
1

ASN.1 structures parser

This is part of the GnuTLS project

Copyright c© 2001, 2002, 2003 Fabio Fiorina

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later

version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts and no Back-Cover Texts. A copy of the license is
included in the chapter entitled ”GNU Free Documentation License”.

2

Contents

1 ASN.1 structures handling 5

1.1 Introduction . 5

1.2 ASN.1 syntax . 5

1.3 Naming . 6

1.4 Library Notes . 7

1.5 Future developments . 7

2 Utilities 9

2.1 asn1Parser . 9

2.2 asn1Coding . 9

2.3 asn1Decoding . 10

3 Function reference 11

3.0.1 asn1 parser2tree . 11

3.0.2 asn1 parser2array . 11

3.0.3 asn1 der decoding . 12

3.0.4 asn1 der decoding element 13

3.0.5 asn1 der decoding startEnd 13

3.0.6 asn1 expand any defined by 14

3.0.7 asn1 expand octet string 15

3.0.8 libtasn1 perror . 16

3.0.9 libtasn1 strerror . 16

3.0.10 asn1 check version . 16

3.0.11 asn1 array2tree . 16

3.0.12 asn1 delete structure . 17

3.0.13 asn1 create element . 17

3.0.14 asn1 print structure . 18

3.0.15 asn1 number of elements 18

3

4 CONTENTS

3.0.16 asn1 find structure from oid 19

3.0.17 asn1 write value . 19

3.0.18 asn1 read value . 21

3.0.19 asn1 read tag . 22

3.0.20 asn1 der coding . 23

4 GNU Free Documentation License 25

4.1 Applicability and Definitions . 26

4.2 Verbatim Copying . 27

4.3 Copying in Quantity . 27

4.4 Modifications . 28

4.5 Combining Documents . 30

4.6 Collections of Documents . 30

4.7 Aggregation With Independent Works 30

4.8 Translation . 31

4.9 Termination . 31

4.10 Future Revisions of This License 31

Chapter 1

ASN.1 structures handling

1.1 Introduction

This document describes the version 0.2.4 of library ’libtasn1’ developed for
ASN1 (Abstract Syntax Notation One) structures management. The main fea-
tures of this library are:

• on line ASN1 structure management that doesn’t require any C code file
generation.

• off line ASN1 structure management with C code file generation containing
an array.

• DER (Distinguish Encoding Rules) encoding

• no limits for INTEGER and ENUMERATED values

1.2 ASN.1 syntax

The parser is case sensitive. The comments begin with ”– ” and end at the
end of lines. An example is in ”pkix.asn” file. ASN.1 definitions must have this
syntax:

definitions_name {<object definition>}

DEFINITIONS <EXPLICIT or IMPLICIT> TAGS ::=

BEGIN

<type and constants definitions>

END

5

6 CHAPTER 1. ASN.1 STRUCTURES HANDLING

The token ”::=” must be separate from others elements, so this is a wrong
declaration: Version ::=INTEGER the correct one is : Version ::= INTEGER
Here is the list of types that the parser can manage:

• INTEGER

• ENUMERATED

• BOOLEAN

• OBJECT IDENTIFIER

• NULL

• BIT STRING

• OCTET STRING

• UTCTime

• GeneralizedTime

• GeneralString

• SEQUENCE

• SEQUENCE OF

• SET

• SET OF

• CHOICE

• ANY

• ANY DEFINED BY

This version doesn’t manage REAL type. It doesn’t allow the ”EXPORT”
and ”IMPORT” sections too.

The SIZE constraints are allowed, but no check is done on them.

