt to exploit interactions between multiple uses of the same
key. For instance, suppose two legitimate parties exchange a encrypted message, where
the encryption key is an 80-bit key derived from a shared password with some salt. An
opponent could take the salt from that encryption and provide it to one of the parties as
though it were for a 40-bit key. If the party reveals the result of decryption with the 40-bit
key, the opponent may be able to solve for the 40-bit key. In the case that 40-bit key is the
first half of the 80-bit key, the opponent can then readily solve for the remaining 40 bits of
the 80-bit key.

To defend against such attacks, either the interaction between multiple uses of the same
key should be carefully analyzed, or the salt should contain data that explicitly
distinguishes between different operations. For instance, the salt might have an additional,
non-random octet that specifies whether the derived key is for encryption, for message
authentication, or for some other operation.

Based on this, the following is recommended for salt selection:

1. If there is no concern about interactions between multiple uses of the same key (or
a prefix of that key) with the password-based encryption and authentication
techniques supported for a given password, then the salt may be generated at
random and need not be checked for a particular format by the party receiving the
salt. It should be at least eight octets (64 bits) long.

2. Otherwise, the salt should contain data that explicitly distinguishes between
different operations and different key lengths, in addition to a random part that is
at least eight octets long, and this data should be checked or regenerated by the
party receiving the salt. For instance, the salt could have an additional non-random
octet that specifies the purpose of the derived key. Alternatively, it could be the
encoding of a structure that specifies detailed information about the derived key,
such as the encryption or authentication technique and a sequence number among
the different keys derived from the password. The particular format of the
additional data is left to the application.

Note. If a random number generator or pseudorandom generator is not available, a
deterministic alternative for generating the salt (or the random part of it) is to apply a
password-based key derivation function to the password and the medsagebe
processed. For instance, the salt could be computed with a key derivation fun8ien as
KDF (P, M). This approach is not recommended if the meskhgeknown to belong to a

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 7

small message space (e.g., “Yes” or “N0”), however, since then tlileosiwbe a small
number of possible salts.

4.2 Iteration count

An iteration count has traditionally served the purpose of increasing the cost of producing
keys from a password, thereby also increasing the difficulty of attack. For the methods in
this document, a minimum of 1000 iterations is recommended. Thisarease the cost

of exhaustive search for passwords significantly, without a noticeable impact in the cost of
deriving individual keys.

5. Key derivation functions

A key derivation functioproduces alerived keyfrom abase keyand other parameters.
In a password-based key derivation functidghe base key is a password and the other
parameters are a salt value and an iteration count, as outlined in Section 3.

The primary application of the password-based key derivation functions defined here is in
the encryption schemes in Section 6 and the message authentication scheme in Section 7.
Other applications are certainly possible, hence the independent definition of these
functions.

Two functions are specified in this section: PBKDF1 and PBKDF2. PBKDF2 is
recommended for new applications; PBKDF1 is included only for compatibility with
existing applications, and is not recommended for new applications.

A typical application of the key derivation functions defined here might include the
following steps:

1. Select a salband an iteration coum} as outlined in Section 4.
2. Select a length in octets for the derived ldigen
3. Apply the key derivation function to the password, the salt, the iteration count and

the key length to produce a derived key.
4. Output the derived key.
Any number of keys may be derived from a password by varying the salt, as described in
Section 3.
51 PBKDF1

PBKDF1 applies a hash function, which shall be MD2 [6], MD5 [19] or SHA-1 [18], to
derive keys. The length of the derived key is bounded by the length of the hash function

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 8

output, which is 16 octets for MD2 and MD5 and 20 octets for SHA-1. PBKDF1 is
compatible with the key derivation process in PKCS #5 v1.5.

PBKDF1 is recommended only for compatibility with existing applications since the keys
it produces may not be large enough for some applications.

PBKDF1 P, S, c, dkLen

Options: Hash underlying hash function
Input: P password, an octet string
S salt, an eight-octet string
C iteration count, a positive integer

dkLen intended length in octets of derived key, a positive integer, at most
16 for MD2 or MD5 and 20 for SHA-1

Output: DK derived key, akLenoctet string
Steps:
1. If dkLen> 16 for MD2 and MD5, odkLen> 20 for SHA-1, output “derived key

too long” and stop.

2. Apply the underlying hash functidfiash for c iterations to the concatenation of
the password® and the sal§ then extract the firstikLen octets to produce a
derived keyDK:

T, =Hash(P||9,
T, =Hash(Ty) ,

T. =Hash(T.,) ,
DK =T<0.dkLen1> .

3. Output the derived kdyK.

5.2 PBKDF2

PBKDF2 applies a pseudorandom function (see Appendix B.1 for an example) to derive
keys. The length of the derived key is essentially unbounded. (However, the maximum
effective search space for the derived key mainbed by the structure of the underlying
pseudorandom function. See Appendix B.1 for further discussion.)

PBKDF2 is recommended for new applications.

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 9

PBKDF2 P, S, c, dkLen

Options: PRF underlying pseudorandom functiomlLen denotes the length in
octets of the pseudorandom function output)

Input: P password, an octet string
S salt, an octet string
C iteration count, a positive integer

dkLen intended length in octets of the derived key, a positive integer, at
most (2* — 1)x hLen

Output: DK derived key, akLenoctet string
Steps:
1. If dkLen> (2** — 1) x hLen output “derived key too long” and stop.

