
The GNU 3DKit

Programming Guide

An official GNU project

Version 0.4 - August 11, 2002

Philippe C.D. Robert – probert@siggraph.org





Contents

1 About This Guide 7
1.1 Why Use The GNU 3DKit? . . . . . . . . . . . . . . . . . . . . . 7
1.2 The Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Where To Find Resources . . . . . . . . . . . . . . . . . . . . . . 8
1.4 System Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 The RenderKit 11
2.1 Setting Up the Environment . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 The Camera Abstraction . . . . . . . . . . . . . . . . . . 11
2.1.2 Instantiating 3D Scenes . . . . . . . . . . . . . . . . . . . 12

2.2 The Graph Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Node Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 The Rendering Loop . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Execution Modes . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 APP Traversal . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 CULL Traversal . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Draw Traversal . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.5 Render Delegates . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 User Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Frame Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Node Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 The GeometryKit 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Geometric Primitives . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.2 Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.3 Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.4 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Higher Level Constructs . . . . . . . . . . . . . . . . . . . . . . . 21
3.6.1 Bezier Curves . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6.2 NURBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Physical Computation . . . . . . . . . . . . . . . . . . . . . . . . 22

3



4 CONTENTS

4 Advanced Features and Rendering Techniques 23
4.1 Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Fixed Frame Rates . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Shading And Lighting . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Texturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Environment Effects . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4.1 Fog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Advanced Visual Effects . . . . . . . . . . . . . . . . . . . . . . . 24

4.5.1 Motion Blur . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5.2 Full Scene Antialiasing . . . . . . . . . . . . . . . . . . . . 24
4.5.3 Shadow Volumes . . . . . . . . . . . . . . . . . . . . . . . 24
4.5.4 Cell Shading . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Tuning and Optimisations 25
5.1 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Synchronisation Primitives . . . . . . . . . . . . . . . . . 25
5.2 Scene Graph Optimisations . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 Flattening . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Scene Optimisations . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.1 Spatial Organisation . . . . . . . . . . . . . . . . . . . . . 26
5.3.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 26



List of Figures

2.1 Importing scene data . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 APP delegate methods . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 CULL delegate methods . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 DRAW delegate methods . . . . . . . . . . . . . . . . . . . . . . 16

5





Chapter 1

About This Guide

Welcome to the GNU 3DKit application development environment. The GNU
3DKit provides an object oriented application development framework for cre-
ating high performance 3D graphics applications. It is officially part of the
GNU project as an extension to GNUstep, which provides an object oriented
application development framework and tool set for use on a wide variety of
computer platforms. GNUstep is based on the original OpenStep specification
provided by NeXT, Inc. (now Apple).

The GNU 3DKit’s main application is to render 3D graphics in real-time on
commodity hardware, using a scene graph architecture. It interfaces the indus-
try standard OpenGL graphics library to achieve this goal.

1.1 Why Use The GNU 3DKit?

The GNU 3DKit facilitates the design and implementation of complexe, high
performance 3D graphics application in the Objective-C language. The kit pro-
vides advanced features and techniques to achieve high performance rendering
of large data sets, it furthermore integrates tightly with the GNUstep and Cocoa
application environments and automatically uses hardware accelerated graphics
functionality, if available.

Some of the features wich are supported by the kit are listed below:

• High performance geometry rendering

• Efficient graphics state handling

• Sophisticated lighting and shadowing

• Flexible texture handling

• Tight integration with the GNUstep and Cocoa environments

• Native support for multithreading

• Level of detail handling

7



8 CHAPTER 1. ABOUT THIS GUIDE

• View frustum culling

• Advanced visual effects (motion blur, full scene antialiasing, ... )

• Support for multiple backends ( ie. OpenStep, SDL or GLX)

The GNU 3DKit is furthermore a true cross platform solution – it is available
for most X11 based Unix systems1 as well as for Mac OS X!

A Microsoft Windows version of the GNU 3DKit is currently not planned. Once
GNUstep is available on that platform this might change, of course.

1.2 The Frameworks

The GNU 3DKit consists of 2 main frameworks as shown in Table 1.1. Addi-
tionally there a numerous backend libraries which interface specific, low level
technologies, such as SDL, GLX or glut, used by the GNU 3DKit to provide
event handling and displaying capabilities.

