
Copyright © 2006 RSA Security Inc. All rights reserved. License to copy this document and furnish the
copies to others is granted provided that the above copyright notice is included on all such copies. This
document should be identified as “RSA Security Inc. Password-Based Cryptography Standard” in all
material mentioning or referencing this document.

PKCS #5 v2.1: Password-Based Cryptography Standard

RSA Laboratories

October 5, 2006

Table of Contents

TABLE OF CONTENTS... 1

1. INTRODUCTION .. 2

2. NOTATION... 3

3. OVERVIEW.. 4

4. SALT AND ITERATION COUNT ... 5
4.1 SALT .. 5
4.2 ITERATION COUNT.. 7

5. KEY DERIVATION FUNCTIONS .. 7
5.1 PBKDF1.. 7
5.2 PBKDF2.. 8

6. ENCRYPTION SCHEMES ... 10
6.1 PBES1 ... 10

6.1.1 PBES1 encryption operation .. 10
6.1.2 PBES1 decryption operation .. 11

6.2 PBES2 ... 12
6.2.1 PBES2 encryption operation .. 12
6.2.2 PBES2 decryption operation .. 13

7. MESSAGE AUTHENTICATION SCHEMES .. 13
7.1 PBMAC1... 14
7.2 PBMAC1 GENERATION OPERATION ... 14

7.2.1 PBMAC1 verification operation ... 14
A. ASN.1 SYNTAX.. 16

A.1 PBKDF1.. 16
A.2 PBKDF2.. 16
A.3 PBES1 ... 18
A.4 PBES2 ... 18
A.5 PBMAC1... 19

B. SUPPORTING TECHNIQUES... 19
B.1 PSEUDORANDOM FUNCTIONS ... 20

B.1.1 HMAC-SHA-1... 20
B.1.2 HMAC-SHA-2... 21

B.2 ENCRYPTION SCHEMES... 22

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 2

Copyright © 2006 RSA Laboratories.

B.2.1 DES-CBC-Pad.. 22
B.2.2 DES-EDE3-CBC-Pad... 22
B.2.3 RC2-CBC-Pad .. 23
B.2.4 RC5-CBC-Pad .. 23
B.2.5 AES-CBC-Pad .. 24

B.3 MESSAGE AUTHENTICATION SCHEMES ... 25
B.3.1 HMAC-SHA-1... 25
B.3.2 HMAC-SHA-2... 25

C. ASN.1 MODULE .. 26

D. INTELLECTUAL PROPERTY CONSIDERATIONS... 30

E. REVISION HISTORY ... 30
VERSIONS 1.0–1.3 .. 30
VERSION 1.4 ... 30
VERSION 1.5 ... 30
VERSION 2.0 ... 31
VERSION 2.1 ... 31

F. REFERENCES.. 31

G. ABOUT PKCS... 34

1. Introduction

This document provides recommendations for the implementation of password-based
cryptography, covering the following aspects:

• key derivation functions

• encryption schemes

• message-authentication schemes

• ASN.1 syntax identifying the techniques

The recommendations are intended for general application within computer and
communications systems, and as such include a fair amount of flexibility. They are
particularly intended for the protection of sensitive information such as private keys, as in
PKCS #8 [38]. It is expected that application standards and implementation profiles
based on these specifications may include additional constraints.

Other cryptographic techniques based on passwords, such as password-based key entity
authentication and key establishment protocols [4][5][39] are outside the scope of this
document. Guidelines for the selection of passwords are also outside the scope.

This document supersedes PKCS #5 version 2.0 [37], but includes compatible
techniques.

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 3

Copyright © 2006 RSA Laboratories.

2. Notation

C ciphertext, an octet string

c iteration count, a positive integer

DK derived key, an octet string

dkLen length in octets of derived key, a positive integer

EM encoded message, an octet string

Hash underlying hash function

hLen length in octets of pseudorandom function output, a positive
integer

l length in blocks of derived key, a positive integer

IV initialization vector, an octet string

K encryption key, an octet string

KDF key derivation function

M message, an octet string

P password, an octet string

PRF underlying pseudorandom function

PS padding string, an octet string

psLen length in octets of padding string, a positive integer

S salt, an octet string

T message authentication code, an octet string

T1, …, Tl, U1, …, Uc intermediate values, octet strings

01, 02, …, 08 octets with value 1, 2, …, 8

\xor bit-wise exclusive-or of two octet strings

|| ⋅ || octet length operator

|| concatenation operator

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 4

Copyright © 2006 RSA Laboratories.

<i..j> substring extraction operator: extracts octets i through j, 0 ≤ i ≤ j

3. Overview

In many applications of public-key cryptography, user security is ultimately dependent
on one or more secret text values or passwords. Since a password is not directly
applicable as a key to any conventional cryptosystem, however, some processing of the
password is required to perform cryptographic operations with it. Moreover, as
passwords are often chosen from a relatively small space, special care is required in that
processing to defend against search attacks.

A general approach to password-based cryptography, as described by Morris and
Thompson [8] for the protection of password tables, is to combine a password with a salt
to produce a key. The salt can be viewed as an index into a large set of keys derived from
the password, and need not be kept secret. Although it may be possible for an opponent
to construct a table of possible passwords (a so-called “dictionary attack”), constructing a
table of possible keys will be difficult, since there will be many possible keys for each
password. An opponent will thus be limited to searching through passwords separately
for each salt.

Another approach to password-based cryptography is to construct key derivation
techniques that are relatively expensive, thereby increasing the cost of exhaustive search.
One way to do this is to include an iteration count in the key derivation technique,
indicating how many times to iterate some underlying function by which keys are
derived. A modest number of iterations, say 1000, is not likely to be a burden for
legitimate parties when computing a key, but will be a significant burden for opponents.

Salt and iteration count formed the basis for password-based encryption in PKCS #5
v1.5, and adopted here as well for the various cryptographic operations. Thus, password-
based key derivation as defined here is a function of a password, a salt, and an iteration
count, where the latter two quantities need not be kept secret.

From a password-based key derivation function, it is straightforward to define password-
based encryption and message authentication schemes. As in PKCS #5 v1.5, the
password-based encryption schemes here are based on an underlying, conventional
encryption scheme, where the key for the conventional scheme is derived from the
password. Similarly, the password-based message authentication scheme is based on an
underlying conventional scheme. This two-layered approach makes the password-based
techniques modular in terms of the underlying techniques they can be based on.

It is expected that the password-based key derivation functions may find other
applications than just the encryption and message authentication schemes defined here.
For instance, one might derive a set of keys with a single application of a key derivation
function, rather than derive each key with a separate application of the function. The keys
in the set would be obtained as substrings of the output of the key derivation function.
This approach might be employed as part of key establishment in a session-oriented

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 5

Copyright © 2006 RSA Laboratories.

protocol. Another application is password checking, where the output of the key
derivation function is stored (along with the salt and iteration count) for the purposes of
subsequent verification of a password.

Throughout this document, a password is considered to be an octet string of arbitrary
length whose interpretation as a text string is unspecified. In the interest of
interoperability, however, it is recommended that applications follow some common text
encoding rules. ASCII and UTF-8 [40] are two possibilities. (ASCII is a subset of UTF-
8.)

Although the selection of passwords is outside the scope of this document, guidelines
have been published [27] and [41] that may well be taken into account.

4. Salt and iteration count

Inasmuch as salt and iteration count are central to the techniques defined in this
document, some further discussion is warranted.

4.1 Salt

A salt in password-based cryptography has traditionally served the purpose of producing
a large set of keys corresponding to a given password, among which one is selected at
random according to the salt. An individual key in the set is selected by applying a key
derivation function KDF, as

DK = KDF (P, S)

where DK is the derived key, P is the password, and S is the salt. This has two benefits:

1. It is difficult for an opponent to precompute all the keys corresponding to a
dictionary of passwords, or even the most likely keys. If the salt is 64 bits long,
for instance, there will be as many as 264 keys for each password. An opponent is
thus limited to searching for passwords after a password-based operation has been
performed and the salt is known.