2. Letl be the number diLenroctet blocks in the derived key, rounding up, and let
be the number of octets in the last block:

| = [dkLen/ hLerd],
r =dkLen— (1 — 1)x hLen.

3. For each block of the derived key apply the functiomlefined below to the
passwordP, the saltS the iteration count, and the block index to compute the
block:

T.=F(P,Sc1),
T2:F(P181C12)1

T=FE®Scl,

where the functioffr is defined as the exclusive-or sum of the firgerates of the
underlying pseudorandom functioRRF applied to the passwor® and the
concatenation of the s&tand the block index

F (P, S c, i) =U; \xor U, \xor [Mxor U
where

U; =PRF(P, S|| NT (1)),
U, =PRF(P, U,) ,

U = PRF (P, Ucy) .

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 10

Here, NT (i) is a four-octet encoding of the integemost significant octet first.

4, Concatenate the blocks and extract the dikkienoctets to produce a derived key
DK:

DK =T, || Tz || D] T<0.r-1>.
5. Output the derived kdyK.

Note. The construction of the functidn follows a “belt-and-suspenders” approach. The
iteratesU; are computed recursively to remove a degree of parallelism from an opponent;
they are exclusive-ored together to reduce concerns about the recursion degenerating into
a small set of values.

6. Encryption schemes

An encryption schemen the symmetric setting, consists ofercryption operatiorand a
decryption operation where the encryption operation produces a ciphertext from a
message under a key, and the decryption operation recovers the message from the
ciphertext under the same key. Inpassword-based encryption scherntiee key is a
password.

A typical application of a password-based encryption scheme is a private-key protection
method, where the message contains private-key information, as in PKCS #8. The
encryption schemes defined here would be suitable encryption algorithms in that context.

Two schemes are specified in this section: PBES1 and PBES2. PBES2 is recommended
for new applications; PBESL1 is included only for compatibility with existing applications,
and is not recommended for new applications.

6.1 PBES1

PBES1 combines the PBKDF1 function (Section 5.1) with an underlying block cipher,
which shall be either DES [15] or RE2[21] in CBC mode [16]. PBES1 is compatible
with the encryption scheme in PKCS #5 v1.5.

PBESL1 is recommended only for compatibility with existing applications, sinappiosts
only two underlying encryption schemes, each of which has a key size (56 or 64 bits) that
may not be large enough for some applications.

6.1.1 Encryption operation

The encryption operation for PBES1 consists of the following steps, which encrypt a
messag®l under a passworild to produce a cipherteg:

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 11

1. Select an eight-octet s&8tand an iteration coumt as outlined in Section 4.

2. Apply the PBKDF1 key derivation function (Section 5.1) to the passW®ptte
saltS and the iteration couwtto produce a derived ké)K of length 16 octets:

DK = PBKDF1 @, S, c, 16) .

3. Separate the derived kBX into an encryption kel consisting of the first eight
octets oDK and an initialization vectdV consisting of the next eight octets:

K = DK<0..7> ,
IV =DK<8..15> .

4. Concatenat®! and a padding stringSto form an encoded messdgi!:
EM=M ||PS,

where the padding stringS consists of 8-(}f|]| mod 8) octets each with value 8-
(IIM]] mod 8). The padding strifSwill satisfy one of the following statements:

PS=01 — if [M|| mod 8 = 7 ;
PS=02 02 — if [M]| mod 8 = 6 ;

PS=08 08 08 08 08 08 08 08 — if ||[M|| mod 8 = 0.

The length in octets of the encoded message will be a multiple of eight and it will
be possible to recover the messdyeinambiguously from the encoded message.
(This padding rule is taken from RFC 1423 [3].)

5. Encrypt the encoded messdfd with the underlying block cipher (DES or RC2)
in cipher block chaining mode under the encryptionkeyith initialization vector
IV to produce the ciphertegt. For DES, the kel shall be considered as a 64-bit
encoding of a 56-bit DES key with parity bits ignored (see [9]). For RC2, the
“effective key bits” shall be 64 bits.

6. Output the ciphertexg.

The saltSand the iteration coumtmay be conveyed to the party performing decryption in
anAlgorithmldentifier value (see Appendix A.3).

6.1.2 Decryption operation

The decryption operation for PBES1 consists of the following steps, which decrypt a
ciphertextC under a passworé to recover a messadyk

1. Obtain the eight-octet s&@tand the iteration court

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 12

N

Apply the PBKDF1 key derivation function (Section 5.1) to the passW®ptte
saltS and the iteration coutto produce a derived ké)K of length 16 octets:

DK = PBKDF1 @, S, c, 16) .

3. Separate the derived kBX into an encryption kel consisting of the first eight
octets oDK and an initialization vectdV consisting of the next eight octets:

K = DK<0..7> ,
IV =DK<8..15> .

4. Decrypt the ciphertex@ with the underlying block cipher (DES or RC2) in cipher
block chaining mode under the encryption kewvith initialization vectorlV to
recover an encoded messé&jd. If the length in octets of the ciphert&xtis not a
multiple of eight, output “decryption error” and stop.

5. Separate the encoded mesdalyeinto a messagk! and a padding stringS
EM=M ||PS,

where the padding strif@Sconsists of some numbpsLenoctets each with value
psLen wherepsLenis between 1 and 8. If it is not possible to separate the
encoded messadeM in this manner, output “decryption error” and stop.

