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1 Preface

This reference manual documents Guile, GNU's Ubiquitous Intelligent Language for Exten-
sions. It describes how to use Guile in many useful and interesting ways.

This is edition 1.1 of the reference manual, and corresponds to Guile version 1.8.1.

1.1 Layout of this Manual

The manual is divided into �ve chapters.

Chapter 1: Introduction to Guile
This part provides an overview of what Guile is and how you can use it. A
whirlwind tour shows how Guile can be used interactively and as a script inter-
preter, how to link Guile into your own applications, and how to write modules
of interpreted and compiled code for use with Guile. Everything introduced
here is documented again and in full by the later parts of the manual. This
part also explains how to obtain and install new versions of Guile, and how to
report bugs e�ectively.

Chapter 2: Programming in Scheme
This part provides an overview over programming in Scheme with Guile. It
covers how to invoke the guile program from the command-line and how to
write scripts in Scheme. It also gives an introduction into the basic ideas of
Scheme itself and to the various extensions that Guile o�ers beyond standard
Scheme.

Chapter 3: Programming in C
This part provides an overview of how to use Guile in a C program. It discusses
the fundamental concepts that you need to understand to access the features of
Guile, such as dynamic types and the garbage collector. It explains in a tutorial
like manner how to de�ne new data types and functions for the use by Scheme
programs.

Chapter 4: Guile API Reference
This part of the manual documents the Guile API in functionality-based groups
with the Scheme and C interfaces presented side by side.

Chapter 5: Guile Modules
Describes some important modules, distributed as part of the Guile distribution,
that extend the functionality provided by the Guile Scheme core.

1.2 Conventions used in this Manual

We use some conventions in this manual.

� For some procedures, notably type predicates, we use i� to mean \if and only if". The
construct is usually something like: `Return val i� condition', where val is usually \#t"
or \non-#f". This typically means that val is returned if condition holds, and that `#f'
is returned otherwise. To clarify: val will only be returned when condition is true.

� In examples and procedure descriptions and all other places where the evaluation of
Scheme expression is shown, we use some notation for denoting the output and evalu-
ation results of expressions.
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The symbol `)' is used to tell which value is returned by an evaluation:

(+ 1 2)
) 3

Some procedures produce some output besides returning a value. This is denoted by
the symbol ` a '.

(begin (display 1) (newline) 'hooray)

a 1
) hooray

As you can see, this code prints `1' (denoted by ` a '), and returns hooray (denoted by
`)'). Do not confuse the two.

1.3 Contributors to this Manual

The Guile reference and tutorial manuals were written and edited largely by Mark Galassi
and Jim Blandy. In particular, Jim wrote the original tutorial on Guile's data representation
and the C API for accessing Guile objects.

Signi�cant portions were contributed by Gary Houston (contributions to POSIX system
calls and networking, expect, I/O internals and extensions, slib installation, error handling)
and Tim Pierce (sections on script interpreter triggers, alists, function tracing).

Tom Lord contributed a great deal of material with early Guile snapshots; although most
of this text has been rewritten, all of it was important, and some of the structure remains.

Aubrey Ja�er wrote the SCM Scheme implementation and manual upon which the Guile
program and manual are based. Some portions of the SCM and SLIB manuals have been
included here verbatim.

Since Guile 1.4, Neil Jerram has been maintaining and improving the reference manual.
Among other contributions, he wrote the Basic Ideas chapter, developed the tools for keeping
the manual in sync with snarfed libguile docstrings, and reorganized the structure so as to
accommodate docstrings for all Guile's primitives.

Martin Grabmueller has made substantial contributions throughout the reference man-
ual in preparation for the Guile 1.6 release, including �lling out a lot of the documentation
of Scheme data types, control mechanisms and procedures. In addition, he wrote the doc-
umentation for Guile's SRFI modules and modules associated with the Guile REPL.

1.4 The Guile License

Guile is Free Software. Guile is copyrighted, not public domain, and there are restrictions
on its distribution or redistribution, but these restrictions are designed to permit everything
a cooperating person would want to do.

� The Guile library (libguile) and supporting �les are published under the terms of the
GNU Lesser General Public License version 2.1. See the �le `COPYING.LIB'.

� The Guile readline module is published under the terms of the GNU General Public
License version 2. See the �le `COPYING'.

� The manual you're now reading is published under the terms of the GNU Free Docu-
mentation License (see Appendix B [GNU Free Documentation License], page 503).
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C code linking to the Guile library is subject to terms of that library. Basically such
code may be published on any terms, provided users can re-link against a new or modi�ed
version of Guile.

C code linking to the Guile readline module is subject to the terms of that module.
Basically such code must be published on Free terms.

Scheme level code written to be run by Guile (but not derived from Guile itself) is not
resticted in any way, and may be published on any terms. We encourage authors to publish
on Free terms.

You must be aware there is no warranty whatsoever for Guile. This is described in full
in the licenses.
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2 Introduction to Guile

2.1 What is Guile?

Guile is an interpreter for the Scheme programming language, packaged for use in a wide
variety of environments. Guile implements Scheme as described in the Revised5 Report on
the Algorithmic Language Scheme (usually known as R5RS), providing clean and general
data and control structures. Guile goes beyond the rather austere language presented in
R5RS, extending it with a module system, full access to POSIX system calls, networking
support, multiple threads, dynamic linking, a foreign function call interface, powerful string
processing, and many other features needed for programming in the real world.

Like a shell, Guile can run interactively, reading expressions from the user, evaluating
them, and displaying the results, or as a script interpreter, reading and executing Scheme
code from a �le. However, Guile is also packaged as an object library, allowing other
applications to easily incorporate a complete Scheme interpreter. An application can then
use Guile as an extension language, a clean and powerful con�guration language, or as
multi-purpose \glue", connecting primitives provided by the application. It is easy to call
Scheme code from C code and vice versa, giving the application designer full control of
how and when to invoke the interpreter. Applications can add new functions, data types,
control structures, and even syntax to Guile, creating a domain-speci�c language tailored
to the task at hand, but based on a robust language design.

Guile's module system allows one to break up a large program into manageable sections
with well-de�ned interfaces between them. Modules may contain a mixture of interpreted
and compiled code; Guile can use either static or dynamic linking to incorporate compiled
code. Modules also encourage developers to package up useful collections of routines for
general distribution; as of this writing, one can �nd Emacs interfaces, database access
routines, compilers, GUI toolkit interfaces, and HTTP client functions, among others.

In the future, we hope to expand Guile to support other languages like Tcl and Perl by
translating them to Scheme code. This means that users can program applications which
use Guile in the language of their choice, rather than having the tastes of the application's
author imposed on them.

2.2 Obtaining and Installing Guile

Guile can be obtained from the main GNU archive site ftp://ftp.gnu.org or any of its
mirrors. The �le will be named guile-version.tar.gz. The current version is 1.8.1, so the �le
you should grab is:

ftp://ftp.gnu.org/pub/gnu/guile-1.8.1.tar.gz

To unbundle Guile use the instruction

zcat guile-1.8.1.tar.gz | tar xvf -

which will create a directory called `guile-1.8.1' with all the sources. You can look at
the �le `INSTALL' for detailed instructions on how to build and install Guile, but you should
be able to just do

cd guile-1.8.1

./configure

ftp://ftp.gnu.org
ftp://ftp.gnu.org/pub/gnu/guile-1.8.1.tar.gz


8 Guile Reference Manual

make

make install

This will install the Guile executable `guile', the Guile library `-lguile' and various
associated header �les and support libraries. It will also install the Guile tutorial and
reference manual.

Since this manual frequently refers to the Scheme \standard", also known as R5RS,
or the \Revised$^5$ Report on the Algorithmic Language Scheme", we have included the
report in the Guile distribution; See section \Introduction" in Revised(5) Report on the
Algorithmic Language Scheme. This will also be installed in your info directory.

2.3 A Whirlwind Tour

This chapter presents a quick tour of all the ways that Guile can be used. There are
additional examples in the `examples/' directory in the Guile source distribution.

The following examples assume that Guile has been installed in /usr/local/.

2.3.1 Running Guile Interactively

In its simplest form, Guile acts as an interactive interpreter for the Scheme programming
language, reading and evaluating Scheme expressions the user enters from the terminal.
Here is a sample interaction between Guile and a user; the user's input appears after the $
and guile> prompts:

$ guile

guile> (+ 1 2 3) ; add some numbers

6

guile> (define (factorial n) ; define a function

(if (zero? n) 1 (* n (factorial (- n 1)))))

guile> (factorial 20)

2432902008176640000

guile> (getpwnam "jimb") ; find my entry in /etc/passwd

#("jimb" ".0krIpK2VqNbU" 4008 10 "Jim Blandy" "/u/jimb"

"/usr/local/bin/bash")

guile> C-d

$

2.3.2 Running Guile Scripts

Like AWK, Perl, or any shell, Guile can interpret script �les. A Guile script is simply a
�le of Scheme code with some extra information at the beginning which tells the operating
system how to invoke Guile, and then tells Guile how to handle the Scheme code.

Here is a trivial Guile script, for more details See Section 3.3 [Guile Scripting], page 33.

#!/usr/local/bin/guile -s

!#

(display "Hello, world!")

(newline)
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2.3.3 Linking Guile into Programs

The Guile interpreter is available as an object library, to be linked into applications using
Scheme as a con�guration or extension language.

Here is `simple-guile.c', source code for a program that will produce a complete Guile
interpreter. In addition to all usual functions provided by Guile, it will also o�er the function
my-hostname.

#include <stdlib.h>

#include <libguile.h>

static SCM

my_hostname (void)

{

char *s = getenv ("HOSTNAME");

if (s == NULL)

return SCM_BOOL_F;

else

return scm_from_locale_string (s);

}

static void

inner_main (void *data, int argc, char **argv)

{

scm_c_define_gsubr ("my-hostname", 0, 0, 0, my_hostname);

scm_shell (argc, argv);

}

int

main (int argc, char **argv)

{

scm_boot_guile (argc, argv, inner_main, 0);

return 0; /* never reached */

}

When Guile is correctly installed on your system, the above program can be compiled
and linked like this:

$ gcc -o simple-guile simple-guile.c -lguile

When it is run, it behaves just like the guile program except that you can also call the
new my-hostname function.

$ ./simple-guile

guile> (+ 1 2 3)

6

guile> (my-hostname)

"burns"
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2.3.4 Writing Guile Extensions

You can link Guile into your program and make Scheme available to the users of your
program. You can also link your library into Guile and make its functionality available to
all users of Guile.

A library that is linked into Guile is called an extensions, but it really just is an ordinary
object library.

The following example shows how to write a simple extension for Guile that makes the
j0 function available to Scheme code.

#include <math.h>
#include <libguile.h>

SCM
j0_wrapper (SCM x)
{
return scm_make_real (j0 (scm_num2dbl (x, "j0")));

}

void
init_bessel ()
{
scm_c_define_gsubr ("j0", 1, 0, 0, j0_wrapper);

}

This C source �le needs to be compiled into a shared library. Here is how to do it on
GNU/Linux:

gcc -shared -o libguile-bessel.so -fPIC bessel.c

For creating shared libraries portably, we recommend the use of GNU Libtool (see section
\Introduction" in GNU Libtool).

A shared library can be loaded into a running Guile process with the function load-

extension. The j0 is then immediately available:

$ guile
guile> (load-extension "./libguile-bessel" "init_bessel")
guile> (j0 2)
0.223890779141236

2.3.5 Using the Guile Module System

Guile has support for dividing a program into modules. By using modules, you can group
related code together and manage the composition of complete programs from largely in-
dependent parts.

(Although the module system implementation is in ux, feel free to use it anyway. Guile
will provide reasonable backwards compatibility.)

Details on the module system beyond this introductory material can be found in See
Section 5.16 [Modules], page 303.

2.3.5.1 Using Modules

Guile comes with a lot of useful modules, for example for string processing or command
line parsing. Additionally, there exist many Guile modules written by other Guile hackers,
but which have to be installed manually.
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Here is a sample interactive session that shows how to use the (ice-9 popen) module
which provides the means for communicating with other processes over pipes together with
the (ice-9 rdelim) module that provides the function read-line.

$ guile
guile> (use-modules (ice-9 popen))
guile> (use-modules (ice-9 rdelim))
guile> (define p (open-input-pipe "ls -l"))
guile> (read-line p)
"total 30"
guile> (read-line p)
"drwxr-sr-x 2 mgrabmue mgrabmue 1024 Mar 29 19:57 CVS"

2.3.5.2 Writing new Modules

You can create new modules using the syntactic form define-module. All de�nitions
following this form until the next define-module are placed into the new module.

One module is usually placed into one �le, and that �le is installed in a location where
Guile can automatically �nd it. The following session shows a simple example.

$ cat /usr/local/share/guile/foo/bar.scm

(define-module (foo bar))
(export frob)

(define (frob x) (* 2 x))

$ guile
guile> (use-modules (foo bar))
guile> (frob 12)
24

2.3.5.3 Putting Extensions into Modules

In addition to Scheme code you can also put things that are de�ned in C into a module.

You do this by writing a small Scheme �le that de�nes the module and call load-
extension directly in the body of the module.

$ cat /usr/local/share/guile/math/bessel.scm

(define-module (math bessel))
(export j0)

(load-extension "libguile-bessel" "init_bessel")

$ file /usr/local/lib/libguile-bessel.so
... ELF 32-bit LSB shared object ...
$ guile
guile> (use-modules (math bessel))
guile> (j0 2)
0.223890779141236

There is also a way to manipulate the module system from C but only Scheme �les can
be autoloaded. Thus, we recommend that you de�ne your modules in Scheme.

2.4 Discouraged and Deprecated

From time to time functions and other features of Guile become obsolete. Guile has some
mechanisms in place that can help you cope with this.
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Guile has two levels of obsoleteness: things can be deprecated, meaning that their use
is considered harmful and should be avoided, even in old code; or they can be merely
discouraged, meaning that they are �ne in and of themselves, but that there are better
alternatives that should be used in new code.

When you use a feature that is deprecated, you will likely get a warning message at
run-time. Also, deprecated features are not ready for production use: they might be very
slow. When something is merely discouraged, it performs normally and you wont get any
messages at run-time.

The primary source for information about just what things are discouraged or deprecated
in a given release is the �le `NEWS'. That �le also documents what you should use instead
of the obsoleted things.

The �le `README' contains instructions on how to control the inclusion or removal of the
deprecated and/or discouraged features from the public API of Guile, and how to control
the warning messages for deprecated features.

The idea behind those mechanisms is that normally all deprecated and discouraged
features are available, but that you can omit them on purpose to check whether your code
still relies on them.

2.5 Reporting Bugs

Any problems with the installation should be reported to bug-guile@gnu.org.

Whenever you have found a bug in Guile you are encouraged to report it to the Guile
developers, so they can �x it. They may also be able to suggest workarounds when it is not
possible for you to apply the bug-�x or install a new version of Guile yourself.

Before sending in bug reports, please check with the following list that you really have
found a bug.

� Whenever documentation and actual behavior di�er, you have certainly found a bug,
either in the documentation or in the program.

� When Guile crashes, it is a bug.

� When Guile hangs or takes forever to complete a task, it is a bug.

� When calculations produce wrong results, it is a bug.

� When Guile signals an error for valid Scheme programs, it is a bug.

� When Guile does not signal an error for invalid Scheme programs, it may be a bug,
unless this is explicitly documented.

� When some part of the documentation is not clear and does not make sense to you
even after re-reading the section, it is a bug.

When you write a bug report, please make sure to include as much of the information
described below in the report. If you can't �gure out some of the items, it is not a problem,
but the more information we get, the more likely we can diagnose and �x the bug.

� The version number of Guile. Without this, we won't know whether there is any point
in looking for the bug in the current version of Guile.

You can get the version number by invoking the command

mailto:bug-guile@gnu.org
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$ guile --version

Guile 1.4.1

Copyright (c) 1995, 1996, 1997, 2000, 2006 Free Software Foundation

Guile may be distributed under the terms of the GNU General Public License;

certain other uses are permitted as well. For details, see the file

`COPYING', which is included in the Guile distribution.

There is no warranty, to the extent permitted by law.

� The type of machine you are using, and the operating system name and version number.
On GNU systems, you can get it with `uname'.

$ uname -a

Linux tortoise 2.2.17 #1 Thu Dec 21 17:29:05 CET 2000 i586 unknown

� The operands given to the `configure' command when Guile was installed. It's often
useful to augment this with the output of the command guile-config info.

� A complete list of any modi�cations you have made to the Guile source. (We may
not have time to investigate the bug unless it happens in an unmodi�ed Guile. But if
you've made modi�cations and you don't tell us, you are sending us on a wild goose
chase.)

Be precise about these changes. A description in English is not enough|send a context
di� for them.

Adding �les of your own, or porting to another machine, is a modi�cation of the source.

� Details of any other deviations from the standard procedure for installing Guile.

� The complete text of any source �les needed to reproduce the bug.

If you can tell us a way to cause the problem without loading any source �les, please
do so. This makes it much easier to debug. If you do need �les, make sure you arrange
for us to see their exact contents.

� The precise Guile invocation command line we need to type to reproduce the bug.

� A description of what behavior you observe that you believe is incorrect. For example,
"The Guile process gets a fatal signal," or, "The resulting output is as follows, which
I think is wrong."

Of course, if the bug is that Guile gets a fatal signal, then one can't miss it. But if the
bug is incorrect results, the maintainer might fail to notice what is wrong. Why leave
it to chance?

If the manifestation of the bug is a Guile error message, it is important to report the
precise text of the error message, and a backtrace showing how the Scheme program
arrived at the error.

This can be done using the procedure backtrace in the REPL.

� Check whether any programs you have loaded into Guile, including your `.guile' �le,
set any variables that may a�ect the functioning of Guile. Also, see whether the
problem happens in a freshly started Guile without loading your `.guile' �le (start
Guile with the -q switch to prevent loading the init �le). If the problem does not occur
then, you must report the precise contents of any programs that you must load into
Guile in order to cause the problem to occur.

� If the problem does depend on an init �le or other Scheme programs that are not part
of the standard Guile distribution, then you should make sure it is not a bug in those



14 Guile Reference Manual

programs by complaining to their maintainers �rst. After they verify that they are
using Guile in a way that is supposed to work, they should report the bug.

� If you wish to mention something in the Guile source, show the line of code with a few
lines of context. Don't just give a line number.

The line numbers in the development sources might not match those in your sources.
It would take extra work for the maintainers to determine what code is in your version
at a given line number, and we could not be certain.

� Additional information from a C debugger such as GDB might enable someone to �nd
a problem on a machine which he does not have available. If you don't know how to
use GDB, please read the GDB manual|it is not very long, and using GDB is easy.
You can �nd the GDB distribution, including the GDB manual in online form, in most
of the same places you can �nd the Guile distribution. To run Guile under GDB, you
should switch to the `libguile' subdirectory in which Guile was compiled, then do
gdb guile or gdb .libs/guile (if using GNU Libtool).

However, you need to think when you collect the additional information if you want it
to show what causes the bug.

For example, many people send just a backtrace, but that is not very useful by itself.
A simple backtrace with arguments often conveys little about what is happening inside
Guile, because most of the arguments listed in the backtrace are pointers to Scheme
objects. The numeric values of these pointers have no signi�cance whatever; all that
matters is the contents of the objects they point to (and most of the contents are
themselves pointers).
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3 Programming in Scheme

Guile's core language is Scheme, and an awful lot can be achieved simply by using Guile to
write and run Scheme programs. In this part of the manual, we explain how to use Guile
in this mode, and describe the tools that Guile provides to help you with script writing,
debugging and packaging your programs for distribution.

For readers who are not yet familiar with the Scheme language, this part includes a
chapter that presents the basic concepts of the language, and gives references to freely
available Scheme tutorial material on the web.

For detailed reference information on the variables, functions etc. that make up Guile's
application programming interface (API), See Chapter 5 [API Reference], page 93.

3.1 Basic Ideas in Scheme

In this chapter, we introduce the basic concepts that underpin the elegance and power of
the Scheme language.

Readers who already possess a background knowledge of Scheme may happily skip this
chapter. For the reader who is new to the language, however, the following discussions
on data, procedures, expressions and closure are designed to provide a minimum level of
Scheme understanding that is more or less assumed by the reference chapters that follow.

The style of this introductory material aims about halfway between the terse precision
of R5RS and the discursive randomness of a Scheme tutorial.

3.1.1 Data Types, Values and Variables

This section discusses the representation of data types and values, what it means for Scheme
to be a latently typed language, and the role of variables. We conclude by introducing the
Scheme syntaxes for de�ning a new variable, and for changing the value of an existing
variable.

3.1.1.1 Latent Typing

The term latent typing is used to describe a computer language, such as Scheme, for which
you cannot, in general, simply look at a program's source code and determine what type
of data will be associated with a particular variable, or with the result of a particular
expression.

Sometimes, of course, you can tell from the code what the type of an expression will
be. If you have a line in your program that sets the variable x to the numeric value 1,
you can be certain that, immediately after that line has executed (and in the absence of
multiple threads), x has the numeric value 1. Or if you write a procedure that is designed
to concatenate two strings, it is likely that the rest of your application will always invoke
this procedure with two string parameters, and quite probable that the procedure would go
wrong in some way if it was ever invoked with parameters that were not both strings.

Nevertheless, the point is that there is nothing in Scheme which requires the procedure
parameters always to be strings, or x always to hold a numeric value, and there is no way
of declaring in your program that such constraints should always be obeyed. In the same
vein, there is no way to declare the expected type of a procedure's return value.
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Instead, the types of variables and expressions are only known { in general { at run time.
If you need to check at some point that a value has the expected type, Scheme provides run
time procedures that you can invoke to do so. But equally, it can be perfectly valid for two
separate invocations of the same procedure to specify arguments with di�erent types, and
to return values with di�erent types.

The next subsection explains what this means in practice, for the ways that Scheme
programs use data types, values and variables.

3.1.1.2 Values and Variables

Scheme provides many data types that you can use to represent your data. Primitive types
include characters, strings, numbers and procedures. Compound types, which allow a group
of primitive and compound values to be stored together, include lists, pairs, vectors and
multi-dimensional arrays. In addition, Guile allows applications to de�ne their own data
types, with the same status as the built-in standard Scheme types.

As a Scheme program runs, values of all types pop in and out of existence. Sometimes
values are stored in variables, but more commonly they pass seamlessly from being the
result of one computation to being one of the parameters for the next.

Consider an example. A string value is created because the interpreter reads in a literal
string from your program's source code. Then a numeric value is created as the result
of calculating the length of the string. A second numeric value is created by doubling the
calculated length. Finally the program creates a list with two elements { the doubled length
and the original string itself { and stores this list in a program variable.

All of the values involved here { in fact, all values in Scheme { carry their type with
them. In other words, every value \knows," at runtime, what kind of value it is. A number,
a string, a list, whatever.

A variable, on the other hand, has no �xed type. A variable { x, say { is simply the
name of a location { a box { in which you can store any kind of Scheme value. So the same
variable in a program may hold a number at one moment, a list of procedures the next,
and later a pair of strings. The \type" of a variable { insofar as the idea is meaningful at
all { is simply the type of whatever value the variable happens to be storing at a particular
moment.

3.1.1.3 De�ning and Setting Variables

To de�ne a new variable, you use Scheme's define syntax like this:

(define variable-name value)

This makes a new variable called variable-name and stores value in it as the variable's
initial value. For example:

;; Make a variable `x' with initial numeric value 1.

(define x 1)

;; Make a variable `organization' with an initial string value.

(define organization "Free Software Foundation")

(In Scheme, a semicolon marks the beginning of a comment that continues until the end
of the line. So the lines beginning ;; are comments.)
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Changing the value of an already existing variable is very similar, except that define is
replaced by the Scheme syntax set!, like this:

(set! variable-name new-value)

Remember that variables do not have �xed types, so new-value may have a completely
di�erent type from whatever was previously stored in the location named by variable-name.
Both of the following examples are therefore correct.

;; Change the value of `x' to 5.

(set! x 5)

;; Change the value of `organization' to the FSF's street number.

(set! organization 545)

In these examples, value and new-value are literal numeric or string values. In general,
however, value and new-value can be any Scheme expression. Even though we have not yet
covered the forms that Scheme expressions can take (see Section 3.1.3 [About Expressions],
page 18), you can probably guess what the following set! example does. . .

(set! x (+ x 1))

(Note: this is not a complete description of define and set!, because we need to
introduce some other aspects of Scheme before the missing pieces can be �lled in. If,
however, you are already familiar with the structure of Scheme, you may like to read about
those missing pieces immediately by jumping ahead to the following references.

� Section 3.1.2.4 [Lambda Alternatives], page 18, to read about an alternative form of
the define syntax that can be used when de�ning new procedures.

� Section 5.8.5 [Procedures with Setters], page 230, to read about an alternative form of
the set! syntax that helps with changing a single value in the depths of a compound
data structure.)

� See Section 5.10.3 [Internal De�nitions], page 249, to read about using define other
than at top level in a Scheme program, including a discussion of when it works to use
define rather than set! to change the value of an existing variable.

3.1.2 The Representation and Use of Procedures

This section introduces the basics of using and creating Scheme procedures. It discusses the
representation of procedures as just another kind of Scheme value, and shows how procedure
invocation expressions are constructed. We then explain how lambda is used to create new
procedures, and conclude by presenting the various shorthand forms of define that can be
used instead of writing an explicit lambda expression.

3.1.2.1 Procedures as Values

One of the great simpli�cations of Scheme is that a procedure is just another type of value,
and that procedure values can be passed around and stored in variables in exactly the same
way as, for example, strings and lists. When we talk about a built-in standard Scheme
procedure such as open-input-file, what we actually mean is that there is a pre-de�ned
top level variable called open-input-file, whose value is a procedure that implements
what R5RS says that open-input-file should do.

Note that this is quite di�erent from many dialects of Lisp | including Emacs Lisp |
in which a program can use the same name with two quite separate meanings: one meaning



18 Guile Reference Manual

identi�es a Lisp function, while the other meaning identi�es a Lisp variable, whose value
need have nothing to do with the function that is associated with the �rst meaning. In
these dialects, functions and variables are said to live in di�erent namespaces.

In Scheme, on the other hand, all names belong to a single uni�ed namespace, and the
variables that these names identify can hold any kind of Scheme value, including procedure
values.

One consequence of the \procedures as values" idea is that, if you don't happen to like
the standard name for a Scheme procedure, you can change it.

For example, call-with-current-continuation is a very important standard Scheme
procedure, but it also has a very long name! So, many programmers use the following
de�nition to assign the same procedure value to the more convenient name call/cc.

(define call/cc call-with-current-continuation)

Let's understand exactly how this works. The de�nition creates a new variable call/cc,
and then sets its value to the value of the variable call-with-current-continuation; the
latter value is a procedure that implements the behaviour that R5RS speci�es under the
name \call-with-current-continuation". So call/cc ends up holding this value as well.

Now that call/cc holds the required procedure value, you could choose to use call-

with-current-continuation for a completely di�erent purpose, or just change its value
so that you will get an error if you accidentally use call-with-current-continuation as
a procedure in your program rather than call/cc. For example:

(set! call-with-current-continuation "Not a procedure any more!")

Or you could just leave call-with-current-continuation as it was. It's perfectly �ne
for more than one variable to hold the same procedure value.

3.1.2.2 Simple Procedure Invocation

A procedure invocation in Scheme is written like this:

(procedure [arg1 [arg2 ...]])

In this expression, procedure can be any Scheme expression whose value is a procedure.
Most commonly, however, procedure is simply the name of a variable whose value is a
procedure.

For example, string-append is a standard Scheme procedure whose behaviour is to
concatenate together all the arguments, which are expected to be strings, that it is given.
So the expression

(string-append "/home" "/" "andrew")

is a procedure invocation whose result is the string value "/home/andrew".

Similarly, string-length is a standard Scheme procedure that returns the length of a
single string argument, so

(string-length "abc")

is a procedure invocation whose result is the numeric value 3.

Each of the parameters in a procedure invocation can itself be any Scheme expression.
Since a procedure invocation is itself a type of expression, we can put these two examples
together to get
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(string-length (string-append "/home" "/" "andrew"))

| a procedure invocation whose result is the numeric value 12.

(You may be wondering what happens if the two examples are combined the other way
round. If we do this, we can make a procedure invocation expression that is syntactically

correct:

(string-append "/home" (string-length "abc"))

but when this expression is executed, it will cause an error, because the result of (string-
length "abc") is a numeric value, and string-append is not designed to accept a numeric
value as one of its arguments.)

3.1.2.3 Creating and Using a New Procedure

Scheme has lots of standard procedures, and Guile provides all of these via prede�ned top
level variables. All of these standard procedures are documented in the later chapters of
this reference manual.

Before very long, though, you will want to create new procedures that encapsulate
aspects of your own applications' functionality. To do this, you can use the famous lambda
syntax.

For example, the value of the following Scheme expression

(lambda (name address) expression ...)

is a newly created procedure that takes two arguments: name and address. The behaviour
of the new procedure is determined by the sequence of expressions in the body of the
procedure de�nition. (Typically, these expressions would use the arguments in some way,
or else there wouldn't be any point in giving them to the procedure.) When invoked, the
new procedure returns a value that is the value of the last expression in the procedure body.

To make things more concrete, let's suppose that the two arguments are both strings,
and that the purpose of this procedure is to form a combined string that includes these
arguments. Then the full lambda expression might look like this:

(lambda (name address)

(string-append "Name=" name ":Address=" address))

We noted in the previous subsection that the procedure part of a procedure invocation
expression can be any Scheme expression whose value is a procedure. But that's exactly
what a lambda expression is! So we can use a lambda expression directly in a procedure
invocation, like this:

((lambda (name address)

(string-append "Name=" name ":Address=" address))

"FSF"

"Cambridge")

This is a valid procedure invocation expression, and its result is the string
"Name=FSF:Address=Cambridge".

It is more common, though, to store the procedure value in a variable |

(define make-combined-string

(lambda (name address)

(string-append "Name=" name ":Address=" address)))

| and then to use the variable name in the procedure invocation:
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(make-combined-string "FSF" "Cambridge")

Which has exactly the same result.

It's important to note that procedures created using lambda have exactly the same status
as the standard built in Scheme procedures, and can be invoked, passed around, and stored
in variables in exactly the same ways.

3.1.2.4 Lambda Alternatives

Since it is so common in Scheme programs to want to create a procedure and then store it
in a variable, there is an alternative form of the define syntax that allows you to do just
that.

A define expression of the form

(define (name [arg1 [arg2 ...]])

expression ...)

is exactly equivalent to the longer form

(define name

(lambda ([arg1 [arg2 ...]])

expression ...))

So, for example, the de�nition of make-combined-string in the previous subsection
could equally be written:

(define (make-combined-string name address)

(string-append "Name=" name ":Address=" address))

This kind of procedure de�nition creates a procedure that requires exactly the expected
number of arguments. There are two further forms of the lambda expression, which create
a procedure that can accept a variable number of arguments:

(lambda (arg1 ... . args) expression ...)

(lambda args expression ...)

The corresponding forms of the alternative define syntax are:

(define (name arg1 ... . args) expression ...)

(define (name . args) expression ...)

For details on how these forms work, see See Section 5.8.1 [Lambda], page 225.

(It could be argued that the alternative define forms are rather confusing, especially for
newcomers to the Scheme language, as they hide both the role of lambda and the fact that
procedures are values that are stored in variables in the some way as any other kind of value.
On the other hand, they are very convenient, and they are also a good example of another
of Scheme's powerful features: the ability to specify arbitrary syntactic transformations at
run time, which can be applied to subsequently read input.)

3.1.3 Expressions and Evaluation

So far, we have met expressions that do things, such as the define expressions that create
and initialize new variables, and we have also talked about expressions that have values, for
example the value of the procedure invocation expression:
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(string-append "/home" "/" "andrew")

but we haven't yet been precise about what causes an expression like this procedure invo-
cation to be reduced to its \value", or how the processing of such expressions relates to the
execution of a Scheme program as a whole.

This section clari�es what we mean by an expression's value, by introducing the idea of
evaluation. It discusses the side e�ects that evaluation can have, explains how each of the
various types of Scheme expression is evaluated, and describes the behaviour and use of the
Guile REPL as a mechanism for exploring evaluation. The section concludes with a very
brief summary of Scheme's common syntactic expressions.

3.1.3.1 Evaluating Expressions and Executing Programs

In Scheme, the process of executing an expression is known as evaluation. Evaluation has
two kinds of result:

� the value of the evaluated expression

� the side e�ects of the evaluation, which consist of any e�ects of evaluating the expression
that are not represented by the value.

Of the expressions that we have met so far, define and set! expressions have side
e�ects | the creation or modi�cation of a variable | but no value; lambda expressions
have values | the newly constructed procedures | but no side e�ects; and procedure
invocation expressions, in general, have either values, or side e�ects, or both.

It is tempting to try to de�ne more intuitively what we mean by \value" and \side
e�ects", and what the di�erence between them is. In general, though, this is extremely
di�cult. It is also unnecessary; instead, we can quite happily de�ne the behaviour of a
Scheme program by specifying how Scheme executes a program as a whole, and then by
describing the value and side e�ects of evaluation for each type of expression individually.

So, some1 de�nitions. . .

� A Scheme program consists of a sequence of expressions.

� A Scheme interpreter executes the program by evaluating these expressions in order,
one by one.

� An expression can be

� a piece of literal data, such as a number 2.3 or a string "Hello world!"

� a variable name

� a procedure invocation expression

� one of Scheme's special syntactic expressions.

The following subsections describe how each of these types of expression is evaluated.

Evaluating Literal Data

When a literal data expression is evaluated, the value of the expression is simply the value
that the expression describes. The evaluation of a literal data expression has no side e�ects.

So, for example,

1 These de�nitions are approximate. For the whole and detailed truth, see See hunde�nedi [Formal syntax
and semantics], page hunde�nedi.
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� the value of the expression "abc" is the string value "abc"

� the value of the expression 3+4i is the complex number 3 + 4i

� the value of the expression #(1 2 3) is a three-element vector containing the numeric
values 1, 2 and 3.

For any data type which can be expressed literally like this, the syntax of the literal
data expression for that data type | in other words, what you need to write in your code
to indicate a literal value of that type | is known as the data type's read syntax. This
manual speci�es the read syntax for each such data type in the section that describes that
data type.

Some data types do not have a read syntax. Procedures, for example, cannot be expressed
as literal data; they must be created using a lambda expression (see Section 3.1.2.3 [Creating
a Procedure], page 17) or implicitly using the shorthand form of define (see Section 3.1.2.4
[Lambda Alternatives], page 18).

Evaluating a Variable Reference

When an expression that consists simply of a variable name is evaluated, the value of
the expression is the value of the named variable. The evaluation of a variable reference
expression has no side e�ects.

So, after

(define key "Paul Evans")

the value of the expression key is the string value "Paul Evans". If key is then modi�ed by

(set! key 3.74)

the value of the expression key is the numeric value 3.74.

If there is no variable with the speci�ed name, evaluation of the variable reference ex-
pression signals an error.

Evaluating a Procedure Invocation Expression

This is where evaluation starts getting interesting! As already noted, a procedure invocation
expression has the form

(procedure [arg1 [arg2 ...]])

where procedure must be an expression whose value, when evaluated, is a procedure.

The evaluation of a procedure invocation expression like this proceeds by

� evaluating individually the expressions procedure, arg1, arg2, and so on

� calling the procedure that is the value of the procedure expression with the list of values
obtained from the evaluations of arg1, arg2 etc. as its parameters.

For a procedure de�ned in Scheme, \calling the procedure with the list of values as
its parameters" means binding the values to the procedure's formal parameters and then
evaluating the sequence of expressions that make up the body of the procedure de�nition.
The value of the procedure invocation expression is the value of the last evaluated expression
in the procedure body. The side e�ects of calling the procedure are the combination of the
side e�ects of the sequence of evaluations of expressions in the procedure body.

For a built-in procedure, the value and side-e�ects of calling the procedure are best
described by that procedure's documentation.
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Note that the complete side e�ects of evaluating a procedure invocation expression con-
sist not only of the side e�ects of the procedure call, but also of any side e�ects of the
preceding evaluation of the expressions procedure, arg1, arg2, and so on.

To illustrate this, let's look again at the procedure invocation expression:

(string-length (string-append "/home" "/" "andrew"))

In the outermost expression, procedure is string-length and arg1 is (string-append
"/home" "/" "andrew").

� Evaluation of string-length, which is a variable, gives a procedure value that imple-
ments the expected behaviour for \string-length".

� Evaluation of (string-append "/home" "/" "andrew"), which is another procedure
invocation expression, means evaluating each of

� string-append, which gives a procedure value that implements the expected be-
haviour for \string-append"

� "/home", which gives the string value "/home"

� "/", which gives the string value "/"

� "andrew", which gives the string value "andrew"

and then invoking the procedure value with this list of string values as its arguments.
The resulting value is a single string value that is the concatenation of all the arguments,
namely "/home/andrew".

In the evaluation of the outermost expression, the interpreter can now invoke the pro-
cedure value obtained from procedure with the value obtained from arg1 as its arguments.
The resulting value is a numeric value that is the length of the argument string, which is
12.

Evaluating Special Syntactic Expressions

When a procedure invocation expression is evaluated, the procedure and all the argument
expressions must be evaluated before the procedure can be invoked. Special syntactic ex-
pressions are special because they are able to manipulate their arguments in an unevaluated
form, and can choose whether to evaluate any or all of the argument expressions.

Why is this needed? Consider a program fragment that asks the user whether or not to
delete a �le, and then deletes the �le if the user answers yes.

(if (string=? (read-answer "Should I delete this file?")

"yes")

(delete-file file))

If the outermost (if ...) expression here was a procedure invocation expression, the
expression (delete-file file), whose side e�ect is to actually delete a �le, would already
have been evaluated before the if procedure even got invoked! Clearly this is no use | the
whole point of an if expression is that the consequent expression is only evaluated if the
condition of the if expression is \true".

Therefore if must be special syntax, not a procedure. Other special syntaxes that we
have already met are define, set! and lambda. define and set! are syntax because they
need to know the variable name that is given as the �rst argument in a define or set!
expression, not that variable's value. lambda is syntax because it does not immediately
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evaluate the expressions that de�ne the procedure body; instead it creates a procedure
object that incorporates these expressions so that they can be evaluated in the future,
when that procedure is invoked.

The rules for evaluating each special syntactic expression are speci�ed individually for
each special syntax. For a summary of standard special syntax, see See Section 3.1.3.4
[Syntax Summary], page 23.

3.1.3.2 Tail calls

Scheme is \properly tail recursive", meaning that tail calls or recursions from certain con-
texts do not consume stack space or other resources and can therefore be used on arbitrarily
large data or for an arbitrarily long calculation. Consider for example,

(define (foo n)

(display n)

(newline)

(foo (1+ n)))

(foo 1)

a
1

2

3

...

foo prints numbers in�nitely, starting from the given n. It's implemented by printing n
then recursing to itself to print n + 1 and so on. This recursion is a tail call, it's the last
thing done, and in Scheme such tail calls can be made without limit.

Or consider a case where a value is returned, a version of the SRFI-1 last function (see
Section 6.4.3.3 [SRFI-1 Selectors], page 426) returning the last element of a list,

(define (my-last lst)

(if (null? (cdr lst))

(car lst)

(my-last (cdr lst))))

(my-last '(1 2 3)) ) 3

If the list has more than one element, my-last applies itself to the cdr. This recursion
is a tail call, there's no code after it, and the return value is the return value from that call.
In Scheme this can be used on an arbitrarily long list argument.

A proper tail call is only available from certain contexts, namely the following special
form positions,

� and | last expression

� begin | last expression

� case | last expression in each clause

� cond | last expression in each clause, and the call to a => procedure is a tail call

� do | last result expression
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� if | \true" and \false" leg expressions

� lambda | last expression in body

� let, let*, letrec, let-syntax, letrec-syntax | last expression in body

� or | last expression

The following core functions make tail calls,

� apply | tail call to given procedure

� call-with-current-continuation | tail call to the procedure receiving the new
continuation

� call-with-values | tail call to the values-receiving procedure

� eval | tail call to evaluate the form

� string-any, string-every | tail call to predicate on the last character (if that point
is reached)

The above are just core functions and special forms. Tail calls in other modules are
described with the relevant documentation, for example SRFI-1 any and every (see Sec-
tion 6.4.3.7 [SRFI-1 Searching], page 432).

It will be noted there are a lot of places which could potentially be tail calls, for instance
the last call in a for-each, but only those explicitly described are guaranteed.

3.1.3.3 Using the Guile REPL

If you start Guile without specifying a particular program for it to execute, Guile enters its
standard Read Evaluate Print Loop | or REPL for short. In this mode, Guile repeatedly
reads in the next Scheme expression that the user types, evaluates it, and prints the resulting
value.

The REPL is a useful mechanism for exploring the evaluation behaviour described
in the previous subsection. If you type string-append, for example, the REPL replies
#<primitive-procedure string-append>, illustrating the relationship between the vari-
able string-append and the procedure value stored in that variable.

In this manual, the notation ) is used to mean \evaluates to". Wherever you see an
example of the form

expression

)
result

feel free to try it out yourself by typing expression into the REPL and checking that it gives
the expected result.

3.1.3.4 Summary of Common Syntax

This subsection lists the most commonly used Scheme syntactic expressions, simply so that
you will recognize common special syntax when you see it. For a full description of each of
these syntaxes, follow the appropriate reference.

lambda (see Section 5.8.1 [Lambda], page 225) is used to construct procedure objects.

define (see Section 5.10.1 [Top Level], page 247) is used to create a new variable and
set its initial value.
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set! (see Section 5.10.1 [Top Level], page 247) is used to modify an existing variable's
value.

let, let* and letrec (see Section 5.10.2 [Local Bindings], page 248) create an inner
lexical environment for the evaluation of a sequence of expressions, in which a speci�ed
set of local variables is bound to the values of a corresponding set of expressions. For an
introduction to environments, see See Section 3.1.4 [About Closure], page 24.

begin (see Section 5.11.1 [begin], page 251) executes a sequence of expressions in order
and returns the value of the last expression. Note that this is not the same as a procedure
which returns its last argument, because the evaluation of a procedure invocation expression
does not guarantee to evaluate the arguments in order.

if and cond (see Section 5.11.2 [if cond case], page 251) provide conditional evaluation
of argument expressions depending on whether one or more conditions evaluate to \true"
or \false".

case (see Section 5.11.2 [if cond case], page 251) provides conditional evaluation of
argument expressions depending on whether a variable has one of a speci�ed group of
values.

and (see Section 5.11.3 [and or], page 252) executes a sequence of expressions in order
until either there are no expressions left, or one of them evaluates to \false".

or (see Section 5.11.3 [and or], page 252) executes a sequence of expressions in order
until either there are no expressions left, or one of them evaluates to \true".

3.1.4 The Concept of Closure

The concept of closure is the idea that a lambda expression \captures" the variable bindings
that are in lexical scope at the point where the lambda expression occurs. The procedure
created by the lambda expression can refer to and mutate the captured bindings, and the
values of those bindings persist between procedure calls.

This section explains and explores the various parts of this idea in more detail.

3.1.4.1 Names, Locations, Values and Environments

We said earlier that a variable name in a Scheme program is associated with a location in
which any kind of Scheme value may be stored. (Incidentally, the term \vcell" is often used
in Lisp and Scheme circles as an alternative to \location".) Thus part of what we mean
when we talk about \creating a variable" is in fact establishing an association between a
name, or identi�er, that is used by the Scheme program code, and the variable location to
which that name refers. Although the value that is stored in that location may change, the
location to which a given name refers is always the same.

We can illustrate this by breaking down the operation of the define syntax into three
parts: define

� creates a new location

� establishes an association between that location and the name speci�ed as the �rst
argument of the define expression

� stores in that location the value obtained by evaluating the second argument of the
define expression.
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A collection of associations between names and locations is called an environment. When
you create a top level variable in a program using define, the name-location association
for that variable is added to the \top level" environment. The \top level" environment also
includes name-location associations for all the procedures that are supplied by standard
Scheme.

It is also possible to create environments other than the top level one, and to create
variable bindings, or name-location associations, in those environments. This ability is a
key ingredient in the concept of closure; the next subsection shows how it is done.

3.1.4.2 Local Variables and Environments

We have seen how to create top level variables using the define syntax (see Section 3.1.1.3
[De�nition], page 14). It is often useful to create variables that are more limited in their
scope, typically as part of a procedure body. In Scheme, this is done using the let syntax,
or one of its modi�ed forms let* and letrec. These syntaxes are described in full later in
the manual (see Section 5.10.2 [Local Bindings], page 248). Here our purpose is to illustrate
their use just enough that we can see how local variables work.

For example, the following code uses a local variable s to simplify the computation of
the area of a triangle given the lengths of its three sides.

(define a 5.3)

(define b 4.7)

(define c 2.8)

(define area

(let ((s (/ (+ a b c) 2)))

(sqrt (* s (- s a) (- s b) (- s c)))))

The e�ect of the let expression is to create a new environment and, within this environ-
ment, an association between the name s and a new location whose initial value is obtained
by evaluating (/ (+ a b c) 2). The expressions in the body of the let, namely (sqrt (* s

(- s a) (- s b) (- s c))), are then evaluated in the context of the new environment, and
the value of the last expression evaluated becomes the value of the whole let expression,
and therefore the value of the variable area.

3.1.4.3 Environment Chaining

In the example of the previous subsection, we glossed over an important point. The body
of the let expression in that example refers not only to the local variable s, but also to the
top level variables a, b, c and sqrt. (sqrt is the standard Scheme procedure for calculating
a square root.) If the body of the let expression is evaluated in the context of the local

let environment, how does the evaluation get at the values of these top level variables?

The answer is that the local environment created by a let expression automatically has
a reference to its containing environment | in this case the top level environment | and
that the Scheme interpreter automatically looks for a variable binding in the containing
environment if it doesn't �nd one in the local environment. More generally, every environ-
ment except for the top level one has a reference to its containing environment, and the
interpreter keeps searching back up the chain of environments | from most local to top
level | until it either �nds a variable binding for the required identi�er or exhausts the
chain.
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This description also determines what happens when there is more than one variable
binding with the same name. Suppose, continuing the example of the previous subsection,
that there was also a pre-existing top level variable s created by the expression:

(define s "Some beans, my lord!")

Then both the top level environment and the local let environment would contain
bindings for the name s. When evaluating code within the let body, the interpreter looks
�rst in the local let environment, and so �nds the binding for s created by the let syntax.
Even though this environment has a reference to the top level environment, which also has
a binding for s, the interpreter doesn't get as far as looking there. When evaluating code
outside the let body, the interpreter looks up variable names in the top level environment,
so the name s refers to the top level variable.

Within the let body, the binding for s in the local environment is said to shadow the
binding for s in the top level environment.

3.1.4.4 Lexical Scope

The rules that we have just been describing are the details of how Scheme implements
\lexical scoping". This subsection takes a brief diversion to explain what lexical scope
means in general and to present an example of non-lexical scoping.

\Lexical scope" in general is the idea that

� an identi�er at a particular place in a program always refers to the same variable loca-
tion | where \always" means \every time that the containing expression is executed",
and that

� the variable location to which it refers can be determined by static examination of the
source code context in which that identi�er appears, without having to consider the
ow of execution through the program as a whole.

In practice, lexical scoping is the norm for most programming languages, and probably
corresponds to what you would intuitively consider to be \normal". You may even be
wondering how the situation could possibly | and usefully | be otherwise. To demonstrate
that another kind of scoping is possible, therefore, and to compare it against lexical scoping,
the following subsection presents an example of non-lexical scoping and examines in detail
how its behavior di�ers from the corresponding lexically scoped code.

An Example of Non-Lexical Scoping

To demonstrate that non-lexical scoping does exist and can be useful, we present the fol-
lowing example from Emacs Lisp, which is a \dynamically scoped" language.

(defvar currency-abbreviation "USD")

(defun currency-string (units hundredths)

(concat currency-abbreviation

(number-to-string units)

"."

(number-to-string hundredths)))

(defun french-currency-string (units hundredths)

(let ((currency-abbreviation "FRF"))
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(currency-string units hundredths)))

The question to focus on here is: what does the identi�er currency-abbreviation

refer to in the currency-string function? The answer, in Emacs Lisp, is that all variable
bindings go onto a single stack, and that currency-abbreviation refers to the topmost
binding from that stack which has the name \currency-abbreviation". The binding that is
created by the defvar form, to the value "USD", is only relevant if none of the code that
calls currency-string rebinds the name \currency-abbreviation" in the meanwhile.

The second function french-currency-string works precisely by taking advantage of
this behaviour. It creates a new binding for the name \currency-abbreviation" which over-
rides the one established by the defvar form.

;; Note! This is Emacs Lisp evaluation, not Scheme!

(french-currency-string 33 44)
)
"FRF33.44"

Now let's look at the corresponding, lexically scoped Scheme code:

(define currency-abbreviation "USD")

(define (currency-string units hundredths)

(string-append currency-abbreviation

(number->string units)

"."

(number->string hundredths)))

(define (french-currency-string units hundredths)

(let ((currency-abbreviation "FRF"))

(currency-string units hundredths)))

According to the rules of lexical scoping, the currency-abbreviation in currency-

string refers to the variable location in the innermost environment at that point in the
code which has a binding for currency-abbreviation, which is the variable location in
the top level environment created by the preceding (define currency-abbreviation ...)

expression.

In Scheme, therefore, the french-currency-string procedure does not work as in-
tended. The variable binding that it creates for \currency-abbreviation" is purely local to
the code that forms the body of the let expression. Since this code doesn't directly use
the name \currency-abbreviation" at all, the binding is pointless.

(french-currency-string 33 44)
)
"USD33.44"

This begs the question of how the Emacs Lisp behaviour can be implemented in Scheme.
In general, this is a design question whose answer depends upon the problem that is be-
ing addressed. In this case, the best answer may be that currency-string should be
redesigned so that it can take an optional third argument. This third argument, if supplied,
is interpreted as a currency abbreviation that overrides the default.
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It is possible to change french-currency-string so that it mostly works without chang-
ing currency-string, but the �x is inelegant, and susceptible to interrupts that could leave
the currency-abbreviation variable in the wrong state:

(define (french-currency-string units hundredths)

(set! currency-abbreviation "FRF")

(let ((result (currency-string units hundredths)))

(set! currency-abbreviation "USD")

result))

The key point here is that the code does not create any local binding for the identi�er
currency-abbreviation, so all occurrences of this identi�er refer to the top level variable.

3.1.4.5 Closure

Consider a let expression that doesn't contain any lambdas:

(let ((s (/ (+ a b c) 2)))

(sqrt (* s (- s a) (- s b) (- s c))))

When the Scheme interpreter evaluates this, it

� creates a new environment with a reference to the environment that was current when
it encountered the let

� creates a variable binding for s in the new environment, with value given by (/ (+ a b

c) 2)

� evaluates the expression in the body of the let in the context of the new local envi-
ronment, and remembers the value V

� forgets the local environment

� continues evaluating the expression that contained the let, using the value V as the
value of the let expression, in the context of the containing environment.

After the let expression has been evaluated, the local environment that was created is
simply forgotten, and there is no longer any way to access the binding that was created in
this environment. If the same code is evaluated again, it will follow the same steps again,
creating a second new local environment that has no connection with the �rst, and then
forgetting this one as well.

If the let body contains a lambda expression, however, the local environment is not

forgotten. Instead, it becomes associated with the procedure that is created by the lambda
expression, and is reinstated every time that that procedure is called. In detail, this works
as follows.

� When the Scheme interpreter evaluates a lambda expression, to create a procedure
object, it stores the current environment as part of the procedure de�nition.

� Then, whenever that procedure is called, the interpreter reinstates the environment
that is stored in the procedure de�nition and evaluates the procedure body within the
context of that environment.

The result is that the procedure body is always evaluated in the context of the environ-
ment that was current when the procedure was created.

This is what is meant by closure. The next few subsections present examples that explore
the usefulness of this concept.
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3.1.4.6 Example 1: A Serial Number Generator

This example uses closure to create a procedure with a variable binding that is private to
the procedure, like a local variable, but whose value persists between procedure calls.

(define (make-serial-number-generator)

(let ((current-serial-number 0))

(lambda ()

(set! current-serial-number (+ current-serial-number 1))

current-serial-number)))

(define entry-sn-generator (make-serial-number-generator))

(entry-sn-generator)
)
1

(entry-sn-generator)
)
2

When make-serial-number-generator is called, it creates a local environment with a
binding for current-serial-number whose initial value is 0, then, within this environment,
creates a procedure. The local environment is stored within the created procedure object
and so persists for the lifetime of the created procedure.

Every time the created procedure is invoked, it increments the value of the current-

serial-number binding in the captured environment and then returns the current value.

Note that make-serial-number-generator can be called again to create a second serial
number generator that is independent of the �rst. Every new invocation of make-serial-
number-generator creates a new local let environment and returns a new procedure object
with an association to this environment.

3.1.4.7 Example 2: A Shared Persistent Variable

This example uses closure to create two procedures, get-balance and deposit, that both
refer to the same captured local environment so that they can both access the balance

variable binding inside that environment. The value of this variable binding persists between
calls to either procedure.

Note that the captured balance variable binding is private to these two procedures: it is
not directly accessible to any other code. It can only be accessed indirectly via get-balance
or deposit, as illustrated by the withdraw procedure.

(define get-balance #f)

(define deposit #f)

(let ((balance 0))

(set! get-balance

(lambda ()

balance))

(set! deposit
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(lambda (amount)

(set! balance (+ balance amount))

balance)))

(define (withdraw amount)

(deposit (- amount)))

(get-balance)
)
0

(deposit 50)
)
50

(withdraw 75)
)
-25

An important detail here is that the get-balance and deposit variables must be set up
by defineing them at top level and then set!ing their values inside the let body. Using
define within the let body would not work: this would create variable bindings within
the local let environment that would not be accessible at top level.

3.1.4.8 Example 3: The Callback Closure Problem

A frequently used programming model for library code is to allow an application to register a
callback function for the library to call when some particular event occurs. It is often useful
for the application to make several such registrations using the same callback function, for
example if several similar library events can be handled using the same application code,
but the need then arises to distinguish the callback function calls that are associated with
one callback registration from those that are associated with di�erent callback registrations.