1.3 Naming

With this definitions:

Example { 1 2 3 4 }

DEFINITIONS EXPLICIT TAGS ::=

1.4. LIBRARY NOTES 7

BEGIN

Group ::= SEQUENCE {

id OBJECT IDENTIFIER,

value Value

}

Value ::= SEQUENCE {

value1 INTEGER,

value2 BOOLEAN

}

END

to identify the type ’Group’ you have to use the null terminated string ”Exam-
ple.Group”. Others examples: Field ’id’ in ’Group’ type : ”Example.Group.id”
Field ’value1’ in field ’value’ in type ’Group’: ”Example.Group.value.value1”
These strings are used in functions that are described below. Elements of struc-
tured types that don’t have a name, receive the name ”?1”,”?2”, and so on. The
name ”?LAST” indicates the last element of a SET OF or SEQUENCE OF.

1.4 Library Notes

The header file of this library is libtasn1.h . The main type used in it is
ASN1 TYPE, and it’s used to store the ASN1 definitions and structures (in-
stances). The constant ASN1 TYPE EMPTY can be used for the variable ini-
tialization.

Example: ASN1 TYPE definitions=ASN1 TYPE EMPTY;

Some functions require a parameter named errorDescription of char* type. The
array must be already allocated and must have at least MAX ERROR DESCRIPTION SIZE
bytes (E.g: char Description[MAX ERROR DESCRIPTION SIZE];).

MAX NAME SIZE indicates the maximum number of characters of a name
inside a file with ASN1 definitions.

1.5 Future developments

1. add functions for a C code file generation containing equivalent data struc-
tures (not a single array like now).

2. type REAL

8 CHAPTER 1. ASN.1 STRUCTURES HANDLING

Chapter 2

Utilities

2.1 asn1Parser

asn1Parser reads one file with ASN1 definitions and generates a file with an
array to use with libasn1 functions.

Usage: asn1Parser [options] file

Options:

• -h : shows the help message.

• -v : shows version information and exit.

• -c : checks the syntax only.

• -o file : output file.

• -n name : array name.

2.2 asn1Coding

asn1Coding generates a DER encoding from a file with ASN1 definitions and
another one with assignments. The file with assignments must have this syntax:

InstanceName Asn1Definition

nameString value

nameString value

...

The output file is a binary file with the DER encoding.

Usage: asn1Coding [options] file1 file2

• file1 : file with ASN1 definitions.

9

10 CHAPTER 2. UTILITIES

• file2 : file with assignments.

Options:

• -h : shows the help message.

• -v : shows version information and exit.

• -c : checks the syntax only.

• -o file : output file.

2.3 asn1Decoding

asn1Decoding generates an ASN1 structure from a file with ASN1 definitions
and a binary file with a DER encoding.

Usage: asn1Decoding [options] file1 file2 type

• file1 : file with ASN1 definitions.

• file2 : binary file with a DER encoding.

• type : ASN1 definition name.

Options:

• -h : shows the help message.

• -v : shows version information and exit.

• -c : checks the syntax only.

• -o file : output file.

Chapter 3

Function reference

3.0.1 asn1 parser2tree

asn1 retCode asn1 parser2tree (const char * file name , ASN1 TYPE *

definitions , char * errorDescription)

Arguments

• const char * file name: specify the path and the name of file that contains
ASN.1 declarations.

• ASN1 TYPE * definitions: return the pointer to the structure created
from ”file name” ASN.1 declarations.

• char * errorDescription: return the error description or an empty string
if success.

Description

Creates the structures needed to manage the definitions included in *FILE NAME
file.

Returns

ASN1 SUCCESS: the file has a correct syntax and every identifier is known.

ASN1 ELEMENT NOT EMPTY: *POINTER not ASN1 TYPE EMPTY.

ASN1 FILE NOT FOUND: an error occured while opening FILE NAME.

ASN1 SYNTAX ERROR: the syntax is not correct.

ASN1 IDENTIFIER NOT FOUND: in the file there is an identifier that is not
defined. ASN1 NAME TOO LONG: in the file there is an identifier whith more
than MAX NAME SIZE characters.