6. Output the recovered message

6.2 PBES2

PBES2 combines a password-based key derivation function, which shall be PBKDF2
(Section 5.2) for this version of PKCS #5, with an underlying encryption scheme (see
Appendix B.2 for examples). The key length and any other parameters for the underlying
encryption scheme depend on the scheme.

PBES?2 is recommended for new applications.

6.2.1 Encryption operation

The encryption operation for PBES2 consists of the following steps, which encrypt a
messageM under a passwor® to produce a ciphertext, applying a selected key
derivation functiorKDF and a selected underlying encryption scheme:

1. Select a salb and an iteration coumt as outlined in Section 4.
2. Select the length in octetdkLen for the derived key for the underlying encryption
scheme.

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: lAsSSWORDBASED CRYPTOGRAPHYSTANDARD 13
3. Apply the selected key derivation function to the passwrthe saltS and the
iteration count to produce a derived k&K of lengthdkLenoctets:
DK =KDF (P, S, c, dkLen) .

4. Encrypt the messadé with the underlying encryption scheme under the derived
key DK to produce a ciphertex®. (This step may involve selection of parameters
such as an initialization vector and padding, depending on the underlying scheme.)

5. Output the ciphertex.

The saltS the iteration count, the key lengthdkLen and identifiers for the key
derivation function and the underlying encryption scheme may be conveyed to the party
performing decryption in aAlgorithmldentifier value (see Appendix A.4).

6.2.2 Decryption operation

The decryption operation for PBES2 consists of the following steps, which decrypt a
ciphertextC under a passworé to recover a messadyk

1. Obtain the sals for the operation.
2. Obtain the iteration coustfor the key derivation function.

3. Obtain the key length in octetdkLen for the derived key for the underlying
encryption scheme.

4. Apply the selected key derivation function to the passwrthe saltS and the
iteration count to produce a derived k&K of lengthdkLenoctets:

DK =KDF (P, S ¢, dkLen) .

5. Decrypt the ciphertex@ with the underlying encryption scheme under the derived
key DK to recover a messad@. If the decryption function outputs “decryption
error,” then output “decryption error” and stop.

6. Output the recovered messadge

7. Message authentication schemes

A message authentication schemensists of aMAC (message authentication code)
generation operatiorand aMAC verification operation where the MAC generation
operation produces a message authentication code from a message under a key, and the
MAC verification operation verifies the message authentication code under the same key.
In apassword-based message authentication schédmadey is a password.

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 14

One scheme is specified in this section: PBMACL.

7.1 PBMAC1

PBMAC1 combines a password-based key derivation function, which shall be PBKDF2
(Section 5.2) for this version of PKCS #5, with an underlying message authentication
scheme (see Appendix B.3 for an example). The key length and any other parameters for
the underlying message authentication scheme depend on the scheme.

7.1.1 MAC generation

The MAC generation operation for PBMAC1 consists of the following steps, which
process a messad under a passworB to generate a message authentication dode
applying a selected key derivation functi®tbF and a selected underlying message
authentication scheme:

1. Select a salb and an iteration coumt as outlined in Section 4.

2. Select a key length in octetikLen for the derived key for the underlying message
authentication function.

3. Apply the selected key derivation function to the passwhrthe saltS and the
iteration count to produce a derived k&K of lengthdkLenoctets:

DK =KDF (P, S ¢, dkLer) .

4, Process the messalyewith the underlying message authentication scheme under
the derived keyK to generate a message authentication dode

5. Output the message authentication cbde

The saltS the iteration count, the key lengthdkLen and identifiers for the key
derivation function and underlying message authentication scheme may be conveyed to the
party performing verification in aflgorithmlidentifier value (see Appendix A.5).

7.1.2 MAC verification

The MAC verification operation for PBMACL1 consists of the following steps, which
process a messafjeunder a passwoifd to verify a message authentication cdde

1. Obtain the salf and the iteration courmt

2. Obtain the key length in octetdkLen for the derived key for the underlying
message authentication scheme.

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 15

3. Apply the selected key derivation function to the passwrthe saltS and the
iteration count to produce a derived k&K of lengthdkLenoctets:
DK =KDF (P, S, c, dkLen) .

4, Process the messalyewith the underlying message authentication scheme under
the derived keYK to verify the message authentication cdde

5. If the message authentication code verifies, output “correct”; else output
“‘incorrect.”

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 16

A. ASN.1 syntax

This section defines ASN.1 syntax for the key derivation functions, the encryption
schemes, the message authentication scheme, and supporting techniques. The intended
application of these definitions includes PKCS #8 and other syntax for key management,
encrypted data, and integrity-protected data. (Various aspects of ASN.1 are specified in
several ISO/IEC standards [9][10][11][12][13][14].)

The object identifiepkcs-5 identifies the arc of the OID tree from which the PKCS #5-
specific OIDs in this section are derived:

rsadsi OBJECT IDENTIFIER ::=

{iso(1) member-body(2) us(840) 113549}
pkcs OBJECT IDENTIFIER ::={rsadsi 1}
pkcs-5 OBJECT IDENTIFIER ::= {pkcs 5}

A.1 PBKDF1

No object identifier is given for PBKDF1, as the object identifiers for PBES1 are sufficient
for existing applications and PBKDF2 is recommended for new applications.