In languages without the ability to create functions dynamically, this problem is usually
solved by passing a user_data parameter on the registration call, and including the value
of this parameter as one of the parameters on the callback function. Here is an example of
declarations using this solution in C:

typedef void (event_handler_t) (int event_type,

void *user_data);

void register_callback (int event_type,

event_handler_t *handler,

void *user_data);

In Scheme, closure can be used to achieve the same functionality without requiring the
library code to store a user-data for each callback registration.

;; In the library:

(define (register-callback event-type handler-proc)

...)
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;; In the application:

(define (make-handler event-type user-data)

(lambda ()

...

<code referencing event-type and user-data>

...))

(register-callback event-type

(make-handler event-type ...))

As far as the library is concerned, handler-proc is a procedure with no arguments, and
all the library has to do is call it when the appropriate event occurs. From the application's
point of view, though, the handler procedure has used closure to capture an environment
that includes all the context that the handler code needs | event-type and user-data |
to handle the event correctly.

3.1.4.9 Example 4: Object Orientation

Closure is the capture of an environment, containing persistent variable bindings, within
the de�nition of a procedure or a set of related procedures. This is rather similar to the
idea in some object oriented languages of encapsulating a set of related data variables inside
an \object", together with a set of \methods" that operate on the encapsulated data. The
following example shows how closure can be used to emulate the ideas of objects, methods
and encapsulation in Scheme.

(define (make-account)

(let ((balance 0))

(define (get-balance)

balance)

(define (deposit amount)

(set! balance (+ balance amount))

balance)

(define (withdraw amount)

(deposit (- amount)))

(lambda args

(apply

(case (car args)

((get-balance) get-balance)

((deposit) deposit)

((withdraw) withdraw)

(else (error "Invalid method!")))

(cdr args)))))

Each call to make-account creates and returns a new procedure, created by the expres-
sion in the example code that begins \(lambda args".

(define my-account (make-account))
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my-account
)
#<procedure args>

This procedure acts as an account object with methods get-balance, deposit and
withdraw. To apply one of the methods to the account, you call the procedure with a symbol
indicating the required method as the �rst parameter, followed by any other parameters
that are required by that method.

(my-account 'get-balance)
)
0

(my-account 'withdraw 5)
)
-5

(my-account 'deposit 396)
)
391

(my-account 'get-balance)
)
391

Note how, in this example, both the current balance and the helper procedures get-

balance, deposit and withdraw, used to implement the guts of the account object's meth-
ods, are all stored in variable bindings within the private local environment captured by
the lambda expression that creates the account object procedure.

3.2 Guile's Implementation of Scheme

Guile's core language is Scheme, which is speci�ed and described in the series of reports
known as RnRS. RnRS is shorthand for the Revised$^n$ Report on the Algorithmic Lan-
guage Scheme. The current latest revision of RnRS is version 5 (see hunde�nedi [Top],
page hunde�nedi), and Guile 1.4 is fully compliant with the Scheme speci�cation in this
revision.

But Guile, like most Scheme implementations, also goes beyond R5RS in many ways,
because R5RS does not give speci�cations (or even recommendations) regarding many issues
that are important in practical programming. Some of the areas where Guile extends R5RS
are:

� Guile's interactive documentation system

� Guile's support for POSIX-compliant network programming

� GOOPS { Guile's framework for object oriented programming.
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3.3 Guile Scripting

Like AWK, Perl, or any shell, Guile can interpret script �les. A Guile script is simply a
�le of Scheme code with some extra information at the beginning which tells the operating
system how to invoke Guile, and then tells Guile how to handle the Scheme code.

3.3.1 The Top of a Script File

The �rst line of a Guile script must tell the operating system to use Guile to evaluate the
script, and then tell Guile how to go about doing that. Here is the simplest case:

� The �rst two characters of the �le must be `#!'.

The operating system interprets this to mean that the rest of the line is the name of an
executable that can interpret the script. Guile, however, interprets these characters as
the beginning of a multi-line comment, terminated by the characters `!#' on a line by
themselves. (This is an extension to the syntax described in R5RS, added to support
shell scripts.)

� Immediately after those two characters must come the full pathname to the Guile
interpreter. On most systems, this would be `/usr/local/bin/guile'.

� Then must come a space, followed by a command-line argument to pass to Guile; this
should be `-s'. This switch tells Guile to run a script, instead of soliciting the user
for input from the terminal. There are more elaborate things one can do here; see
Section 3.3.3 [The Meta Switch], page 35.

� Follow this with a newline.

� The second line of the script should contain only the characters `!#' | just like the top
of the �le, but reversed. The operating system never reads this far, but Guile treats
this as the end of the comment begun on the �rst line by the `#!' characters.

� The rest of the �le should be a Scheme program.

Guile reads the program, evaluating expressions in the order that they appear. Upon
reaching the end of the �le, Guile exits.

3.3.2 Invoking Guile

Here we describe Guile's command-line processing in detail. Guile processes its arguments
from left to right, recognizing the switches described below. For examples, see Section 3.3.5
[Scripting Examples], page 37.

-s script arg...

Read and evaluate Scheme source code from the �le script, as the load function
would. After loading script, exit. Any command-line arguments arg... following
script become the script's arguments; the command-line function returns a list
of strings of the form (script arg...).

-c expr arg...

Evaluate expr as Scheme code, and then exit. Any command-line arguments
arg... following expr become command-line arguments; the command-line func-
tion returns a list of strings of the form (guile arg...), where guile is the
path of the Guile executable.
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-- arg...

Run interactively, prompting the user for expressions and evaluating them.
Any command-line arguments arg... following the -- become command-line
arguments for the interactive session; the command-line function returns a list
of strings of the form (guile arg...), where guile is the path of the Guile
executable.

-L directory

Add directory to the front of Guile's module load path. The given directories
are searched in the order given on the command line and before any directories
in the GUILE LOAD PATH environment variable. Paths added here are not

in e�ect during execution of the user's `.guile' �le.

-l file Load Scheme source code from �le, and continue processing the command line.

-e function

Make function the entry point of the script. After loading the script �le (with
-s) or evaluating the expression (with -c), apply function to a list containing
the program name and the command-line arguments | the list provided by the
command-line function.

A -e switch can appear anywhere in the argument list, but Guile always invokes
the function as the last action it performs. This is weird, but because of the
way script invocation works under POSIX, the -s option must always come last
in the list.

The function is most often a simple symbol that names a function that is de�ned
in the script. It can also be of the form (@ module-name symbol) and in that
case, the symbol is looked up in the module named module-name.

For compatibility with some versions of Guile 1.4, you can also use the form
(symbol ...) (that is, a list of only symbols that doesn't start with @), which
is equivalent to (@ (symbol ...) main), or (symbol ...) symbol (that is, a
list of only symbols followed by a symbol), which is equivalent to (@ (symbol

...) symbol). We recommend to use the equivalent forms directly since they
corresponf to the (@ ...) read syntax that can be used in normal code, See
Section 5.16.3.2 [Using Guile Modules], page 305.

See Section 3.3.5 [Scripting Examples], page 37.

-ds Treat a �nal -s option as if it occurred at this point in the command line; load
the script here.

This switch is necessary because, although the POSIX script invocation mech-
anism e�ectively requires the -s option to appear last, the programmer may
well want to run the script before other actions requested on the command line.
For examples, see Section 3.3.5 [Scripting Examples], page 37.

\ Read more command-line arguments, starting from the second line of the script
�le. See Section 3.3.3 [The Meta Switch], page 35.

--emacs Assume Guile is running as an inferior process of Emacs, and use a special
protocol to communicate with Emacs's Guile interaction mode. This switch
sets the global variable use-emacs-interface to #t.
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This switch is still experimental.

--use-srfi=list

The option --use-srfi expects a comma-separated list of numbers, each rep-
resenting a SRFI number to be loaded into the interpreter before starting eval-
uating a script �le or the REPL. Additionally, the feature identi�er for the
loaded SRFIs is recognized by `cond-expand' when using this option.

guile --use-srfi=8,13

--debug Start with the debugging evaluator and enable backtraces. Using the debugging
evaluator will give you better error messages but it will slow down execution.
By default, the debugging evaluator is only used when entering an interactive
session. When executing a script with -s or -c, the normal, faster evaluator is
used by default.

--no-debug

Do not use the debugging evaluator, even when entering an interactive session.

-h, --help
Display help on invoking Guile, and then exit.

-v, --version
Display the current version of Guile, and then exit.

3.3.3 The Meta Switch

Guile's command-line switches allow the programmer to describe reasonably complicated
actions in scripts. Unfortunately, the POSIX script invocation mechanism only allows one
argument to appear on the `#!' line after the path to the Guile executable, and imposes
arbitrary limits on that argument's length. Suppose you wrote a script starting like this:

#!/usr/local/bin/guile -e main -s

!#

(define (main args)

(map (lambda (arg) (display arg) (display " "))

(cdr args))

(newline))

The intended meaning is clear: load the �le, and then call main on the command-line
arguments. However, the system will treat everything after the Guile path as a single
argument | the string "-e main -s" | which is not what we want.

As a workaround, the meta switch \ allows the Guile programmer to specify an arbitrary
number of options without patching the kernel. If the �rst argument to Guile is \, Guile
will open the script �le whose name follows the \, parse arguments starting from the �le's
second line (according to rules described below), and substitute them for the \ switch.

Working in concert with the meta switch, Guile treats the characters `#!' as the beginning
of a comment which extends through the next line containing only the characters `!#'. This
sort of comment may appear anywhere in a Guile program, but it is most useful at the top
of a �le, meshing magically with the POSIX script invocation mechanism.

Thus, consider a script named `/u/jimb/ekko' which starts like this:
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#!/usr/local/bin/guile \

-e main -s

!#

(define (main args)

(map (lambda (arg) (display arg) (display " "))

(cdr args))

(newline))

Suppose a user invokes this script as follows:

$ /u/jimb/ekko a b c

Here's what happens:

� the operating system recognizes the `#!' token at the top of the �le, and rewrites the
command line to:

/usr/local/bin/guile \ /u/jimb/ekko a b c

This is the usual behavior, prescribed by POSIX.

� When Guile sees the �rst two arguments, \ /u/jimb/ekko, it opens `/u/jimb/ekko',
parses the three arguments -e, main, and -s from it, and substitutes them for the \

switch. Thus, Guile's command line now reads:

/usr/local/bin/guile -e main -s /u/jimb/ekko a b c

� Guile then processes these switches: it loads `/u/jimb/ekko' as a �le of Scheme code
(treating the �rst three lines as a comment), and then performs the application (main

"/u/jimb/ekko" "a" "b" "c").

When Guile sees the meta switch \, it parses command-line argument from the script
�le according to the following rules:

� Each space character terminates an argument. This means that two spaces in a row
introduce an argument "".

� The tab character is not permitted (unless you quote it with the backslash character,
as described below), to avoid confusion.

� The newline character terminates the sequence of arguments, and will also terminate
a �nal non-empty argument. (However, a newline following a space will not introduce
a �nal empty-string argument; it only terminates the argument list.)

� The backslash character is the escape character. It escapes backslash, space, tab, and
newline. The ANSI C escape sequences like \n and \t are also supported. These
produce argument constituents; the two-character combination \n doesn't act like a
terminating newline. The escape sequence \NNN for exactly three octal digits reads as
the character whose ASCII code is NNN. As above, characters produced this way are
argument constituents. Backslash followed by other characters is not allowed.

3.3.4 Command Line Handling

The ability to accept and handle command line arguments is very important when writing
Guile scripts to solve particular problems, such as extracting information from text �les
or interfacing with existing command line applications. This chapter describes how Guile
makes command line arguments available to a Guile script, and the utilities that Guile
provides to help with the processing of command line arguments.
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When a Guile script is invoked, Guile makes the command line arguments accessible via
the procedure command-line, which returns the arguments as a list of strings.

For example, if the script

#! /usr/local/bin/guile -s

!#

(write (command-line))

(newline)

is saved in a �le `cmdline-test.scm' and invoked using the command line ./cmdline-

test.scm bar.txt -o foo -frumple grob, the output is

("./cmdline-test.scm" "bar.txt" "-o" "foo" "-frumple" "grob")

If the script invocation includes a -e option, specifying a procedure to call after loading
the script, Guile will call that procedure with (command-line) as its argument. So a script
that uses -e doesn't need to refer explicitly to command-line in its code. For example, the
script above would have identical behaviour if it was written instead like this:

#! /usr/local/bin/guile \

-e main -s

!#

(define (main args)

(write args)

(newline))

(Note the use of the meta switch \ so that the script invocation can include more than
one Guile option: See Section 3.3.3 [The Meta Switch], page 35.)

These scripts use the #! POSIX convention so that they can be executed using their own
�le names directly, as in the example command line ./cmdline-test.scm bar.txt -o foo

-frumple grob. But they can also be executed by typing out the implied Guile command
line in full, as in:

$ guile -s ./cmdline-test.scm bar.txt -o foo -frumple grob

or

$ guile -e main -s ./cmdline-test2.scm bar.txt -o foo -frumple grob

Even when a script is invoked using this longer form, the arguments that the script
receives are the same as if it had been invoked using the short form. Guile ensures that the
(command-line) or -e arguments are independent of how the script is invoked, by stripping
o� the arguments that Guile itself processes.

A script is free to parse and handle its command line arguments in any way that it
chooses. Where the set of possible options and arguments is complex, however, it can get
tricky to extract all the options, check the validity of given arguments, and so on. This task
can be greatly simpli�ed by taking advantage of the module (ice-9 getopt-long), which
is distributed with Guile, See Section 6.3 [getopt-long], page 418.

3.3.5 Scripting Examples

To start with, here are some examples of invoking Guile directly:

guile -- a b c

Run Guile interactively; (command-line) will return
("/usr/local/bin/guile" "a" "b" "c").
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guile -s /u/jimb/ex2 a b c

Load the �le `/u/jimb/ex2'; (command-line) will return
("/u/jimb/ex2" "a" "b" "c").

guile -c '(write %load-path) (newline)'

Write the value of the variable %load-path, print a newline, and exit.

guile -e main -s /u/jimb/ex4 foo

Load the �le `/u/jimb/ex4', and then call the function main, passing it the list
("/u/jimb/ex4" "foo").

guile -l first -ds -l last -s script

Load the �les `first', `script', and `last', in that order. The -ds switch says
when to process the -s switch. For a more motivated example, see the scripts
below.

Here is a very simple Guile script:

#!/usr/local/bin/guile -s

!#

(display "Hello, world!")

(newline)

The �rst line marks the �le as a Guile script. When the user invokes it, the system runs
`/usr/local/bin/guile' to interpret the script, passing -s, the script's �lename, and any
arguments given to the script as command-line arguments. When Guile sees -s script , it
loads script. Thus, running this program produces the output:

Hello, world!

Here is a script which prints the factorial of its argument:

#!/usr/local/bin/guile -s

!#

(define (fact n)

(if (zero? n) 1

(* n (fact (- n 1)))))

(display (fact (string->number (cadr (command-line)))))

(newline)

In action:

$ fact 5

120

$

However, suppose we want to use the de�nition of fact in this �le from another script.
We can't simply load the script �le, and then use fact's de�nition, because the script will
try to compute and display a factorial when we load it. To avoid this problem, we might
write the script this way:

#!/usr/local/bin/guile \

-e main -s

!#

(define (fact n)
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(if (zero? n) 1

(* n (fact (- n 1)))))

(define (main args)

(display (fact (string->number (cadr args))))

(newline))

This version packages the actions the script should perform in a function, main. This
allows us to load the �le purely for its de�nitions, without any extraneous computation
taking place. Then we used the meta switch \ and the entry point switch -e to tell Guile
to call main after loading the script.

$ fact 50

30414093201713378043612608166064768844377641568960512000000000000

Suppose that we now want to write a script which computes the choose function: given
a set of m distinct objects, (choose n m) is the number of distinct subsets containing n
objects each. It's easy to write choose given fact, so we might write the script this way:

#!/usr/local/bin/guile \

-l fact -e main -s

!#

(define (choose n m)

(/ (fact m) (* (fact (- m n)) (fact n))))

(define (main args)

(let ((n (string->number (cadr args)))

(m (string->number (caddr args))))

(display (choose n m))

(newline)))

The command-line arguments here tell Guile to �rst load the �le `fact', and then run the
script, with main as the entry point. In other words, the choose script can use de�nitions
made in the fact script. Here are some sample runs:

$ choose 0 4

1

$ choose 1 4

4

$ choose 2 4

6

$ choose 3 4

4

$ choose 4 4

1

$ choose 50 100

100891344545564193334812497256
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3.4 Debugging Features

Guile includes debugging tools to help you work out what is going wrong when a program
signals an error or behaves di�erently to how you would expect. This chapter describes how
to use these tools.

Broadly speaking, Guile's debugging support allows you to do two things:

� specify breakpoints | points in the execution of a program where execution should
pause so you can see what is going on

� examine in detail the \scene of the crime" | in other words, the execution context at
a breakpoint, or when the last error occurred.

The details are more complex and more powerful . . .

3.4.1 Debugging the Most Recent Error

When an error is signalled, Guile remembers the execution context where the error occurred.
By default, Guile then displays only the most immediate information about where and why
the error occurred, for example:

(make-string (* 4 (+ 3 #\s)) #\space)

a
standard input:2:19: In procedure + in expression (+ 3 #\s):

standard input:2:19: Wrong type argument: #\s

ABORT: (wrong-type-arg)

Type "(backtrace)" to get more information or "(debug)" to enter

the debugger.

However, as the message above says, you can obtain much more information about the
context of the error by typing (backtrace) or (debug).

(backtrace) displays the Scheme call stack at the point where the error occurred:

(backtrace)

a
Backtrace:

In standard input:

2: 0* [make-string ...

2: 1* [* 4 ...

2: 2* [+ 3 #\s]

Type "(debug-enable 'backtrace)" if you would like a backtrace

automatically if an error occurs in the future.

In a more complex scenario than this one, this can be extremely useful for understanding
where and why the error occurred. For more on the format of the displayed backtrace, see
the subsection below.

(debug) takes you into Guile's interactive debugger, which provides commands that
allow you to

� display the Scheme call stack at the point where the error occurred (the backtrace

command | see Section 3.4.3.1 [Display Backtrace], page 47)
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� move up and down the call stack, to see in detail the expression being evaluated, or
the procedure being applied, in each frame (the up, down, frame, position, info
args and info frame commands | see Section 3.4.3.2 [Frame Selection], page 47 and
Section 3.4.3.3 [Frame Information], page 48)

� examine the values of variables and expressions in the context of each frame (the
evaluate command | see Section 3.4.3.4 [Frame Evaluation], page 48).

Use of the interactive debugger, including these commands, is described in Section 3.4.3
[Interactive Debugger], page 47.

3.4.1.1 How to Interpret a Backtrace

3.4.2 Intro to Breakpoints

If you are not already familiar with the concept of breakpoints, the �rst subsection below
explains how they work are why they are useful.

Broadly speaking, Guile's breakpoint support consists of

� type-speci�c features for creating breakpoints of various types

� relatively generic features for manipulating the behaviour of breakpoints once they've
been created.

Di�erent breakpoint types are implemented as di�erent classes in a GOOPS hierarchy
with common base class <breakpoint>. The magic of generic functions then allows most of
the manipulation functions to be generic by default but specializable (by breakpoint class)
if the need arises.

Generic breakpoint support is provided by the (ice-9 debugger breakpoints) module,
so you will almost always need to use this module in order to access the functionality
described here:

(use-modules (ice-9 debugger breakpoints))

You may like to add this to your `.guile' �le.

3.4.2.1 How Breakpoints Work and Why They Are Useful

Often, debugging the last error is not enough to tell you what went wrong. For example,
the root cause of the error may have arisen a long time before the error was signalled, in
which case the execution context of the error is too late to be useful. Or your program
might not signal an error at all, just return an unexpected result or have some incorrect
side e�ect.

In many such cases, it's useful to pause the program at or before the point where you
suspect the problem arises. Then you can explore the stack, display the values of key
variables, and generally check that the state of the program is as you expect. If all is
well, you can let the program continue running normally, or step more slowly through
each expression that the Scheme interpreter evaluates. Single-stepping may reveal that the
program is going through blocks of code that you didn't intend | a useful data point for
understanding what the underlying problem is.

Telling Guile where or when to pause a program is called setting a breakpoint. When
a breakpoint is hit, Guile's default behaviour is to enter the interactive debugger, where
there are now two sets of commands available:
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� all the commands as described for last error debugging (see Section 3.4.1 [Debug Last
Error], page 40), which allow you to explore the stack and so on

� additional commands for continuing program execution in various ways: next, step,
finish, trace-finish and continue.

Use of the interactive debugger is described in Section 3.4.3 [Interactive Debugger],
page 47.

3.4.2.2 Source Breakpoints

A source breakpoint is a breakpoint that triggers whenever program execution hits a par-
ticular source location. A source breakpoint can be conveniently set simply by evaluating
code that has ## inserted into it at the position where you want the breakpoint to be.

For example, to set a breakpoint immediately before evaluation of (= n 0) in the follow-
ing procedure de�nition, evaluate:

(define (fact1 n)
(if ##(= n 0)

1
(* n (fact1 (- n 1)))))

a
Set breakpoint 1: standard input:4:9: (= n 0)

Note the message con�rming that you have set a breakpoint. If you don't see this, something
isn't working.

## is provided by the (ice-9 debugger breakpoints source) module, so you must use
this module before trying to set breakpoints in this way:

(use-modules (ice-9 debugger breakpoints source))

You may like to add this to your `.guile' �le.

The default behaviour for source breakpoints is debug-here (see Section 3.4.2.7 [Break-
point Behaviours], page 44), which means to enter the command line debugger when the
breakpoint is hit. So, if you now use fact1, that is what happens.

guile> (fact1 3)
Hit breakpoint 1: standard input:4:9: (= n 0)
Frame 3 at standard input:4:9

(= n 0)
debug>

3.4.2.3 Procedural Breakpoints

A procedural breakpoint is a breakpoint that triggers whenever Guile is about to apply a
speci�ed procedure to its (already evaluated) arguments. To set a procedural breakpoint,
call break! with the target procedure as a single argument. For example:

(define (fact1 n)
(if (= n 0)

1
(* n (fact1 (- n 1)))))

(break! fact1)

a
Set breakpoint 1: [fact1]
)
#<<procedure-breakpoint> 808b0b0>
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Alternatives to break! are trace! and trace-subtree!. The di�erence is that these
three calls create a breakpoint in the same place but with three di�erent behaviours, re-
spectively debug-here, trace-here and trace-subtree. Breakpoint behaviours are doc-
umented fully later (see Section 3.4.2.7 [Breakpoint Behaviours], page 44), but to give a
quick taste, here's an example of running code that includes a procedural breakpoint with
the trace-here behaviour.

(trace! fact1)

a
Set breakpoint 1: [fact1]
)
#<<procedure-breakpoint> 808b0b0>

(fact1 4)

a
| [fact1 4]
| | [fact1 3]
| | | [fact1 2]
| | | | [fact1 1]
| | | | | [fact1 0]
| | | | | 1
| | | | 2
| | | 6
| | 24
| 24
)
24

To set and use procedural breakpoints, you will need to use the (ice-9 debugger

breakpoints procedural) module:

(use-modules (ice-9 debugger breakpoints procedural))

You may like to add this to your `.guile' �le.

3.4.2.4 Setting Breakpoints

In general, that is. We've already seen how to set source and procedural breakpoints
conveniently in practice. This section explains how those conveniences map onto a more
general mechanism.

The general mechanism for setting breakpoints is the generic function set-breakpoint!.
Di�erent kinds of breakpoints de�ne subclasses of the class <breakpoint> and provide their
own methods for set-pbreakpoint!.

For example, (ice-9 debugger breakpoints procedural) implements the
<procedure-breakpoint> subclass and provides a set-breakpoint! method that takes a
procedure argument:

(set-breakpoint! behavior fact1)

a
Set breakpoint 1: [fact1]
)
#<<procedure-breakpoint> 808b0b0>

A non-type-speci�c set-breakpoint! method is provided by the generic module (ice-9
debugger breakpoints). It allows you to change the behaviour of an existing breakpoint
that is identi�ed by its breakpoint number.

(set-breakpoint! behavior 1)
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3.4.2.5 break! trace! trace-subtree!

We have already talked above about the use of break!, trace! and trace-subtree!

for setting procedural breakpoints. Now that set-breakpoint! has been introduced,
we can reveal that break!, trace! and trace-subtree! are in fact just wrappers for
set-breakpoint! that specify particular breakpoint behaviours, respectively debug-here,
trace-here and trace-subtree.

(break! . args)

� (set-breakpoint! debug-here . args)
(trace! . args)

� (set-breakpoint! trace-here . args)
(trace-subtree! . args)

� (set-breakpoint! trace-subtree . args)

This means that these three procedures can be used to set the corresponding behaviours
for any type of breakpoint for which a set-breakpoint! method exists, not just procedural
ones.

3.4.2.6 Accessing Breakpoints

Information about the state and behaviour of a breakpoint is stored in an instance of the
appropriate breakpoint class. To access and change that information, therefore, you need
to get hold of the desired breakpoint instance.

The generic function get-breakpoint meets this need: For every set-breakpoint!

method there is a corresponding get-breakpoint method. Note especially the useful type-
independent case:

(get-breakpoint 1)
)
#<<procedure-breakpoint> 808b0b0>

3.4.2.7 Breakpoint Behaviours

A breakpoint's behaviour determines what happens when that breakpoint is hit. Several
kinds of behaviour are generally useful.

debug-here

Enter the command line debugger. This gives the opportunity to explore the
stack, evaluate expressions in any of the pending stack frames, change break-
point properties or set new breakpoints, and continue program execution when
you are done.

trace-here

Trace the current stack frame. For expressions being evaluated, this shows
the expression. For procedure applications, it shows the procedure name and
its arguments post-evaluation. For both expressions and applications, the in-
dentation of the tracing indicates whether the traced items are mutually tail
recursive.

trace-subtree

Trace the current stack frame, and enable tracing for all future evaluations
and applications until the current stack frame is exited. trace-subtree is a
great preliminary exploration tool when all you know is that there is a bug
\somewhere in XXX or in something that XXX calls".
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(at-exit thunk)

Don't do anything now, but arrange for thunk to be executed when the current
stack frame is exited. For example, the operation that most debugging tools
call \�nish" is (at-exit debug-here).

(at-next count thunk)

. . . arrange for thunk to be executed when beginning the countth next evalu-
ation or application with source location in the current �le.

(at-entry count thunk)

. . . arrange for thunk to be executed when beginning the countth next evalu-
ation (regardless of source location).

(at-apply count thunk)

. . . arrange for thunk to be executed just before performing the countth next
application (regardless of source location).

(at-step count thunk)

Synthesis of at-entry and at-apply; counts both evaluations and applications.

Every breakpoint instance has a slot in which its behaviour is stored. If you have a
breakpoint instance in hand, you can change its behaviour using the bp-behaviour accessor.

An accessor supports the setting of a property like this:

(set! (bp-behaviour breakpoint) new-behaviour)

See the GOOPS manual for further information on accessors.

Alternatively, if you know how to specify the location-args for the breakpoint in question,
you can change its behaviour using set-breakpoint!. For example:

;; Change behaviour of breakpoint number 2.
(set-breakpoint! new-behaviour 2)

;; Change behaviour of procedural breakpoint on [fact1].
(set-breakpoint! new-behaviour fact1)

In all cases, the behaviour that you specify should be either a single thunk, or a list of
thunks, to be called when the breakpoint is hit.

The most common behaviours above are exported as thunks from the (ice-9 debugger

behaviour) module. So, if you use this module, you can use those behaviours directly like
this:

(use-modules (ice-9 debugger behaviour))
(set-breakpoint! trace-subtree 2)
(set! (bp-behaviour (get-breakpoint 3)) debug-here)

You can also use the list option to combine common behaviours:

(set-breakpoint! (list trace-here debug-here) 2)

Or, for more customized behaviour, you could build and use your own thunk like this:

(define (my-behaviour)
(trace-here)
(at-exit (lambda ()

(display "Exiting frame of my-behaviour bp\n")
... do something unusual ...)))

(set-breakpoint my-behaviour 2)
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3.4.2.8 Enabling and Disabling

Independently of its behaviour, each breakpoint also keeps track of whether it is currently
enabled. This is a straightforward convenience to allow breakpoints to be temporarily
switched o� without losing all their carefully constructed properties.

If you have a breakpoint instance in hand, you can enable or disable it using the bp-

enabled? accessor.

Alternatively, you can enable or disable a breakpoint via its location args by using
enable-breakpoint! or disable-breakpoint!.

(disable-breakpoint! fact1) ; disable the procedural breakpoint on fact1
(enable-breakpoint! 1) ; enable breakpoint 1

enable-breakpoint! and disable-breakpoint! are implemented using get-

breakpoint and bp-enabled?, so any location-args that are valid for get-breakpoint

will work also for these procedures.

3.4.2.9 Deleting Breakpoints

Given a breakpoint instance in hand, you can deactivate it and remove it from the global
list of current breakpoints by calling bp-delete!.

Alternatively, you can delete a breakpoint by its location args:

(delete-breakpoint! 1) ; delete breakpoint 1

delete-breakpoint! is implemented using get-breakpoint and bp-delete!, so any
location-args that are valid for get-breakpoint will work also for delete-breakpoint!.

There is no way to reinstate a deleted breakpoint. Final destruction of the breakpoint
instance is determined by the usual garbage collection rules.

3.4.2.10 Breakpoint Information

To get Guile to print a description of a breakpoint instance, use bp-describe:

(bp-describe (get-breakpoint 1) #t) ; #t specifies standard output

a
Breakpoint 1: [fact1]

enabled? = #t
behaviour = #<procedure trace-here ()>

Following the usual model, describe-breakpoint is also provided:

(describe-breakpoint 1)

a
Breakpoint 1: [fact1]

enabled? = #t
behaviour = #<procedure trace-here ()>

Finally, two stragglers. all-breakpoints returns a list of all current breakpoints.
describe-all-breakpoints combines bp-describe and all-breakpoints by printing a
description of all current breakpoints to standard output.

3.4.2.11 Other Breakpoint Types

Besides source and procedural breakpoints, Guile includes an early implementation of a
third class of breakpoints: range breakpoints. These are breakpoints that trigger when
program execution enters (or perhaps exits) a de�ned range of source locations.
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Sadly, these don't yet work well. The apparent problem is that the extra methods for
set-breakpoint! and get-breakpoint cause some kind of explosion in the time taken
by GOOPS to construct its method cache and to dispatch calls involving these generic
functions. But we haven't really investigated enough to be sure that this is the real issue.

If you're interested in looking and/or investigating anyway, please feel free to check out
and play with the (ice-9 debugger breakpoints range) module.

The other kind of breakpoint that we'd like to have is watchpoints, but this hasn't
been implemented at all yet. Watchpoints may turn out to be impractical for performance
reasons.

3.4.3 Using the Interactive Debugger

Guile's interactive debugger is a command line application that accepts commands from you
for examining the stack and, if at a breakpoint, for continuing program execution in various
ways. Unlike in the normal Guile REPL, commands are typed mostly without parentheses.

When you �rst enter the debugger, it introduces itself with a message like this:

This is the Guile debugger -- for help, type `help'.

There are 3 frames on the stack.

Frame 2 at standard input:36:19

[+ 3 #\s]

debug>

\debug>" is the debugger's prompt, and a useful reminder that you are not in the normal
Guile REPL. The available commands are described in detail in the following subsections.

3.4.3.1 Display Backtrace

The backtrace command, which can also be invoked as bt or where, displays the call stack
(aka backtrace) at the point where the debugger was entered:

debug> bt

In standard input:

36: 0* [make-string ...

36: 1* [* 4 ...

36: 2* [+ 3 #\s]

[Debugger Command]backtrace [count]
[Debugger Command]bt [count]
[Debugger Command]where [count]

Print backtrace of all stack frames, or of the innermost count frames. With a negative
argument, print the outermost -count frames. If the number of frames isn't explicitly
given, the debug option depth determines the maximum number of frames printed.

The format of the displayed backtrace is the same as for the backtrace procedure |
see Section 3.4.1.1 [Backtrace Format], page 41 for details.

3.4.3.2 Frame Selection

A call stack consists of a sequence of stack frames, with each frame describing one level
of the nested evaluations and applications that the program was executing when it hit a



50 Guile Reference Manual

breakpoint or an error. Frames are numbered such that frame 0 is the outermost | i.e.
the operation on the call stack that began least recently | and frame N-1 the innermost
(where N is the total number of frames on the stack).

When you enter the debugger, the innermost frame is selected, which means that the
commands for getting information about the \current" frame, or for evaluating expressions
in the context of the current frame, will do so by default with respect to the innermost
frame. To select a di�erent frame, so that these operations will apply to it instead, use the
up, down and frame commands like this:

debug> up

Frame 1 at standard input:36:14

[* 4 ...

debug> frame 0

Frame 0 at standard input:36:1

[make-string ...

debug> down

Frame 1 at standard input:36:14

[* 4 ...

[Debugger Command]up [n]
Move n frames up the stack. For positive n, this advances toward the outermost
frame, to higher frame numbers, to frames that have existed longer. n defaults to
one.

[Debugger Command]down [n]
Move n frames down the stack. For positive n, this advances toward the innermost
frame, to lower frame numbers, to frames that were created more recently. n defaults
to one.

[Debugger Command]frame [n]
Select and print a stack frame. With no argument, print the selected stack frame.
(See also \info frame".) An argument speci�es the frame to select; it must be a
stack-frame number.

3.4.3.3 Frame Information

[to be completed]

[Debugger Command]info frame
All about selected stack frame.

[Debugger Command]info args
Argument variables of current stack frame.

[Debugger Command]position
Display the position of the current expression.

3.4.3.4 Frame Evaluation

[to be completed]
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[Debugger Command]evaluate expression
Evaluate an expression. The expression must appear on the same line as the com-
mand, however it may be continued over multiple lines.

3.4.3.5 Single Stepping

[to be completed]

[Debugger Command]step [n]
Continue until entry to nth next frame.

[Debugger Command]next [n]
Continue until entry to nth next frame in same �le.

3.4.3.6 Run To Frame Exit

[to be completed]

[Debugger Command]finish
Continue until evaluation of the current frame is complete, and print the result ob-
tained.

[Debugger Command]trace-finish
Trace until evaluation of the current frame is complete.

3.4.3.7 Continue Execution

[to be completed]

[Debugger Command]continue
Continue program execution.

3.4.3.8 Leave Debugger

[to be completed]

[Debugger Command]quit
Exit the debugger.

3.4.4 Tracing

Tracing has already been described as a breakpoint behaviour (see Section 3.4.2.7 [Break-
point Behaviours], page 44), but we mention it again here because it is so useful, and because
Guile actually now has two mechanisms for tracing, and its worth clarifying the di�erences
between them.

3.4.4.1 Tracing Provided by (ice-9 debug)

The (ice-9 debug) module implements tracing of procedure applications. When a proce-
dure is traced, it means that every call to that procedure is reported to the user during
a program run. The idea is that you can mark a collection of procedures for tracing, and
Guile will subsequently print out a line of the form
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| | [procedure args ...]

whenever a marked procedure is about to be applied to its arguments. This can help
a programmer determine whether a function is being called at the wrong time or with the
wrong set of arguments.

In addition, the indentation of the output is useful for demonstrating how the traced
applications are or are not tail recursive with respect to each other. Thus, a trace of a
non-tail recursive factorial implementation looks like this:

[fact1 4]
| [fact1 3]
| | [fact1 2]
| | | [fact1 1]
| | | | [fact1 0]
| | | | 1
| | | 1
| | 2
| 6
24

While a typical tail recursive implementation would look more like this:
[fact2 4]
[facti 1 4]
[facti 4 3]
[facti 12 2]
[facti 24 1]
[facti 24 0]
24

[Scheme Procedure]trace procedure
Enable tracing for procedure. While a program is being run, Guile will print a brief
report at each call to a traced procedure, advising the user which procedure was called
and the arguments that were passed to it.

[Scheme Procedure]untrace procedure
Disable tracing for procedure.

Here is another example:

(define (rev ls)

(if (null? ls)

'()

(append (rev (cdr ls))

(cons (car ls) '())))) ) rev

(trace rev) ) (rev)

(rev '(a b c d e))
) [rev (a b c d e)]

| [rev (b c d e)]

| | [rev (c d e)]

| | | [rev (d e)]

| | | | [rev (e)]

| | | | | [rev ()]
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| | | | | ()

| | | | (e)

| | | (e d)

| | (e d c)

| (e d c b)

(e d c b a)

(e d c b a)

Note the way Guile indents the output, illustrating the depth of execution at each
procedure call. This can be used to demonstrate, for example, that Guile implements
self-tail-recursion properly:

(define (rev ls sl)

(if (null? ls)

sl

(rev (cdr ls)

(cons (car ls) sl)))) ) rev

(trace rev) ) (rev)

(rev '(a b c d e) '())
) [rev (a b c d e) ()]

[rev (b c d e) (a)]

[rev (c d e) (b a)]

[rev (d e) (c b a)]

[rev (e) (d c b a)]

[rev () (e d c b a)]

(e d c b a)

(e d c b a)

Since the tail call is e�ectively optimized to a goto statement, there is no need for
Guile to create a new stack frame for each iteration. Tracing reveals this optimization in
operation.

3.4.4.2 Breakpoint-based Tracing

Guile's newer mechanism implements tracing as an optional behaviour for any kind of
breakpoint.

To trace a procedure (in the same kind of way as the older tracing), use the trace!

procedure to set a procedure breakpoint with trace-here behaviour:

(trace! fact1)

a
Set breakpoint 1: [fact1]
)
#<<procedure-breakpoint> 40337bf0>

(fact1 4)

a
| [fact1 4]

| | [fact1 3]
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| | | [fact1 2]

| | | | [fact1 1]

| | | | | [fact1 0]

| | | | | 1

| | | | 2

| | | 6

| | 24

| 24
)
24

To trace evaluation of a source expression, evaluate code containing a breakpoint marker
## in the appropriate place, then use set-breakpoint to change the behaviour of the new
breakpoint to trace-here:

(define (fact1 n)

(if ##(= n 0)

1

(* n (fact1 (- n 1)))))

a
Set breakpoint 4: standard input:13:9: (= n 0)

(use-modules (ice-9 debugger behaviour))

(set-breakpoint! trace-here 4)

a
Breakpoint 4: standard input:13:9: (= n 0)

enabled? = #t

behaviour = #<procedure trace-here ()>

(fact1 4)

a
| (= n 0)

| #f

| (= n 0)

| #f

| (= n 0)

| #f

| (= n 0)

| #f

| (= n 0)

| #t
)
24

(Note | this example reveals a bug: each occurrence of (= n 0) should be shown indented
with respect to the one before it, as fact1 does not call itself tail-recursively.)

You can also give a breakpoint the trace-subtree behaviour, which means to trace the
breakpoint location itself plus any evaluations and applications that occur below it in the
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call stack. In the following example, this allows us to see the evaluated arguments that are
being compared by the = procedure:

(set-breakpoint! trace-subtree 4)

a
Breakpoint 4: standard input:13:9: (= n 0)

enabled? = #t

behaviour = #<procedure trace-subtree ()>

(fact1 4)

a
| (= n 0)

| [= 4 0]

| #f

| (= n 0)

| [= 3 0]

| #f

| (= n 0)

| [= 2 0]

| #f

| (= n 0)

| [= 1 0]

| #f

| (= n 0)

| [= 0 0]

| #t
)
24

3.4.4.3 Di�erences Between Old and New Tracing Mechanisms

The newer tracing mechanism is more general and so more powerful than the older one:
it works for expressions as well as procedure applications, and it implements the useful
trace-subtree behaviour as well as the more traditional trace-here.

The older mechanism will probably become obsolete eventually, but it's worth keeping
it around for a while until we are sure that the new mechanism is correct and does what
programmers need.
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3.5 Further Reading

� The website http://www.schemers.org is a good starting point for all things Scheme.

� Dorai Sitaram's online Scheme tutorial, Teach Yourself Scheme in Fixnum Days, at
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html. Includes a
nice explanation of continuations.

� The complete text of Structure and Interpretation of Computer Programs, the classic
introduction to computer science and Scheme by Hal Abelson, Jerry Sussman and Julie
Sussman, is now available online at http://mitpress.mit.edu/sicp/sicp.html.
This site also provides teaching materials related to the book, and all the source code
used in the book, in a form suitable for loading and running.

http://www.schemers.org
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html
http://mitpress.mit.edu/sicp/sicp.html
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4 Programming in C

This part of the manual explains the general concepts that you need to understand when
interfacing to Guile from C. You will learn about how the latent typing of Scheme is em-
bedded into the static typing of C, how the garbage collection of Guile is made available to
C code, and how continuations inuence the control ow in a C program.

This knowledge should make it straightforward to add new functions to Guile that can
be called from Scheme. Adding new data types is also possible and is done by de�ning
smobs.

The Section 4.6 [Programming Overview], page 82 section of this part contains general
musings and guidelines about programming with Guile. It explores di�erent ways to design
a program around Guile, or how to embed Guile into existing programs.

There is also a pedagogical yet detailed explanation of how the data representation of
Guile is implemented, See Appendix A [Data Representation], page 485. You don't need
to know the details given there to use Guile from C, but they are useful when you want to
modify Guile itself or when you are just curious about how it is all done.

For detailed reference information on the variables, functions etc. that make up Guile's
application programming interface (API), See Chapter 5 [API Reference], page 93.

4.1 Linking Programs With Guile

This section covers the mechanics of linking your program with Guile on a typical POSIX
system.

The header �le <libguile.h> provides declarations for all of Guile's functions and con-
stants. You should #include it at the head of any C source �le that uses identi�ers described
in this manual. Once you've compiled your source �les, you need to link them against the
Guile object code library, libguile.

On most systems, you should not need to tell the compiler and linker explicitly where
they can �nd `libguile.h' and `libguile'. When Guile has been installed in a peculiar
way, or when you are on a peculiar system, things might not be so easy and you might
need to pass additional -I or -L options to the compiler. Guile provides the utility program
guile-config to help you �nd the right values for these options. You would typically
run guile-config during the con�guration phase of your program and use the obtained
information in the Make�le.

4.1.1 Guile Initialization Functions

To initialize Guile, you can use one of several functions. The �rst, scm_with_guile, is the
most portable way to initialize Guile. It will initialize Guile when necessary and then call
a function that you can specify. Multiple threads can call scm_with_guile concurrently
and it can also be called more than once in a given thread. The global state of Guile will
survive from one call of scm_with_guile to the next. Your function is called from within
scm_with_guile since the garbage collector of Guile needs to know where the stack of each
thread is.

A second function, scm_init_guile, initializes Guile for the current thread. When it
returns, you can use the Guile API in the current thread. This function employs some
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non-portable magic to learn about stack bounds and might thus not be available on all
platforms.

One common way to use Guile is to write a set of C functions which perform some useful
task, make them callable from Scheme, and then link the program with Guile. This yields
a Scheme interpreter just like guile, but augmented with extra functions for some speci�c
application | a special-purpose scripting language.

In this situation, the application should probably process its command-line arguments
in the same manner as the stock Guile interpreter. To make that straightforward, Guile
provides the scm_boot_guile and scm_shell function.

4.1.2 A Sample Guile Main Program

Here is `simple-guile.c', source code for a main and an inner_main function that will
produce a complete Guile interpreter.

/* simple-guile.c --- how to start up the Guile

interpreter from C code. */

/* Get declarations for all the scm_ functions. */

#include <libguile.h>

static void

inner_main (void *closure, int argc, char **argv)

{

/* module initializations would go here */

scm_shell (argc, argv);

}

int

main (int argc, char **argv)

{

scm_boot_guile (argc, argv, inner_main, 0);

return 0; /* never reached */

}

The main function calls scm_boot_guile to initialize Guile, passing it inner_main.
Once scm_boot_guile is ready, it invokes inner_main, which calls scm_shell to process
the command-line arguments in the usual way.

Here is a Make�le which you can use to compile the above program. It uses guile-

config to learn about the necessary compiler and linker ags.

# Use GCC, if you have it installed.

CC=gcc

# Tell the C compiler where to find <libguile.h>

CFLAGS=`guile-config compile`

# Tell the linker what libraries to use and where to find them.

LIBS=`guile-config link`



Chapter 4: Programming in C 59

simple-guile: simple-guile.o

${CC} simple-guile.o ${LIBS} -o simple-guile

simple-guile.o: simple-guile.c

${CC} -c ${CFLAGS} simple-guile.c

If you are using the GNU Autoconf package to make your application more portable,
Autoconf will settle many of the details in the Make�le above automatically, making it
much simpler and more portable; we recommend using Autoconf with Guile. Guile also
provides the GUILE_FLAGS macro for autoconf that performs all necessary checks. Here is
a `configure.in' �le for simple-guile that uses this macro. Autoconf can use this �le
as a template to generate a configure script. In order for Autoconf to �nd the GUILE_

FLAGS macro, you will need to run aclocal �rst (see section \Invoking aclocal" in GNU
Automake).

AC_INIT(simple-guile.c)

# Find a C compiler.

AC_PROG_CC

# Check for Guile

GUILE_FLAGS

# Generate a Makefile, based on the results.

AC_OUTPUT(Makefile)

Here is a Makefile.in template, from which the configure script produces a Make�le
customized for the host system:

# The configure script fills in these values.

CC=@CC@

CFLAGS=@GUILE_CFLAGS@

LIBS=@GUILE_LDFLAGS@

simple-guile: simple-guile.o

${CC} simple-guile.o ${LIBS} -o simple-guile

simple-guile.o: simple-guile.c

${CC} -c ${CFLAGS} simple-guile.c

The developer should use Autoconf to generate the `configure' script from the
`configure.in' template, and distribute `configure' with the application. Here's how a
user might go about building the application:

$ ls

Makefile.in configure* configure.in simple-guile.c

$ ./configure

creating cache ./config.cache

checking for gcc... (cached) gcc

checking whether the C compiler (gcc ) works... yes

checking whether the C compiler (gcc ) is a cross-compiler... no
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checking whether we are using GNU C... (cached) yes

checking whether gcc accepts -g... (cached) yes

checking for Guile... yes

creating ./config.status

creating Makefile

$ make

gcc -c -I/usr/local/include simple-guile.c

gcc simple-guile.o -L/usr/local/lib -lguile -lqthreads -lpthread -lm -o simple-guile

$ ./simple-guile

guile> (+ 1 2 3)

6

guile> (getpwnam "jimb")

#("jimb" "83Z7d75W2tyJQ" 4008 10 "Jim Blandy" "/u/jimb"

"/usr/local/bin/bash")

guile> (exit)

$

4.2 Linking Guile with Libraries

The previous section has briey explained how to write programs that make use of an
embedded Guile interpreter. But sometimes, all you want to do is make new primitive
procedures and data types available to the Scheme programmer. Writing a new version of
guile is inconvenient in this case and it would in fact make the life of the users of your
new features needlessly hard.

For example, suppose that there is a program guile-db that is a version of Guile with
additional features for accessing a database. People who want to write Scheme programs
that use these features would have to use guile-db instead of the usual guile program.
Now suppose that there is also a program guile-gtk that extends Guile with access to
the popular Gtk+ toolkit for graphical user interfaces. People who want to write GUIs
in Scheme would have to use guile-gtk. Now, what happens when you want to write a
Scheme application that uses a GUI to let the user access a database? You would have to
write a third program that incorporates both the database stu� and the GUI stu�. This
might not be easy (because guile-gtk might be a quite obscure program, say) and taking
this example further makes it easy to see that this approach can not work in practice.

It would have been much better if both the database features and the GUI feature had
been provided as libraries that can just be linked with guile. Guile makes it easy to do just
this, and we encourage you to make your extensions to Guile available as libraries whenever
possible.

You write the new primitive procedures and data types in the normal fashion, and link
them into a shared library instead of into a stand-alone program. The shared library can
then be loaded dynamically by Guile.

4.2.1 A Sample Guile Extension

This section explains how to make the Bessel functions of the C library available to Scheme.
First we need to write the appropriate glue code to convert the arguments and return values
of the functions from Scheme to C and back. Additionally, we need a function that will add
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them to the set of Guile primitives. Because this is just an example, we will only implement
this for the j0 function.

Consider the following �le `bessel.c'.
#include <math.h>
#include <libguile.h>

SCM
j0_wrapper (SCM x)
{
return scm_make_real (j0 (scm_num2dbl (x, "j0")));

}

void
init_bessel ()
{
scm_c_define_gsubr ("j0", 1, 0, 0, j0_wrapper);

}

This C source �le needs to be compiled into a shared library. Here is how to do it on
GNU/Linux:

gcc -shared -o libguile-bessel.so -fPIC bessel.c

For creating shared libraries portably, we recommend the use of GNU Libtool (see section
\Introduction" in GNU Libtool).

A shared library can be loaded into a running Guile process with the function load-

extension. In addition to the name of the library to load, this function also expects the
name of a function from that library that will be called to initialize it. For our example,
we are going to call the function init_bessel which will make j0_wrapper available to
Scheme programs with the name j0. Note that we do not specify a �lename extension such
as `.so' when invoking load-extension. The right extension for the host platform will be
provided automatically.

(load-extension "libguile-bessel" "init_bessel")
(j0 2)
) 0.223890779141236

For this to work, load-extension must be able to �nd `libguile-bessel', of course.
It will look in the places that are usual for your operating system, and it will additionally
look into the directories listed in the LTDL_LIBRARY_PATH environment variable.

To see how these Guile extensions via shared libraries relate to the module system, See
Section 2.3.5.3 [Putting Extensions into Modules], page 9.
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4.3 General concepts for using libguile

When you want to embed the Guile Scheme interpreter into your program or library, you
need to link it against the `libguile' library (see Section 4.1 [Linking Programs With
Guile], page 55). Once you have done this, your C code has access to a number of data
types and functions that can be used to invoke the interpreter, or make new functions that
you have written in C available to be called from Scheme code, among other things.

Scheme is di�erent from C in a number of signi�cant ways, and Guile tries to make the
advantages of Scheme available to C as well. Thus, in addition to a Scheme interpreter,
libguile also o�ers dynamic types, garbage collection, continuations, arithmetic on arbitrary
sized numbers, and other things.

The two fundamental concepts are dynamic types and garbage collection. You need to
understand how libguile o�ers them to C programs in order to use the rest of libguile. Also,
the more general control ow of Scheme caused by continuations needs to be dealt with.

Running asynchronous signal handlers and multi-threading is known to C code already,
but there are of course a few additional rules when using them together with libguile.

4.3.1 Dynamic Types

Scheme is a dynamically-typed language; this means that the system cannot, in general,
determine the type of a given expression at compile time. Types only become apparent at
run time. Variables do not have �xed types; a variable may hold a pair at one point, an
integer at the next, and a thousand-element vector later. Instead, values, not variables,
have �xed types.

In order to implement standard Scheme functions like pair? and string? and provide
garbage collection, the representation of every value must contain enough information to
accurately determine its type at run time. Often, Scheme systems also use this information
to determine whether a program has attempted to apply an operation to an inappropriately
typed value (such as taking the car of a string).

Because variables, pairs, and vectors may hold values of any type, Scheme implementa-
tions use a uniform representation for values | a single type large enough to hold either a
complete value or a pointer to a complete value, along with the necessary typing informa-
tion.

In Guile, this uniform representation of all Scheme values is the C type SCM. This is
an opaque type and its size is typically equivalent to that of a pointer to void. Thus, SCM
values can be passed around e�ciently and they take up reasonably little storage on their
own.

The most important rule is: You never access a SCM value directly; you only pass it to
functions or macros de�ned in libguile.

As an obvious example, although a SCM variable can contain integers, you can of course
not compute the sum of two SCM values by adding them with the C + operator. You must
use the libguile function scm_sum.

Less obvious and therefore more important to keep in mind is that you also cannot
directly test SCM values for trueness. In Scheme, the value #f is considered false and of
course a SCM variable can represent that value. But there is no guarantee that the SCM

representation of #f looks false to C code as well. You need to use scm_is_true or scm_
is_false to test a SCM value for trueness or falseness, respectively.
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You also can not directly compare two SCM values to �nd out whether they are identical
(that is, whether they are eq? in Scheme terms). You need to use scm_is_eq for this.

The one exception is that you can directly assign a SCM value to a SCM variable by using
the C = operator.

The following (contrived) example shows how to do it right. It implements a function of
two arguments (a and ag) that returns a+1 if ag is true, else it returns a unchanged.

SCM

my_incrementing_function (SCM a, SCM flag)

{

SCM result;

if (scm_is_true (flag))

result = scm_sum (a, scm_from_int (1));

else

result = a;

return result;

}

Often, you need to convert between SCM values and approriate C values. For example,
we needed to convert the integer 1 to its SCM representation in order to add it to a. Libguile
provides many function to do these conversions, both from C to SCM and from SCM to C.

The conversion functions follow a common naming pattern: those that make a SCM value
from a C value have names of the form scm_from_type (...) and those that convert a SCM
value to a C value use the form scm_to_type (...).

However, it is best to avoid converting values when you can. When you must combine
C values and SCM values in a computation, it is often better to convert the C values to SCM

values and do the computation by using libguile functions than to the other way around
(converting SCM to C and doing the computation some other way).

As a simple example, consider this version of my_incrementing_function from above:

SCM

my_other_incrementing_function (SCM a, SCM flag)

{

int result;

if (scm_is_true (flag))

result = scm_to_int (a) + 1;

else

result = scm_to_int (a);

return scm_from_int (result);

}

This version is much less general than the original one: it will only work for values A that
can �t into a int. The original function will work for all values that Guile can represent
and that scm_sum can understand, including integers bigger than long long, oating point
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numbers, complex numbers, and new numerical types that have been added to Guile by
third-party libraries.

Also, computing with SCM is not necessarily ine�cient. Small integers will be encoded
directly in the SCM value, for example, and do not need any additional memory on the heap.
See Appendix A [Data Representation], page 485 to �nd out the details.

