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1. Introduction 

This document provides recommendations for the implementation of password-based 
cryptography, covering the following aspects: 

• key derivation functions 

• encryption schemes 

• message-authentication schemes 

• ASN.1 syntax identifying the techniques 

The recommendations are intended for general application within computer and 
communications systems, and as such include a fair amount of flexibility. They are 
particularly intended for the protection of sensitive information such as private keys, as in 
PKCS #8 [38]. It is expected that application standards and implementation profiles 
based on these specifications may include additional constraints. 

Other cryptographic techniques based on passwords, such as password-based key entity 
authentication and key establishment protocols [4][5][39] are outside the scope of this 
document. Guidelines for the selection of passwords are also outside the scope. 

This document supersedes PKCS #5 version 2.0 [37], but includes compatible 
techniques. 
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2. Notation 

C ciphertext, an octet string 

c iteration count, a positive integer 

DK derived key, an octet string 

dkLen length in octets of derived key, a positive integer 

EM encoded message, an octet string 

Hash underlying hash function 

hLen length in octets of pseudorandom function output, a positive 
integer 

l length in blocks of derived key, a positive integer 

IV initialization vector, an octet string 

K encryption key, an octet string 

KDF key derivation function 

M message, an octet string 

P password, an octet string 

PRF underlying pseudorandom function 

PS padding string, an octet string 

psLen length in octets of padding string, a positive integer 

S salt, an octet string 

T message authentication code, an octet string 

T1, …, Tl, U1, …, Uc intermediate values, octet strings 

01, 02, …, 08 octets with value 1, 2, …, 8 

\xor bit-wise exclusive-or of two octet strings 

|| ⋅ || octet length operator 

|| concatenation operator 
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<i..j> substring extraction operator: extracts octets i through j, 0 ≤ i ≤ j 

3. Overview 

In many applications of public-key cryptography, user security is ultimately dependent 
on one or more secret text values or passwords. Since a password is not directly 
applicable as a key to any conventional cryptosystem, however, some processing of the 
password is required to perform cryptographic operations with it. Moreover, as 
passwords are often chosen from a relatively small space, special care is required in that 
processing to defend against search attacks. 

A general approach to password-based cryptography, as described by Morris and 
Thompson [8] for the protection of password tables, is to combine a password with a salt 
to produce a key. The salt can be viewed as an index into a large set of keys derived from 
the password, and need not be kept secret. Although it may be possible for an opponent 
to construct a table of possible passwords (a so-called “dictionary attack”), constructing a 
table of possible keys will be difficult, since there will be many possible keys for each 
password. An opponent will thus be limited to searching through passwords separately 
for each salt. 

Another approach to password-based cryptography is to construct key derivation 
techniques that are relatively expensive, thereby increasing the cost of exhaustive search. 
One way to do this is to include an iteration count in the key derivation technique, 
indicating how many times to iterate some underlying function by which keys are 
derived. A modest number of iterations, say 1000, is not likely to be a burden for 
legitimate parties when computing a key, but will be a significant burden for opponents. 

Salt and iteration count formed the basis for password-based encryption in PKCS #5 
v1.5, and adopted here as well for the various cryptographic operations. Thus, password-
based key derivation as defined here is a function of a password, a salt, and an iteration 
count, where the latter two quantities need not be kept secret. 

From a password-based key derivation function, it is straightforward to define password-
based encryption and message authentication schemes. As in PKCS #5 v1.5, the 
password-based encryption schemes here are based on an underlying, conventional 
encryption scheme, where the key for the conventional scheme is derived from the 
password. Similarly, the password-based message authentication scheme is based on an 
underlying conventional scheme. This two-layered approach makes the password-based 
techniques modular in terms of the underlying techniques they can be based on. 

It is expected that the password-based key derivation functions may find other 
applications than just the encryption and message authentication schemes defined here. 
For instance, one might derive a set of keys with a single application of a key derivation 
function, rather than derive each key with a separate application of the function. The keys 
in the set would be obtained as substrings of the output of the key derivation function. 
This approach might be employed as part of key establishment in a session-oriented 
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protocol. Another application is password checking, where the output of the key 
derivation function is stored (along with the salt and iteration count) for the purposes of 
subsequent verification of a password. 

Throughout this document, a password is considered to be an octet string of arbitrary 
length whose interpretation as a text string is unspecified. In the interest of 
interoperability, however, it is recommended that applications follow some common text 
encoding rules. ASCII and UTF-8 [40] are two possibilities. (ASCII is a subset of UTF-
8.) 

Although the selection of passwords is outside the scope of this document, guidelines 
have been published [27] and [41] that may well be taken into account. 

4. Salt and iteration count 

Inasmuch as salt and iteration count are central to the techniques defined in this 
document, some further discussion is warranted. 

4.1 Salt 

A salt in password-based cryptography has traditionally served the purpose of producing 
a large set of keys corresponding to a given password, among which one is selected at 
random according to the salt. An individual key in the set is selected by applying a key 
derivation function KDF, as 

DK = KDF (P, S) 

where DK is the derived key, P is the password, and S is the salt. This has two benefits: 

1. It is difficult for an opponent to precompute all the keys corresponding to a 
dictionary of passwords, or even the most likely keys. If the salt is 64 bits long, 
for instance, there will be as many as 264 keys for each password. An opponent is 
thus limited to searching for passwords after a password-based operation has been 
performed and the salt is known. 

2. It is unlikely that the same key will be selected twice. Again, if the salt is 64 bits 
long, the chance of “collision” between keys does not become significant until 
about 232 keys have been produced, according to the Birthday Paradox. This 
addresses some of the concerns about interactions between multiple uses of the 
same key, which may apply for some encryption and authentication techniques. 

In password-based encryption, the party encrypting a message can gain assurance that 
these benefits are realized simply by selecting a large and sufficiently random salt when 
deriving an encryption key from a password. A party generating a message authentication 
code can gain such assurance in a similar fashion. 
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The party decrypting a message or verifying a message authentication code, however, 
cannot be sure that a salt supplied by another party has actually been generated at 
random. It is possible, for instance, that the salt may have been copied from another 
password-based operation, in an attempt to exploit interactions between multiple uses of 
the same key. For instance, suppose two legitimate parties exchange a encrypted 
message, where the encryption key is an 80-bit key derived from a shared password with 
some salt. An opponent could take the salt from that encryption and provide it to one of 
the parties as though it were for a 40-bit key. If the party reveals the result of decryption 
with the 40-bit key, the opponent may be able to solve for the 40-bit key. In the case that 
40-bit key is the first half of the 80-bit key, the opponent can then readily solve for the 
remaining 40 bits of the 80-bit key. 

To defend against such attacks, either the interaction between multiple uses of the same 
key should be carefully analyzed, or the salt should contain data that explicitly 
distinguishes between different operations. For instance, the salt might have an 
additional, non-random octet that specifies whether the derived key is for encryption, for 
message authentication, or for some other operation. 

Based on this, the following is recommended for salt selection: 

1. If there is no concern about interactions between multiple uses of the same key 
(or a prefix of that key) with the password-based encryption and authentication 
techniques supported for a given password, then the salt may be generated at 
random and need not be checked for a particular format by the party receiving the 
salt. It should be at least eight octets (64 bits) long. 

2. Otherwise, the salt should contain data that explicitly distinguishes between 
different operations and different key lengths, in addition to a random part that is 
at least eight octets long, and this data should be checked or regenerated by the 
party receiving the salt. For instance, the salt could have an additional non-
random octet that specifies the purpose of the derived key. Alternatively, it could 
be the encoding of a structure that specifies detailed information about the derived 
key, such as the encryption or authentication technique and a sequence number 
among the different keys derived from the password. The particular format of the 
additional data is left to the application. 