2. It is unlikely that the same key will be selected twice. Again, if the salt is 64 bits
long, the chance of “collision” between keys does not become significant until
about 232 keys have been produced, according to the Birthday Paradox. This
addresses some of the concerns about interactions between multiple uses of the
same key, which may apply for some encryption and authentication techniques.

In password-based encryption, the party encrypting a message can gain assurance that
these benefits are realized simply by selecting a large and sufficiently random salt when
deriving an encryption key from a password. A party generating a message authentication
code can gain such assurance in a similar fashion.

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 6

Copyright © 2006 RSA Laboratories.

The party decrypting a message or verifying a message authentication code, however,
cannot be sure that a salt supplied by another party has actually been generated at
random. It is possible, for instance, that the salt may have been copied from another
password-based operation, in an attempt to exploit interactions between multiple uses of
the same key. For instance, suppose two legitimate parties exchange a encrypted
message, where the encryption key is an 80-bit key derived from a shared password with
some salt. An opponent could take the salt from that encryption and provide it to one of
the parties as though it were for a 40-bit key. If the party reveals the result of decryption
with the 40-bit key, the opponent may be able to solve for the 40-bit key. In the case that
40-bit key is the first half of the 80-bit key, the opponent can then readily solve for the
remaining 40 bits of the 80-bit key.

To defend against such attacks, either the interaction between multiple uses of the same
key should be carefully analyzed, or the salt should contain data that explicitly
distinguishes between different operations. For instance, the salt might have an
additional, non-random octet that specifies whether the derived key is for encryption, for
message authentication, or for some other operation.

Based on this, the following is recommended for salt selection:

1. If there is no concern about interactions between multiple uses of the same key
(or a prefix of that key) with the password-based encryption and authentication
techniques supported for a given password, then the salt may be generated at
random and need not be checked for a particular format by the party receiving the
salt. It should be at least eight octets (64 bits) long.

2. Otherwise, the salt should contain data that explicitly distinguishes between
different operations and different key lengths, in addition to a random part that is
at least eight octets long, and this data should be checked or regenerated by the
party receiving the salt. For instance, the salt could have an additional non-
random octet that specifies the purpose of the derived key. Alternatively, it could
be the encoding of a structure that specifies detailed information about the derived
key, such as the encryption or authentication technique and a sequence number
among the different keys derived from the password. The particular format of the
additional data is left to the application.

Note. If a random number generator or pseudorandom generator is not available, a
deterministic alternative for generating the salt (or the random part of it) is to apply a
password-based key derivation function to the password and the message M to be
processed. For instance, the salt could be computed with a key derivation function as S =
KDF (P, M). This approach is not recommended if the message M is known to belong to
a small message space (e.g., “Yes” or “No”), however, since then there will only be a
small number of possible salts.

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 7

Copyright © 2006 RSA Laboratories.

4.2 Iteration count

An iteration count has traditionally served the purpose of increasing the cost of producing
keys from a password, thereby also increasing the difficulty of attack. For the methods in
this document, a minimum of 1000 iterations is recommended. This will increase the cost
of exhaustive search for passwords significantly, without a noticeable impact in the cost
of deriving individual keys.

5. Key derivation functions

A key derivation function produces a derived key from a base key and other parameters.
In a password-based key derivation function, the base key is a password and the other
parameters are a salt value and an iteration count, as outlined in Section 3.

The primary application of the password-based key derivation functions defined here is
in the encryption schemes in Section 6 and the message authentication scheme in Section
7. Other applications are certainly possible, hence the independent definition of these
functions.

Two functions are specified in this section: PBKDF1 and PBKDF2. PBKDF2 is
recommended for new applications; PBKDF1 is included only for compatibility with
existing applications, and is not recommended for new applications.

A typical application of the key derivation functions defined here might include the
following steps:

1. Select a salt S and an iteration count c, as outlined in Section 4.

2. Select a length in octets for the derived key, dkLen.

3. Apply the key derivation function to the password, the salt, the iteration count and
the key length to produce a derived key.

4. Output the derived key.

Any number of keys may be derived from a password by varying the salt, as described in
Section 3.

5.1 PBKDF1

PBKDF1 applies a hash function, which shall be MD2 [6], MD5 [32] or SHA-1 [28], to
derive keys. The length of the derived key is bounded by the length of the hash function
output, which is 16 octets for MD2 and MD5 and 20 octets for SHA-1. PBKDF1 is
compatible with the key derivation process in PKCS #5 v1.5.

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 8

Copyright © 2006 RSA Laboratories.

PBKDF1 is recommended only for compatibility with existing applications since the keys
it produces may not be large enough for some applications, and the underlying hash
functions it supports are no longer being recommended for new applications.

PBKDF1 (P, S, c, dkLen)

Options: Hash underlying hash function

Input: P password, an octet string

 S salt, an eight-octet string

 c iteration count, a positive integer

 dkLen intended length in octets of derived key, a positive integer, at most
16 for MD2 or MD5 and 20 for SHA-1

Output: DK derived key, a dkLen-octet string

Steps:

1. If dkLen > 16 for MD2 and MD5, or dkLen > 20 for SHA-1, output “derived key
too long” and stop.

2. Apply the underlying hash function Hash for c iterations to the concatenation of
the password P and the salt S, then extract the first dkLen octets to produce a
derived key DK:

T1 = Hash (P || S) ,
T2 = Hash (T1) ,

…
Tc = Hash (Tc-1) ,

DK = Tc<0..dkLen-1> .

3. Output the derived key DK.

5.2 PBKDF2

PBKDF2 applies a pseudorandom function (see Appendix B.1 for an example) to derive
keys. The length of the derived key is essentially unbounded. (However, the maximum
effective search space for the derived key may be limited by the structure of the
underlying pseudorandom function. See Appendix B.1 for further discussion.)

PBKDF2 is recommended for new applications.

PBKDF2 (P, S, c, dkLen)

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 9

Copyright © 2006 RSA Laboratories.

Options: PRF underlying pseudorandom function (hLen denotes the length in
octets of the pseudorandom function output)

Input: P password, an octet string

 S salt, an octet string

 c iteration count, a positive integer

 dkLen intended length in octets of the derived key, a positive integer, at
most (232 – 1) × hLen

Output: DK derived key, a dkLen-octet string

Steps:

1. If dkLen > (232 – 1) × hLen, output “derived key too long” and stop.

2. Let l be the number of hLen-octet blocks in the derived key, rounding up, and let r
be the number of octets in the last block:

l = dkLen / hLen ,
r = dkLen – (l – 1) × hLen .

3. For each block of the derived key apply the function F defined below to the
password P, the salt S, the iteration count c, and the block index to compute the
block:

T1 = F (P, S, c, 1) ,
T2 = F (P, S, c, 2) ,

…
Tl = F (P, S, c, l) ,

 where the function F is defined as the exclusive-or sum of the first c iterates of
the underlying pseudorandom function PRF applied to the password P and the
concatenation of the salt S and the block index i:

F (P, S, c, i) = U1 \xor U2 \xor ⋅⋅⋅ \xor Uc

 where

U1 = PRF (P, S || INT (i)) ,
U2 = PRF (P, U1) ,

…
Uc = PRF (P, Uc-1) .

 Here, INT (i) is a four-octet encoding of the integer i, most significant octet first.

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 10

Copyright © 2006 RSA Laboratories.

4. Concatenate the blocks and extract the first dkLen octets to produce a derived key
DK:

DK = T1 || T2 || ⋅⋅⋅ || Tl<0..r-1> .