Some special SCM values are available to C code without needing to convert them from
C values:

Scheme value C representation
#f SCM_BOOL_F

#t SCM_BOOL_T

() SCM_EOL

In addition to SCM, Guile also de�nes the related type scm_t_bits. This is an unsigned
integral type of su�cient size to hold all information that is directly contained in a SCM value.
The scm_t_bits type is used internally by Guile to do all the bit twiddling explained in
Appendix A [Data Representation], page 485, but you will encounter it occasionally in
low-level user code as well.

4.3.2 Garbage Collection

As explained above, the SCM type can represent all Scheme values. Some values �t entirely
into a SCM value (such as small integers), but other values require additional storage in the
heap (such as strings and vectors). This additional storage is managed automatically by
Guile. You don't need to explicitely deallocate it when a SCM value is no longer used.

Two things must be guaranteed so that Guile is able to manage the storage automatically:
it must know about all blocks of memory that have ever been allocated for Scheme values,
and it must know about all Scheme values that are still being used. Given this knowledge,
Guile can periodically free all blocks that have been allocated but are not used by any active
Scheme values. This activity is called garbage collection.

It is easy for Guile to remember all blocks of memory that it has allocated for use by
Scheme values, but you need to help it with �nding all Scheme values that are in use by C
code.

You do this when writing a SMOBmark function, for example (see Section 4.4.4 [Garbage
Collecting Smobs], page 73). By calling this function, the garbage collector learns about all
references that your SMOB has to other SCM values.

Other references to SCM objects, such as global variables of type SCM or other random
data structures in the heap that contain �elds of type SCM, can be made visible to the
garbage collector by calling the functions scm_gc_protect or scm_permanent_object. You
normally use these funtions for long lived objects such as a hash table that is stored in a
global variable. For temporary references in local variables or function arguments, using
these functions would be too expensive.

These references are handled di�erently: Local variables (and function arguments) of
type SCM are automatically visible to the garbage collector. This works because the collector
scans the stack for potential references to SCM objects and considers all referenced objects to
be alive. The scanning considers each and every word of the stack, regardless of what it is
actually used for, and then decides whether it could possibly be a reference to a SCM object.
Thus, the scanning is guaranteed to �nd all actual references, but it might also �nd words
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that only accidentally look like references. These `false positives' might keep SCM objects
alive that would otherwise be considered dead. While this might waste memory, keeping
an object around longer than it strictly needs to is harmless. This is why this technique is
called \conservative garbage collection". In practice, the wasted memory seems to be no
problem.

The stack of every thread is scanned in this way and the registers of the CPU and all
other memory locations where local variables or function parameters might show up are
included in this scan as well.

The consequence of the conservative scanning is that you can just declare local variables
and function parameters of type SCM and be sure that the garbage collector will not free
the corresponding objects.

However, a local variable or function parameter is only protected as long as it is really
on the stack (or in some register). As an optimization, the C compiler might reuse its
location for some other value and the SCM object would no longer be protected. Normally,
this leads to exactly the right behabvior: the compiler will only overwrite a reference when
it is no longer needed and thus the object becomes unprotected precisely when the reference
disappears, just as wanted.

There are situations, however, where a SCM object needs to be around longer than its
reference from a local variable or function parameter. This happens, for example, when you
retrieve some pointer from a smob and work with that pointer directly. The reference to the
SCM smob object might be dead after the pointer has been retrieved, but the pointer itself
(and the memory pointed to) is still in use and thus the smob object must be protected.
The compiler does not know about this connection and might overwrite the SCM reference
too early.

To get around this problem, you can use scm_remember_upto_here_1 and its cousins.
It will keep the compiler from overwriting the reference. For a typical example of its use,
see Section 4.4.6 [Remembering During Operations], page 75.

4.3.3 Control Flow

Scheme has a more general view of program ow than C, both locally and non-locally.

Controlling the local ow of control involves things like gotos, loops, calling functions
and returning from them. Non-local control ow refers to situations where the program
jumps across one or more levels of function activations without using the normal call or
return operations.

The primitive means of C for local control ow is the goto statement, together with if.
Loops done with for, while or do could in principle be rewritten with just goto and if. In
Scheme, the primitive means for local control ow is the function call (together with if).
Thus, the repetition of some computation in a loop is ultimately implemented by a function
that calls itself, that is, by recursion.

This approach is theoretically very powerful since it is easier to reason formally about
recursion than about gotos. In C, using recursion exclusively would not be practical, though,
since it would eat up the stack very quickly. In Scheme, however, it is practical: function
calls that appear in a tail position do not use any additional stack space (see Section 3.1.3.2
[Tail Calls], page 22).
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A function call is in a tail position when it is the last thing the calling function does.
The value returned by the called function is immediately returned from the calling function.
In the following example, the call to bar-1 is in a tail position, while the call to bar-2 is
not. (The call to 1- in foo-2 is in a tail position, though.)

(define (foo-1 x)

(bar-1 (1- x)))

(define (foo-2 x)

(1- (bar-2 x)))

Thus, when you take care to recurse only in tail positions, the recursion will only use
constant stack space and will be as good as a loop constructed from gotos.

Scheme o�ers a few syntactic abstractions (do and named let) that make writing loops
slightly easier.

But only Scheme functions can call other functions in a tail position: C functions can
not. This matters when you have, say, two functions that call each other recursively to
form a common loop. The following (unrealistic) example shows how one might go about
determing whether a non-negative integer n is even or odd.

(define (my-even? n)

(cond ((zero? n) #t)

(else (my-odd? (1- n)))))

(define (my-odd? n)

(cond ((zero? n) #f)

(else (my-even? (1- n)))))

Because the calls to my-even? and my-odd? are in tail positions, these two procedures
can be applied to arbitrary large integers without overowing the stack. (They will still
take a lot of time, of course.)

However, when one or both of the two procedures would be rewritten in C, it could no
longer call its companion in a tail position (since C does not have this concept). You might
need to take this consideration into account when deciding which parts of your program to
write in Scheme and which in C.

In addition to calling functions and returning from them, a Scheme program can also
exit non-locally from a function so that the control ow returns directly to an outer level.
This means that some functions might not return at all.

Even more, it is not only possible to jump to some outer level of control, a Scheme
program can also jump back into the middle of a function that has already exited. This
might cause some functions to return more than once.

In general, these non-local jumps are done by invoking continuations that have previ-
ously been captured using call-with-current-continuation. Guile also o�ers a slightly
restricted set of functions, catch and throw, that can only be used for non-local exits.
This restriction makes them more e�cient. Error reporting (with the function error) is
implemented by invoking throw, for example. The functions catch and throw belong to
the topic of exceptions.

Since Scheme functions can call C functions and vice versa, C code can experience the
more general control ow of Scheme as well. It is possible that a C function will not return
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at all, or will return more than once. While C does o�er setjmp and longjmp for non-local
exits, it is still an unusual thing for C code. In contrast, non-local exits are very common
in Scheme, mostly to report errors.

You need to be prepared for the non-local jumps in the control ow whenever you use a
function from libguile: it is best to assume that any libguile function might signal an
error or run a pending signal handler (which in turn can do arbitrary things).

It is often necessary to take cleanup actions when the control leaves a function non-
locally. Also, when the control returns non-locally, some setup actions might be called for.
For example, the Scheme function with-output-to-port needs to modify the global state so
that current-output-port returns the port passed to with-output-to-port. The global
output port needs to be reset to its previous value when with-output-to-port returns
normally or when it is exited non-locally. Likewise, the port needs to be set again when
control enters non-locally.

Scheme code can use the dynamic-wind function to arrange for the setting and reset-
ting of the global state. C code can use the corresponding scm_internal_dynamic_wind

function, or a scm_dynwind_begin/scm_dynwind_end pair together with suitable 'dynwind
actions' (see Section 5.11.9 [Dynamic Wind], page 266).

Instead of coping with non-local control ow, you can also prevent it by erecting a
continuation barrier, See Section 5.17.3 [Continuation Barriers], page 325. The function
scm_c_with_continuation_barrier, for example, is guaranteed to return exactly once.

4.3.4 Asynchronous Signals

You can not call libguile functions from handlers for POSIX signals, but you can register
Scheme handlers for POSIX signals such as SIGINT. These handlers do not run during the
actual signal delivery. Instead, they are run when the program (more precisely, the thread
that the handler has been registered for) reaches the next safe point.

The libguile functions themselves have many such safe points. Consequently, you must
be prepared for arbitrary actions anytime you call a libguile function. For example, even
scm_cons can contain a safe point and when a signal handler is pending for your thread,
calling scm_cons will run this handler and anything might happen, including a non-local
exit although scm_cons would not ordinarily do such a thing on its own.

If you do not want to allow the running of asynchronous signal handlers, you can block
them temporarily with scm_dynwind_block_asyncs, for example. See See Section 5.17.2.1
[System asyncs], page 323.

Since signal handling in Guile relies on safe points, you need to make sure that your
functions do o�er enough of them. Normally, calling libguile functions in the normal course
of action is all that is needed. But when a thread might spent a long time in a code section
that calls no libguile function, it is good to include explicit safe points. This can allow the
user to interrupt your code with hC-ci, for example.

You can do this with the macro SCM_TICK. This macro is syntactically a statement.
That is, you could use it like this:

while (1)

{

SCM_TICK;

do_some_work ();
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}

Frequent execution of a safe point is even more important in multi threaded programs,
See Section 4.3.5 [Multi-Threading], page 66.

4.3.5 Multi-Threading

Guile can be used in multi-threaded programs just as well as in single-threaded ones.

Each thread that wants to use functions from libguile must put itself into guile mode and
must then follow a few rules. If it doesn't want to honor these rules in certain situations,
a thread can temporarily leave guile mode (but can no longer use libguile functions during
that time, of course).

Threads enter guile mode by calling scm_with_guile, scm_boot_guile, or scm_init_
guile. As explained in the reference documentation for these functions, Guile will then
learn about the stack bounds of the thread and can protect the SCM values that are stored
in local variables. When a thread puts itself into guile mode for the �rst time, it gets a
Scheme representation and is listed by all-threads, for example.

While in guile mode, a thread promises to reach a safe point reasonably frequently (see
Section 4.3.4 [Asynchronous Signals], page 65). In addition to running signal handlers,
these points are also potential rendezvous points of all guile mode threads where Guile can
orchestrate global things like garbage collection. Consequently, when a thread in guile mode
blocks and does no longer frequent safe points, it might cause all other guile mode threads
to block as well. To prevent this from happening, a guile mode thread should either only
block in libguile functions (who know how to do it right), or should temporarily leave guile
mode with scm_without_guile.

For some common blocking operations, Guile provides convenience functions. For ex-
ample, if you want to lock a pthread mutex while in guile mode, you might want to use
scm_pthread_mutex_lock which is just like pthread_mutex_lock except that it leaves guile
mode while blocking.

All libguile functions are (intended to be) robust in the face of multiple threads using
them concurrently. This means that there is no risk of the internal data structures of libguile
becoming corrupted in such a way that the process crashes.

A program might still produce non-sensical results, though. Taking hashtables as an
example, Guile guarantees that you can use them from multiple threads concurrently and
a hashtable will always remain a valid hashtable and Guile will not crash when you access
it. It does not guarantee, however, that inserting into it concurrently from two threads will
give useful results: only one insertion might actually happen, none might happen, or the
table might in general be modi�ed in a totally arbitrary manner. (It will still be a valid
hashtable, but not the one that you might have expected.) Guile might also signal an error
when it detects a harmful race condition.

Thus, you need to put in additional synchronizations when multiple threads want to use
a single hashtable, or any other mutable Scheme object.

When writing C code for use with libguile, you should try to make it robust as well. An
example that converts a list into a vector will help to illustrate. Here is a correct version:

SCM

my_list_to_vector (SCM list)
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{

SCM vector = scm_make_vector (scm_length (list), SCM_UNDEFINED);

size_t len, i;

len = SCM_SIMPLE_VECTOR_LENGTH (vector);

i = 0;

while (i < len && scm_is_pair (list))

{

SCM_SIMPLE_VECTOR_SET (vector, i, SCM_CAR (list));

list = SCM_CDR (list);

i++;

}

return vector;

}

The �rst thing to note is that storing into a SCM location concurrently from multiple
threads is guaranteed to be robust: you don't know which value wins but it will in any case
be a valid SCM value.

But there is no guarantee that the list referenced by list is not modi�ed in another
thread while the loop iterates over it. Thus, while copying its elements into the vector, the
list might get longer or shorter. For this reason, the loop must check both that it doesn't
overrun the vector (SCM_SIMPLE_VECTOR_SET does no range-checking) and that it doesn't
overrung the list (SCM_CAR and SCM_CDR likewise do no type checking).

It is safe to use SCM_CAR and SCM_CDR on the local variable list once it is known that
the variable contains a pair. The contents of the pair might change spontaneously, but it
will always stay a valid pair (and a local variable will of course not spontaneously point to
a di�erent Scheme object).

Likewise, a simple vector such as the one returned by scm_make_vector

is guaranteed to always stay the same length so that it is safe to only use
SCM SIMPLE VECTOR LENGTH once and store the result. (In the example, vector is
safe anyway since it is a fresh object that no other thread can possibly know about until it
is returned from my_list_to_vector.)

Of course the behavior of my_list_to_vector is suboptimal when list does indeed get
asynchronously lengthened or shortened in another thread. But it is robust: it will always
return a valid vector. That vector might be shorter than expected, or its last elements
might be unspeci�ed, but it is a valid vector and if a program wants to rule out these cases,
it must avoid modifying the list asynchronously.

Here is another version that is also correct:

SCM

my_pedantic_list_to_vector (SCM list)

{

SCM vector = scm_make_vector (scm_length (list), SCM_UNDEFINED);

size_t len, i;

len = SCM_SIMPLE_VECTOR_LENGTH (vector);
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i = 0;

while (i < len)

{

SCM_SIMPLE_VECTOR_SET (vector, i, scm_car (list));

list = scm_cdr (list);

i++;

}

return vector;

}

This version uses the type-checking and thread-robust functions scm_car and scm_cdr

instead of the faster, but less robust macros SCM_CAR and SCM_CDR. When the list is short-
ened (that is, when list holds a non-pair), scm_car will throw an error. This might be
preferable to just returning a half-initialized vector.

The API for accessing vectors and arrays of various kinds from C takes a slightly di�erent
approach to thread-robustness. In order to get at the raw memory that stores the elements
of an array, you need to reserve that array as long as you need the raw memory. During
the time an array is reserved, its elements can still spontaneously change their values, but
the memory itself and other things like the size of the array are guaranteed to stay �xed.
Any operation that would change these parameters of an array that is currently reserved
will signal an error. In order to avoid these errors, a program should of course put suitable
synchronization mechanisms in place. As you can see, Guile itself is again only concerned
about robustness, not about correctness: without proper synchronization, your program
will likely not be correct, but the worst consequence is an error message.

Real thread-safeness often requires that a critical section of code is executed in a certain
restricted manner. A common requirement is that the code section is not entered a second
time when it is already being executed. Locking a mutex while in that section ensures
that no other thread will start executing it, blocking asyncs ensures that no asynchronous
code enters the section again from the current thread, and the error checking of Guile
mutexes guarantees that an error is signalled when the current thread accidentally reenters
the critical section via recursive function calls.

Guile provides two mechanisms to support critical sections as outlined above. You
can either use the macros SCM_CRITICAL_SECTION_START and SCM_CRITICAL_SECTION_END

for very simple sections; or use a dynwind context together with a call to scm_dynwind_

critical_section.

The macros only work reliably for critical sections that are guaranteed to not cause a
non-local exit. They also do not detect an accidental reentry by the current thread. Thus,
you should probably only use them to delimit critical sections that do not contain calls to
libguile functions or to other external functions that might do complicated things.

The function scm_dynwind_critical_section, on the other hand, will correctly deal
with non-local exits because it requires a dynwind context. Also, by using a separate mutex
for each critical section, it can detect accidental reentries.
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4.4 De�ning New Types (Smobs)

Smobs are Guile's mechanism for adding new primitive types to the system. The term
\smob" was coined by Aubrey Ja�er, who says it comes from \small object", referring to
the fact that they are quite limited in size: they can hold just one pointer to a larger
memory block plus 16 extra bits.

To de�ne a new smob type, the programmer provides Guile with some essential infor-
mation about the type | how to print it, how to garbage collect it, and so on | and Guile
allocates a fresh type tag for it. The programmer can then use scm_c_define_gsubr to
make a set of C functions visible to Scheme code that create and operate on these objects.

(You can �nd a complete version of the example code used in this section in the Guile
distribution, in `doc/example-smob'. That directory includes a make�le and a suitable main
function, so you can build a complete interactive Guile shell, extended with the datatypes
described here.)

4.4.1 Describing a New Type

To de�ne a new type, the programmer must write four functions to manage instances of the
type:

mark Guile will apply this function to each instance of the new type it encounters
during garbage collection. This function is responsible for telling the collector
about any other SCM values that the object has stored. The default smob mark
function does nothing. See Section 4.4.4 [Garbage Collecting Smobs], page 73,
for more details.

free Guile will apply this function to each instance of the new type that is to be
deallocated. The function should release all resources held by the object. This
is analogous to the Java �nalization method{ it is invoked at an unspeci�ed
time (when garbage collection occurs) after the object is dead. The default free
function frees the smob data (if the size of the struct passed to scm_make_smob_
type is non-zero) using scm_gc_free. See Section 4.4.4 [Garbage Collecting
Smobs], page 73, for more details.

This function operates while the heap is in an inconsistent state and must
therefore be careful. See Section 5.7 [Smobs], page 222, for details about what
this function is allowed to do.

print Guile will apply this function to each instance of the new type to print the value,
as for display or write. The default print function prints #<NAME ADDRESS>

where NAME is the �rst argument passed to scm_make_smob_type. For more
information on printing, see Section A.2.5.6 [Port Data], page 497.

equalp If Scheme code asks the equal? function to compare two instances of the same
smob type, Guile calls this function. It should return SCM_BOOL_T if a and
b should be considered equal?, or SCM_BOOL_F otherwise. If equalp is NULL,
equal? will assume that two instances of this type are never equal? unless they
are eq?.

To actually register the new smob type, call scm_make_smob_type. It returns a value of
type scm_t_bits which identi�es the new smob type.
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The four special functions described above are registered by calling one of scm_set_
smob_mark, scm_set_smob_free, scm_set_smob_print, or scm_set_smob_equalp, as ap-
propriate. Each function is intended to be used at most once per type, and the call should
be placed immediately following the call to scm_make_smob_type.

There can only be at most 256 di�erent smob types in the system. Instead of registering a
huge number of smob types (for example, one for each relevant C struct in your application),
it is sometimes better to register just one and implement a second layer of type dispatching
on top of it. This second layer might use the 16 extra bits to extend its type, for example.

Here is how one might declare and register a new type representing eight-bit gray-scale
images:

#include <libguile.h>

struct image {

int width, height;

char *pixels;

/* The name of this image */

SCM name;

/* A function to call when this image is

modified, e.g., to update the screen,

or SCM_BOOL_F if no action necessary */

SCM update_func;

};

static scm_t_bits image_tag;

void

init_image_type (void)

{

image_tag = scm_make_smob_type ("image", sizeof (struct image));

scm_set_smob_mark (image_tag, mark_image);

scm_set_smob_free (image_tag, free_image);

scm_set_smob_print (image_tag, print_image);

}

4.4.2 Creating Instances

Normally, smobs can have one immediate word of data. This word stores either a pointer to
an additional memory block that holds the real data, or it might hold the data itself when
it �ts. The word is large enough for a SCM value, a pointer to void, or an integer that �ts
into a size_t or ssize_t.

You can also create smobs that have two or three immediate words, and when these
words su�ce to store all data, it is more e�cient to use these super-sized smobs instead of
using a normal smob plus a memory block. See Section 4.4.7 [Double Smobs], page 76, for
their discussion.
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Guile provides functions for managing memory which are often helpful when implement-
ing smobs. See Section 5.14.2 [Memory Blocks], page 297.

To retrieve the immediate word of a smob, you use the macro SCM_SMOB_DATA. It can
be set with SCM_SET_SMOB_DATA. The 16 extra bits can be accessed with SCM_SMOB_FLAGS

and SCM_SET_SMOB_FLAGS.

The two macros SCM_SMOB_DATA and SCM_SET_SMOB_DATA treat the immediate word as
if it were of type scm_t_bits, which is an unsigned integer type large enough to hold a
pointer to void. Thus you can use these macros to store arbitrary pointers in the smob
word.

When you want to store a SCM value directly in the immediate word of a smob, you
should use the macros SCM_SMOB_OBJECT and SCM_SET_SMOB_OBJECT to access it.

Creating a smob instance can be tricky when it consists of multiple steps that allocate
resources and might fail. It is recommended that you go about creating a smob in the
following way:

� Allocate the memory block for holding the data with scm_gc_malloc.

� Initialize it to a valid state without calling any functions that might cause a non-local
exits. For example, initialize pointers to NULL. Also, do not store SCM values in it that
must be protected. Initialize these �elds with SCM_BOOL_F.

A valid state is one that can be safely acted upon by the mark and free functions of
your smob type.

� Create the smob using SCM_NEWSMOB, passing it the initialized memory block. (This
step will always succeed.)

� Complete the initialization of the memory block by, for example, allocating additional
resources and making it point to them.

This procedure ensures that the smob is in a valid state as soon as it exists, that all
resources that are allocated for the smob are properly associated with it so that they can
be properly freed, and that no SCM values that need to be protected are stored in it while
the smob does not yet competely exist and thus can not protect them.

Continuing the example from above, if the global variable image_tag contains a tag
returned by scm_make_smob_type, here is how we could construct a smob whose immediate
word contains a pointer to a freshly allocated struct image:

SCM

make_image (SCM name, SCM s_width, SCM s_height)

{

SCM smob;

struct image *image;

int width = scm_to_int (s_width);

int height = scm_to_int (s_height);

/* Step 1: Allocate the memory block.

*/

image = (struct image *) scm_gc_malloc (sizeof (struct image), "image");

/* Step 2: Initialize it with straight code.
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*/

image->width = width;

image->height = height;

image->pixels = NULL;

image->name = SCM_BOOL_F;

image->update_func = SCM_BOOL_F;

/* Step 3: Create the smob.

*/

SCM_NEWSMOB (smob, image_tag, image);

/* Step 4: Finish the initialization.

*/

image->name = name;

image->pixels = scm_gc_malloc (width * height, "image pixels");

return smob;

}

Let us look at what might happen when make_image is called.

The conversions of s width and s height to ints might fail and signal an error, thus
causing a non-local exit. This is not a problem since no resources have been allocated yet
that would have to be freed.

The allocation of image in step 1 might fail, but this is likewise no problem.

Step 2 can not exit non-locally. At the end of it, the image struct is in a valid state for
the mark_image and free_image functions (see below).

Step 3 can not exit non-locally either. This is guaranteed by Guile. After it, smob
contains a valid smob that is properly initialized and protected, and in turn can properly
protect the Scheme values in its image struct.

But before the smob is completely created, SCM_NEWSMOB might cause the garbage col-
lector to run. During this garbage collection, the SCM values in the image struct would
be invisible to Guile. It only gets to know about them via the mark_image function, but
that function can not yet do its job since the smob has not been created yet. Thus, it is
important to not store SCM values in the image struct until after the smob has been created.

Step 4, �nally, might fail and cause a non-local exit. In that case, the complete creation
of the smob has not been successful, but it does nevertheless exist in a valid state. It will
eventually be freed by the garbage collector, and all the resources that have been allocated
for it will be correctly freed by free_image.

4.4.3 Type checking

Functions that operate on smobs should check that the passed SCM value indeed is a suitable
smob before accessing its data. They can do this with scm_assert_smob_type.

For example, here is a simple function that operates on an image smob, and checks the
type of its argument.

SCM

clear_image (SCM image_smob)
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{

int area;

struct image *image;

scm_assert_smob_type (image_tag, image_smob);

image = (struct image *) SCM_SMOB_DATA (image_smob);

area = image->width * image->height;

memset (image->pixels, 0, area);

/* Invoke the image's update function.

*/

if (scm_is_true (image->update_func))

scm_call_0 (image->update_func);

scm_remember_upto_here_1 (image_smob);

return SCM_UNSPECIFIED;

}

See Section 4.4.6 [Remembering During Operations], page 75 for an explanation of the
call to scm_remember_upto_here_1.

4.4.4 Garbage Collecting Smobs

Once a smob has been released to the tender mercies of the Scheme system, it must be
prepared to survive garbage collection. Guile calls the mark and free functions of the smob
to manage this.

As described in more detail elsewhere (see Section A.2.2 [Conservative GC], page 490),
every object in the Scheme system has a mark bit, which the garbage collector uses to tell
live objects from dead ones. When collection starts, every object's mark bit is clear. The
collector traces pointers through the heap, starting from objects known to be live, and sets
the mark bit on each object it encounters. When it can �nd no more unmarked objects,
the collector walks all objects, live and dead, frees those whose mark bits are still clear, and
clears the mark bit on the others.

The two main portions of the collection are called the mark phase, during which the col-
lector marks live objects, and the sweep phase, during which the collector frees all unmarked
objects.

The mark bit of a smob lives in a special memory region. When the collector encounters
a smob, it sets the smob's mark bit, and uses the smob's type tag to �nd the appropriate
mark function for that smob. It then calls this mark function, passing it the smob as its
only argument.

The mark function is responsible for marking any other Scheme objects the smob refers
to. If it does not do so, the objects' mark bits will still be clear when the collector begins
to sweep, and the collector will free them. If this occurs, it will probably break, or at least
confuse, any code operating on the smob; the smob's SCM values will have become dangling
references.
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To mark an arbitrary Scheme object, the mark function calls scm_gc_mark.

Thus, here is how we might write mark_image:

SCM

mark_image (SCM image_smob)

{

/* Mark the image's name and update function. */

struct image *image = (struct image *) SCM_SMOB_DATA (image_smob);

scm_gc_mark (image->name);

scm_gc_mark (image->update_func);

return SCM_BOOL_F;

}

Note that, even though the image's update_func could be an arbitrarily complex struc-
ture (representing a procedure and any values enclosed in its environment), scm_gc_mark
will recurse as necessary to mark all its components. Because scm_gc_mark sets an object's
mark bit before it recurses, it is not confused by circular structures.

As an optimization, the collector will mark whatever value is returned by the mark

function; this helps limit depth of recursion during the mark phase. Thus, the code above
should really be written as:

SCM

mark_image (SCM image_smob)

{

/* Mark the image's name and update function. */

struct image *image = (struct image *) SCM_SMOB_DATA (image_smob);

scm_gc_mark (image->name);

return image->update_func;

}

Finally, when the collector encounters an unmarked smob during the sweep phase, it
uses the smob's tag to �nd the appropriate free function for the smob. It then calls that
function, passing it the smob as its only argument.

The free function must release any resources used by the smob. However, it must not
free objects managed by the collector; the collector will take care of them. For historical
reasons, the return type of the free function should be size_t, an unsigned integral type;
the free function should always return zero.

Here is how we might write the free_image function for the image smob type:

size_t

free_image (SCM image_smob)

{

struct image *image = (struct image *) SCM_SMOB_DATA (image_smob);

scm_gc_free (image->pixels, image->width * image->height, "image pixels");

scm_gc_free (image, sizeof (struct image), "image");
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return 0;

}

During the sweep phase, the garbage collector will clear the mark bits on all live objects.
The code which implements a smob need not do this itself.

There is no way for smob code to be noti�ed when collection is complete.

It is usually a good idea to minimize the amount of processing done during garbage
collection; keep the mark and free functions very simple. Since collections occur at unpre-
dictable times, it is easy for any unusual activity to interfere with normal code.

4.4.5 Garbage Collecting Simple Smobs

It is often useful to de�ne very simple smob types | smobs which have no data to mark,
other than the cell itself, or smobs whose immediate data word is simply an ordinary Scheme
object, to be marked recursively. Guile provides some functions to handle these common
cases; you can use this function as your smob type's mark function, if your smob's structure
is simple enough.

If the smob refers to no other Scheme objects, then no action is necessary; the garbage
collector has already marked the smob cell itself. In that case, you can use zero as your
mark function.

If the smob refers to exactly one other Scheme object via its �rst immediate word, you
can use scm_markcdr as its mark function. Its de�nition is simply:

SCM
scm_markcdr (SCM obj)
{
return SCM_SMOB_OBJECT (obj);

}

4.4.6 Remembering During Operations

It's important that a smob is visible to the garbage collector whenever its contents are being
accessed. Otherwise it could be freed while code is still using it.

For example, consider a procedure to convert image data to a list of pixel values.

SCM

image_to_list (SCM image_smob)

{

struct image *image;

SCM lst;

int i;

scm_assert_smob_type (image_tag, image_smob);

image = (struct image *) SCM_SMOB_DATA (image_smob);

lst = SCM_EOL;

for (i = image->width * image->height - 1; i >= 0; i--)

lst = scm_cons (scm_from_char (image->pixels[i]), lst);

scm_remember_upto_here_1 (image_smob);

return lst;
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}

In the loop, only the image pointer is used and the C compiler has no reason to keep
the image_smob value anywhere. If scm_cons results in a garbage collection, image_smob
might not be on the stack or anywhere else and could be freed, leaving the loop accessing
freed data. The use of scm_remember_upto_here_1 prevents this, by creating a reference
to image_smob after all data accesses.

There's no need to do the same for lst, since that's the return value and the compiler
will certainly keep it in a register or somewhere throughout the routine.

The clear_image example previously shown (see Section 4.4.3 [Type checking], page 72)
also used scm_remember_upto_here_1 for this reason.

It's only in quite rare circumstances that a missing scm_remember_upto_here_1 will
bite, but when it happens the consequences are serious. Fortunately the rule is simple:
whenever calling a Guile library function or doing something that might, ensure that the
SCM of a smob is referenced past all accesses to its insides. Do this by adding an scm_

remember_upto_here_1 if there are no other references.

In a multi-threaded program, the rule is the same. As far as a given thread is concerned,
a garbage collection still only occurs within a Guile library function, not at an arbitrary
time. (Guile waits for all threads to reach one of its library functions, and holds them there
while the collector runs.)

4.4.7 Double Smobs

Smobs are called smob because they are small: they normally have only room for one
void* or SCM value plus 16 bits. The reason for this is that smobs are directly implemented
by using the low-level, two-word cells of Guile that are also used to implement pairs, for
example. (see Appendix A [Data Representation], page 485 for the details.) One word of
the two-word cells is used for SCM_SMOB_DATA (or SCM_SMOB_OBJECT), the other contains
the 16-bit type tag and the 16 extra bits.

In addition to the fundamental two-word cells, Guile also has four-word cells, which are
appropriately called double cells. You can use them for double smobs and get two more
immediate words of type scm_t_bits.

A double smob is created with SCM_NEWSMOB2 or SCM_NEWSMOB3 instead of SCM_NEWSMOB.
Its immediate words can be retrieved as scm_t_bits with SCM_SMOB_DATA_2 and SCM_SMOB_

DATA_3 in addition to SCM_SMOB_DATA. Unsurprisingly, the words can be set to scm_t_bits
values with SCM_SET_SMOB_DATA_2 and SCM_SET_SMOB_DATA_3.

Of course there are also SCM_SMOB_OBJECT_2, SCM_SMOB_OBJECT_3, SCM_SET_SMOB_

OBJECT_2, and SCM_SET_SMOB_OBJECT_3.

4.4.8 The Complete Example

Here is the complete text of the implementation of the image datatype, as presented in the
sections above. We also provide a de�nition for the smob's print function, and make some
objects and functions static, to clarify exactly what the surrounding code is using.

As mentioned above, you can �nd this code in the Guile distribution, in
`doc/example-smob'. That directory includes a make�le and a suitable main function, so
you can build a complete interactive Guile shell, extended with the datatypes described
here.)
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/* file "image-type.c" */

#include <stdlib.h>

#include <libguile.h>

static scm_t_bits image_tag;

struct image {

int width, height;

char *pixels;

/* The name of this image */

SCM name;

/* A function to call when this image is

modified, e.g., to update the screen,

or SCM_BOOL_F if no action necessary */

SCM update_func;

};

static SCM

make_image (SCM name, SCM s_width, SCM s_height)

{

SCM smob;

struct image *image;

int width = scm_to_int (s_width);

int height = scm_to_int (s_height);

/* Step 1: Allocate the memory block.

*/

image = (struct image *) scm_gc_malloc (sizeof (struct image), "image");

/* Step 2: Initialize it with straight code.

*/

image->width = width;

image->height = height;

image->pixels = NULL;

image->name = SCM_BOOL_F;

image->update_func = SCM_BOOL_F;

/* Step 3: Create the smob.

*/

SCM_NEWSMOB (smob, image_tag, image);

/* Step 4: Finish the initialization.

*/

image->name = name;
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image->pixels = scm_gc_malloc (width * height, "image pixels");

return smob;

}

SCM

clear_image (SCM image_smob)

{

int area;

struct image *image;

scm_assert_smob_type (image_tag, image_smob);

image = (struct image *) SCM_SMOB_DATA (image_smob);

area = image->width * image->height;

memset (image->pixels, 0, area);

/* Invoke the image's update function.

*/

if (scm_is_true (image->update_func))

scm_call_0 (image->update_func);

scm_remember_upto_here_1 (image_smob);

return SCM_UNSPECIFIED;

}

static SCM

mark_image (SCM image_smob)

{

/* Mark the image's name and update function. */

struct image *image = (struct image *) SCM_SMOB_DATA (image_smob);

scm_gc_mark (image->name);

return image->update_func;

}

static size_t

free_image (SCM image_smob)

{

struct image *image = (struct image *) SCM_SMOB_DATA (image_smob);

scm_gc_free (image->pixels, image->width * image->height, "image pixels");

scm_gc_free (image, sizeof (struct image), "image");

return 0;

}
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static int

print_image (SCM image_smob, SCM port, scm_print_state *pstate)

{

struct image *image = (struct image *) SCM_SMOB_DATA (image_smob);

scm_puts ("#<image ", port);

scm_display (image->name, port);

scm_puts (">", port);

/* non-zero means success */

return 1;

}

void

init_image_type (void)

{

image_tag = scm_make_smob_type ("image", sizeof (struct image));

scm_set_smob_mark (image_tag, mark_image);

scm_set_smob_free (image_tag, free_image);

scm_set_smob_print (image_tag, print_image);

scm_c_define_gsubr ("clear-image", 1, 0, 0, clear_image);

scm_c_define_gsubr ("make-image", 3, 0, 0, make_image);

}

Here is a sample build and interaction with the code from the `example-smob' directory,
on the author's machine:

zwingli:example-smob$ make CC=gcc

gcc `guile-config compile` -c image-type.c -o image-type.o

gcc `guile-config compile` -c myguile.c -o myguile.o

gcc image-type.o myguile.o `guile-config link` -o myguile

zwingli:example-smob$ ./myguile

guile> make-image

#<primitive-procedure make-image>

guile> (define i (make-image "Whistler's Mother" 100 100))

guile> i

#<image Whistler's Mother>

guile> (clear-image i)

guile> (clear-image 4)

ERROR: In procedure clear-image in expression (clear-image 4):

ERROR: Wrong type (expecting image): 4

ABORT: (wrong-type-arg)

Type "(backtrace)" to get more information.

guile>
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4.5 Function Snar�ng

When writing C code for use with Guile, you typically de�ne a set of C functions, and then
make some of them visible to the Scheme world by calling scm_c_define_gsubr or related
functions. If you have many functions to publish, it can sometimes be annoying to keep the
list of calls to scm_c_define_gsubr in sync with the list of function de�nitions.

Guile provides the guile-snarf program to manage this problem. Using this tool, you
can keep all the information needed to de�ne the function alongside the function de�nition
itself; guile-snarf will extract this information from your source code, and automatically
generate a �le of calls to scm_c_define_gsubr which you can #include into an initialization
function.

The snar�ng mechanism works for many kind of initialiation actions, not just for col-
lecting calls to scm_c_define_gsubr. For a full list of what can be done, See Section 5.4
[Snar�ng Macros], page 97.

The guile-snarf program is invoked like this:

guile-snarf [-o outfile] [cpp-args ...]

This command will extract initialization actions to out�le. When no out�le has been
speci�ed or when out�le is -, standard output will be used. The C preprocessor is called
with cpp-args (which usually include an input �le) and the output is �ltered to extract the
initialization actions.

If there are errors during processing, out�le is deleted and the program exits with non-
zero status.

During snar�ng, the pre-processor macro SCM_MAGIC_SNARFER is de�ned. You could use
this to avoid including snarfer output �les that don't yet exist by writing code like this:

#ifndef SCM_MAGIC_SNARFER
#include "foo.x"
#endif

Here is how you might de�ne the Scheme function clear-image, implemented by the C
function clear_image:

#include <libguile.h>

SCM_DEFINE (clear_image, "clear-image", 1, 0, 0,

(SCM image_smob),

"Clear the image.")

{

/* C code to clear the image in image_smob... */

}

void

init_image_type ()

{

#include "image-type.x"

}

The SCM_DEFINE declaration says that the C function clear_image implements a
Scheme function called clear-image, which takes one required argument (of type SCM and



Chapter 4: Programming in C 83

named image_smob), no optional arguments, and no rest argument. The string "Clear

the image." provides a short help text for the function, it is called a docstring.

For historical reasons, the SCM_DEFINE macro also de�nes a static array of characters
named s_clear_image, initialized to the string "clear-image". You shouldn't use this array,
but you might need to be aware that it exists.

Assuming the text above lives in a �le named `image-type.c', you will need to execute
the following command to prepare this �le for compilation:

guile-snarf -o image-type.x image-type.c

This scans `image-type.c' for SCM_DEFINE declarations, and writes to `image-type.x'
the output:

scm_c_define_gsubr ("clear-image", 1, 0, 0, (SCM (*)() ) clear_image);

When compiled normally, SCM_DEFINE is a macro which expands to the function header
for clear_image.

Note that the output �le name matches the #include from the input �le. Also, you still
need to provide all the same information you would if you were using scm_c_define_gsubr
yourself, but you can place the information near the function de�nition itself, so it is less
likely to become incorrect or out-of-date.

If you have many �les that guile-snarf must process, you should consider using a
fragment like the following in your Make�le:

snarfcppopts = $(DEFS) $(INCLUDES) $(CPPFLAGS) $(CFLAGS)

.SUFFIXES: .x

.c.x:

guile-snarf -o $@ $< $(snarfcppopts)

This tells make to run guile-snarf to produce each needed `.x' �le from the corre-
sponding `.c' �le.

The program guile-snarf passes its command-line arguments directly to the C prepro-
cessor, which it uses to extract the information it needs from the source code. this means
you can pass normal compilation ags to guile-snarf to de�ne preprocessor symbols, add
header �le directories, and so on.
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4.6 An Overview of Guile Programming

Guile is designed as an extension language interpreter that is straightforward to integrate
with applications written in C (and C++). The big win here for the application developer
is that Guile integration, as the Guile web page says, \lowers your project's hacktivation
energy." Lowering the hacktivation energy means that you, as the application developer,
and your users, reap the bene�ts that ow from being able to extend the application in a
high level extension language rather than in plain old C.

In abstract terms, it's di�cult to explain what this really means and what the integration
process involves, so instead let's begin by jumping straight into an example of how you might
integrate Guile into an existing program, and what you could expect to gain by so doing.
With that example under our belts, we'll then return to a more general analysis of the
arguments involved and the range of programming options available.

4.6.1 How One Might Extend Dia Using Guile

Dia is a free software program for drawing schematic diagrams like ow charts and oor
plans (http://www.gnome.org/projects/dia/). This section conducts the thought ex-
periment of adding Guile to Dia. In so doing, it aims to illustrate several of the steps and
considerations involved in adding Guile to applications in general.

4.6.1.1 Deciding Why You Want to Add Guile

First o�, you should understand why you want to add Guile to Dia at all, and that means
forming a picture of what Dia does and how it does it. So, what are the constituents of the
Dia application?

� Most importantly, the application domain objects | in other words, the concepts that
di�erentiate Dia from another application such as a word processor or spreadsheet:
shapes, templates, connectors, pages, plus the properties of all these things.

� The code that manages the graphical face of the application, including the layout and
display of the objects above.

� The code that handles input events, which indicate that the application user is wanting
to do something.

(In other words, a textbook example of the model - view - controller paradigm.)

Next question: how will Dia bene�t once the Guile integration is complete? Several
(positive!) answers are possible here, and the choice is obviously up to the application
developers. Still, one answer is that the main bene�t will be the ability to manipulate Dia's
application domain objects from Scheme.

Suppose that Dia made a set of procedures available in Scheme, representing the most
basic operations on objects such as shapes, connectors, and so on. Using Scheme, the
application user could then write code that builds upon these basic operations to create
more complex procedures. For example, given basic procedures to enumerate the objects
on a page, to determine whether an object is a square, and to change the �ll pattern of a
single shape, the user can write a Scheme procedure to change the �ll pattern of all squares
on the current page:

(define (change-squares'-fill-pattern new-pattern)

(for-each-shape current-page

http://www.gnome.org/projects/dia/


Chapter 4: Programming in C 85

(lambda (shape)

(if (square? shape)

(change-fill-pattern shape new-pattern)))))

4.6.1.2 Four Steps Required to Add Guile

Assuming this objective, four steps are needed to achieve it.

First, you need a way of representing your application-speci�c objects | such as shape
in the previous example | when they are passed into the Scheme world. Unless your
objects are so simple that they map naturally into builtin Scheme data types like numbers
and strings, you will probably want to use Guile's SMOB interface to create a new Scheme
data type for your objects.

Second, you need to write code for the basic operations like for-each-shape and
square? such that they access and manipulate your existing data structures correctly, and
then make these operations available as primitives on the Scheme level.

Third, you need to provide some mechanism within the Dia application that a user can
hook into to cause arbitrary Scheme code to be evaluated.

Finally, you need to restructure your top-level application C code a little so that it
initializes the Guile interpreter correctly and declares your SMOBs and primitives to the
Scheme world.

The following subsections expand on these four points in turn.

4.6.1.3 How to Represent Dia Data in Scheme

For all but the most trivial applications, you will probably want to allow some representation
of your domain objects to exist on the Scheme level. This is where the idea of SMOBs comes
in, and with it issues of lifetime management and garbage collection.

To get more concrete about this, let's look again at the example we gave earlier of how
application users can use Guile to build higher-level functions from the primitives that Dia
itself provides.

(define (change-squares'-fill-pattern new-pattern)

(for-each-shape current-page

(lambda (shape)

(if (square? shape)

(change-fill-pattern shape new-pattern)))))

Consider what is stored here in the variable shape. For each shape on the current page,
the for-each-shape primitive calls (lambda (shape) ...) with an argument representing
that shape. Question is: how is that argument represented on the Scheme level? The issues
are as follows.

� Whatever the representation, it has to be decodable again by the C code for the square?
and change-fill-pattern primitives. In other words, a primitive like square? has
somehow to be able to turn the value that it receives back into something that points
to the underlying C structure describing a shape.

� The representation must also cope with Scheme code holding on to the value for later
use. What happens if the Scheme code stores shape in a global variable, but then that
shape is deleted (in a way that the Scheme code is not aware of), and later on some
other Scheme code uses that global variable again in a call to, say, square??
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� The lifetime and memory allocation of objects that exist only in the Scheme world
is managed automatically by Guile's garbage collector using one simple rule: when
there are no remaining references to an object, the object is considered dead and so
its memory is freed. But for objects that exist in both C and Scheme, the picture is
more complicated; in the case of Dia, where the shape argument passes transiently
in and out of the Scheme world, it would be quite wrong the delete the underlying
C shape just because the Scheme code has �nished evaluation. How do we avoid this
happening?

One resolution of these issues is for the Scheme-level representation of a shape to be a
new, Scheme-speci�c C structure wrapped up as a SMOB. The SMOB is what is passed
into and out of Scheme code, and the Scheme-speci�c C structure inside the SMOB points
to Dia's underlying C structure so that the code for primitives like square? can get at it.

To cope with an underlying shape being deleted while Scheme code is still holding onto
a Scheme shape value, the underlying C structure should have a new �eld that points to the
Scheme-speci�c SMOB. When a shape is deleted, the relevant code chains through to the
Scheme-speci�c structure and sets its pointer back to the underlying structure to NULL.
Thus the SMOB value for the shape continues to exist, but any primitive code that tries
to use it will detect that the underlying shape has been deleted because the underlying
structure pointer is NULL.

So, to summarize the steps involved in this resolution of the problem (and assuming that
the underlying C structure for a shape is struct dia_shape):

� De�ne a new Scheme-speci�c structure that points to the underlying C structure:

struct dia_guile_shape

{

struct dia_shape * c_shape; /* NULL => deleted */

}

� Add a �eld to struct dia_shape that points to its struct dia_guile_shape if it has
one |

struct dia_shape

{

...

struct dia_guile_shape * guile_shape;

}

| so that C code can set guile_shape->c_shape to NULL when the underlying shape
is deleted.

� Wrap struct dia_guile_shape as a SMOB type.

� Whenever you need to represent a C shape onto the Scheme level, create a SMOB
instance for it, and pass that.

� In primitive code that receives a shape SMOB instance, check the c_shape �eld when
decoding it, to �nd out whether the underlying C shape is still there.

As far as memory management is concerned, the SMOB values and their Scheme-speci�c
structures are under the control of the garbage collector, whereas the underlying C struc-
tures are explicitly managed in exactly the same way that Dia managed them before we
thought of adding Guile.
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When the garbage collector decides to free a shape SMOB value, it calls the SMOB
free function that was speci�ed when de�ning the shape SMOB type. To maintain the
correctness of the guile_shape �eld in the underlying C structure, this function should
chain through to the underlying C structure (if it still exists) and set its guile_shape �eld
to NULL.

For full documentation on de�ning and using SMOB types, see Section 4.4 [De�ning
New Types (Smobs)], page 68.

4.6.1.4 Writing Guile Primitives for Dia

Once the details of object representation are decided, writing the primitive function code
that you need is usually straightforward.

A primitive is simply a C function whose arguments and return value are all of type
SCM, and whose body does whatever you want it to do. As an example, here is a possible
implementation of the square? primitive:

#define FUNC_NAME "square?"

static SCM square_p (SCM shape)

{

struct dia_guile_shape * guile_shape;

/* Check that arg is really a shape SMOB. */

SCM_VALIDATE_SHAPE (SCM_ARG1, shape);

/* Access Scheme-specific shape structure. */

guile_shape = SCM_SMOB_DATA (shape);

/* Find out if underlying shape exists and is a

square; return answer as a Scheme boolean. */

return scm_from_bool (guile_shape->c_shape &&

(guile_shape->c_shape->type == DIA_SQUARE));

}

#undef FUNC_NAME

Notice how easy it is to chain through from the SCM shape parameter that square_p

receives | which is a SMOB | to the Scheme-speci�c structure inside the SMOB, and
thence to the underlying C structure for the shape.

In this code, SCM_SMOB_DATA and scm_from_bool are from the standard Guile API.
SCM_VALIDATE_SHAPE is a macro that you should de�ne as part of your SMOB de�nition:
it checks that the passed parameter is of the expected type. This is needed to guard against
Scheme code using the square? procedure incorrectly, as in (square? "hello"); Scheme's
latent typing means that usage errors like this must be caught at run time.

Having written the C code for your primitives, you need to make them available as
Scheme procedures by calling the scm_c_define_gsubr function. scm_c_define_gsubr

(see Section 5.8.2 [Primitive Procedures], page 226) takes arguments that specify the
Scheme-level name for the primitive and how many required, optional and rest arguments
it can accept. The square? primitive always requires exactly one argument, so the call to
make it available in Scheme reads like this:
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scm_c_define_gsubr ("square?", 1, 0, 0, square_p);

For where to put this call, see the subsection after next on the structure of Guile-enabled
code (see Section 4.6.1.6 [Dia Structure], page 86).

4.6.1.5 Providing a Hook for the Evaluation of Scheme Code

To make the Guile integration useful, you have to design some kind of hook into your
application that application users can use to cause their Scheme code to be evaluated.

Technically, this is straightforward; you just have to decide on a mechanism that is
appropriate for your application. Think of Emacs, for example: when you type hESCi :, you
get a prompt where you can type in any Elisp code, which Emacs will then evaluate. Or,
again like Emacs, you could provide a mechanism (such as an init �le) to allow Scheme
code to be associated with a particular key sequence, and evaluate the code when that key
sequence is entered.

In either case, once you have the Scheme code that you want to evaluate, as a null
terminated string, you can tell Guile to evaluate it by calling the scm_c_eval_string

function.

4.6.1.6 Top-level Structure of Guile-enabled Dia

Let's assume that the pre-Guile Dia code looks structurally like this:

� main ()

� do lots of initialization and setup stu�

� enter Gtk main loop

When you add Guile to a program, one (rather technical) requirement is that Guile's
garbage collector needs to know where the bottom of the C stack is. The easiest way to
ensure this is to use scm_boot_guile like this:

� main ()

� do lots of initialization and setup stu�

� scm_boot_guile (argc, argv, inner_main, NULL)

� inner_main ()

� de�ne all SMOB types

� export primitives to Scheme using scm_c_define_gsubr

� enter Gtk main loop

In other words, you move the guts of what was previously in your main function into a
new function called inner_main, and then add a scm_boot_guile call, with inner_main

as a parameter, to the end of main.

Assuming that you are using SMOBs and have written primitive code as described in the
preceding subsections, you also need to insert calls to declare your new SMOBs and export
the primitives to Scheme. These declarations must happen inside the dynamic scope of the
scm_boot_guile call, but also before any code is run that could possibly use them | the
beginning of inner_main is an ideal place for this.
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4.6.1.7 Going Further with Dia and Guile

The steps described so far implement an initial Guile integration that already gives a lot of
additional power to Dia application users. But there are further steps that you could take,
and it's interesting to consider a few of these.

In general, you could progressively move more of Dia's source code from C into Scheme.
This might make the code more maintainable and extensible, and it could open the door to
new programming paradigms that are tricky to e�ect in C but straightforward in Scheme.

A speci�c example of this is that you could use the guile-gtk package, which provides
Scheme-level procedures for most of the Gtk+ library, to move the code that lays out and
displays Dia objects from C to Scheme.

As you follow this path, it naturally becomes less useful to maintain a distinction between
Dia's original non-Guile-related source code, and its later code implementing SMOBs and
primitives for the Scheme world.

For example, suppose that the original source code had a dia_change_fill_pattern

function:

void dia_change_fill_pattern (struct dia_shape * shape,

struct dia_pattern * pattern)

{

/* real pattern change work */

}

During initial Guile integration, you add a change_fill_pattern primitive for Scheme
purposes, which accesses the underlying structures from its SMOB values and uses dia_

change_fill_pattern to do the real work:

SCM change_fill_pattern (SCM shape, SCM pattern)

{

struct dia_shape * d_shape;

struct dia_pattern * d_pattern;

...

dia_change_fill_pattern (d_shape, d_pattern);

return SCM_UNSPECIFIED;

}

At this point, it makes sense to keep dia_change_fill_pattern and change_fill_

pattern separate, because dia_change_fill_pattern can also be called without going
through Scheme at all, say because the user clicks a button which causes a C-registered
Gtk+ callback to be called.

But, if the code for creating buttons and registering their callbacks is moved into Scheme
(using guile-gtk), it may become true that dia_change_fill_pattern can no longer be
called other than through Scheme. In which case, it makes sense to abolish it and move its
contents directly into change_fill_pattern, like this:

SCM change_fill_pattern (SCM shape, SCM pattern)

{
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struct dia_shape * d_shape;

struct dia_pattern * d_pattern;

...

/* real pattern change work */

return SCM_UNSPECIFIED;

}

So further Guile integration progressively reduces the amount of functional C code that
you have to maintain over the long term.

A similar argument applies to data representation. In the discussion of SMOBs earlier,
issues arose because of the di�erent memory management and lifetime models that normally
apply to data structures in C and in Scheme. However, with further Guile integration, you
can resolve this issue in a more radical way by allowing all your data structures to be under
the control of the garbage collector, and kept alive by references from the Scheme world.
Instead of maintaining an array or linked list of shapes in C, you would instead maintain a
list in Scheme.

Rather like the coalescing of dia_change_fill_pattern and change_fill_pattern,
the practical upshot of such a change is that you would no longer have to keep the dia_

shape and dia_guile_shape structures separate, and so wouldn't need to worry about
the pointers between them. Instead, you could change the SMOB de�nition to wrap the
dia_shape structure directly, and send dia_guile_shape o� to the scrap yard. Cut out
the middle man!

Finally, we come to the holy grail of Guile's free software / extension language approach.
Once you have a Scheme representation for interesting Dia data types like shapes, and a
handy bunch of primitives for manipulating them, it suddenly becomes clear that you have
a bundle of functionality that could have far-ranging use beyond Dia itself. In other words,
the data types and primitives could now become a library, and Dia becomes just one of
the many possible applications using that library | albeit, at this early stage, a rather
important one!

In this model, Guile becomes just the glue that binds everything together. Imagine an
application that usefully combined functionality from Dia, Gnumeric and GnuCash | it's
tricky right now, because no such application yet exists; but it'll happen some day . . .

4.6.2 Why Scheme is More Hackable Than C

Underlying Guile's value proposition is the assumption that programming in a high level
language, speci�cally Guile's implementation of Scheme, is necessarily better in some way
than programming in C. What do we mean by this claim, and how can we be so sure?

One class of advantages applies not only to Scheme, but more generally to any inter-
pretable, high level, scripting language, such as Emacs Lisp, Python, Ruby, or TEX's macro
language. Common features of all such languages, when compared to C, are that:

� They lend themselves to rapid and experimental development cycles, owing usually to
a combination of their interpretability and the integrated development environment in
which they are used.
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� They free developers from some of the low level bookkeeping tasks associated with C
programming, notably memory management.

� They provide high level features such as container objects and exception handling that
make common programming tasks easier.

In the case of Scheme, particular features that make programming easier | and more
fun! | are its powerful mechanisms for abstracting parts of programs (closures | see
Section 3.1.4 [About Closure], page 24) and for iteration (see Section 5.11.4 [while do],
page 252).