3.0.2 asn1 parser2array

int asn1 parser2array (const char * inputFileName , const char * output-

11

12 CHAPTER 3. FUNCTION REFERENCE

FileName , const char * vectorName , char * errorDescription)

Arguments

• const char * inputFileName: specify the path and the name of file that
contains ASN.1 declarations.

• const char * outputFileName: specify the path and the name of file
that will contain the C vector definition.

• const char * vectorName: specify the name of the C vector.

• char * errorDescription: return the error description or an empty string
if success.

Description

Creates a file containing a C vector to use to manage the definitions included
in *INPUTFILENAME file. If *INPUTFILENAME is ”/aa/bb/xx.yy” and
OUTPUTFILENAME is NULL, the file created is ”/aa/bb/xx asn1 tab.c”. If
VECTORNAME is NULL the vector name will be ”xx asn1 tab”.

Returns

ASN1 SUCCESS: the file has a correct syntax and every identifier is known.

ASN1 FILE NOT FOUND: an error occured while opening FILE NAME.

ASN1 SYNTAX ERROR: the syntax is not correct.

ASN1 IDENTIFIER NOT FOUND: in the file there is an identifier that is not
defined. ASN1 NAME TOO LONG: in the file there is an identifier whith more
than MAX NAME SIZE characters.

3.0.3 asn1 der decoding

asn1 retCode asn1 der decoding (ASN1 TYPE * element , const unsigned
char * der , int len , char * errorDescription)

Arguments

• ASN1 TYPE * element: pointer to an ASN1 structure

• const unsigned char * der: vector that contains the DER encoding.

• int len: number of bytes of *der: der[0]..der[len-1]

• char * errorDescription:

Description

Fill the structure *ELEMENT with values of a DER encoding string. The
sructure must just be created with function ’create stucture’. If an error accurs
during de decoding procedure, the *ELEMENT is deleted and set equal to
ASN1 TYPE EMPTY.

13

Returns

ASN1 SUCCESS: DER encoding OK

ASN1 ELEMENT NOT FOUND: ELEMENT is ASN1 TYPE EMPTY.

ASN1 TAG ERROR,ASN1 DER ERROR: the der encoding doesn’t match the
structure NAME. *ELEMENT deleted.

3.0.4 asn1 der decoding element

asn1 retCode asn1 der decoding element (ASN1 TYPE * structure , const

char * elementName , const unsigned char * der , int len , char * errorDe-

scription)

Arguments

• ASN1 TYPE * structure: pointer to an ASN1 structure

• const char * elementName: name of the element to fill

• const unsigned char * der: vector that contains the DER encoding of the
whole structure.

• int len: number of bytes of *der: der[0]..der[len-1]

• char * errorDescription: null-terminated string contains details when
an arror accured.

Description

Fill the element named ELEMENTNAME with values of a DER encoding
string. The sructure must just be created with function ’create stucture’. The
DER vector must contain the encoding string of the whole STRUCTURE. If an
error accurs during the decoding procedure, the *STRUCTURE is deleted and
set equal to ASN1 TYPE EMPTY.

Returns

ASN1 SUCCESS: DER encoding OK

ASN1 ELEMENT NOT FOUND: ELEMENT is ASN1 TYPE EMPTY or el-
ementName == NULL.

ASN1 TAG ERROR,ASN1 DER ERROR: the der encoding doesn’t match the
structure STRUCTURE. *ELEMENT deleted.

3.0.5 asn1 der decoding startEnd

asn1 retCode asn1 der decoding startEnd (ASN1 TYPE element , const

unsigned char * der , int len , const char * name element , int * start , int
* end)

Arguments

14 CHAPTER 3. FUNCTION REFERENCE

• ASN1 TYPE element: pointer to an ASN1 element

• const unsigned char * der: vector that contains the DER encoding.

• int len: number of bytes of *der: der[0]..der[len-1]

• const char * name element: an element of NAME structure.

