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• Microsoft (currently)

• European Organization for Nuclear Research (CERN)

• Hispasec Sistemas

• Wroclaw Centre for Networking and Supercomputing

• Cigital

• Bughunting (Hyper-V, OpenSSH, gcc SSP/ProPolice, Apache, xpdf, more…) 

– CVE numbers

• Phrack magazine (Scraps of notes on remote stack overflow exploitation)

• The ERESI Reverse Engineering Software Interface



ACKNOWLEDGMENT

Alexander Peslyak (Александр Песляк) 

a.k.a. Solar Designer

5



ACKNOWLEDGMENT

Alexander Peslyak (Александр Песляк) 

a.k.a. Solar Designer

6

Special thanks to the following people for the constructive criticism and brainstorming 

in the past stages of the project development:

• Rafał“n3rgal” Wojtczuk

• Brad “spender” Spengler

• PaX Team… I mean “pipacs”



7

TABLE OF CONTENTS

 What is LKRG?

 Threat model

 Exploit Detection (ED)

 Limitations

DEMO

 Runtime Code Integrity (CI)

 Communication channel

 Performance impact

 LKRG in ring -1 (why not – yet) ?

 Future

 Questions / Discussion…



8

WHAT IS LKRG?

 LKRG – Linux Kernel Runtime Guard (self-explanatory ;p)



9

WHAT IS LKRG?

 LKRG – Linux Kernel Runtime Guard (self-explanatory ;p)

 Open Source project under GPLv2 License



10

WHAT IS LKRG?

 LKRG – Linux Kernel Runtime Guard (self-explanatory ;p)

 Open Source project under GPLv2 License

LKRG

Main branch
Experimental 

branch

Runtime

Code Integrity (CI)

Exploit Detection 

(ED)

Protected Features 

(PF)

Detects (for now) 

unsupported modifications of 

the (not only) Linux kernel

Prevents kernel 

exploitation process

Ability to hide/limit access 

to the critical resources 

(like process / file / logs) 

from the unauthorized 

admin (root) account
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described:
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2. Attacking kernel via kernel vulnerabilities

3. Persistence of the attack e.g. kernel backdoors
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THREAT MODEL

 The following main attacking scenarios (buckets) can be 

described:

1. Attacking kernel from the boot chain <- currently out-of-scope

2. Attacking kernel via kernel vulnerabilities <- Exploit Detection

3. Persistence of the attack e.g. kernel backdoors <- Code Integrity

4. [*Experimental branch] Attacking user mode client:

a. Attacking user mode process in running state <- Protected Process

b. Attacking user mode file on disk <- Protected File

c. Attacking user mode process via raw memory access

d. Attacking user mode file via raw disk access

e. Intermediate attack for user mode process via attacking dependent 

code (e.g. shared libraries) <- static binary + Protected File

Virtually extended

CAP_SYS_RAWIO
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EXPLOIT DETECTION
 The aim of it is to detect kernel exploitation process by detecting specific data 

corruption in the kernel.
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 The aim of it is to detect kernel exploitation process by detecting specific data 
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Token/pointer swap attacks 

(illegal commit_creds())

Credential overwrite

Seccomp based 

sandbox escape 
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EXPLOIT DETECTION
 Additionally, LKRG is guarding the following SELinux variables:

 selinux_enabled

 selinux_enforcing

 The following values are also tracked but currently not used (but will be):

 securebits

 cap_inheritable

 cap_permitted

 cap_effective

 cap_bset

 cap_ambient

 pointer value of the real user ID subscription

 pointer value of the user namespace

SELinux escape

Capabilities based sandbox escape 

Containers / namespace 

escape
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EXPLOIT DETECTION
 How does LKRG build/maintain its own tasks list and update legit attributes changes?

User mode

Kernel mode

Process 1 Process 2 Process N

Syscall

Function X
LKRG hook

Inspect 

arg?

Verify all 

tasks?
Function Y

Function …

LKRG hook

Verify all 

tasks?

Inspect 

return code
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EXPLOIT DETECTION
 How does LKRG build/maintain its own tasks list and update legit attributes changes?