5. Output the derived key DK.

Note. The construction of the function F follows a “belt-and-suspenders” approach. The
iterates Ui are computed recursively to remove a degree of parallelism from an opponent;
they are exclusive-ored together to reduce concerns about the recursion degenerating into
a small set of values.

6. Encryption schemes

An encryption scheme, in the symmetric setting, consists of an encryption operation and
a decryption operation, where the encryption operation produces a ciphertext from a
message under a key, and the decryption operation recovers the message from the
ciphertext under the same key. In a password-based encryption scheme, the key is a
password.

A typical application of a password-based encryption scheme is a private-key protection
method, where the message contains private-key information, as in PKCS #8. The
encryption schemes defined here would be suitable encryption algorithms in that context.

Two schemes are specified in this section: PBES1 and PBES2. PBES2 is recommended
for new applications; PBES1 is included only for compatibility with existing
applications, and is not recommended for new applications.

6.1 PBES1

PBES1 combines the PBKDF1 function (Section 5.1) with an underlying block cipher,
which shall be either DES [25] or RC2TM [34] in CBC mode [26]. PBES1 is compatible
with the encryption scheme in PKCS #5 v1.5.

PBES1 is recommended only for compatibility with existing applications, since it
supports only two underlying encryption schemes, each of which has a key size (56 or 64
bits) that may not be large enough for some applications.

6.1.1 PBES1 encryption operation

The encryption operation for PBES1 consists of the following steps, which encrypt a
message M under a password P to produce a ciphertext C:

1. Select an eight-octet salt S and an iteration count c, as outlined in Section 4.

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 11

Copyright © 2006 RSA Laboratories.

2. Apply the PBKDF1 key derivation function (Section 5.1) to the password P, the
salt S, and the iteration count c to produce a derived key DK of length 16 octets:

DK = PBKDF1 (P, S, c, 16) .

3. Separate the derived key DK into an encryption key K consisting of the first eight
octets of DK and an initialization vector IV consisting of the next eight octets:

K = DK<0..7> ,
IV = DK<8..15> .

4. Concatenate M and a padding string PS to form an encoded message EM:

EM = M || PS ,

where the padding string PS consists of 8-(||M|| mod 8) octets each with value 8-
(||M|| mod 8). The padding string PS will satisfy one of the following statements:

PS = 01 — if ||M|| mod 8 = 7 ;
PS = 02 02 — if ||M|| mod 8 = 6 ;

...
PS = 08 08 08 08 08 08 08 08 — if ||M|| mod 8 = 0.

The length in octets of the encoded message will be a multiple of eight and it will
be possible to recover the message M unambiguously from the encoded message.
(This padding rule is taken from RFC 1423 [3].)

5. Encrypt the encoded message EM with the underlying block cipher (DES or RC2)
in cipher block chaining mode under the encryption key K with initialization
vector IV to produce the ciphertext C. For DES, the key K shall be considered as a
64-bit encoding of a 56-bit DES key with parity bits ignored (see [9]). For RC2,
the “effective key bits” shall be 64 bits.

6. Output the ciphertext C.

The salt S and the iteration count c may be conveyed to the party performing decryption
in an AlgorithmIdentifier value (see Appendix A.3).

6.1.2 PBES1 decryption operation

The decryption operation for PBES1 consists of the following steps, which decrypt a
ciphertext C under a password P to recover a message M:

1. Obtain the eight-octet salt S and the iteration count c.

2. Apply the PBKDF1 key derivation function (Section 5.1) to the password P, the
salt S, and the iteration count c to produce a derived key DK of length 16 octets:

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 12

Copyright © 2006 RSA Laboratories.

DK = PBKDF1 (P, S, c, 16) .

3. Separate the derived key DK into an encryption key K consisting of the first eight
octets of DK and an initialization vector IV consisting of the next eight octets:

K = DK<0..7> ,
IV = DK<8..15> .

4. Decrypt the ciphertext C with the underlying block cipher (DES or RC2) in cipher
block chaining mode under the encryption key K with initialization vector IV to
recover an encoded message EM. If the length in octets of the ciphertext C is not
a multiple of eight, output “decryption error” and stop.

5. Separate the encoded message EM into a message M and a padding string PS:

EM = M || PS ,

 where the padding string PS consists of some number psLen octets each with
value psLen, where psLen is between 1 and 8. If it is not possible to separate the
encoded message EM in this manner, output “decryption error” and stop.

6. Output the recovered message M.

6.2 PBES2

PBES2 combines a password-based key derivation function, which shall be PBKDF2
(Section 5.2) for this version of PKCS #5, with an underlying encryption scheme (see
Appendix B.2 for examples). The key length and any other parameters for the underlying
encryption scheme depend on the scheme.

PBES2 is recommended for new applications.

6.2.1 PBES2 encryption operation

The encryption operation for PBES2 consists of the following steps, which encrypt a
message M under a password P to produce a ciphertext C, applying a selected key
derivation function KDF and a selected underlying encryption scheme:

1. Select a salt S and an iteration count c, as outlined in Section 4.

2. Select the length in octets, dkLen, for the derived key for the underlying
encryption scheme.

3. Apply the selected key derivation function to the password P, the salt S, and the
iteration count c to produce a derived key DK of length dkLen octets:

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 13

Copyright © 2006 RSA Laboratories.

DK = KDF (P, S, c, dkLen) .

4. Encrypt the message M with the underlying encryption scheme under the derived
key DK to produce a ciphertext C. (This step may involve selection of parameters
such as an initialization vector and padding, depending on the underlying
scheme.)

5. Output the ciphertext C.

The salt S, the iteration count c, the key length dkLen, and identifiers for the key
derivation function and the underlying encryption scheme may be conveyed to the party
performing decryption in an AlgorithmIdentifier value (see Appendix A.4).

6.2.2 PBES2 decryption operation

The decryption operation for PBES2 consists of the following steps, which decrypt a
ciphertext C under a password P to recover a message M:

1. Obtain the salt S for the operation.

2. Obtain the iteration count c for the key derivation function.

3. Obtain the key length in octets, dkLen, for the derived key for the underlying
encryption scheme.

4. Apply the selected key derivation function to the password P, the salt S, and the
iteration count c to produce a derived key DK of length dkLen octets:

DK = KDF (P, S, c, dkLen) .

5. Decrypt the ciphertext C with the underlying encryption scheme under the
derived key DK to recover a message M. If the decryption function outputs
“decryption error,” then output “decryption error” and stop.

6. Output the recovered message M.

7. Message authentication schemes

A message authentication scheme consists of a MAC (message authentication code)
generation operation and a MAC verification operation, where the MAC generation
operation produces a message authentication code from a message under a key, and the
MAC verification operation verifies the message authentication code under the same key.
In a password-based message authentication scheme, the key is a password.

One scheme is specified in this section: PBMAC1.

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 14

Copyright © 2006 RSA Laboratories.

7.1 PBMAC1

PBMAC1 combines a password-based key derivation function, which shall be PBKDF2
(Section 5.2) for this version of PKCS #5, with an underlying message authentication
scheme (see Appendix B.3 for an example). The key length and any other parameters for
the underlying message authentication scheme depend on the scheme.

7.2 PBMAC1 generation operation

The MAC generation operation for PBMAC1 consists of the following steps, which
process a message M under a password P to generate a message authentication code T,
applying a selected key derivation function KDF and a selected underlying message
authentication scheme:

1. Select a salt S and an iteration count c, as outlined in Section 4.

2. Select a key length in octets, dkLen, for the derived key for the underlying
message authentication function.

3. Apply the selected key derivation function to the password P, the salt S, and the
iteration count c to produce a derived key DK of length dkLen octets:

DK = KDF (P, S, c, dkLen) .