The evidence in support of this argument is empirical: the huge amount of code that has
been written in extension languages for applications that support this mechanism. Most
notable are extensions written in Emacs Lisp for GNU Emacs, in TEX's macro language
for TEX, and in Script-Fu for the Gimp, but there is increasingly now a signi�cant code
eco-system for Guile-based applications as well, such as Lilypond and GnuCash. It is
close to inconceivable that similar amounts of functionality could have been added to these
applications just by writing new code in their base implementation languages.

4.6.3 Example: Using Guile for an Application Testbed

As an example of what this means in practice, imagine writing a testbed for an applica-
tion that is tested by submitting various requests (via a C interface) and validating the
output received. Suppose further that the application keeps an idea of its current state,
and that the \correct" output for a given request may depend on the current application
state. A complete \white box"1 test plan for this application would aim to submit all pos-
sible requests in each distinguishable state, and validate the output for all request/state
combinations.

To write all this test code in C would be very tedious. Suppose instead that the testbed
code adds a single new C function, to submit an arbitrary request and return the response,
and then uses Guile to export this function as a Scheme procedure. The rest of the testbed
can then be written in Scheme, and so bene�ts from all the advantages of programming in
Scheme that were described in the previous section.

(In this particular example, there is an additional bene�t of writing most of the testbed
in Scheme. A common problem for white box testing is that mistakes and mistaken as-
sumptions in the application under test can easily be reproduced in the testbed code. It is
more di�cult to copy mistakes like this when the testbed is written in a di�erent language
from the application.)

4.6.4 A Choice of Programming Options

The preceding arguments and example point to a model of Guile programming that is
applicable in many cases. According to this model, Guile programming involves a balance
between C and Scheme programming, with the aim being to extract the greatest possible
Scheme level bene�t from the least amount of C level work.

The C level work required in this model usually consists of packaging and exporting
functions and application objects such that they can be seen and manipulated on the Scheme

1 A white box test plan is one that incorporates knowledge of the internal design of the application under
test.
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level. To help with this, Guile's C language interface includes utility features that aim to
make this kind of integration very easy for the application developer. These features are
documented later in this part of the manual: see REFFIXME.

This model, though, is really just one of a range of possible programming options. If
all of the functionality that you need is available from Scheme, you could choose instead
to write your whole application in Scheme (or one of the other high level languages that
Guile supports through translation), and simply use Guile as an interpreter for Scheme.
(In the future, we hope that Guile will also be able to compile Scheme code, so lessening
the performance gap between C and Scheme code.) Or, at the other end of the C{Scheme
scale, you could write the majority of your application in C, and only call out to Guile
occasionally for speci�c actions such as reading a con�guration �le or executing a user-
speci�ed extension. The choices boil down to two basic questions:

� Which parts of the application do you write in C, and which in Scheme (or another
high level translated language)?

� How do you design the interface between the C and Scheme parts of your application?

These are of course design questions, and the right design for any given application
will always depend upon the particular requirements that you are trying to meet. In the
context of Guile, however, there are some generally applicable considerations that can help
you when designing your answers.

4.6.4.1 What Functionality is Already Available?

Suppose, for the sake of argument, that you would prefer to write your whole application
in Scheme. Then the API available to you consists of:

� standard Scheme

� plus the extensions to standard Scheme provided by Guile in its core distribution

� plus any additional functionality that you or others have packaged so that it can be
loaded as a Guile Scheme module.

A module in the last category can either be a pure Scheme module | in other words
a collection of utility procedures coded in Scheme | or a module that provides a Scheme
interface to an extension library coded in C | in other words a nice package where someone
else has done the work of wrapping up some useful C code for you. The set of available
modules is growing quickly and already includes such useful examples as (gtk gtk), which
makes Gtk+ drawing functions available in Scheme, and (database postgres), which pro-
vides SQL access to a Postgres database.

Given the growing collection of pre-existing modules, it is quite feasible that your appli-
cation could be implemented by combining a selection of these modules together with new
application code written in Scheme.

If this approach is not enough, because the functionality that your application needs is
not already available in this form, and it is impossible to write the new functionality in
Scheme, you will need to write some C code. If the required function is already available in
C (e.g. in a library), all you need is a little glue to connect it to the world of Guile. If not,
you need both to write the basic code and to plumb it into Guile.

In either case, two general considerations are important. Firstly, what is the interface
by which the functionality is presented to the Scheme world? Does the interface consist
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only of function calls (for example, a simple drawing interface), or does it need to include
objects of some kind that can be passed between C and Scheme and manipulated by both
worlds. Secondly, how does the lifetime and memory management of objects in the C code
relate to the garbage collection governed approach of Scheme objects? In the case where
the basic C code is not already written, most of the di�culties of memory management can
be avoided by using Guile's C interface features from the start.

For the full documentation on writing C code for Guile and connecting existing C code
to the Guile world, see REFFIXME.

4.6.4.2 Functional and Performance Constraints

4.6.4.3 Your Preferred Programming Style

4.6.4.4 What Controls Program Execution?

4.6.5 How About Application Users?

So far we have considered what Guile programming means for an application developer.
But what if you are instead using an existing Guile-based application, and want to know
what your options are for programming and extending this application?

The answer to this question varies from one application to another, because the options
available depend inevitably on whether the application developer has provided any hooks
for you to hang your own code on and, if there are such hooks, what they allow you to do.2

For example. . .

� If the application permits you to load and execute any Guile code, the world is your
oyster. You can extend the application in any way that you choose.

� A more cautious application might allow you to load and execute Guile code, but only
in a safe environment, where the interface available is restricted by the application
from the standard Guile API.

� Or a really fearful application might not provide a hook to really execute user code
at all, but just use Scheme syntax as a convenient way for users to specify application
data or con�guration options.

In the last two cases, what you can do is, by de�nition, restricted by the application,
and you should refer to the application's own manual to �nd out your options.

The most well known example of the �rst case is Emacs, with its extension language
Emacs Lisp: as well as being a text editor, Emacs supports the loading and execution of
arbitrary Emacs Lisp code. The result of such openness has been dramatic: Emacs now
bene�ts from user-contributed Emacs Lisp libraries that extend the basic editing function
to do everything from reading news to psychoanalysis and playing adventure games. The
only limitation is that extensions are restricted to the functionality provided by Emacs's
built-in set of primitive operations. For example, you can interact and display data by
manipulating the contents of an Emacs bu�er, but you can't pop-up and draw a window
with a layout that is totally di�erent to the Emacs standard.

2 Of course, in the world of free software, you always have the freedom to modify the application's source
code to your own requirements. Here we are concerned with the extension options that the application
has provided for without your needing to modify its source code.
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This situation with a Guile application that supports the loading of arbitrary user code
is similar, except perhaps even more so, because Guile also supports the loading of extension
libraries written in C. This last point enables user code to add new primitive operations to
Guile, and so to bypass the limitation present in Emacs Lisp.

At this point, the distinction between an application developer and an application user
becomes rather blurred. Instead of seeing yourself as a user extending an application, you
could equally well say that you are developing a new application of your own using some of
the primitive functionality provided by the original application. As such, all the discussions
of the preceding sections of this chapter are relevant to how you can proceed with developing
your extension.
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5 API Reference

Guile provides an application programming interface (API) to developers in two core lan-
guages: Scheme and C. This part of the manual contains reference documentation for all of
the functionality that is available through both Scheme and C interfaces.
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5.1 Overview of the Guile API

Guile's application programming interface (API) makes functionality available that an ap-
plication developer can use in either C or Scheme programming. The interface consists of
elements that may be macros, functions or variables in C, and procedures, variables, syntax
or other types of object in Scheme.

Many elements are available to both Scheme and C, in a form that is appropriate.
For example, the assq Scheme procedure is also available as scm_assq to C code. These
elements are documented only once, addressing both the Scheme and C aspects of them.

The Scheme name of an element is related to its C name in a regular way. Also, a C
function takes its parameters in a systematic way.

Normally, the name of a C function can be derived given its Scheme name, using some
simple textual transformations:

� Replace - (hyphen) with _ (underscore).

� Replace ? (question mark) with _p.

� Replace ! (exclamation point) with _x.

� Replace internal -> with _to_.

� Replace <= (less than or equal) with _leq.

� Replace >= (greater than or equal) with _geq.

� Replace < (less than) with _less.

� Replace > (greater than) with _gr.

� Pre�x with scm_.

A C function always takes a �xed number of arguments of type SCM, even when the
corresponding Scheme function takes a variable number.

For some Scheme functions, some last arguments are optional; the corresponding C
function must always be invoked with all optional arguments speci�ed. To get the e�ect
as if an argument has not been speci�ed, pass SCM_UNDEFINED as its value. You can not
do this for an argument in the middle; when one argument is SCM_UNDEFINED all the ones
following it must be SCM_UNDEFINED as well.

Some Scheme functions take an arbitrary number of rest arguments; the corresponding
C function must be invoked with a list of all these arguments. This list is always the last
argument of the C function.

These two variants can also be combined.

The type of the return value of a C function that corresponds to a Scheme function is
always SCM. In the descriptions below, types are therefore often omitted bot for the return
value and for the arguments.

5.2 The SCM Type

Guile represents all Scheme values with the single C type SCM. For an introduction to this
topic, See Section 4.3.1 [Dynamic Types], page 60.

[C Type]SCM
SCM is the user level abstract C type that is used to represent all of Guile's Scheme
objects, no matter what the Scheme object type is. No C operation except assignment
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is guaranteed to work with variables of type SCM, so you should only use macros and
functions to work with SCM values. Values are converted between C data types and
the SCM type with utility functions and macros.

[C Type]scm_t_bits
scm_t_bits is an unsigned integral data type that is guaranteed to be large enough
to hold all information that is required to represent any Scheme object. While this
data type is mostly used to implement Guile's internals, the use of this type is also
necessary to write certain kinds of extensions to Guile.

[C Type]scm_t_signed_bits
This is a signed integral type of the same size as scm_t_bits.

[C Macro]scm_t_bits SCM_UNPACK (SCM x )
Transforms the SCM value x into its representation as an integral type. Only after
applying SCM_UNPACK it is possible to access the bits and contents of the SCM value.

[C Macro]SCM SCM_PACK (scm t bits x )
Takes a valid integral representation of a Scheme object and transforms it into its
representation as a SCM value.

5.3 Initializing Guile

Each thread that wants to use functions from the Guile API needs to put itself into guile
mode with either scm_with_guile or scm_init_guile. The global state of Guile is initial-
ized automatically when the �rst thread enters guile mode.

When a thread wants to block outside of a Guile API function, it should leave guile
mode temporarily with scm_without_guile, See Section 5.17.6 [Blocking], page 329.

Threads that are created by call-with-new-thread or scm_spawn_thread start out in
guile mode so you don't need to initialize them.

[C Function]void * scm_with_guile (void *(*func)(void *), void *data)
Call func, passing it data and return what func returns. While func is running, the
current thread is in guile mode and can thus use the Guile API.

When scm_with_guile is called from guile mode, the thread remains in guile mode
when scm_with_guile returns.

Otherwise, it puts the current thread into guile mode and, if needed, gives it a Scheme
representation that is contained in the list returned by all-threads, for example.
This Scheme representation is not removed when scm_with_guile returns so that a
given thread is always represented by the same Scheme value during its lifetime, if at
all.

When this is the �rst thread that enters guile mode, the global state of Guile is
initialized before calling func.

The function func is called via scm_with_continuation_barrier; thus, scm_with_
guile returns exactly once.

When scm_with_guile returns, the thread is no longer in guile mode (except when
scm_with_guile was called from guile mode, see above). Thus, only func can store
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SCM variables on the stack and be sure that they are protected from the garbage
collector. See scm_init_guile for another approach at initializing Guile that does
not have this restriction.

It is OK to call scm_with_guile while a thread has temporarily left guile mode via
scm_without_guile. It will then simply temporarily enter guile mode again.

[C Function]void scm_init_guile ()
Arrange things so that all of the code in the current thread executes as if from within
a call to scm_with_guile. That is, all functions called by the current thread can
assume that SCM values on their stack frames are protected from the garbage collector
(except when the thread has explicitely left guile mode, of course).

When scm_init_guile is called from a thread that already has been in guile mode
once, nothing happens. This behavior matters when you call scm_init_guile while
the thread has only temporarily left guile mode: in that case the thread will not be in
guile mode after scm_init_guile returns. Thus, you should not use scm_init_guile
in such a scenario.

When a uncaught throw happens in a thread that has been put into guile mode via
scm_init_guile, a short message is printed to the current error port and the thread
is exited via scm_pthread_exit (NULL). No restrictions are placed on continuations.

The function scm_init_guile might not be available on all platforms since it requires
some stack-bounds-�nding magic that might not have been ported to all platforms
that Guile runs on. Thus, if you can, it is better to use scm_with_guile or its
variation scm_boot_guile instead of this function.

[C Function]void scm_boot_guile (int argc, char **argv, void (*main_func )
(void *data, int argc, char **argv ), void *data )

Enter guile mode as with scm_with_guile and call main func, passing it data, argc,
and argv as indicated. When main func returns, scm_boot_guile calls exit (0);
scm_boot_guile never returns. If you want some other exit value, have main func
call exit itself. If you don't want to exit at all, use scm_with_guile instead of
scm_boot_guile.

The function scm_boot_guile arranges for the Scheme command-line function to
return the strings given by argc and argv. If main func modi�es argc or argv, it
should call scm_set_program_arguments with the �nal list, so Scheme code will
know which arguments have been processed.

[C Function]void scm_shell (int argc, char **argv )
Process command-line arguments in the manner of the guile executable. This in-
cludes loading the normal Guile initialization �les, interacting with the user or run-
ning any scripts or expressions speci�ed by -s or -e options, and then exiting. See
Section 3.3.2 [Invoking Guile], page 33, for more details.

Since this function does not return, you must do all application-speci�c initialization
before calling this function.
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5.4 Snar�ng Macros

The following macros do two di�erent things: when compiled normally, they expand in one
way; when processed during snar�ng, they cause the guile-snarf program to pick up some
initialization code, See Section 4.5 [Function Snar�ng], page 79.

The descriptions below use the term `normally' to refer to the case when the code is
compiled normally, and `while snar�ng' when the code is processed by guile-snarf.

[C Macro]SCM_SNARF_INIT (code)
Normally, SCM_SNARF_INIT expands to nothing; while snar�ng, it causes code to be
included in the initialization action �le, followed by a semicolon.

This is the fundamental macro for snar�ng initialization actions. The more specialized
macros below use it internally.

[C Macro]SCM_DEFINE (c name, scheme name, req, opt, var, arglist, docstring)
Normally, this macro expands into

static const char s_c_name[] = scheme_name;
SCM
c_name arglist

While snar�ng, it causes
scm_c_define_gsubr (s_c_name, req, opt, var,

c_name);

to be added to the initialization actions. Thus, you can use it to declare a C function
named c name that will be made available to Scheme with the name scheme name.

Note that the arglist argument must have parentheses around it.

[C Macro]SCM_SYMBOL (c name, scheme name)
[C Macro]SCM_GLOBAL_SYMBOL (c name, scheme name)

Normally, these macros expand into
static SCM c_name

or
SCM c_name

respectively. While snar�ng, they both expand into the initialization code
c_name = scm_permanent_object (scm_from_locale_symbol (scheme_name));

Thus, you can use them declare a static or global variable of type SCM that will be
initialized to the symbol named scheme name.

[C Macro]SCM_KEYWORD (c name, scheme name)
[C Macro]SCM_GLOBAL_KEYWORD (c name, scheme name)

Normally, these macros expand into
static SCM c_name

or
SCM c_name

respectively. While snar�ng, they both expand into the initialization code
c_name = scm_permanent_object (scm_c_make_keyword (scheme_name));

Thus, you can use them declare a static or global variable of type SCM that will be
initialized to the keyword named scheme name.
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[C Macro]SCM_VARIABLE (c name, scheme name)
[C Macro]SCM_GLOBAL_VARIABLE (c name, scheme name)

These macros are equivalent to SCM_VARIABLE_INIT and SCM_GLOBAL_VARIABLE_

INIT, respectively, with a value of SCM_BOOL_F.

[C Macro]SCM_VARIABLE_INIT (c name, scheme name, value)
[C Macro]SCM_GLOBAL_VARIABLE_INIT (c name, scheme name, value)

Normally, these macros expand into
static SCM c_name

or
SCM c_name

respectively. While snar�ng, they both expand into the initialization code
c_name = scm_permanent_object (scm_c_define (scheme_name, value));

Thus, you can use them declare a static or global C variable of type SCM that will
be initialized to the object representing the Scheme variable named scheme name in
the current module. The variable will be de�ned when it doesn't already exist. It is
always set to value.
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5.5 Simple Generic Data Types

This chapter describes those of Guile's simple data types which are primarily used for their
role as items of generic data. By simple we mean data types that are not primarily used as
containers to hold other data | i.e. pairs, lists, vectors and so on. For the documentation
of such compound data types, see Section 5.6 [Compound Data Types], page 166.

5.5.1 Booleans

The two boolean values are #t for true and #f for false.

Boolean values are returned by predicate procedures, such as the general equality predi-
cates eq?, eqv? and equal? (see Section 5.9.1 [Equality], page 236) and numerical and string
comparison operators like string=? (see Section 5.5.5.7 [String Comparison], page 136) and
<= (see Section 5.5.2.8 [Comparison], page 111).

(<= 3 8)
) #t

(<= 3 -3)
) #f

(equal? "house" "houses")
) #f

(eq? #f #f)
)
#t

In test condition contexts like if and cond (see Section 5.11.2 [if cond case], page 251),
where a group of subexpressions will be evaluated only if a condition expression evaluates
to \true", \true" means any value at all except #f.

(if #t "yes" "no")
) "yes"

(if 0 "yes" "no")
) "yes"

(if #f "yes" "no")
) "no"

A result of this asymmetry is that typical Scheme source code more often uses #f ex-
plicitly than #t: #f is necessary to represent an if or cond false value, whereas #t is not
necessary to represent an if or cond true value.

It is important to note that #f is not equivalent to any other Scheme value. In particular,
#f is not the same as the number 0 (like in C and C++), and not the same as the \empty
list" (like in some Lisp dialects).

In C, the two Scheme boolean values are available as the two constants SCM_BOOL_T for
#t and SCM_BOOL_F for #f. Care must be taken with the false value SCM_BOOL_F: it is not
false when used in C conditionals. In order to test for it, use scm_is_false or scm_is_true.
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[Scheme Procedure]not x
[C Function]scm_not (x)

Return #t if x is #f, else return #f.

[Scheme Procedure]boolean? obj
[C Function]scm_boolean_p (obj)

Return #t if obj is either #t or #f, else return #f.

[C Macro]SCM SCM_BOOL_T
The SCM representation of the Scheme object #t.

[C Macro]SCM SCM_BOOL_F
The SCM representation of the Scheme object #f.

[C Function]int scm_is_true (SCM obj)
Return 0 if obj is #f, else return 1.

[C Function]int scm_is_false (SCM obj)
Return 1 if obj is #f, else return 0.

[C Function]int scm_is_bool (SCM obj)
Return 1 if obj is either #t or #f, else return 0.

[C Function]SCM scm_from_bool (int val)
Return #f if val is 0, else return #t.

[C Function]int scm_to_bool (SCM val)
Return 1 if val is SCM_BOOL_T, return 0 when val is SCM_BOOL_F, else signal a `wrong
type' error.

You should probably use scm_is_true instead of this function when you just want
to test a SCM value for trueness.

5.5.2 Numerical data types

Guile supports a rich \tower" of numerical types | integer, rational, real and complex
| and provides an extensive set of mathematical and scienti�c functions for operating on
numerical data. This section of the manual documents those types and functions.

You may also �nd it illuminating to read R5RS's presentation of numbers in Scheme,
which is particularly clear and accessible: see section \Numbers" in R5RS.

5.5.2.1 Scheme's Numerical \Tower"

Scheme's numerical \tower" consists of the following categories of numbers:

integers Whole numbers, positive or negative; e.g. {5, 0, 18.

rationals The set of numbers that can be expressed as p=q where p and q are integers;
e.g. 9=16 works, but pi (an irrational number) doesn't. These include integers
(n=1).

real numbers
The set of numbers that describes all possible positions along a one-dimensional
line. This includes rationals as well as irrational numbers.
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complex numbers
The set of numbers that describes all possible positions in a two dimensional
space. This includes real as well as imaginary numbers (a+ bi, where a is the
real part, b is the imaginary part, and i is the square root of �1.)

It is called a tower because each category \sits on" the one that follows it, in the sense
that every integer is also a rational, every rational is also real, and every real number is
also a complex number (but with zero imaginary part).

In addition to the classi�cation into integers, rationals, reals and complex numbers,
Scheme also distinguishes between whether a number is represented exactly or not. For
example, the result of 2 sin(�=4) is exactly

p
2, but Guile can represent neither �=4 nor

p
2

exactly. Instead, it stores an inexact approximation, using the C type double.

Guile can represent exact rationals of any magnitude, inexact rationals that �t into a C
double, and inexact complex numbers with double real and imaginary parts.

The number? predicate may be applied to any Scheme value to discover whether the
value is any of the supported numerical types.

[Scheme Procedure]number? obj
[C Function]scm_number_p (obj)

Return #t if obj is any kind of number, else #f.

For example:

(number? 3)
) #t

(number? "hello there!")
) #f

(define pi 3.141592654)

(number? pi)
) #t

[C Function]int scm_is_number (SCM obj)
This is equivalent to scm_is_true (scm_number_p (obj)).

The next few subsections document each of Guile's numerical data types in detail.

5.5.2.2 Integers

Integers are whole numbers, that is numbers with no fractional part, such as 2, 83, and
�3789.

Integers in Guile can be arbitrarily big, as shown by the following example.

(define (factorial n)

(let loop ((n n) (product 1))

(if (= n 0)

product

(loop (- n 1) (* product n)))))
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(factorial 3)
) 6

(factorial 20)
) 2432902008176640000

(- (factorial 45))
) -119622220865480194561963161495657715064383733760000000000

Readers whose background is in programming languages where integers are limited by
the need to �t into just 4 or 8 bytes of memory may �nd this surprising, or suspect that
Guile's representation of integers is ine�cient. In fact, Guile achieves a near optimal balance
of convenience and e�ciency by using the host computer's native representation of integers
where possible, and a more general representation where the required number does not �t in
the native form. Conversion between these two representations is automatic and completely
invisible to the Scheme level programmer.

The in�nities `+inf.0' and `-inf.0' are considered to be inexact integers. They are
explained in detail in the next section, together with reals and rationals.

C has a host of di�erent integer types, and Guile o�ers a host of functions to convert
between them and the SCM representation. For example, a C int can be handled with
scm_to_int and scm_from_int. Guile also de�nes a few C integer types of its own, to help
with di�erences between systems.

C integer types that are not covered can be handled with the generic scm_

to_signed_integer and scm_from_signed_integer for signed types, or with
scm_to_unsigned_integer and scm_from_unsigned_integer for unsigned types.

Scheme integers can be exact and inexact. For example, a number written as 3.0 with
an explicit decimal-point is inexact, but it is also an integer. The functions integer? and
scm_is_integer report true for such a number, but the functions scm_is_signed_integer
and scm_is_unsigned_integer only allow exact integers and thus report false. Likewise,
the conversion functions like scm_to_signed_integer only accept exact integers.

The motivation for this behavior is that the inexactness of a number should not be
lost silently. If you want to allow inexact integers, you can explicitely insert a call to
inexact->exact or to its C equivalent scm_inexact_to_exact. (Only inexact integers
will be converted by this call into exact integers; inexact non-integers will become exact
fractions.)

[Scheme Procedure]integer? x
[C Function]scm_integer_p (x)

Return #t if x is an exact or inexact integer number, else #f.

(integer? 487)
) #t

(integer? 3.0)
) #t

(integer? -3.4)
) #f
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(integer? +inf.0)
) #t

[C Function]int scm_is_integer (SCM x)
This is equivalent to scm_is_true (scm_integer_p (x)).

[C Type]scm_t_int8
[C Type]scm_t_uint8
[C Type]scm_t_int16
[C Type]scm_t_uint16
[C Type]scm_t_int32
[C Type]scm_t_uint32
[C Type]scm_t_int64
[C Type]scm_t_uint64
[C Type]scm_t_intmax
[C Type]scm_t_uintmax

The C types are equivalent to the corresponding ISO C types but are de�ned on all
platforms, with the exception of scm_t_int64 and scm_t_uint64, which are only
de�ned when a 64-bit type is available. For example, scm_t_int8 is equivalent to
int8_t.

You can regard these de�nitions as a stop-gap measure until all platforms provide
these types. If you know that all the platforms that you are interested in already
provide these types, it is better to use them directly instead of the types provided by
Guile.

[C Function]int scm_is_signed_integer (SCM x, scm t intmax min,
scm t intmax max)

[C Function]int scm_is_unsigned_integer (SCM x, scm t uintmax min,
scm t uintmax max)

Return 1 when x represents an exact integer that is between min and max, inclusive.

These functions can be used to check whether a SCM value will �t into a given range,
such as the range of a given C integer type. If you just want to convert a SCM value
to a given C integer type, use one of the conversion functions directly.

[C Function]scm_t_intmax scm_to_signed_integer (SCM x, scm t intmax min,
scm t intmax max)

[C Function]scm_t_uintmax scm_to_unsigned_integer (SCM x, scm t uintmax
min, scm t uintmax max)

When x represents an exact integer that is between min and max inclusive, return
that integer. Else signal an error, either a `wrong-type' error when x is not an exact
integer, or an `out-of-range' error when it doesn't �t the given range.

[C Function]SCM scm_from_signed_integer (scm t intmax x)
[C Function]SCM scm_from_unsigned_integer (scm t uintmax x)

Return the SCM value that represents the integer x. This function will always succeed
and will always return an exact number.
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[C Function]char scm_to_char (SCM x)
[C Function]signed char scm_to_schar (SCM x)
[C Function]unsigned char scm_to_uchar (SCM x)
[C Function]short scm_to_short (SCM x)
[C Function]unsigned short scm_to_ushort (SCM x)
[C Function]int scm_to_int (SCM x)
[C Function]unsigned int scm_to_uint (SCM x)
[C Function]long scm_to_long (SCM x)
[C Function]unsigned long scm_to_ulong (SCM x)
[C Function]long long scm_to_long_long (SCM x)
[C Function]unsigned long long scm_to_ulong_long (SCM x)
[C Function]size_t scm_to_size_t (SCM x)
[C Function]ssize_t scm_to_ssize_t (SCM x)
[C Function]scm_t_int8 scm_to_int8 (SCM x)
[C Function]scm_t_uint8 scm_to_uint8 (SCM x)
[C Function]scm_t_int16 scm_to_int16 (SCM x)
[C Function]scm_t_uint16 scm_to_uint16 (SCM x)
[C Function]scm_t_int32 scm_to_int32 (SCM x)
[C Function]scm_t_uint32 scm_to_uint32 (SCM x)
[C Function]scm_t_int64 scm_to_int64 (SCM x)
[C Function]scm_t_uint64 scm_to_uint64 (SCM x)
[C Function]scm_t_intmax scm_to_intmax (SCM x)
[C Function]scm_t_uintmax scm_to_uintmax (SCM x)

When x represents an exact integer that �ts into the indicated C type, return that
integer. Else signal an error, either a `wrong-type' error when x is not an exact
integer, or an `out-of-range' error when it doesn't �t the given range.

The functions scm_to_long_long, scm_to_ulong_long, scm_to_int64, and scm_to_

uint64 are only available when the corresponding types are.

[C Function]SCM scm_from_char (char x)
[C Function]SCM scm_from_schar (signed char x)
[C Function]SCM scm_from_uchar (unsigned char x)
[C Function]SCM scm_from_short (short x)
[C Function]SCM scm_from_ushort (unsigned short x)
[C Function]SCM scm_from_int (int x)
[C Function]SCM scm_from_uint (unsigned int x)
[C Function]SCM scm_from_long (long x)
[C Function]SCM scm_from_ulong (unsigned long x)
[C Function]SCM scm_from_long_long (long long x)
[C Function]SCM scm_from_ulong_long (unsigned long long x)
[C Function]SCM scm_from_size_t (size t x)
[C Function]SCM scm_from_ssize_t (ssize t x)
[C Function]SCM scm_from_int8 (scm t int8 x)
[C Function]SCM scm_from_uint8 (scm t uint8 x)
[C Function]SCM scm_from_int16 (scm t int16 x)
[C Function]SCM scm_from_uint16 (scm t uint16 x)
[C Function]SCM scm_from_int32 (scm t int32 x)



Chapter 5: API Reference 107

[C Function]SCM scm_from_uint32 (scm t uint32 x)
[C Function]SCM scm_from_int64 (scm t int64 x)
[C Function]SCM scm_from_uint64 (scm t uint64 x)
[C Function]SCM scm_from_intmax (scm t intmax x)
[C Function]SCM scm_from_uintmax (scm t uintmax x)

Return the SCM value that represents the integer x. These functions will always
succeed and will always return an exact number.

[C Function]void scm_to_mpz (SCM val, mpz t rop)
Assign val to the multiple precision integer rop. val must be an exact integer, other-
wise an error will be signalled. rop must have been initialized with mpz_init before
this function is called. When rop is no longer needed the occupied space must be
freed with mpz_clear. See section \Initializing Integers" in GNU MP Manual, for
details.

[C Function]SCM scm_from_mpz (mpz t val)
Return the SCM value that represents val.

5.5.2.3 Real and Rational Numbers

Mathematically, the real numbers are the set of numbers that describe all possible points
along a continuous, in�nite, one-dimensional line. The rational numbers are the set of all
numbers that can be written as fractions p/q, where p and q are integers. All rational
numbers are also real, but there are real numbers that are not rational, for example

p
2,

and �.

Guile can represent both exact and inexact rational numbers, but it can not represent
irrational numbers. Exact rationals are represented by storing the numerator and denom-
inator as two exact integers. Inexact rationals are stored as oating point numbers using
the C type double.

Exact rationals are written as a fraction of integers. There must be no whitespace around
the slash:

1/2

-22/7

Even though the actual encoding of inexact rationals is in binary, it may be helpful to
think of it as a decimal number with a limited number of signi�cant �gures and a decimal
point somewhere, since this corresponds to the standard notation for non-whole numbers.
For example:

0.34

-0.00000142857931198

-5648394822220000000000.0

4.0

The limited precision of Guile's encoding means that any \real" number in Guile can be
written in a rational form, by multiplying and then dividing by su�cient powers of 10 (or in
fact, 2). For example, `-0.00000142857931198' is the same as �142857931198 divided by
100000000000000000. In Guile's current incarnation, therefore, the rational? and real?

predicates are equivalent.
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Dividing by an exact zero leads to a error message, as one might expect. However,
dividing by an inexact zero does not produce an error. Instead, the result of the division is
either plus or minus in�nity, depending on the sign of the divided number.

The in�nities are written `+inf.0' and `-inf.0', respectivly. This syntax is also recog-
nized by read as an extension to the usual Scheme syntax.

Dividing zero by zero yields something that is not a number at all: `+nan.0'. This is the
special `not a number' value.

On platforms that follow IEEE 754 for their oating point arithmetic, the `+inf.0',
`-inf.0', and `+nan.0' values are implemented using the corresponding IEEE 754 values.
They behave in arithmetic operations like IEEE 754 describes it, i.e., (= +nan.0 +nan.0)
) #f.

The in�nities are inexact integers and are considered to be both even and odd. While
`+nan.0' is not = to itself, it is eqv? to itself.

To test for the special values, use the functions inf? and nan?.

[Scheme Procedure]real? obj
[C Function]scm_real_p (obj)

Return #t if obj is a real number, else #f. Note that the sets of integer and rational
values form subsets of the set of real numbers, so the predicate will also be ful�lled if
obj is an integer number or a rational number.

[Scheme Procedure]rational? x
[C Function]scm_rational_p (x)

Return #t if x is a rational number, #f otherwise. Note that the set of integer values
forms a subset of the set of rational numbers, i. e. the predicate will also be ful�lled
if x is an integer number.

Since Guile can not represent irrational numbers, every number satisfying real? also
satis�es rational? in Guile.

[Scheme Procedure]rationalize x eps
[C Function]scm_rationalize (x, eps)

Returns the simplest rational number di�ering from x by no more than eps.

As required by R5RS, rationalize only returns an exact result when both its argu-
ments are exact. Thus, you might need to use inexact->exact on the arguments.

(rationalize (inexact->exact 1.2) 1/100)
) 6/5

[Scheme Procedure]inf? x
[C Function]scm_inf_p (x)

Return #t if x is either `+inf.0' or `-inf.0', #f otherwise.

[Scheme Procedure]nan? x
[C Function]scm_nan_p (x)

Return #t if x is `+nan.0', #f otherwise.

[Scheme Procedure]nan
[C Function]scm_nan ()

Return NaN.
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[Scheme Procedure]inf
[C Function]scm_inf ()

Return Inf.

[Scheme Procedure]numerator x
[C Function]scm_numerator (x)

Return the numerator of the rational number x.

[Scheme Procedure]denominator x
[C Function]scm_denominator (x)

Return the denominator of the rational number x.

[C Function]int scm_is_real (SCM val)
[C Function]int scm_is_rational (SCM val)

Equivalent to scm_is_true (scm_real_p (val)) and scm_is_true (scm_rational_

p (val)), respectively.

[C Function]double scm_to_double (SCM val)
Returns the number closest to val that is representable as a double. Returns in�nity
for a val that is too large in magnitude. The argument val must be a real number.

[C Function]SCM scm_from_double (double val)
Return the SCM value that representats val. The returned value is inexact according
to the predicate inexact?, but it will be exactly equal to val.

5.5.2.4 Complex Numbers

Complex numbers are the set of numbers that describe all possible points in a
two-dimensional space. The two coordinates of a particular point in this space are known
as the real and imaginary parts of the complex number that describes that point.

In Guile, complex numbers are written in rectangular form as the sum of their real and
imaginary parts, using the symbol i to indicate the imaginary part.

3+4i
)
3.0+4.0i

(* 3-8i 2.3+0.3i)
)
9.3-17.5i

Polar form can also be used, with an `@' between magnitude and angle,

1@3.141592 ) -1.0 (approx)

-1@1.57079 ) 0.0-1.0i (approx)

Guile represents a complex number with a non-zero imaginary part as a pair of inexact
rationals, so the real and imaginary parts of a complex number have the same properties of
inexactness and limited precision as single inexact rational numbers. Guile can not represent
exact complex numbers with non-zero imaginary parts.
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[Scheme Procedure]complex? z
[C Function]scm_complex_p (z)

Return #t if x is a complex number, #f otherwise. Note that the sets of real, rational
and integer values form subsets of the set of complex numbers, i. e. the predicate
will also be ful�lled if x is a real, rational or integer number.

[C Function]int scm_is_complex (SCM val)
Equivalent to scm_is_true (scm_complex_p (val)).

5.5.2.5 Exact and Inexact Numbers

R5RS requires that a calculation involving inexact numbers always produces an inexact
result. To meet this requirement, Guile distinguishes between an exact integer value such
as `5' and the corresponding inexact real value which, to the limited precision available, has
no fractional part, and is printed as `5.0'. Guile will only convert the latter value to the
former when forced to do so by an invocation of the inexact->exact procedure.

[Scheme Procedure]exact? z
[C Function]scm_exact_p (z)

Return #t if the number z is exact, #f otherwise.

(exact? 2)
) #t

(exact? 0.5)
) #f

(exact? (/ 2))
) #t

[Scheme Procedure]inexact? z
[C Function]scm_inexact_p (z)

Return #t if the number z is inexact, #f else.

[Scheme Procedure]inexact->exact z
[C Function]scm_inexact_to_exact (z)

Return an exact number that is numerically closest to z, when there is one. For
inexact rationals, Guile returns the exact rational that is numerically equal to the
inexact rational. Inexact complex numbers with a non-zero imaginary part can not
be made exact.

(inexact->exact 0.5)
) 1/2

The following happens because 12/10 is not exactly representable as a double (on
most platforms). However, when reading a decimal number that has been marked
exact with the \#e" pre�x, Guile is able to represent it correctly.

(inexact->exact 1.2)
) 5404319552844595/4503599627370496

#e1.2
) 6/5
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[Scheme Procedure]exact->inexact z
[C Function]scm_exact_to_inexact (z)

Convert the number z to its inexact representation.

5.5.2.6 Read Syntax for Numerical Data

The read syntax for integers is a string of digits, optionally preceded by a minus or plus
character, a code indicating the base in which the integer is encoded, and a code indicating
whether the number is exact or inexact. The supported base codes are:

#b

#B the integer is written in binary (base 2)

#o

#O the integer is written in octal (base 8)

#d

#D the integer is written in decimal (base 10)

#x

#X the integer is written in hexadecimal (base 16)

If the base code is omitted, the integer is assumed to be decimal. The following examples
show how these base codes are used.

-13
) -13

#d-13
) -13

#x-13
) -19

#b+1101
) 13

#o377
) 255

The codes for indicating exactness (which can, incidentally, be applied to all numerical
values) are:

#e

#E the number is exact

#i

#I the number is inexact.

If the exactness indicator is omitted, the number is exact unless it contains a radix point.
Since Guile can not represent exact complex numbers, an error is signalled when asking for
them.

(exact? 1.2)
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) #f

(exact? #e1.2)
) #t

(exact? #e+1i)

ERROR: Wrong type argument

Guile also understands the syntax `+inf.0' and `-inf.0' for plus and minus in�nity,
respectively. The value must be written exactly as shown, that is, they always must have
a sign and exactly one zero digit after the decimal point. It also understands `+nan.0' and
`-nan.0' for the special `not-a-number' value. The sign is ignored for `not-a-number' and
the value is always printed as `+nan.0'.

5.5.2.7 Operations on Integer Values

[Scheme Procedure]odd? n
[C Function]scm_odd_p (n)

Return #t if n is an odd number, #f otherwise.

[Scheme Procedure]even? n
[C Function]scm_even_p (n)

Return #t if n is an even number, #f otherwise.

[Scheme Procedure]quotient n d
[Scheme Procedure]remainder n d

[C Function]scm_quotient (n, d)
[C Function]scm_remainder (n, d)

Return the quotient or remainder from n divided by d. The quotient is rounded
towards zero, and the remainder will have the same sign as n. In all cases quotient
and remainder satisfy n = q � d + r.

(remainder 13 4) ) 1

(remainder -13 4) ) -1

[Scheme Procedure]modulo n d
[C Function]scm_modulo (n, d)

Return the remainder from n divided by d, with the same sign as d.

(modulo 13 4) ) 1

(modulo -13 4) ) 3

(modulo 13 -4) ) -3

(modulo -13 -4) ) -1

[Scheme Procedure]gcd x. . .
[C Function]scm_gcd (x, y)

Return the greatest common divisor of all arguments. If called without arguments, 0
is returned.

The C function scm_gcd always takes two arguments, while the Scheme function can
take an arbitrary number.
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[Scheme Procedure]lcm x. . .
[C Function]scm_lcm (x, y)

Return the least common multiple of the arguments. If called without arguments, 1
is returned.

The C function scm_lcm always takes two arguments, while the Scheme function can
take an arbitrary number.

[Scheme Procedure]modulo-expt n k m
[C Function]scm_modulo_expt (n, k, m)

Return n raised to the integer exponent k, modulo m.

(modulo-expt 2 3 5)
) 3

5.5.2.8 Comparison Predicates

The C comparison functions below always takes two arguments, while the Scheme functions
can take an arbitrary number. Also keep in mind that the C functions return one of the
Scheme boolean values SCM_BOOL_T or SCM_BOOL_F which are both true as far as C is
concerned. Thus, always write scm_is_true (scm_num_eq_p (x, y)) when testing the two
Scheme numbers x and y for equality, for example.

[Scheme Procedure]=
[C Function]scm_num_eq_p (x, y)

Return #t if all parameters are numerically equal.

[Scheme Procedure]<
[C Function]scm_less_p (x, y)

Return #t if the list of parameters is monotonically increasing.

[Scheme Procedure]>
[C Function]scm_gr_p (x, y)

Return #t if the list of parameters is monotonically decreasing.

[Scheme Procedure]<=
[C Function]scm_leq_p (x, y)

Return #t if the list of parameters is monotonically non-decreasing.

[Scheme Procedure]>=
[C Function]scm_geq_p (x, y)

Return #t if the list of parameters is monotonically non-increasing.

[Scheme Procedure]zero? z
[C Function]scm_zero_p (z)

Return #t if z is an exact or inexact number equal to zero.

[Scheme Procedure]positive? x
[C Function]scm_positive_p (x)

Return #t if x is an exact or inexact number greater than zero.

[Scheme Procedure]negative? x
[C Function]scm_negative_p (x)

Return #t if x is an exact or inexact number less than zero.
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5.5.2.9 Converting Numbers To and From Strings

[Scheme Procedure]number->string n [radix]
[C Function]scm_number_to_string (n, radix)

Return a string holding the external representation of the number n in the given
radix. If n is inexact, a radix of 10 will be used.

[Scheme Procedure]string->number string [radix]
[C Function]scm_string_to_number (string, radix)

Return a number of the maximally precise representation expressed by the given
string. radix must be an exact integer, either 2, 8, 10, or 16. If supplied, radix
is a default radix that may be overridden by an explicit radix pre�x in string (e.g.
"#o177"). If radix is not supplied, then the default radix is 10. If string is not a
syntactically valid notation for a number, then string->number returns #f.

[C Function]SCM scm_c_locale_stringn_to_number (const char *string, size t
len, unsigned radix)

As per string->number above, but taking a C string, as pointer and length. The
string characters should be in the current locale encoding (locale in the name refers
only to that, there's no locale-dependent parsing).

5.5.2.10 Complex Number Operations

[Scheme Procedure]make-rectangular real imaginary
[C Function]scm_make_rectangular (real, imaginary)

Return a complex number constructed of the given real and imaginary parts.

[Scheme Procedure]make-polar x y
[C Function]scm_make_polar (x, y)

Return the complex number x * e^(i * y).

[Scheme Procedure]real-part z
[C Function]scm_real_part (z)

Return the real part of the number z.

[Scheme Procedure]imag-part z
[C Function]scm_imag_part (z)

Return the imaginary part of the number z.

[Scheme Procedure]magnitude z
[C Function]scm_magnitude (z)

Return the magnitude of the number z. This is the same as abs for real arguments,
but also allows complex numbers.

[Scheme Procedure]angle z
[C Function]scm_angle (z)

Return the angle of the complex number z.

[C Function]SCM scm_c_make_rectangular (double re, double im)
[C Function]SCM scm_c_make_polar (double x, double y)

Like scm_make_rectangular or scm_make_polar, respectively, but these functions
take doubles as their arguments.
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[C Function]double scm_c_real_part (z)
[C Function]double scm_c_imag_part (z)

Returns the real or imaginary part of z as a double.

[C Function]double scm_c_magnitude (z)
[C Function]double scm_c_angle (z)

Returns the magnitude or angle of z as a double.

5.5.2.11 Arithmetic Functions

The C arithmetic functions below always takes two arguments, while the Scheme functions
can take an arbitrary number. When you need to invoke them with just one argument,
for example to compute the equivalent od (- x), pass SCM_UNDEFINED as the second one:
scm_difference (x, SCM_UNDEFINED).

[Scheme Procedure]+ z1 . . .
[C Function]scm_sum (z1, z2)

Return the sum of all parameter values. Return 0 if called without any parameters.

[Scheme Procedure]- z1 z2 . . .
[C Function]scm_difference (z1, z2)

If called with one argument z1, -z1 is returned. Otherwise the sum of all but the �rst
argument are subtracted from the �rst argument.

[Scheme Procedure]* z1 . . .
[C Function]scm_product (z1, z2)

Return the product of all arguments. If called without arguments, 1 is returned.

[Scheme Procedure]/ z1 z2 . . .
[C Function]scm_divide (z1, z2)

Divide the �rst argument by the product of the remaining arguments. If called with
one argument z1, 1/z1 is returned.

[Scheme Procedure]abs x
[C Function]scm_abs (x)

Return the absolute value of x.

x must be a number with zero imaginary part. To calculate the magnitude of a
complex number, use magnitude instead.

[Scheme Procedure]max x1 x2 . . .
[C Function]scm_max (x1, x2)

Return the maximum of all parameter values.

[Scheme Procedure]min x1 x2 . . .
[C Function]scm_min (x1, x2)

Return the minimum of all parameter values.

[Scheme Procedure]truncate x
[C Function]scm_truncate_number (x)

Round the inexact number x towards zero.
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[Scheme Procedure]round x
[C Function]scm_round_number (x)

Round the inexact number x to the nearest integer. When exactly halfway between
two integers, round to the even one.

[Scheme Procedure]floor x
[C Function]scm_floor (x)

Round the number x towards minus in�nity.

[Scheme Procedure]ceiling x
[C Function]scm_ceiling (x)

Round the number x towards in�nity.

[C Function]double scm_c_truncate (double x)
[C Function]double scm_c_round (double x)

Like scm_truncate_number or scm_round_number, respectively, but these functions
take and return double values.

5.5.2.12 Scienti�c Functions

The following procedures accept any kind of number as arguments, including complex num-
bers.

[Scheme Procedure]sqrt z
Return the square root of z. Of the two possible roots (positive and negative), the one
with the a positive real part is returned, or if that's zero then a positive imaginary
part. Thus,

(sqrt 9.0) ) 3.0

(sqrt -9.0) ) 0.0+3.0i

(sqrt 1.0+1.0i) ) 1.09868411346781+0.455089860562227i

(sqrt -1.0-1.0i) ) 0.455089860562227-1.09868411346781i

[Scheme Procedure]expt z1 z2
Return z1 raised to the power of z2.

[Scheme Procedure]sin z
Return the sine of z.

[Scheme Procedure]cos z
Return the cosine of z.

[Scheme Procedure]tan z
Return the tangent of z.

[Scheme Procedure]asin z
Return the arcsine of z.

[Scheme Procedure]acos z
Return the arccosine of z.
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[Scheme Procedure]atan z
[Scheme Procedure]atan y x

Return the arctangent of z, or of y=x.

[Scheme Procedure]exp z
Return e to the power of z, where e is the base of natural logarithms (2.71828. . . ).

[Scheme Procedure]log z
Return the natural logarithm of z.

[Scheme Procedure]log10 z
Return the base 10 logarithm of z.

[Scheme Procedure]sinh z
Return the hyperbolic sine of z.

[Scheme Procedure]cosh z
Return the hyperbolic cosine of z.

[Scheme Procedure]tanh z
Return the hyperbolic tangent of z.

[Scheme Procedure]asinh z
Return the hyperbolic arcsine of z.

[Scheme Procedure]acosh z
Return the hyperbolic arccosine of z.

[Scheme Procedure]atanh z
Return the hyperbolic arctangent of z.

5.5.2.13 Primitive Numeric Functions

Many of Guile's numeric procedures which accept any kind of numbers as arguments, in-
cluding complex numbers, are implemented as Scheme procedures that use the following real
number-based primitives. These primitives signal an error if they are called with complex
arguments.

[Scheme Procedure]$abs x
Return the absolute value of x.

[Scheme Procedure]$sqrt x
Return the square root of x.

[Scheme Procedure]$expt x y
[C Function]scm_sys_expt (x, y)

Return x raised to the power of y. This procedure does not accept complex arguments.

[Scheme Procedure]$sin x
Return the sine of x.

[Scheme Procedure]$cos x
Return the cosine of x.
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[Scheme Procedure]$tan x
Return the tangent of x.

[Scheme Procedure]$asin x
Return the arcsine of x.

[Scheme Procedure]$acos x
Return the arccosine of x.

[Scheme Procedure]$atan x
Return the arctangent of x in the range �PI=2 to PI=2.

[Scheme Procedure]$atan2 x y
[C Function]scm_sys_atan2 (x, y)

Return the arc tangent of the two arguments x and y. This is similar to calculating
the arc tangent of x / y, except that the signs of both arguments are used to determine
the quadrant of the result. This procedure does not accept complex arguments.

[Scheme Procedure]$exp x
Return e to the power of x, where e is the base of natural logarithms (2.71828. . . ).

[Scheme Procedure]$log x
Return the natural logarithm of x.

[Scheme Procedure]$sinh x
Return the hyperbolic sine of x.

[Scheme Procedure]$cosh x
Return the hyperbolic cosine of x.

[Scheme Procedure]$tanh x
Return the hyperbolic tangent of x.

[Scheme Procedure]$asinh x
Return the hyperbolic arcsine of x.

[Scheme Procedure]$acosh x
Return the hyperbolic arccosine of x.

[Scheme Procedure]$atanh x
Return the hyperbolic arctangent of x.

C functions for the above are provided by the standard mathematics library. Naturally
these expect and return double arguments (see section \Mathematics" in GNU C Library
Reference Manual).

Scheme Procedure C Function

$abs fabs

$sqrt sqrt

$sin sin

$cos cos
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$tan tan

$asin asin

$acos acos

$atan atan

$atan2 atan2

$exp exp

$expt pow

$log log

$sinh sinh

$cosh cosh

$tanh tanh

$asinh asinh

$acosh acosh

$atanh atanh

asinh, acosh and atanh are C99 standard but might not be available on older systems.
Guile provides the following equivalents (on all systems).

[C Function]double scm_asinh (double x)
[C Function]double scm_acosh (double x)
[C Function]double scm_atanh (double x)

Return the hyperbolic arcsine, arccosine or arctangent of x respectively.

5.5.2.14 Bitwise Operations

For the following bitwise functions, negative numbers are treated as in�nite precision twos-
complements. For instance �6 is bits : : : 111010, with in�nitely many ones on the left. It
can be seen that adding 6 (binary 110) to such a bit pattern gives all zeros.

[Scheme Procedure]logand n1 n2 . . .
[C Function]scm_logand (n1, n2)

Return the bitwise and of the integer arguments.

(logand) ) -1

(logand 7) ) 7

(logand #b111 #b011 #b001) ) 1

[Scheme Procedure]logior n1 n2 . . .
[C Function]scm_logior (n1, n2)

Return the bitwise or of the integer arguments.

(logior) ) 0

(logior 7) ) 7

(logior #b000 #b001 #b011) ) 3

[Scheme Procedure]logxor n1 n2 . . .
[C Function]scm_loxor (n1, n2)

Return the bitwise xor of the integer arguments. A bit is set in the result if it is set
in an odd number of arguments.

(logxor) ) 0

(logxor 7) ) 7
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(logxor #b000 #b001 #b011) ) 2

(logxor #b000 #b001 #b011 #b011) ) 1

[Scheme Procedure]lognot n
[C Function]scm_lognot (n)

Return the integer which is the ones-complement of the integer argument, ie. each 0
bit is changed to 1 and each 1 bit to 0.

(number->string (lognot #b10000000) 2)
) "-10000001"

(number->string (lognot #b0) 2)
) "-1"

[Scheme Procedure]logtest j k
[C Function]scm_logtest (j, k)

Test whether j and k have any 1 bits in common. This is equivalent to (not (zero?

(logand j k))), but without actually calculating the logand, just testing for non-
zero.

(logtest #b0100 #b1011) ) #f

(logtest #b0100 #b0111) ) #t

[Scheme Procedure]logbit? index j
[C Function]scm_logbit_p (index, j)

Test whether bit number index in j is set. index starts from 0 for the least signi�cant
bit.

(logbit? 0 #b1101) ) #t

(logbit? 1 #b1101) ) #f

(logbit? 2 #b1101) ) #t

(logbit? 3 #b1101) ) #t

(logbit? 4 #b1101) ) #f

[Scheme Procedure]ash n cnt
[C Function]scm_ash (n, cnt)

Return n shifted left by cnt bits, or shifted right if cnt is negative. This is an \arith-
metic" shift.

This is e�ectively a multiplication by 2cnt, and when cnt is negative it's a divi-
sion, rounded towards negative in�nity. (Note that this is not the same rounding
as quotient does.)

With n viewed as an in�nite precision twos complement, ash means a left shift intro-
ducing zero bits, or a right shift dropping bits.

(number->string (ash #b1 3) 2) ) "1000"

(number->string (ash #b1010 -1) 2) ) "101"

;; -23 is bits ...11101001, -6 is bits ...111010

(ash -23 -2) ) -6

[Scheme Procedure]logcount n
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[C Function]scm_logcount (n)
Return the number of bits in integer n. If n is positive, the 1-bits in its binary
representation are counted. If negative, the 0-bits in its two's-complement binary
representation are counted. If zero, 0 is returned.

(logcount #b10101010)
) 4

(logcount 0)
) 0

(logcount -2)
) 1

[Scheme Procedure]integer-length n
[C Function]scm_integer_length (n)

Return the number of bits necessary to represent n.

For positive n this is how many bits to the most signi�cant one bit. For negative n
it's how many bits to the most signi�cant zero bit in twos complement form.

(integer-length #b10101010) ) 8

(integer-length #b1111) ) 4

(integer-length 0) ) 0

(integer-length -1) ) 0

(integer-length -256) ) 8

(integer-length -257) ) 9

[Scheme Procedure]integer-expt n k
[C Function]scm_integer_expt (n, k)

Return n raised to the power k. k must be an exact integer, n can be any number.

Negative k is supported, and results in 1=njkj in the usual way. n0 is 1, as usual, and
that includes 00 is 1.

(integer-expt 2 5) ) 32

(integer-expt -3 3) ) -27

(integer-expt 5 -3) ) 1/125

(integer-expt 0 0) ) 1

[Scheme Procedure]bit-extract n start end
[C Function]scm_bit_extract (n, start, end)

Return the integer composed of the start (inclusive) through end (exclusive) bits of
n. The startth bit becomes the 0-th bit in the result.

(number->string (bit-extract #b1101101010 0 4) 2)
) "1010"

(number->string (bit-extract #b1101101010 4 9) 2)
) "10110"

5.5.2.15 Random Number Generation

Pseudo-random numbers are generated from a random state object, which can be created
with seed->random-state. The state parameter to the various functions below is optional,
it defaults to the state object in the *random-state* variable.
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[Scheme Procedure]copy-random-state [state]
[C Function]scm_copy_random_state (state)

Return a copy of the random state state.

[Scheme Procedure]random n [state]
[C Function]scm_random (n, state)

Return a number in [0, n).