Table 1.1: The GNU 3DKit components

GeometryKit.framework GeometryKit.h Mathematical functions
RenderKit.framework RenderKit.h Main rendering framework
SDLKit SDLKit.h SDL backend
GLXKit GLXKit.h GLX X11 backend
GlutKit GlutKit.h GLX X11 backend

1.3 Where To Find Resources

More information and last minute changes can be found on the internet:

• http://savannah.gnu.org/projects/gnu3dkit/

• http://www.fsf.org/software/gnu3dkit/gnu3dkit.html

Information about GNUstep can be found at www.gnustep.org.

1.4 System Prerequisites

To compile and use the GNU 3DKit on a X11 based Unix system, install the
following prerequisites:

• The GNU Objective-C compiler

• The GNUstep libraries
1The GNU 3DKit is known to work on Linux, Solaris and FreeBSD.



1.4. SYSTEM PREREQUISITES 9

• An OpenGL 1.2 compliant library

On Mac OS X the native compiler and Cocoa frameworks can to be used instead.

The additional utility kits, such as the GlutKit or the SDLKit, might have
additional prerequisits. Please check the installation notes for a complete list.





Chapter 2

The RenderKit

This chapter gives an overview about the RenderKit framework of the GNU
3DKit. It explains how to write common GNU 3DKit applications and points
out important details and concepts.

2.1 Setting Up the Environment

To initialise a GNU 3DKit application and render custom data only a few steps
have to be performed:

1. Initialise the GNU 3DKit via the G3DApplication1.

2. Initialise and configure all camera(s).

3. Create the scene either by loading it from a file or programmatically.

4. Assign the scene to the camera(s) in use.

5. Enter the render loop.

In the next few sections we will describe the possibilities and restrictions of the
GNU 3DKit in greater details.

2.1.1 The Camera Abstraction

The design and implementation of the new camera class is a complete rework.
The G3DCamera controls the rendering process by using various helper ob-
jects, such as a G3DFrustum, a G3DContext, a G3DFog and a special
drawable object. The GNU 3DKit will support drawables for multiple pro-
gramming interfaces:

• The NSOpenGLView class provided by Apple’s Cocoa framework

• The Simple Direct Media Library (SDL)

• GLX on any X11 based system
1The G3DApplication singleton is the holder of all global information, such as the exe-

cution model, render backend and so on.

11



12 CHAPTER 2. THE RENDERKIT

All of these implementations provide a unique way of accessing hardware level
features. Their purpose is to encapsulate low level graphics and event handling
functionality. The G3DCamera class thereby unifies the API in a backend
neutral manner2.

You can use several cameras simultaneously to render different views of the
same scene within the same application. This is often used in CAD applications.

Setting Up the Viewport

The viewport is a camera attribute which can be accessed from the camera ob-
ject via -setViewport: and -viewport. Changing the viewport values results
in a modified drawable. The viewport is stored in a G3DViewport structure:

x, y: Specify the lower left corner of the viewport rectangle.

w,h: Specify the width and height of the viewport.

Setting Up the Frustum

The frustum is also a camera attribute, it defines the visible viewing volume of
a concrete camera. A frustum is defined by

• the Field Of View (FOV)

• the near and far clipping planes

This information is managed by the camera’s G3DFrustum object which in-
ternally uses a perspective matrix that produces a perspective projection as
known from glFrustum().

The GNU 3DKit camera furthermore supports a special pretransformation
matrix which can be used to control off axis frustums.

Setting Up the Viewpoint

The viewpoint of a camera defines its position and orienation in world coordi-
nates. It is set by calling ie. -setPosition:orientation:up: or by passing a
view matrix to -setMatrix:.

2.1.2 Instantiating 3D Scenes

The GNU 3DKit manages scene data in a scene graph structure which facili-
tates several rendering optimisation techniques. Scene graphs can be created
programmatically or by importing data from a file.

Importing Scene Data

Scene data can be imported from a file using the G3DSceneManager class.
The GNU 3DKit does not define a file format of its own, instead specific file
loaders are used to transform externally stored data into a GNU 3DKit scene.

To load scene data from a file and create a GNU 3DKit scene graph, the
steps as as shown in Listing 2.1 have to be performed.