Note. If a random number generator or pseudorandom generator is not available, a 
deterministic alternative for generating the salt (or the random part of it) is to apply a 
password-based key derivation function to the password and the message M to be 
processed. For instance, the salt could be computed with a key derivation function as S = 
KDF (P, M). This approach is not recommended if the message M is known to belong to 
a small message space (e.g., “Yes” or “No”), however, since then there will only be a 
small number of possible salts. 
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4.2 Iteration count 

An iteration count has traditionally served the purpose of increasing the cost of producing 
keys from a password, thereby also increasing the difficulty of attack. For the methods in 
this document, a minimum of 1000 iterations is recommended. This will increase the cost 
of exhaustive search for passwords significantly, without a noticeable impact in the cost 
of deriving individual keys. 

5. Key derivation functions 

A key derivation function produces a derived key from a base key and other parameters. 
In a password-based key derivation function, the base key is a password and the other 
parameters are a salt value and an iteration count, as outlined in Section 3. 

The primary application of the password-based key derivation functions defined here is 
in the encryption schemes in Section 6 and the message authentication scheme in Section 
7. Other applications are certainly possible, hence the independent definition of these 
functions. 

Two functions are specified in this section: PBKDF1 and PBKDF2. PBKDF2 is 
recommended for new applications; PBKDF1 is included only for compatibility with 
existing applications, and is not recommended for new applications. 

A typical application of the key derivation functions defined here might include the 
following steps: 

1. Select a salt S and an iteration count c, as outlined in Section 4. 

2. Select a length in octets for the derived key, dkLen. 

3. Apply the key derivation function to the password, the salt, the iteration count and 
the key length to produce a derived key. 

4. Output the derived key. 

Any number of keys may be derived from a password by varying the salt, as described in 
Section 3. 

5.1 PBKDF1 

PBKDF1 applies a hash function, which shall be MD2 [6], MD5 [32] or SHA-1 [28], to 
derive keys. The length of the derived key is bounded by the length of the hash function 
output, which is 16 octets for MD2 and MD5 and 20 octets for SHA-1. PBKDF1 is 
compatible with the key derivation process in PKCS #5 v1.5. 
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PBKDF1 is recommended only for compatibility with existing applications since the keys 
it produces may not be large enough for some applications, and the underlying hash 
functions it supports are no longer being recommended for new applications. 

PBKDF1 (P, S, c, dkLen) 

Options: Hash underlying hash function 

Input: P password, an octet string 

 S salt, an eight-octet string 

 c iteration count, a positive integer 

 dkLen intended length in octets of derived key, a positive integer, at most 
16 for MD2 or MD5 and 20 for SHA-1 

Output: DK derived key, a dkLen-octet string 

Steps: 

1. If dkLen > 16 for MD2 and MD5, or dkLen > 20 for SHA-1, output “derived key 
too long” and stop. 

2. Apply the underlying hash function Hash for c iterations to the concatenation of 
the password P and the salt S, then extract the first dkLen octets to produce a 
derived key DK: 

T1 = Hash (P || S) , 
T2 = Hash (T1) , 

… 
Tc = Hash (Tc-1) , 

DK = Tc<0..dkLen-1> . 

3. Output the derived key DK. 

5.2 PBKDF2 

PBKDF2 applies a pseudorandom function (see Appendix B.1 for an example) to derive 
keys. The length of the derived key is essentially unbounded. (However, the maximum 
effective search space for the derived key may be limited by the structure of the 
underlying pseudorandom function. See Appendix B.1 for further discussion.) 

PBKDF2 is recommended for new applications. 

PBKDF2 (P, S, c, dkLen) 
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Options: PRF underlying pseudorandom function (hLen denotes the length in 
octets of the pseudorandom function output) 

Input: P password, an octet string 

 S salt, an octet string 

 c iteration count, a positive integer 

 dkLen intended length in octets of the derived key, a positive integer, at 
most (232 – 1) × hLen 

Output: DK derived key, a dkLen-octet string 

Steps: 

1. If dkLen > (232 – 1) × hLen, output “derived key too long” and stop. 

2. Let l be the number of hLen-octet blocks in the derived key, rounding up, and let r 
be the number of octets in the last block: 

l = dkLen / hLen , 
r = dkLen – (l – 1) × hLen . 

3. For each block of the derived key apply the function F defined below to the 
password P, the salt S, the iteration count c, and the block index to compute the 
block:  

T1 = F (P, S, c, 1) , 
T2 = F (P, S, c, 2) , 

… 
Tl = F (P, S, c, l) , 

 where the function F is defined as the exclusive-or sum of the first c iterates of 
the underlying pseudorandom function PRF applied to the password P and the 
concatenation of the salt S and the block index i: 

F (P, S, c, i) = U1 \xor U2 \xor ⋅⋅⋅ \xor Uc 

 where 

U1 = PRF (P, S || INT (i)) , 
U2 = PRF (P, U1) , 

… 
Uc = PRF (P, Uc-1) . 

 Here, INT (i) is a four-octet encoding of the integer i, most significant octet first. 
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4. Concatenate the blocks and extract the first dkLen octets to produce a derived key 
DK:  

DK = T1 || T2 ||  ⋅⋅⋅  || Tl<0..r-1> . 

5. Output the derived key DK. 

Note. The construction of the function F follows a “belt-and-suspenders” approach. The 
iterates Ui are computed recursively to remove a degree of parallelism from an opponent; 
they are exclusive-ored together to reduce concerns about the recursion degenerating into 
a small set of values. 

6. Encryption schemes 

An encryption scheme, in the symmetric setting, consists of an encryption operation and 
a decryption operation, where the encryption operation produces a ciphertext from a 
message under a key, and the decryption operation recovers the message from the 
ciphertext under the same key. In a password-based encryption scheme, the key is a 
password.  

A typical application of a password-based encryption scheme is a private-key protection 
method, where the message contains private-key information, as in PKCS #8. The 
encryption schemes defined here would be suitable encryption algorithms in that context. 

Two schemes are specified in this section: PBES1 and PBES2. PBES2 is recommended 
for new applications; PBES1 is included only for compatibility with existing 
applications, and is not recommended for new applications. 

6.1 PBES1 

PBES1 combines the PBKDF1 function (Section 5.1) with an underlying block cipher, 
which shall be either DES [25] or RC2TM [34] in CBC mode [26]. PBES1 is compatible 
with the encryption scheme in PKCS #5 v1.5. 

PBES1 is recommended only for compatibility with existing applications, since it 
supports only two underlying encryption schemes, each of which has a key size (56 or 64 
bits) that may not be large enough for some applications. 

6.1.1 PBES1 encryption operation 

The encryption operation for PBES1 consists of the following steps, which encrypt a 
message M under a password P to produce a ciphertext C: 

1. Select an eight-octet salt S and an iteration count c, as outlined in Section 4. 
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2. Apply the PBKDF1 key derivation function (Section 5.1) to the password P, the 
salt S, and the iteration count c to produce a derived key DK of length 16 octets: 

DK = PBKDF1 (P, S, c, 16) . 

3. Separate the derived key DK into an encryption key K consisting of the first eight 
octets of DK and an initialization vector IV consisting of the next eight octets: 

K = DK<0..7> ,  
IV  = DK<8..15> . 