A.2 PBKDF2

The object identifierd-PBKDF2 identifies the PBKDF2 key derivation function (Section
5.2).

id-PBKDF2 OBJECT IDENTIFIER ::= {pkcs-5 12}

Theparameters field associated with this OID in akgorithmldentifier shall
have typePBKDF2-params :

PBKDF2-params ::= SEQUENCE {

salt CHOICE {
specified OCTET STRING,
otherSource Algorithmidentifier {PBKDF2-SaltSources}}

3

iterationCount INTEGER (1..MAX),

keyLength INTEGER (1..MAX) OPTIONAL,

prf Algorithmidentifier {{PBKDF2-PRFs}} DEFAULT
algid-hmacWithSHA1 }

The fields of typdPKDF2-params have the following meanings:

» salt specifies the salt value, or the source of the salt value. It shall either be an octet
string or an algorithm ID with an OID in the ¥8BKDF2-SaltSources , which is
reserved for future versions of PKCS #5.

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 17

The salt-source approach is intended to indicate how the salt value is to be generated
as a function of parameters in the algorithm ID, application data, or both. For instance,
it may indicate that the salt value is produced from the encoding of a structure that
specifies detailed information about the derived key as suggested in Section 4.1. Some
of the information may be carried elsewhere, e.g., in the encryption algorithm ID.
However, such facilities are deferred to a future version of PKCS #5.

In this version, an application may achieve the benefits mentioned in Section 4.1 by
choosing a particular interpretation of the salt value irspeeified alternative.

PBKDF2-SaltSources ALGORITHM-IDENTIFIER ::={... }

* iterationCount specifies the iteration count. The maximum iteration count
allowed depends on the implementation. It is expected that implementation profiles
may further constrain the bounds.

» keyLength , an optional field, is the length in octets of the derived key. The
maximum key length allowed depends on the implementation; it is expected that
implementation profiles may further constrain the bounds. The field is provided for
convenience only; the key length is not cryptographically protected. If there is concern
about interaction between operations with different key lengths for a given salt (see
Section 4.1), the salt should distinguishes among the different key lengths.

* prf identifies the underlying pseudorandom function. It shall be an algorithm ID with
an OID in the sePBKDF2-PRFs, which for this version of PKCS #5 shall consist of
id-hmacWithSHA1 (see Appendix B.1.1) and any other OIDs defined by the
application.

PBKDF2-PRFs ALGORITHM-IDENTIFIER ::=
{{NULL IDENTIFIED BY id-hmacWithSHA1}, ... }

The default pseudorandom function is HMAC-SHA-1.:

algid-hmacWithSHA1 Algorithmlidentifier {{PBKDF2-PRFs}} ::=
{algorithm id-hmacWithSHA1, parameters NULL : NULL}

A.3 PBES1

Different object identifiers identify the PBES1 encryption scheme (Section 6.1) according
to the underlying hash function in the key derivation function and the underlying block
cipher, as summarized in the following table:

Hash Function Block Cipher OID
MD2 DES pkes-5.1
MD2 RC2 pkecs-5.4
MD5 DES pkcs-5.3

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 18

MD5 RC2 pkcs-5.6
SHA-1 DES pkecs-5.10
SHA-1 RC2 pkcs-5.11

pbeWithMD2AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 1}
pbeWithMD2AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 4}
pbeWithMD5ANdDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 3}
pbeWithMD5ANdRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 6}
pbeWithSHA1ANdDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 10}
pbeWithSHA1ANdRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 11}

For each OID, the parameters field associated with the OID in an
Algorithmidentifier shall have typ&®BEParameter :

PBEParameter ::= SEQUENCE {

salt OCTET STRING (SIZE(8)),
iterationCount INTEGER }

The fields of typd?PBEParameter have the following meanings:
* salt specifies the salt value, an eight-octet string.

* iterationCount specifies the iteration count.

A.4 PBES2
The object identifierd-PBES2 identifies the PBES2 encryption scheme (Section 6.2).
id-PBES2 OBJECT IDENTIFIER ::= {pkcs-5 13}

Theparameters field associated with this OID in akgorithmldentifier shall
have typePBES2-params :

PBES2-params ::= SEQUENCE {
keyDerivationFunc Algorithmldentifier {{PBES2-KDFs}},
encryptionScheme Algorithmldentifier {PBES2-Encs}} }

The fields of typd?BES2-params have the following meanings:

» keyDerivationFunc identifies the underlying key derivation function. It shall be
an algorithm ID with an OID in the séBES2-KDFs, which for this version of
PKCS #5 shall consist add-PBKDF2 (Appendix A.2).

PBES2-KDFs ALGORITHM-IDENTIFIER ::=
{ {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... }

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 19

* encryptionScheme identifies the underlying encryption scheme. It shall be an
algorithm ID with an OID in the sé®BES2-Encs, whose definition is left to the
application. Example underlying encryption schemes are given in Appendix B.2.

PBES2-Encs ALGORITHM-IDENTIFIER ::={... }

A.5 PBMAC1

The object identifierd-PBMACL1 identifies the PBMAC1 message authentication scheme
(Section 7.1).

id-PBMAC1 OBJECT IDENTIFIER ::= {pkcs-5 14}

Theparameters field associated with this OID in akgorithmldentifier shall
have type®PBMAC1-params:

PBMAC1-params ::= SEQUENCE {
keyDerivationFunc Algorithmldentifier {{PBMAC1-KDFs}},
messageAuthScheme Algorithmidentifier {{PBMAC1-MACs}} }

The keyDerivationFunc field has the same meaning as the corresponding field of
PBES2-params (Appendix A.4) except that the set of OIDBMAC1-KDFs

PBMAC1-KDFs ALGORITHM-IDENTIFIER ::=
{ {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... }

The messageAuthScheme field identifies the underlying message authentication
scheme. It shall be an algorithm ID with an OID in the BBMAC1-MACs whose
definition is left to the application. Example underlying encryption schemes are given in
Appendix B.3.

