
Copyright 1991–1993 RSA Laboratories, a division of RSA Data Security, Inc. License to copy
this document is granted provided that it is identified as "RSA Data Security, Inc. Public-Key
Cryptography Standards (PKCS)" in all material mentioning or referencing this document.
003-903018-150-000-000

PKCS #1: RSA Encryption Standard

An RSA Laboratories Technical Note
Version 1.5
Revised November 1, 1993*

1. Scope

This standard describes a method for encrypting data using the RSA public-key
cryptosystem. Its intended use is in the construction of digital signatures and
digital envelopes, as described in PKCS #7:

• For digital signatures, the content to be signed is first reduced to a
message digest with a message-digest algorithm (such as MD5),
and then an octet string containing the message digest is encrypted
with the RSA private key of the signer of the content. The content
and the encrypted message digest are represented together
according to the syntax in PKCS #7 to yield a digital signature. This
application is compatible with Privacy-Enhanced Mail (PEM)
methods.

• For digital envelopes, the content to be enveloped is first encrypted
under a content-encryption key with a content-encryption
algorithm (such as DES), and then the content-encryption key is
encrypted with the RSA public keys of the recipients of the content.
The encrypted content and the encrypted content-encryption key
are represented together according to the syntax in PKCS #7 to
yield a digital envelope. This application is also compatible with
PEM methods.

The standard also describes a syntax for RSA public keys and private keys. The
public-key syntax would be used in certificates; the private-key syntax would be
used typically in PKCS #8 private-key information. The public-key syntax is

*Supersedes June 3, 1991 version, which was also published as NIST/OSI Implementors' Workshop
document SEC-SIG-91-18. PKCS documents are available by electronic mail to <pkcs@rsa.com>.

Page 2 PKCS #1: RSA ENCRYPTION STANDARD

identical to that in both X.509 and Privacy-Enhanced Mail. Thus X.509/PEM RSA
keys can be used in this standard.

The standard also defines three signature algorithms for use in signing
X.509/PEM certificates and certificate-revocation lists, PKCS #6 extended
certificates, and other objects employing digital signatures such as X.401 message
tokens.

Details on message-digest and content-encryption algorithms are outside the
scope of this standard, as are details on sources of the pseudorandom bits
required by certain methods in this standard.

2. References

FIPS PUB 46–1 National Bureau of Standards. FIPS PUB 46–1: Data Encryption Standard. January
1988.

PKCS #6 RSA Laboratories. PKCS #6: Extended-Certificate Syntax Standard. Version 1.5,
November 1993.

PKCS #7 RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version 1.5,
November 1993.

PKCS #8 RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard. Version 1.2,
November 1993.

RFC 1319 B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. April 1992.

RFC 1320 R. Rivest. RFC 1320: The MD4 Message-Digest Algorithm. April 1992.

RFC 1321 R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. April 1992.

RFC 1423 D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic Mail: Part III:
Algorithms, Modes, and Identifiers. February 1993.

X.208 CCITT. Recommendation X.208: Specification of Abstract Syntax Notation One
(ASN.1). 1988.

X.209 CCITT. Recommendation X.209: Specification of Basic Encoding Rules for Abstract
Syntax Notation One (ASN.1). 1988.

X.411 CCITT. Recommendation X.411: Message Handling Systems: Message Transfer System:
Abstract Service Definition and Procedures.1988.

X.509 CCITT. Recommendation X.509: The Directory—Authentication Framework. 1988.

[dBB92] B. den Boer and A. Bosselaers. An attack on the last two rounds of MD4. In J.
Feigenbaum, editor, Advances in Cryptology—CRYPTO '91 Proceedings, volume

3. DEFINITIONS Page 3

576 of Lecture Notes in Computer Science, pages 194–203. Springer-Verlag, New
York, 1992.

[dBB93] B. den Boer and A. Bosselaers. Collisions for the compression function of MD5.
Presented at EUROCRYPT '93 (Lofthus, Norway, May 24–27, 1993).