4. Process the message M with the underlying message authentication scheme under
the derived key DK to generate a message authentication code T.

5. Output the message authentication code T.

The salt S, the iteration count c, the key length dkLen, and identifiers for the key
derivation function and underlying message authentication scheme may be conveyed to
the party performing verification in an AlgorithmIdentifier value (see Appendix
A.5).

7.2.1 PBMAC1 verification operation

The MAC verification operation for PBMAC1 consists of the following steps, which
process a message M under a password P to verify a message authentication code T:

1. Obtain the salt S and the iteration count c.

2. Obtain the key length in octets, dkLen, for the derived key for the underlying
message authentication scheme.

3. Apply the selected key derivation function to the password P, the salt S, and the
iteration count c to produce a derived key DK of length dkLen octets:

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 15

Copyright © 2006 RSA Laboratories.

DK = KDF (P, S, c, dkLen) .

4. Process the message M with the underlying message authentication scheme under
the derived key DK to verify the message authentication code T.

5. If the message authentication code verifies, output “correct”; else output
“incorrect.”

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 16

Copyright © 2006 RSA Laboratories.

A. ASN.1 syntax

This section defines ASN.1 syntax for the key derivation functions, the encryption
schemes, the message authentication scheme, and supporting techniques. The intended
application of these definitions includes PKCS #8 and other syntax for key management,
encrypted data, and integrity-protected data. (Various aspects of ASN.1 are specified in
severalISO/IECstandards [9][10][11][12][13][14][15][16][1]7][18][18][20][21][22][23]
[24].)

The object identifier pkcs-5 identifies the arc of the OID tree from which the PKCS #5-
specific OIDs in this section are derived:

rsadsi OBJECT IDENTIFIER ::=
 {iso(1) member-body(2) us(840) 113549}
pkcs OBJECT IDENTIFIER ::= {rsadsi 1}
pkcs-5 OBJECT IDENTIFIER ::= {pkcs 5}

A.1 PBKDF1

No object identifier is given for PBKDF1, as the object identifiers for PBES1 are
sufficient for existing applications and PBKDF2 is recommended for new applications.

A.2 PBKDF2

The object identifier id-PBKDF2 identifies the PBKDF2 key derivation function
(Section 5.2).

id-PBKDF2 OBJECT IDENTIFIER ::= {pkcs-5 12}

The parameters field associated with this OID in an AlgorithmIdentifier
shall have type PBKDF2-params:

PBKDF2-params ::= SEQUENCE {
 salt CHOICE {
 specified OCTET STRING,
 otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}}
 },
 iterationCount INTEGER (1..MAX),
 keyLength INTEGER (1..MAX) OPTIONAL,
 prf AlgorithmIdentifier {{PBKDF2-PRFs}} DEFAULT
 algid-hmacWithSHA1 }

The fields of type PKDF2-params have the following meanings:

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 17

Copyright © 2006 RSA Laboratories.

• salt specifies the salt value, or the source of the salt value. It shall either be an octet
string or an algorithm ID with an OID in the set PBKDF2-SaltSources, which is
reserved for future versions of PKCS #5.

The salt-source approach is intended to indicate how the salt value is to be generated
as a function of parameters in the algorithm ID, application data, or both. For
instance, it may indicate that the salt value is produced from the encoding of a
structure that specifies detailed information about the derived key as suggested in
Section 4.1. Some of the information may be carried elsewhere, e.g., in the encryption
algorithm ID. However, such facilities are deferred to a future version of PKCS #5.

In this version, an application may achieve the benefits mentioned in Section 4.1 by
choosing a particular interpretation of the salt value in the specified alternative.

PBKDF2-SaltSources ALGORITHM-IDENTIFIER ::= { ... }

• iterationCount specifies the iteration count. The maximum iteration count
allowed depends on the implementation. It is expected that implementation profiles
may further constrain the bounds.

• keyLength, an optional field, is the length in octets of the derived key. The
maximum key length allowed depends on the implementation; it is expected that
implementation profiles may further constrain the bounds. The field is provided for
convenience only; the key length is not cryptographically protected. If there is
concern about interaction between operations with different key lengths for a given
salt (see Section 4.1), the salt should distinguish among the different key lengths.

• prf identifies the underlying pseudorandom function. It shall be an algorithm ID
with an OID in the set PBKDF2-PRFs (see Appendix B.1.1) or any other OIDs
defined by the application.

PBKDF2-PRFs ALGORITHM-IDENTIFIER ::= {
 {NULL IDENTIFIED BY id-hmacWithSHA1} |
 {NULL IDENTIFIED BY id-hmacWithSHA224} |
 {NULL IDENTIFIED BY id-hmacWithSHA256} |
 {NULL IDENTIFIED BY id-hmacWithSHA389} |
 {NULL IDENTIFIED BY id-hmacWithSHA512}, ... }

The default pseudorandom function is HMAC-SHA-1:

algid-hmacWithSHA1 AlgorithmIdentifier {{PBKDF2-PRFs}} ::=
 {algorithm id-hmacWithSHA1, parameters NULL : NULL}

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 18

Copyright © 2006 RSA Laboratories.

A.3 PBES1

Different object identifiers identify the PBES1 encryption scheme (Section 6.1)
according to the underlying hash function in the key derivation function and the
underlying block cipher, as summarized in the following table:

Hash Function Block Cipher OID
MD2 DES pkcs-5.1
MD2 RC2 pkcs-5.4
MD5 DES pkcs-5.3
MD5 RC2 pkcs-5.6

SHA-1 DES pkcs-5.10
SHA-1 RC2 pkcs-5.11

pbeWithMD2AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 1}
pbeWithMD2AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 4}
pbeWithMD5AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 3}
pbeWithMD5AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 6}
pbeWithSHA1AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 10}
pbeWithSHA1AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 11}

For each OID, the parameters field associated with the OID in an
AlgorithmIdentifier shall have type PBEParameter:

PBEParameter ::= SEQUENCE {
 salt OCTET STRING (SIZE(8)),
 iterationCount INTEGER }

The fields of type PBEParameter have the following meanings:

• salt specifies the salt value, an eight-octet string.

• iterationCount specifies the iteration count.

A.4 PBES2

The object identifier id-PBES2 identifies the PBES2 encryption scheme (Section 6.2).

id-PBES2 OBJECT IDENTIFIER ::= {pkcs-5 13}

The parameters field associated with this OID in an AlgorithmIdentifier
shall have type PBES2-params:

PBES2-params ::= SEQUENCE {
 keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}},
 encryptionScheme AlgorithmIdentifier {{PBES2-Encs}} }

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 19

Copyright © 2006 RSA Laboratories.

The fields of type PBES2-params have the following meanings:

• keyDerivationFunc identifies the underlying key derivation function. It shall be
an algorithm ID with an OID in the set PBES2-KDFs, which for this version of
PKCS #5 shall consist of id-PBKDF2 (Appendix A.2).

PBES2-KDFs ALGORITHM-IDENTIFIER ::=
 { {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... }

• encryptionScheme identifies the underlying encryption scheme. It shall be an
algorithm ID with an OID in the set PBES2-Encs, whose definition is left to the
application. Example underlying encryption schemes are given in Appendix B.2.

PBES2-Encs ALGORITHM-IDENTIFIER ::= { ... }

A.5 PBMAC1

The object identifier id-PBMAC1 identifies the PBMAC1 message authentication
scheme (Section 7.1).

id-PBMAC1 OBJECT IDENTIFIER ::= {pkcs-5 14}

The parameters field associated with this OID in an AlgorithmIdentifier
shall have type PBMAC1-params:

PBMAC1-params ::= SEQUENCE {
 keyDerivationFunc AlgorithmIdentifier {{PBMAC1-KDFs}},
 messageAuthScheme AlgorithmIdentifier {{PBMAC1-MACs}} }

The keyDerivationFunc field has the same meaning as the corresponding field of
PBES2-params (Appendix A.4) except that the set of OIDs is PBMAC1-KDFs.