PBMAC1-MACs ALGORITHM-IDENTIFIER :={ ... }

B. Supporting techniques

This section gives several examples of underlying functions and schemes supporting the
password-based schemes in Sections 5, 6 and 7. While these supporting techniques are
appropriate for applications to implement, none of them is required to be implemented. It
is expected, however, that profiles for PKCS #5 will be developed that specify particular
supporting techniques.

This section also gives object identifiers for the supporting techniques.

The object identifiersligestAlgorithm andencryptionAlgorithm identify the
arcs from which certain algorithm OIDs referenced in this section are derived:

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 20

digestAlgorithm OBJECT IDENTIFIER ::= {rsadsi 2}
encryptionAlgorithm OBJECT IDENTIFIER ::= {rsadsi 3}

B.1 Pseudorandom functions

An example pseudorandom function for PBKDF2 (Section 5.2) is HMAC-SHA-1.

B.1.1 HMAC-SHA-1

HMAC-SHA-1 is the pseudorandom function corresponding to the HMAC message
authentication code [7] based on the SHA-1 hash function [18]. The pseudorandom
function is the same function by which the message authentication code is computed, with
a full-length output. (The first argument to the pseudorandom fun&ti®l serves as
HMAC's “key,” and the second serves as HMAC's “text.” In the case of PBKDF2, the
“key” is thus the password and the “text” is the salt.) HMAC-SHA-1 has a variable key
length and a 20-octet (160-bit) output value.

Although the length of the key to HMAC-SHA-1 is essentially unbounded, the effective
search space for pseudorandom function outputs mdignibed by the structure of the
function. In particular, when the key is longer than 512 bits, HMAC-SHAl Tinst hash

it to 160 bits. Thus, even if a long derived key consisting of several pseudorandom
function outputs is produced from a key, the effective search space for the derived key will
be at most 160 bits. Although the spedifiaitation for other key sizes depends on details

of the HMAC construction, one should assume, to be conservative, that the effective
search space Isnited to 160 bits for other key sizes as well.

(The 160-bitlimitation should not generally pose a practical limitation in the case of
password-based cryptography, since the search space for a password is unlikely to be
greater than 160 bits.)

The object identifieid-hmacWithSHA1 identifies the HMAC-SHA-1 pseudorandom
function:

id-hmacWithSHA1 OBJECT IDENTIFIER ::= {digestAlgorithm 7}

Theparameters field associated with this OID in akgorithmldentifier shall
have typeNULL This object identifier is employed in the object &8KDF2-PRFs
(Appendix A.2).

Note. Although HMAC-SHA-1 was designed as a message authentication code, its proof
of security is readily modified to accommodate requirements for a pseudorandom function,
under stronger assumptions. A hash function may also meet the requirements of a
pseudorandom function under certain assumptions. For instance, the direct application of a
hash function to to the concatenation of the “key” and the “text” may be appropriate,
provided that “text” has appropriate structure to prevent certain attacks. HMAC-SHA-1 is

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 21

preferable, however, because it treats “key” and “text” as separate arguments and does not
require “text” to have any structure.

B.2 Encryption schemes

Example pseudorandom functions for PBES2 (Section 6.2) are DES-CBC-Pad, DES-
EDE2-CBC-Pad, RC2-CBC-Pad, and RC5-CBC-Pad.

The object identifiers given in this section are intended to be employed in the object set
PBES2-Encs (Appendix A.4).

B.2.1 DES-CBC-Pad

DES-CBC-Pad is single-key DES [15] in CBC mode [16] with the RFC 1423 padding
operation (see Section 6.1.1). DES-CBC-Pad has an eight-octet encryption key and an
eight-octet initialization vector. The key is considered as a 64-bit encoding of a 56-bit
DES key with parity bits ignored.

The object identifierdesCBC (defined in the NIST/OSI Implementors’ Workshop
agreements) identifies the DES-CBC-Pad encryption scheme:

desCBC OBJECT IDENTIFIER ::=
{iso(1) identified-organization(3) oiw(14) secsig(3)
algorithms(2) 7}

Theparameters field associated with this OID in akgorithmldentifier shall
have typeOCTET STRING (SIZE(8)) , specifying the initialization vector for CBC
mode.

B.2.2 DES-EDE3-CBC-Pad

DES-EDE3-CBC-Pad is three-key triple-DES in CBC mode [1] with the RFC 1423
padding operation. DES-EDE3-CBC-Pad has a 24-octet encryption key and an eight-octet
initialization vector. The key is considered as the concatenation of three eight-octet keys,
each of which is a 64-bit encoding of a 56-bit DES key with parity bits ignored.

The object identifierdes-EDE3 -CBC identifies the DES-EDE3-CBC-Pad encryption
scheme:

des-EDE3-CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 7}

Theparameters field associated with this OID in akgorithmldentifier shall
have typeOCTET STRING (SIZE(8)) , specifying the initialization vector for CBC
mode.