 When does LKRG enforce integrity check?

 setuid / setgid / seteuid / setegid / setreuid / setregid / setresuid / setresgid / setfsuid / setfsgid

 setgroups

 fork

 execve

 exit

 do_init_module (covers init_module as well as finit_module)

 delete_module

 may_open (it is executed every time a user wants to open any resources in the system)

 Whenever LKRG executes integrity checking function
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EXPLOIT DETECTION
 How does LKRG build/maintain its own tasks list and update legit attributes changes?

 When does LKRG enforce integrity check?

 setuid / setgid / seteuid / setegid / setreuid / setregid / setresuid / setresgid / setfsuid / setfsgid

 setgroups

 fork

 execve

 exit

 do_init_module (covers init_module as well as finit_module)

 delete_module

 may_open (it is executed every time a user wants to open any resources in the system)

 Whenever LKRG executes integrity checking function

 Checks are done for every process in the system, not just for the one which executed syscall

(excluding may_open() for perf reasons). This list is not closed and will be evolving.
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EXPLOIT DETECTION

 Limitations – “Bypassable” by design (for now) – difficult to 

protect from the same “trust level”

 “Fly-under-LKRG’s-radar”:

 Overwrite critical metadata not guarded by LKRG

 Relatively early-stage project – forgotten intercept?

 Trying to win races (using not-intercepted syscalls)

 “Move” attack to userspace

 Attack (disable) LKRG and continue normal work:

 Trying to win races (corrupting LKRG’s database)

 Attack LKRG’s internal synchronization / locking

 Find all LKRG’s running contexts and disable them + block a “new” one

 Directly attack the userspace via kernel (e.g. DirtyCOW)
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EXPLOIT DETECTION

DEMO
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RUNTIME CODE INTEGRITY

 Calculate hash from the critical [meta]data – SipHash
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(IPI) is sent to individual core in all (V)CPUs to exclusively run LKRG function. Guard:
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RUNTIME CODE INTEGRITY

 Calculate hash from the critical [meta]data – SipHash

 Guarded regions:

 Critical (V)CPU/core data (currently only on x86/amd64 arch). Inter-Processor-Interrupt 

(IPI) is sent to individual core in all (V)CPUs to exclusively run LKRG function. Guard:

 IDT entry point and size

 IDT itself (as blob of memory)

 MSRs:

 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 

MSR_IA32_CR_PAT, MSR_IA32_APICBASE, MSR_EFER, MSR_STAR, MSR_LSTAR, MSR_CSTAR, 

MSR_SYSCALL_MASK

 Additionally, LKRG keeps information about:

 How many (V)CPUs/cores are available in the system

 How many online (V)CPUs/cores are available in the system

 How many offline (V)CPUs/cores are available in the system

 How many possible (V)CPUs/cores might be available in the system



45

RUNTIME CODE INTEGRITY

 Guarded regions - continued:

 Entire Linux kernel .text section

 This covers almost entire Linux kernel itself, like syscall tables, all 

procedures, all function, all IRQ handlers, etc.

 Linux kernel exception table

 Entire Linux kernel .rodata section

 Optionally IOMMU table

 Modules
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RUNTIME CODE INTEGRITY

 Guarded regions – continued – Modules:

 For each individual module the following information is tracked based on module 

linked list:

 Struct module pointer (a.k.a. THIS_MODULE)

 Name

 Pointer to the module_core

 Size of the .text section

 Hash from the entire .text section for that module
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RUNTIME CODE INTEGRITY

 Guarded regions – continued – Modules:

 For each individual module the following information is tracked based on module 

linked list:

 Struct module pointer (a.k.a. THIS_MODULE)

 Name

 Pointer to the module_core

 Size of the .text section

 Hash from the entire .text section for that module

 For each individual module the following information is tracked based on KOBJs:

 Struct module pointer (a.k.a. THIS_MODULE)

 Pointer to the ‘module_kobject’ structure

 Entire KOBJ structure (except from list_head and kref information)

 Name

 Pointer to the module_core

 Size of the .text section

 Hash from the entire .text section for that module
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RUNTIME CODE INTEGRITY

 Guarded regions – continued – Modules:

 Both pieces of information must match (if they exist in both places) and each of 

them is being tracked individually. Additionally, the following information is being 

tracked down:

 Number of entries in module list

 Number of KOBJs in specific KSET

 Specific order of linked list in module list

 Specific order in KSET for KOBJs
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RUNTIME CODE INTEGRITY

 Guarded regions – continued – Modules:

 Both pieces of information must match (if they exist in both places) and each of 

them is being tracked individually. Additionally, the following information is being 

tracked down:

 Number of entries in module list

 Number of KOBJs in specific KSET

 Specific order of linked list in module list

 Specific order in KSET for KOBJs

Module 1 Module 2 Module 3 Module NLinked list:

KOBJ NKOBJ 3KOBJ 2KOBJ 1

KSET (module KOBJ) KSET (other)KSET (other)
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RUNTIME CODE INTEGRITY

 Guarded regions – continued – Modules:

 Both pieces of information must match (if they exist in both places) and each of 

them is being tracked individually. Additionally, the following information is being 

tracked down:

 Number of entries in module list

 Number of KOBJs in specific KSET

 Specific order of linked list in module list

 Specific order in KSET for KOBJs

 Dynamic module loading can be disabled via LKRG sysctl interface
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RUNTIME CODE INTEGRITY
 When runtime CI validation routine is executed?

 By the kernel timer interruption which generates work item and inserts it in shared WQ

 On demand via a LKRG sysctl interface

 Whenever any module activity is detected (e.g. loading / unloading)

 Whenever a new (V)CPU or core activity is detected (hot CPU plug[in/off])
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RUNTIME CODE INTEGRITY
 When runtime CI validation routine is executed?

 By the kernel timer interruption which generates work item and inserts it in shared WQ

 On demand via a LKRG sysctl interface

 Whenever any module activity is detected (e.g. loading / unloading)

 Whenever a new (V)CPU or core activity is detected (hot CPU plug[in/off])

 On various random events in the system (see next slide)
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RUNTIME CODE INTEGRITY
 The following events are monitored:

 CPU idle – probability 0.005%

 CPU frequency – probability 10%

 CPU power management – probability 10%

 Network device (e.g. device up/down) – probability 1%

 Network event (e.g. ICMP redirects) – probability 5%

 Network device IPv4 changes – probability 100%

 Network device IPv6 changes – probability 100%

 Task structure handing off – probability 0.01%

 Task going out – probability 0.01%

 Task calling do_munmap() – probability 0.005%

 USB changes – probability 100%

 Global AC events – probability 100%
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RUNTIME CODE INTEGRITY
 Caveats:

 *_JUMP_LABEL (self-modifying code)
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RUNTIME CODE INTEGRITY
 Caveats:

 *_JUMP_LABEL (self-modifying code)

 If we detect that .text section for kernel was changed, we try to find the offset where 

modifications were made. We use this offset to calculate the VA of modified code. If 

modification happened because of the *_JUMP_LABEL options, either a long NOP or 

relative JMP instruction was injected (both are 5 bytes long):

 If NOP is modified to JMP, destination of the instruction is still pointing to the inside of the 

same function (symbol name) where the modification happened. We decode this JMP 

instruction to validate if the target is still pointing inside the same symbol name range. If 

yes, it is most likely a 'legit' modification.

 If JMP instruction was changed, we only allow it to be replaced by long NOP instruction.

 Any other modifications are banned

 More information can be found on the wiki page:

http://openwall.info/wiki/p_lkrg/Main#JUMP_LABEL

http://openwall.info/wiki/p_lkrg/Main#JUMP_LABEL
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RUNTIME CODE INTEGRITY
 Caveats:

 *_JUMP_LABEL (self-modifying code)

 If we detect that .text section for kernel was changed, we try to find the offset where 

modifications were made. We use this offset to calculate the VA of modified code. If 

modification happened because of the *_JUMP_LABEL options, either a long NOP or 

relative JMP instruction was injected (both are 5 bytes long):

 If NOP is modified to JMP, destination of the instruction is still pointing to the inside of the 

same function (symbol name) where the modification happened. We decode this JMP 

instruction to validate if the target is still pointing inside the same symbol name range. If 

yes, it is most likely a 'legit' modification.

 If JMP instruction was changed, we only allow it to be replaced by long NOP instruction.

 Any other modifications are banned

 More information can be found on the wiki page:

http://openwall.info/wiki/p_lkrg/Main#JUMP_LABEL

 Only for kernel core – not modules

http://openwall.info/wiki/p_lkrg/Main#JUMP_LABEL
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RUNTIME CODE INTEGRITY
 Caveats:

 IPI problem
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RUNTIME CODE INTEGRITY
 Caveats:

 IPI problem

 There is an undesirable situation in SMP Linux machines while sending an IPI. 