Accepts a positive integer or real n and returns a number of the same type between
zero (inclusive) and n (exclusive). The values returned have a uniform distribution.

[Scheme Procedure]random:exp [state]
[C Function]scm_random_exp (state)

Return an inexact real in an exponential distribution with mean 1. For an exponential
distribution with mean u use (* u (random:exp)).

[Scheme Procedure]random:hollow-sphere! vect [state]
[C Function]scm_random_hollow_sphere_x (vect, state)

Fills vect with inexact real random numbers the sum of whose squares is equal to 1.0.
Thinking of vect as coordinates in space of dimension n = (vector-length vect),
the coordinates are uniformly distributed over the surface of the unit n-sphere.

[Scheme Procedure]random:normal [state]
[C Function]scm_random_normal (state)

Return an inexact real in a normal distribution. The distribution used has mean
0 and standard deviation 1. For a normal distribution with mean m and standard
deviation d use (+ m (* d (random:normal))).

[Scheme Procedure]random:normal-vector! vect [state]
[C Function]scm_random_normal_vector_x (vect, state)

Fills vect with inexact real random numbers that are independent and standard nor-
mally distributed (i.e., with mean 0 and variance 1).

[Scheme Procedure]random:solid-sphere! vect [state]
[C Function]scm_random_solid_sphere_x (vect, state)

Fills vect with inexact real random numbers the sum of whose squares is less than 1.0.
Thinking of vect as coordinates in space of dimension n = (vector-length vect),
the coordinates are uniformly distributed within the unit n-sphere.

[Scheme Procedure]random:uniform [state]
[C Function]scm_random_uniform (state)

Return a uniformly distributed inexact real random number in [0,1).

[Scheme Procedure]seed->random-state seed
[C Function]scm_seed_to_random_state (seed)

Return a new random state using seed.

[Variable]*random-state*
The global random state used by the above functions when the state parameter is
not given.
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5.5.3 Characters

In Scheme, a character literal is written as #\name where name is the name of the character
that you want. Printable characters have their usual single character name; for example,
#\a is a lower case a.

Most of the \control characters" (those below codepoint 32) in the ASCII character set,
as well as the space, may be referred to by longer names: for example, #\tab, #\esc, #\stx,
and so on. The following table describes the ASCII names for each character.

0 = #\nul 1 = #\soh 2 = #\stx 3 = #\etx

4 = #\eot 5 = #\enq 6 = #\ack 7 = #\bel

8 = #\bs 9 = #\ht 10 = #\nl 11 = #\vt

12 = #\np 13 = #\cr 14 = #\so 15 = #\si

16 = #\dle 17 = #\dc1 18 = #\dc2 19 = #\dc3

20 = #\dc4 21 = #\nak 22 = #\syn 23 = #\etb

24 = #\can 25 = #\em 26 = #\sub 27 = #\esc

28 = #\fs 29 = #\gs 30 = #\rs 31 = #\us

32 = #\sp

The \delete" character (octal 177) may be referred to with the name #\del.

Several characters have more than one name:

Alias Original
#\space #\sp

#\newline #\nl

#\tab #\ht

#\backspace #\bs

#\return #\cr

#\page #\np

#\null #\nul

[Scheme Procedure]char? x
[C Function]scm_char_p (x)

Return #t i� x is a character, else #f.

[Scheme Procedure]char=? x y
Return #t i� x is the same character as y, else #f.

[Scheme Procedure]char<? x y
Return #t i� x is less than y in the ASCII sequence, else #f.

[Scheme Procedure]char<=? x y
Return #t i� x is less than or equal to y in the ASCII sequence, else #f.

[Scheme Procedure]char>? x y
Return #t i� x is greater than y in the ASCII sequence, else #f.

[Scheme Procedure]char>=? x y
Return #t i� x is greater than or equal to y in the ASCII sequence, else #f.

[Scheme Procedure]char-ci=? x y
Return #t i� x is the same character as y ignoring case, else #f.
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[Scheme Procedure]char-ci<? x y
Return #t i� x is less than y in the ASCII sequence ignoring case, else #f.

[Scheme Procedure]char-ci<=? x y
Return #t i� x is less than or equal to y in the ASCII sequence ignoring case, else #f.

[Scheme Procedure]char-ci>? x y
Return #t i� x is greater than y in the ASCII sequence ignoring case, else #f.

[Scheme Procedure]char-ci>=? x y
Return #t i� x is greater than or equal to y in the ASCII sequence ignoring case, else
#f.

[Scheme Procedure]char-alphabetic? chr
[C Function]scm_char_alphabetic_p (chr)

Return #t i� chr is alphabetic, else #f.

[Scheme Procedure]char-numeric? chr
[C Function]scm_char_numeric_p (chr)

Return #t i� chr is numeric, else #f.

[Scheme Procedure]char-whitespace? chr
[C Function]scm_char_whitespace_p (chr)

Return #t i� chr is whitespace, else #f.

[Scheme Procedure]char-upper-case? chr
[C Function]scm_char_upper_case_p (chr)

Return #t i� chr is uppercase, else #f.

[Scheme Procedure]char-lower-case? chr
[C Function]scm_char_lower_case_p (chr)

Return #t i� chr is lowercase, else #f.

[Scheme Procedure]char-is-both? chr
[C Function]scm_char_is_both_p (chr)

Return #t i� chr is either uppercase or lowercase, else #f.

[Scheme Procedure]char->integer chr
[C Function]scm_char_to_integer (chr)

Return the number corresponding to ordinal position of chr in the ASCII sequence.

[Scheme Procedure]integer->char n
[C Function]scm_integer_to_char (n)

Return the character at position n in the ASCII sequence.

[Scheme Procedure]char-upcase chr
[C Function]scm_char_upcase (chr)

Return the uppercase character version of chr.

[Scheme Procedure]char-downcase chr
[C Function]scm_char_downcase (chr)

Return the lowercase character version of chr.
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5.5.4 Character Sets

The features described in this section correspond directly to SRFI-14.

The data type charset implements sets of characters (see Section 5.5.3 [Characters],
page 121). Because the internal representation of character sets is not visible to the user, a
lot of procedures for handling them are provided.

Character sets can be created, extended, tested for the membership of a characters and
be compared to other character sets.

The Guile implementation of character sets currently deals only with 8-bit characters.
In the future, when Guile gets support for international character sets, this will change,
but the functions provided here will always then be able to e�ciently cope with very large
character sets.

5.5.4.1 Character Set Predicates/Comparison

Use these procedures for testing whether an object is a character set, or whether several
character sets are equal or subsets of each other. char-set-hash can be used for calculating
a hash value, maybe for usage in fast lookup procedures.

[Scheme Procedure]char-set? obj
[C Function]scm_char_set_p (obj)

Return #t if obj is a character set, #f otherwise.

[Scheme Procedure]char-set= . char sets
[C Function]scm_char_set_eq (char sets)

Return #t if all given character sets are equal.

[Scheme Procedure]char-set<= . char sets
[C Function]scm_char_set_leq (char sets)

Return #t if every character set csi is a subset of character set csi+1.

[Scheme Procedure]char-set-hash cs [bound]
[C Function]scm_char_set_hash (cs, bound)

Compute a hash value for the character set cs. If bound is given and non-zero, it
restricts the returned value to the range 0 . . . bound - 1.

5.5.4.2 Iterating Over Character Sets

Character set cursors are a means for iterating over the members of a character sets. After
creating a character set cursor with char-set-cursor, a cursor can be dereferenced with
char-set-ref, advanced to the next member with char-set-cursor-next. Whether a
cursor has passed past the last element of the set can be checked with end-of-char-set?.

Additionally, mapping and (un-)folding procedures for character sets are provided.

[Scheme Procedure]char-set-cursor cs
[C Function]scm_char_set_cursor (cs)

Return a cursor into the character set cs.

[Scheme Procedure]char-set-ref cs cursor
[C Function]scm_char_set_ref (cs, cursor)

Return the character at the current cursor position cursor in the character set cs. It
is an error to pass a cursor for which end-of-char-set? returns true.
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[Scheme Procedure]char-set-cursor-next cs cursor
[C Function]scm_char_set_cursor_next (cs, cursor)

Advance the character set cursor cursor to the next character in the character set cs.
It is an error if the cursor given satis�es end-of-char-set?.

[Scheme Procedure]end-of-char-set? cursor
[C Function]scm_end_of_char_set_p (cursor)

Return #t if cursor has reached the end of a character set, #f otherwise.

[Scheme Procedure]char-set-fold kons knil cs
[C Function]scm_char_set_fold (kons, knil, cs)

Fold the procedure kons over the character set cs, initializing it with knil.

[Scheme Procedure]char-set-unfold p f g seed [base cs]
[C Function]scm_char_set_unfold (p, f, g, seed, base cs)

This is a fundamental constructor for character sets.

� g is used to generate a series of \seed" values from the initial seed: seed, (g seed),
(g^2 seed), (g^3 seed), . . .

� p tells us when to stop { when it returns true when applied to one of the seed
values.

� f maps each seed value to a character. These characters are added to the base
character set base cs to form the result; base cs defaults to the empty set.

[Scheme Procedure]char-set-unfold! p f g seed base cs
[C Function]scm_char_set_unfold_x (p, f, g, seed, base cs)

This is a fundamental constructor for character sets.

� g is used to generate a series of \seed" values from the initial seed: seed, (g seed),
(g^2 seed), (g^3 seed), . . .

� p tells us when to stop { when it returns true when applied to one of the seed
values.

� f maps each seed value to a character. These characters are added to the base
character set base cs to form the result; base cs defaults to the empty set.

[Scheme Procedure]char-set-for-each proc cs
[C Function]scm_char_set_for_each (proc, cs)

Apply proc to every character in the character set cs. The return value is not speci�ed.

[Scheme Procedure]char-set-map proc cs
[C Function]scm_char_set_map (proc, cs)

Map the procedure proc over every character in cs. proc must be a character ->
character procedure.

5.5.4.3 Creating Character Sets

New character sets are produced with these procedures.

[Scheme Procedure]char-set-copy cs
[C Function]scm_char_set_copy (cs)

Return a newly allocated character set containing all characters in cs.
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[Scheme Procedure]char-set . rest
[C Function]scm_char_set (rest)

Return a character set containing all given characters.

[Scheme Procedure]list->char-set list [base cs]
[C Function]scm_list_to_char_set (list, base cs)

Convert the character list list to a character set. If the character set base cs is given,
the character in this set are also included in the result.

[Scheme Procedure]list->char-set! list base cs
[C Function]scm_list_to_char_set_x (list, base cs)

Convert the character list list to a character set. The characters are added to base cs
and base cs is returned.

[Scheme Procedure]string->char-set str [base cs]
[C Function]scm_string_to_char_set (str, base cs)

Convert the string str to a character set. If the character set base cs is given, the
characters in this set are also included in the result.

[Scheme Procedure]string->char-set! str base cs
[C Function]scm_string_to_char_set_x (str, base cs)

Convert the string str to a character set. The characters from the string are added
to base cs, and base cs is returned.

[Scheme Procedure]char-set-filter pred cs [base cs]
[C Function]scm_char_set_filter (pred, cs, base cs)

Return a character set containing every character from cs so that it satis�es pred. If
provided, the characters from base cs are added to the result.

[Scheme Procedure]char-set-filter! pred cs base cs
[C Function]scm_char_set_filter_x (pred, cs, base cs)

Return a character set containing every character from cs so that it satis�es pred.
The characters are added to base cs and base cs is returned.

[Scheme Procedure]ucs-range->char-set lower upper [error [base cs]]
[C Function]scm_ucs_range_to_char_set (lower, upper, error, base cs)

Return a character set containing all characters whose character codes lie in the half-
open range [lower,upper).

If error is a true value, an error is signalled if the speci�ed range contains characters
which are not contained in the implemented character range. If error is #f, these
characters are silently left out of the resultung character set.

The characters in base cs are added to the result, if given.

[Scheme Procedure]ucs-range->char-set! lower upper error base cs
[C Function]scm_ucs_range_to_char_set_x (lower, upper, error, base cs)

Return a character set containing all characters whose character codes lie in the half-
open range [lower,upper).

If error is a true value, an error is signalled if the speci�ed range contains characters
which are not contained in the implemented character range. If error is #f, these
characters are silently left out of the resultung character set.
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The characters are added to base cs and base cs is returned.

[Scheme Procedure]->char-set x
[C Function]scm_to_char_set (x)

Coerces x into a char-set. x may be a string, character or char-set. A string is con-
verted to the set of its constituent characters; a character is converted to a singleton
set; a char-set is returned as-is.

5.5.4.4 Querying Character Sets

Access the elements and other information of a character set with these procedures.

[Scheme Procedure]char-set-size cs
[C Function]scm_char_set_size (cs)

Return the number of elements in character set cs.

[Scheme Procedure]char-set-count pred cs
[C Function]scm_char_set_count (pred, cs)

Return the number of the elements int the character set cs which satisfy the predicate
pred.

[Scheme Procedure]char-set->list cs
[C Function]scm_char_set_to_list (cs)

Return a list containing the elements of the character set cs.

[Scheme Procedure]char-set->string cs
[C Function]scm_char_set_to_string (cs)

Return a string containing the elements of the character set cs. The order in which
the characters are placed in the string is not de�ned.

[Scheme Procedure]char-set-contains? cs ch
[C Function]scm_char_set_contains_p (cs, ch)

Return #t i� the character ch is contained in the character set cs.

[Scheme Procedure]char-set-every pred cs
[C Function]scm_char_set_every (pred, cs)

Return a true value if every character in the character set cs satis�es the predicate
pred.

[Scheme Procedure]char-set-any pred cs
[C Function]scm_char_set_any (pred, cs)

Return a true value if any character in the character set cs satis�es the predicate
pred.

5.5.4.5 Character-Set Algebra

Character sets can be manipulated with the common set algebra operation, such as union,
complement, intersection etc. All of these procedures provide side-e�ecting variants, which
modify their character set argument(s).

[Scheme Procedure]char-set-adjoin cs . rest
[C Function]scm_char_set_adjoin (cs, rest)

Add all character arguments to the �rst argument, which must be a character set.
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[Scheme Procedure]char-set-delete cs . rest
[C Function]scm_char_set_delete (cs, rest)

Delete all character arguments from the �rst argument, which must be a character
set.

[Scheme Procedure]char-set-adjoin! cs . rest
[C Function]scm_char_set_adjoin_x (cs, rest)

Add all character arguments to the �rst argument, which must be a character set.

[Scheme Procedure]char-set-delete! cs . rest
[C Function]scm_char_set_delete_x (cs, rest)

Delete all character arguments from the �rst argument, which must be a character
set.

[Scheme Procedure]char-set-complement cs
[C Function]scm_char_set_complement (cs)

Return the complement of the character set cs.

[Scheme Procedure]char-set-union . rest
[C Function]scm_char_set_union (rest)

Return the union of all argument character sets.

[Scheme Procedure]char-set-intersection . rest
[C Function]scm_char_set_intersection (rest)

Return the intersection of all argument character sets.

[Scheme Procedure]char-set-difference cs1 . rest
[C Function]scm_char_set_difference (cs1, rest)

Return the di�erence of all argument character sets.

[Scheme Procedure]char-set-xor . rest
[C Function]scm_char_set_xor (rest)

Return the exclusive-or of all argument character sets.

[Scheme Procedure]char-set-diff+intersection cs1 . rest
[C Function]scm_char_set_diff_plus_intersection (cs1, rest)

Return the di�erence and the intersection of all argument character sets.

[Scheme Procedure]char-set-complement! cs
[C Function]scm_char_set_complement_x (cs)

Return the complement of the character set cs.

[Scheme Procedure]char-set-union! cs1 . rest
[C Function]scm_char_set_union_x (cs1, rest)

Return the union of all argument character sets.

[Scheme Procedure]char-set-intersection! cs1 . rest
[C Function]scm_char_set_intersection_x (cs1, rest)

Return the intersection of all argument character sets.
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[Scheme Procedure]char-set-difference! cs1 . rest
[C Function]scm_char_set_difference_x (cs1, rest)

Return the di�erence of all argument character sets.

[Scheme Procedure]char-set-xor! cs1 . rest
[C Function]scm_char_set_xor_x (cs1, rest)

Return the exclusive-or of all argument character sets.

[Scheme Procedure]char-set-diff+intersection! cs1 cs2 . rest
[C Function]scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)

Return the di�erence and the intersection of all argument character sets.

5.5.4.6 Standard Character Sets

In order to make the use of the character set data type and procedures useful, several
prede�ned character set variables exist.

Currently, the contents of these character sets are recomputed upon a successful
setlocale call (see Section 6.2.13 [Locales], page 417) in order to reect the characters
available in the current locale's codeset. For instance, char-set:letter contains 52
characters under an ASCII locale (e.g., the default C locale) and 117 characters under an
ISO-8859-1 (\Latin-1") locale.

[Scheme Variable]char-set:lower-case
[C Variable]scm_char_set_lower_case

All lower-case characters.

[Scheme Variable]char-set:upper-case
[C Variable]scm_char_set_upper_case

All upper-case characters.

[Scheme Variable]char-set:title-case
[C Variable]scm_char_set_title_case

This is empty, because ASCII has no titlecase characters.

[Scheme Variable]char-set:letter
[C Variable]scm_char_set_letter

All letters, e.g. the union of char-set:lower-case and char-set:upper-case.

[Scheme Variable]char-set:digit
[C Variable]scm_char_set_digit

All digits.

[Scheme Variable]char-set:letter+digit
[C Variable]scm_char_set_letter_and_digit

The union of char-set:letter and char-set:digit.

[Scheme Variable]char-set:graphic
[C Variable]scm_char_set_graphic

All characters which would put ink on the paper.
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[Scheme Variable]char-set:printing
[C Variable]scm_char_set_printing

The union of char-set:graphic and char-set:whitespace.

[Scheme Variable]char-set:whitespace
[C Variable]scm_char_set_whitespace

All whitespace characters.

[Scheme Variable]char-set:blank
[C Variable]scm_char_set_blank

All horizontal whitespace characters, that is #\space and #\tab.

[Scheme Variable]char-set:iso-control
[C Variable]scm_char_set_iso_control

The ISO control characters with the codes 0{31 and 127.

[Scheme Variable]char-set:punctuation
[C Variable]scm_char_set_punctuation

The characters !"#%&'()*,-./:;?@[\\]_{}

[Scheme Variable]char-set:symbol
[C Variable]scm_char_set_symbol

The characters $+<=>^`|~.

[Scheme Variable]char-set:hex-digit
[C Variable]scm_char_set_hex_digit

The hexadecimal digits 0123456789abcdefABCDEF.

[Scheme Variable]char-set:ascii
[C Variable]scm_char_set_ascii

All ASCII characters.

[Scheme Variable]char-set:empty
[C Variable]scm_char_set_empty

The empty character set.

[Scheme Variable]char-set:full
[C Variable]scm_char_set_full

This character set contains all possible characters.

5.5.5 Strings

Strings are �xed-length sequences of characters. They can be created by calling constructor
procedures, but they can also literally get entered at the REPL or in Scheme source �les.

Strings always carry the information about how many characters they are composed of
with them, so there is no special end-of-string character, like in C. That means that Scheme
strings can contain any character, even the `#\nul' character `\0'.

To use strings e�ciently, you need to know a bit about how Guile implements them. In
Guile, a string consists of two parts, a head and the actual memory where the characters
are stored. When a string (or a substring of it) is copied, only a new head gets created, the
memory is usually not copied. The two heads start out pointing to the same memory.
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When one of these two strings is modi�ed, as with string-set!, their common mem-
ory does get copied so that each string has its own memory and modifying one does not
accidently modify the other as well. Thus, Guile's strings are `copy on write'; the actual
copying of their memory is delayed until one string is written to.

This implementation makes functions like substring very e�cient in the common case
that no modi�cations are done to the involved strings.

If you do know that your strings are getting modi�ed right away, you can use
substring/copy instead of substring. This function performs the copy immediately at
the time of creation. This is more e�cient, especially in a multi-threaded program. Also,
substring/copy can avoid the problem that a short substring holds on to the memory of
a very large original string that could otherwise be recycled.

If you want to avoid the copy altogether, so that modi�cations of one string show up in
the other, you can use substring/shared. The strings created by this procedure are called
mutation sharing substrings since the substring and the original string share modi�cations
to each other.

If you want to prevent modi�cations, use substring/read-only.

Guile provides all procedures of SRFI-13 and a few more.

5.5.5.1 String Read Syntax

The read syntax for strings is an arbitrarily long sequence of characters enclosed in double
quotes (").

Backslash is an escape character and can be used to insert the following special char-
acters. \" and \\ are R5RS standard, the rest are Guile extensions, notice they follow C
string syntax.

\\ Backslash character.

\" Double quote character (an unescaped " is otherwise the end of the string).

\0 NUL character (ASCII 0).

\a Bell character (ASCII 7).

\f Formfeed character (ASCII 12).

\n Newline character (ASCII 10).

\r Carriage return character (ASCII 13).

\t Tab character (ASCII 9).

\v Vertical tab character (ASCII 11).

\xHH Character code given by two hexadecimal digits. For example \x7f for an
ASCII DEL (127).

The following are examples of string literals:

"foo"

"bar plonk"

"Hello World"

"\"Hi\", he said."
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5.5.5.2 String Predicates

The following procedures can be used to check whether a given string ful�lls some speci�ed
property.

[Scheme Procedure]string? obj
[C Function]scm_string_p (obj)

Return #t if obj is a string, else #f.

[C Function]int scm_is_string (SCM obj)
Returns 1 if obj is a string, 0 otherwise.

[Scheme Procedure]string-null? str
[C Function]scm_string_null_p (str)

Return #t if str's length is zero, and #f otherwise.

(string-null? "") ) #t

y ) "foo"

(string-null? y) ) #f

[Scheme Procedure]string-any char pred s [start [end]]
[C Function]scm_string_any (char pred, s, start, end)

Check if char pred is true for any character in string s.

char pred can be a character to check for any equal to that, or a character set (see
Section 5.5.4 [Character Sets], page 123) to check for any in that set, or a predicate
procedure to call.

For a procedure, calls (char_pred c) are made successively on the characters from
start to end. If char pred returns true (ie. non-#f), string-any stops and that return
value is the return from string-any. The call on the last character (ie. at end � 1),
if that point is reached, is a tail call.

If there are no characters in s (ie. start equals end) then the return is #f.

[Scheme Procedure]string-every char pred s [start [end]]
[C Function]scm_string_every (char pred, s, start, end)

Check if char pred is true for every character in string s.

char pred can be a character to check for every character equal to that, or a character
set (see Section 5.5.4 [Character Sets], page 123) to check for every character being
in that set, or a predicate procedure to call.

For a procedure, calls (char_pred c) are made successively on the characters from
start to end. If char pred returns #f, string-every stops and returns #f. The call
on the last character (ie. at end � 1), if that point is reached, is a tail call and the
return from that call is the return from string-every.

If there are no characters in s (ie. start equals end) then the return is #t.

5.5.5.3 String Constructors

The string constructor procedures create new string objects, possibly initializing them with
some speci�ed character data. See also See Section 5.5.5.5 [String Selection], page 133, for
ways to create strings from existing strings.
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[Scheme Procedure]string char. . .
Return a newly allocated string made from the given character arguments.

(string #\x #\y #\z) ) "xyz"

(string) ) ""

[Scheme Procedure]list->string lst
[C Function]scm_string (lst)

Return a newly allocated string made from a list of characters.

(list->string '(#\a #\b #\c)) ) "abc"

[Scheme Procedure]reverse-list->string lst
[C Function]scm_reverse_list_to_string (lst)

Return a newly allocated string made from a list of characters, in reverse order.

(reverse-list->string '(#\a #\B #\c)) ) "cBa"

[Scheme Procedure]make-string k [chr]
[C Function]scm_make_string (k, chr)

Return a newly allocated string of length k. If chr is given, then all elements of the
string are initialized to chr, otherwise the contents of the string are unspeci�ed.

[C Function]SCM scm_c_make_string (size t len, SCM chr)
Like scm_make_string, but expects the length as a size_t.

[Scheme Procedure]string-tabulate proc len
[C Function]scm_string_tabulate (proc, len)

proc is an integer->char procedure. Construct a string of size len by applying proc to
each index to produce the corresponding string element. The order in which proc is
applied to the indices is not speci�ed.

[Scheme Procedure]string-join ls [delimiter [grammar]]
[C Function]scm_string_join (ls, delimiter, grammar)

Append the string in the string list ls, using the string delim as a delimiter between
the elements of ls. grammar is a symbol which speci�es how the delimiter is placed
between the strings, and defaults to the symbol infix.

infix Insert the separator between list elements. An empty string will produce
an empty list.

string-infix

Like infix, but will raise an error if given the empty list.

suffix Insert the separator after every list element.

prefix Insert the separator before each list element.

5.5.5.4 List/String conversion

When processing strings, it is often convenient to �rst convert them into a list representation
by using the procedure string->list, work with the resulting list, and then convert it back
into a string. These procedures are useful for similar tasks.
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[Scheme Procedure]string->list str [start [end]]
[C Function]scm_substring_to_list (str, start, end)
[C Function]scm_string_to_list (str)

Convert the string str into a list of characters.

[Scheme Procedure]string-split str chr
[C Function]scm_string_split (str, chr)

Split the string str into the a list of the substrings delimited by appearances of the
character chr. Note that an empty substring between separator characters will result
in an empty string in the result list.

(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
)
("root" "x" "0" "0" "root" "/root" "/bin/bash")

(string-split "::" #\:)
)
("" "" "")

(string-split "" #\:)
)
("")

5.5.5.5 String Selection

Portions of strings can be extracted by these procedures. string-ref delivers individual
characters whereas substring can be used to extract substrings from longer strings.

[Scheme Procedure]string-length string
[C Function]scm_string_length (string)

Return the number of characters in string.

[C Function]size_t scm_c_string_length (SCM str)
Return the number of characters in str as a size_t.

[Scheme Procedure]string-ref str k
[C Function]scm_string_ref (str, k)

Return character k of str using zero-origin indexing. k must be a valid index of str.

[C Function]SCM scm_c_string_ref (SCM str, size t k)
Return character k of str using zero-origin indexing. k must be a valid index of str.

[Scheme Procedure]string-copy str [start [end]]
[C Function]scm_substring_copy (str, start, end)
[C Function]scm_string_copy (str)

Return a copy of the given string str.

The returned string shares storage with str initially, but it is copied as soon as one
of the two strings is modi�ed.

[Scheme Procedure]substring str start [end]
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[C Function]scm_substring (str, start, end)
Return a new string formed from the characters of str beginning with index start
(inclusive) and ending with index end (exclusive). str must be a string, start and end
must be exact integers satisfying:

0 <= start <= end <= (string-length str).

The returned string shares storage with str initially, but it is copied as soon as one
of the two strings is modi�ed.

[Scheme Procedure]substring/shared str start [end]
[C Function]scm_substring_shared (str, start, end)

Like substring, but the strings continue to share their storage even if they are
modi�ed. Thus, modi�cations to str show up in the new string, and vice versa.

[Scheme Procedure]substring/copy str start [end]
[C Function]scm_substring_copy (str, start, end)

Like substring, but the storage for the new string is copied immediately.

[Scheme Procedure]substring/read-only str start [end]
[C Function]scm_substring_read_only (str, start, end)

Like substring, but the resulting string can not be modi�ed.

[C Function]SCM scm_c_substring (SCM str, size t start, size t end)
[C Function]SCM scm_c_substring_shared (SCM str, size t start, size t end)
[C Function]SCM scm_c_substring_copy (SCM str, size t start, size t end)
[C Function]SCM scm_c_substring_read_only (SCM str, size t start, size t end)

Like scm_substring, etc. but the bounds are given as a size_t.

[Scheme Procedure]string-take s n
[C Function]scm_string_take (s, n)

Return the n �rst characters of s.

[Scheme Procedure]string-drop s n
[C Function]scm_string_drop (s, n)

Return all but the �rst n characters of s.

[Scheme Procedure]string-take-right s n
[C Function]scm_string_take_right (s, n)

Return the n last characters of s.

[Scheme Procedure]string-drop-right s n
[C Function]scm_string_drop_right (s, n)

Return all but the last n characters of s.

[Scheme Procedure]string-pad s len [chr [start [end]]]
[Scheme Procedure]string-pad-right s len [chr [start [end]]]

[C Function]scm_string_pad (s, len, chr, start, end)
[C Function]scm_string_pad_right (s, len, chr, start, end)

Take characters start to end from the string s and either pad with char or truncate
them to give len characters.

string-pad pads or truncates on the left, so for example
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(string-pad "x" 3) ) " x"

(string-pad "abcde" 3) ) "cde"

string-pad-right pads or truncates on the right, so for example

(string-pad-right "x" 3) ) "x "

(string-pad-right "abcde" 3) ) "abc"

[Scheme Procedure]string-trim s [char pred [start [end]]]
[Scheme Procedure]string-trim-right s [char pred [start [end]]]
[Scheme Procedure]string-trim-both s [char pred [start [end]]]

[C Function]scm_string_trim (s, char pred, start, end)
[C Function]scm_string_trim_right (s, char pred, start, end)
[C Function]scm_string_trim_both (s, char pred, start, end)

Trim occurrances of char pred from the ends of s.

string-trim trims char pred characters from the left (start) of the string, string-
trim-right trims them from the right (end) of the string, string-trim-both trims
from both ends.

char pred can be a character, a character set, or a predicate procedure to call on
each character. If char pred is not given the default is whitespace as per char-

set:whitespace (see Section 5.5.4.6 [Standard Character Sets], page 128).

(string-trim " x ") ) "x "

(string-trim-right "banana" #\a) ) "banan"

(string-trim-both ".,xy:;" char-set:punctuation)
) "xy"

(string-trim-both "xyzzy" (lambda (c)

(or (eqv? c #\x)

(eqv? c #\y))))
) "zz"

5.5.5.6 String Modi�cation

These procedures are for modifying strings in-place. This means that the result of the op-
eration is not a new string; instead, the original string's memory representation is modi�ed.

[Scheme Procedure]string-set! str k chr
[C Function]scm_string_set_x (str, k, chr)

Store chr in element k of str and return an unspeci�ed value. k must be a valid index
of str.

[C Function]void scm_c_string_set_x (SCM str, size t k, SCM chr)
Like scm_string_set_x, but the index is given as a size_t.

[Scheme Procedure]string-fill! str chr [start [end]]
[C Function]scm_substring_fill_x (str, chr, start, end)
[C Function]scm_string_fill_x (str, chr)

Stores chr in every element of the given str and returns an unspeci�ed value.

[Scheme Procedure]substring-fill! str start end �ll
[C Function]scm_substring_fill_x (str, start, end, �ll)

Change every character in str between start and end to �ll.
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(define y "abcdefg")

(substring-fill! y 1 3 #\r)

y
) "arrdefg"

[Scheme Procedure]substring-move! str1 start1 end1 str2 start2
[C Function]scm_substring_move_x (str1, start1, end1, str2, start2)

Copy the substring of str1 bounded by start1 and end1 into str2 beginning at position
start2. str1 and str2 can be the same string.

[Scheme Procedure]string-copy! target tstart s [start [end]]
[C Function]scm_string_copy_x (target, tstart, s, start, end)

Copy the sequence of characters from index range [start, end) in string s to string
target, beginning at index tstart. The characters are copied left-to-right or right-to-
left as needed { the copy is guaranteed to work, even if target and s are the same
string. It is an error if the copy operation runs o� the end of the target string.

5.5.5.7 String Comparison

The procedures in this section are similar to the character ordering predicates (see Sec-
tion 5.5.3 [Characters], page 121), but are de�ned on character sequences.

The �rst set is speci�ed in R5RS and has names that end in ?. The second set is
speci�ed in SRFI-13 and the names have no ending ?. The predicates ending in -ci ignore
the character case when comparing strings.

[Scheme Procedure]string=? s1 s2
Lexicographic equality predicate; return #t if the two strings are the same length and
contain the same characters in the same positions, otherwise return #f.

The procedure string-ci=? treats upper and lower case letters as though they were
the same character, but string=? treats upper and lower case as distinct characters.

[Scheme Procedure]string<? s1 s2
Lexicographic ordering predicate; return #t if s1 is lexicographically less than s2.

[Scheme Procedure]string<=? s1 s2
Lexicographic ordering predicate; return #t if s1 is lexicographically less than or equal
to s2.

[Scheme Procedure]string>? s1 s2
Lexicographic ordering predicate; return #t if s1 is lexicographically greater than s2.

[Scheme Procedure]string>=? s1 s2
Lexicographic ordering predicate; return #t if s1 is lexicographically greater than or
equal to s2.

[Scheme Procedure]string-ci=? s1 s2
Case-insensitive string equality predicate; return #t if the two strings are the same
length and their component characters match (ignoring case) at each position; other-
wise return #f.
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[Scheme Procedure]string-ci<? s1 s2
Case insensitive lexicographic ordering predicate; return #t if s1 is lexicographically
less than s2 regardless of case.

[Scheme Procedure]string-ci<=? s1 s2
Case insensitive lexicographic ordering predicate; return #t if s1 is lexicographically
less than or equal to s2 regardless of case.

[Scheme Procedure]string-ci>? s1 s2
Case insensitive lexicographic ordering predicate; return #t if s1 is lexicographically
greater than s2 regardless of case.

[Scheme Procedure]string-ci>=? s1 s2
Case insensitive lexicographic ordering predicate; return #t if s1 is lexicographically
greater than or equal to s2 regardless of case.

[Scheme Procedure]string-compare s1 s2 proc lt proc eq proc gt [start1 [end1
[start2 [end2]]]]

[C Function]scm_string_compare (s1, s2, proc lt, proc eq, proc gt, start1, end1,
start2, end2)

Apply proc lt, proc eq, proc gt to the mismatch index, depending upon whether s1
is less than, equal to, or greater than s2. The mismatch index is the largest index i
such that for every 0 <= j < i, s1[j] = s2[j] { that is, i is the �rst position that does
not match.

[Scheme Procedure]string-compare-ci s1 s2 proc lt proc eq proc gt [start1 [end1
[start2 [end2]]]]

[C Function]scm_string_compare_ci (s1, s2, proc lt, proc eq, proc gt, start1,
end1, start2, end2)

Apply proc lt, proc eq, proc gt to the mismatch index, depending upon whether s1
is less than, equal to, or greater than s2. The mismatch index is the largest index i
such that for every 0 <= j < i, s1[j] = s2[j] { that is, i is the �rst position that does
not match. The character comparison is done case-insensitively.

[Scheme Procedure]string= s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_eq (s1, s2, start1, end1, start2, end2)

Return #f if s1 and s2 are not equal, a true value otherwise.

[Scheme Procedure]string<> s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_neq (s1, s2, start1, end1, start2, end2)

Return #f if s1 and s2 are equal, a true value otherwise.

[Scheme Procedure]string< s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_lt (s1, s2, start1, end1, start2, end2)

Return #f if s1 is greater or equal to s2, a true value otherwise.

[Scheme Procedure]string> s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_gt (s1, s2, start1, end1, start2, end2)

Return #f if s1 is less or equal to s2, a true value otherwise.
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[Scheme Procedure]string<= s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_le (s1, s2, start1, end1, start2, end2)

Return #f if s1 is greater to s2, a true value otherwise.

[Scheme Procedure]string>= s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_ge (s1, s2, start1, end1, start2, end2)

Return #f if s1 is less to s2, a true value otherwise.

[Scheme Procedure]string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_ci_eq (s1, s2, start1, end1, start2, end2)

Return #f if s1 and s2 are not equal, a true value otherwise. The character comparison
is done case-insensitively.

[Scheme Procedure]string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_ci_neq (s1, s2, start1, end1, start2, end2)

Return #f if s1 and s2 are equal, a true value otherwise. The character comparison
is done case-insensitively.

[Scheme Procedure]string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_ci_lt (s1, s2, start1, end1, start2, end2)

Return #f if s1 is greater or equal to s2, a true value otherwise. The character
comparison is done case-insensitively.

[Scheme Procedure]string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_ci_gt (s1, s2, start1, end1, start2, end2)

Return #f if s1 is less or equal to s2, a true value otherwise. The character comparison
is done case-insensitively.

[Scheme Procedure]string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_ci_le (s1, s2, start1, end1, start2, end2)

Return #f if s1 is greater to s2, a true value otherwise. The character comparison is
done case-insensitively.

[Scheme Procedure]string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_ci_ge (s1, s2, start1, end1, start2, end2)

Return #f if s1 is less to s2, a true value otherwise. The character comparison is done
case-insensitively.

[Scheme Procedure]string-hash s [bound [start [end]]]
[C Function]scm_substring_hash (s, bound, start, end)

Compute a hash value for S. the optional argument bound is a non-negative exact
integer specifying the range of the hash function. A positive value restricts the return
value to the range [0,bound).

[Scheme Procedure]string-hash-ci s [bound [start [end]]]
[C Function]scm_substring_hash_ci (s, bound, start, end)

Compute a hash value for S. the optional argument bound is a non-negative exact
integer specifying the range of the hash function. A positive value restricts the return
value to the range [0,bound).
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5.5.5.8 String Searching

[Scheme Procedure]string-index s char pred [start [end]]
[C Function]scm_string_index (s, char pred, start, end)

Search through the string s from left to right, returning the index of the �rst occurence
of a character which

� equals char pred, if it is character,

� satisi�es the predicate char pred, if it is a procedure,

� is in the set char pred, if it is a character set.

[Scheme Procedure]string-rindex s char pred [start [end]]
[C Function]scm_string_rindex (s, char pred, start, end)

Search through the string s from right to left, returning the index of the last occurence
of a character which

� equals char pred, if it is character,

� satisi�es the predicate char pred, if it is a procedure,

� is in the set if char pred is a character set.

[Scheme Procedure]string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_prefix_length (s1, s2, start1, end1, start2, end2)

Return the length of the longest common pre�x of the two strings.

[Scheme Procedure]string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)

Return the length of the longest common pre�x of the two strings, ignoring character
case.

[Scheme Procedure]string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_suffix_length (s1, s2, start1, end1, start2, end2)

Return the length of the longest common su�x of the two strings.

[Scheme Procedure]string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)

Return the length of the longest common su�x of the two strings, ignoring character
case.

[Scheme Procedure]string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_prefix_p (s1, s2, start1, end1, start2, end2)

Is s1 a pre�x of s2?

[Scheme Procedure]string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)

Is s1 a pre�x of s2, ignoring character case?

[Scheme Procedure]string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_suffix_p (s1, s2, start1, end1, start2, end2)

Is s1 a su�x of s2?
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[Scheme Procedure]string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)

Is s1 a su�x of s2, ignoring character case?

[Scheme Procedure]string-index-right s char pred [start [end]]
[C Function]scm_string_index_right (s, char pred, start, end)

Search through the string s from right to left, returning the index of the last occurence
of a character which

� equals char pred, if it is character,

� satisi�es the predicate char pred, if it is a procedure,

� is in the set if char pred is a character set.

[Scheme Procedure]string-skip s char pred [start [end]]
[C Function]scm_string_skip (s, char pred, start, end)

Search through the string s from left to right, returning the index of the �rst occurence
of a character which

� does not equal char pred, if it is character,

� does not satisify the predicate char pred, if it is a procedure,

� is not in the set if char pred is a character set.

[Scheme Procedure]string-skip-right s char pred [start [end]]
[C Function]scm_string_skip_right (s, char pred, start, end)

Search through the string s from right to left, returning the index of the last occurence
of a character which

� does not equal char pred, if it is character,

� does not satisfy the predicate char pred, if it is a procedure,

� is not in the set if char pred is a character set.

[Scheme Procedure]string-count s char pred [start [end]]
[C Function]scm_string_count (s, char pred, start, end)

Return the count of the number of characters in the string s which

� equals char pred, if it is character,

� satisi�es the predicate char pred, if it is a procedure.

� is in the set char pred, if it is a character set.

[Scheme Procedure]string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_contains (s1, s2, start1, end1, start2, end2)

Does string s1 contain string s2? Return the index in s1 where s2 occurs as a sub-
string, or false. The optional start/end indices restrict the operation to the indicated
substrings.

[Scheme Procedure]string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_contains_ci (s1, s2, start1, end1, start2, end2)

Does string s1 contain string s2? Return the index in s1 where s2 occurs as a sub-
string, or false. The optional start/end indices restrict the operation to the indicated
substrings. Character comparison is done case-insensitively.
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5.5.5.9 Alphabetic Case Mapping

These are procedures for mapping strings to their upper- or lower-case equivalents, respec-
tively, or for capitalizing strings.

[Scheme Procedure]string-upcase str [start [end]]
[C Function]scm_substring_upcase (str, start, end)
[C Function]scm_string_upcase (str)

Upcase every character in str.

[Scheme Procedure]string-upcase! str [start [end]]
[C Function]scm_substring_upcase_x (str, start, end)
[C Function]scm_string_upcase_x (str)

Destructively upcase every character in str.

(string-upcase! y)
) "ARRDEFG"

y
) "ARRDEFG"

[Scheme Procedure]string-downcase str [start [end]]
[C Function]scm_substring_downcase (str, start, end)
[C Function]scm_string_downcase (str)

Downcase every character in str.

[Scheme Procedure]string-downcase! str [start [end]]
[C Function]scm_substring_downcase_x (str, start, end)
[C Function]scm_string_downcase_x (str)

Destructively downcase every character in str.

y
) "ARRDEFG"

(string-downcase! y)
) "arrdefg"

y
) "arrdefg"

[Scheme Procedure]string-capitalize str
[C Function]scm_string_capitalize (str)

Return a freshly allocated string with the characters in str, where the �rst character
of every word is capitalized.

[Scheme Procedure]string-capitalize! str
[C Function]scm_string_capitalize_x (str)

Upcase the �rst character of every word in str destructively and return str.

y ) "hello world"

(string-capitalize! y) ) "Hello World"

y ) "Hello World"

[Scheme Procedure]string-titlecase str [start [end]]
[C Function]scm_string_titlecase (str, start, end)

Titlecase every �rst character in a word in str.
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[Scheme Procedure]string-titlecase! str [start [end]]
[C Function]scm_string_titlecase_x (str, start, end)

Destructively titlecase every �rst character in a word in str.

5.5.5.10 Reversing and Appending Strings

[Scheme Procedure]string-reverse str [start [end]]
[C Function]scm_string_reverse (str, start, end)

Reverse the string str. The optional arguments start and end delimit the region of
str to operate on.

[Scheme Procedure]string-reverse! str [start [end]]
[C Function]scm_string_reverse_x (str, start, end)

Reverse the string str in-place. The optional arguments start and end delimit the
region of str to operate on. The return value is unspeci�ed.

[Scheme Procedure]string-append . args
[C Function]scm_string_append (args)

Return a newly allocated string whose characters form the concatenation of the given
strings, args.

(let ((h "hello "))

(string-append h "world"))
) "hello world"

[Scheme Procedure]string-append/shared . ls
[C Function]scm_string_append_shared (ls)

Like string-append, but the result may share memory with the argument strings.

[Scheme Procedure]string-concatenate ls
[C Function]scm_string_concatenate (ls)

Append the elements of ls (which must be strings) together into a single string.
Guaranteed to return a freshly allocated string.

[Scheme Procedure]string-concatenate-reverse ls [�nal string [end]]
[C Function]scm_string_concatenate_reverse (ls, �nal string, end)

Without optional arguments, this procedure is equivalent to
(string-concatenate (reverse ls))

If the optional argument �nal string is speci�ed, it is consed onto the beginning to ls
before performing the list-reverse and string-concatenate operations. If end is given,
only the characters of �nal string up to index end are used.

Guaranteed to return a freshly allocated string.

[Scheme Procedure]string-concatenate/shared ls
[C Function]scm_string_concatenate_shared (ls)

Like string-concatenate, but the result may share memory with the strings in the
list ls.

[Scheme Procedure]string-concatenate-reverse/shared ls [�nal string [end]]
[C Function]scm_string_concatenate_reverse_shared (ls, �nal string, end)

Like string-concatenate-reverse, but the result may share memory with the the
strings in the ls arguments.
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5.5.5.11 Mapping, Folding, and Unfolding

[Scheme Procedure]string-map proc s [start [end]]
[C Function]scm_string_map (proc, s, start, end)

proc is a char->char procedure, it is mapped over s. The order in which the procedure
is applied to the string elements is not speci�ed.

[Scheme Procedure]string-map! proc s [start [end]]
[C Function]scm_string_map_x (proc, s, start, end)

proc is a char->char procedure, it is mapped over s. The order in which the procedure
is applied to the string elements is not speci�ed. The string s is modi�ed in-place,
the return value is not speci�ed.

[Scheme Procedure]string-for-each proc s [start [end]]
[C Function]scm_string_for_each (proc, s, start, end)

proc is mapped over s in left-to-right order. The return value is not speci�ed.

[Scheme Procedure]string-for-each-index proc s [start [end]]
[C Function]scm_string_for_each_index (proc, s, start, end)

Call (proc i) for each index i in s, from left to right.

For example, to change characters to alternately upper and lower case,

(define str (string-copy "studly"))

(string-for-each-index (lambda (i)

(string-set! str i

((if (even? i) char-upcase char-downcase)

(string-ref str i))))

str)

str ) "StUdLy"

[Scheme Procedure]string-fold kons knil s [start [end]]
[C Function]scm_string_fold (kons, knil, s, start, end)

Fold kons over the characters of s, with knil as the terminating element, from left to
right. kons must expect two arguments: The actual character and the last result of
kons' application.

[Scheme Procedure]string-fold-right kons knil s [start [end]]
[C Function]scm_string_fold_right (kons, knil, s, start, end)

Fold kons over the characters of s, with knil as the terminating element, from right
to left. kons must expect two arguments: The actual character and the last result of
kons' application.

[Scheme Procedure]string-unfold p f g seed [base [make �nal]]
[C Function]scm_string_unfold (p, f, g, seed, base, make �nal)

� g is used to generate a series of seed values from the initial seed: seed, (g seed),
(g^2 seed), (g^3 seed), . . .

� p tells us when to stop { when it returns true when applied to one of these seed
values.

� f maps each seed value to the corresponding character in the result string. These
chars are assembled into the string in a left-to-right order.
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� base is the optional initial/leftmost portion of the constructed string; it default
to the empty string.

� make �nal is applied to the terminal seed value (on which p returns true) to
produce the �nal/rightmost portion of the constructed string. It defaults to
(lambda (x) ).

[Scheme Procedure]string-unfold-right p f g seed [base [make �nal]]
[C Function]scm_string_unfold_right (p, f, g, seed, base, make �nal)

� g is used to generate a series of seed values from the initial seed: seed, (g seed),
(g^2 seed), (g^3 seed), . . .

� p tells us when to stop { when it returns true when applied to one of these seed
values.

� f maps each seed value to the corresponding character in the result string. These
chars are assembled into the string in a right-to-left order.

� base is the optional initial/rightmost portion of the constructed string; it default
to the empty string.

� make �nal is applied to the terminal seed value (on which p returns true) to pro-
duce the �nal/leftmost portion of the constructed string. It defaults to (lambda

(x) ).

5.5.5.12 Miscellaneous String Operations

[Scheme Procedure]xsubstring s from [to [start [end]]]
[C Function]scm_xsubstring (s, from, to, start, end)

This is the extended substring procedure that implements replicated copying of a
substring of some string.

s is a string, start and end are optional arguments that demarcate a substring of
s, defaulting to 0 and the length of s. Replicate this substring up and down index
space, in both the positive and negative directions. xsubstring returns the substring
of this string beginning at index from, and ending at to, which defaults to from +

(end - start).

[Scheme Procedure]string-xcopy! target tstart s sfrom [sto [start [end]]]
[C Function]scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)

Exactly the same as xsubstring, but the extracted text is written into the string
target starting at index tstart. The operation is not de�ned if (eq? target s) or
these arguments share storage { you cannot copy a string on top of itself.

[Scheme Procedure]string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
[C Function]scm_string_replace (s1, s2, start1, end1, start2, end2)

Return the string s1, but with the characters start1 . . . end1 replaced by the char-
acters start2 . . . end2 from s2.

[Scheme Procedure]string-tokenize s [token set [start [end]]]
[C Function]scm_string_tokenize (s, token set, start, end)

Split the string s into a list of substrings, where each substring is a maximal non-
empty contiguous sequence of characters from the character set token set, which
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defaults to char-set:graphic. If start or end indices are provided, they restrict
string-tokenize to operating on the indicated substring of s.

[Scheme Procedure]string-filter s char pred [start [end]]
[C Function]scm_string_filter (s, char pred, start, end)

Filter the string s, retaining only those characters which satisfy char pred.

If char pred is a procedure, it is applied to each character as a predicate, if it is a
character, it is tested for equality and if it is a character set, it is tested for member-
ship.

[Scheme Procedure]string-delete s char pred [start [end]]
[C Function]scm_string_delete (s, char pred, start, end)

Delete characters satisfying char pred from s.

If char pred is a procedure, it is applied to each character as a predicate, if it is a
character, it is tested for equality and if it is a character set, it is tested for member-
ship.

5.5.5.13 Conversion to/from C

When creating a Scheme string from a C string or when converting a Scheme string to a C
string, the concept of character encoding becomes important.

In C, a string is just a sequence of bytes, and the character encoding describes the relation
between these bytes and the actual characters that make up the string. For Scheme strings,
character encoding is not an issue (most of the time), since in Scheme you never get to see
the bytes, only the characters.

Well, ideally, anyway. Right now, Guile simply equates Scheme characters and bytes,
ignoring the possibility of multi-byte encodings completely. This will change in the future,
where Guile will use Unicode codepoints as its characters and UTF-8 or some other encoding
as its internal encoding. When you exclusively use the functions listed in this section, you
are `future-proof'.

Converting a Scheme string to a C string will often allocate fresh memory to hold the
result. You must take care that this memory is properly freed eventually. In many cases,
this can be achieved by using scm_dynwind_free inside an appropriate dynwind context,
See Section 5.11.9 [Dynamic Wind], page 266.

[C Function]SCM scm_from_locale_string (const char *str)
[C Function]SCM scm_from_locale_stringn (const char *str, size t len)

Creates a new Scheme string that has the same contents as str when interpreted in
the current locale character encoding.

For scm_from_locale_string, str must be null-terminated.

For scm_from_locale_stringn, len speci�es the length of str in bytes, and str does
not need to be null-terminated. If len is (size_t)-1, then str does need to be null-
terminated and the real length will be found with strlen.

[C Function]SCM scm_take_locale_string (char *str)
[C Function]SCM scm_take_locale_stringn (char *str, size t len)

Like scm_from_locale_string and scm_from_locale_stringn, respectively, but
also frees str with free eventually. Thus, you can use this function when you would
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free str anyway immediately after creating the Scheme string. In certain cases, Guile
can then use str directly as its internal representation.

[C Function]char * scm_to_locale_string (SCM str)
[C Function]char * scm_to_locale_stringn (SCM str, size t *lenp)

Returns a C string in the current locale encoding with the same contents as str. The
C string must be freed with free eventually, maybe by using scm_dynwind_free, See
Section 5.11.9 [Dynamic Wind], page 266.

For scm_to_locale_string, the returned string is null-terminated and an error is
signalled when str contains #\nul characters.

For scm_to_locale_stringn and lenp not NULL, str might contain #\nul characters
and the length of the returned string in bytes is stored in *lenp . The returned string
will not be null-terminated in this case. If lenp is NULL, scm_to_locale_stringn
behaves like scm_to_locale_string.

[C Function]size_t scm_to_locale_stringbuf (SCM str, char *buf, size t
max len)

Puts str as a C string in the current locale encoding into the memory pointed to by
buf. The bu�er at buf has room for max len bytes and scm_to_local_stringbuf

will never store more than that. No terminating '\0' will be stored.

The return value of scm_to_locale_stringbuf is the number of bytes that are needed
for all of str, regardless of whether buf was large enough to hold them. Thus, when
the return value is larger than max len, only max len bytes have been stored and you
probably need to try again with a larger bu�er.

5.5.6 Regular Expressions

A regular expression (or regexp) is a pattern that describes a whole class of strings. A full
description of regular expressions and their syntax is beyond the scope of this manual; an
introduction can be found in the Emacs manual (see section \Syntax of Regular Expressions"
in The GNU Emacs Manual), or in many general Unix reference books.

If your system does not include a POSIX regular expression library, and you have not
linked Guile with a third-party regexp library such as Rx, these functions will not be
available. You can tell whether your Guile installation includes regular expression support
by checking whether (provided? 'regex) returns true.

The following regexp and string matching features are provided by the (ice-9 regex)

module. Before using the described functions, you should load this module by executing
(use-modules (ice-9 regex)).

5.5.6.1 Regexp Functions

By default, Guile supports POSIX extended regular expressions. That means that the
characters `(', `)', `+' and `?' are special, and must be escaped if you wish to match the
literal characters.

This regular expression interface was modeled after that implemented by SCSH, the
Scheme Shell. It is intended to be upwardly compatible with SCSH regular expressions.

Zero bytes (#\nul) cannot be used in regex patterns or input strings, since the underlying
C functions treat that as the end of string. If there's a zero byte an error is thrown.
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Patterns and input strings are treated as being in the locale character set if setlocale
has been called (see Section 6.2.13 [Locales], page 417), and in a multibyte locale this
includes treating multi-byte sequences as a single character. (Guile strings are currently
merely bytes, though this may change in the future, See Section 5.5.5.13 [Conversion to/from
C], page 145.)

[Scheme Procedure]string-match pattern str [start]
Compile the string pattern into a regular expression and compare it with str. The
optional numeric argument start speci�es the position of str at which to begin match-
ing.

string-match returns a match structure which describes what, if anything, was
matched by the regular expression. See Section 5.5.6.2 [Match Structures], page 150.
If str does not match pattern at all, string-match returns #f.

Two examples of a match follow. In the �rst example, the pattern matches the four
digits in the match string. In the second, the pattern matches nothing.

(string-match "[0-9][0-9][0-9][0-9]" "blah2002")
) #("blah2002" (4 . 8))

(string-match "[A-Za-z]" "123456")
) #f

Each time string-match is called, it must compile its pattern argument into a regular
expression structure. This operation is expensive, which makes string-match ine�cient
if the same regular expression is used several times (for example, in a loop). For better
performance, you can compile a regular expression in advance and then match strings
against the compiled regexp.