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 22

Note. An OID for DES-EDE3-CBC without padding is given in ANSI X9.52 [1]; the one
given here is preferred since it specifies padding.

B.2.3 RC2-CBC-Pad

RC2-CBC-Pad is the RC?2 encryption algorithm [21] in CBC mode with the RFC 1423
padding operation. RC2-CBC-Pad has a variable key length, from one to 128 octets, a
separate “effective key bits” parameter from one to 1024 bitslithis the effective
search space independent of the key length, and an eight-octet initialization vector.

The object identifierc2CBC identifies the RC2-CBC-Pad encryption scheme:
rc2CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 2}

The parameters field associated with OID in aAlgorithmlidentifier shall
have typeRC2-CBC-Parameter

RC2-CBC-Parameter ::= SEQUENCE {

rc2ParameterVersion INTEGER OPTIONAL,
iv OCTET STRING (SIZE(8)) }

The fields of typeRC2-CBCParameter have the following meanings:

* rc2ParameterVersion is a proprietary RSA Data Security, Inc. encoding of the
“effective key bits” for RC2. The following encodings are defined:

Effective key bits Encoding
40 160
64 120
128 58
b > 256 b
If the rc2ParameterVersion field is omitted, the “effective key bits” defaults to

32. (This is for backward compatibility with certain very old implementations.)

* iv is the eight-octet initialization vector.

B.2.4 RC5-CBC-Pad

RC5-CBC-Pad is the RC% encryption algorithm [20] in CBC mode with a generalization
of the RFC 1423 padding operatiofthis scheme is fully specified in [2]. RC5-CBC-Pad

! The generalization of the padding operation is as follows. For RC5 with a 64-bit block size, the padding
string is as defined in RFC 1423. For RC5 with a 128-bit block size, the padding string consists of 16-
(IM]| mod 16) octets each with value 1B4{]jmod 16).

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 23

has a variable key length, from O to 256 octets, and supports both a 64-bit block size and a
128-bit block size. For the former, it has an eight-octet initialization vector, and for the
latter, a 16-octet initialization vector. RC5-CBC-Pad also has a variable number of
“rounds” in the encryption operation, from 8 to 127.

The object identifierc5-CBC-PAD [2] identifies RC5-CBC-Pad encryption scheme:

rc5-CBC-PAD OBJECT IDENTIFIER ::= {encryptionAlgorithm 9}

Theparameters field associated with this OID in akgorithmldentifier shall
have typeRC5-CBC-Parameters

RC5-CBC-Parameters ::= SEQUENCE {
version INTEGER {v1-0(16)} (v1-0),
rounds INTEGER (8..127),
blockSizelnBits INTEGER (64 | 128),
iv OCTET STRING OPTIONAL }

The fields of typeRC5-CBC-Parameters have the following meanings:
* version s the version of the algorithm, which shal\deO .

* rounds is the number of rounds in the encryption operation, which shall be between
8 and 127.

* DblockSizelnBits is the block size in bits, which shall be 64 or 128.

* iv is the initialization vector, an eight-octet string for 64-bit RC5 and a 16-octet
string for 128-bit RC5. The default is a string of the appropriate length consisting of
zero octets.

B.3 Message authentication schemes

An example message authentication scheme for PBMAC1 (Section 7.1) is HMAC-SHA-1.

B.3.1 HMAC-SHA-1

HMAC-SHA-1 is the HMAC message authentication scheme [7] based on the SHA-1
hash function [18]. HMAC-SHA-1 has a variable key length and a 20-octet (160-bit)
message authentication code.

The object identifieid-hmacWithSHA1 (see Appendix B.1.1) identifies the HMAC-
SHA-1 message authentication scheme. (The object identifier is the same for both the
pseudorandom function and the message authentication scheme; the distinction is to be
understood by context.) This object identifier is intended to be employed in the object set
PBMAC1-Macs(Appendix A.5).

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 24

C. ASN.1 module

For reference purposes, the ASN.1 syntax in the preceding sections is presented as an
ASN.1 module here.

-- PKCS #5 v2.0 ASN.1 Module
-- Revised March 25, 1999

-- This module has been checked for conformance with the
-- ASN.1 standard by the OSS ASN.1 Tools

PKCS5v2-0 {iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkes-5(5) modules(16) pkes5v2-0(1)}

DEFINITIONS ::= BEGIN
-- Basic object identifiers
rsadsi OBJECT IDENTIFIER ::=
{iso(1) member-body(2) us(840) 113549}

pkcs OBJECT IDENTIFIER ::={rsadsi 1}
pkcs-5 OBJECT IDENTIFIER ::= {pkcs 5}

-- Basic types and classes
Algorithmidentifier { ALGORITHM-IDENTIFIER:InfoObjectSet }
SEQUENCE {
algorithm ALGORITHM-IDENTIFIER.&id({InfoObjectSet}),
parameters ALGORITHM-IDENTIFIER.&Type({InfoObjectSet}
{@algorithm}) OPTIONAL }
ALGORITHM-IDENTIFIER ::= TYPE-IDENTIFIER
-- PBKDF2

PBKDF2Algorithms ALGORITHM-IDENTIFIER ::=
{ {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ...}

id-PBKDF2 OBJECT IDENTIFIER ::= {pkcs-5 12}

algid-hmacWithSHA1 Algorithmlidentifier {{PBKDF2-PRFs}} ::=
{algorithm id-hmacWithSHA1, parameters NULL : NULL}