[DO86] Y. Desmedt and A.M. Odlyzko. A chosen text attack on the RSA cryptosystem
and some discrete logarithm schemes. In H.C. Williams, editor, Advances in
Cryptology—CRYPTO '85 Proceedings, volume 218 of Lecture Notes in Computer
Science, pages 516–521. Springer-Verlag, New York, 1986.

[Has88] Johan Hastad. Solving simultaneous modular equations. SIAM Journal on
Computing, 17(2):336–341, April 1988.

[IM90] Colin I'Anson and Chris Mitchell. Security defects in CCITT Recommendation
X.509—The directory authentication framework. Computer Communications
Review, :30–34, April 1990.

[Mer90] R.C. Merkle. Note on MD4. Unpublished manuscript, 1990.

[Mil76] G.L. Miller. Riemann's hypothesis and tests for primality. Journal of Computer and
Systems Sciences, 13(3):300–307, 1976.

[QC82] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-
key cryptosystem. Electronics Letters, 18(21):905–907, October 1982.

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–
126, February 1978.

3. Definitions

For the purposes of this standard, the following definitions apply.

AlgorithmIdentifier: A type that identifies an algorithm (by object
identifier) and associated parameters. This type is defined in X.509.

ASN.1: Abstract Syntax Notation One, as defined in X.208.

BER: Basic Encoding Rules, as defined in X.209.

DES: Data Encryption Standard, as defined in FIPS PUB 46-1.

MD2: RSA Data Security, Inc.'s MD2 message-digest algorithm, as defined in
RFC 1319.

MD4: RSA Data Security, Inc.'s MD4 message-digest algorithm, as defined in
RFC 1320.

Page 4 PKCS #1: RSA ENCRYPTION STANDARD

MD5: RSA Data Security, Inc.'s MD5 message-digest algorithm, as defined in
RFC 1321.

modulus: Integer constructed as the product of two primes.

PEM: Internet Privacy-Enhanced Mail, as defined in RFC 1423 and related
documents.

RSA: The RSA public-key cryptosystem, as defined in [RSA78].

private key: Modulus and private exponent.

public key: Modulus and public exponent.

4. Symbols and abbreviations

Upper-case italic symbols (e.g., BT) denote octet strings and bit strings (in the
case of the signature S); lower-case italic symbols (e.g., c) denote integers.

ab hexadecimal octet value c exponent
BT block type d private exponent
D data e public exponent
EB encryption block k length of modulus in octets
ED encrypted data n modulus
M message p, q prime factors of modulus
MD message digest x integer encryption block
MD' comparative message digest y integer encrypted data
PS padding string mod n modulo n
S signature X || Y concatenation of X, Y

||X|| length in octets of X

5. General overview

The next six sections specify key generation, key syntax, the encryption process,
the decryption process, signature algorithms, and object identifiers.

Each entity shall generate a pair of keys: a public key and a private key. The
encryption process shall be performed with one of the keys and the decryption
process shall be performed with the other key. Thus the encryption process can
be either a public-key operation or a private-key operation, and so can the
decryption process. Both processes transform an octet string to another octet

6. KEY GENERATION Page 5

string. The processes are inverses of each other if one process uses an entity's
public key and the other process uses the same entity's private key.

The encryption and decryption processes can implement either the classic RSA
transformations, or variations with padding.

6. Key generation

This section describes RSA key generation.

Each entity shall select a positive integer e as its public exponent.

Each entity shall privately and randomly select two distinct odd primes p and q
such that (p−1) and e have no common divisors, and (q−1) and e have no common
divisors.

The public modulus n shall be the product of the private prime factors p and q:

n = pq .

The private exponent shall be a positive integer d such that de−1 is divisible by
both p−1 and q−1.

The length of the modulus n in octets is the integer k satisfying

28(k−1) ≤ n < 28k .