PBMAC1-KDFs ALGORITHM-IDENTIFIER ::=
 { {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... }

The messageAuthScheme field identifies the underlying message authentication
scheme. It shall be an algorithm ID with an OID in the set PBMAC1-MACs, whose
definition is left to the application. Example underlying encryption schemes are given in
Appendix B.3.

PBMAC1-MACs ALGORITHM-IDENTIFIER ::= { ... }

B. Supporting techniques

This section gives several examples of underlying functions and schemes supporting the
password-based schemes in Sections 5, 6 and 7. While these supporting techniques are

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 20

Copyright © 2006 RSA Laboratories.

appropriate for applications to implement, none of them is required to be implemented. It
is expected, however, that profiles for PKCS #5 will be developed that specify particular
supporting techniques.

This section also gives object identifiers for the supporting techniques.

The object identifiers digestAlgorithm and encryptionAlgorithm identify
the arcs from which certain algorithm OIDs referenced in this section are derived:

digestAlgorithm OBJECT IDENTIFIER ::= {rsadsi 2}
encryptionAlgorithm OBJECT IDENTIFIER ::= {rsadsi 3}

B.1 Pseudorandom functions

Example pseudorandom functions for PBKDF2 are HMAC with SHA-1, SHA-224,
SHA-256, SHA-384 and SHA-512. Applications may employ other schemes as well.

B.1.1 HMAC-SHA-1

HMAC-SHA-1 is the pseudorandom function corresponding to the HMAC message
authentication code [7] based on the SHA-1 hash function [28]. The pseudorandom
function is the same function by which the message authentication code is computed,
with a full-length output. (The first argument to the pseudorandom function PRF serves
as HMAC’s “key,” and the second serves as HMAC’s “text.” In the case of PBKDF2, the
“key” is thus the password and the “text” is the salt.) HMAC-SHA-1 has a variable key
length and a 20-octet (160-bit) output value.

Although the length of the key to HMAC-SHA-1 is essentially unbounded, the effective
search space for pseudorandom function outputs is limited by the structure of the
function. In particular, when the key is longer than 512 bits, HMAC-SHA-1 will first
hash it to 160 bits. Thus, even if a long derived key consisting of several pseudorandom
function outputs is produced from a key, the effective search space for the derived key
will be at most 160 bits. Although the specific limitation for other key sizes depends on
details of the HMAC construction, one should assume, to be conservative, that the
effective search space is limited to 160 bits for other key sizes as well.

(The 160-bit limitation should not generally pose a practical limitation in the case of
password-based cryptography, since the search space for a password is unlikely to be
greater than 160 bits.)

The object identifier id-hmacWithSHA1 identifies the HMAC-SHA-1 pseudorandom
function:

 id-hmacWithSHA1 OBJECT IDENTIFIER ::= {digestAlgorithm
7}

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 21

Copyright © 2006 RSA Laboratories.

The parameters field associated with this OID in an AlgorithmIdentifier
shall have type NULL. This object identifier is employed in the object set PBKDF2-
PRFs (Appendix A.2).

Note. Although HMAC-SHA-1 was designed as a message authentication code, its proof
of security is readily modified to accommodate requirements for a pseudorandom
function, under stronger assumptions. A hash function may also meet the requirements of
a pseudorandom function under certain assumptions. For instance, the direct application
of a hash function to the concatenation of the “key” and the “text” may be appropriate,
provided that “text” has appropriate structure to prevent certain attacks. HMAC-SHA-1 is
preferable, however, because it treats “key” and “text” as separate arguments and does
not require “text” to have any structure.

During 2004 and 2005 there were a number of attacks on SHA-1 that reduced its
perceived effective strength against collision attacks to 62 bits instead of the expected 80
bits. However, since these attacks centered on finding collisions between values they are
not a direct security consideration here since the collision-resistant property is not
required by the HMAC authentication scheme. Still, applications should move to stronger
hash functions such as those described next as a conservative measure.

B.1.2 HMAC-SHA-2

HMAC-SHA-2 refers to the set of pseudorandom functions corresponding to the HMAC
message authentication code (now a FIPS standard [31], see also [7]) based on the new
SHA-2 functions (FIPS 180-2 [29]).

HMAC-SHA-2 has variable key length and variable output value depending on the hash
function chosen (SHA-224, SHA-256, SHA-384 or SHA-512), that is 28, 32, 48 or 64
octets.

Using the new hash functions extends the search space for the produced keys.

Where SHA-1 limits the search space to 20 octets, SHA-2 sets new limits of 28, 32, 48
and 64 octets.

Object identifiers have been defined for HMAC as follows:

 id-hmacWithSHA224 OBJECT IDENTIFIER ::=
{digestAlgorithm 8}
 id-hmacWithSHA256 OBJECT IDENTIFIER ::=
{digestAlgorithm 9}
 id-hmacWithSHA384 OBJECT IDENTIFIER ::=
{digestAlgorithm 10}
 id-hmacWithSHA512 OBJECT IDENTIFIER ::=
{digestAlgorithm 11}

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 22

Copyright © 2006 RSA Laboratories.

B.2 Encryption schemes

An example encryption scheme for PBES2 (Section 6.2), using the new encryption
scheme is AES-CBC-Pad.

The legacy methods are still supported (DES-CBC-Pad, DES-EDE3-CBC-Pad, RC2-
CBC-Pad and RC5-CBC-Pad).

The object identifiers given in this section are intended to be employed in the object set
PBES2-Encs (Section A.4) Applications may also employ other schemes.

B.2.1 DES-CBC-Pad

DES-CBC-Pad is single-key DES [25] in CBC mode [26] with the RFC 1423 padding
operation (see Section 6.1.1). DES-CBC-Pad has an eight-octet encryption key and an
eight-octet initialization vector. The key is considered as a 64-bit encoding of a 56-bit
DES key with parity bits ignored.

The object identifier desCBC (defined in the NIST/OSI Implementors’ Workshop
agreements) identifies the DES-CBC-Pad encryption scheme:

desCBC OBJECT IDENTIFIER ::=
 {iso(1) identified-organization(3) oiw(14) secsig(3)
 algorithms(2) 7}

The parameters field associated with this OID in an AlgorithmIdentifier
shall have type OCTET STRING (SIZE(8)), specifying the initialization vector for
CBC mode.

B.2.2 DES-EDE3-CBC-Pad

DES-EDE3-CBC-Pad is three-key triple-DES in CBC mode [1] with the RFC 1423
padding operation. DES-EDE3-CBC-Pad has a 24-octet encryption key and an eight-
octet initialization vector. The key is considered as the concatenation of three eight-octet
keys, each of which is a 64-bit encoding of a 56-bit DES key with parity bits ignored.

The object identifier des-EDE3-CBC identifies the DES-EDE3-CBC-Pad encryption
scheme:

des-EDE3-CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 7}

The parameters field associated with this OID in an AlgorithmIdentifier
shall have type OCTET STRING (SIZE(8)), specifying the initialization vector for
CBC mode.

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 23

Copyright © 2006 RSA Laboratories.

Note. An OID for DES-EDE3-CBC without padding is given in ANSI X9.52 [1]; the one
given here is preferred since it specifies padding.

B.2.3 RC2-CBC-Pad

RC2-CBC-Pad is the RC2TM encryption algorithm [34] in CBC mode with the RFC 1423
padding operation. RC2-CBC-Pad has a variable key length, from one to 128 octets, a
separate “effective key bits” parameter from one to 1024 bits that limits the effective
search space independent of the key length, and an eight-octet initialization vector.