[Scheme Procedure]make-regexp pat ag. . .
[C Function]scm_make_regexp (pat, aglst)

Compile the regular expression described by pat, and return the compiled regexp
structure. If pat does not describe a legal regular expression, make-regexp throws a
regular-expression-syntax error.

The ag arguments change the behavior of the compiled regular expression. The
following values may be supplied:

[Variable]regexp/icase
Consider uppercase and lowercase letters to be the same when matching.

[Variable]regexp/newline
If a newline appears in the target string, then permit the `^' and `$' operators to
match immediately after or immediately before the newline, respectively. Also,
the `.' and `[^...]' operators will never match a newline character. The intent
of this ag is to treat the target string as a bu�er containing many lines of text,
and the regular expression as a pattern that may match a single one of those
lines.

[Variable]regexp/basic
Compile a basic (\obsolete") regexp instead of the extended (\modern") regexps
that are the default. Basic regexps do not consider `|', `+' or `?' to be special
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characters, and require the `{...}' and `(...)' metacharacters to be backslash-
escaped (see Section 5.5.6.3 [Backslash Escapes], page 152). There are several
other di�erences between basic and extended regular expressions, but these are
the most signi�cant.

[Variable]regexp/extended
Compile an extended regular expression rather than a basic regexp. This is the
default behavior; this ag will not usually be needed. If a call to make-regexp

includes both regexp/basic and regexp/extended ags, the one which comes
last will override the earlier one.

[Scheme Procedure]regexp-exec rx str [start [ags]]
[C Function]scm_regexp_exec (rx, str, start, ags)

Match the compiled regular expression rx against str. If the optional integer start
argument is provided, begin matching from that position in the string. Return a
match structure describing the results of the match, or #f if no match could be
found.

The ags argument changes the matching behavior. The following ag values may be
supplied, use logior (see Section 5.5.2.14 [Bitwise Operations], page 117) to combine
them,

[Variable]regexp/notbol
Consider that the start o�set into str is not the beginning of a line and should
not match operator `^'.

If rx was created with the regexp/newline option above, `^' will still match
after a newline in str.

[Variable]regexp/noteol
Consider that the end of str is not the end of a line and should not match
operator `$'.

If rx was created with the regexp/newline option above, `$' will still match
before a newline in str.

;; Regexp to match uppercase letters

(define r (make-regexp "[A-Z]*"))

;; Regexp to match letters, ignoring case

(define ri (make-regexp "[A-Z]*" regexp/icase))

;; Search for bob using regexp r

(match:substring (regexp-exec r "bob"))
) "" ; no match

;; Search for bob using regexp ri

(match:substring (regexp-exec ri "Bob"))
) "Bob" ; matched case insensitive

[Scheme Procedure]regexp? obj
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[C Function]scm_regexp_p (obj)
Return #t if obj is a compiled regular expression, or #f otherwise.

[Scheme Procedure]list-matches regexp str [ags]
Return a list of match structures which are the non-overlapping matches of regexp in
str. regexp can be either a pattern string or a compiled regexp. The ags argument
is as per regexp-exec above.

(map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
) ("abc" "def")

[Scheme Procedure]fold-matches regexp str init proc [ags]
Apply proc to the non-overlapping matches of regexp in str, to build a result. regexp
can be either a pattern string or a compiled regexp. The ags argument is as per
regexp-exec above.

proc is called as (proc match prev) where match is a match structure and prev is
the previous return from proc. For the �rst call prev is the given init parameter.
fold-matches returns the �nal value from proc.

For example to count matches,

(fold-matches "[a-z][0-9]" "abc x1 def y2" 0

(lambda (match count)

(1+ count)))
) 2

Regular expressions are commonly used to �nd patterns in one string and replace them
with the contents of another string. The following functions are convenient ways to do this.

[Scheme Procedure]regexp-substitute port match [item. . . ]
Write to port selected parts of the match structure match. Or if port is #f then form
a string from those parts and return that.

Each item speci�es a part to be written, and may be one of the following,

� A string. String arguments are written out verbatim.

� An integer. The submatch with that number is written (match:substring).
Zero is the entire match.

� The symbol `pre'. The portion of the matched string preceding the regexp match
is written (match:prefix).

� The symbol `post'. The portion of the matched string following the regexp match
is written (match:suffix).

For example, changing a match and retaining the text before and after,

(regexp-substitute #f (string-match "[0-9]+" "number 25 is good")

'pre "37" 'post)
) "number 37 is good"

Or matching a yyyymmdd format date such as `20020828' and re-ordering and hy-
phenating the �elds.
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(define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")

(define s "Date 20020429 12am.")

(regexp-substitute #f (string-match date-regex s)

'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
) "Date 04-29-2002 12am. (20020429)"

[Scheme Procedure]regexp-substitute/global port regexp target [item. . . ]
Write to port selected parts of matches of regexp in target. If port is #f then form a
string from those parts and return that. regexp can be a string or a compiled regex.

This is similar to regexp-substitute, but allows global substitutions on target. Each
item behaves as per regexp-substitute, with the following di�erences,

� A function. Called as (item match) with the match structure for the regexp
match, it should return a string to be written to port.

� The symbol `post'. This doesn't output anything, but instead causes regexp-
substitute/global to recurse on the unmatched portion of target.

This must be supplied to perform a global search and replace on target; without
it regexp-substitute/global returns after a single match and output.

For example, to collapse runs of tabs and spaces to a single hyphen each,

(regexp-substitute/global #f "[ \t]+" "this is the text"

'pre "-" 'post)
) "this-is-the-text"

Or using a function to reverse the letters in each word,

(regexp-substitute/global #f "[a-z]+" "to do and not-do"

'pre (lambda (m) (string-reverse (match:substring m))) 'post)
) "ot od dna ton-od"

Without the post symbol, just one regexp match is made. For example the following is
the date example from regexp-substitute above, without the need for the separate
string-match call.

(define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")

(define s "Date 20020429 12am.")

(regexp-substitute/global #f date-regex s

'pre 2 "-" 3 "-" 1 'post " (" 0 ")")

) "Date 04-29-2002 12am. (20020429)"

5.5.6.2 Match Structures

A match structure is the object returned by string-match and regexp-exec. It describes
which portion of a string, if any, matched the given regular expression. Match structures
include: a reference to the string that was checked for matches; the starting and ending
positions of the regexp match; and, if the regexp included any parenthesized subexpressions,
the starting and ending positions of each submatch.

In each of the regexp match functions described below, the match argument must be
a match structure returned by a previous call to string-match or regexp-exec. Most of
these functions return some information about the original target string that was matched
against a regular expression; we will call that string target for easy reference.
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[Scheme Procedure]regexp-match? obj
Return #t if obj is a match structure returned by a previous call to regexp-exec, or
#f otherwise.

[Scheme Procedure]match:substring match [n]
Return the portion of target matched by subexpression number n. Submatch 0 (the
default) represents the entire regexp match. If the regular expression as a whole
matched, but the subexpression number n did not match, return #f.

(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))

(match:substring s)
) "2002"

;; match starting at offset 6 in the string

(match:substring

(string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
) "7654"

[Scheme Procedure]match:start match [n]
Return the starting position of submatch number n.

In the following example, the result is 4, since the match starts at character index 4:

(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))

(match:start s)
) 4

[Scheme Procedure]match:end match [n]
Return the ending position of submatch number n.

In the following example, the result is 8, since the match runs between characters 4 and
8 (i.e. the \2002").

(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))

(match:end s)
) 8

[Scheme Procedure]match:prefix match
Return the unmatched portion of target preceding the regexp match.

(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))

(match:prefix s)
) "blah"

[Scheme Procedure]match:suffix match
Return the unmatched portion of target following the regexp match.

(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))

(match:suffix s)
) "foo"

[Scheme Procedure]match:count match
Return the number of parenthesized subexpressions from match. Note that the entire
regular expression match itself counts as a subexpression, and failed submatches are
included in the count.
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[Scheme Procedure]match:string match
Return the original target string.

(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))

(match:string s)
) "blah2002foo"

5.5.6.3 Backslash Escapes

Sometimes you will want a regexp to match characters like `*' or `$' exactly. For example,
to check whether a particular string represents a menu entry from an Info node, it would be
useful to match it against a regexp like `^* [^:]*::'. However, this won't work; because
the asterisk is a metacharacter, it won't match the `*' at the beginning of the string. In
this case, we want to make the �rst asterisk un-magic.

You can do this by preceding the metacharacter with a backslash character `\'. (This is
also called quoting the metacharacter, and is known as a backslash escape.) When Guile
sees a backslash in a regular expression, it considers the following glyph to be an ordinary
character, no matter what special meaning it would ordinarily have. Therefore, we can
make the above example work by changing the regexp to `^\* [^:]*::'. The `\*' sequence
tells the regular expression engine to match only a single asterisk in the target string.

Since the backslash is itself a metacharacter, you may force a regexp to match a backslash
in the target string by preceding the backslash with itself. For example, to �nd variable
references in a TEX program, you might want to �nd occurrences of the string `\let\' fol-
lowed by any number of alphabetic characters. The regular expression `\\let\\[A-Za-z]*'
would do this: the double backslashes in the regexp each match a single backslash in the
target string.

[Scheme Procedure]regexp-quote str
Quote each special character found in str with a backslash, and return the resulting
string.

Very important: Using backslash escapes in Guile source code (as in Emacs Lisp or C)
can be tricky, because the backslash character has special meaning for the Guile reader.
For example, if Guile encounters the character sequence `\n' in the middle of a string while
processing Scheme code, it replaces those characters with a newline character. Similarly, the
character sequence `\t' is replaced by a horizontal tab. Several of these escape sequences are
processed by the Guile reader before your code is executed. Unrecognized escape sequences
are ignored: if the characters `\*' appear in a string, they will be translated to the single
character `*'.

This translation is obviously undesirable for regular expressions, since we want to be
able to include backslashes in a string in order to escape regexp metacharacters. Therefore,
to make sure that a backslash is preserved in a string in your Guile program, you must use
two consecutive backslashes:

(define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))

The string in this example is preprocessed by the Guile reader before any code is exe-
cuted. The resulting argument to make-regexp is the string `^\* [^:]*', which is what we
really want.
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This also means that in order to write a regular expression that matches a single back-
slash character, the regular expression string in the source code must include four back-
slashes. Each consecutive pair of backslashes gets translated by the Guile reader to a
single backslash, and the resulting double-backslash is interpreted by the regexp engine as
matching a single backslash character. Hence:

(define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))

The reason for the unwieldiness of this syntax is historical. Both regular expression
pattern matchers and Unix string processing systems have traditionally used backslashes
with the special meanings described above. The POSIX regular expression speci�cation and
ANSI C standard both require these semantics. Attempting to abandon either convention
would cause other kinds of compatibility problems, possibly more severe ones. Therefore,
without extending the Scheme reader to support strings with di�erent quoting conventions
(an ungainly and confusing extension when implemented in other languages), we must
adhere to this cumbersome escape syntax.

5.5.7 Symbols

Symbols in Scheme are widely used in three ways: as items of discrete data, as lookup keys
for alists and hash tables, and to denote variable references.

A symbol is similar to a string in that it is de�ned by a sequence of characters. The
sequence of characters is known as the symbol's name. In the usual case | that is, where the
symbol's name doesn't include any characters that could be confused with other elements
of Scheme syntax | a symbol is written in a Scheme program by writing the sequence of
characters that make up the name, without any quotation marks or other special syntax.
For example, the symbol whose name is \multiply-by-2" is written, simply:

multiply-by-2

Notice how this di�ers from a string with contents \multiply-by-2", which is written
with double quotation marks, like this:

"multiply-by-2"

Looking beyond how they are written, symbols are di�erent from strings in two important
respects.

The �rst important di�erence is uniqueness. If the same-looking string is read twice from
two di�erent places in a program, the result is two di�erent string objects whose contents
just happen to be the same. If, on the other hand, the same-looking symbol is read twice
from two di�erent places in a program, the result is the same symbol object both times.

Given two read symbols, you can use eq? to test whether they are the same (that is, have
the same name). eq? is the most e�cient comparison operator in Scheme, and comparing
two symbols like this is as fast as comparing, for example, two numbers. Given two strings,
on the other hand, you must use equal? or string=?, which are much slower comparison
operators, to determine whether the strings have the same contents.

(define sym1 (quote hello))

(define sym2 (quote hello))

(eq? sym1 sym2) ) #t

(define str1 "hello")
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(define str2 "hello")

(eq? str1 str2) ) #f

(equal? str1 str2) ) #t

The second important di�erence is that symbols, unlike strings, are not self-evaluating.
This is why we need the (quote ...)s in the example above: (quote hello) evaluates to
the symbol named "hello" itself, whereas an unquoted hello is read as the symbol named
"hello" and evaluated as a variable reference . . . about which more below (see Section 5.5.7.3
[Symbol Variables], page 156).

5.5.7.1 Symbols as Discrete Data

Numbers and symbols are similar to the extent that they both lend themselves to eq?

comparison. But symbols are more descriptive than numbers, because a symbol's name can
be used directly to describe the concept for which that symbol stands.

For example, imagine that you need to represent some colours in a computer program.
Using numbers, you would have to choose arbitrarily some mapping between numbers and
colours, and then take care to use that mapping consistently:

;; 1=red, 2=green, 3=purple

(if (eq? (colour-of car) 1)

...)

You can make the mapping more explicit and the code more readable by de�ning constants:

(define red 1)

(define green 2)

(define purple 3)

(if (eq? (colour-of car) red)

...)

But the simplest and clearest approach is not to use numbers at all, but symbols whose
names specify the colours that they refer to:

(if (eq? (colour-of car) 'red)

...)

The descriptive advantages of symbols over numbers increase as the set of concepts that
you want to describe grows. Suppose that a car object can have other properties as well,
such as whether it has or uses:

� automatic or manual transmission

� leaded or unleaded fuel

� power steering (or not).

Then a car's combined property set could be naturally represented and manipulated as a
list of symbols:

(properties-of car1)
)
(red manual unleaded power-steering)

(if (memq 'power-steering (properties-of car1))
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(display "Unfit people can drive this car.\n")

(display "You'll need strong arms to drive this car!\n"))

a
Unfit people can drive this car.

Remember, the fundamental property of symbols that we are relying on here is that
an occurrence of 'red in one part of a program is an indistinguishable symbol from an
occurrence of 'red in another part of a program; this means that symbols can usefully be
compared using eq?. At the same time, symbols have naturally descriptive names. This
combination of e�ciency and descriptive power makes them ideal for use as discrete data.

5.5.7.2 Symbols as Lookup Keys

Given their e�ciency and descriptive power, it is natural to use symbols as the keys in an
association list or hash table.

To illustrate this, consider a more structured representation of the car properties example
from the preceding subsection. Rather than mixing all the properties up together in a at
list, we could use an association list like this:

(define car1-properties '((colour . red)

(transmission . manual)

(fuel . unleaded)

(steering . power-assisted)))

Notice how this structure is more explicit and extensible than the at list. For example
it makes clear that manual refers to the transmission rather than, say, the windows or the
locking of the car. It also allows further properties to use the same symbols among their
possible values without becoming ambiguous:

(define car1-properties '((colour . red)

(transmission . manual)

(fuel . unleaded)

(steering . power-assisted)

(seat-colour . red)

(locking . manual)))

With a representation like this, it is easy to use the e�cient assq-XXX family of pro-
cedures (see Section 5.6.11 [Association Lists], page 210) to extract or change individual
pieces of information:

(assq-ref car1-properties 'fuel) ) unleaded

(assq-ref car1-properties 'transmission) ) manual

(assq-set! car1-properties 'seat-colour 'black)
)
((colour . red)

(transmission . manual)

(fuel . unleaded)

(steering . power-assisted)

(seat-colour . black)

(locking . manual)))
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Hash tables also have keys, and exactly the same arguments apply to the use of symbols
in hash tables as in association lists. The hash value that Guile uses to decide where to
add a symbol-keyed entry to a hash table can be obtained by calling the symbol-hash

procedure:

[Scheme Procedure]symbol-hash symbol
[C Function]scm_symbol_hash (symbol)

Return a hash value for symbol.

See Section 5.6.12 [Hash Tables], page 215 for information about hash tables in general,
and for why you might choose to use a hash table rather than an association list.

5.5.7.3 Symbols as Denoting Variables

When an unquoted symbol in a Scheme program is evaluated, it is interpreted as a variable
reference, and the result of the evaluation is the appropriate variable's value.

For example, when the expression (string-length "abcd") is read and evaluated, the
sequence of characters string-length is read as the symbol whose name is "string-length".
This symbol is associated with a variable whose value is the procedure that implements
string length calculation. Therefore evaluation of the string-length symbol results in
that procedure.

The details of the connection between an unquoted symbol and the variable to which
it refers are explained elsewhere. See Section 5.10 [Binding Constructs], page 247, for
how associations between symbols and variables are created, and Section 5.16 [Modules],
page 303, for how those associations are a�ected by Guile's module system.

5.5.7.4 Operations Related to Symbols

Given any Scheme value, you can determine whether it is a symbol using the symbol?

primitive:

[Scheme Procedure]symbol? obj
[C Function]scm_symbol_p (obj)

Return #t if obj is a symbol, otherwise return #f.

[C Function]int scm_is_symbol (SCM val)
Equivalent to scm_is_true (scm_symbol_p (val)).

Once you know that you have a symbol, you can obtain its name as a string by calling
symbol->string. Note that Guile di�ers by default from R5RS on the details of symbol-
>string as regards case-sensitivity:

[Scheme Procedure]symbol->string s
[C Function]scm_symbol_to_string (s)

Return the name of symbol s as a string. By default, Guile reads symbols case-
sensitively, so the string returned will have the same case variation as the sequence
of characters that caused s to be created.

If Guile is set to read symbols case-insensitively (as speci�ed by R5RS), and s comes
into being as part of a literal expression (see section \Literal expressions" in The



Chapter 5: API Reference 159

Revised^5 Report on Scheme) or by a call to the read or string-ci->symbol pro-
cedures, Guile converts any alphabetic characters in the symbol's name to lower case
before creating the symbol object, so the string returned here will be in lower case.

If s was created by string->symbol, the case of characters in the string returned will
be the same as that in the string that was passed to string->symbol, regardless of
Guile's case-sensitivity setting at the time s was created.

It is an error to apply mutation procedures like string-set! to strings returned by
this procedure.

Most symbols are created by writing them literally in code. However it is also possible
to create symbols programmatically using the following string->symbol and string-ci-

>symbol procedures:

[Scheme Procedure]string->symbol string
[C Function]scm_string_to_symbol (string)

Return the symbol whose name is string. This procedure can create symbols with
names containing special characters or letters in the non-standard case, but it is
usually a bad idea to create such symbols because in some implementations of Scheme
they cannot be read as themselves.

[Scheme Procedure]string-ci->symbol str
[C Function]scm_string_ci_to_symbol (str)

Return the symbol whose name is str. If Guile is currently reading symbols case-
insensitively, str is converted to lowercase before the returned symbol is looked up or
created.

The following examples illustrate Guile's detailed behaviour as regards the
case-sensitivity of symbols:

(read-enable 'case-insensitive) ; R5RS compliant behaviour

(symbol->string 'flying-fish) ) "flying-fish"

(symbol->string 'Martin) ) "martin"

(symbol->string

(string->symbol "Malvina")) ) "Malvina"

(eq? 'mISSISSIppi 'mississippi) ) #t

(string->symbol "mISSISSIppi") ) mISSISSIppi

(eq? 'bitBlt (string->symbol "bitBlt")) ) #f

(eq? 'LolliPop

(string->symbol (symbol->string 'LolliPop))) ) #t

(string=? "K. Harper, M.D."

(symbol->string

(string->symbol "K. Harper, M.D."))) ) #t

(read-disable 'case-insensitive) ; Guile default behaviour

(symbol->string 'flying-fish) ) "flying-fish"
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(symbol->string 'Martin) ) "Martin"

(symbol->string

(string->symbol "Malvina")) ) "Malvina"

(eq? 'mISSISSIppi 'mississippi) ) #f

(string->symbol "mISSISSIppi") ) mISSISSIppi

(eq? 'bitBlt (string->symbol "bitBlt")) ) #t

(eq? 'LolliPop

(string->symbol (symbol->string 'LolliPop))) ) #t

(string=? "K. Harper, M.D."

(symbol->string

(string->symbol "K. Harper, M.D."))) ) #t

From C, there are lower level functions that construct a Scheme symbol from a C string
in the current locale encoding.

When you want to do more from C, you should convert between symbols and strings
using scm_symbol_to_string and scm_string_to_symbol and work with the strings.

[C Function]scm_from_locale_symbol (const char *name)
[C Function]scm_from_locale_symboln (const char *name, size t len)

Construct and return a Scheme symbol whose name is speci�ed by name. For scm_
from_locale_symbol, name must be null terminated; for scm_from_locale_symboln
the length of name is speci�ed explicitly by len.

[C Function]SCM scm_take_locale_symbol (char *str)
[C Function]SCM scm_take_locale_symboln (char *str, size t len)

Like scm_from_locale_symbol and scm_from_locale_symboln, respectively, but
also frees str with free eventually. Thus, you can use this function when you would
free str anyway immediately after creating the Scheme string. In certain cases, Guile
can then use str directly as its internal representation.

Finally, some applications, especially those that generate new Scheme code dynamically,
need to generate symbols for use in the generated code. The gensym primitive meets this
need:

[Scheme Procedure]gensym [pre�x]
[C Function]scm_gensym (pre�x)

Create a new symbol with a name constructed from a pre�x and a counter value. The
string pre�x can be speci�ed as an optional argument. Default pre�x is ` g'. The
counter is increased by 1 at each call. There is no provision for resetting the counter.

The symbols generated by gensym are likely to be unique, since their names begin with
a space and it is only otherwise possible to generate such symbols if a programmer goes out
of their way to do so. Uniqueness can be guaranteed by instead using uninterned symbols
(see Section 5.5.7.7 [Symbol Uninterned], page 160), though they can't be usefully written
out and read back in.

5.5.7.5 Function Slots and Property Lists

In traditional Lisp dialects, symbols are often understood as having three kinds of value at
once:
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� a variable value, which is used when the symbol appears in code in a variable reference
context

� a function value, which is used when the symbol appears in code in a function name
position (i.e. as the �rst element in an unquoted list)

� a property list value, which is used when the symbol is given as the �rst argument to
Lisp's put or get functions.

Although Scheme (as one of its simpli�cations with respect to Lisp) does away with
the distinction between variable and function namespaces, Guile currently retains some
elements of the traditional structure in case they turn out to be useful when implementing
translators for other languages, in particular Emacs Lisp.

Speci�cally, Guile symbols have two extra slots. for a symbol's property list, and for its
\function value." The following procedures are provided to access these slots.

[Scheme Procedure]symbol-fref symbol
[C Function]scm_symbol_fref (symbol)

Return the contents of symbol's function slot.

[Scheme Procedure]symbol-fset! symbol value
[C Function]scm_symbol_fset_x (symbol, value)

Set the contents of symbol's function slot to value.

[Scheme Procedure]symbol-pref symbol
[C Function]scm_symbol_pref (symbol)

Return the property list currently associated with symbol.

[Scheme Procedure]symbol-pset! symbol value
[C Function]scm_symbol_pset_x (symbol, value)

Set symbol's property list to value.

[Scheme Procedure]symbol-property sym prop
From sym's property list, return the value for property prop. The assumption is that
sym's property list is an association list whose keys are distinguished from each other
using equal?; prop should be one of the keys in that list. If the property list has no
entry for prop, symbol-property returns #f.

[Scheme Procedure]set-symbol-property! sym prop val
In sym's property list, set the value for property prop to val, or add a new entry for
prop, with value val, if none already exists. For the structure of the property list, see
symbol-property.

[Scheme Procedure]symbol-property-remove! sym prop
From sym's property list, remove the entry for property prop, if there is one. For the
structure of the property list, see symbol-property.

Support for these extra slots may be removed in a future release, and it is probably
better to avoid using them. For a more modern and Schemely approach to properties, see
Section 5.9.2 [Object Properties], page 238.
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5.5.7.6 Extended Read Syntax for Symbols

The read syntax for a symbol is a sequence of letters, digits, and extended alphabetic
characters, beginning with a character that cannot begin a number. In addition, the special
cases of +, -, and ... are read as symbols even though numbers can begin with +, - or ..

Extended alphabetic characters may be used within identi�ers as if they were letters.
The set of extended alphabetic characters is:

! $ % & * + - . / : < = > ? @ ^ _ ~

In addition to the standard read syntax de�ned above (which is taken from R5RS (see
section \Formal syntax" in The Revised^5 Report on Scheme)), Guile provides an extended
symbol read syntax that allows the inclusion of unusual characters such as space characters,
newlines and parentheses. If (for whatever reason) you need to write a symbol containing
characters not mentioned above, you can do so as follows.

� Begin the symbol with the characters #{,

� write the characters of the symbol and

� �nish the symbol with the characters }#.

Here are a few examples of this form of read syntax. The �rst symbol needs to use
extended syntax because it contains a space character, the second because it contains a line
break, and the last because it looks like a number.

#{foo bar}#

#{what

ever}#

#{4242}#

Although Guile provides this extended read syntax for symbols, widespread usage of it
is discouraged because it is not portable and not very readable.

5.5.7.7 Uninterned Symbols

What makes symbols useful is that they are automatically kept unique. There are no two
symbols that are distinct objects but have the same name. But of course, there is no rule
without exception. In addition to the normal symbols that have been discussed up to now,
you can also create special uninterned symbols that behave slightly di�erently.

To understand what is di�erent about them and why they might be useful, we look at
how normal symbols are actually kept unique.

Whenever Guile wants to �nd the symbol with a speci�c name, for example during read
or when executing string->symbol, it �rst looks into a table of all existing symbols to �nd
out whether a symbol with the given name already exists. When this is the case, Guile just
returns that symbol. When not, a new symbol with the name is created and entered into
the table so that it can be found later.

Sometimes you might want to create a symbol that is guaranteed `fresh', i.e. a symbol
that did not exist previously. You might also want to somehow guarantee that no one else
will ever unintentionally stumble across your symbol in the future. These properties of a
symbol are often needed when generating code during macro expansion. When introducing
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new temporary variables, you want to guarantee that they don't conict with variables in
other people's code.

The simplest way to arrange for this is to create a new symbol but not enter it into the
global table of all symbols. That way, no one will ever get access to your symbol by chance.
Symbols that are not in the table are called uninterned. Of course, symbols that are in the
table are called interned.

You create new uninterned symbols with the function make-symbol. You can test
whether a symbol is interned or not with symbol-interned?.

Uninterned symbols break the rule that the name of a symbol uniquely identi�es the
symbol object. Because of this, they can not be written out and read back in like interned
symbols. Currently, Guile has no support for reading uninterned symbols. Note that the
function gensym does not return uninterned symbols for this reason.

[Scheme Procedure]make-symbol name
[C Function]scm_make_symbol (name)

Return a new uninterned symbol with the name name. The returned symbol is
guaranteed to be unique and future calls to string->symbol will not return it.

[Scheme Procedure]symbol-interned? symbol
[C Function]scm_symbol_interned_p (symbol)

Return #t if symbol is interned, otherwise return #f.

For example:

(define foo-1 (string->symbol "foo"))

(define foo-2 (string->symbol "foo"))

(define foo-3 (make-symbol "foo"))

(define foo-4 (make-symbol "foo"))

(eq? foo-1 foo-2)
) #t

; Two interned symbols with the same name are the same object,

(eq? foo-1 foo-3)
) #f

; but a call to make-symbol with the same name returns a

; distinct object.

(eq? foo-3 foo-4)
) #f

; A call to make-symbol always returns a new object, even for

; the same name.

foo-3
) #<uninterned-symbol foo 8085290>

; Uninterned symbols print differently from interned symbols,

(symbol? foo-3)
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) #t

; but they are still symbols,

(symbol-interned? foo-3)
) #f

; just not interned.

5.5.8 Keywords

Keywords are self-evaluating objects with a convenient read syntax that makes them easy
to type.

Guile's keyword support conforms to R5RS, and adds a (switchable) read syntax exten-
sion to permit keywords to begin with : as well as #:.

5.5.8.1 Why Use Keywords?

Keywords are useful in contexts where a program or procedure wants to be able to accept
a large number of optional arguments without making its interface unmanageable.

To illustrate this, consider a hypothetical make-window procedure, which creates a new
window on the screen for drawing into using some graphical toolkit. There are many
parameters that the caller might like to specify, but which could also be sensibly defaulted,
for example:

� color depth { Default: the color depth for the screen

� background color { Default: white

� width { Default: 600

� height { Default: 400

If make-window did not use keywords, the caller would have to pass in a value for each
possible argument, remembering the correct argument order and using a special value to
indicate the default value for that argument:

(make-window 'default ;; Color depth

'default ;; Background color

800 ;; Width

100 ;; Height

...) ;; More make-window arguments

With keywords, on the other hand, defaulted arguments are omitted, and non-default
arguments are clearly tagged by the appropriate keyword. As a result, the invocation
becomes much clearer:

(make-window #:width 800 #:height 100)

On the other hand, for a simpler procedure with few arguments, the use of keywords
would be a hindrance rather than a help. The primitive procedure cons, for example, would
not be improved if it had to be invoked as

(cons #:car x #:cdr y)

So the decision whether to use keywords or not is purely pragmatic: use them if they
will clarify the procedure invocation at point of call.
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5.5.8.2 Coding With Keywords

If a procedure wants to support keywords, it should take a rest argument and then use
whatever means is convenient to extract keywords and their corresponding arguments from
the contents of that rest argument.

The following example illustrates the principle: the code for make-window uses a helper
procedure called get-keyword-value to extract individual keyword arguments from the
rest argument.

(define (get-keyword-value args keyword default)

(let ((kv (memq keyword args)))

(if (and kv (>= (length kv) 2))

(cadr kv)

default)))

(define (make-window . args)

(let ((depth (get-keyword-value args #:depth screen-depth))

(bg (get-keyword-value args #:bg "white"))

(width (get-keyword-value args #:width 800))

(height (get-keyword-value args #:height 100))

...)

...))

But you don't need to write get-keyword-value. The (ice-9 optargs) module pro-
vides a set of powerful macros that you can use to implement keyword-supporting procedures
like this:

(use-modules (ice-9 optargs))

(define (make-window . args)

(let-keywords args #f ((depth screen-depth)

(bg "white")

(width 800)

(height 100))

...))

Or, even more economically, like this:

(use-modules (ice-9 optargs))

(define* (make-window #:key (depth screen-depth)

(bg "white")

(width 800)

(height 100))

...)

For further details on let-keywords, define* and other facilities provided by the (ice-
9 optargs) module, see Section 5.8.3 [Optional Arguments], page 226.

5.5.8.3 Keyword Read Syntax

Guile, by default, only recognizes a keyword syntax that is compatible with R5RS. A token
of the form #:NAME, where NAME has the same syntax as a Scheme symbol (see Section 5.5.7.6
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[Symbol Read Syntax], page 160), is the external representation of the keyword named NAME.
Keyword objects print using this syntax as well, so values containing keyword objects can
be read back into Guile. When used in an expression, keywords are self-quoting objects.

If the keyword read option is set to 'prefix, Guile also recognizes the alternative read
syntax :NAME. Otherwise, tokens of the form :NAME are read as symbols, as required by
R5RS.

To enable and disable the alternative non-R5RS keyword syntax, you use the read-

set! procedure documented in Section 5.18.3.2 [User level options interfaces], page 339 and
Section 5.18.3.3 [Reader options], page 339.

(read-set! keywords 'prefix)

#:type
)
#:type

:type
)
#:type

(read-set! keywords #f)

#:type
)
#:type

:type

a
ERROR: In expression :type:
ERROR: Unbound variable: :type
ABORT: (unbound-variable)

5.5.8.4 Keyword Procedures

[Scheme Procedure]keyword? obj
[C Function]scm_keyword_p (obj)

Return #t if the argument obj is a keyword, else #f.

[Scheme Procedure]keyword->symbol keyword
[C Function]scm_keyword_to_symbol (keyword)

Return the symbol with the same name as keyword.

[Scheme Procedure]symbol->keyword symbol
[C Function]scm_symbol_to_keyword (symbol)

Return the keyword with the same name as symbol.

[C Function]int scm_is_keyword (SCM obj)
Equivalent to scm_is_true (scm_keyword_p (obj)).

[C Function]SCM scm_from_locale_keyword (const char *str)
[C Function]SCM scm_from_locale_keywordn (const char *str, size t len)

Equivalent to scm_symbol_to_keyword (scm_from_locale_symbol (str)) and
scm_symbol_to_keyword (scm_from_locale_symboln (str, len)), respectively.
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5.5.9 \Functionality-Centric" Data Types

Procedures and macros are documented in their own chapter: see Section 5.8 [Procedures
and Macros], page 225.

Variable objects are documented as part of the description of Guile's module system:
see Section 5.16.5 [Variables], page 321.

Asyncs, dynamic roots and uids are described in the chapter on scheduling: see Sec-
tion 5.17 [Scheduling], page 323.

Hooks are documented in the chapter on general utility functions: see Section 5.9.6
[Hooks], page 241.

Ports are described in the chapter on I/O: see Section 5.12 [Input and Output], page 271.
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5.6 Compound Data Types

This chapter describes Guile's compound data types. By compound we mean that the
primary purpose of these data types is to act as containers for other kinds of data (including
other compound objects). For instance, a (non-uniform) vector with length 5 is a container
that can hold �ve arbitrary Scheme objects.

The various kinds of container object di�er from each other in how their memory is
allocated, how they are indexed, and how particular values can be looked up within them.

5.6.1 Pairs

Pairs are used to combine two Scheme objects into one compound object. Hence the name:
A pair stores a pair of objects.

The data type pair is extremely important in Scheme, just like in any other Lisp dialect.
The reason is that pairs are not only used to make two values available as one object, but
that pairs are used for constructing lists of values. Because lists are so important in Scheme,
they are described in a section of their own (see Section 5.6.2 [Lists], page 168).

Pairs can literally get entered in source code or at the REPL, in the so-called dotted
list syntax. This syntax consists of an opening parentheses, the �rst element of the pair, a
dot, the second element and a closing parentheses. The following example shows how a pair
consisting of the two numbers 1 and 2, and a pair containing the symbols foo and bar can
be entered. It is very important to write the whitespace before and after the dot, because
otherwise the Scheme parser would not be able to �gure out where to split the tokens.

(1 . 2)

(foo . bar)

But beware, if you want to try out these examples, you have to quote the expressions.
More information about quotation is available in the section Section 5.13.1.1 [Expression
Syntax], page 288. The correct way to try these examples is as follows.

'(1 . 2)
)
(1 . 2)

'(foo . bar)
)
(foo . bar)

A new pair is made by calling the procedure cons with two arguments. Then the
argument values are stored into a newly allocated pair, and the pair is returned. The name
cons stands for "construct". Use the procedure pair? to test whether a given Scheme
object is a pair or not.

[Scheme Procedure]cons x y
[C Function]scm_cons (x, y)

Return a newly allocated pair whose car is x and whose cdr is y. The pair is guaranteed
to be di�erent (in the sense of eq?) from every previously existing object.

[Scheme Procedure]pair? x
[C Function]scm_pair_p (x)

Return #t if x is a pair; otherwise return #f.
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[C Function]int scm_is_pair (SCM x)
Return 1 when x is a pair; otherwise return 0.

The two parts of a pair are traditionally called car and cdr. They can be retrieved
with procedures of the same name (car and cdr), and can be modi�ed with the procedures
set-car! and set-cdr!. Since a very common operation in Scheme programs is to access
the car of a car of a pair, or the car of the cdr of a pair, etc., the procedures called caar,
cadr and so on are also prede�ned.

[Scheme Procedure]car pair
[Scheme Procedure]cdr pair

[C Function]scm_car (pair)
[C Function]scm_cdr (pair)

Return the car or the cdr of pair, respectively.

[C Macro]SCM SCM_CAR (SCM pair)
[C Macro]SCM SCM_CDR (SCM pair)

These two macros are the fastest way to access the car or cdr of a pair; they can be
thought of as compiling into a single memory reference.

These macros do no checking at all. The argument pair must be a valid pair.

[Scheme Procedure]cddr pair
[Scheme Procedure]cdar pair
[Scheme Procedure]cadr pair
[Scheme Procedure]caar pair
[Scheme Procedure]cdddr pair
[Scheme Procedure]cddar pair
[Scheme Procedure]cdadr pair
[Scheme Procedure]cdaar pair
[Scheme Procedure]caddr pair
[Scheme Procedure]cadar pair
[Scheme Procedure]caadr pair
[Scheme Procedure]caaar pair
[Scheme Procedure]cddddr pair
[Scheme Procedure]cdddar pair
[Scheme Procedure]cddadr pair
[Scheme Procedure]cddaar pair
[Scheme Procedure]cdaddr pair
[Scheme Procedure]cdadar pair
[Scheme Procedure]cdaadr pair
[Scheme Procedure]cdaaar pair
[Scheme Procedure]cadddr pair
[Scheme Procedure]caddar pair
[Scheme Procedure]cadadr pair
[Scheme Procedure]cadaar pair
[Scheme Procedure]caaddr pair
[Scheme Procedure]caadar pair
[Scheme Procedure]caaadr pair
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[Scheme Procedure]caaaar pair
[C Function]scm_cddr (pair)
[C Function]scm_cdar (pair)
[C Function]scm_cadr (pair)
[C Function]scm_caar (pair)
[C Function]scm_cdddr (pair)
[C Function]scm_cddar (pair)
[C Function]scm_cdadr (pair)
[C Function]scm_cdaar (pair)
[C Function]scm_caddr (pair)
[C Function]scm_cadar (pair)
[C Function]scm_caadr (pair)
[C Function]scm_caaar (pair)
[C Function]scm_cddddr (pair)
[C Function]scm_cdddar (pair)
[C Function]scm_cddadr (pair)
[C Function]scm_cddaar (pair)
[C Function]scm_cdaddr (pair)
[C Function]scm_cdadar (pair)
[C Function]scm_cdaadr (pair)
[C Function]scm_cdaaar (pair)
[C Function]scm_cadddr (pair)
[C Function]scm_caddar (pair)
[C Function]scm_cadadr (pair)
[C Function]scm_cadaar (pair)
[C Function]scm_caaddr (pair)
[C Function]scm_caadar (pair)
[C Function]scm_caaadr (pair)
[C Function]scm_caaaar (pair)

These procedures are compositions of car and cdr, where for example caddr could
be de�ned by

(define caddr (lambda (x) (car (cdr (cdr x)))))

cadr, caddr and cadddr pick out the second, third or fourth elements of a list,
respectively. SRFI-1 provides the same under the names second, third and fourth

(see Section 6.4.3.3 [SRFI-1 Selectors], page 426).

[Scheme Procedure]set-car! pair value
[C Function]scm_set_car_x (pair, value)

Stores value in the car �eld of pair. The value returned by set-car! is unspeci�ed.

[Scheme Procedure]set-cdr! pair value
[C Function]scm_set_cdr_x (pair, value)

Stores value in the cdr �eld of pair. The value returned by set-cdr! is unspeci�ed.
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5.6.2 Lists

A very important data type in Scheme|as well as in all other Lisp dialects|is the data
type list.1

This is the short de�nition of what a list is:

� Either the empty list (),

� or a pair which has a list in its cdr.

5.6.2.1 List Read Syntax

The syntax for lists is an opening parentheses, then all the elements of the list (separated
by whitespace) and �nally a closing parentheses.2.

(1 2 3) ; a list of the numbers 1, 2 and 3
("foo" bar 3.1415) ; a string, a symbol and a real number
() ; the empty list

The last example needs a bit more explanation. A list with no elements, called the
empty list, is special in some ways. It is used for terminating lists by storing it into the cdr
of the last pair that makes up a list. An example will clear that up:

(car '(1))
)
1

(cdr '(1))
)
()

This example also shows that lists have to be quoted when written (see Section 5.13.1.1
[Expression Syntax], page 288), because they would otherwise be mistakingly taken as
procedure applications (see Section 3.1.2.2 [Simple Invocation], page 16).

5.6.2.2 List Predicates

Often it is useful to test whether a given Scheme object is a list or not. List-processing
procedures could use this information to test whether their input is valid, or they could do
di�erent things depending on the datatype of their arguments.

[Scheme Procedure]list? x
[C Function]scm_list_p (x)

Return #t i� x is a proper list, else #f.

The predicate null? is often used in list-processing code to tell whether a given list has
run out of elements. That is, a loop somehow deals with the elements of a list until the list
satis�es null?. Then, the algorithm terminates.

[Scheme Procedure]null? x
[C Function]scm_null_p (x)

Return #t i� x is the empty list, else #f.

1 Strictly speaking, Scheme does not have a real datatype list. Lists are made up of chained pairs, and
only exist by de�nition|a list is a chain of pairs which looks like a list.

2 Note that there is no separation character between the list elements, like a comma or a semicolon.
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[C Function]int scm_is_null (SCM x)
Return 1 when x is the empty list; otherwise return 0.

5.6.2.3 List Constructors

This section describes the procedures for constructing new lists. list simply returns a list
where the elements are the arguments, cons* is similar, but the last argument is stored in
the cdr of the last pair of the list.

[Scheme Procedure]list elem1 . . . elemN
[C Function]scm_list_1 (elem1)
[C Function]scm_list_2 (elem1, elem2)
[C Function]scm_list_3 (elem1, elem2, elem3)
[C Function]scm_list_4 (elem1, elem2, elem3, elem4)
[C Function]scm_list_5 (elem1, elem2, elem3, elem4, elem5)
[C Function]scm_list_n (elem1, . . . , elemN, SCM_UNDEFINED)

Return a new list containing elements elem1 to elemN.

scm_list_n takes a variable number of arguments, terminated by the special SCM_
UNDEFINED. That �nal SCM_UNDEFINED is not included in the list. None of elem1
to elemN can themselves be SCM_UNDEFINED, or scm_list_n will terminate at that
point.

[Scheme Procedure]cons* arg1 arg2 . . .
Like list, but the last arg provides the tail of the constructed list, returning (cons

arg1 (cons arg2 (cons ... argn))). Requires at least one argument. If given one
argument, that argument is returned as result. This function is called list* in some
other Schemes and in Common LISP.

[Scheme Procedure]list-copy lst
[C Function]scm_list_copy (lst)

Return a (newly-created) copy of lst.

[Scheme Procedure]make-list n [init]
Create a list containing of n elements, where each element is initialized to init. init
defaults to the empty list () if not given.

Note that list-copy only makes a copy of the pairs which make up the spine of the
lists. The list elements are not copied, which means that modifying the elements of the new
list also modi�es the elements of the old list. On the other hand, applying procedures like
set-cdr! or delv! to the new list will not alter the old list. If you also need to copy the list
elements (making a deep copy), use the procedure copy-tree (see Section 5.9.4 [Copying],
page 241).

5.6.2.4 List Selection

These procedures are used to get some information about a list, or to retrieve one or more
elements of a list.

[Scheme Procedure]length lst
[C Function]scm_length (lst)

Return the number of elements in list lst.
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[Scheme Procedure]last-pair lst
[C Function]scm_last_pair (lst)

Return the last pair in lst, signalling an error if lst is circular.

[Scheme Procedure]list-ref list k
[C Function]scm_list_ref (list, k)

Return the kth element from list.

[Scheme Procedure]list-tail lst k
[Scheme Procedure]list-cdr-ref lst k

[C Function]scm_list_tail (lst, k)
Return the "tail" of lst beginning with its kth element. The �rst element of the list
is considered to be element 0.

list-tail and list-cdr-ref are identical. It may help to think of list-cdr-ref
as accessing the kth cdr of the list, or returning the results of cdring k times down
lst.

[Scheme Procedure]list-head lst k
[C Function]scm_list_head (lst, k)

Copy the �rst k elements from lst into a new list, and return it.

5.6.2.5 Append and Reverse

append and append! are used to concatenate two or more lists in order to form a new
list. reverse and reverse! return lists with the same elements as their arguments, but in
reverse order. The procedure variants with an ! directly modify the pairs which form the
list, whereas the other procedures create new pairs. This is why you should be careful when
using the side-e�ecting variants.

[Scheme Procedure]append lst1 . . . lstN
[Scheme Procedure]append! lst1 . . . lstN

[C Function]scm_append (lstlst)
[C Function]scm_append_x (lstlst)

Return a list comprising all the elements of lists lst1 to lstN.

(append '(x) '(y)) ) (x y)

(append '(a) '(b c d)) ) (a b c d)

(append '(a (b)) '((c))) ) (a (b) (c))

The last argument lstN may actually be any object; an improper list results if the
last argument is not a proper list.

(append '(a b) '(c . d)) ) (a b c . d)

(append '() 'a) ) a

append doesn't modify the given lists, but the return may share structure with the
�nal lstN. append! modi�es the given lists to form its return.

For scm_append and scm_append_x, lstlst is a list of the list operands lst1 . . . lstN.
That lstlst itself is not modi�ed or used in the return.

[Scheme Procedure]reverse lst
[Scheme Procedure]reverse! lst [newtail]
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[C Function]scm_reverse (lst)
[C Function]scm_reverse_x (lst, newtail)

Return a list comprising the elements of lst, in reverse order.

reverse constructs a new list, reverse! modi�es lst in constructing its return.

For reverse!, the optional newtail is appended to to the result. newtail isn't re-
versed, it simply becomes the list tail. For scm_reverse_x, the newtail parameter is
mandatory, but can be SCM_EOL if no further tail is required.

5.6.2.6 List Modi�cation

The following procedures modify an existing list, either by changing elements of the list, or
by changing the list structure itself.

[Scheme Procedure]list-set! list k val
[C Function]scm_list_set_x (list, k, val)

Set the kth element of list to val.

[Scheme Procedure]list-cdr-set! list k val
[C Function]scm_list_cdr_set_x (list, k, val)

Set the kth cdr of list to val.

[Scheme Procedure]delq item lst
[C Function]scm_delq (item, lst)

Return a newly-created copy of lst with elements eq? to item removed. This procedure
mirrors memq: delq compares elements of lst against item with eq?.

[Scheme Procedure]delv item lst
[C Function]scm_delv (item, lst)

Return a newly-created copy of lst with elements eqv? to item removed. This proce-
dure mirrors memv: delv compares elements of lst against item with eqv?.

[Scheme Procedure]delete item lst
[C Function]scm_delete (item, lst)

Return a newly-created copy of lst with elements equal? to item removed. This
procedure mirrors member: delete compares elements of lst against item with equal?.

See also SRFI-1 which has an extended delete (Section 6.4.3.8 [SRFI-1 Deleting],
page 433), and also an lset-difference which can delete multiple items in one call
(Section 6.4.3.10 [SRFI-1 Set Operations], page 435).

[Scheme Procedure]delq! item lst
[Scheme Procedure]delv! item lst
[Scheme Procedure]delete! item lst

[C Function]scm_delq_x (item, lst)
[C Function]scm_delv_x (item, lst)
[C Function]scm_delete_x (item, lst)

These procedures are destructive versions of delq, delv and delete: they modify the
pointers in the existing lst rather than creating a new list. Caveat evaluator: Like
other destructive list functions, these functions cannot modify the binding of lst, and
so cannot be used to delete the �rst element of lst destructively.
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[Scheme Procedure]delq1! item lst
[C Function]scm_delq1_x (item, lst)

Like delq!, but only deletes the �rst occurrence of item from lst. Tests for equality
using eq?. See also delv1! and delete1!.

[Scheme Procedure]delv1! item lst
[C Function]scm_delv1_x (item, lst)

Like delv!, but only deletes the �rst occurrence of item from lst. Tests for equality
using eqv?. See also delq1! and delete1!.

[Scheme Procedure]delete1! item lst
[C Function]scm_delete1_x (item, lst)

Like delete!, but only deletes the �rst occurrence of item from lst. Tests for equality
using equal?. See also delq1! and delv1!.

[Scheme Procedure]filter pred lst
[Scheme Procedure]filter! pred lst

Return a list containing all elements from lst which satisfy the predicate pred. The
elements in the result list have the same order as in lst. The order in which pred is
applied to the list elements is not speci�ed.

filter does not change lst, but the result may share a tail with it. filter! may
modify lst to construct its return.

5.6.2.7 List Searching

The following procedures search lists for particular elements. They use di�erent comparison
predicates for comparing list elements with the object to be searched. When they fail, they
return #f, otherwise they return the sublist whose car is equal to the search object, where
equality depends on the equality predicate used.

[Scheme Procedure]memq x lst
[C Function]scm_memq (x, lst)

Return the �rst sublist of lst whose car is eq? to x where the sublists of lst are the
non-empty lists returned by (list-tail lst k) for k less than the length of lst. If
x does not occur in lst, then #f (not the empty list) is returned.

[Scheme Procedure]memv x lst
[C Function]scm_memv (x, lst)

Return the �rst sublist of lst whose car is eqv? to x where the sublists of lst are the
non-empty lists returned by (list-tail lst k) for k less than the length of lst. If
x does not occur in lst, then #f (not the empty list) is returned.

[Scheme Procedure]member x lst
[C Function]scm_member (x, lst)

Return the �rst sublist of lst whose car is equal? to x where the sublists of lst are
the non-empty lists returned by (list-tail lst k) for k less than the length of lst.
If x does not occur in lst, then #f (not the empty list) is returned.

See also SRFI-1 which has an extended member function (Section 6.4.3.7 [SRFI-1
Searching], page 432).
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5.6.2.8 List Mapping

List processing is very convenient in Scheme because the process of iterating over the ele-
ments of a list can be highly abstracted. The procedures in this section are the most basic
iterating procedures for lists. They take a procedure and one or more lists as arguments,
and apply the procedure to each element of the list. They di�er in their return value.

[Scheme Procedure]map proc arg1 arg2 . . .
[Scheme Procedure]map-in-order proc arg1 arg2 . . .

[C Function]scm_map (proc, arg1, args)
Apply proc to each element of the list arg1 (if only two arguments are given), or to
the corresponding elements of the argument lists (if more than two arguments are
given). The result(s) of the procedure applications are saved and returned in a list.
For map, the order of procedure applications is not speci�ed, map-in-order applies
the procedure from left to right to the list elements.

[Scheme Procedure]for-each proc arg1 arg2 . . .
Like map, but the procedure is always applied from left to right, and the result(s) of
the procedure applications are thrown away. The return value is not speci�ed.

See also SRFI-1 which extends these functions to take lists of unequal lengths (Sec-
tion 6.4.3.5 [SRFI-1 Fold and Map], page 428).

5.6.3 Vectors

Vectors are sequences of Scheme objects. Unlike lists, the length of a vector, once the vector
is created, cannot be changed. The advantage of vectors over lists is that the time required
to access one element of a vector given its position (synonymous with index), a zero-origin
number, is constant, whereas lists have an access time linear to the position of the accessed
element in the list.

Vectors can contain any kind of Scheme object; it is even possible to have di�erent types
of objects in the same vector. For vectors containing vectors, you may wish to use arrays,
instead. Note, too, that vectors are the special case of one dimensional non-uniform arrays
and that most array procedures operate happily on vectors (see Section 5.6.7 [Arrays],
page 191).

5.6.3.1 Read Syntax for Vectors

Vectors can literally be entered in source code, just like strings, characters or some of the
other data types. The read syntax for vectors is as follows: A sharp sign (#), followed by an
opening parentheses, all elements of the vector in their respective read syntax, and �nally
a closing parentheses. The following are examples of the read syntax for vectors; where the
�rst vector only contains numbers and the second three di�erent object types: a string, a
symbol and a number in hexadecimal notation.

#(1 2 3)

#("Hello" foo #xdeadbeef)

Like lists, vectors have to be quoted:

'#(a b c) ) #(a b c)
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5.6.3.2 Dynamic Vector Creation and Validation

Instead of creating a vector implicitly by using the read syntax just described, you can
create a vector dynamically by calling one of the vector and list->vector primitives
with the list of Scheme values that you want to place into a vector. The size of the vector
thus created is determined implicitly by the number of arguments given.

[Scheme Procedure]vector . l
[Scheme Procedure]list->vector l

[C Function]scm_vector (l)
Return a newly allocated vector composed of the given arguments. Analogous to
list.

(vector 'a 'b 'c) ) #(a b c)

The inverse operation is vector->list:

[Scheme Procedure]vector->list v
[C Function]scm_vector_to_list (v)

Return a newly allocated list composed of the elements of v.

(vector->list '#(dah dah didah)) ) (dah dah didah)

(list->vector '(dididit dah)) ) #(dididit dah)

To allocate a vector with an explicitly speci�ed size, use make-vector. With this prim-
itive you can also specify an initial value for the vector elements (the same value for all
elements, that is):

[Scheme Procedure]make-vector len [�ll]
[C Function]scm_make_vector (len, �ll)

Return a newly allocated vector of len elements. If a second argument is given, then
each position is initialized to �ll. Otherwise the initial contents of each position is
unspeci�ed.

[C Function]SCM scm_c_make_vector (size t k, SCM �ll)
Like scm_make_vector, but the length is given as a size_t.

To check whether an arbitrary Scheme value is a vector, use the vector? primitive:

[Scheme Procedure]vector? obj
[C Function]scm_vector_p (obj)

Return #t if obj is a vector, otherwise return #f.

[C Function]int scm_is_vector (SCM obj)
Return non-zero when obj is a vector, otherwise return zero.

5.6.3.3 Accessing and Modifying Vector Contents

vector-length and vector-ref return information about a given vector, respectively its
size and the elements that are contained in the vector.

[Scheme Procedure]vector-length vector
[C Function]scm_vector_length vector

Return the number of elements in vector as an exact integer.
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[C Function]size_t scm_c_vector_length (SCM v)
Return the number of elements in vector as a size_t.

[Scheme Procedure]vector-ref vector k
[C Function]scm_vector_ref vector k

Return the contents of position k of vector. k must be a valid index of vector.