The length k of the modulus must be at least 12 octets to accommodate the block
formats in this standard (see Section 8).

Notes.

1. The public exponent may be standardized in specific applications.
The values 3 and F4 (65537) may have some practical advantages,
as noted in X.509 Annex C.

2. Some additional conditions on the choice of primes may well be
taken into account in order to deter factorization of the modulus.
These security conditions fall outside the scope of this standard.
The lower bound on the length k is to accommodate the block
formats, not for security.

Page 6 PKCS #1: RSA ENCRYPTION STANDARD

7. Key syntax

This section gives the syntax for RSA public and private keys.

7.1 Public-key syntax

An RSA public key shall have ASN.1 type RSAPublicKey:

RSAPublicKey ::= SEQUENCE {
modulus INTEGER, -- n
publicExponent INTEGER -- e }

(This type is specified in X.509 and is retained here for compatibility.)

The fields of type RSAPublicKey have the following meanings:

• modulus is the modulus n.

• publicExponent is the public exponent e.

7.2 Private-key syntax

An RSA private key shall have ASN.1 type RSAPrivateKey:

RSAPrivateKey ::= SEQUENCE {
version Version,
modulus INTEGER, -- n
publicExponent INTEGER, -- e
privateExponent INTEGER, -- d
prime1 INTEGER, -- p
prime2 INTEGER, -- q
exponent1 INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER -- (inverse of q) mod p }

Version ::= INTEGER

The fields of type RSAPrivateKey have the following meanings:

• version is the version number, for compatibility with future
revisions of this standard. It shall be 0 for this version of the
standard.

• modulus is the modulus n.

• publicExponent is the public exponent e.

8. ENCRYPTION PROCESS Page 7

• privateExponent is the private exponent d.

• prime1 is the prime factor p of n.

• prime2 is the prime factor q of n.

• exponent1 is d mod (p−1).

• exponent2 is d mod (q−1).

• coefficient is the Chinese Remainder Theorem coefficient q−1

mod p.

Notes.

1. An RSA private key logically consists of only the modulus n and
the private exponent d. The presence of the values p, q, d mod (p−1),
d mod (p−1), and q−1 mod p is intended for efficiency, as Quisquater
and Couvreur have shown [QC82]. A private-key syntax that does
not include all the extra values can be converted readily to the
syntax defined here, provided the public key is known, according
to a result by Miller [Mil76].

2. The presence of the public exponent e is intended to make it
straightforward to derive a public key from the private key.

8. Encryption process

This section describes the RSA encryption process.

The encryption process consists of four steps: encryption-block formatting, octet-
string-to-integer conversion, RSA computation, and integer-to-octet-string
conversion. The input to the encryption process shall be an octet string D, the
data; an integer n, the modulus; and an integer c, the exponent. For a public-key
operation, the integer c shall be an entity's public exponent e; for a private-key
operation, it shall be an entity's private exponent d. The output from the
encryption process shall be an octet string ED, the encrypted data.

The length of the data D shall not be more than k−11 octets, which is positive
since the length k of the modulus is at least 12 octets. This limitation guarantees
that the length of the padding string PS is at least eight octets, which is a security
condition.

Page 8 PKCS #1: RSA ENCRYPTION STANDARD

Notes.

1. In typical applications of this standard to encrypt content-
encryption keys and message digests, one would have ||D|| ≤ 30.
Thus the length of the RSA modulus will need to be at least 328 bits
(41 octets), which is reasonable and consistent with security
recommendations.

2. The encryption process does not provide an explicit integrity check
to facilitate error detection should the encrypted data be corrupted
in transmission. However, the structure of the encryption block
guarantees that the probability that corruption is undetected is less
than 2−16, which is an upper bound on the probability that a
random encryption block looks like block type 02.

3. Application of private-key operations as defined here to data other
than an octet string containing a message digest is not
recommended and is subject to further study.