The object identifier rc2CBC identifies the RC2-CBC-Pad encryption scheme:

rc2CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 2}

The parameters field associated with OID in an AlgorithmIdentifier shall
have type RC2-CBC-Parameter:

RC2-CBC-Parameter ::= SEQUENCE {
 rc2ParameterVersion INTEGER OPTIONAL,
 iv OCTET STRING (SIZE(8)) }

The fields of type RC2-CBCParameter have the following meanings:

• rc2ParameterVersion is a proprietary RSA Security encoding of the “effective
key bits” for RC2. The following encodings are defined:

Effective key bits Encoding
40 160
64 120
128 58

b ≥ 256 b

If the rc2ParameterVersion field is omitted, the “effective key bits” defaults to
32. (This is for backward compatibility with certain very old implementations.)

• iv is the eight-octet initialization vector.

B.2.4 RC5-CBC-Pad

RC5-CBC-Pad is the RC5TM encryption algorithm [33] in CBC mode with a
generalization of the RFC 1423 padding operation1. This scheme is fully specified in [2].

1 The generalization of the padding operation is as follows. For RC5 with a 64-bit block size, the padding
string is as defined in RFC 1423. For RC5 with a 128-bit block size, the padding string consists of 16-(||M||
mod 16) octets each with value 16-(||M|| mod 16).

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 24

Copyright © 2006 RSA Laboratories.

RC5-CBC-Pad has a variable key length, from 0 to 256 octets, and supports both a 64-bit
block size and a 128-bit block size. For the former, it has an eight-octet initialization
vector, and for the latter, a 16-octet initialization vector. RC5-CBC-Pad also has a
variable number of “rounds” in the encryption operation, from 8 to 127.

The object identifier rc5-CBC-PAD [2] identifies RC5-CBC-Pad encryption scheme:

rc5-CBC-PAD OBJECT IDENTIFIER ::= {encryptionAlgorithm 9}

The parameters field associated with this OID in an AlgorithmIdentifier
shall have type RC5-CBC-Parameters:

RC5-CBC-Parameters ::= SEQUENCE {
 version INTEGER {v1-0(16)} (v1-0),
 rounds INTEGER (8..127),
 blockSizeInBits INTEGER (64 | 128),
 iv OCTET STRING OPTIONAL }

The fields of type RC5-CBC-Parameters have the following meanings:

• version is the version of the algorithm, which shall be v1-0.

• rounds is the number of rounds in the encryption operation, which shall be between
8 and 127.

• blockSizeInBits is the block size in bits, which shall be 64 or 128.

• iv is the initialization vector, an eight-octet string for 64-bit RC5 and a 16-octet
string for 128-bit RC5. The default is a string of the appropriate length consisting of
zero octets.

B.2.5 AES-CBC-Pad

AES-CBC-Pad is the AES encryption algorithm in CBC mode with PKCS #5 padding.

AES-CBC-Pad has a variable key length of 16, 24 or 32 octets and has a 16-octet block
size. It has a 16-octet initialization vector.

For AES, object identifiers have been defined depending on key size and operation mode.

An example, the 16-octet (128 bit) key AES encryption scheme in CBC mode would be
aes128-CBC-Pad identifying the AES-CBC-PAD encryption scheme using a 16-octet
key:

aes128-CBC-Pad OBJECT IDENTIFIER ::= { aes 2 }

The AES object identifier is defined in the ASN.1 appendix.

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 25

Copyright © 2006 RSA Laboratories.

The parameters field associated with this OID in an AlgorithmIdentifier shall
have type OCTET STRING (SIZE(16)), specifying the initialization vector for
CBC mode.

B.3 Message authentication schemes

Example message authentication schemes for PBMAC1 (Section 7.1) are HMAC with
one of the SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 hash functions.

B.3.1 HMAC-SHA-1

HMAC-SHA-1 is the HMAC message authentication scheme [7] based on the SHA-1
hash function [28]. HMAC-SHA-1 has a variable key length and a 20-octet (160-bit)
message authentication code.

The object identifier id-hmacWithSHA1 (see Appendix B.1.1) identifies the HMAC-
SHA-1 message authentication scheme. (The object identifier is the same for both the
pseudorandom function and the message authentication scheme; the distinction is to be
understood by context.) This object identifier is intended to be employed in the object set
PBMAC1-Macs (Appendix A.5).

B.3.2 HMAC-SHA-2

HMAC-SHA-2 refers to the set of HMAC message authentication schemes [7],[31] based
on the SHA-2 functions [29]. HMAC-SHA-2 has a variable key length and a message
authentication code whose length is based on the hash function chosen (SHA-224, SHA-
256, SHA-384 or SHA-512 giving 28, 32, 48 or 64 octets).

 id-hmacWithSHA224 OBJECT IDENTIFIER ::=
{digestAlgorithm 8}
 id-hmacWithSHA256 OBJECT IDENTIFIER ::=
{digestAlgorithm 9}
 id-hmacWithSHA384 OBJECT IDENTIFIER ::=
{digestAlgorithm 10}
 id-hmacWithSHA512 OBJECT IDENTIFIER ::=
{digestAlgorithm 11}

The object identifier: id-hmacWithSHA224, id-hmacWithSHA256, id-
hmacWithSHA384 or id-hmacWithSHA512 (see Appendix B.1.2) identifies the
HMAC-SHA-2 schemes.

The object identifiers xxx identifies the HMAC scheme with truncated output.

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 26

Copyright © 2006 RSA Laboratories.

 (The object identifiers are the same for both the pseudorandom functions and the
message authentication schemes; the distinction is to be understood by context.)

These object identifiers are intended to be employed in the object set PBMAC1-Macs
(Appendix A.5).

C. ASN.1 module

For reference purposes, the ASN.1 syntax in the preceding sections is presented as an
ASN.1 module here.

-- PKCS #5 v2.0 ASN.1 Module
-- Revised May 19, 2006

-- This module has been checked for conformance with the
-- ASN.1 standard by the OSS ASN.1 Tools

PKCS5v2-0 {iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-5(5) modules(16) pkcs5v2-0(1)}

DEFINITIONS ::= BEGIN

-- Basic object identifiers

rsadsi OBJECT IDENTIFIER ::=
 {iso(1) member-body(2) us(840) 113549}
pkcs OBJECT IDENTIFIER ::= {rsadsi 1}
pkcs-5 OBJECT IDENTIFIER ::= {pkcs 5}

-- Basic types and classes

AlgorithmIdentifier { ALGORITHM-IDENTIFIER:InfoObjectSet }
::=
SEQUENCE {
 algorithm ALGORITHM-IDENTIFIER.&id({InfoObjectSet}),
 parameters ALGORITHM-IDENTIFIER.&Type({InfoObjectSet}
 {@algorithm}) OPTIONAL }

ALGORITHM-IDENTIFIER ::= TYPE-IDENTIFIER

-- PBKDF2

PBKDF2Algorithms ALGORITHM-IDENTIFIER ::=
 { {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ...}

id-PBKDF2 OBJECT IDENTIFIER ::= {pkcs-5 12}

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 27

Copyright © 2006 RSA Laboratories.

algid-hmacWithSHA1 AlgorithmIdentifier {{PBKDF2-PRFs}} ::=
 {algorithm id-hmacWithSHA1, parameters NULL : NULL}

PBKDF2-params ::= SEQUENCE {
 salt CHOICE {
 specified OCTET STRING,
 otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}}
 },
 iterationCount INTEGER (1..MAX),
 keyLength INTEGER (1..MAX) OPTIONAL,
 prf AlgorithmIdentifier {{PBKDF2-PRFs}} DEFAULT
 algid-hmacWithSHA1 }