• int * start: the position of the first byte of NAME ELEMENT decoding
(der[*start])

• int * end: the position of the last byte of NAME ELEMENT decoding
(der[*end])

Description

Find the start and end point of an element in a DER encoding string. I
mean that if you have a der encoding and you have already used the function
”asn1 der decoding” to fill a structure, it may happen that you want to find the
piece of string concerning an element of the structure.

Example

the sequence ”tbsCertificate” inside an X509 certificate.

Returns

ASN1 SUCCESS: DER encoding OK

ASN1 ELEMENT NOT FOUND: ELEMENT is ASN1 TYPE EMPTY or NAME ELEMENT
is not a valid element.

ASN1 TAG ERROR,ASN1 DER ERROR: the der encoding doesn’t match the
structure ELEMENT.

3.0.6 asn1 expand any defined by

asn1 retCode asn1 expand any defined by (ASN1 TYPE definitions , ASN1 TYPE

* element)

Arguments

• ASN1 TYPE definitions: ASN1 definitions

• ASN1 TYPE * element: pointer to an ASN1 structure

Description

Expands every ”ANY DEFINED BY” element of a structure created from a
DER decoding process (asn1 der decoding function). The element ANY must
be defined by an OBJECT IDENTIFIER. The type used to expand the element
ANY is the first one following the definition of the actual value of the OBJECT
IDENTIFIER.

Description

15

Expands every ”ANY DEFINED BY” element of a structure created from a
DER decoding process (asn1 der decoding function). The element ANY must
be defined by an OBJECT IDENTIFIER. The type used to expand the element
ANY is the first one following the definition of the actual value of the OBJECT
IDENTIFIER.

Returns

ASN1 SUCCESS: substitution OK

ASN1 ERROR TYPE ANY: some ”ANY DEFINED BY” element couldn’t be
expanded due to a problem in OBJECT ID → TYPE association. other errors:
result of der decoding process.

3.0.7 asn1 expand octet string

asn1 retCode asn1 expand octet string (ASN1 TYPE definitions , ASN1 TYPE
* element , const char * octetName , const char * objectName)

Arguments

• ASN1 TYPE definitions: ASN1 definitions

• ASN1 TYPE * element: pointer to an ASN1 structure

• const char * octetName: name of the OCTECT STRING field to ex-
pand.

• const char * objectName: name of the OBJECT IDENTIFIER field to
use to define the type for expansion.

Description

Expands an ”OCTET STRING” element of a structure created from a DER
decoding process (asn1 der decoding function). The type used for expansion
is the first one following the definition of the actual value of the OBJECT
IDENTIFIER indicated by OBJECTNAME.

Description

Expands an ”OCTET STRING” element of a structure created from a DER
decoding process (asn1 der decoding function). The type used for expansion
is the first one following the definition of the actual value of the OBJECT
IDENTIFIER indicated by OBJECTNAME.

Returns

ASN1 SUCCESS: substitution OK

ASN1 ELEMENT NOT FOUND: OBJECTNAME or OCTETNAME are not
correct.

ASN1 VALUE NOT VALID: wasn’t possible to find the type to use for expan-
sion.

other errors: result of der decoding process.

16 CHAPTER 3. FUNCTION REFERENCE

3.0.8 libtasn1 perror

void libtasn1 perror (asn1 retCode error)

Arguments

• asn1 retCode error: is an error returned by a libasn1 function.

Description

This function is like perror(). The only difference is that it accepts an error
returned by a libasn1 function.

3.0.9 libtasn1 strerror

const char* libtasn1 strerror (asn1 retCode error)

Arguments

• asn1 retCode error: is an error returned by a libtasn1 function.

Description

This function is similar to strerror(). The only difference is that it accepts an
error (number) returned by a libasn1 function.

3.0.10 asn1 check version

const char * asn1 check version (const char * req version)

Arguments

• const char * req version: the version to check

Description

Check that the the version of the library is at minimum the requested one
and return the version string; return NULL if the condition is not satisfied. If
a NULL is passed to this function, no check is done, but the version string is
simply returned.