4. Concatenate M and a padding string PS to form an encoded message EM: 

EM = M || PS , 

where the padding string PS consists of 8-(||M|| mod 8) octets each with value 8-
(||M|| mod 8). The padding string PS will satisfy one of the following statements: 

PS = 01 — if ||M|| mod 8 = 7 ; 
PS = 02 02 — if ||M|| mod 8 = 6 ; 

... 
PS = 08 08 08 08 08 08 08 08 — if ||M|| mod 8 = 0. 

The length in octets of the encoded message will be a multiple of eight and it will 
be possible to recover the message M unambiguously from the encoded message. 
(This padding rule is taken from RFC 1423 [3].) 

5. Encrypt the encoded message EM with the underlying block cipher (DES or RC2) 
in cipher block chaining mode under the encryption key K with initialization 
vector IV to produce the ciphertext C. For DES, the key K shall be considered as a 
64-bit encoding of a 56-bit DES key with parity bits ignored (see [9]). For RC2, 
the “effective key bits” shall be 64 bits. 

6. Output the ciphertext C. 

The salt S and the iteration count c may be conveyed to the party performing decryption 
in an AlgorithmIdentifier value (see Appendix A.3). 

6.1.2 PBES1 decryption operation 

The decryption operation for PBES1 consists of the following steps, which decrypt a 
ciphertext C under a password P to recover a message M: 

1. Obtain the eight-octet salt S and the iteration count c. 

2. Apply the PBKDF1 key derivation function (Section 5.1) to the password P, the 
salt S, and the iteration count c to produce a derived key DK of length 16 octets: 
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DK = PBKDF1 (P, S, c, 16) . 

3. Separate the derived key DK into an encryption key K consisting of the first eight 
octets of DK and an initialization vector IV consisting of the next eight octets: 

K = DK<0..7> ,  
IV  = DK<8..15> . 

4. Decrypt the ciphertext C with the underlying block cipher (DES or RC2) in cipher 
block chaining mode under the encryption key K with initialization vector IV to 
recover an encoded message EM. If the length in octets of the ciphertext C is not 
a multiple of eight, output “decryption error” and stop. 

5. Separate the encoded message EM into a message M and a padding string PS: 

EM = M || PS , 

 where the padding string PS consists of some number psLen octets each with 
value psLen, where psLen is between 1 and 8. If it is not possible to separate the 
encoded message EM in this manner, output “decryption error” and stop. 

6. Output the recovered message M. 

6.2 PBES2 

PBES2 combines a password-based key derivation function, which shall be PBKDF2  
(Section 5.2) for this version of PKCS #5, with an underlying encryption scheme (see 
Appendix B.2 for examples). The key length and any other parameters for the underlying 
encryption scheme depend on the scheme. 

PBES2 is recommended for new applications. 

6.2.1 PBES2 encryption operation 

The encryption operation for PBES2 consists of the following steps, which encrypt a 
message M under a password P to produce a ciphertext C, applying a selected key 
derivation function KDF and a selected underlying encryption scheme: 

1. Select a salt S and an iteration count c, as outlined in Section 4. 

2. Select the length in octets, dkLen, for the derived key for the underlying 
encryption scheme. 

3. Apply the selected key derivation function to the password P, the salt S, and the 
iteration count c to produce a derived key DK of length dkLen octets: 



PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 13 

Copyright © 2006 RSA Laboratories. 

DK = KDF (P, S, c, dkLen) . 

4. Encrypt the message M with the underlying encryption scheme under the derived 
key DK to produce a ciphertext C. (This step may involve selection of parameters 
such as an initialization vector and padding, depending on the underlying 
scheme.) 

5. Output the ciphertext C. 

The salt S, the iteration count c, the key length dkLen, and identifiers for the key 
derivation function and the underlying encryption scheme may be conveyed to the party 
performing decryption in an AlgorithmIdentifier value (see Appendix A.4). 

6.2.2 PBES2 decryption operation 

The decryption operation for PBES2 consists of the following steps, which decrypt a 
ciphertext C under a password P to recover a message M: 

1. Obtain the salt S for the operation. 

2. Obtain the iteration count c for the key derivation function. 

3. Obtain the key length in octets, dkLen, for the derived key for the underlying 
encryption scheme. 

4. Apply the selected key derivation function to the password P, the salt S, and the 
iteration count c to produce a derived key DK of length dkLen octets: 

DK = KDF (P, S, c, dkLen) . 

5. Decrypt the ciphertext C with the underlying encryption scheme under the 
derived key DK to recover a message M. If the decryption function outputs 
“decryption error,” then output “decryption error” and stop. 

6. Output the recovered message M. 

7. Message authentication schemes 

A message authentication scheme consists of a MAC (message authentication code) 
generation operation and a MAC verification operation, where the MAC generation 
operation produces a message authentication code from a message under a key, and the 
MAC verification operation verifies the message authentication code under the same key. 
In a password-based message authentication scheme, the key is a password.  

One scheme is specified in this section: PBMAC1. 
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7.1 PBMAC1 

PBMAC1 combines a password-based key derivation function, which shall be PBKDF2  
(Section 5.2) for this version of PKCS #5, with an underlying message authentication 
scheme (see Appendix B.3 for an example). The key length and any other parameters for 
the underlying message authentication scheme depend on the scheme. 

7.2 PBMAC1 generation operation 

The MAC generation operation for PBMAC1 consists of the following steps, which 
process a message M under a password P to generate a message authentication code T, 
applying a selected key derivation function KDF and a selected underlying message 
authentication scheme: 

1. Select a salt S and an iteration count c, as outlined in Section 4. 

2. Select a key length in octets, dkLen, for the derived key for the underlying 
message authentication function. 

3. Apply the selected key derivation function to the password P, the salt S, and the 
iteration count c to produce a derived key DK of length dkLen octets: 

DK = KDF (P, S, c, dkLen) . 

4. Process the message M with the underlying message authentication scheme under 
the derived key DK to generate a message authentication code T. 

5. Output the message authentication code T. 

The salt S, the iteration count c, the key length dkLen, and identifiers for the key 
derivation function and underlying message authentication scheme may be conveyed to 
the party performing verification in an AlgorithmIdentifier value (see Appendix 
A.5). 

7.2.1 PBMAC1 verification operation 

The MAC verification operation for PBMAC1 consists of the following steps, which 
process a message M under a password P to verify a message authentication code T: 

1. Obtain the salt S and the iteration count c.  

2. Obtain the key length in octets, dkLen, for the derived key for the underlying 
message authentication scheme. 

3. Apply the selected key derivation function to the password P, the salt S, and the 
iteration count c to produce a derived key DK of length dkLen octets: 
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DK = KDF (P, S, c, dkLen) . 

4. Process the message M with the underlying message authentication scheme under 
the derived key DK to verify the message authentication code T. 

5. If the message authentication code verifies, output “correct”; else output 
“incorrect.” 
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A. ASN.1 syntax 

This section defines ASN.1 syntax for the key derivation functions, the encryption 
schemes, the message authentication scheme, and supporting techniques. The intended 
application of these definitions includes PKCS #8 and other syntax for key management, 
encrypted data, and integrity-protected data. (Various aspects of ASN.1 are specified in 
severalISO/IECstandards [9][10][11][12][13][14][15][16][1]7][18][18][20][21][22][23] 
[24].) 

The object identifier pkcs-5 identifies the arc of the OID tree from which the PKCS #5-
specific OIDs in this section are derived: 

rsadsi OBJECT IDENTIFIER ::=  
  {iso(1) member-body(2) us(840) 113549} 
pkcs OBJECT IDENTIFIER ::= {rsadsi 1} 
pkcs-5 OBJECT IDENTIFIER ::= {pkcs 5} 

A.1 PBKDF1 

No object identifier is given for PBKDF1, as the object identifiers for PBES1 are 
sufficient for existing applications and PBKDF2 is recommended for new applications. 