(vector-ref '#(1 1 2 3 5 8 13 21) 5) ) 8

(vector-ref '#(1 1 2 3 5 8 13 21)

(let ((i (round (* 2 (acos -1)))))

(if (inexact? i)

(inexact->exact i)

i))) ) 13

[C Function]SCM scm_c_vector_ref (SCM v, size t k)
Return the contents of position k (a size_t) of vector.

A vector created by one of the dynamic vector constructor procedures (see Section 5.6.3.2
[Vector Creation], page 175) can be modi�ed using the following procedures.

NOTE: According to R5RS, it is an error to use any of these procedures on a literally
read vector, because such vectors should be considered as constants. Currently, however,
Guile does not detect this error.

[Scheme Procedure]vector-set! vector k obj
[C Function]scm_vector_set_x vector k obj

Store obj in position k of vector. k must be a valid index of vector. The value
returned by `vector-set!' is unspeci�ed.

(let ((vec (vector 0 '(2 2 2 2) "Anna")))

(vector-set! vec 1 '("Sue" "Sue"))

vec) ) #(0 ("Sue" "Sue") "Anna")

[C Function]void scm_c_vector_set_x (SCM v, size t k, SCM obj)
Store obj in position k (a size_t) of v.

[Scheme Procedure]vector-fill! v �ll
[C Function]scm_vector_fill_x (v, �ll)

Store �ll in every position of vector. The value returned by vector-fill! is unspec-
i�ed.

[Scheme Procedure]vector-copy vec
[C Function]scm_vector_copy (vec)

Return a copy of vec.

[Scheme Procedure]vector-move-left! vec1 start1 end1 vec2 start2
[C Function]scm_vector_move_left_x (vec1, start1, end1, vec2, start2)

Copy elements from vec1, positions start1 to end1, to vec2 starting at position start2.
start1 and start2 are inclusive indices; end1 is exclusive.

vector-move-left! copies elements in leftmost order. Therefore, in the case where
vec1 and vec2 refer to the same vector, vector-move-left! is usually appropriate
when start1 is greater than start2.
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[Scheme Procedure]vector-move-right! vec1 start1 end1 vec2 start2
[C Function]scm_vector_move_right_x (vec1, start1, end1, vec2, start2)

Copy elements from vec1, positions start1 to end1, to vec2 starting at position start2.
start1 and start2 are inclusive indices; end1 is exclusive.

vector-move-right! copies elements in rightmost order. Therefore, in the case where
vec1 and vec2 refer to the same vector, vector-move-right! is usually appropriate
when start1 is less than start2.

5.6.3.4 Vector Accessing from C

A vector can be read and modi�ed from C with the functions scm_c_vector_ref and scm_

c_vector_set_x, for example. In addition to these functions, there are two more ways to
access vectors from C that might be more e�cient in certain situations: you can restrict
yourself to simple vectors and then use the very fast simple vector macros; or you can use
the very general framework for accessing all kinds of arrays (see Section 5.6.7.4 [Accessing
Arrays from C], page 198), which is more verbose, but can deal e�ciently with all kinds of
vectors (and arrays). For vectors, you can use the scm_vector_elements and scm_vector_

writable_elements functions as shortcuts.

[C Function]int scm_is_simple_vector (SCM obj)
Return non-zero if obj is a simple vector, else return zero. A simple vector is a vector
that can be used with the SCM_SIMPLE_* macros below.

The following functions are guaranteed to return simple vectors: scm_make_vector,
scm_c_make_vector, scm_vector, scm_list_to_vector.

[C Macro]size_t SCM_SIMPLE_VECTOR_LENGTH (SCM vec)
Evaluates to the length of the simple vector vec. No type checking is done.

[C Macro]SCM SCM_SIMPLE_VECTOR_REF (SCM vec, size t idx)
Evaluates to the element at position idx in the simple vector vec. No type or range
checking is done.

[C Macro]void SCM_SIMPLE_VECTOR_SET (SCM vec, size t idx, SCM val)
Sets the element at position idx in the simple vector vec to val. No type or range
checking is done.

[C Function]const SCM * scm_vector_elements (SCM vec, scm t array handle
*handle, size t *lenp, ssize t *incp)

Acquirea handle for the vector vec and return a pointer to the elements of it. This
pointer can only be used to read the elements of vec. When vec is not a vector, an
error is signaled. The handle mustr eventually be released with scm_array_handle_

release.

The variables pointed to by lenp and incp are �lled with the number of elements
of the vector and the increment (number of elements) between successive elements,
respectively. Successive elements of vec need not be contiguous in their underlying
\root vector" returned here; hence the increment is not necessarily equal to 1 and
may well be negative too (see Section 5.6.7.3 [Shared Arrays], page 196).

The following example shows the typical way to use this function. It creates a list of
all elements of vec (in reverse order).
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scm_t_array_handle handle;

size_t i, len;

ssize_t inc;

const SCM *elt;

SCM list;

elt = scm_vector_elements (vec, &handle, &len, &inc);

list = SCM_EOL;

for (i = 0; i < len; i++, elt += inc)

list = scm_cons (*elt, list);

scm_array_handle_release (&handle);

[C Function]SCM * scm_vector_writable_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

Like scm_vector_elements but the pointer can be used to modify the vector.

The following example shows the typical way to use this function. It �lls a vector
with #t.

scm_t_array_handle handle;

size_t i, len;

ssize_t inc;

SCM *elt;

elt = scm_vector_writable_elements (vec, &handle, &len, &inc);

for (i = 0; i < len; i++, elt += inc)

*elt = SCM_BOOL_T;

scm_array_handle_release (&handle);

5.6.4 Uniform Numeric Vectors

A uniform numeric vector is a vector whose elements are all of a single numeric type. Guile
o�ers uniform numeric vectors for signed and unsigned 8-bit, 16-bit, 32-bit, and 64-bit
integers, two sizes of oating point values, and complex oating-point numbers of these two
sizes.

Strings could be regarded as uniform vectors of characters, See Section 5.5.5 [Strings],
page 129. Likewise, bit vectors could be regarded as uniform vectors of bits, See Section 5.6.5
[Bit Vectors], page 187. Both are su�ciently di�erent from uniform numeric vectors that
the procedures described here do not apply to these two data types. However, both strings
and bit vectors are generalized vectors, See Section 5.6.6 [Generalized Vectors], page 190,
and arrays, See Section 5.6.7 [Arrays], page 191.

Uniform numeric vectors are the special case of one dimensional uniform numeric arrays.

Uniform numeric vectors can be useful since they consume less memory than the non-
uniform, general vectors. Also, since the types they can store correspond directly to C
types, it is easier to work with them e�ciently on a low level. Consider image processing
as an example, where you want to apply a �lter to some image. While you could store the
pixels of an image in a general vector and write a general convolution function, things are
much more e�cient with uniform vectors: the convolution function knows that all pixels
are unsigned 8-bit values (say), and can use a very tight inner loop.
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That is, when it is written in C. Functions for e�ciently working with uniform numeric
vectors from C are listed at the end of this section.

Procedures similar to the vector procedures (see Section 5.6.3 [Vectors], page 174) are
provided for handling these uniform vectors, but they are distinct datatypes and the two
cannot be inter-mixed. If you want to work primarily with uniform numeric vectors, but
want to o�er support for general vectors as a convenience, you can use one of the scm_

any_to_* functions. They will coerce lists and vectors to the given type of uniform vector.
Alternatively, you can write two versions of your code: one that is fast and works only with
uniform numeric vectors, and one that works with any kind of vector but is slower.

One set of the procedures listed below is a generic one: it works with all types of uniform
numeric vectors. In addition to that, there is a set of procedures for each type that only
works with that type. Unless you really need to the generality of the �rst set, it is best
to use the more speci�c functions. They might not be that much faster, but their use can
serve as a kind of declaration and makes it easier to optimize later on.

The generic set of procedures uses uniform in its names, the speci�c ones use the tag
from the following table.

u8 unsigned 8-bit integers

s8 signed 8-bit integers

u16 unsigned 16-bit integers

s16 signed 16-bit integers

u32 unsigned 32-bit integers

s32 signed 32-bit integers

u64 unsigned 64-bit integers

s64 signed 64-bit integers

f32 the C type float

f64 the C type double

c32 complex numbers in rectangular form with the real and imaginary part being
a float

c64 complex numbers in rectangular form with the real and imaginary part being
a double

The external representation (ie. read syntax) for these vectors is similar to normal Scheme
vectors, but with an additional tag from the table above indiciating the vector's type. For
example,

#u16(1 2 3)

#f64(3.1415 2.71)

Note that the read syntax for oating-point here conicts with #f for false. In Standard
Scheme one can write (1 #f3) for a three element list (1 #f 3), but for Guile (1 #f3) is
invalid. (1 #f 3) is almost certainly what one should write anyway to make the intention
clear, so this is rarely a problem.
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[Scheme Procedure]uniform-vector? obj
[Scheme Procedure]u8vector? obj
[Scheme Procedure]s8vector? obj
[Scheme Procedure]u16vector? obj
[Scheme Procedure]s16vector? obj
[Scheme Procedure]u32vector? obj
[Scheme Procedure]s32vector? obj
[Scheme Procedure]u64vector? obj
[Scheme Procedure]s64vector? obj
[Scheme Procedure]f32vector? obj
[Scheme Procedure]f64vector? obj
[Scheme Procedure]c32vector? obj
[Scheme Procedure]c64vector? obj

[C Function]scm_uniform_vector_p (obj)
[C Function]scm_u8vector_p (obj)
[C Function]scm_s8vector_p (obj)
[C Function]scm_u16vector_p (obj)
[C Function]scm_s16vector_p (obj)
[C Function]scm_u32vector_p (obj)
[C Function]scm_s32vector_p (obj)
[C Function]scm_u64vector_p (obj)
[C Function]scm_s64vector_p (obj)
[C Function]scm_f32vector_p (obj)
[C Function]scm_f64vector_p (obj)
[C Function]scm_c32vector_p (obj)
[C Function]scm_c64vector_p (obj)

Return #t if obj is a homogeneous numeric vector of the indicated type.

[Scheme Procedure]make-u8vector n [value]
[Scheme Procedure]make-s8vector n [value]
[Scheme Procedure]make-u16vector n [value]
[Scheme Procedure]make-s16vector n [value]
[Scheme Procedure]make-u32vector n [value]
[Scheme Procedure]make-s32vector n [value]
[Scheme Procedure]make-u64vector n [value]
[Scheme Procedure]make-s64vector n [value]
[Scheme Procedure]make-f32vector n [value]
[Scheme Procedure]make-f64vector n [value]
[Scheme Procedure]make-c32vector n [value]
[Scheme Procedure]make-c64vector n [value]

[C Function]scm_make_u8vector n [value]
[C Function]scm_make_s8vector n [value]
[C Function]scm_make_u16vector n [value]
[C Function]scm_make_s16vector n [value]
[C Function]scm_make_u32vector n [value]
[C Function]scm_make_s32vector n [value]
[C Function]scm_make_u64vector n [value]
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[C Function]scm_make_s64vector n [value]
[C Function]scm_make_f32vector n [value]
[C Function]scm_make_f64vector n [value]
[C Function]scm_make_c32vector n [value]
[C Function]scm_make_c64vector n [value]

Return a newly allocated homogeneous numeric vector holding n elements of the
indicated type. If value is given, the vector is initialized with that value, otherwise
the contents are unspeci�ed.

[Scheme Procedure]u8vector value . . .
[Scheme Procedure]s8vector value . . .
[Scheme Procedure]u16vector value . . .
[Scheme Procedure]s16vector value . . .
[Scheme Procedure]u32vector value . . .
[Scheme Procedure]s32vector value . . .
[Scheme Procedure]u64vector value . . .
[Scheme Procedure]s64vector value . . .
[Scheme Procedure]f32vector value . . .
[Scheme Procedure]f64vector value . . .
[Scheme Procedure]c32vector value . . .
[Scheme Procedure]c64vector value . . .

[C Function]scm_u8vector (values)
[C Function]scm_s8vector (values)
[C Function]scm_u16vector (values)
[C Function]scm_s16vector (values)
[C Function]scm_u32vector (values)
[C Function]scm_s32vector (values)
[C Function]scm_u64vector (values)
[C Function]scm_s64vector (values)
[C Function]scm_f32vector (values)
[C Function]scm_f64vector (values)
[C Function]scm_c32vector (values)
[C Function]scm_c64vector (values)

Return a newly allocated homogeneous numeric vector of the indicated type, holding
the given parameter values. The vector length is the number of parameters given.

[Scheme Procedure]uniform-vector-length vec
[Scheme Procedure]u8vector-length vec
[Scheme Procedure]s8vector-length vec
[Scheme Procedure]u16vector-length vec
[Scheme Procedure]s16vector-length vec
[Scheme Procedure]u32vector-length vec
[Scheme Procedure]s32vector-length vec
[Scheme Procedure]u64vector-length vec
[Scheme Procedure]s64vector-length vec
[Scheme Procedure]f32vector-length vec
[Scheme Procedure]f64vector-length vec
[Scheme Procedure]c32vector-length vec
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[Scheme Procedure]c64vector-length vec
[C Function]scm_uniform_vector_length (vec)
[C Function]scm_u8vector_length (vec)
[C Function]scm_s8vector_length (vec)
[C Function]scm_u16vector_length (vec)
[C Function]scm_s16vector_length (vec)
[C Function]scm_u32vector_length (vec)
[C Function]scm_s32vector_length (vec)
[C Function]scm_u64vector_length (vec)
[C Function]scm_s64vector_length (vec)
[C Function]scm_f32vector_length (vec)
[C Function]scm_f64vector_length (vec)
[C Function]scm_c32vector_length (vec)
[C Function]scm_c64vector_length (vec)

Return the number of elements in vec.

[Scheme Procedure]uniform-vector-ref vec i
[Scheme Procedure]u8vector-ref vec i
[Scheme Procedure]s8vector-ref vec i
[Scheme Procedure]u16vector-ref vec i
[Scheme Procedure]s16vector-ref vec i
[Scheme Procedure]u32vector-ref vec i
[Scheme Procedure]s32vector-ref vec i
[Scheme Procedure]u64vector-ref vec i
[Scheme Procedure]s64vector-ref vec i
[Scheme Procedure]f32vector-ref vec i
[Scheme Procedure]f64vector-ref vec i
[Scheme Procedure]c32vector-ref vec i
[Scheme Procedure]c64vector-ref vec i

[C Function]scm_uniform_vector_ref (vec i)
[C Function]scm_u8vector_ref (vec i)
[C Function]scm_s8vector_ref (vec i)
[C Function]scm_u16vector_ref (vec i)
[C Function]scm_s16vector_ref (vec i)
[C Function]scm_u32vector_ref (vec i)
[C Function]scm_s32vector_ref (vec i)
[C Function]scm_u64vector_ref (vec i)
[C Function]scm_s64vector_ref (vec i)
[C Function]scm_f32vector_ref (vec i)
[C Function]scm_f64vector_ref (vec i)
[C Function]scm_c32vector_ref (vec i)
[C Function]scm_c64vector_ref (vec i)

Return the element at index i in vec. The �rst element in vec is index 0.

[Scheme Procedure]uniform-vector-set! vec i value
[Scheme Procedure]u8vector-set! vec i value
[Scheme Procedure]s8vector-set! vec i value
[Scheme Procedure]u16vector-set! vec i value
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[Scheme Procedure]s16vector-set! vec i value
[Scheme Procedure]u32vector-set! vec i value
[Scheme Procedure]s32vector-set! vec i value
[Scheme Procedure]u64vector-set! vec i value
[Scheme Procedure]s64vector-set! vec i value
[Scheme Procedure]f32vector-set! vec i value
[Scheme Procedure]f64vector-set! vec i value
[Scheme Procedure]c32vector-set! vec i value
[Scheme Procedure]c64vector-set! vec i value

[C Function]scm_uniform_vector_set_x (vec i value)
[C Function]scm_u8vector_set_x (vec i value)
[C Function]scm_s8vector_set_x (vec i value)
[C Function]scm_u16vector_set_x (vec i value)
[C Function]scm_s16vector_set_x (vec i value)
[C Function]scm_u32vector_set_x (vec i value)
[C Function]scm_s32vector_set_x (vec i value)
[C Function]scm_u64vector_set_x (vec i value)
[C Function]scm_s64vector_set_x (vec i value)
[C Function]scm_f32vector_set_x (vec i value)
[C Function]scm_f64vector_set_x (vec i value)
[C Function]scm_c32vector_set_x (vec i value)
[C Function]scm_c64vector_set_x (vec i value)

Set the element at index i in vec to value. The �rst element in vec is index 0. The
return value is unspeci�ed.

[Scheme Procedure]uniform-vector->list vec
[Scheme Procedure]u8vector->list vec
[Scheme Procedure]s8vector->list vec
[Scheme Procedure]u16vector->list vec
[Scheme Procedure]s16vector->list vec
[Scheme Procedure]u32vector->list vec
[Scheme Procedure]s32vector->list vec
[Scheme Procedure]u64vector->list vec
[Scheme Procedure]s64vector->list vec
[Scheme Procedure]f32vector->list vec
[Scheme Procedure]f64vector->list vec
[Scheme Procedure]c32vector->list vec
[Scheme Procedure]c64vector->list vec

[C Function]scm_uniform_vector_to_list (vec)
[C Function]scm_u8vector_to_list (vec)
[C Function]scm_s8vector_to_list (vec)
[C Function]scm_u16vector_to_list (vec)
[C Function]scm_s16vector_to_list (vec)
[C Function]scm_u32vector_to_list (vec)
[C Function]scm_s32vector_to_list (vec)
[C Function]scm_u64vector_to_list (vec)
[C Function]scm_s64vector_to_list (vec)
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[C Function]scm_f32vector_to_list (vec)
[C Function]scm_f64vector_to_list (vec)
[C Function]scm_c32vector_to_list (vec)
[C Function]scm_c64vector_to_list (vec)

Return a newly allocated list holding all elements of vec.

[Scheme Procedure]list->u8vector lst
[Scheme Procedure]list->s8vector lst
[Scheme Procedure]list->u16vector lst
[Scheme Procedure]list->s16vector lst
[Scheme Procedure]list->u32vector lst
[Scheme Procedure]list->s32vector lst
[Scheme Procedure]list->u64vector lst
[Scheme Procedure]list->s64vector lst
[Scheme Procedure]list->f32vector lst
[Scheme Procedure]list->f64vector lst
[Scheme Procedure]list->c32vector lst
[Scheme Procedure]list->c64vector lst

[C Function]scm_list_to_u8vector (lst)
[C Function]scm_list_to_s8vector (lst)
[C Function]scm_list_to_u16vector (lst)
[C Function]scm_list_to_s16vector (lst)
[C Function]scm_list_to_u32vector (lst)
[C Function]scm_list_to_s32vector (lst)
[C Function]scm_list_to_u64vector (lst)
[C Function]scm_list_to_s64vector (lst)
[C Function]scm_list_to_f32vector (lst)
[C Function]scm_list_to_f64vector (lst)
[C Function]scm_list_to_c32vector (lst)
[C Function]scm_list_to_c64vector (lst)

Return a newly allocated homogeneous numeric vector of the indicated type, initial-
ized with the elements of the list lst.

[Scheme Procedure]any->u8vector obj
[Scheme Procedure]any->s8vector obj
[Scheme Procedure]any->u16vector obj
[Scheme Procedure]any->s16vector obj
[Scheme Procedure]any->u32vector obj
[Scheme Procedure]any->s32vector obj
[Scheme Procedure]any->u64vector obj
[Scheme Procedure]any->s64vector obj
[Scheme Procedure]any->f32vector obj
[Scheme Procedure]any->f64vector obj
[Scheme Procedure]any->c32vector obj
[Scheme Procedure]any->c64vector obj

[C Function]scm_any_to_u8vector (obj)
[C Function]scm_any_to_s8vector (obj)
[C Function]scm_any_to_u16vector (obj)
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[C Function]scm_any_to_s16vector (obj)
[C Function]scm_any_to_u32vector (obj)
[C Function]scm_any_to_s32vector (obj)
[C Function]scm_any_to_u64vector (obj)
[C Function]scm_any_to_s64vector (obj)
[C Function]scm_any_to_f32vector (obj)
[C Function]scm_any_to_f64vector (obj)
[C Function]scm_any_to_c32vector (obj)
[C Function]scm_any_to_c64vector (obj)

Return a (maybe newly allocated) uniform numeric vector of the indicated type,
initialized with the elements of obj, which must be a list, a vector, or a uniform vector.
When obj is already a suitable uniform numeric vector, it is returned unchanged.

[C Function]int scm_is_uniform_vector (SCM uvec)
Return non-zero when uvec is a uniform numeric vector, zero otherwise.

[C Function]SCM scm_take_u8vector (const scm t uint8 *data, size t len)
[C Function]SCM scm_take_s8vector (const scm t int8 *data, size t len)
[C Function]SCM scm_take_u16vector (const scm t uint16 *data, size t len)
[C Function]SCM scm_take_s168vector (const scm t int16 *data, size t len)
[C Function]SCM scm_take_u32vector (const scm t uint32 *data, size t len)
[C Function]SCM scm_take_s328vector (const scm t int32 *data, size t len)
[C Function]SCM scm_take_u64vector (const scm t uint64 *data, size t len)
[C Function]SCM scm_take_s64vector (const scm t int64 *data, size t len)
[C Function]SCM scm_take_f32vector (const oat *data, size t len)
[C Function]SCM scm_take_f64vector (const double *data, size t len)
[C Function]SCM scm_take_c32vector (const oat *data, size t len)
[C Function]SCM scm_take_c64vector (const double *data, size t len)

Return a new uniform numeric vector of the indicated type and length that uses the
memory pointed to by data to store its elements. This memory will eventually be
freed with free. The argument len speci�es the number of elements in data, not its
size in bytes.

The c32 and c64 variants take a pointer to a C array of floats or doubles. The real
parts of the complex numbers are at even indices in that array, the corresponding
imaginary parts are at the following odd index.

[C Function]size_t scm_c_uniform_vector_length (SCM uvec)
Return the number of elements of uvec as a size_t.

[C Function]const void * scm_uniform_vector_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]const scm_t_uint8 * scm_u8vector_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]const scm_t_int8 * scm_s8vector_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]const scm_t_uint16 * scm_u16vector_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)
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[C Function]const scm_t_int16 * scm_s16vector_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]const scm_t_uint32 * scm_u32vector_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]const scm_t_int32 * scm_s32vector_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]const scm_t_uint64 * scm_u64vector_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]const scm_t_int64 * scm_s64vector_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]const float * scm_f23vector_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]const double * scm_f64vector_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]const float * scm_c32vector_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]const double * scm_c64vector_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

Like scm_vector_elements (see Section 5.6.3.4 [Vector Accessing from C], page 177),
but returns a pointer to the elements of a uniform numeric vector of the indicated
kind.

[C Function]void * scm_uniform_vector_writable_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]scm_t_uint8 * scm_u8vector_writable_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]scm_t_int8 * scm_s8vector_writable_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]scm_t_uint16 * scm_u16vector_writable_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]scm_t_int16 * scm_s16vector_writable_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]scm_t_uint32 * scm_u32vector_writable_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]scm_t_int32 * scm_s32vector_writable_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]scm_t_uint64 * scm_u64vector_writable_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]scm_t_int64 * scm_s64vector_writable_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]float * scm_f23vector_writable_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]double * scm_f64vector_writable_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

[C Function]float * scm_c32vector_writable_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)
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[C Function]double * scm_c64vector_writable_elements (SCM vec,
scm t array handle *handle, size t *lenp, ssize t *incp)

Like scm_vector_writable_elements (see Section 5.6.3.4 [Vector Accessing from C],
page 177), but returns a pointer to the elements of a uniform numeric vector of the
indicated kind.

[Scheme Procedure]uniform-vector-read! uvec [port or fd [start [end]]]
[C Function]scm_uniform_vector_read_x (uvec, port or fd, start, end)

Fill the elements of uvec by reading raw bytes from port-or-fdes, using host byte
order.

The optional arguments start (inclusive) and end (exclusive) allow a speci�ed region
to be read, leaving the remainder of the vector unchanged.

When port-or-fdes is a port, all speci�ed elements of uvec are attempted to be read,
potentially blocking while waiting formore input or end-of-�le. When port-or-fd is an
integer, a single call to read(2) is made.

An error is signalled when the last element has only been partially �lled before reach-
ing end-of-�le or in the single call to read(2).

uniform-vector-read! returns the number of elements read.

port-or-fdes may be omitted, in which case it defaults to the value returned by
(current-input-port).

[Scheme Procedure]uniform-vector-write uvec [port or fd [start [end]]]
[C Function]scm_uniform_vector_write (uvec, port or fd, start, end)

Write the elements of uvec as raw bytes to port-or-fdes, in the host byte order.

The optional arguments start (inclusive) and end (exclusive) allow a speci�ed region
to be written.

When port-or-fdes is a port, all speci�ed elements of uvec are attempted to be written,
potentially blocking while waiting for more room. When port-or-fd is an integer, a
single call to write(2) is made.

An error is signalled when the last element has only been partially written in the
single call to write(2).

The number of objects actually written is returned. port-or-fdes may be omitted, in
which case it defaults to the value returned by (current-output-port).

5.6.5 Bit Vectors

Bit vectors are zero-origin, one-dimensional arrays of booleans. They are displayed as a
sequence of 0s and 1s pre�xed by #*, e.g.,

(make-bitvector 8 #f) )
#*00000000

Bit vectors are are also generalized vectors, See Section 5.6.6 [Generalized Vectors],
page 190, and can thus be used with the array procedures, See Section 5.6.7 [Arrays],
page 191. Bit vectors are the special case of one dimensional bit arrays.

[Scheme Procedure]bitvector? obj
[C Function]scm_bitvector_p (obj)

Return #t when obj is a bitvector, else return #f.
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[C Function]int scm_is_bitvector (SCM obj)
Return 1 when obj is a bitvector, else return 0.

[Scheme Procedure]make-bitvector len [�ll]
[C Function]scm_make_bitvector (len, �ll)

Create a new bitvector of length len and optionally initialize all elements to �ll.

[C Function]SCM scm_c_make_bitvector (size t len, SCM �ll)
Like scm_make_bitvector, but the length is given as a size_t.

[Scheme Procedure]bitvector . bits
[C Function]scm_bitvector (bits)

Create a new bitvector with the arguments as elements.

[Scheme Procedure]bitvector-length vec
[C Function]scm_bitvector_length (vec)

Return the length of the bitvector vec.

[C Function]size_t scm_c_bitvector_length (SCM vec)
Like scm_bitvector_length, but the length is returned as a size_t.

[Scheme Procedure]bitvector-ref vec idx
[C Function]scm_bitvector_ref (vec, idx)

Return the element at index idx of the bitvector vec.

[C Function]SCM scm_c_bitvector_ref (SCM obj, size t idx)
Return the element at index idx of the bitvector vec.

[Scheme Procedure]bitvector-set! vec idx val
[C Function]scm_bitvector_set_x (vec, idx, val)

Set the element at index idx of the bitvector vec when val is true, else clear it.

[C Function]SCM scm_c_bitvector_set_x (SCM obj, size t idx, SCM val)
Set the element at index idx of the bitvector vec when val is true, else clear it.

[Scheme Procedure]bitvector-fill! vec val
[C Function]scm_bitvector_fill_x (vec, val)

Set all elements of the bitvector vec when val is true, else clear them.

[Scheme Procedure]list->bitvector list
[C Function]scm_list_to_bitvector (list)

Return a new bitvector initialized with the elements of list.

[Scheme Procedure]bitvector->list vec
[C Function]scm_bitvector_to_list (vec)

Return a new list initialized with the elements of the bitvector vec.

[Scheme Procedure]bit-count bool bitvector
[C Function]scm_bit_count (bool, bitvector)

Return a count of how many entries in bitvector are equal to bool. For example,

(bit-count #f #*000111000) ) 6
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[Scheme Procedure]bit-position bool bitvector start
[C Function]scm_bit_position (bool, bitvector, start)

Return the index of the �rst occurrance of bool in bitvector, starting from start. If
there is no bool entry between start and the end of bitvector, then return #f. For
example,

(bit-position #t #*000101 0) ) 3

(bit-position #f #*0001111 3) ) #f

[Scheme Procedure]bit-invert! bitvector
[C Function]scm_bit_invert_x (bitvector)

Modify bitvector by replacing each element with its negation.

[Scheme Procedure]bit-set*! bitvector uvec bool
[C Function]scm_bit_set_star_x (bitvector, uvec, bool)

Set entries of bitvector to bool, with uvec selecting the entries to change. The return
value is unspeci�ed.

If uvec is a bit vector, then those entries where it has #t are the ones in bitvector
which are set to bool. uvec and bitvector must be the same length. When bool is
#t it's like uvec is OR'ed into bitvector. Or when bool is #f it can be seen as an
ANDNOT.

(define bv #*01000010)

(bit-set*! bv #*10010001 #t)

bv
) #*11010011

If uvec is a uniform vector of unsigned long integers, then they're indexes into bitvector
which are set to bool.

(define bv #*01000010)

(bit-set*! bv #u(5 2 7) #t)

bv
) #*01100111

[Scheme Procedure]bit-count* bitvector uvec bool
[C Function]scm_bit_count_star (bitvector, uvec, bool)

Return a count of how many entries in bitvector are equal to bool, with uvec selecting
the entries to consider.

uvec is interpreted in the same way as for bit-set*! above. Namely, if uvec is a bit
vector then entries which have #t there are considered in bitvector. Or if uvec is a
uniform vector of unsigned long integers then it's the indexes in bitvector to consider.

For example,

(bit-count* #*01110111 #*11001101 #t) ) 3

(bit-count* #*01110111 #u(7 0 4) #f) ) 2

[C Function]const scm_t_uint32 * scm_bitvector_elements (SCM vec,
scm t array handle *handle, size t *o�p, size t *lenp, ssize t *incp)

Like scm_vector_elements (see Section 5.6.3.4 [Vector Accessing from C], page 177),
but for bitvectors. The variable pointed to by o�p is set to the value returned by
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scm_array_handle_bit_elements_offset. See scm_array_handle_bit_elements

for how to use the returned pointer and the o�set.

[C Function]scm_t_uint32 * scm_bitvector_writable_elements (SCM vec,
scm t array handle *handle, size t *o�p, size t *lenp, ssize t *incp)

Like scm_bitvector_elements, but the pointer is good for reading and writing.

5.6.6 Generalized Vectors

Guile has a number of data types that are generally vector-like: strings, uniform numeric
vectors, bitvectors, and of course ordinary vectors of arbitrary Scheme values. These types
are disjoint: a Scheme value belongs to at most one of the four types listed above.

If you want to gloss over this distinction and want to treat all four types with common
code, you can use the procedures in this section. They work with the generalized vector

type, which is the union of the four vector-like types.

[Scheme Procedure]generalized-vector? obj
[C Function]scm_generalized_vector_p (obj)

Return #t if obj is a vector, string, bitvector, or uniform numeric vector.

[Scheme Procedure]generalized-vector-length v
[C Function]scm_generalized_vector_length (v)

Return the length of the generalized vector v.

[Scheme Procedure]generalized-vector-ref v idx
[C Function]scm_generalized_vector_ref (v, idx)

Return the element at index idx of the generalized vector v.

[Scheme Procedure]generalized-vector-set! v idx val
[C Function]scm_generalized_vector_set_x (v, idx, val)

Set the element at index idx of the generalized vector v to val.

[Scheme Procedure]generalized-vector->list v
[C Function]scm_generalized_vector_to_list (v)

Return a new list whose elements are the elements of the generalized vector v.

[C Function]int scm_is_generalized_vector (SCM obj)
Return 1 if obj is a vector, string, bitvector, or uniform numeric vector; else return
0.

[C Function]size_t scm_c_generalized_vector_length (SCM v)
Return the length of the generalized vector v.

[C Function]SCM scm_c_generalized_vector_ref (SCM v, size t idx)
Return the element at index idx of the generalized vector v.

[C Function]void scm_c_generalized_vector_set_x (SCM v, size t idx, SCM
val)

Set the element at index idx of the generalized vector v to val.
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[C Function]void scm_generalized_vector_get_handle (SCM v,
scm t array handle *handle)

Like scm_array_get_handle but an error is signalled when v is not of rank one. You
can use scm_array_handle_ref and scm_array_handle_set to read and write the
elements of v, or you can use functions like scm_array_handle_<foo>_elements to
deal with speci�c types of vectors.

5.6.7 Arrays

Arrays are a collection of cells organized into an arbitrary number of dimensions. Each cell
can be accessed in constant time by supplying an index for each dimension.

In the current implementation, an array uses a generalized vector for the actual storage
of its elements. Any kind of generalized vector will do, so you can have arrays of uniform
numeric values, arrays of characters, arrays of bits, and of course, arrays of arbitrary Scheme
values. For example, arrays with an underlying c64vector might be nice for digital signal
processing, while arrays made from a u8vector might be used to hold gray-scale images.

The number of dimensions of an array is called its rank. Thus, a matrix is an array of
rank 2, while a vector has rank 1. When accessing an array element, you have to specify
one exact integer for each dimension. These integers are called the indices of the element.
An array speci�es the allowed range of indices for each dimension via an inclusive lower and
upper bound. These bounds can well be negative, but the upper bound must be greater
than or equal to the lower bound minus one. When all lower bounds of an array are zero,
it is called a zero-origin array.

Arrays can be of rank 0, which could be interpreted as a scalar. Thus, a zero-rank array
can store exactly one object and the list of indices of this element is the empty list.

Arrays contain zero elements when one of their dimensions has a zero length. These
empty arrays maintain information about their shape: a matrix with zero columns and 3
rows is di�erent from a matrix with 3 columns and zero rows, which again is di�erent from
a vector of length zero.

Generalized vectors, such as strings, uniform numeric vectors, bit vectors and ordinary
vectors, are the special case of one dimensional arrays.

5.6.7.1 Array Syntax

An array is displayed as # followed by its rank, followed by a tag that describes the under-
lying vector, optionally followed by information about its shape, and �nally followed by the
cells, organized into dimensions using parentheses.

In more words, the array tag is of the form

#<rank><vectag><@lower><:len><@lower><:len>...

where <rank> is a positive integer in decimal giving the rank of the array. It is omitted
when the rank is 1 and the array is non-shared and has zero-origin (see below). For shared
arrays and for a non-zero origin, the rank is always printed even when it is 1 to dinstinguish
them from ordinary vectors.

The <vectag> part is the tag for a uniform numeric vector, like u8, s16, etc, b for
bitvectors, or a for strings. It is empty for ordinary vectors.
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The <@lower> part is a `@' character followed by a signed integer in decimal giving the
lower bound of a dimension. There is one <@lower> for each dimension. When all lower
bounds are zero, all <@lower> parts are omitted.

The <:len> part is a `:' character followed by an unsigned integer in decimal giving the
length of a dimension. Like for the lower bounds, there is one <:len> for each dimension,
and the <:len> part always follows the <@lower> part for a dimension. Lengths are only
then printed when they can't be deduced from the nested lists of elements of the array
literal, which can happen when at least one length is zero.

As a special case, an array of rank 0 is printed as #0<vectag>(<scalar>), where
<scalar> is the result of printing the single element of the array.

Thus,

#(1 2 3) is an ordinary array of rank 1 with lower bound 0 in dimension 0. (I.e., a regular
vector.)

#@2(1 2 3)

is an ordinary array of rank 1 with lower bound 2 in dimension 0.

#2((1 2 3) (4 5 6))

is a non-uniform array of rank 2; a 3�3 matrix with index ranges 0..2 and 0..2.

#u32(0 1 2)

is a uniform u8 array of rank 1.

#2u32@2@3((1 2) (2 3))

is a uniform u8 array of rank 2 with index ranges 2..3 and 3..4.

#2() is a two-dimensional array with index ranges 0..-1 and 0..-1, i.e. both dimensions
have length zero.

#2:0:2() is a two-dimensional array with index ranges 0..-1 and 0..1, i.e. the �rst dimen-
sion has length zero, but the second has length 2.

#0(12) is a rank-zero array with contents 12.

5.6.7.2 Array Procedures

When an array is created, the range of each dimension must be speci�ed, e.g., to create a
2�3 array with a zero-based index:

(make-array 'ho 2 3) ) #2((ho ho ho) (ho ho ho))

The range of each dimension can also be given explicitly, e.g., another way to create the
same array:

(make-array 'ho '(0 1) '(0 2)) ) #2((ho ho ho) (ho ho ho))

The following procedures can be used with arrays (or vectors). An argument shown as
idx . . . means one parameter for each dimension in the array. A idxlist argument means a
list of such values, one for each dimension.

[Scheme Procedure]array? obj
[C Function]scm_array_p (obj, unused)

Return #t if the obj is an array, and #f if not.

The second argument to scm array p is there for historical reasons, but it is not used.
You should always pass SCM_UNDEFINED as its value.
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[Scheme Procedure]typed-array? obj type
[C Function]scm_typed_array_p (obj, type)

Return #t if the obj is an array of type type, and #f if not.

[C Function]int scm_is_array (SCM obj)
Return 1 if the obj is an array and 0 if not.

[C Function]int scm_is_typed_array (SCM obj, SCM type)
Return 0 if the obj is an array of type type, and 1 if not.

[Scheme Procedure]make-array �ll bound . . .
[C Function]scm_make_array (�ll, bounds)

Equivalent to (make-typed-array #t fill bound ...).

[Scheme Procedure]make-typed-array type �ll bound . . .
[C Function]scm_make_typed_array (type, �ll, bounds)

Create and return an array that has as many dimensions as there are bounds and
(maybe) �ll it with �ll.

The underlaying storage vector is created according to type, which must be a symbol
whose name is the `vectag' of the array as explained above, or #t for ordinary, non-
specialized arrays.

For example, using the symbol f64 for type will create an array that uses a f64vector
for storing its elements, and a will use a string.

When �ll is not the special unspeci�ed value, the new array is �lled with �ll. Other-
wise, the initial contents of the array is unspeci�ed. The special unspeci�ed value is
stored in the variable *unspecified* so that for example (make-typed-array 'u32

*unspecified* 4) creates a uninitialized u32 vector of length 4.

Each bound may be a positive non-zero integer N, in which case the index for that
dimension can range from 0 through N-1; or an explicit index range speci�er in the
form (LOWER UPPER), where both lower and upper are integers, possibly less than
zero, and possibly the same number (however, lower cannot be greater than upper).

[Scheme Procedure]list->array dimspec list
Equivalent to (list->typed-array #t dimspec list).

[Scheme Procedure]list->typed-array type dimspec list
[C Function]scm_list_to_typed_array (type, dimspec, list)

Return an array of the type indicated by type with elements the same as those of list.

The argument dimspec determines the number of dimensions of the array and their
lower bounds. When dimspec is an exact integer, it gives the number of dimensions
directly and all lower bounds are zero. When it is a list of exact integers, then each
element is the lower index bound of a dimension, and there will be as many dimensions
as elements in the list.

[Scheme Procedure]array-type array
Return the type of array. This is the `vectag' used for printing array (or #t for
ordinary arrays) and can be used with make-typed-array to create an array of the
same kind as array.
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[Scheme Procedure]array-ref array idx . . .
Return the element at (idx ...) in array.

(define a (make-array 999 '(1 2) '(3 4)))

(array-ref a 2 4) ) 999

[Scheme Procedure]array-in-bounds? array idx . . .
[C Function]scm_array_in_bounds_p (array, idxlist)

Return #t if the given index would be acceptable to array-ref.

(define a (make-array #f '(1 2) '(3 4)))

(array-in-bounds? a 2 3) ) #t

(array-in-bounds? a 0 0) ) #f

[Scheme Procedure]array-set! array obj idx . . .
[C Function]scm_array_set_x (array, obj, idxlist)

Set the element at (idx ...) in array to obj. The return value is unspeci�ed.

(define a (make-array #f '(0 1) '(0 1)))

(array-set! a #t 1 1)

a ) #2((#f #f) (#f #t))

[Scheme Procedure]enclose-array array dim1 . . .
[C Function]scm_enclose_array (array, dimlist)

dim1, dim2 . . . should be nonnegative integers less than the rank of array. enclose-
array returns an array resembling an array of shared arrays. The dimensions of
each shared array are the same as the dimth dimensions of the original array, the
dimensions of the outer array are the same as those of the original array that did not
match a dim.

An enclosed array is not a general Scheme array. Its elements may not be set using
array-set!. Two references to the same element of an enclosed array will be equal?
but will not in general be eq?. The value returned by array-prototype when given
an enclosed array is unspeci�ed.

For example,

(enclose-array '#3(((a b c) (d e f)) ((1 2 3) (4 5 6))) 1)
)
#<enclosed-array (#1(a d) #1(b e) #1(c f)) (#1(1 4) #1(2 5) #1(3 6))>

(enclose-array '#3(((a b c) (d e f)) ((1 2 3) (4 5 6))) 1 0)
)
#<enclosed-array #2((a 1) (d 4)) #2((b 2) (e 5)) #2((c 3) (f 6))>

[Scheme Procedure]array-shape array
[Scheme Procedure]array-dimensions array

[C Function]scm_array_dimensions (array)
Return a list of the bounds for each dimenson of array.

array-shape gives (lower upper) for each dimension. array-dimensions instead
returns just upper + 1 for dimensions with a 0 lower bound. Both are suitable as
input to make-array.

For example,
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(define a (make-array 'foo '(-1 3) 5))

(array-shape a) ) ((-1 3) (0 4))

(array-dimensions a) ) ((-1 3) 5)

[Scheme Procedure]array-rank obj
[C Function]scm_array_rank (obj)

Return the rank of array.

[C Function]size_t scm_c_array_rank (SCM array)
Return the rank of array as a size_t.

[Scheme Procedure]array->list array
[C Function]scm_array_to_list (array)

Return a list consisting of all the elements, in order, of array.

[Scheme Procedure]array-copy! src dst
[Scheme Procedure]array-copy-in-order! src dst

[C Function]scm_array_copy_x (src, dst)
Copy every element from vector or array src to the corresponding element of dst. dst
must have the same rank as src, and be at least as large in each dimension. The
return value is unspeci�ed.

[Scheme Procedure]array-fill! array �ll
[C Function]scm_array_fill_x (array, �ll)

Store �ll in every element of array. The value returned is unspeci�ed.

[Scheme Procedure]array-equal? array1 array2 . . .
Return #t if all arguments are arrays with the same shape, the same type, and have
corresponding elements which are either equal? or array-equal?. This function
di�ers from equal? (see Section 5.9.1 [Equality], page 236) in that a one dimensional
shared array may be array-equal? but not equal? to a vector or uniform vector.

[Scheme Procedure]array-map! dst proc src1 . . . srcN
[Scheme Procedure]array-map-in-order! dst proc src1 . . . srcN

[C Function]scm_array_map_x (dst, proc, srclist)
Set each element of the dst array to values obtained from calls to proc. The value
returned is unspeci�ed.

Each call is (proc elem1 ... elemN), where each elem is from the corresponding src
array, at the dst index. array-map-in-order! makes the calls in row-major order,
array-map! makes them in an unspeci�ed order.

The src arrays must have the same number of dimensions as dst, and must have a
range for each dimension which covers the range in dst. This ensures all dst indices
are valid in each src.

[Scheme Procedure]array-for-each proc src1 . . . srcN
[C Function]scm_array_for_each (proc, src1, srclist)

Apply proc to each tuple of elements of src1 . . . srcN, in row-major order. The value
returned is unspeci�ed.
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[Scheme Procedure]array-index-map! dst proc
[C Function]scm_array_index_map_x (dst, proc)

Set each element of the dst array to values returned by calls to proc. The value
returned is unspeci�ed.

Each call is (proc i1 ... iN), where i1 . . . iN is the destination index, one parameter
for each dimension. The order in which the calls are made is unspeci�ed.

For example, to create a 4� 4 matrix representing a cyclic group,0
BB@

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

1
CCA

(define a (make-array #f 4 4))

(array-index-map! a (lambda (i j)

(modulo (+ i j) 4)))

[Scheme Procedure]uniform-array-read! ra [port or fd [start [end]]]
[C Function]scm_uniform_array_read_x (ra, port or fd, start, end)

Attempt to read all elements of ura, in lexicographic order, as binary objects from
port-or-fdes. If an end of �le is encountered, the objects up to that point are put into
ura (starting at the beginning) and the remainder of the array is unchanged.

The optional arguments start and end allow a speci�ed region of a vector (or linearized
array) to be read, leaving the remainder of the vector unchanged.

uniform-array-read! returns the number of objects read. port-or-fdes may be omit-
ted, in which case it defaults to the value returned by (current-input-port).

[Scheme Procedure]uniform-array-write v [port or fd [start [end]]]
[C Function]scm_uniform_array_write (v, port or fd, start, end)

Writes all elements of ura as binary objects to port-or-fdes.

The optional arguments start and end allow a speci�ed region of a vector (or linearized
array) to be written.

The number of objects actually written is returned. port-or-fdes may be omitted, in
which case it defaults to the value returned by (current-output-port).

5.6.7.3 Shared Arrays

[Scheme Procedure]make-shared-array oldarray mapfunc bound . . .
[C Function]scm_make_shared_array (oldarray, mapfunc, boundlist)

Return a new array which shares the storage of oldarray. Changes made through
either a�ect the same underlying storage. The bound. . . arguments are the shape
of the new array, the same as make-array (see Section 5.6.7.2 [Array Procedures],
page 192).

mapfunc translates coordinates from the new array to the oldarray. It's called as
(mapfunc newidx1 ...) with one parameter for each dimension of the new array,
and should return a list of indices for oldarray, one for each dimension of oldarray.

mapfunc must be a�ne linear, meaning that each oldarray index must be formed
by adding integer multiples (possibly negative) of some or all of newidx1 etc, plus a
possible integer o�set. The multiples and o�set must be the same in each call.
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One good use for a shared array is to restrict the range of some dimensions, so as to
apply say array-for-each or array-fill! to only part of an array. The plain list

function can be used for mapfunc in this case, making no changes to the index values.
For example,

(make-shared-array #2((a b c) (d e f) (g h i)) list 3 2)
) #2((a b) (d e) (g h))

The new array can have fewer dimensions than oldarray, for example to take a column
from an array.

(make-shared-array #2((a b c) (d e f) (g h i))

(lambda (i) (list i 2))

'(0 2))
) #1(c f i)

A diagonal can be taken by using the single new array index for both row and column
in the old array. For example,

(make-shared-array #2((a b c) (d e f) (g h i))

(lambda (i) (list i i))

'(0 2))
) #1(a e i)

Dimensions can be increased by for instance considering portions of a one dimensional
array as rows in a two dimensional array. (array-contents below can do the opposite,
attening an array.)

(make-shared-array #1(a b c d e f g h i j k l)

(lambda (i j) (list (+ (* i 3) j)))

4 3)
) #2((a b c) (d e f) (g h i) (j k l))

By negating an index the order that elements appear can be reversed. The following
just reverses the column order,

(make-shared-array #2((a b c) (d e f) (g h i))

(lambda (i j) (list i (- 2 j)))

3 3)
) #2((c b a) (f e d) (i h g))

A �xed o�set on indexes allows for instance a change from a 0 based to a 1 based
array,

(define x #2((a b c) (d e f) (g h i)))

(define y (make-shared-array x

(lambda (i j) (list (1- i) (1- j)))

'(1 3) '(1 3)))

(array-ref x 0 0) ) a

(array-ref y 1 1) ) a

A multiple on an index allows every Nth element of an array to be taken. The
following is every third element,

(make-shared-array #1(a b c d e f g h i j k l)

(lambda (i) (list (* i 3)))

4)
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) #1(a d g j)

The above examples can be combined to make weird and wonderful selections from an
array, but it's important to note that because mapfunc must be a�ne linear, arbitrary
permutations are not possible.

In the current implementation, mapfunc is not called for every access to the new array
but only on some sample points to establish a base and stride for new array indices
in oldarray data. A few sample points are enough because mapfunc is linear.

[Scheme Procedure]shared-array-increments array
[C Function]scm_shared_array_increments (array)

For each dimension, return the distance between elements in the root vector.

[Scheme Procedure]shared-array-offset array
[C Function]scm_shared_array_offset (array)

Return the root vector index of the �rst element in the array.

[Scheme Procedure]shared-array-root array
[C Function]scm_shared_array_root (array)

Return the root vector of a shared array.

[Scheme Procedure]array-contents array [strict]
[C Function]scm_array_contents (array, strict)

If array may be unrolled into a one dimensional shared array without changing their
order (last subscript changing fastest), then array-contents returns that shared
array, otherwise it returns #f. All arrays made by make-array and make-typed-

array may be unrolled, some arrays made by make-shared-array may not be.

If the optional argument strict is provided, a shared array will be returned only if its
elements are stored internally contiguous in memory.

[Scheme Procedure]transpose-array array dim1 . . .
[C Function]scm_transpose_array (array, dimlist)

Return an array sharing contents with array, but with dimensions arranged in a
di�erent order. There must be one dim argument for each dimension of array. dim1,
dim2, . . . should be integers between 0 and the rank of the array to be returned.
Each integer in that range must appear at least once in the argument list.

The values of dim1, dim2, . . . correspond to dimensions in the array to be returned,
and their positions in the argument list to dimensions of array. Several dims may
have the same value, in which case the returned array will have smaller rank than
array.

(transpose-array '#2((a b) (c d)) 1 0) ) #2((a c) (b d))

(transpose-array '#2((a b) (c d)) 0 0) ) #1(a d)

(transpose-array '#3(((a b c) (d e f)) ((1 2 3) (4 5 6))) 1 1 0) )
#2((a 4) (b 5) (c 6))

5.6.7.4 Accessing Arrays from C

Arrays, especially uniform numeric arrays, are useful to e�ciently represent large amounts
of rectangularily organized information, such as matrices, images, or generally blobs of
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binary data. It is desirable to access these blobs in a C like manner so that they can be
handed to external C code such as linear algebra libraries or image processing routines.

While pointers to the elements of an array are in use, the array itself must be protected
so that the pointer remains valid. Such a protected array is said to be reserved. A reserved
array can be read but modi�cations to it that would cause the pointer to its elements to
become invalid are prevented. When you attempt such a modi�cation, an error is signalled.

(This is similar to locking the array while it is in use, but without the danger of a
deadlock. In a multi-threaded program, you will need additional synchronization to avoid
modifying reserved arrays.)

You must take care to always unreserve an array after reserving it, also in the presence
of non-local exits. To simplify this, reserving and unreserving work like a dynwind context
(see Section 5.11.9 [Dynamic Wind], page 266): a call to scm_array_get_handle can be
thought of as beginning a dynwind context and scm_array_handle_release as ending it.
When a non-local exit happens between these two calls, the array is implicitely unreserved.

That is, you need to properly pair reserving and unreserving in your code, but you don't
need to worry about non-local exits.

These calls and other pairs of calls that establish dynwind contexts need to be properly
nested. If you begin a context prior to reserving an array, you need to unreserve the array
before ending the context. Likewise, when reserving two or more arrays in a certain order,
you need to unreserve them in the opposite order.

Once you have reserved an array and have retrieved the pointer to its elements, you
must �gure out the layout of the elements in memory. Guile allows slices to be taken out of
arrays without actually making a copy, such as making an alias for the diagonal of a matrix
that can be treated as a vector. Arrays that result from such an operation are not stored
contiguously in memory and when working with their elements directly, you need to take
this into account.

The layout of array elements in memory can be de�ned via a mapping function that
computes a scalar position from a vector of indices. The scalar position then is the o�set
of the element with the given indices from the start of the storage block of the array.

In Guile, this mapping function is restricted to be a�ne: all mapping functions of Guile
arrays can be written as p = b + c[0]*i[0] + c[1]*i[1] + ... + c[n-1]*i[n-1] where
i[k] is the kth index and n is the rank of the array. For example, a matrix of size 3x3 would
have b == 0, c[0] == 3 and c[1] == 1. When you transpose this matrix (with transpose-

array, say), you will get an array whose mapping function has b == 0, c[0] == 1 and c[1]

== 3.

The function scm_array_handle_dims gives you (indirect) access to the coe�cients
c[k].

Note that there are no functions for accessing the elements of a character array yet.
Once the string implementation of Guile has been changed to use Unicode, we will provide
them.

[C Type]scm_t_array_handle
This is a structure type that holds all information necessary to manage the reservation
of arrays as explained above. Structures of this type must be allocated on the stack
and must only be accessed by the functions listed below.
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[C Function]void scm_array_get_handle (SCM array, scm t array handle
*handle)

Reserve array, which must be an array, and prepare handle to be used with the
functions below. You must eventually call scm_array_handle_release on handle,
and do this in a properly nested fashion, as explained above. The structure pointed
to by handle does not need to be initialized before calling this function.

[C Function]void scm_array_handle_release (scm t array handle *handle)
End the array reservation represented by handle. After a call to this function, handle
might be used for another reservation.

[C Function]size_t scm_array_handle_rank (scm t array handle *handle)
Return the rank of the array represented by handle.

[C Type]scm_t_array_dim
This structure type holds information about the layout of one dimension of an array.
It includes the following �elds:

ssize_t lbnd

ssize_t ubnd

The lower and upper bounds (both inclusive) of the permissible index
range for the given dimension. Both values can be negative, but lbnd is
always less than or equal to ubnd.

ssize_t inc

The distance from one element of this dimension to the next. Note, too,
that this can be negative.

[C Function]const scm_t_array_dim * scm_array_handle_dims
(scm t array handle *handle)

Return a pointer to a C vector of information about the dimensions of the array
represented by handle. This pointer is valid as long as the array remains reserved.
As explained above, the scm_t_array_dim structures returned by this function can
be used calculate the position of an element in the storage block of the array from its
indices.

This position can then be used as an index into the C array pointer returned by the
various scm_array_handle_<foo>_elements functions, or with scm_array_handle_

ref and scm_array_handle_set.

Here is how one can compute the position pos of an element given its indices in the
vector indices:

ssize_t indices[RANK];

scm_t_array_dim *dims;

ssize_t pos;

size_t i;

pos = 0;

for (i = 0; i < RANK; i++)

{

if (indices[i] < dims[i].lbnd || indices[i] > dims[i].ubnd)
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out_of_range ();

pos += (indices[i] - dims[i].lbnd) * dims[i].inc;

}

[C Function]ssize_t scm_array_handle_pos (scm t array handle *handle, SCM
indices)

Compute the position corresponding to indices, a list of indices. The position is
computed as described above for scm_array_handle_dims. The number of the indices
and their range is checked and an approrpiate error is signalled for invalid indices.