2See G3DCamera.h



2.2. THE GRAPH NODES 13

- (G3DScene *)loadFile:(NSString*)path
{

G3DSceneManager *mgr = [G3DSceneManager defaultManager];
G3DScene *scene = [mgr sceneWithContentsOfFile:path];

[scene prepareScene];

return scene;
}

Figure 2.1: Importing a scene into the GNU 3DKit.

2.2 The Graph Nodes

A scene graph consists of a number of nodes arranged as an acyclic, directed
graph. The nodes are implemented in a class hierarchy which is distinct from
the graph hierarchy defined by a concrete instance of a scene graph.

All nodes of a GNU 3DKit scene graph are subclasses of the semi abstract
G3DGraphNode class. Table 2.1 lists the most common node classes avail-
able in the GNU 3DKit.

Table 2.1: The GNU 3DKit graph nodes

G3DGraphNode Abstract Parent of all graph nodes
G3DScene Root Root of a scene
G3DGroup Branch Basic grouping node
G3DLODGroup Branch Level of detail grouping node
G3DSwitch Branch Switching group node
G3DTimedSwitch Branch Timed switch node
G3DShape Leaf Leaf providing geometric data
G3DLight Leaf Light source

2.3 Node Attributes

Many of the GNU 3DKit graph nodes make use of special attribute objects.
Attributes are needed to exactly describe a node’s state. Table 2.2 lists the
most used attribute classes available in the GNU 3DKit.

2.4 The Rendering Loop

Once a scene graph is created, either by loading it from a file or programmati-
cally, it can be rendered and processed in a variety of ways. This always happens
by traversing the tree either preorder, inorder, postorder or any combination of
these.



14 CHAPTER 2. THE RENDERKIT

Table 2.2: The GNU 3DKit attributes

G3DColour basic Colour information stored as a 4-tuple
G3DState advanced Graphics state properties for shapes
G3DTexture advanced Advanced texture object
G3DGeometry advanced Geometry data holder

2.4.1 Execution Modes

Rendering of one frame is always split into multiple stages. Depending on the
execution mode these stages can be processed entirely or partially in parallel.
The execution mode is set via the G3DApplication object.

APP: The application traversal updates the dynamic elements in a scene and
readies them for the next frame. It makes sure that the scene is in sync
and all transformation matrices are correct.

CULL: The culling traversal selects the visible portions of a scene graph and
puts them into a display list to be rendered by the DRAW stage.

DRAW: The draw traversal sends rendering command to the graphics hard-
ware based on the content of the current display list.

To render a frame the camera’s -(void)render: method has to be invoked. Be
aware that depending on the execution mode this may result in a frame latency.

2.4.2 APP Traversal

The scene graph is always traversed in depth-first order. The APP traversal is
initiated by calling -(void)render: on the camera. This traversal is executed
once per scene.

The APP traversal updates dynamic elements in the scene, such as switch
or LOD groups, or invokes custom code:

1. Prune the node based on the traversal mask, if required. If the node is
pruned then proceed with its sibling.

2. Invoke the render delegate’s pre traversal method, if specified. Based on
its return value prune, continue or terminate traversal.

3. Traverse all existing children.

4. Invoke the render delegate’s post traversal method, if specified.

Figure 2.2 lists all delegate methods related to the APP traversal phase.



2.4. THE RENDERING LOOP 15

- (BOOL)nodeShouldTraverse:(id)sender;
// Called from a node before APP traversal is initiated.

- (void)nodeWillTraverse:(id)sender;
// Called from a node before APP traversal is initiated.

- (void)nodeDidTraverse:(id)sender;
// Called after the traversal has been processed.

Figure 2.2: The node APP delegate methods.

Bounding Volumes

The GNU 3DKit automatically computes bounding volumes for every node in
a scene graph unless it is set by the programmer. Bounding volumes are always
updated upon change3 – this can be prevented by declaring them static.

Bounding volumes are created hierarchically. Based on the bounding volumes
provided by the G3DGeometry objects, all the shape nodes create their bound-
ing spheres, which in turn are used by their parents to compute their bounding
volumes, and so on.

Bounding volumes for geometry sets are computed once they are added to a
shape node or upon invocation of - (void)update.