4. This standard may be extended to handle data of length more than
k-11 octets.

8.1 Encryption-block formatting

A block type BT, a padding string PS, and the data D shall be formatted into an
octet string EB, the encryption block.

EB = 00 || BT || PS || 00 || D . (1)

The block type BT shall be a single octet indicating the structure of the
encryption block. For this version of the standard it shall have value 00, 01, or
02. For a private-key operation, the block type shall be 00 or 01. For a public-
key operation, it shall be 02.

The padding string PS shall consist of k−3−||D|| octets. For block type 00, the
octets shall have value 00; for block type 01, they shall have value FF; and for
block type 02, they shall be pseudorandomly generated and nonzero. This makes
the length of the encryption block EB equal to k.

Notes.

1. The leading 00 octet ensures that the encryption block, converted
to an integer, is less than the modulus.

8. ENCRYPTION PROCESS Page 9

2. For block type 00, the data D must begin with a nonzero octet or
have known length so that the encryption block can be parsed
unambiguously. For block types 01 and 02, the encryption block
can be parsed unambiguously since the padding string PS contains
no octets with value 00 and the padding string is separated from
the data D by an octet with value 00.

3. Block type 01 is recommended for private-key operations. Block
type 01 has the property that the encryption block, converted to an
integer, is guaranteed to be large, which prevents certain attacks of
the kind proposed by Desmedt and Odlyzko [DO86].

4. Block types 01 and 02 are compatible with PEM RSA encryption of
content-encryption keys and message digests as described in RFC
1423.

5. For block type 02, it is recommended that the pseudorandom octets
be generated independently for each encryption process, especially
if the same data is input to more than one encryption process.
Hastad's results [Has88] motivate this recommendation.

6. For block type 02, the padding string is at least eight octets long,
which is a security condition for public-key operations that
prevents an attacker from recoving data by trying all possible
encryption blocks. For simplicity, the minimum length is the same
for block type 01.

7. This standard may be extended in the future to include other block
types.

8.2 Octet-string-to-integer conversion

The encryption block EB shall be converted to an integer x, the integer
encryption block. Let EB1, …, EBk be the octets of EB from first to last. Then the
integer x shall satisfy

x =
i=1

k
 28(k−i)EBi . (2)

In other words, the first octet of EB has the most significance in the integer and
the last octet of EB has the least significance.

Note. The integer encryption block x satisfies 0 ≤ x < n since EB1 = 00 and 28(k−1)

≤ n.

Page 10 PKCS #1: RSA ENCRYPTION STANDARD

8.3 RSA computation

The integer encryption block x shall be raised to the power c modulo n to give an
integer y, the integer encrypted data.

y = xc mod n, 0 ≤ y < n .

This is the classic RSA computation.

8.4 Integer-to-octet-string conversion

The integer encrypted data y shall be converted to an octet string ED of length k,
the encrypted data. The encrypted data ED shall satisfy

y =
i=1

k
 28(k−i)EDi . (3)

where ED1, …, EDk are the octets of ED from first to last.

In other words, the first octet of ED has the most significance in the integer and
the last octet of ED has the least significance.

9. Decryption process

This section describes the RSA decryption process.

The decryption process consists of four steps: octet-string-to-integer conversion,
RSA computation, integer-to-octet-string conversion, and encryption-block
parsing. The input to the decryption process shall be an octet string ED, the
encrypted data; an integer n, the modulus; and an integer c, the exponent. For a
public-key operation, the integer c shall be an entity's public exponent e; for a
private-key operation, it shall be an entity's private exponent d. The output from
the decryption process shall be an octet string D, the data.

It is an error if the length of the encrypted data ED is not k.

For brevity, the decryption process is described in terms of the encryption
process.

10. SIGNATURE ALGORITHMS Page 11

9.1 Octet-string-to-integer conversion

The encrypted data ED shall be converted to an integer y, the integer encrypted
data, according to Equation (3).

It is an error if the integer encrypted data y does not satisfy 0 ≤ y < n.