Unfortunately, it might influence the state of the kernel and generate very confusing 

logs. They appear to suggest that the problem resides on the correct execution 

context which is killed and dumped, but not on the actually problematic context, 

which might not be dumped. This makes it hard to root-cause the problem even if 

one is aware of this shortcoming of the killings and the logging. More details about it 

can be found here:

http://lists.openwall.net/linux-kernel/2016/09/21/68

http://lists.openwall.net/linux-kernel/2016/09/21/68
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COMMUNICATION CHANNEL

 Sysctl interface:

root@pi3-ubuntu:~/p_lkrg-main# sysctl -a|grep lkrg

lkrg.block_modules = 0

lkrg.clean_message = 1

lkrg.force_run = 0

lkrg.log_level = 1

lkrg.random_events = 1 (perf impact is around 2.5% for fully enabled 

LKRG, or around 0.7% for LKRG with code integrity checks on random 

events disabled)

lkrg.timestamp = 15
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PERFORMANCE IMPACT
==============================

Project:         john-1.8.0-jumbo-1

Configuration:   ./configure CFLAGS='-O0'

Testing:        make clean; time make -j 8

==============================
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PERFORMANCE IMPACT
==============================

Project:         john-1.8.0-jumbo-1

Configuration:   ./configure CFLAGS='-O0'

Testing:        make clean; time make -j 8

==============================

log_level=0, NO_EVENTS_CI         log_level=0, without_CI log_level=0, Full LKRG

-------------------------------------- -------------------------------- ----------------------------------

real    +00.668%                  real    +00.551%            real    +02.513%

user    -00.069%                  user    -00.183%                  user    -00.004%

sys     +07.200%                  sys     +08.089%                  sys     +08.355%

Full LKRG:        ~2.5%

LKRG without random events: ~0.7%

+02.513%
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LKRG IN RING -1

 Why not “ring -1” (hypervisor)?

1. Some of the problems remain the same regardless of where the assist is 

implemented (ring 0 [kernel], ring -1 [hypervisor], ring -2 [SMM], ring -3 

[AMT])

2. “Standarization” of hypervisor “world” in Linux is underdeveloped 

comparing to other modern OS (for now) – KVM? Xen? VirtualBox? Custom?

3. “Closed” platforms don’t have Linux-like problems – Samsung KNOX, 

Windows VSM, iOS KPP, etc.

4. Not all VPS solutions support nested virtualization – serious limitation

5. “ring -1” goes against mass deployment (same “kernel patch” solutions)

6. Some of the servers / machines can’t be rebooted (rebootless)
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LKRG IN RING -1

When “Wild West of ring -1” becomes more unified, it’ll be easy to 

add “ring -1” extension for LKRG which will guard “ring 0” instance. 

We will have 2 modes of operation: “weaker” without “ring -1” assist 

and stronger with hypervisor warranties – if environment supports it 

(still not the right time for it now!).
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FUTURE
 Runtime Code Integrity:

 Exploit Detection:

 General:
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 Runtime Code Integrity:

 APIC / Local APIC

 MADT / FADT / RSDT / ACPI

 Call gates

 Check if callbacks / notification routines point to the modules which we know and are 

tracking

 Exploit Detection:

 General:
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 Runtime Code Integrity:

 APIC / Local APIC

 MADT / FADT / RSDT / ACPI

 Call gates

 Check if callbacks / notification routines point to the modules which we know and are 

tracking

 Exploit Detection:

 Detect capabilities corruption

 Detect containers / namespace escapes (Sandbox escapes)

 Cover more kernel Elevation of Privileges (EoPs) techniques
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FUTURE
 Runtime Code Integrity:

 APIC / Local APIC

 MADT / FADT / RSDT / ACPI

 Call gates

 Check if callbacks / notification routines point to the modules which we know and are 

tracking

 Exploit Detection:

 Detect capabilities corruption

 Detect containers / namespace escapes (Sandbox escapes)

 Cover more kernel Elevation of Privileges (EoPs) techniques

 General:

 Better self-defense:

 Hash from the internal database

 Hash from LKRG itself

 Hypervisor extension (ring -1)

 Probably more which I’m not aware of now :P
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