Adding a geometry object to a shape node does not automatically trigger the
updating of the shape’s bounding sphere, this has to be done explicitly! Fur-
thermore, upon a change of a geometry object the respective bounding box is
not being updated transparently. This as well has to be done explicitly by the
programmer.

2.4.3 CULL Traversal

The CULL traversal stage is used to determin the visible part of the scene for
the current frame. Updated bounding volumes are required to perform this step
correctly! Starting at the scene graph’s root node all of its children are tested
for visibility using the camera’s viewing frustum4. It is done as follows:

1. Prune the node based on the draw traversal mask , if required.

2. Invoke the render delegate’s pre cull traversal method, if specified. Based
on its return value prune, continue or terminate traversal.

3. Prune the node if its bounding volume is entirely outside the viewing
frustum.

4. If the bounding volume is only partially within the viewing frustum, tra-
verse all of the node’s children5 or geometry objects. If the bounding

3I.e. upon applying a transformation operation.
4Specific occluders have to be selected programmatically if occlusion culling is enabled
5If it is a selective group node then traverse only the active child.



16 CHAPTER 2. THE RENDERKIT

volume is entirely within the viewing frustum, mark all children as visible
and continue with the node’s sibling!

5. Invoke the render delegate’s post cull traversal method, if specified.

If the CULL traversal should not test geometry objects for visibility this can be
achieved by changing the traversal mode using -(void)setTraversalMode: on
the rendering context6. Figure 2.3 lists all delegate methods which are called
upon the CULL traversal.

- (BOOL)nodeShouldCull:(id)sender;
// Called from a node before culling is initiated.

- (BOOL)nodeIsVisible:(id)sender;
// Used to customise culling.

Figure 2.3: The node CULL delegate methods.

Display Lists

During the CULL traversal a G3DDisplayList is generated which holds the ge-
ometry and state information of all nodes to be rendered for the current frame.
Such render lists are flattened in an optimal way and thus much faster to process
than traversing the scene graph directly.

Recreation of such display lists can be prevented by compiling a certain part of
the scene graph into a static list. This greatly enhances the overall rendering
performance for static scenes.

2.4.4 Draw Traversal

The DRAW traversal is performed directly after culling took place. Thus its
only purpose is to process the current display list and send the appropriate
render commands to the graphics pipeline. Figure 2.4 lists all DRAW related
delegate methods.

- (void)nodeWillDraw:(id)sender;
// Called from a node before the DRAW traversal is initiated.

- (void)nodeDidDraw:(id)sender;
// Called after the DRAW traversal has been processed.

Figure 2.4: The node DRAW delegate methods.

6The argument to this call is a set of logically ORed flags.



2.5. USER DATA 17

2.4.5 Render Delegates

Render delegates are used to implement functionality on scene graph nodes
without subclassing them. Every node in a scene graph can be controlled or
enhanced by such a delegate, as shown above for the different traversal delegate
methods7.

Render delegates can thus be used for many purposes, some examples are
listed below:

• The CULL stage can be optimised by implementing customised culling
methods via the cull delegate methods. This can for example be used to
implement occlusion culling as described in [4].

• Upon camera movement line of sight information can be updated. This
again can be used to use occlusion culling.

• Upon node position changes collision detection and intersection tests can
be computed.

• Application status information can be modified upon node state changes
notified via APP traversal delegates.

Using render delegates provides a flexible way to design a GNU 3DKit applica-
tion by aggregating custom logic rather than by subclassing. This enhances the
ease of maintenance and reusability of code.

2.5 User Data

Every node of a scene graph may hold user data. This provides some amount
of flexibility to the application’s writer to prevent subclassing of GNU 3DKit
classes.

2.6 Frame Data

Frame data is passed to all nodes while rendering a frame via the camera’s
-render: method. Frame data is managed in a latency aware manner to guar-
antee proper results in a multithreaded environment.

2.7 Node Sharing

In many situations having shared instances of a node is not very useful8. There
are some exceptions where it makes sense to share nodes, though:

• Geometric data is shared whenever possible. This reduces the overall
memory consumption of the application.

• Textures are shared using OpenGL texture objects. This enhances the
overall rendering performance quite a lot.

7See the class documenation for all scene graph nodes and the camera
8A shared instance is a node that has multiple parents in the scene graph.