PBKDF2-params ::= SEQUENCE {
salt CHOICE {
specified OCTET STRING,
otherSource Algorithmidentifier {PBKDF2-SaltSources}}

h
iterationCount INTEGER (1..MAX),

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD

keyLength INTEGER (1..MAX) OPTIONAL,
prf Algorithmidentifier {{PBKDF2-PRFs}} DEFAULT
algid-hmacWithSHA1 }

PBKDF2-SaltSources ALGORITHM-IDENTIFIER ::={... }

PBKDF2-PRFs ALGORITHM-IDENTIFIER ::=
{{NULL IDENTIFIED BY id-hmacWithSHA1}, ... }

-- PBES1

PBES1Algorithms ALGORITHM-IDENTIFIER ::=
{ {PBEParameter IDENTIFIED BY pbeWithMD2AndDES-CBC} |
{PBEParameter IDENTIFIED BY pbeWithMD2AndRC2-CBC} |
{PBEParameter IDENTIFIED BY pbeWithMD5AndDES-CBC} |
{PBEParameter IDENTIFIED BY pbeWithMD5AndRC2-CBC} |
{PBEParameter IDENTIFIED BY pbeWithSHA1AnNdDES-CBC} |

{PBEParameter IDENTIFIED BY pbeWithSHA1AndRC2-CBC}, ...}

pbeWithMD2AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 1}
pbeWithMD2AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 4}
pbeWithMD5ANdDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 3}
pbeWithMD5ANdRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 6}
pbeWithSHA1ANdDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 10}
pbeWithSHA1ANdRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 11}

PBEParameter ::= SEQUENCE {
salt OCTET STRING (SIZE(8)),
iterationCount INTEGER }

-- PBES2

PBES2Algorithms ALGORITHM-IDENTIFIER ::=
{ {PBES2-params IDENTIFIED BY id-PBES2}, ...}

id-PBES2 OBJECT IDENTIFIER ::= {pkcs-5 13}
PBES2-params ::= SEQUENCE {
keyDerivationFunc Algorithmldentifier {{PBES2-KDFs}},
encryptionScheme Algorithmldentifier {PBES2-Encs}} }

PBES2-KDFs ALGORITHM-IDENTIFIER ::=
{ {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... }

PBES2-Encs ALGORITHM-IDENTIFIER ::={... }
-- PBMAC1

PBMAC1Algorithms ALGORITHM-IDENTIFIER ::=
{ {PBMAC1-params IDENTIFIED BY id-PBMAC1}, ...}

Copyright © 1991-1999 RSA Laboratories.

25

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 26

id-PBMAC1 OBJECT IDENTIFIER ::= {pkcs-5 14}

PBMAC1-params ::= SEQUENCE {
keyDerivationFunc Algorithmldentifier {{PBMAC1-KDFs}},
messageAuthScheme Algorithmidentifier {{PBMAC1-MACs}} }

PBMAC1-KDFs ALGORITHM-IDENTIFIER ::=
{ {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... }

PBMAC1-MACs ALGORITHM-IDENTIFIER ::={... }
-- Supporting techniques

digestAlgorithm OBJECT IDENTIFIER ::= {rsadsi 2}
encryptionAlgorithm OBJECT IDENTIFIER ::= {rsadsi 3}

SupportingAlgorithms ALGORITHM-IDENTIFIER ::=
{{NULL IDENTIFIED BY id-hmacWithSHA1} |
{OCTET STRING (SIZE(8)) IDENTIFIED BY desCBC} |
{OCTET STRING (SIZE(8)) IDENTIFIED BY des-EDE3-CBC} |
{RC2-CBC-Parameter IDENTIFIED BY rc2CBC} |
{RC5-CBC-Parameters IDENTIFIED BY rc5-CBC-PAD}, ... }

id-hmacWithSHA1 OBJECT IDENTIFIER ::= {digestAlgorithm 7}
desCBC OBJECT IDENTIFIER ::=

{iso(1) identified-organization(3) oiw(14) secsig(3)

algorithms(2) 7} -- from OIW

des-EDE3-CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 7}
rc2CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 2}
RC2-CBC-Parameter ::= SEQUENCE {

rc2ParameterVersion INTEGER OPTIONAL,

iv OCTET STRING (SIZE(8)) }
rc5-CBC-PAD OBJECT IDENTIFIER ::= {encryptionAlgorithm 9}
RC5-CBC-Parameters ::= SEQUENCE {

version INTEGER {v1-0(16)} (v1-0),

rounds INTEGER (8..127),

blockSizelnBits INTEGER (64 | 128),

iv OCTET STRING OPTIONAL }

END

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 27

D. Intellectual property considerations

RSA Data Security makes no patent claims on the general constructions described in this
document, although specific underlying techniques may be covered. Among the underlying
techniques, the RC5 encryption algorithm (Appendix B.2.4) is protected by U.S. Patents
5,724,428 [22] and 5,835,600 [23].

RC2 and RC5 are trademarks of RSA Data Security.

License to copy this document is granted provided that it is identified as “RSA Data
Security, Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

RSA Data Security makes no representations regarding intellectual property claims by
other parties. Such determination is the responsibility of the user.

E. Revision history

Versions 1.0-1.3

Versions 1.0-1.3 were distributed to participants in RSA Data Security, Inc.’s Public-Key
Cryptography Standards meetings in February and March 1991.