9.2 RSA computation

The integer encrypted data y shall be raised to the power c modulo n to give an
integer x, the integer encryption block.

x = yc mod n, 0 ≤ x < n .

This is the classic RSA computation.

9.3 Integer-to-octet-string conversion

The integer encryption block x shall be converted to an octet string EB of length
k, the encryption block, according to Equation (2).

9.4 Encryption-block parsing

The encryption block EB shall be parsed into a block type BT, a padding string
PS, and the data D according to Equation (1).

It is an error if any of the following conditions occurs:

• The encryption block EB cannot be parsed unambiguously (see
notes to Section 8.1).

• The padding string PS consists of fewer than eight octets, or is
inconsistent with the block type BT.

• The decryption process is a public-key operation and the block type
BT is not 00 or 01, or the decryption process is a private-key
operation and the block type is not 02.

10. Signature algorithms

This section defines three signature algorithms based on the RSA encryption
process described in Sections 8 and 9. The intended use of the signature
algorithms is in signing X.509/PEM certificates and certificate-revocation lists,

Page 12 PKCS #1: RSA ENCRYPTION STANDARD

PKCS #6 extended certificates, and other objects employing digital signatures
such as X.401 message tokens. The algorithms are not intended for use in
constructing digital signatures in PKCS #7. The first signature algorithm
(informally, "MD2 with RSA") combines the MD2 message-digest algorithm with
RSA, the second (informally, "MD4 with RSA") combines the MD4 message-
digest algorithm with RSA, and the third (informally, "MD5 with RSA")
combines the MD5 message-digest algorithm with RSA.

This section describes the signature process and the verification process for the
two algorithms. The "selected" message-digest algorithm shall be either MD2 or
MD5, depending on the signature algorithm. The signature process shall be
performed with an entity's private key and the verification process shall be
performed with an entity's public key. The signature process transforms an octet
string (the message) to a bit string (the signature); the verification process
determines whether a bit string (the signature) is the signature of an octet string
(the message).

Note. The only difference between the signature algorithms defined here and one
of the the methods by which signatures (encrypted message digests) are
constructed in PKCS #7 is that signatures here are represented here as bit strings,
for consistency with the X.509 SIGNED macro. In PKCS #7 encrypted message
digests are octet strings.

10.1 Signature process

The signature process consists of four steps: message digesting, data encoding,
RSA encryption, and octet-string-to-bit-string conversion. The input to the
signature process shall be an octet string M, the message; and a signer's private
key. The output from the signature process shall be a bit string S, the signature.

10.1.1 Message digesting

The message M shall be digested with the selected message-digest algorithm to
give an octet string MD, the message digest.

10.1.2 Data encoding

The message digest MD and a message-digest algorithm identifier shall be
combined into an ASN.1 value of type DigestInfo, described below, which
shall be BER-encoded to give an octet string D, the data.

DigestInfo ::= SEQUENCE {
digestAlgorithm DigestAlgorithmIdentifier,
digest Digest }

10. SIGNATURE ALGORITHMS Page 13

DigestAlgorithmIdentifier ::= AlgorithmIdentifier

Digest ::= OCTET STRING

The fields of type DigestInfo have the following meanings:

• digestAlgorithm identifies the message-digest algorithm (and
any associated parameters). For this application, it should identify
the selected message-digest algorithm, MD2, MD4 or MD5. For
reference, the relevant object identifiers are the following:

md2 OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) US(840) rsadsi(113549)

digestAlgorithm(2) 2 }
md4 OBJECT IDENTIFIER ::=

{ iso(1) member-body(2) US(840) rsadsi(113549)
digestAlgorithm(2) 4 }

md5 OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) US(840) rsadsi(113549)

digestAlgorithm(2) 5 }

For these object identifiers, the parameters field of the
digestAlgorithm value should be NULL.

• digest is the result of the message-digesting process, i.e., the
message digest MD.

Notes.