18 CHAPTER 2. THE RENDERKIT

Scene graphs which contain shared nodes can be flattened automatically via
the -(void)flatten: method declared on G3DGraphNode. This may lead to a
higher memory consumption but also to better frame rates.

For a more detailed introduction into flatting scene graphs read 5.2.1.



Chapter 3

The GeometryKit

In this chapter the features and functions of the GeometryKit are explained.
The GeometryKit is extensively used by the RenderKit but can also be used by
programmers to do mathematical computations.

3.1 Introduction

The design of the framework is heavily influenced by the concepts and paradigms
of the OpenStep API. The emphasis of the GeometryKit is on providing a com-
plete set of mathematical functionality. The biggest part of the GeometryKit’s
core implementation is written in highly optimised ANSI C. It can be accessed
either directly, or by using the Objective-C wrapper classes. A lot of the math-
ematical codebase is based on the famous Graphics Gems - I suggest the math-
ematical inclined to have a look into all of those books, especially [2] and [19].

In order to remain platform independent no architecture specific assembler op-
timisations have been introduced. However, most of the C functions are imple-
mented as inline functions to attain a maximum of performance. Everything
you need to know about ANSI C is covered in [17].

All base classes and the entire ANSI C foundation of the GeometryKit have both
single-precision and double-precision floating point value representations. To re-
semble the OpenGL notation scheme the following convention is used through-
out the GNU 3DKit:

void G3DFunctionName[n]{ifd}{v}(arg1, arg2, ...);

The number n indicates the dimension of the expected arguments, while the
prefix G3D is used exclusively by all functions and macros of the GNU 3DKit.

3.2 Vectors

Vectors are available as two, three or four element implementations. All G3DVector*
classes implement basic operations common to all vectors, such as reading, set-
ting and clamping elements to specified high and low values, computing the

19



20 CHAPTER 3. THE GEOMETRYKIT

scalar multiplication and division, addition and subtraction of other vectors,
interpolation and negation and so on. Furthermore typical vector functionality
such as the dot product, the length of a vector, the cross product (in three
dimensions only!) as well as normalisation is also directly available. Figure 3.1
lists all the available vector implementations of the GNU 3DKit.

Table 3.1: The GNU 3DKit vector classes

G3DVector2f float 2 tuple in float representation
G3DVector2d double 2 tuple in double representation
G3DVector3f float 3 tuple in float representation
G3DVector3d double 3 tuple in double representation
G3DVector4f float 4 tuple in float representation
G3DVector4d double 4 tuple in double representation

Note that the vector classes are subclasses of their respective G3DTuple*
classes from which they inherit the common tuple functionality.

3.3 Quaternions

Quaternions are extensions of complex numbers, often used to compute rota-
tions and orientations in 3D graphics in an efficient way. See [2], [6] and [3] to
learn more about the mathematical background and examples of quaternions.
Quaternions are implemented by G3DQuaternion* classes as listed in Figure
3.2.

Table 3.2: The GNU 3DKit quaternion classes

G3DQuaternionf float quaternion in float representation
G3DQuaterniond double quaternion in double representation

Note that the quaternion classes are subclasses of their respective G3DTuple*
classes from which they inherit the common tuple functionality.

3.4 Matrices

Three and four dimensional matrices are among the most often used geometric
tools in 3D graphics. An optimised implementation is therefore the prerequisite
to reach optimal performance. Matrices are implemented by G3DMatrix*
classes as listed in Figure 3.3.



3.5. GEOMETRIC PRIMITIVES 21

Table 3.3: The GNU 3DKit matrix classes

G3DMatrix3f float 3x3 matrix in float representation
G3DMatrix3d double 3x3 matrix in double representation
G3DMatrix4f float 4x4 matrix in float representation
G3DMatrix4d double 4x4 matrix in double representation

3.5 Geometric Primitives

In addition to the basic algebraic functionalities described above, the Geome-
tryKit also offers some geometric primitives which are used quite often in 3D
graphics applications, i.e. to compute collision detection, bounding volumes
and so forth. These objects are high level constructs, based on the optimised C
foundation in float representation.

3.5.1 Spheres

Spheres are implemented by the G3DSphere class, a common sphere object,
implemented as an object wrapper of the sphere’s radius and center point.

3.5.2 Boxes

Boxes are implemented by the G3DBox class, which are used by the GNU
3DKit to implement axis aligned bounding boxes1.