PBKDF2-SaltSources ALGORITHM-IDENTIFIER ::= {

PBKDF2-PRFs ALGORITHM-IDENTIFIER ::=
 { {NULL IDENTIFIED BY id-hmacWithSHA1}|
 {NULL IDENTIFIED BY id-hmacWithSHA224}|

 {NULL IDENTIFIED BY id-hmacWithSHA256}|
 {NULL IDENTIFIED BY id-hmacWithSHA384}|
 {NULL IDENTIFIED BY id-hmacWithSHA512},... }

 -- PBES1

PBES1Algorithms ALGORITHM-IDENTIFIER ::=
 { {PBEParameter IDENTIFIED BY pbeWithMD2AndDES-CBC} |
 {PBEParameter IDENTIFIED BY pbeWithMD2AndRC2-CBC} |
 {PBEParameter IDENTIFIED BY pbeWithMD5AndDES-CBC} |
 {PBEParameter IDENTIFIED BY pbeWithMD5AndRC2-CBC} |
 {PBEParameter IDENTIFIED BY pbeWithSHA1AndDES-CBC} |
 {PBEParameter IDENTIFIED BY pbeWithSHA1AndRC2-CBC}, ...}

pbeWithMD2AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 1}
pbeWithMD2AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 4}
pbeWithMD5AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 3}
pbeWithMD5AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 6}
pbeWithSHA1AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 10}
pbeWithSHA1AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 11}

PBEParameter ::= SEQUENCE {
 salt OCTET STRING (SIZE(8)),
 iterationCount INTEGER }

-- PBES2

PBES2Algorithms ALGORITHM-IDENTIFIER ::=
 { {PBES2-params IDENTIFIED BY id-PBES2}, ...}

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 28

Copyright © 2006 RSA Laboratories.

id-PBES2 OBJECT IDENTIFIER ::= {pkcs-5 13}

PBES2-params ::= SEQUENCE {
 keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}},
 encryptionScheme AlgorithmIdentifier {{PBES2-Encs}} }

PBES2-KDFs ALGORITHM-IDENTIFIER ::=
 { {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... }

PBES2-Encs ALGORITHM-IDENTIFIER ::= { ... }

-- PBMAC1

PBMAC1Algorithms ALGORITHM-IDENTIFIER ::=
 { {PBMAC1-params IDENTIFIED BY id-PBMAC1}, ...}

id-PBMAC1 OBJECT IDENTIFIER ::= {pkcs-5 14}

PBMAC1-params ::= SEQUENCE {
 keyDerivationFunc AlgorithmIdentifier {{PBMAC1-KDFs}},
 messageAuthScheme AlgorithmIdentifier {{PBMAC1-MACs}} }

PBMAC1-KDFs ALGORITHM-IDENTIFIER ::=
 { {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... }

PBMAC1-MACs ALGORITHM-IDENTIFIER ::= { ... }

-- Supporting techniques
-- NIST root information object identifiers --

csor OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1)
gov(101) 3 }
nistAlgorithms OBJECT IDENTIFIER ::= { csor nistAlgorithm(4)
}
aes OBJECT IDENTIFIER ::= { nistAlgorithms 1 }

--hmac definitions

rsadsi OBJECT IDENTIFIER ::=
 {iso(1) member-body(2) us(840) rsadsi(113549)}

digestAlgorithm OBJECT IDENTIFIER ::= {rsadsi 2}

id-hmacWithSHA1 OBJECT IDENTIFIER ::= {digestAlgorithm 7}
id-hmacWithSHA224 OBJECT IDENTIFIER ::= {digestAlgorithm 8}
id-hmacWithSHA256 OBJECT IDENTIFIER ::= {digestAlgorithm 9}
id-hmacWithSHA384 OBJECT IDENTIFIER ::= {digestAlgorithm 10}

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 29

Copyright © 2006 RSA Laboratories.

id-hmacWithSHA512 OBJECT IDENTIFIER ::= {digestAlgorithm 11}

-- AES definitions

aes128-CBC-PAD OBJECT IDENTIFIER ::= { aes 2 }
aes192-CBC-PAD OBJECT IDENTIFIER ::= { aes 22 }
aes256-CBC-PAD OBJECT IDENTIFIER ::= { aes 42 }

digestAlgorithm OBJECT IDENTIFIER ::= {rsadsi 2}
encryptionAlgorithm OBJECT IDENTIFIER ::= {rsadsi 3}

SupportingAlgorithms ALGORITHM-IDENTIFIER ::=
 { {NULL IDENTIFIED BY id-hmacWithSHA1} |
 {OCTET STRING (SIZE(8)) IDENTIFIED BY desCBC} |
 {OCTET STRING (SIZE(8)) IDENTIFIED BY des-EDE3-CBC} |
 {RC2-CBC-Parameter IDENTIFIED BY rc2CBC} |
 {RC5-CBC-Parameters IDENTIFIED BY rc5-CBC-PAD} |
 {OCTET STRING (SIZE(16)) IDENTIFIED BY aes128-CBC-PAD |
 {OCTET STRING (SIZE(16)) IDENTIFIED BY aes192-CBC-PAD |
 {OCTET STRING (SIZE(16)) IDENTIFIED BY aes256-CBC-PAD
},…}

id-hmacWithSHA1 OBJECT IDENTIFIER ::= {digestAlgorithm 7}

desCBC OBJECT IDENTIFIER ::=
 {iso(1) identified-organization(3) oiw(14) secsig(3)
 algorithms(2) 7} -- from OIW

des-EDE3-CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 7}

rc2CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 2}

RC2-CBC-Parameter ::= SEQUENCE {
 rc2ParameterVersion INTEGER OPTIONAL,
 iv OCTET STRING (SIZE(8)) }

rc5-CBC-PAD OBJECT IDENTIFIER ::= {encryptionAlgorithm 9}

RC5-CBC-Parameters ::= SEQUENCE {
 version INTEGER {v1-0(16)} (v1-0),
 rounds INTEGER (8..127),
 blockSizeInBits INTEGER (64 | 128),
 iv OCTET STRING OPTIONAL }

END

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 30

Copyright © 2006 RSA Laboratories.

D. Intellectual property considerations

RSA Security makes no patent claims on the general constructions described in this
document, although specific underlying techniques may be covered. Among the
underlying techniques, the RC5 encryption algorithm (Appendix B.2.4) is protected by
U.S. Patents 5,724,428 [35] and 5,835,600 [36].

The RSA public-key cryptosystem is described in U.S. Patent 4,405,829, which expired
on September 20, 2000. The RC5 block cipher (Appendix B.2.4) is protected by U.S.
Patents 5,724,428 and 5,835,600. RSA Security Inc. makes no other patent claims on the
constructions described in this document, although specific underlying techniques may
be covered.

RSA, RC2 and RC4 are registered trademarks of RSA Security Inc. RC5 is a trademark
of RSA Security Inc.

License to copy this document is granted provided that it is identified as “RSA Security
Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

RSA Security makes no representations regarding intellectual property claims by other
parties. Such determination is the responsibility of the user.

E. Revision history

Versions 1.0–1.3

Versions 1.0–1.3 were distributed to participants in RSA Data Security, Inc.’s Public-
Key Cryptography Standards meetings in February and March 1991.

Version 1.4

Version 1.4 was part of the June 3, 1991 initial public release of PKCS. Version 1.4 was
published as NIST/OSI Implementors’ Workshop document SEC-SIG-91-20.

Version 1.5

Version 1.5 incorporated several editorial changes, including updates to the references
and the addition of a revision history.

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 31

Copyright © 2006 RSA Laboratories.