3.0.11 asn1 array2tree

asn1 retCode asn1 array2tree (const ASN1 ARRAY TYPE * array , ASN1 TYPE

* definitions , char * errorDescription)

Arguments

• const ASN1 ARRAY TYPE * array: specify the array that contains
ASN.1 declarations

17

• ASN1 TYPE * definitions: return the pointer to the structure created
by *ARRAY ASN.1 declarations

• char * errorDescription: return the error description.

Description

Creates the structures needed to manage the ASN1 definitions. ARRAY is a
vector created by ’asn1 parser asn1 file c’ function.

Returns

ASN1 SUCCESS: structure created correctly.

ASN1 ELEMENT NOT EMPTY: *DEFINITIONS not ASN1 TYPE EMPTY

ASN1 IDENTIFIER NOT FOUND: in the file there is an identifier that is not
defined (see ERRORDESCRIPTION for more information).

ASN1 ARRAY ERROR: the array pointed by ARRAY is wrong.

3.0.12 asn1 delete structure

asn1 retCode asn1 delete structure (ASN1 TYPE * structure)

Arguments

• ASN1 TYPE * structure: pointer to the structure that you want to
delete.

Description

Deletes the structure *ROOT. At the end *ROOT is setted to ASN1 TYPE EMPTY.

Returns

ASN1 SUCCESS: everything OK

ASN1 ELEMENT NOT FOUND: *root==ASN1 TYPE EMPTY.

3.0.13 asn1 create element

asn1 retCode asn1 create element (ASN1 TYPE definitions , const char *
source name , ASN1 TYPE * element)

Arguments

• ASN1 TYPE definitions: pointer to the structure returned by ”parser asn1”
function

• const char * source name: the name of the type of the new structure
(must be inside p structure).

• ASN1 TYPE * element: pointer to the structure created.

18 CHAPTER 3. FUNCTION REFERENCE

Description

Creates a structure called DEST NAME of type SOURCE NAME.

Returns

ASN1 SUCCESS: creation OK

ASN1 ELEMENT NOT FOUND: SOURCE NAME isn’t known

Example

using ”pkix.asn” result=asn1 create structure(cert def,”PKIX1.Certificate”,cert);

3.0.14 asn1 print structure

void asn1 print structure (FILE * out , ASN1 TYPE structure , const
char * name , int mode)

Arguments

• FILE * out: pointer to the output file (e.g. stdout).

• ASN1 TYPE structure: pointer to the structure that you want to visit.

• const char * name: an element of the structure

• int mode:

Description

Prints on the standard output the structure’s tree starting from the NAME
element inside the structure *POINTER.

3.0.15 asn1 number of elements

asn1 retCode asn1 number of elements (ASN1 TYPE element , const char

* name , int * num)

Arguments

• ASN1 TYPE element: pointer to the root of an ASN1 structure.

• const char * name: the name of a sub-structure of ROOT.

• int * num: pointer to an integer where the result will be stored

Description

Counts the number of elements of a sub-structure called NAME with names
equal to ”?1”,”?2”, ...

Returns

ASN1 SUCCESS: creation OK ASN1 ELEMENT NOT FOUND: NAME isn’t
known ASN1 GENERIC ERROR: pointer num equal to NULL

19

3.0.16 asn1 find structure from oid

const char* asn1 find structure from oid (ASN1 TYPE definitions , const

char * oidValue)

Arguments

• ASN1 TYPE definitions: ASN1 definitions

• const char * oidValue: value of the OID to search (e.g. ”1.2.3.4”).

Description

Search the structure that is defined just after an OID definition.

Description

Search the structure that is defined just after an OID definition.

Returns

NULL when OIDVALUE not found,

otherwise the pointer to a constant string that contains the element name
defined just after the OID.

3.0.17 asn1 write value

asn1 retCode asn1 write value (node asn * node root , const char * name

, const unsigned char * value , int len)

Arguments

• node asn * node root: pointer to a structure

• const char * name: the name of the element inside the structure that you
want to set.