A.2 PBKDF2 

The object identifier id-PBKDF2 identifies the PBKDF2 key derivation function 
(Section 5.2).  

id-PBKDF2 OBJECT IDENTIFIER ::= {pkcs-5 12} 

The parameters field associated with this OID in an AlgorithmIdentifier 
shall have type PBKDF2-params: 

PBKDF2-params ::= SEQUENCE { 
  salt CHOICE { 
    specified OCTET STRING, 
    otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}} 
  }, 
  iterationCount INTEGER (1..MAX), 
  keyLength INTEGER (1..MAX) OPTIONAL, 
  prf AlgorithmIdentifier {{PBKDF2-PRFs}} DEFAULT 
    algid-hmacWithSHA1     } 
 
The fields of type PKDF2-params have the following meanings: 
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• salt specifies the salt value, or the source of the salt value. It shall either be an octet 
string or an algorithm ID with an OID in the set PBKDF2-SaltSources, which is 
reserved for future versions of PKCS #5. 

The salt-source approach is intended to indicate how the salt value is to be generated 
as a function of parameters in the algorithm ID, application data, or both. For 
instance, it may indicate that the salt value is produced from the encoding of a 
structure that specifies detailed information about the derived key as suggested in 
Section 4.1. Some of the information may be carried elsewhere, e.g., in the encryption 
algorithm ID. However, such facilities are deferred to a future version of PKCS #5. 

In this version, an application may achieve the benefits mentioned in Section 4.1 by 
choosing a particular interpretation of the salt value in the specified alternative. 

PBKDF2-SaltSources ALGORITHM-IDENTIFIER ::= { ... } 

• iterationCount specifies the iteration count. The maximum iteration count 
allowed depends on the implementation. It is expected that implementation profiles 
may further constrain the bounds. 

• keyLength, an optional field, is the length in octets of the derived key. The 
maximum key length allowed depends on the implementation; it is expected that 
implementation profiles may further constrain the bounds. The field is provided for 
convenience only; the key length is not cryptographically protected. If there is 
concern about interaction between operations with different key lengths for a given 
salt (see Section 4.1), the salt should distinguish among the different key lengths. 

• prf identifies the underlying pseudorandom function. It shall be an algorithm ID 
with an OID in the set PBKDF2-PRFs (see Appendix B.1.1) or any other OIDs 
defined by the application. 

PBKDF2-PRFs ALGORITHM-IDENTIFIER ::= { 
  {NULL IDENTIFIED BY id-hmacWithSHA1} |  
  {NULL IDENTIFIED BY id-hmacWithSHA224} |  
  {NULL IDENTIFIED BY id-hmacWithSHA256} |  
  {NULL IDENTIFIED BY id-hmacWithSHA389} |  
  {NULL IDENTIFIED BY id-hmacWithSHA512}, ... } 

The default pseudorandom function is HMAC-SHA-1: 

algid-hmacWithSHA1 AlgorithmIdentifier {{PBKDF2-PRFs}} ::= 
  {algorithm id-hmacWithSHA1, parameters NULL : NULL} 
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A.3 PBES1 

Different object identifiers identify the PBES1 encryption scheme (Section 6.1) 
according to the underlying hash function in the key derivation function and the 
underlying block cipher, as summarized in the following table: 

Hash Function Block Cipher OID 
MD2 DES pkcs-5.1 
MD2 RC2 pkcs-5.4 
MD5 DES pkcs-5.3 
MD5 RC2 pkcs-5.6 

SHA-1 DES pkcs-5.10 
SHA-1 RC2 pkcs-5.11 

 
pbeWithMD2AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 1} 
pbeWithMD2AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 4} 
pbeWithMD5AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 3} 
pbeWithMD5AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 6} 
pbeWithSHA1AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 10} 
pbeWithSHA1AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 11} 

For each OID, the parameters field associated with the OID in an 
AlgorithmIdentifier shall have type PBEParameter: 

PBEParameter ::= SEQUENCE { 
  salt OCTET STRING (SIZE(8)), 
  iterationCount INTEGER } 

The fields of type PBEParameter have the following meanings: 

• salt specifies the salt value, an eight-octet string. 

• iterationCount specifies the iteration count. 

A.4 PBES2 

The object identifier id-PBES2 identifies the PBES2 encryption scheme (Section 6.2).  

id-PBES2 OBJECT IDENTIFIER ::= {pkcs-5 13} 

The parameters field associated with this OID in an AlgorithmIdentifier 
shall have type PBES2-params: 

PBES2-params ::= SEQUENCE { 
  keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}}, 
  encryptionScheme AlgorithmIdentifier {{PBES2-Encs}} } 



PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 19 

Copyright © 2006 RSA Laboratories. 

The fields of type PBES2-params have the following meanings: 

• keyDerivationFunc identifies the underlying key derivation function. It shall be 
an algorithm ID with an OID in the set PBES2-KDFs, which for this version of 
PKCS #5 shall consist of id-PBKDF2 (Appendix A.2). 

PBES2-KDFs ALGORITHM-IDENTIFIER ::= 
  { {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... } 

• encryptionScheme identifies the underlying encryption scheme. It shall be an 
algorithm ID with an OID in the set PBES2-Encs, whose definition is left to the 
application. Example underlying encryption schemes are given in Appendix B.2.  

PBES2-Encs ALGORITHM-IDENTIFIER ::= { ... } 

A.5 PBMAC1 

The object identifier id-PBMAC1 identifies the PBMAC1 message authentication 
scheme (Section 7.1).  

id-PBMAC1 OBJECT IDENTIFIER ::= {pkcs-5 14} 

The parameters field associated with this OID in an AlgorithmIdentifier 
shall have type PBMAC1-params: 

PBMAC1-params ::=  SEQUENCE { 
  keyDerivationFunc AlgorithmIdentifier {{PBMAC1-KDFs}}, 
  messageAuthScheme AlgorithmIdentifier {{PBMAC1-MACs}} } 

The keyDerivationFunc field has the same meaning as the corresponding field of 
PBES2-params (Appendix A.4) except that the set of OIDs is PBMAC1-KDFs. 

PBMAC1-KDFs ALGORITHM-IDENTIFIER ::= 
  { {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... } 

The messageAuthScheme field identifies the underlying message authentication 
scheme. It shall be an algorithm ID with an OID in the set PBMAC1-MACs, whose 
definition is left to the application. Example underlying encryption schemes are given in 
Appendix B.3. 

PBMAC1-MACs ALGORITHM-IDENTIFIER ::= { ... } 

B. Supporting techniques 

This section gives several examples of underlying functions and schemes supporting the 
password-based schemes in Sections 5, 6 and 7. While these supporting techniques are 
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appropriate for applications to implement, none of them is required to be implemented. It 
is expected, however, that profiles for PKCS #5 will be developed that specify particular 
supporting techniques.  

This section also gives object identifiers for the supporting techniques. 

The object identifiers digestAlgorithm and encryptionAlgorithm identify 
the arcs from which certain algorithm OIDs referenced in this section are derived: 

digestAlgorithm OBJECT IDENTIFIER ::= {rsadsi 2} 
encryptionAlgorithm OBJECT IDENTIFIER ::= {rsadsi 3} 

B.1 Pseudorandom functions 

Example pseudorandom functions for PBKDF2 are HMAC with SHA-1, SHA-224, 
SHA-256, SHA-384 and SHA-512. Applications may employ other schemes as well. 