3.5.3 Planes

A G3DPlane is an object wrapper based on the well known plane equation

a · x + b · y + c · z = d

based on a single-precision floating point 4 tuple.

3.5.4 Lines

Lines are a mathematical line abstraction implemented by the G3DLine class
as

L(t) = Origin + t · Direction

where Direction is always normalised.

3.6 Higher Level Constructs

In addition to these common primitives, the GeometryKit also provides support
for more advanced constructs.

1Often referred to as AABB.



22 CHAPTER 3. THE GEOMETRYKIT

3.6.1 Bezier Curves

The GNU 3DKit implements Bezier curves in the G3DBezier class, a generic
bezier curve implementation using n control points.

3.6.2 NURBS

Not yet available.

3.7 Physical Computation

Not yet available.



Chapter 4

Advanced Features and
Rendering Techniques

In this chapter some more advanced features of the GNU 3DKit will be ex-
plained, such as creating advanced graphics effects or aspects of simulations.

4.1 Synchronisation

For certain applications it is crucial to be able to control frame rates and ren-
dering synchronisation very exactly.

4.1.1 Fixed Frame Rates

Not yet available.

4.2 Shading And Lighting

The RenderKit helps application implementors to achieve realistic rendering ef-
fects by wrapping commonly used OpenGL functionality in Objective-C classes.
Nevertheless if direct access to OpenGL functionality is still required this can
be done by following some general rules set by the GNU 3DKit.

4.3 Texturing

The GNU 3DKit provides a common texture class which takes care of loading
textures from a file and controlling the OpenGL texture functionality. Multitex-
turing is provided as well, the GNU 3DKit makes thereby use of the multitexture
extension, if available.

4.4 Environment Effects

The GNU 3DKit supports some global environment effects such as ie. fog di-
rectly.

23



24CHAPTER 4. ADVANCED FEATURES AND RENDERING TECHNIQUES

4.4.1 Fog

Fog is enabled via the G3DCamera objcet and controlled by its G3DFog
object.

4.5 Advanced Visual Effects

The GNU 3DKit furthermore supports advanced visual effects in order to achieve
highly realistic rendering results.

4.5.1 Motion Blur

Motion blur can be enabled on the camera object. Motion blur requires the
existence of a hardware accelerated accumulation buffer, though. Otherwise the
rendering performance will drop dramatically!

4.5.2 Full Scene Antialiasing

Full Scene Antialiasing (FSAA) can be enabled on the camera object. FSAA
requires the existence of a hardware accelerated accumulation buffer, though.
Otherwise the rendering performance will drop dramatically!

4.5.3 Shadow Volumes

Not yet available.

4.5.4 Cell Shading

Not yet available.



Chapter 5

Tuning and Optimisations

In this final chapter we have a closer look at optimisation issues as well as
potential bottlenecks for 3D applications, based on the GNU 3DKit.

5.1 Multithreading

In order to support SMP systems in an optimal way the GNU 3DKit offers
multithreaded rendering modes. The rendering mode of choice has to be spec-
ified upon initialisation of the application, currently the following modes are
supported:

• All stages are processed by the same (application) thread.

• The DRAW and the CULL stage are processed by a separate thread.

• The DRAW and the CULL stage are processed by separate threads.

• The DRAW stage is processed by a separate thread.

The execution mode has to be specified upon mandatory initialisation of the
G3DApplication before any other GNU 3DKit functionality is used!

5.1.1 Synchronisation Primitives

The GNU 3DKit makes use of the elegant synchronisation primitives offered by
the GNUstep API. Unless other scene graph APIs it therefore does not have to
provide special synchronisation primitives of its own, this guarantees optimal
integration with GNUstep and Cocoa.

5.2 Scene Graph Optimisations

In order to achieve the best performance it is crucial that the scene graph is
organised in an optimal way. Only by minimising the required traversals and
state switches in the graphics pipeline it is possible to get realtime results. In
the next sections some of the most important issues are explained and shown
how to deal with using the GNU 3DKit.

25



26 CHAPTER 5. TUNING AND OPTIMISATIONS

5.2.1 Flattening

One way to reduce traversal complexity is to flatten a scene graph.