• const unsigned char * value: vector used to specify the value to set. If
len is ¿0, VALUE must be a two’s complement form integer. if len=0
*VALUE must be a null terminated string with an integer value.

• int len: number of bytes of *value to use to set the value: value[0]..value[len-
1] or 0 if value is a null terminated string

Description

Set the value of one element inside a structure.

Returns

ASN1 SUCCESS: set value OK

ASN1 ELEMENT NOT FOUND: NAME is not a valid element.

ASN1 VALUE NOT VALID: VALUE has a wrong format.

Examples

description for each type

20 CHAPTER 3. FUNCTION REFERENCE

• INTEGER: VALUE must contain a two’s complement form integer. value[0]=0xFF
, len=1 → integer=-1 value[0]=0xFF value[1]=0xFF , len=2 → integer=-1
value[0]=0x01 , len=1 → integer= 1 value[0]=0x00 value[1]=0x01 , len=2
→ integer= 1 value=”123” , len=0 → integer= 123

• ENUMERATED: as INTEGER (but only with not negative numbers)

• BOOLEAN: VALUE must be the null terminated string ”TRUE” or ”FALSE”
and LEN != 0 value=”TRUE” , len=1→ boolean=TRUE value=”FALSE”
, len=1 → boolean=FALSE

• OBJECT IDENTIFIER: VALUE must be a null terminated string with
each number separated by a dot (e.g. ”1.2.3.543.1”). LEN != 0 value=”1
2 840 10040 4 3” , len=1 → OID=dsa-with-sha

• UTCTime: VALUE must be a null terminated string in one of these
formats: ”YYMMDDhhmmssZ” ”YYMMDDhhmmssZ” ”YYMMDDhh-
mmss+hh’mm’” ”YYMMDDhhmmss-hh’mm’” ”YYMMDDhhmm+hh’mm’”
”YYMMDDhhmm-hh’mm’”. LEN != 0 value=”9801011200Z” , len=1 →
time=Jannuary 1st, 1998 at 12h 00m Greenwich Mean Time

• GeneralizedTime: VALUE must be in one of this format: ”YYYYMMD-
Dhhmmss.sZ” ”YYYYMMDDhhmmss.sZ” ”YYYYMMDDhhmmss.s+hh’mm’”
”YYYYMMDDhhmmss.s-hh’mm’” ”YYYYMMDDhhmm+hh’mm’” ”YYYYMMDDhhmm-
hh’mm’” where ss.s indicates the seconds with any precision like ”10.1” or
”01.02”. LEN != 0 value=”2001010112001.12-0700” , len=1 → time=Jannuary
1st, 2001 at 12h 00m 01.12s Pacific Daylight Time

• OCTET STRING: VALUE contains the octet string and LEN is the num-
ber of octet. value=”\x01\x02\x03” , len=3 → three bytes octet string

• GeneralString: VALUE contains the generalstring and LEN is the number
of octet. value=”\x01\x02\x03” , len=3 → three bytes generalstring

• BIT STRING: VALUE contains the bit string organized by bytes and LEN
is the number of bits. value=”\xCF” , len=6 → bit string=”110011” (six
bits)

• CHOICE: if NAME indicates a choice type, VALUE must specify one of
the alternatives with a null terminated string. LEN != 0 Using ”pkix.asn”:
result=asn1 write value(cert,”certificate1.tbsCertificate.subject”,”rdnSequence”,1);

• ANY: VALUE indicates the der encoding of a structure. LEN != 0

• SEQUENCE OF: VALUE must be the null terminated string ”NEW”
and LEN != 0. With this instruction another element is appended in the
sequence. The name of this element will be ”?1” if it’s the first one, ”?2”
for the second and so on.