B.1.1 HMAC-SHA-1 

HMAC-SHA-1 is the pseudorandom function corresponding to the HMAC message 
authentication code [7] based on the SHA-1 hash function [28]. The pseudorandom 
function is the same function by which the message authentication code is computed, 
with a full-length output. (The first argument to the pseudorandom function PRF serves 
as HMAC’s “key,” and the second serves as HMAC’s “text.” In the case of PBKDF2, the 
“key” is thus the password and the “text” is the salt.) HMAC-SHA-1 has a variable key 
length and a 20-octet (160-bit) output value. 

Although the length of the key to HMAC-SHA-1 is essentially unbounded, the effective 
search space for pseudorandom function outputs is limited by the structure of the 
function. In particular, when the key is longer than 512 bits, HMAC-SHA-1 will first 
hash it to 160 bits. Thus, even if a long derived key consisting of several pseudorandom 
function outputs is produced from a key, the effective search space for the derived key 
will be at most 160 bits. Although the specific limitation for other key sizes depends on 
details of the HMAC construction, one should assume, to be conservative, that the 
effective search space is limited to 160 bits for other key sizes as well.  

(The 160-bit limitation should not generally pose a practical limitation in the case of 
password-based cryptography, since the search space for a password is unlikely to be 
greater than 160 bits.) 

The object identifier id-hmacWithSHA1 identifies the HMAC-SHA-1 pseudorandom 
function: 

   id-hmacWithSHA1 OBJECT IDENTIFIER ::= {digestAlgorithm 
7} 
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The parameters field associated with this OID in an AlgorithmIdentifier 
shall have type NULL. This object identifier is employed in the object set PBKDF2-
PRFs (Appendix A.2). 

Note. Although HMAC-SHA-1 was designed as a message authentication code, its proof 
of security is readily modified to accommodate requirements for a pseudorandom 
function, under stronger assumptions. A hash function may also meet the requirements of 
a pseudorandom function under certain assumptions. For instance, the direct application 
of a hash function to the concatenation of the “key” and the “text” may be appropriate, 
provided that “text” has appropriate structure to prevent certain attacks. HMAC-SHA-1 is 
preferable, however, because it treats “key” and “text” as separate arguments and does 
not require “text” to have any structure.  

During 2004 and 2005 there were a number of attacks on SHA-1 that reduced its 
perceived effective strength against collision attacks to 62 bits instead of the expected 80 
bits. However, since these attacks centered on finding collisions between values they are 
not a direct security consideration here since the collision-resistant property is not 
required by the HMAC authentication scheme. Still, applications should move to stronger 
hash functions such as those described next as a conservative measure. 

B.1.2 HMAC-SHA-2 

HMAC-SHA-2 refers to the set of pseudorandom functions corresponding to the HMAC 
message authentication code (now a FIPS standard [31], see also [7]) based on the new 
SHA-2 functions (FIPS 180-2 [29]).  

HMAC-SHA-2 has variable key length and variable output value depending on the hash 
function chosen (SHA-224, SHA-256, SHA-384 or SHA-512), that is 28, 32, 48 or 64 
octets. 

Using the new hash functions extends the search space for the produced keys.  

Where SHA-1 limits the search space to 20 octets, SHA-2 sets new limits of 28, 32, 48 
and 64 octets. 

Object identifiers have been defined for HMAC as follows:  

    
   id-hmacWithSHA224 OBJECT IDENTIFIER ::= 
{digestAlgorithm 8} 
   id-hmacWithSHA256 OBJECT IDENTIFIER ::= 
{digestAlgorithm 9} 
   id-hmacWithSHA384 OBJECT IDENTIFIER ::= 
{digestAlgorithm 10} 
   id-hmacWithSHA512 OBJECT IDENTIFIER ::= 
{digestAlgorithm 11} 
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B.2 Encryption schemes 

An example encryption scheme for PBES2 (Section 6.2), using the new encryption 
scheme is AES-CBC-Pad.  

The legacy methods are still supported (DES-CBC-Pad, DES-EDE3-CBC-Pad, RC2-
CBC-Pad and RC5-CBC-Pad). 

The object identifiers given in this section are intended to be employed in the object set 
PBES2-Encs (Section A.4) Applications may also employ other schemes. 

B.2.1 DES-CBC-Pad 

DES-CBC-Pad is single-key DES [25] in CBC mode [26] with the RFC 1423 padding 
operation (see Section 6.1.1). DES-CBC-Pad has an eight-octet encryption key and an 
eight-octet initialization vector. The key is considered as a 64-bit encoding of a 56-bit 
DES key with parity bits ignored. 

The object identifier desCBC (defined in the NIST/OSI Implementors’ Workshop 
agreements) identifies the DES-CBC-Pad encryption scheme:  

desCBC OBJECT IDENTIFIER ::= 
  {iso(1) identified-organization(3) oiw(14) secsig(3) 
    algorithms(2) 7} 

The parameters field associated with this OID in an AlgorithmIdentifier 
shall have type OCTET STRING (SIZE(8)), specifying the initialization vector for 
CBC mode. 

B.2.2 DES-EDE3-CBC-Pad 

DES-EDE3-CBC-Pad is three-key triple-DES in CBC mode [1] with the RFC 1423 
padding operation. DES-EDE3-CBC-Pad has a 24-octet encryption key and an eight-
octet initialization vector. The key is considered as the concatenation of three eight-octet 
keys, each of which is a 64-bit encoding of a 56-bit DES key with parity bits ignored. 

The object identifier des-EDE3-CBC identifies the DES-EDE3-CBC-Pad encryption 
scheme:  

des-EDE3-CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 7}  

The parameters field associated with this OID in an AlgorithmIdentifier 
shall have type OCTET STRING (SIZE(8)), specifying the initialization vector for 
CBC mode. 
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Note. An OID for DES-EDE3-CBC without padding is given in ANSI X9.52 [1]; the one 
given here is preferred since it specifies padding. 

B.2.3 RC2-CBC-Pad 

RC2-CBC-Pad is the RC2TM encryption algorithm [34] in CBC mode with the RFC 1423 
padding operation. RC2-CBC-Pad has a variable key length, from one to 128 octets, a 
separate “effective key bits” parameter from one to 1024 bits that limits the effective 
search space independent of the key length, and an eight-octet initialization vector. 

The object identifier rc2CBC identifies the RC2-CBC-Pad encryption scheme:  

rc2CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 2}  

The parameters field associated with OID in an AlgorithmIdentifier shall 
have type RC2-CBC-Parameter: 

RC2-CBC-Parameter ::= SEQUENCE { 
  rc2ParameterVersion INTEGER OPTIONAL, 
  iv OCTET STRING (SIZE(8)) } 

The fields of type RC2-CBCParameter have the following meanings: 

• rc2ParameterVersion is a proprietary RSA Security encoding of the “effective 
key bits” for RC2. The following encodings are defined: 

Effective key bits Encoding 
40 160 
64 120 
128 58 

b ≥ 256 b 
 
If the rc2ParameterVersion field is omitted, the “effective key bits” defaults to 
32. (This is for backward compatibility with certain very old implementations.) 

• iv is the eight-octet initialization vector. 

B.2.4 RC5-CBC-Pad 

RC5-CBC-Pad is the RC5TM encryption algorithm [33] in CBC mode with a 
generalization of the RFC 1423 padding operation1. This scheme is fully specified in [2]. 
                                                 
1 The generalization of the padding operation is as follows. For RC5 with a 64-bit block size, the padding 
string is as defined in RFC 1423. For RC5 with a 128-bit block size, the padding string consists of 16-(||M|| 
mod 16) octets each with value 16-(||M|| mod 16). 
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RC5-CBC-Pad has a variable key length, from 0 to 256 octets, and supports both a 64-bit 
block size and a 128-bit block size. For the former, it has an eight-octet initialization 
vector, and for the latter, a 16-octet initialization vector. RC5-CBC-Pad also has a 
variable number of “rounds” in the encryption operation, from 8 to 127. 