1. A message-digest algorithm identifier is included in the
DigestInfo value to limit the damage resulting from the
compromise of one message-digest algorithm. For instance,
suppose an adversary were able to find messages with a given
MD2 message digest. That adversary might try to forge a signature
on a message by finding an innocuous-looking message with the
same MD2 message digest, and coercing a signer to sign the
innocuous-looking message. This attack would succeed only if the
signer used MD2. If the DigestInfo value contained only the
message digest, however, an adversary could attack signers that
use any message digest.

2. Although it may be claimed that the use of a SEQUENCE type
violates the literal statement in the X.509 SIGNED and SIGNATURE
macros that a signature is an ENCRYPTED OCTET STRING (as
opposed to ENCRYPTED SEQUENCE), such a literal interpretation
need not be required, as I'Anson and Mitchell point out [IM90].

Page 14 PKCS #1: RSA ENCRYPTION STANDARD

3. No reason is known that MD4 would not be sufficient for very high
security digital signature schemes, but because MD4 was designed
to be exceptionally fast, it is "at the edge" in terms of risking
successful cryptanalytic attack. A message-digest algorithm can be
considered "broken" if someone can find a collision: two messages
with the same digest. While collisions have been found in variants
of MD4 with only two digesting "rounds" [Mer90][dBB92], none
have been found in MD4 itself, which has three rounds. After
further critical review, it may be appropriate to consider MD4 for
very high security applications.

MD5, which has four rounds and is proportionally slower than
MD4, is recommended until the completion of MD4's review. The
reported "pseudocollisions" in MD5's internal compression function
[dBB93] do not appear to have any practical impact on MD5's
security.

MD2, the slowest of the three, has the most conservative design. No
attacks on MD2 have been published.

10.1.3 RSA encryption

The data D shall be encrypted with the signer's RSA private key as described in
Section 7 to give an octet string ED, the encrypted data. The block type shall be
01. (See Section 8.1.)

10.1.4 Octet-string-to-bit-string conversion

The encrypted data ED shall be converted into a bit string S, the signature.
Specifically, the most significant bit of the first octet of the encrypted data shall
become the first bit of the signature, and so on through the least significant bit of
the last octet of the encrypted data, which shall become the last bit of the
signature.

Note. The length in bits of the signature S is a multiple of eight.

10.2 Verification process

The verification process for both signature algorithms consists of four steps: bit-
string-to-octet-string conversion, RSA decryption, data decoding, and message
digesting and comparison. The input to the verification process shall be an octet
string M, the message; a signer's public key; and a bit string S, the signature. The
output from the verification process shall be an indication of success or failure.

11. OBJECT IDENTIFIERS Page 15

10.2.1 Bit-string-to-octet-string conversion

The signature S shall be converted into an octet string ED, the encrypted data.
Specifically, assuming that the length in bits of the signature S is a multiple of
eight, the first bit of the signature shall become the most significant bit of the first
octet of the encrypted data, and so on through the last bit of the signature, which
shall become the least significant bit of the last octet of the encrypted data.

It is an error if the length in bits of the signature S is not a multiple of eight.

10.2.2 RSA decryption

The encrypted data ED shall be decrypted with the signer's RSA public key as
described in Section 8 to give an octet string D, the data.

It is an error if the block type recovered in the decryption process is not 01. (See
Section 9.4.)

10.2.3 Data decoding

The data D shall be BER-decoded to give an ASN.1 value of type DigestInfo,
which shall be separated into a message digest MD and a message-digest
algorithm identifier. The message-digest algorithm identifier shall determine the
"selected" message-digest algorithm for the next step.

It is an error if the message-digest algorithm identifier does not identify the
MD2, MD4 or MD5 message-digest algorithm.

10.2.4 Message digesting and comparison

The message M shall be digested with the selected message-digest algorithm to
give an octet string MD', the comparative message digest. The verification
process shall succeed if the comparative message digest MD' is the same as the
message digest MD, and the verification process shall fail otherwise.