Using ”pkix.asn”:

result=asn1 write value(cert,”certificate1.tbsCertificate.subject.rdnSequence”,”NEW”,1);

21

• SET OF: the same as SEQUENCE OF. Using ”pkix.asn”:

result=asn1 write value(cert,”tbsCertificate.subject.rdnSequence.?LAST”,”NEW”,1);

If an element is OPTIONAL and you want to delete it, you must use the
value=NULL and len=0.

Using ”pkix.asn”:

result=asn1 write value(cert,”tbsCertificate.issuerUniqueID”,NULL,0);

3.0.18 asn1 read value

asn1 retCode asn1 read value (node asn * root , const char * name , un-

signed char * value , int * len)

Arguments

• node asn * root: pointer to a structure

• const char * name: the name of the element inside a structure that you
want to read.

• unsigned char * value: vector that will contain the element’s content.
VALUE must be a pointer to memory cells already allocated.

• int * len: number of bytes of *value: value[0]..value[len-1]. Initialy holds
the sizeof value.

Description

Returns the value of one element inside a structure.

Returns

ASN1 SUCCESS: set value OK

ASN1 ELEMENT NOT FOUND: NAME is not a valid element.

ASN1 VALUE NOT FOUND: there isn’t any value for the element selected.

ASN1 MEM ERROR: the value vector isn’t big enough to store the result. In
this case LEN will contain the number of bytes needed.

Examples

a description for each type

• INTEGER: VALUE will contain a two’s complement form integer. integer=-
1 → value[0]=0xFF , len=1 integer=1 → value[0]=0x01 , len=1

• ENUMERATED: as INTEGER (but only with not negative numbers)

• BOOLEAN: VALUE will be the null terminated string ”TRUE” or ”FALSE”
and LEN=5 or LEN=6

• OBJECT IDENTIFIER: VALUE will be a null terminated string with
each number separated by a dot (i.e. ”1.2.3.543.1”). LEN = strlen(VALUE)+1

22 CHAPTER 3. FUNCTION REFERENCE

• UTCTime: VALUE will be a null terminated string in one of these formats:
”YYMMDDhhmmss+hh’mm’” or ”YYMMDDhhmmss-hh’mm’” LEN=strlen(VALUE)+1

• GeneralizedTime: VALUE will be a null terminated string in the same
format used to set the value

• OCTET STRING: VALUE will contain the octet string and LEN will be
the number of octet.

• GeneralString: VALUE will contain the generalstring and LEN will be the
number of octet.

• BIT STRING: VALUE will contain the bit string organized by bytes and
LEN will be the number of bits.

• CHOICE: if NAME indicates a choice type, VALUE will specify the al-
ternative selected

• ANY: if NAME indicates an any type, VALUE will indicate the DER
encoding of the structure actually used.

If an element is OPTIONAL and the function ”read value” returns ASN1 ELEMENT NOT FOUND,
it means that this element wasn’t present in the der encoding that created the
structure. The first element of a SEQUENCE OF or SET OF is named ”?1”.
The second one ”?2” and so on.

3.0.19 asn1 read tag

asn1 retCode asn1 read tag (node asn * root , const char * name , int *
tagValue , int * classValue)

Arguments

• node asn * root: pointer to a structure

• const char * name: the name of the element inside a structure.

• int * tagValue: variable that will contain the TAG value.

• int * classValue: variable that will specify the TAG type.

Description

Returns the TAG and the CLASS of one element inside a structure.

CLASS can have one of these constants

ASN1 CLASS APPLICATION, ASN1 CLASS UNIVERSAL, ASN1 CLASS PRIVATE
or ASN1 CLASS CONTEXT SPECIFIC.

Returns

ASN1 SUCCESS: set value OK

ASN1 ELEMENT NOT FOUND: NAME is not a valid element.

23

3.0.20 asn1 der coding

asn1 retCode asn1 der coding (ASN1 TYPE element , const char * name

, unsigned char * der , int * len , char * ErrorDescription)

Arguments

• ASN1 TYPE element: pointer to an ASN1 element

• const char * name: the name of the structure you want to encode (it
must be inside *POINTER).