The object identifier rc5-CBC-PAD [2] identifies RC5-CBC-Pad encryption scheme:  

rc5-CBC-PAD OBJECT IDENTIFIER ::= {encryptionAlgorithm 9}  

The parameters field associated with this OID in an AlgorithmIdentifier 
shall have type RC5-CBC-Parameters: 

RC5-CBC-Parameters ::= SEQUENCE { 
  version INTEGER {v1-0(16)} (v1-0), 
  rounds INTEGER (8..127), 
  blockSizeInBits INTEGER (64 | 128), 
  iv OCTET STRING OPTIONAL } 

The fields of type RC5-CBC-Parameters have the following meanings: 

• version is the version of the algorithm, which shall be v1-0. 

• rounds is the number of rounds in the encryption operation, which shall be between 
8 and 127. 

• blockSizeInBits is the block size in bits, which shall be 64 or 128. 

• iv is the initialization vector, an eight-octet string for 64-bit RC5 and a 16-octet 
string for 128-bit RC5. The default is a string of the appropriate length consisting of 
zero octets. 

B.2.5 AES-CBC-Pad 

AES-CBC-Pad is the AES encryption algorithm in CBC mode with PKCS #5 padding. 

AES-CBC-Pad has a variable key length of 16, 24 or 32 octets and has a 16-octet block 
size. It has a 16-octet initialization vector. 

For AES, object identifiers have been defined depending on key size and operation mode. 

An example, the 16-octet (128 bit) key AES encryption scheme in CBC mode would be 
aes128-CBC-Pad identifying the AES-CBC-PAD encryption scheme using a 16-octet 
key: 

aes128-CBC-Pad OBJECT IDENTIFIER ::= { aes 2 }  

The AES object identifier is defined in the ASN.1 appendix. 
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The parameters field associated with this OID in an AlgorithmIdentifier shall 
have type OCTET STRING (SIZE(16)), specifying the initialization vector for 
CBC mode. 

B.3 Message authentication schemes 

Example message authentication schemes for PBMAC1 (Section 7.1) are HMAC with 
one of the SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 hash functions. 

B.3.1 HMAC-SHA-1 

HMAC-SHA-1 is the HMAC message authentication scheme [7] based on the SHA-1 
hash function [28]. HMAC-SHA-1 has a variable key length and a 20-octet (160-bit) 
message authentication code. 

The object identifier id-hmacWithSHA1 (see Appendix B.1.1) identifies the HMAC-
SHA-1 message authentication scheme. (The object identifier is the same for both the 
pseudorandom function and the message authentication scheme; the distinction is to be 
understood by context.) This object identifier is intended to be employed in the object set 
PBMAC1-Macs (Appendix A.5). 

B.3.2 HMAC-SHA-2 

HMAC-SHA-2 refers to the set of HMAC message authentication schemes [7],[31] based 
on the SHA-2 functions [29]. HMAC-SHA-2 has a variable key length and a message 
authentication code whose length is based on the hash function chosen (SHA-224, SHA-
256, SHA-384 or SHA-512 giving 28, 32, 48 or 64 octets). 

   id-hmacWithSHA224 OBJECT IDENTIFIER ::= 
{digestAlgorithm 8} 
   id-hmacWithSHA256 OBJECT IDENTIFIER ::= 
{digestAlgorithm 9} 
   id-hmacWithSHA384 OBJECT IDENTIFIER ::= 
{digestAlgorithm 10} 
   id-hmacWithSHA512 OBJECT IDENTIFIER ::= 
{digestAlgorithm 11} 

 

The object identifier: id-hmacWithSHA224, id-hmacWithSHA256, id-
hmacWithSHA384 or id-hmacWithSHA512 (see Appendix B.1.2) identifies the 
HMAC-SHA-2 schemes. 

The object identifiers xxx identifies the HMAC scheme with truncated output. 
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 (The object identifiers are the same for both the pseudorandom functions and the 
message authentication schemes; the distinction is to be understood by context.) 

These object identifiers are intended to be employed in the object set PBMAC1-Macs 
(Appendix A.5). 

C. ASN.1 module 

For reference purposes, the ASN.1 syntax in the preceding sections is presented as an 
ASN.1 module here. 

-- PKCS #5 v2.0 ASN.1 Module 
-- Revised May 19, 2006 
 
-- This module has been checked for conformance with the 
-- ASN.1 standard by the OSS ASN.1 Tools 
 
PKCS5v2-0 {iso(1) member-body(2) us(840) rsadsi(113549) 
  pkcs(1) pkcs-5(5) modules(16) pkcs5v2-0(1)} 
 
DEFINITIONS ::= BEGIN 
 
-- Basic object identifiers 
 
rsadsi OBJECT IDENTIFIER ::=  
  {iso(1) member-body(2) us(840) 113549} 
pkcs OBJECT IDENTIFIER ::= {rsadsi 1} 
pkcs-5 OBJECT IDENTIFIER ::= {pkcs 5} 
 
-- Basic types and classes 
 
AlgorithmIdentifier { ALGORITHM-IDENTIFIER:InfoObjectSet } 
::=  
SEQUENCE { 
  algorithm ALGORITHM-IDENTIFIER.&id({InfoObjectSet}), 
  parameters ALGORITHM-IDENTIFIER.&Type({InfoObjectSet} 
    {@algorithm}) OPTIONAL } 
 
ALGORITHM-IDENTIFIER ::= TYPE-IDENTIFIER 
 
-- PBKDF2 
 
PBKDF2Algorithms ALGORITHM-IDENTIFIER ::=  
  { {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ...} 
 
id-PBKDF2 OBJECT IDENTIFIER ::= {pkcs-5 12} 
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algid-hmacWithSHA1 AlgorithmIdentifier {{PBKDF2-PRFs}} ::= 
   {algorithm id-hmacWithSHA1, parameters NULL : NULL}  
  

PBKDF2-params ::= SEQUENCE { 
  salt CHOICE { 
    specified OCTET STRING, 
    otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}} 
  }, 
  iterationCount INTEGER (1..MAX), 
  keyLength INTEGER (1..MAX) OPTIONAL, 
  prf AlgorithmIdentifier {{PBKDF2-PRFs}} DEFAULT 
    algid-hmacWithSHA1 } 
 
PBKDF2-SaltSources ALGORITHM-IDENTIFIER ::= {  
 
PBKDF2-PRFs ALGORITHM-IDENTIFIER ::= 
  { {NULL IDENTIFIED BY id-hmacWithSHA1}| 
    {NULL IDENTIFIED BY id-hmacWithSHA224}| 

  {NULL IDENTIFIED BY id-hmacWithSHA256}| 
  {NULL IDENTIFIED BY id-hmacWithSHA384}|   
  {NULL IDENTIFIED BY id-hmacWithSHA512},... } 

 
 -- PBES1 
 
PBES1Algorithms ALGORITHM-IDENTIFIER ::=  
  { {PBEParameter IDENTIFIED BY pbeWithMD2AndDES-CBC} | 
    {PBEParameter IDENTIFIED BY pbeWithMD2AndRC2-CBC} | 
    {PBEParameter IDENTIFIED BY pbeWithMD5AndDES-CBC} | 
    {PBEParameter IDENTIFIED BY pbeWithMD5AndRC2-CBC} | 
    {PBEParameter IDENTIFIED BY pbeWithSHA1AndDES-CBC} | 
    {PBEParameter IDENTIFIED BY pbeWithSHA1AndRC2-CBC}, ...} 
 
pbeWithMD2AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 1} 
pbeWithMD2AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 4} 
pbeWithMD5AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 3} 
pbeWithMD5AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 6} 
pbeWithSHA1AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 10} 
pbeWithSHA1AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 11} 
 