11. Object identifiers

This standard defines five object identifiers: pkcs-1, rsaEncryption,
md2WithRSAEncryption, md4WithRSAEncryption, and
md5WithRSAEncryption.

The object identifier pkcs-1 identifies this standard.

Page 16 PKCS #1: RSA ENCRYPTION STANDARD

pkcs-1 OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) US(840) rsadsi(113549)

pkcs(1) 1 }

The object identifier rsaEncryption identifies RSA public and private keys as
defined in Section 7 and the RSA encryption and decryption processes defined in
Sections 8 and 9.

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

The rsaEncryption object identifier is intended to be used in the algorithm
field of a value of type AlgorithmIdentifier. The parameters field of that
type, which has the algorithm-specific syntax ANY DEFINED BY algorithm,
would have ASN.1 type NULL for this algorithm.

The object identifiers md2WithRSAEncryption, md4WithRSAEncryption,
md5WithRSAEncryption, identify, respectively, the "MD2 with RSA," "MD4
with RSA," and "MD5 with RSA" signature and verification processes defined in
Section 10.

md2WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 2 }
md4WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 3 }
md5WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 4 }

These object identifiers are intended to be used in the algorithm field of a value
of type AlgorithmIdentifier. The parameters field of that type, which has
the algorithm-specific syntax ANY DEFINED BY algorithm, would have
ASN.1 type NULL for these algorithms.

Note. X.509's object identifier rsa also identifies RSA public keys as defined in
Section 7, but does not identify private keys, and identifies different encryption
and decryption processes. It is expected that some applications will identify
public keys by rsa. Such public keys are compatible with this standard; an
rsaEncryption process under an rsa public key is the same as the
rsaEncryption process under an rsaEncryption public key .

REVISION HISTORY Page 17

Revision history

Versions 1.0–1.3

Versions 1.0–1.3 were distributed to participants in RSA Data Security, Inc.'s
Public-Key Cryptography Standards meetings in February and March 1991.

Version 1.4

Version 1.4 is part of the June 3, 1991 initial public release of PKCS. Version 1.4
was published as NIST/OSI Implementors' Workshop document SEC-SIG-91-18.

Version 1.5

Version 1.5 incorporates several editorial changes, including updates to the
references and the addition of a revision history. The following substantive
changes were made:

• Section 10: "MD4 with RSA" signature and verification processes
are added.

• Section 11: md4WithRSAEncryption object identifier is added.

Author's address

RSA Laboratories (415) 595-7703
100 Marine Parkway (415) 595-4126 (fax)
Redwood City, CA 94065 USA pkcs-editor@rsa.com

	PKCS #1: RSA Encryption Standard
	1. Scope
	2. References
	3. Definitions
	4. Symbols and abbreviations
	5. General overview
	6. Key generation
	
	Notes.

	7. Key syntax
	7.1 Public-key syntax
	7.2 Private-key syntax
	Notes.

	8. Encryption process
	
	Notes.

	8.1 Encryption-block formatting
	Notes.

	8.2 Octet-string-to-integer conversion
	8.3 RSA computation
	8.4 Integer-to-octet-string conversion

	9. Decryption process
	9.1 Octet-string-to-integer conversion
	9.2 RSA computation
	9.3 Integer-to-octet-string conversion
	9.4 Encryption-block parsing

	10. Signature algorithms
	10.1 Signature process
	10.1.1 Message digesting
	10.1.2 Data encoding
	Notes.
	10.1.3 RSA encryption
	10.1.4 Octet-string-to-bit-string conversion

	10.2 Verification process
	10.2.1 Bit-string-to-octet-string conversion
	10.2.2 RSA decryption
	10.2.3 Data decoding
	10.2.4 Message digesting and comparison

	11. Object identifiers
	Revision history
	Versions 1.0–1.3
	Version 1.4
	Version 1.5

	Author's address