• unsigned char * der: vector that will contain the DER encoding. DER
must be a pointer to memory cells already allocated.

• int * len: number of bytes of *der: der[0]..der[len-1], Initialy holds the
sizeof of der vector.

• char * ErrorDescription:

Description

Creates the DER encoding for the NAME structure (inside *POINTER struc-
ture).

Returns

ASN1 SUCCESS: DER encoding OK

ASN1 ELEMENT NOT FOUND: NAME is not a valid element.

ASN1 VALUE NOT FOUND: there is an element without a value.

ASN1 MEM ERROR: der vector isn’t big enough. Also in this case LEN will
contain the length needed.

24 CHAPTER 3. FUNCTION REFERENCE

Chapter 4

GNU Free Documentation

License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written doc-
ument “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and pub-
lisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

25

26 CHAPTER 4. GNU FREE DOCUMENTATION LICENSE

4.1 Applicability and Definitions

This License applies to any manual or other work that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this
License. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (For
example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are des-
ignated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License.

A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, whose
contents can be viewed and edited directly and straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format
whose markup has been designed to thwart or discourage subsequent modifica-
tion by readers is not Transparent. A copy that is not “Transparent” is called
“Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LATEX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML designed for
human modification. Opaque formats include PostScript, PDF, proprietary for-
mats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally avail-
able, and the machine-generated HTML produced by some word processors for
output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title

4.2. VERBATIM COPYING 27

page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

4.2 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

4.3 Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and
the Document’s license notice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy
of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard net-
work protocols. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document

28 CHAPTER 4. GNU FREE DOCUMENTATION LICENSE

well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4.4 Modifications

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

• List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has less than five).

• State on the Title page the name of the publisher of the Modified Version,
as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

• Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled “History”, and its title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

4.4. MODIFICATIONS 29

• Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

• In any section entitled “Acknowledgements” or “Dedications”, preserve
the section’s title, and preserve in the section all the substance and tone
of each of the contributor acknowledgements and/or dedications given
therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

• Delete any section entitled “Endorsements”. Such a section may not be
included in the Modified Version.

• Do not retitle any existing section as “Endorsements” or to conflict in title
with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Docu-
ment, you may at your option designate some or all of these sections as invariant.
To do this, add their titles to the list of Invariant Sections in the Modified Ver-
sion’s license notice. These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties – for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

30 CHAPTER 4. GNU FREE DOCUMENTATION LICENSE

4.5 Combining Documents

You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the
various original documents, forming one section entitled “History”; likewise
combine any sections entitled “Acknowledgements”, and any sections entitled
“Dedications”. You must delete all sections entitled “Endorsements.”

4.6 Collections of Documents

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

4.7 Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a com-
pilation is called an “aggregate”, and this License does not apply to the other
self-contained works thus compiled with the Document, on account of their be-
ing thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one quarter of the entire aggregate,
the Document’s Cover Texts may be placed on covers that surround only the

4.8. TRANSLATION 31

Document within the aggregate. Otherwise they must appear on covers around
the whole aggregate.

4.8 Translation

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but
you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License provided that you also include the original English version of
this License. In case of a disagreement between the translation and the original
English version of this License, the original English version will prevail.

4.9 Termination

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

4.10 Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License ”or any
later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

32 CHAPTER 4. GNU FREE DOCUMENTATION LICENSE

ADDENDUM: How to use this License for your

documents

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after
the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version pub-
lished by the Free Software Foundation; with the Invariant Sec-
tions being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST. A copy of the li-
cense is included in the section entitled “GNU Free Documentation
License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead
of saying which ones are invariant. If you have no Front-Cover Texts, write
“no Front-Cover Texts” instead of “Front-Cover Texts being LIST”; likewise for
Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license,
such as the GNU General Public License, to permit their use in free software.