PBEParameter ::= SEQUENCE { 
  salt OCTET STRING (SIZE(8)), 
  iterationCount INTEGER } 
 
-- PBES2 
 
PBES2Algorithms ALGORITHM-IDENTIFIER ::=  
  { {PBES2-params IDENTIFIED BY id-PBES2}, ...} 
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id-PBES2 OBJECT IDENTIFIER ::= {pkcs-5 13} 
 
PBES2-params ::= SEQUENCE { 
  keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}}, 
  encryptionScheme AlgorithmIdentifier {{PBES2-Encs}} } 
 
PBES2-KDFs ALGORITHM-IDENTIFIER ::= 
  { {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... } 
 
PBES2-Encs ALGORITHM-IDENTIFIER ::= { ... } 
 
-- PBMAC1 
 
PBMAC1Algorithms ALGORITHM-IDENTIFIER ::=  
  { {PBMAC1-params IDENTIFIED BY id-PBMAC1}, ...} 
 
id-PBMAC1 OBJECT IDENTIFIER ::= {pkcs-5 14} 
 
PBMAC1-params ::=  SEQUENCE { 
  keyDerivationFunc AlgorithmIdentifier {{PBMAC1-KDFs}}, 
  messageAuthScheme AlgorithmIdentifier {{PBMAC1-MACs}} } 
 
PBMAC1-KDFs ALGORITHM-IDENTIFIER ::= 
  { {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... } 
 
PBMAC1-MACs ALGORITHM-IDENTIFIER ::= { ... } 
 
-- Supporting techniques 
-- NIST root information object identifiers --  

csor OBJECT IDENTIFIER ::= {  
   joint-iso-itu-t(2) country(16) us(840) organization(1) 
gov(101) 3 } 
nistAlgorithms OBJECT IDENTIFIER ::= { csor nistAlgorithm(4) 
}  
aes OBJECT IDENTIFIER ::= { nistAlgorithms  1 } 
 

--hmac definitions 

rsadsi OBJECT IDENTIFIER ::= 
       {iso(1) member-body(2) us(840) rsadsi(113549)} 
    

digestAlgorithm OBJECT IDENTIFIER ::= {rsadsi 2} 

id-hmacWithSHA1 OBJECT IDENTIFIER ::= {digestAlgorithm 7} 
id-hmacWithSHA224 OBJECT IDENTIFIER ::= {digestAlgorithm 8} 
id-hmacWithSHA256 OBJECT IDENTIFIER ::= {digestAlgorithm 9} 
id-hmacWithSHA384 OBJECT IDENTIFIER ::= {digestAlgorithm 10} 
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id-hmacWithSHA512 OBJECT IDENTIFIER ::= {digestAlgorithm 11} 
 
-- AES definitions 
 
aes128-CBC-PAD OBJECT IDENTIFIER ::= { aes 2 } 
aes192-CBC-PAD OBJECT IDENTIFIER ::= { aes 22 } 
aes256-CBC-PAD OBJECT IDENTIFIER ::= { aes 42 }   

 
digestAlgorithm OBJECT IDENTIFIER     ::= {rsadsi 2} 
encryptionAlgorithm OBJECT IDENTIFIER ::= {rsadsi 3} 
 
SupportingAlgorithms ALGORITHM-IDENTIFIER ::= 
  { {NULL IDENTIFIED BY id-hmacWithSHA1} | 
    {OCTET STRING (SIZE(8)) IDENTIFIED BY desCBC} | 
    {OCTET STRING (SIZE(8)) IDENTIFIED BY des-EDE3-CBC} | 
    {RC2-CBC-Parameter IDENTIFIED BY rc2CBC} | 
    {RC5-CBC-Parameters IDENTIFIED BY rc5-CBC-PAD} | 
    {OCTET STRING (SIZE(16)) IDENTIFIED BY aes128-CBC-PAD |  
    {OCTET STRING (SIZE(16)) IDENTIFIED BY aes192-CBC-PAD | 
    {OCTET STRING (SIZE(16)) IDENTIFIED BY aes256-CBC-PAD 
},…} 
 
id-hmacWithSHA1 OBJECT IDENTIFIER ::= {digestAlgorithm 7} 

desCBC OBJECT IDENTIFIER ::= 
  {iso(1) identified-organization(3) oiw(14) secsig(3) 
    algorithms(2) 7} -- from OIW 
 
des-EDE3-CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 7} 
 
rc2CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 2} 
 
RC2-CBC-Parameter ::= SEQUENCE { 
  rc2ParameterVersion INTEGER OPTIONAL, 
  iv OCTET STRING (SIZE(8)) } 
 
rc5-CBC-PAD OBJECT IDENTIFIER ::= {encryptionAlgorithm 9}  
 
RC5-CBC-Parameters ::= SEQUENCE { 
  version INTEGER {v1-0(16)} (v1-0), 
  rounds INTEGER (8..127), 
  blockSizeInBits INTEGER (64 | 128), 
  iv OCTET STRING OPTIONAL } 
 
END 
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D. Intellectual property considerations 

RSA Security makes no patent claims on the general constructions described in this 
document, although specific underlying techniques may be covered. Among the 
underlying techniques, the RC5 encryption algorithm (Appendix B.2.4) is protected by 
U.S. Patents 5,724,428 [35] and 5,835,600 [36]. 

The RSA public-key cryptosystem is described in U.S. Patent 4,405,829, which expired 
on September 20, 2000. The RC5 block cipher (Appendix B.2.4) is protected by U.S. 
Patents 5,724,428 and 5,835,600. RSA Security Inc. makes no other patent claims on the 
constructions described in this document, although specific underlying techniques may 
be covered.  

RSA, RC2 and RC4 are registered trademarks of RSA Security Inc. RC5 is a trademark 
of RSA Security Inc. 

License to copy this document is granted provided that it is identified as “RSA Security 
Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or 
referencing this document. 

RSA Security makes no representations regarding intellectual property claims by other 
parties. Such determination is the responsibility of the user. 

E. Revision history 

Versions 1.0–1.3 

Versions 1.0–1.3 were distributed to participants in RSA Data Security, Inc.’s Public-
Key Cryptography Standards meetings in February and March 1991. 

Version 1.4 

Version 1.4 was part of the June 3, 1991 initial public release of PKCS. Version 1.4 was 
published as NIST/OSI Implementors’ Workshop document SEC-SIG-91-20. 

Version 1.5 

Version 1.5 incorporated several editorial changes, including updates to the references 
and the addition of a revision history. 
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Version 2.0 

Version 2.0 incorporates major editorial changes in terms of the document structure, and 
introduces the PBES2 encryption scheme, the PBMAC1 message authentication scheme, 
and independent password-based key derivation functions. This version continued to 
support the encryption process in version 1.5. 

Version 2.1 

Version 2.1 incorporated changes to include AES encryption as well as the SHA-224 and 
SHA-256, SHA-384 and SHA-512 hash functions. Also added were the pseudorandom 
functions HMAC with SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512. This 
version continued to support the encryption process in version 1.5. 

F. References 

[1] American National Standard X9.52 - 1998, Triple Data Encryption Algorithm 
Modes of Operation. ANS X9 July 1998.  