Version 2.0

Version 2.0 incorporates major editorial changes in terms of the document structure, and
introduces the PBES2 encryption scheme, the PBMAC1 message authentication scheme,
and independent password-based key derivation functions. This version continued to
support the encryption process in version 1.5.

Version 2.1

Version 2.1 incorporated changes to include AES encryption as well as the SHA-224 and
SHA-256, SHA-384 and SHA-512 hash functions. Also added were the pseudorandom
functions HMAC with SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512. This
version continued to support the encryption process in version 1.5.

F. References

[1] American National Standard X9.52 - 1998, Triple Data Encryption Algorithm
Modes of Operation. ANS X9 July 1998.

[2] R. Baldwin and R. Rivest. RFC 2040: The RC5, RC5-CBC, RC5-CBC-Pad, and
RC5-CTS Algorithms. IETF, October 1996.

[3] D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic Mail: Part
III: Algorithms, Modes, and Identifiers. IETF, February 1993.

[4] S.M. Bellovin and M. Merritt. Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In Proceedings of the 1992 IEEE
Computer Society Conference on Research in Security and Privacy, pages 72–84,
IEEE Computer Society, 1992.

[5] D. Jablon. Strong password-only authenticated key exchange. ACM Computer
Communications Review, October 1996.

[6] B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. IETF, April 1992.

[7] H. Krawczyk, M. Bellare, and R. Canetti. RFC 2104: HMAC: Keyed-Hashing for
Message Authentication. IETF, February 1997.

[8] Robert Morris and Ken Thompson. Password security: A case history.
Communications of the ACM, 22(11):594–597, November 1979.

[9] ISO/IEC 8824-1:2002: Information technology — Abstract Syntax Notation One
(ASN.1) — Specification of basic notation. 2002.

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 32

Copyright © 2006 RSA Laboratories.

[10] ISO/IEC 8824-1:2002/Amd.1:2003 Information technology — Abstract Syntax
Notation One (ASN.1) — Specification of basic notation — Amendment 1:
Support for EXTENDED-XER. 2003

[11] ISO/IEC 8824-1:2002/Amd.2:2005 Information technology — Abstract Syntax
Notation One (ASN.1) — Specification of basic notation — Amendment 2:
Alignment with changes made to ITU-T Rec. X.660. 2005

[12] ISO/IEC 8824-1:2002/Corr.1:2005 Information technology — Abstract Syntax
Notation One (ASN.1) — Specification of basic notation — Technical
Corrigendum 1 (Permitted Alphabets). 2005

[13] ISO/IEC 8824-1:2002/Amd.3:2002 Information technology — Abstract Syntax
Notation One (ASN.1) — Specification of basic notation — Amendment 3: Time
types. 2002

[14] ISO/IEC 8824-1:2002/Amd.1:2002 Information technology — Abstract Syntax
Notation One (ASN.1) — Specification of basic notation — Amendment 1 — Rules
of extensibility. 2002.

[15] ISO/IEC 8824-1:2002/Amd.1:2003 Information technology — Abstract Syntax
Notation One (ASN.1) — Specification of basic notation — Amendment 1:
Support for EXTENDED-XER. 2003

[16] ISO/IEC 8824-1:2002/Amd.2:2005 Information technology — Abstract Syntax
Notation One (ASN.1) — Specification of basic notation — Amendment 2:
Alignment with changes made to ITU-T Rec. X.660. 2005

[17] ISO/IEC 8824-1:2002/Corr.1:2005 Information technology — Abstract Syntax
Notation One (ASN.1) — Specification of basic notation — Technical
Corrigendum 1 (Permitted Alphabets). 2005

[18] ISO/IEC 8824-1:2002/Amd.3:2002 Information technology — Abstract Syntax
Notation One (ASN.1) — Specification of basic notation — Amendment 3: Time
types. 2002

[19] ISO/IEC 8824-2:2002 Information technology — Abstract Syntax Notation One
(ASN.1) — Information object specification. 2002.

[20] ISO/IEC 8824-2:2002/Amd.1:2003 Information technology — Abstract Syntax
Notation One (ASN.1) — Information object specification. 2002 — Amendment 1:
Support for EXTENDED-XER. 2003

[21] ISO/IEC 8824-2:2002/Corr.1:2002 Information technology — Abstract Syntax
Notation One (ASN.1) — Information object specification. 2002— Technical
Corrigendum 1 (Time types). 2002

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 33

Copyright © 2006 RSA Laboratories.

[22] ISO/IEC 8824-2:2002/Amd.1:2003 Information technology — Abstract Syntax
Notation One (ASN.1) — Information object specification — Amendment 1 —
Rules of extensibility. 2003.

[23] ISO/IEC 8824-3:2002 Information technology — Abstract Syntax Notation One
(ASN.1) — Constraint specification. 2002.

[24] ISO/IEC 8824-4:2002 Information technology — Abstract Syntax Notation One
(ASN.1) — Parameterization of ASN.1 specifications. 2002.

[25] NIST FIPS Publication 46-3: Data Encryption Standard. Withdrawn May 19,
2005.

[26] NIST FIPS Publication 81: DES Modes of Operation. Withdrawn May 19, 2005.

[27] NIST FIPS Publication 112: Password Usage. Withdrawn February 8, 2005.

[28] NIST FIPS Publication 180-1: Secure Hash Standard. April 1994.

[29] NIST FIPS Publication 180-2: Secure Hash Standard. February 2004 URL:
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[30] NIST FIPS Publication 197: Advanced Encryption Standard (AES). November
26, 2001. URL: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[31] NIST FIPS Publication 198: The Keyed-Hash Message Authentication Code
(HMAC). April 8, 2002. URL: http://csrc.nist.gov/publications/fips/fips198/fips-
198a.pdf

[32] R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. IETF, April 1992.

[33] R.L. Rivest. The RC5 encryption algorithm. In Proceedings of the Second
International Workshop on Fast Software Encryption, pages 86-96, Springer-
Verlag, 1994.

[34] R. Rivest. RFC 2268: A Description of the RC2(r) Encryption Algorithm. IETF,
March 1998.

[35] R.L. Rivest. Block-Encryption Algorithm with Data-Dependent Rotations. U.S.
Patent No. 5,724,428, March 3, 1998.

[36] R.L. Rivest. Block Encryption Algorithm with Data-Dependent Rotations. U.S.
Patent No. 5,835,600, November 10, 1998.

[37] RSA Laboratories. PKCS #5: Password-Based Encryption Standard. Version 2.0,
March 1999.

PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 34

Copyright © 2006 RSA Laboratories.

[38] RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard. Version
1.2, November 1993.

[39] T. Wu. The Secure Remote Password protocol. In Proceedings of the 1998
Internet Society Network and Distributed System Security Symposium, pages 97-
111, Internet Society, 1998.

[40] F. Yergeau. RFC 2279: UTF-8, a Transformation Format of ISO 10646. IETF,
January 1998.

[41] NIST SP 800-63: Electronic Authentication Guideline: Recommendations of the
National Institute of Standards and Technology, Appendix A, April 2006.

G. About PKCS

The Public-Key Cryptography Standards are specifications produced by RSA
Laboratories in cooperation with secure systems developers worldwide for the purpose of
accelerating the deployment of public-key cryptography. First published in 1991 as a
result of meetings with a small group of early adopters of public-key technology, the
PKCS documents have become widely referenced and implemented. Contributions from
the PKCS series have become part of many formal and de facto standards, including
ANSI X9 documents, PKIX, SET, S/MIME, and SSL.

Further development of PKCS occurs through mailing list discussions and occasional
workshops, and suggestions for improvement are welcome. For more information,
contact:

PKCS Editor
RSA Laboratories
174 Middlesex Turnpike
Bedford, MA 01730 USA
pkcs-editor@rsasecurity.com
http://www.rsasecurity.com/rsalabs/pkcs