5.2.2 Sorting

In order to reduce the required state changes of the OpenGL rendering pipeline,
the nodes of the scene graph are sorted in an optimal order.

5.3 Scene Optimisations

A prerequisite to create an optimal scene graph is the underlying structure of
the used database.

5.3.1 Spatial Organisation

Not yet available.

5.3.2 Complexity

Not yet available.



Bibliography

[1] Apple Developer Documentation, Object-Oriented Programming and the
Objective-C Language. Apple Computer, Inc., 1999

[2] Arvo, J., Graphics Gems II. Academic Press, Inc., 1991

[3] Bobick, N., Rotating Objects Using Quaternions. Game Developer, Vol. 2:
Issue 26, July 3, 1998

[4] Coorg, S., Teller, S., Real-time occlusion culling for models with large
occluders. Proc. 1997 ACM Symposium, on interactive 3D graphics, pp. 83
- 90 and 189

[5] Course Notes, Advanced Graphics Techniques Using OpenGL. Course
notes, 1998

[6] Course Notes, Using Quaternions to Represent Rotation. CS184, UC Berke-
ley

[7] Duchaineau, M. et al., ROAMing Terrain: Real-Time Optimally Adapting
Meshes. http://www.llnl.gov/graphics/ROAM/

[8] Foley, D., van Dam, A., Feiner, S., Hughes, J., Computer Graphics - Prin-
ciples and Practice. Addison Wesley Co., Inc., Reading, MA, 1996

[9] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns.
Addison Wesley Co., Inc., Reading, MA, 1995

[10] Garland, M., Heckbert, P., Surface simplification using quadric error met-
rics. Proceedings SIGGRAPH 97, pp. 209 - 216

[11] Glassner, A.S., Graphics Gems. Academic Press, Inc., 1990

[12] Green, N., Environment Mapping and Other Applications of World Pro-
jections. IEEE Computer Graphics and Applications, vol. 6, no. 11, pp. 21
- 29, November 1986

[13] Heckbert, P.S., Herf, M., Shadow Generation Algorithms.
http://www.www.cs.cmu.edu/ ph/shadow.html, 1997

[14] Hoppe, H., Smooth View-Dependent Level-of-Detail Con-
trol and its Application to Terrain Rendering. Microsoft,
http://www.research.microsoft.com/ hoppe

[15] Hoppe, H., Progressive Meshes. Proc. SIGGRAPH 96, pp. 99 - 108

27



28 BIBLIOGRAPHY

[16] Kempf, R. and Frazier, C., OpenGL Reference Manual. Addison Wesley
Co., Inc., Reading, MA, 1999

[17] Kernighan, B.W. and Ritchie, D.M., The C Programming Language. Pren-
tice Hall Software Series, Prentice-Hall, Inc., 2nd Edition, 1988

[18] Kilgard, M.J., Avoiding 16 Common OpenGL Pitfalls. Copyright 1998,
1999 by Mark J. Kilgard, http://www.opengl.org

[19] Kirk, D., Graphics Gems III. Academic Press, Inc., 1992

[20] Lindstrom, P. et al., Real-Time Continuous Level of Detail Rendering of
Height Fields. Proceedings SIGGRAPH 96

[21] Loshin, D., Efficient Memory Programming. The MacGraw-Hill Compa-
nies, Inc., 1999

[22] Moeller, Th., Haines, E., Real-Time Rendering. A K Peters, Ltd., 1999

[23] Watt, A., Policarpo, F., The Computer Image. Addison Wesley Co., Inc.,
Reading, MA, 1998

[24] Watt, A., Policarpo, F., 3D Games - Real-time Rendering and Software
Technology. Addison Wesley Co., Inc., Reading, MA, 2001

[25] Woo, M., Neider, K. and Davis, T., OpenGL Programming Guide. Addison
Wesley Co., Inc., Reading, MA, 1998

[26] Wright, R., Understanding and Using OpenGL Texture Objects. Game
Developer, July 23, 1999

[27] Zhang, H., Effective Occlusion Culling for the Interactive Display of Arbi-
trary Models. Department of Computer Science, University of North Car-
olina at Chapel Hill, July 1998

[28] Zohar, R., Barad, H., Implementing a 3D SIMD Geometry and Lighting
Pipeline. Game Developer, April 1999