[2] R. Baldwin and R. Rivest. RFC 2040: The RC5, RC5-CBC, RC5-CBC-Pad, and 
RC5-CTS Algorithms. IETF, October 1996. 

[3] D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic Mail: Part 
III: Algorithms, Modes, and Identifiers. IETF, February 1993. 

[4] S.M. Bellovin and M. Merritt. Encrypted key exchange: Password-based 
protocols secure against dictionary attacks. In Proceedings of the 1992 IEEE 
Computer Society Conference on Research in Security and Privacy, pages 72–84, 
IEEE Computer Society, 1992. 

[5] D. Jablon. Strong password-only authenticated key exchange. ACM Computer 
Communications Review, October 1996. 

[6] B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. IETF, April 1992.  

[7] H. Krawczyk, M. Bellare, and R. Canetti. RFC 2104: HMAC: Keyed-Hashing for 
Message Authentication. IETF, February 1997.  

[8] Robert Morris and Ken Thompson. Password security: A case history. 
Communications of the ACM, 22(11):594–597, November 1979. 

[9] ISO/IEC 8824-1:2002: Information technology — Abstract Syntax Notation One 
(ASN.1) — Specification of basic notation. 2002.  



PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 32 

Copyright © 2006 RSA Laboratories. 

[10] ISO/IEC 8824-1:2002/Amd.1:2003 Information technology — Abstract Syntax 
Notation One (ASN.1) — Specification of basic notation — Amendment 1: 
Support for EXTENDED-XER. 2003  

[11] ISO/IEC 8824-1:2002/Amd.2:2005 Information technology — Abstract Syntax 
Notation One (ASN.1) — Specification of basic notation — Amendment 2: 
Alignment with changes made to ITU-T Rec. X.660.  2005  

[12] ISO/IEC 8824-1:2002/Corr.1:2005 Information technology — Abstract Syntax 
Notation One (ASN.1) — Specification of basic notation — Technical 
Corrigendum 1 (Permitted Alphabets). 2005  

[13] ISO/IEC 8824-1:2002/Amd.3:2002  Information technology — Abstract Syntax 
Notation One (ASN.1) — Specification of basic notation — Amendment 3: Time 
types. 2002 

[14] ISO/IEC 8824-1:2002/Amd.1:2002 Information technology — Abstract Syntax 
Notation One (ASN.1) — Specification of basic notation — Amendment 1 — Rules 
of extensibility. 2002.  

[15] ISO/IEC 8824-1:2002/Amd.1:2003 Information technology — Abstract Syntax 
Notation One (ASN.1) — Specification of basic notation — Amendment 1: 
Support for EXTENDED-XER. 2003  

[16] ISO/IEC 8824-1:2002/Amd.2:2005 Information technology — Abstract Syntax 
Notation One (ASN.1) — Specification of basic notation — Amendment 2: 
Alignment with changes made to ITU-T Rec. X.660.  2005  

[17] ISO/IEC 8824-1:2002/Corr.1:2005 Information technology — Abstract Syntax 
Notation One (ASN.1) — Specification of basic notation — Technical 
Corrigendum 1 (Permitted Alphabets). 2005  

[18] ISO/IEC 8824-1:2002/Amd.3:2002  Information technology — Abstract Syntax 
Notation One (ASN.1) — Specification of basic notation — Amendment 3: Time 
types. 2002 

[19] ISO/IEC 8824-2:2002 Information technology — Abstract Syntax Notation One 
(ASN.1) — Information object specification. 2002.  

[20] ISO/IEC 8824-2:2002/Amd.1:2003  Information technology — Abstract Syntax 
Notation One (ASN.1) — Information object specification. 2002 — Amendment 1: 
Support for EXTENDED-XER. 2003 

[21] ISO/IEC 8824-2:2002/Corr.1:2002  Information technology — Abstract Syntax 
Notation One (ASN.1) — Information object specification. 2002— Technical 
Corrigendum 1 (Time types). 2002 
 



PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 33 

Copyright © 2006 RSA Laboratories. 

[22] ISO/IEC 8824-2:2002/Amd.1:2003 Information technology — Abstract Syntax 
Notation One (ASN.1) — Information object specification — Amendment 1 — 
Rules of extensibility. 2003.  

[23] ISO/IEC 8824-3:2002 Information technology — Abstract Syntax Notation One 
(ASN.1) — Constraint specification. 2002.  

[24] ISO/IEC 8824-4:2002 Information technology — Abstract Syntax Notation One 
(ASN.1) — Parameterization of ASN.1 specifications. 2002. 

[25] NIST FIPS Publication 46-3: Data Encryption Standard. Withdrawn May 19, 
2005. 

[26] NIST FIPS Publication 81: DES Modes of Operation. Withdrawn May 19, 2005. 

[27] NIST FIPS Publication 112: Password Usage. Withdrawn February 8, 2005. 

[28] NIST  FIPS Publication 180-1: Secure Hash Standard. April 1994. 

[29] NIST FIPS Publication 180-2: Secure Hash Standard. February 2004 URL: 
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf 

[30] NIST  FIPS Publication 197: Advanced Encryption Standard (AES). November 
26, 2001. URL: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf  

[31] NIST FIPS Publication 198:  The Keyed-Hash Message Authentication Code 
(HMAC). April 8, 2002. URL: http://csrc.nist.gov/publications/fips/fips198/fips-
198a.pdf 

[32] R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. IETF, April 1992. 

[33] R.L. Rivest. The RC5 encryption algorithm. In Proceedings of the Second 
International Workshop on Fast Software Encryption, pages 86-96, Springer-
Verlag, 1994. 

[34] R. Rivest. RFC 2268: A Description of the RC2(r) Encryption Algorithm. IETF, 
March 1998. 

[35] R.L. Rivest. Block-Encryption Algorithm with Data-Dependent Rotations. U.S. 
Patent No. 5,724,428, March 3, 1998. 

[36] R.L. Rivest. Block Encryption Algorithm with Data-Dependent Rotations. U.S. 
Patent No. 5,835,600, November 10, 1998. 

[37] RSA Laboratories. PKCS #5: Password-Based Encryption Standard. Version 2.0, 
March 1999. 



PKCS #5 V2.1: PASSWORD-BASED CRYPTOGRAPHY STANDARD 34 

Copyright © 2006 RSA Laboratories. 

[38] RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard. Version 
1.2, November 1993. 

[39] T. Wu. The Secure Remote Password protocol. In Proceedings of the 1998 
Internet Society Network and Distributed System Security Symposium, pages 97-
111, Internet Society, 1998. 

[40] F. Yergeau. RFC 2279: UTF-8, a Transformation Format of ISO 10646. IETF, 
January 1998.  

[41] NIST SP 800-63: Electronic Authentication Guideline: Recommendations of the 
National Institute of Standards and Technology, Appendix A, April 2006.  

 

G. About PKCS 

The Public-Key Cryptography Standards are specifications produced by RSA 
Laboratories in cooperation with secure systems developers worldwide for the purpose of 
accelerating the deployment of public-key cryptography. First published in 1991 as a 
result of meetings with a small group of early adopters of public-key technology, the 
PKCS documents have become widely referenced and implemented. Contributions from 
the PKCS series have become part of many formal and de facto standards, including 
ANSI X9 documents, PKIX, SET, S/MIME, and SSL. 

Further development of PKCS occurs through mailing list discussions and occasional 
workshops, and suggestions for improvement are welcome. For more information, 
contact: 

PKCS Editor 
RSA Laboratories 
174 Middlesex Turnpike 
Bedford, MA  01730  USA 
pkcs-editor@rsasecurity.com 
http://www.rsasecurity.com/rsalabs/pkcs 

 