Version 1.4

Version 1.4 was part of the June 3, 1991 initial public release of PKCS. Version 1.4 was
published as NIST/OSI Implementors’ Workshop document SEC-SIG-91-20.

Version 1.5

Version 1.5 incorporated several editorial changes, including updates to the references and
the addition of a revision history.

Version 2.0

Version 2.0 incorporates major editorial changes in terms of the document structure, and
introduces the PBES2 encryption scheme, the PBMAC1 message authentication scheme,
and independent password-based key derivation functions. This version continues to
support the encryption process in version 1.5.

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 28

F. References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

American National Standard X9.52 - 1998, Triple Data Encryption Algorithm
Modes of OperationWorking draft, Accredited Standards Committee X9, July
27, 1998.

R. Baldwin and R. RivesRFC 2040: The RC5, RC5-CBC, RC5-CBC-Pad, and
RC5-CTS AlgorithmdETF, October 1996.

D. BalensonRFC 1423: Privacy Enhancement for Internet Electronic Mail: Part
[lI: Algorithms, Modes, and Identifier$ETF, February 1993.

S.M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. RProceedings of the 199ZEEE Computer
Society Conference on Research in Security and Priyaages 72—-84, |IEEE
Computer Society, 1992.

D. Jablon. Strong password-only authenticated key exchak@® Computer
Communications Reviectober 1996.

B. Kaliski. RFC 1319: The MD2 Message-Digest AlgorithETF, April 1992.

H. Krawczyk, M. Bellare, and R. Canet®FC 2104: HMAC: Keyed-Hashing for
Message AuthenticatiofETF, February 1997.

Robert Morris and Ken Thompson. Password security: A case history.
Communications of the ACM2(11):594-597, November 1979.

ISO/IEC 8824-1:1995: Information technology — Abstract Syntax Notation One
(ASN.1) — Specification of basic notatid®95.

ISO/IEC 8824-1:1995/Amd.1:1995 Information technology — Abstract Syntax
Notation One (ASN.1l) — Specification of basic notation — Amendment 1 —
Rules of extensibilityl995.

ISO/IEC 8824-2:1995 Information technology — Abstract Syntax Notation One
(ASN.1) — Information object specificatidif95.

ISO/IEC 8824-2:1995/Amd.1:1995 Information technology — Abstract Syntax
Notation One (ASN.1) — Information object specification — Amendment 1 —
Rules of extensibilityl995.

ISO/IEC 8824-3:1995 Information technology — Abstract Syntax Notation One
(ASN.1) — Constraint specificatioh995.

ISO/IEC 8824-4:1995 Information technology — Abstract Syntax Notation One
(ASN.1) — Parameterization of ASN.1 specificati@895.

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 29

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

National Institute of Standards and Technology (NISHIRS PUB 46-2: Data
Encryption StandardDecember 30, 1993.

National Institute of Standards and Technology (NISHIPS PUB 81: DES
Modes of OperatiorDecember 2, 1980.

National Institute of Standards and Technology (NIFTP.S PUB 112: Password
Usage.May 30, 1985.

National Institute of Standards and Technology (NISTRS Publication 180-1:
Secure Hash Standardpril 1994.

R. Rivest.RFC 1321: The MD5 Message-Digest AlgorithETlF, April 1992.

R.L. Rivest. The RC5 encryption algorithnrm Proceedings of the Second
International Workshop on Fast Software Encryptiggages 86-96, Springer-
Verlag, 1994.

R. Rivest.RFC 2268: A Description of the RC2(r) Encryption AlgoritHETF,
March 1998.

R.L. Rivest.Block-Encryption Algorithm with Data-Dependent RotatiobsS.
Patent No. 5,724,428, March 3, 1998.

R.L. Rivest.Block Encryption Algorithm with Data-Dependent RotatiodsS.
Patent No. 5,835,600, November 10, 1998.

RSA LaboratoriesPKCS #5: Password-Based Encryption Standateksion 1.5,
November 1993.

RSA LaboratoriesPKCS #8: Private-Key Information Syntax Standardrsion
1.2, November 1993.

T. Wu. The Secure Remote Password protocolPiaceedings of the 1998
Internet Society Network and Distributed System Security Sympgsages 97-
111, Internet Society, 1998.

F. YergeauRFC 2279: UTF-8, a Transformation Format of ISO 106U&6IF,
January 1998.

G. About PKCS

The Public-Key Cryptography Standardsre specifications produced by RSA
Laboratories in cooperation with secure systems developers worldwide for the purpose of
accelerating the deployment of public-key cryptography. First published in 1991 as a result
of meetings with a small group of early adopters of public-key technology, the PKCS

Copyright © 1991-1999 RSA Laboratories.

PKCS #5v2.0: nSSWORD-BASED CRYPTOGRAPHYSTANDARD 30

documents have become widely referenced and implemented. Contributions from the
PKCS series have become part of many formalb@nthctostandards, including ANSI X9
documents, PKIX, SET, S/IMIME, and SSL.

Further development of PKCS occurs through mailing list discussions @asional
workshops, and suggestions for improvement are welcome. For more information,
contact:

PKCS Editor
RSA Laboratories
20 Crosbhy Drive

Bedford, MA 01730 USA
pkcs-editor@rsa.com
http://www.rsa.com/rsalabs/pubs/PKCS

Copyright © 1991-1999 RSA Laboratories.