[C Function]SCM scm_array_handle_ref (scm t array handle *handle, ssize t pos)
Return the element at position pos in the storage block of the array represented by
handle. Any kind of array is acceptable. No range checking is done on pos.

[C Function]void scm_array_handle_set (scm t array handle *handle, ssize t
pos, SCM val)

Set the element at position pos in the storage block of the array represented by handle
to val. Any kind of array is acceptable. No range checking is done on pos. An error
is signalled when the array can not store val.

[C Function]const SCM * scm_array_handle_elements (scm t array handle
*handle)

Return a pointer to the elements of a ordinary array of general Scheme values (i.e.,
a non-uniform array) for reading. This pointer is valid as long as the array remains
reserved.

[C Function]SCM * scm_array_handle_writable_elements (scm t array handle
*handle)

Like scm_array_handle_elements, but the pointer is good for reading and writing.

[C Function]const void * scm_array_handle_uniform_elements
(scm t array handle *handle)

Return a pointer to the elements of a uniform numeric array for reading. This pointer
is valid as long as the array remains reserved. The size of each element is given by
scm_array_handle_uniform_element_size.

[C Function]void * scm_array_handle_uniform_writable_elements
(scm t array handle *handle)

Like scm_array_handle_uniform_elements, but the pointer is good reading and
writing.

[C Function]size_t scm_array_handle_uniform_element_size
(scm t array handle *handle)

Return the size of one element of the uniform numeric array represented by handle.

[C Function]const scm_t_uint8 * scm_array_handle_u8_elements
(scm t array handle *handle)

[C Function]const scm_t_int8 * scm_array_handle_s8_elements
(scm t array handle *handle)
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[C Function]const scm_t_uint16 * scm_array_handle_u16_elements
(scm t array handle *handle)

[C Function]const scm_t_int16 * scm_array_handle_s16_elements
(scm t array handle *handle)

[C Function]const scm_t_uint32 * scm_array_handle_u32_elements
(scm t array handle *handle)

[C Function]const scm_t_int32 * scm_array_handle_s32_elements
(scm t array handle *handle)

[C Function]const scm_t_uint64 * scm_array_handle_u64_elements
(scm t array handle *handle)

[C Function]const scm_t_int64 * scm_array_handle_s64_elements
(scm t array handle *handle)

[C Function]const float * scm_array_handle_f32_elements
(scm t array handle *handle)

[C Function]const double * scm_array_handle_f64_elements
(scm t array handle *handle)

[C Function]const float * scm_array_handle_c32_elements
(scm t array handle *handle)

[C Function]const double * scm_array_handle_c64_elements
(scm t array handle *handle)

Return a pointer to the elements of a uniform numeric array of the indicated kind for
reading. This pointer is valid as long as the array remains reserved.

The pointers for c32 and c64 uniform numeric arrays point to pairs of oating point
numbers. The even index holds the real part, the odd index the imaginary part of
the complex number.

[C Function]scm_t_uint8 * scm_array_handle_u8_writable_elements
(scm t array handle *handle)

[C Function]scm_t_int8 * scm_array_handle_s8_writable_elements
(scm t array handle *handle)

[C Function]scm_t_uint16 * scm_array_handle_u16_writable_elements
(scm t array handle *handle)

[C Function]scm_t_int16 * scm_array_handle_s16_writable_elements
(scm t array handle *handle)

[C Function]scm_t_uint32 * scm_array_handle_u32_writable_elements
(scm t array handle *handle)

[C Function]scm_t_int32 * scm_array_handle_s32_writable_elements
(scm t array handle *handle)

[C Function]scm_t_uint64 * scm_array_handle_u64_writable_elements
(scm t array handle *handle)

[C Function]scm_t_int64 * scm_array_handle_s64_writable_elements
(scm t array handle *handle)

[C Function]float * scm_array_handle_f32_writable_elements
(scm t array handle *handle)

[C Function]double * scm_array_handle_f64_writable_elements
(scm t array handle *handle)
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[C Function]float * scm_array_handle_c32_writable_elements
(scm t array handle *handle)

[C Function]double * scm_array_handle_c64_writable_elements
(scm t array handle *handle)

Like scm_array_handle_<kind>_elements, but the pointer is good for reading and
writing.

[C Function]const scm_t_uint32 * scm_array_handle_bit_elements
(scm t array handle *handle)

Return a pointer to the words that store the bits of the represented array, which must
be a bit array.

Unlike other arrays, bit arrays have an additional o�set that must be �gured into index
calculations. That o�set is returned by scm_array_handle_bit_elements_offset.

To �nd a certain bit you �rst need to calculate its position as explained above for
scm_array_handle_dims and then add the o�set. This gives the absolute position of
the bit, which is always a non-negative integer.

Each word of the bit array storage block contains exactly 32 bits, with the least
signi�cant bit in that word having the lowest absolute position number. The next
word contains the next 32 bits.

Thus, the following code can be used to access a bit whose position according to
scm_array_handle_dims is given in pos:

SCM bit_array;

scm_t_array_handle handle;

scm_t_uint32 *bits;

ssize_t pos;

size_t abs_pos;

size_t word_pos, mask;

scm_array_get_handle (&bit_array, &handle);

bits = scm_array_handle_bit_elements (&handle);

pos = ...

abs_pos = pos + scm_array_handle_bit_elements_offset (&handle);

word_pos = abs_pos / 32;

mask = 1L << (abs_pos % 32);

if (bits[word_pos] & mask)

/* bit is set. */

scm_array_handle_release (&handle);

[C Function]scm_t_uint32 * scm_array_handle_bit_writable_elements
(scm t array handle *handle)

Like scm_array_handle_bit_elements but the pointer is good for reading and writ-
ing. You must take care not to modify bits outside of the allowed index range of the
array, even for contiguous arrays.
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5.6.8 Records

A record type is a �rst class object representing a user-de�ned data type. A record is an
instance of a record type.

[Scheme Procedure]record? obj
Return #t if obj is a record of any type and #f otherwise.

Note that record? may be true of any Scheme value; there is no promise that records
are disjoint with other Scheme types.

[Scheme Procedure]make-record-type type-name �eld-names
Return a record-type descriptor, a value representing a new data type disjoint from
all others. The type-name argument must be a string, but is only used for debugging
purposes (such as the printed representation of a record of the new type). The �eld-
names argument is a list of symbols naming the �elds of a record of the new type.
It is an error if the list contains any duplicates. It is unspeci�ed how record-type
descriptors are represented.

[Scheme Procedure]record-constructor rtd [�eld-names]
Return a procedure for constructing new members of the type represented by rtd. The
returned procedure accepts exactly as many arguments as there are symbols in the
given list, �eld-names; these are used, in order, as the initial values of those �elds in a
new record, which is returned by the constructor procedure. The values of any �elds
not named in that list are unspeci�ed. The �eld-names argument defaults to the list
of �eld names in the call to make-record-type that created the type represented by
rtd; if the �eld-names argument is provided, it is an error if it contains any duplicates
or any symbols not in the default list.

[Scheme Procedure]record-predicate rtd
Return a procedure for testing membership in the type represented by rtd. The
returned procedure accepts exactly one argument and returns a true value if the
argument is a member of the indicated record type; it returns a false value otherwise.

[Scheme Procedure]record-accessor rtd �eld-name
Return a procedure for reading the value of a particular �eld of a member of the type
represented by rtd. The returned procedure accepts exactly one argument which
must be a record of the appropriate type; it returns the current value of the �eld
named by the symbol �eld-name in that record. The symbol �eld-name must be a
member of the list of �eld-names in the call to make-record-type that created the
type represented by rtd.

[Scheme Procedure]record-modifier rtd �eld-name
Return a procedure for writing the value of a particular �eld of a member of the type
represented by rtd. The returned procedure accepts exactly two arguments: �rst, a
record of the appropriate type, and second, an arbitrary Scheme value; it modi�es
the �eld named by the symbol �eld-name in that record to contain the given value.
The returned value of the modi�er procedure is unspeci�ed. The symbol �eld-name
must be a member of the list of �eld-names in the call to make-record-type that
created the type represented by rtd.
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[Scheme Procedure]record-type-descriptor record
Return a record-type descriptor representing the type of the given record. That is, for
example, if the returned descriptor were passed to record-predicate, the resulting
predicate would return a true value when passed the given record. Note that it is
not necessarily the case that the returned descriptor is the one that was passed to
record-constructor in the call that created the constructor procedure that created
the given record.

[Scheme Procedure]record-type-name rtd
Return the type-name associated with the type represented by rtd. The returned
value is eqv? to the type-name argument given in the call to make-record-type that
created the type represented by rtd.

[Scheme Procedure]record-type-fields rtd
Return a list of the symbols naming the �elds in members of the type represented by
rtd. The returned value is equal? to the �eld-names argument given in the call to
make-record-type that created the type represented by rtd.

5.6.9 Structures

[FIXME: this is pasted in from Tom Lord's original guile.texi and should be reviewed]

A structure type is a �rst class user-de�ned data type. A structure is an instance of a
structure type. A structure type is itself a structure.

Structures are less abstract and more general than traditional records. In fact, in Guile
Scheme, records are implemented using structures.

5.6.9.1 Structure Concepts

A structure object consists of a handle, structure data, and a vtable. The handle is a
Scheme value which points to both the vtable and the structure's data. Structure data is
a dynamically allocated region of memory, private to the structure, divided up into typed
�elds. A vtable is another structure used to hold type-speci�c data. Multiple structures
can share a common vtable.

When applied to structures, the equal? predicate (see Section 5.9.1 [Equality], page 236)
returns #t if the two structures share a common vtable and all their �elds satisfy equal?.

Three concepts are key to understanding structures.

� layout speci�cations

Layout speci�cations determine how memory allocated to structures is divided up into
�elds. Programmers must write a layout speci�cation whenever a new type of structure
is de�ned.

� structural accessors

Structure access is by �eld number. There is only one set of accessors common to all
structure objects.

� vtables

Vtables, themselves structures, are �rst class representations of disjoint sub-types of
structures in general. In most cases, when a new structure is created, programmers
must specify a vtable for the new structure. Each vtable has a �eld describing the
layout of its instances. Vtables can have additional, user-de�ned �elds as well.
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5.6.9.2 Structure Layout

When a structure is created, a region of memory is allocated to hold its state. The layout
of the structure's type determines how that memory is divided into �elds.

Each �eld has a speci�ed type. There are only three types allowed, each corresponding
to a one letter code. The allowed types are:

� 'u' { unprotected

The �eld holds binary data that is not GC protected.

� 'p' { protected

The �eld holds a Scheme value and is GC protected.

� 's' { self

The �eld holds a Scheme value and is GC protected. When a structure is created with
this type of �eld, the �eld is initialized to refer to the structure's own handle. This
kind of �eld is mainly useful when mixing Scheme and C code in which the C code may
need to compute a structure's handle given only the address of its malloc'd data.

Each �eld also has an associated access protection. There are only three kinds of pro-
tection, each corresponding to a one letter code. The allowed protections are:

� 'w' { writable

The �eld can be read and written.

� 'r' { readable

The �eld can be read, but not written.

� 'o' { opaque

The �eld can be neither read nor written. This kind of protection is for �elds useful
only to built-in routines.

A layout speci�cation is described by stringing together pairs of letters: one to specify
a �eld type and one to specify a �eld protection. For example, a traditional cons pair type
object could be described as:

; cons pairs have two writable fields of Scheme data

"pwpw"

A pair object in which the �rst �eld is held constant could be:

"prpw"

Binary �elds, (�elds of type "u"), hold one word each. The size of a word is a machine
dependent value de�ned to be equal to the value of the C expression: sizeof (long).

The last �eld of a structure layout may specify a tail array. A tail array is indicated by
capitalizing the �eld's protection code ('W', 'R' or 'O'). A tail-array �eld is replaced by a
read-only binary data �eld containing an array size. The array size is determined at the
time the structure is created. It is followed by a corresponding number of �elds of the type
speci�ed for the tail array. For example, a conventional Scheme vector can be described as:

; A vector is an arbitrary number of writable fields holding Scheme

; values:

"pW"

In the above example, �eld 0 contains the size of the vector and �elds beginning at 1
contain the vector elements.
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A kind of tagged vector (a constant tag followed by conventional vector elements) might
be:

"prpW"

Structure layouts are represented by specially interned symbols whose name is a string
of type and protection codes. To create a new structure layout, use this procedure:

[Scheme Procedure]make-struct-layout �elds
[C Function]scm_make_struct_layout (�elds)

Return a new structure layout object.

�elds must be a string made up of pairs of characters strung together. The �rst
character of each pair describes a �eld type, the second a �eld protection. Allowed
types are 'p' for GC-protected Scheme data, 'u' for unprotected binary data, and 's'
for a �eld that points to the structure itself. Allowed protections are 'w' for mutable
�elds, 'r' for read-only �elds, and 'o' for opaque �elds. The last �eld protection
speci�cation may be capitalized to indicate that the �eld is a tail-array.

5.6.9.3 Structure Basics

This section describes the basic procedures for creating and accessing structures.

[Scheme Procedure]make-struct vtable tail array size . init
[C Function]scm_make_struct (vtable, tail array size, init)

Create a new structure.

type must be a vtable structure (see Section 5.6.9.4 [Vtables], page 208).

tail-elts must be a non-negative integer. If the layout speci�cation indicated by type
includes a tail-array, this is the number of elements allocated to that array.

The init1, . . . are optional arguments describing how successive �elds of the structure
should be initialized. Only �elds with protection 'r' or 'w' can be initialized, except
for �elds of type 's', which are automatically initialized to point to the new structure
itself; �elds with protection 'o' can not be initialized by Scheme programs.

If fewer optional arguments than initializable �elds are supplied, �elds of type 'p' get
default value #f while �elds of type 'u' are initialized to 0.

Structs are currently the basic representation for record-like data structures in Guile.
The plan is to eventually replace them with a new representation which will at the
same time be easier to use and more powerful.

For more information, see the documentation for make-vtable-vtable.

[Scheme Procedure]struct? x
[C Function]scm_struct_p (x)

Return #t i� x is a structure object, else #f.

[Scheme Procedure]struct-ref handle pos
[Scheme Procedure]struct-set! struct n value

[C Function]scm_struct_ref (handle, pos)
[C Function]scm_struct_set_x (struct, n, value)

Access (or modify) the nth �eld of struct.

If the �eld is of type 'p', then it can be set to an arbitrary value.
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If the �eld is of type 'u', then it can only be set to a non-negative integer value small
enough to �t in one machine word.

5.6.9.4 Vtables

Vtables are structures that are used to represent structure types. Each vtable contains
a layout speci�cation in �eld vtable-index-layout { instances of the type are laid out
according to that speci�cation. Vtables contain additional �elds which are used only in-
ternally to libguile. The variable vtable-offset-user is bound to a �eld number. Vtable
�elds at that position or greater are user de�nable.

[Scheme Procedure]struct-vtable handle
[C Function]scm_struct_vtable (handle)

Return the vtable structure that describes the type of struct.

[Scheme Procedure]struct-vtable? x
[C Function]scm_struct_vtable_p (x)

Return #t i� x is a vtable structure.

If you have a vtable structure, V, you can create an instance of the type it describes by
using (make-struct V ...). But where does V itself come from? One possibility is that V
is an instance of a user-de�ned vtable type, V', so that V is created by using (make-struct

V' ...). Another possibility is that V is an instance of the type it itself describes. Vtable
structures of the second sort are created by this procedure:

[Scheme Procedure]make-vtable-vtable user �elds tail array size . init
[C Function]scm_make_vtable_vtable (user �elds, tail array size, init)

Return a new, self-describing vtable structure.

user-�elds is a string describing user de�ned �elds of the vtable beginning at index
vtable-offset-user (see make-struct-layout).

tail-size speci�es the size of the tail-array (if any) of this vtable.

init1, . . . are the optional initializers for the �elds of the vtable.

Vtables have one initializable system �eld|the struct printer. This �eld comes before
the user �elds in the initializers passed to make-vtable-vtable and make-struct,
and thus works as a third optional argument to make-vtable-vtable and a fourth
to make-struct when creating vtables:

If the value is a procedure, it will be called instead of the standard printer whenever a
struct described by this vtable is printed. The procedure will be called with arguments
STRUCT and PORT.

The structure of a struct is described by a vtable, so the vtable is in essence the type
of the struct. The vtable is itself a struct with a vtable. This could go on forever if
it weren't for the vtable-vtables which are self-describing vtables, and thus terminate
the chain.

There are several potential ways of using structs, but the standard one is to use three
kinds of structs, together building up a type sub-system: one vtable-vtable working as
the root and one or several "types", each with a set of "instances". (The vtable-vtable
should be compared to the class <class> which is the class of itself.)
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(define ball-root (make-vtable-vtable "pr" 0))

(define (make-ball-type ball-color)

(make-struct ball-root 0

(make-struct-layout "pw")

(lambda (ball port)

(format port "#<a ~A ball owned by ~A>"

(color ball)

(owner ball)))

ball-color))

(define (color ball) (struct-ref (struct-vtable ball) vtable-offset-user))

(define (owner ball) (struct-ref ball 0))

(define red (make-ball-type 'red))

(define green (make-ball-type 'green))

(define (make-ball type owner) (make-struct type 0 owner))

(define ball (make-ball green 'Nisse))

ball ) #<a green ball owned by Nisse>

[Scheme Procedure]struct-vtable-name vtable
[C Function]scm_struct_vtable_name (vtable)

Return the name of the vtable vtable.

[Scheme Procedure]set-struct-vtable-name! vtable name
[C Function]scm_set_struct_vtable_name_x (vtable, name)

Set the name of the vtable vtable to name.

[Scheme Procedure]struct-vtable-tag handle
[C Function]scm_struct_vtable_tag (handle)

Return the vtable tag of the structure handle.

5.6.10 Dictionary Types

A dictionary object is a data structure used to index information in a user-de�ned way. In
standard Scheme, the main aggregate data types are lists and vectors. Lists are not really
indexed at all, and vectors are indexed only by number (e.g. (vector-ref foo 5)). Often
you will �nd it useful to index your data on some other type; for example, in a library
catalog you might want to look up a book by the name of its author. Dictionaries are used
to help you organize information in such a way.

An association list (or alist for short) is a list of key-value pairs. Each pair represents a
single quantity or object; the car of the pair is a key which is used to identify the object,
and the cdr is the object's value.

A hash table also permits you to index objects with arbitrary keys, but in a way that
makes looking up any one object extremely fast. A well-designed hash system makes hash
table lookups almost as fast as conventional array or vector references.

Alists are popular among Lisp programmers because they use only the language's prim-
itive operations (lists, car, cdr and the equality primitives). No changes to the language



212 Guile Reference Manual

core are necessary. Therefore, with Scheme's built-in list manipulation facilities, it is very
convenient to handle data stored in an association list. Also, alists are highly portable and
can be easily implemented on even the most minimal Lisp systems.

However, alists are ine�cient, especially for storing large quantities of data. Because we
want Guile to be useful for large software systems as well as small ones, Guile provides a
rich set of tools for using either association lists or hash tables.

5.6.11 Association Lists

An association list is a conventional data structure that is often used to implement simple
key-value databases. It consists of a list of entries in which each entry is a pair. The key of
each entry is the car of the pair and the value of each entry is the cdr.

ASSOCIATION LIST ::= '( (KEY1 . VALUE1)

(KEY2 . VALUE2)

(KEY3 . VALUE3)

...

)

Association lists are also known, for short, as alists.

The structure of an association list is just one example of the in�nite number of possible
structures that can be built using pairs and lists. As such, the keys and values in an
association list can be manipulated using the general list structure procedures cons, car,
cdr, set-car!, set-cdr! and so on. However, because association lists are so useful, Guile
also provides speci�c procedures for manipulating them.

5.6.11.1 Alist Key Equality

All of Guile's dedicated association list procedures, apart from acons, come in three avours,
depending on the level of equality that is required to decide whether an existing key in the
association list is the same as the key that the procedure call uses to identify the required
entry.

� Procedures with assq in their name use eq? to determine key equality.

� Procedures with assv in their name use eqv? to determine key equality.

� Procedures with assoc in their name use equal? to determine key equality.

acons is an exception because it is used to build association lists which do not require
their entries' keys to be unique.

5.6.11.2 Adding or Setting Alist Entries

acons adds a new entry to an association list and returns the combined association list.
The combined alist is formed by consing the new entry onto the head of the alist speci�ed
in the acons procedure call. So the speci�ed alist is not modi�ed, but its contents become
shared with the tail of the combined alist that acons returns.

In the most common usage of acons, a variable holding the original association list is
updated with the combined alist:

(set! address-list (acons name address address-list))

In such cases, it doesn't matter that the old and new values of address-list share some
of their contents, since the old value is usually no longer independently accessible.
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Note that acons adds the speci�ed new entry regardless of whether the alist may already
contain entries with keys that are, in some sense, the same as that of the new entry. Thus
acons is ideal for building alists where there is no concept of key uniqueness.

(set! task-list (acons 3 "pay gas bill" '()))

task-list
)
((3 . "pay gas bill"))

(set! task-list (acons 3 "tidy bedroom" task-list))

task-list
)
((3 . "tidy bedroom") (3 . "pay gas bill"))

assq-set!, assv-set! and assoc-set! are used to add or replace an entry in an as-
sociation list where there is a concept of key uniqueness. If the speci�ed association list
already contains an entry whose key is the same as that speci�ed in the procedure call, the
existing entry is replaced by the new one. Otherwise, the new entry is consed onto the head
of the old association list to create the combined alist. In all cases, these procedures return
the combined alist.

assq-set! and friends may destructively modify the structure of the old association list
in such a way that an existing variable is correctly updated without having to set! it to
the value returned:

address-list
)
(("mary" . "34 Elm Road") ("james" . "16 Bow Street"))

(assoc-set! address-list "james" "1a London Road")
)
(("mary" . "34 Elm Road") ("james" . "1a London Road"))

address-list
)
(("mary" . "34 Elm Road") ("james" . "1a London Road"))

Or they may not:

(assoc-set! address-list "bob" "11 Newington Avenue")
)
(("bob" . "11 Newington Avenue") ("mary" . "34 Elm Road")

("james" . "1a London Road"))

address-list
)
(("mary" . "34 Elm Road") ("james" . "1a London Road"))

The only safe way to update an association list variable when adding or replacing an
entry like this is to set! the variable to the returned value:

(set! address-list

(assoc-set! address-list "bob" "11 Newington Avenue"))
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address-list
)
(("bob" . "11 Newington Avenue") ("mary" . "34 Elm Road")

("james" . "1a London Road"))

Because of this slight inconvenience, you may �nd it more convenient to use hash tables
to store dictionary data. If your application will not be modifying the contents of an alist
very often, this may not make much di�erence to you.

If you need to keep the old value of an association list in a form independent from the
list that results from modi�cation by acons, assq-set!, assv-set! or assoc-set!, use
list-copy to copy the old association list before modifying it.

[Scheme Procedure]acons key value alist
[C Function]scm_acons (key, value, alist)

Add a new key-value pair to alist. A new pair is created whose car is key and whose
cdr is value, and the pair is consed onto alist, and the new list is returned. This
function is not destructive; alist is not modi�ed.

[Scheme Procedure]assq-set! alist key val
[Scheme Procedure]assv-set! alist key value
[Scheme Procedure]assoc-set! alist key value

[C Function]scm_assq_set_x (alist, key, val)
[C Function]scm_assv_set_x (alist, key, val)
[C Function]scm_assoc_set_x (alist, key, val)

Reassociate key in alist with value: �nd any existing alist entry for key and associate
it with the new value. If alist does not contain an entry for key, add a new one.
Return the (possibly new) alist.

These functions do not attempt to verify the structure of alist, and so may cause
unusual results if passed an object that is not an association list.

5.6.11.3 Retrieving Alist Entries

assq, assv and assoc �nd the entry in an alist for a given key, and return the (key .

value) pair. assq-ref, assv-ref and assoc-ref do a similar lookup, but return just the
value.

[Scheme Procedure]assq key alist
[Scheme Procedure]assv key alist
[Scheme Procedure]assoc key alist

[C Function]scm_assq (key, alist)
[C Function]scm_assv (key, alist)
[C Function]scm_assoc (key, alist)

Return the �rst entry in alist with the given key. The return is the pair (KEY .

VALUE) from alist. If there's no matching entry the return is #f.

assq compares keys with eq?, assv uses eqv? and assoc uses equal?. See also SRFI-1
which has an extended assoc (Section 6.4.3.9 [SRFI-1 Association Lists], page 434).

[Scheme Procedure]assq-ref alist key
[Scheme Procedure]assv-ref alist key
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[Scheme Procedure]assoc-ref alist key
[C Function]scm_assq_ref (alist, key)
[C Function]scm_assv_ref (alist, key)
[C Function]scm_assoc_ref (alist, key)

Return the value from the �rst entry in alist with the given key, or #f if there's no
such entry.

assq-ref compares keys with eq?, assv-ref uses eqv? and assoc-ref uses equal?.

Notice these functions have the key argument last, like other -ref functions, but this
is opposite to what what assq etc above use.

When the return is #f it can be either key not found, or an entry which happens to
have value #f in the cdr. Use assq etc above if you need to di�erentiate these cases.

5.6.11.4 Removing Alist Entries

To remove the element from an association list whose key matches a speci�ed key, use assq-
remove!, assv-remove! or assoc-remove! (depending, as usual, on the level of equality
required between the key that you specify and the keys in the association list).

As with assq-set! and friends, the speci�ed alist may or may not be modi�ed destruc-
tively, and the only safe way to update a variable containing the alist is to set! it to the
value that assq-remove! and friends return.

address-list
)
(("bob" . "11 Newington Avenue") ("mary" . "34 Elm Road")

("james" . "1a London Road"))

(set! address-list (assoc-remove! address-list "mary"))

address-list
)
(("bob" . "11 Newington Avenue") ("james" . "1a London Road"))

Note that, when assq/v/oc-remove! is used to modify an association list that has
been constructed only using the corresponding assq/v/oc-set!, there can be at most one
matching entry in the alist, so the question of multiple entries being removed in one go does
not arise. If assq/v/oc-remove! is applied to an association list that has been constructed
using acons, or an assq/v/oc-set! with a di�erent level of equality, or any mixture of
these, it removes only the �rst matching entry from the alist, even if the alist might contain
further matching entries. For example:

(define address-list '())

(set! address-list (assq-set! address-list "mary" "11 Elm Street"))

(set! address-list (assq-set! address-list "mary" "57 Pine Drive"))

address-list
)
(("mary" . "57 Pine Drive") ("mary" . "11 Elm Street"))

(set! address-list (assoc-remove! address-list "mary"))

address-list
)



216 Guile Reference Manual

(("mary" . "11 Elm Street"))

In this example, the two instances of the string "mary" are not the same when compared
using eq?, so the two assq-set! calls add two distinct entries to address-list. When
compared using equal?, both "mary"s in address-list are the same as the "mary" in the
assoc-remove! call, but assoc-remove! stops after removing the �rst matching entry that
it �nds, and so one of the "mary" entries is left in place.

[Scheme Procedure]assq-remove! alist key
[Scheme Procedure]assv-remove! alist key
[Scheme Procedure]assoc-remove! alist key

[C Function]scm_assq_remove_x (alist, key)
[C Function]scm_assv_remove_x (alist, key)
[C Function]scm_assoc_remove_x (alist, key)

Delete the �rst entry in alist associated with key, and return the resulting alist.

5.6.11.5 Sloppy Alist Functions

sloppy-assq, sloppy-assv and sloppy-assoc behave like the corresponding non-sloppy-
procedures, except that they return #f when the speci�ed association list is not well-formed,
where the non-sloppy- versions would signal an error.

Speci�cally, there are two conditions for which the non-sloppy- procedures signal an
error, which the sloppy- procedures handle instead by returning #f. Firstly, if the speci�ed
alist as a whole is not a proper list:

(assoc "mary" '((1 . 2) ("key" . "door") . "open sesame"))
)
ERROR: In procedure assoc in expression (assoc "mary" (quote #)):

ERROR: Wrong type argument in position 2 (expecting association list): ((1 . 2) ("key" . "door") . "open sesame")

(sloppy-assoc "mary" '((1 . 2) ("key" . "door") . "open sesame"))
)
#f

Secondly, if one of the entries in the speci�ed alist is not a pair:

(assoc 2 '((1 . 1) 2 (3 . 9)))
)
ERROR: In procedure assoc in expression (assoc 2 (quote #)):

ERROR: Wrong type argument in position 2 (expecting association list): ((1 . 1) 2 (3 . 9))

(sloppy-assoc 2 '((1 . 1) 2 (3 . 9)))
)
#f

Unless you are explicitly working with badly formed association lists, it is much safer
to use the non-sloppy- procedures, because they help to highlight coding and data errors
that the sloppy- versions would silently cover up.

[Scheme Procedure]sloppy-assq key alist
[C Function]scm_sloppy_assq (key, alist)

Behaves like assq but does not do any error checking. Recommended only for use in
Guile internals.



Chapter 5: API Reference 217

[Scheme Procedure]sloppy-assv key alist
[C Function]scm_sloppy_assv (key, alist)

Behaves like assv but does not do any error checking. Recommended only for use in
Guile internals.

[Scheme Procedure]sloppy-assoc key alist
[C Function]scm_sloppy_assoc (key, alist)

Behaves like assoc but does not do any error checking. Recommended only for use
in Guile internals.

5.6.11.6 Alist Example

Here is a longer example of how alists may be used in practice.

(define capitals '(("New York" . "Albany")

("Oregon" . "Salem")

("Florida" . "Miami")))

;; What's the capital of Oregon?

(assoc "Oregon" capitals) ) ("Oregon" . "Salem")

(assoc-ref capitals "Oregon") ) "Salem"

;; We left out South Dakota.

(set! capitals

(assoc-set! capitals "South Dakota" "Pierre"))

capitals
) (("South Dakota" . "Pierre")

("New York" . "Albany")

("Oregon" . "Salem")

("Florida" . "Miami"))

;; And we got Florida wrong.

(set! capitals

(assoc-set! capitals "Florida" "Tallahassee"))

capitals
) (("South Dakota" . "Pierre")

("New York" . "Albany")

("Oregon" . "Salem")

("Florida" . "Tallahassee"))

;; After Oregon secedes, we can remove it.

(set! capitals

(assoc-remove! capitals "Oregon"))

capitals
) (("South Dakota" . "Pierre")

("New York" . "Albany")

("Florida" . "Tallahassee"))
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5.6.12 Hash Tables

Hash tables are dictionaries which o�er similar functionality as association lists: They
provide a mapping from keys to values. The di�erence is that association lists need time
linear in the size of elements when searching for entries, whereas hash tables can normally
search in constant time. The drawback is that hash tables require a little bit more memory,
and that you can not use the normal list procedures (see Section 5.6.2 [Lists], page 168) for
working with them.

Guile provides two types of hashtables. One is an abstract data type that can only be
manipulated with the functions in this section. The other type is concrete: it uses a normal
vector with alists as elements. The advantage of the abstract hash tables is that they will
be automatically resized when they become too full or too empty.

5.6.12.1 Hash Table Examples

For demonstration purposes, this section gives a few usage examples of some hash table
procedures, together with some explanation what they do.

First we start by creating a new hash table with 31 slots, and populate it with two
key/value pairs.

(define h (make-hash-table 31))

;; This is an opaque object

h
)
#<hash-table 0/31>

;; We can also use a vector of alists.

(define h (make-vector 7 '()))

h
)
#(() () () () () () ())

;; Inserting into a hash table can be done with hashq-set!

(hashq-set! h 'foo "bar")
)
"bar"

(hashq-set! h 'braz "zonk")
)
"zonk"

;; Or with hash-create-handle!

(hashq-create-handle! h 'frob #f)
)
(frob . #f)

;; The vector now contains three elements in the alists and the frob
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;; entry is at index (hashq 'frob).

h
)
#(() () () () ((frob . #f) (braz . "zonk")) () ((foo . "bar")))

(hashq 'frob)
)
4

You can get the value for a given key with the procedure hashq-ref, but the problem
with this procedure is that you cannot reliably determine whether a key does exists in the
table. The reason is that the procedure returns #f if the key is not in the table, but it will
return the same value if the key is in the table and just happens to have the value #f, as
you can see in the following examples.

(hashq-ref h 'foo)
)
"bar"

(hashq-ref h 'frob)
)
#f

(hashq-ref h 'not-there)
)
#f

Better is to use the procedure hashq-get-handle, which makes a distinction between
the two cases. Just like assq, this procedure returns a key/value-pair on success, and #f if
the key is not found.

(hashq-get-handle h 'foo)
)
(foo . "bar")

(hashq-get-handle h 'not-there)
)
#f

There is no procedure for calculating the number of key/value-pairs in a hash table, but
hash-fold can be used for doing exactly that.

(hash-fold (lambda (key value seed) (+ 1 seed)) 0 h)
)
3

5.6.12.2 Hash Table Reference

Like the association list functions, the hash table functions come in several varieties, ac-
cording to the equality test used for the keys. Plain hash- functions use equal?, hashq-
functions use eq?, hashv- functions use eqv?, and the hashx- functions use an application
supplied test.
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A single make-hash-table creates a hash table suitable for use with any set of functions,
but it's imperative that just one set is then used consistently, or results will be unpredictable.

Hash tables are implemented as a vector indexed by a hash value formed from the key,
with an association list of key/value pairs for each bucket in case distinct keys hash together.
Direct access to the pairs in those lists is provided by the -handle- functions. The abstract
kind of hash tables hide the vector in an opaque object that represents the hash table, while
for the concrete kind the vector is the hashtable.

When the number of table entries in an abstract hash table goes above a threshold, the
vector is made larger and the entries are rehashed, to prevent the bucket lists from becoming
too long and slowing down accesses. When the number of entries goes below a threshold,
the vector is shrunk to save space.

A abstract hash table is created with make-hash-table. To create a vector that is
suitable as a hash table, use (make-vector size '()), for example.

For the hashx- \extended" routines, an application supplies a hash function producing
an integer index like hashq etc below, and an assoc alist search function like assq etc (see
Section 5.6.11.3 [Retrieving Alist Entries], page 212). Here's an example of such functions
implementing case-insensitive hashing of string keys,

(use-modules (srfi srfi-1)

(srfi srfi-13))

(define (my-hash str size)

(remainder (string-hash-ci str) size))

(define (my-assoc str alist)

(find (lambda (pair) (string-ci=? str (car pair))) alist))

(define my-table (make-hash-table))

(hashx-set! my-hash my-assoc my-table "foo" 123)

(hashx-ref my-hash my-assoc my-table "FOO")
) 123

In a hashx- hash function the aim is to spread keys across the vector, so bucket lists don't
become long. But the actual values are arbitrary as long as they're in the range 0 to size�1.
Helpful functions for forming a hash value, in addition to hashq etc below, include symbol-
hash (see Section 5.5.7.2 [Symbol Keys], page 155), string-hash and string-hash-ci (see
Section 5.5.5.7 [String Comparison], page 136), and char-set-hash (see Section 5.5.4.1
[Character Set Predicates/Comparison], page 123).

[Scheme Procedure]make-hash-table [size]
Create a new abstract hash table object, with an optional minimum vector size.

When size is given, the table vector will still grow and shrink automatically, as de-
scribed above, but with size as a minimum. If an application knows roughly how
many entries the table will hold then it can use size to avoid rehashing when initial
entries are added.

[Scheme Procedure]hash-table? obj
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[C Function]scm_hash_table_p (obj)
Return #t if obj is a abstract hash table object.

[Scheme Procedure]hash-clear! table
[C Function]scm_hash_clear_x (table)

Remove all items from table (without triggering a resize).

[Scheme Procedure]hash-ref table key [dt]
[Scheme Procedure]hashq-ref table key [dt]
[Scheme Procedure]hashv-ref table key [dt]
[Scheme Procedure]hashx-ref hash assoc table key [dt]

[C Function]scm_hash_ref (table, key, dt)
[C Function]scm_hashq_ref (table, key, dt)
[C Function]scm_hashv_ref (table, key, dt)
[C Function]scm_hashx_ref (hash, assoc, table, key, dt)

Lookup key in the given hash table, and return the associated value. If key is not
found, return dt, or #f if dt is not given.

[Scheme Procedure]hash-set! table key val
[Scheme Procedure]hashq-set! table key val
[Scheme Procedure]hashv-set! table key val
[Scheme Procedure]hashx-set! hash assoc table key val

[C Function]scm_hash_set_x (table, key, val)
[C Function]scm_hashq_set_x (table, key, val)
[C Function]scm_hashv_set_x (table, key, val)
[C Function]scm_hashx_set_x (hash, assoc, table, key, val)

Associate val with key in the given hash table. If key is already present then it's
associated value is changed. If it's not present then a new entry is created.

[Scheme Procedure]hash-remove! table key
[Scheme Procedure]hashq-remove! table key
[Scheme Procedure]hashv-remove! table key
[Scheme Procedure]hashx-remove! hash assoc table key

[C Function]scm_hash_remove_x (table, key)
[C Function]scm_hashq_remove_x (table, key)
[C Function]scm_hashv_remove_x (table, key)
[C Function]scm_hashx_remove_x (hash, assoc, table, key)

Remove any association for key in the given hash table. If key is not in table then
nothing is done.

[Scheme Procedure]hash key size
[Scheme Procedure]hashq key size
[Scheme Procedure]hashv key size

[C Function]scm_hash (key, size)
[C Function]scm_hashq (key, size)
[C Function]scm_hashv (key, size)

Return a hash value for key. This is a number in the range 0 to size � 1, which is
suitable for use in a hash table of the given size.
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Note that hashq and hashv may use internal addresses of objects, so if an object is
garbage collected and re-created it can have a di�erent hash value, even when the two
are notionally eq?. For instance with symbols,

(hashq 'something 123) ) 19

(gc)

(hashq 'something 123) ) 62

In normal use this is not a problem, since an object entered into a hash table won't
be garbage collected until removed. It's only if hashing calculations are somehow
separated from normal references that its lifetime needs to be considered.

[Scheme Procedure]hash-get-handle table key
[Scheme Procedure]hashq-get-handle table key
[Scheme Procedure]hashv-get-handle table key
[Scheme Procedure]hashx-get-handle hash assoc table key

[C Function]scm_hash_get_handle (table, key)
[C Function]scm_hashq_get_handle (table, key)
[C Function]scm_hashv_get_handle (table, key)
[C Function]scm_hashx_get_handle (hash, assoc, table, key)

Return the (key . value) pair for key in the given hash table, or #f if key is not in
table.

[Scheme Procedure]hash-create-handle! table key init
[Scheme Procedure]hashq-create-handle! table key init
[Scheme Procedure]hashv-create-handle! table key init
[Scheme Procedure]hashx-create-handle! hash assoc table key init

[C Function]scm_hash_create_handle_x (table, key, init)
[C Function]scm_hashq_create_handle_x (table, key, init)
[C Function]scm_hashv_create_handle_x (table, key, init)
[C Function]scm_hashx_create_handle_x (hash, assoc, table, key, init)

Return the (key . value) pair for key in the given hash table. If key is not in table
then create an entry for it with init as the value, and return that pair.

[Scheme Procedure]hash-map->list proc table
[Scheme Procedure]hash-for-each proc table

[C Function]scm_hash_map_to_list (proc, table)
[C Function]scm_hash_for_each (proc, table)

Apply proc to the entries in the given hash table. Each call is (proc key value).
hash-map->list returns a list of the results from these calls, hash-for-each discards
the results and returns an unspeci�ed value.

Calls are made over the table entries in an unspeci�ed order, and for hash-map->list
the order of the values in the returned list is unspeci�ed. Results will be unpredictable
if table is modi�ed while iterating.

For example the following returns a new alist comprising all the entries from mytable,
in no particular order.

(hash-map->list cons mytable)

[Scheme Procedure]hash-for-each-handle proc table
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[C Function]scm_hash_for_each_handle (proc, table)
Apply proc to the entries in the given hash table. Each call is (proc handle), where
handle is a (key . value) pair. Return an unspeci�ed value.

hash-for-each-handle di�ers from hash-for-each only in the argument list of proc.

[Scheme Procedure]hash-fold proc init table
[C Function]scm_hash_fold (proc, init, table)

Accumulate a result by applying proc to the elements of the given hash table. Each
call is (proc key value prior-result), where key and value are from the table and
prior-result is the return from the previous proc call. For the �rst call, prior-result is
the given init value.

Calls are made over the table entries in an unspeci�ed order. Results will be unpre-
dictable if table is modi�ed while hash-fold is running.

For example, the following returns a count of how many keys in mytable are strings.

(hash-fold (lambda (key value prior)

(if (string? key) (1+ prior) prior))

0 mytable)
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5.7 Smobs

This chapter contains reference information related to de�ning and working with smobs.
See Section 4.4 [De�ning New Types (Smobs)], page 68 for a tutorial-like introduction to
smobs.

[Function]scm_t_bits scm_make_smob_type (const char *name, size t size)
This function adds a new smob type, named name, with instance size size, to the
system. The return value is a tag that is used in creating instances of the type.

If size is 0, the default free function will do nothing.

If size is not 0, the default free function will deallocate the memory block pointed to
by SCM_SMOB_DATA with scm_gc_free. The WHAT parameter in the call to scm_gc_
free will be NAME.

Default values are provided for themark, free, print, and equalp functions, as described
in Section 4.4 [De�ning New Types (Smobs)], page 68. If you want to customize any of
these functions, the call to scm_make_smob_type should be immediately followed by
calls to one or several of scm_set_smob_mark, scm_set_smob_free, scm_set_smob_
print, and/or scm_set_smob_equalp.

[C Function]void scm_set_smob_mark (scm t bits tc, SCM (*mark) (SCM obj))
This function sets the smob marking procedure for the smob type speci�ed by the
tag tc. tc is the tag returned by scm_make_smob_type.

The mark procedure must cause scm_gc_mark to be called for every SCM value that is
directly referenced by the smob instance obj. One of these SCM values can be returned
from the procedure and Guile will call scm_gc_mark for it. This can be used to avoid
deep recursions for smob instances that form a list.

It must not call any libguile function or macro except scm_gc_mark, SCM_SMOB_FLAGS,
SCM_SMOB_DATA, SCM_SMOB_DATA_2, and SCM_SMOB_DATA_3.

[C Function]void scm_set_smob_free (scm t bits tc, size t (*free) (SCM obj))
This function sets the smob freeing procedure for the smob type speci�ed by the tag
tc. tc is the tag returned by scm_make_smob_type.

The free procedure must deallocate all resources that are directly associated with the
smob instance OBJ. It must assume that all SCM values that it references have already
been freed and are thus invalid.

It must also not call any libguile function or macro except scm_gc_free, SCM_SMOB_
FLAGS, SCM_SMOB_DATA, SCM_SMOB_DATA_2, and SCM_SMOB_DATA_3.

The free procedure must return 0.

[C Function]void scm_set_smob_print (scm t bits tc, int (*print) (SCM obj,
SCM port, scm print state* pstate))

This function sets the smob printing procedure for the smob type speci�ed by the tag
tc. tc is the tag returned by scm_make_smob_type.

The print procedure should output a textual representation of the smob instance obj
to port, using information in pstate.

The textual representation should be of the form #<name ...>. This ensures that
read will not interpret it as some other Scheme value.
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It is often best to ignore pstate and just print to port with scm_display, scm_write,
scm_simple_format, and scm_puts.

[C Function]void scm_set_smob_equalp (scm t bits tc, SCM (*equalp) (SCM
obj1, SCM obj1))

This function sets the smob equality-testing predicate for the smob type speci�ed by
the tag tc. tc is the tag returned by scm_make_smob_type.

The equalp procedure should return SCM_BOOL_T when obj1 is equal? to obj2. Else
it should return SCM BOOL F. Both obj1 and obj2 are instances of the smob type
tc.

[C Function]void scm_assert_smob_type (scm t bits tag, SCM val)
When val is a smob of the type indicated by tag, do nothing. Else, signal an error.

[C Macro]int SCM_SMOB_PREDICATE (scm t bits tag, SCM exp)
Return true i� exp is a smob instance of the type indicated by tag. The expression
exp can be evaluated more than once, so it shouldn't contain any side e�ects.

[C Macro]void SCM_NEWSMOB (SCM value, scm t bits tag, void *data)
[C Macro]void SCM_NEWSMOB2 (SCM value, scm t bits tag, void *data, void *data2)
[C Macro]void SCM_NEWSMOB3 (SCM value, scm t bits tag, void *data, void *data2,

void *data3)
Make value contain a smob instance of the type with tag tag and smob data data,
data2, and data3, as appropriate.

The tag is what has been returned by scm_make_smob_type. The initial values data,
data2, and data3 are of type scm_t_bits; when you want to use them for SCM values,
these values need to be converted to a scm_t_bits �rst by using SCM_UNPACK.

The ags of the smob instance start out as zero.

Since it is often the case (e.g., in smob constructors) that you will create a smob instance
and return it, there is also a slightly specialized macro for this situation:

[C Macro]SCM_RETURN_NEWSMOB (scm t bits tag, void *data)
[C Macro]SCM_RETURN_NEWSMOB2 (scm t bits tag, void *data1, void *data2)
[C Macro]SCM_RETURN_NEWSMOB3 (scm t bits tag, void *data1, void *data2, void

*data3)
This macro expands to a block of code that creates a smob instance of the type with
tag tag and smob data data, data2, and data3, as with SCM_NEWSMOB, etc., and causes
the surrounding function to return that SCM value. It should be the last piece of code
in a block.

[C Macro]scm_t_bits SCM_SMOB_FLAGS (SCM obj)
Return the 16 extra bits of the smob obj. No meaning is prede�ned for these bits,
you can use them freely.

[C Macro]scm_t_bits SCM_SET_SMOB_FLAGS (SCM obj, scm t bits ags)
Set the 16 extra bits of the smob obj to ags. No meaning is prede�ned for these
bits, you can use them freely.
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[C Macro]scm_t_bits SCM_SMOB_DATA (SCM obj)
[C Macro]scm_t_bits SCM_SMOB_DATA_2 (SCM obj)
[C Macro]scm_t_bits SCM_SMOB_DATA_3 (SCM obj)

Return the �rst (second, third) immediate word of the smob obj as a scm_t_bits

value. When the word contains a SCM value, use SCM_SMOB_OBJECT (etc.) instead.

[C Macro]void SCM_SET_SMOB_DATA (SCM obj, scm t bits val)
[C Macro]void SCM_SET_SMOB_DATA_2 (SCM obj, scm t bits val)
[C Macro]void SCM_SET_SMOB_DATA_3 (SCM obj, scm t bits val)

Set the �rst (second, third) immediate word of the smob obj to val. When the word
should be set to a SCM value, use SCM_SMOB_SET_OBJECT (etc.) instead.

[C Macro]SCM SCM_SMOB_OBJECT (SCM obj)
[C Macro]SCM SCM_SMOB_OBJECT_2 (SCM obj)
[C Macro]SCM SCM_SMOB_OBJECT_3 (SCM obj)

Return the �rst (second, third) immediate word of the smob obj as a SCM value. When
the word contains a scm_t_bits value, use SCM_SMOB_DATA (etc.) instead.

[C Macro]void SCM_SET_SMOB_OBJECT (SCM obj, SCM val)
[C Macro]void SCM_SET_SMOB_OBJECT_2 (SCM obj, SCM val)
[C Macro]void SCM_SET_SMOB_OBJECT_3 (SCM obj, SCM val)

Set the �rst (second, third) immediate word of the smob obj to val. When the word
should be set to a scm_t_bits value, use SCM_SMOB_SET_DATA (etc.) instead.

[C Macro]SCM * SCM_SMOB_OBJECT_LOC (SCM obj)
[C Macro]SCM * SCM_SMOB_OBJECT_2_LOC (SCM obj)
[C Macro]SCM * SCM_SMOB_OBJECT_3_LOC (SCM obj)

Return a pointer to the �rst (second, third) immediate word of the smob obj. Note
that this is a pointer to SCM. If you need to work with scm_t_bits values, use
SCM_PACK and SCM_UNPACK, as appropriate.

[Function]SCM scm_markcdr (SCM x )
Mark the references in the smob x, assuming that x's �rst data word contains an
ordinary Scheme object, and x refers to no other objects. This function simply
returns x's �rst data word.



Chapter 5: API Reference 227

5.8 Procedures and Macros

5.8.1 Lambda: Basic Procedure Creation

A lambda expression evaluates to a procedure. The environment which is in e�ect when a
lambda expression is evaluated is enclosed in the newly created procedure, this is referred
to as a closure (see Section 3.1.4 [About Closure], page 24).

When a procedure created by lambda is called with some actual arguments, the en-
vironment enclosed in the procedure is extended by binding the variables named in the
formal argument list to new locations and storing the actual arguments into these loca-
tions. Then the body of the lambda expression is evaluation sequentially. The result of the
last expression in the procedure body is then the result of the procedure invocation.

The following examples will show how procedures can be created using lambda, and
what you can do with these procedures.

(lambda (x) (+ x x)) ) a procedure
((lambda (x) (+ x x)) 4) ) 8

The fact that the environment in e�ect when creating a procedure is enclosed in the
procedure is shown with this example:

(define add4

(let ((x 4))

(lambda (y) (+ x y))))

(add4 6) ) 10

[syntax]lambda formals body
formals should be a formal argument list as described in the following table.

(variable1 ...)

The procedure takes a �xed number of arguments; when the procedure is
called, the arguments will be stored into the newly created location for
the formal variables.

variable The procedure takes any number of arguments; when the procedure is
called, the sequence of actual arguments will converted into a list and
stored into the newly created location for the formal variable.

(variable1 ... variablen . variablen+1)

If a space-delimited period precedes the last variable, then the procedure
takes n or more variables where n is the number of formal arguments be-
fore the period. There must be at least one argument before the period.
The �rst n actual arguments will be stored into the newly allocated loca-
tions for the �rst n formal arguments and the sequence of the remaining
actual arguments is converted into a list and the stored into the location
for the last formal argument. If there are exactly n actual arguments, the
empty list is stored into the location of the last formal argument.

The list in variable or variablen+1 is always newly created and the procedure can
modify it if desired. This is the case even when the procedure is invoked via apply, the
required part of the list argument there will be copied (see Section 5.13.3 [Procedures
for On the Fly Evaluation], page 291).
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body is a sequence of Scheme expressions which are evaluated in order when the
procedure is invoked.

5.8.2 Primitive Procedures

Procedures written in C can be registered for use from Scheme, provided they take only
arguments of type SCM and return SCM values. scm_c_define_gsubr is likely to be the most
useful mechanism, combining the process of registration (scm_c_make_gsubr) and de�nition
(scm_define).

[Function]SCM scm_c_make_gsubr (const char *name, int req, int opt, int rst, fcn)
Register a C procedure FCN as a \subr" | a primitive subroutine that can be called
from Scheme. It will be associated with the given name but no environment binding
will be created. The arguments req, opt and rst specify the number of required,
optional and \rest" arguments respectively. The total number of these arguments
should match the actual number of arguments to fcn. The number of rest arguments
should be 0 or 1. scm_c_make_gsubr returns a value of type SCM which is a \handle"
for the procedure.

[Function]SCM scm_c_define_gsubr (const char *name, int req, int opt, int rst,
fcn)

Register a C procedure FCN, as for scm_c_make_gsubr above, and additionally create
a top-level Scheme binding for the procedure in the \current environment" using scm_
define. scm_c_define_gsubr returns a handle for the procedure in the same way as
scm_c_make_gsubr, which is usually not further required.

scm_c_make_gsubr and scm_c_define_gsubr automatically use scm_c_make_subr and
also scm_makcclo if necessary. It is advisable to use the gsubr variants since they provide
a slightly higher-level abstraction of the Guile implementation.

5.8.3 Optional Arguments

Scheme procedures, as de�ned in R5RS, can either handle a �xed number of actual ar-
guments, or a �xed number of actual arguments followed by arbitrarily many additional
arguments. Writing procedures of variable arity can be useful, but unfortunately, the syn-
tactic means for handling argument lists of varying length is a bit inconvenient. It is possible
to give names to the �xed number of argument, but the remaining (optional) arguments
can be only referenced as a list of values (see Section 5.8.1 [Lambda], page 225).

Guile comes with the module (ice-9 optargs), which makes using optional arguments
much more convenient. In addition, this module provides syntax for handling keywords in
argument lists (see Section 5.5.8 [Keywords], page 162).

Before using any of the procedures or macros de�ned in this section, you have to load
the module (ice-9 optargs) with the statement:

(use-modules (ice-9 optargs))

5.8.3.1 let-optional Reference

The syntax let-optional and let-optional* are for destructuring rest argument lists
and giving names to the various list elements. let-optional binds all variables simulta-
neously, while let-optional* binds them sequentially, consistent with let and let* (see
Section 5.10.2 [Local Bindings], page 248).
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[library syntax]let-optional rest-arg (binding . . . ) expr . . .
[library syntax]let-optional* rest-arg (binding . . . ) expr . . .

These two macros give you an optional argument interface that is very Schemey and
introduces no fancy syntax. They are compatible with the scsh macros of the same
name, but are slightly extended. Each of binding may be of one of the forms var or
(var default-value). rest-arg should be the rest-argument of the procedures these
are used from. The items in rest-arg are sequentially bound to the variable names are
given. When rest-arg runs out, the remaining vars are bound either to the default
values or #f if no default value was speci�ed. rest-arg remains bound to whatever
may have been left of rest-arg.

After binding the variables, the expressions expr . . . are evaluated in order.

5.8.3.2 let-keywords Reference

let-keywords and let-keywords* are used for extracting values from argument lists which
use keywords instead of argument position for binding local variables to argument values.

let-keywords binds all variables simultaneously, while let-keywords* binds them se-
quentially, consistent with let and let* (see Section 5.10.2 [Local Bindings], page 248).

[library syntax]let-keywords rest-arg allow-other-keys? (binding . . . ) expr . . .
[library syntax]let-keywords* rest-arg allow-other-keys? (binding . . . ) expr . . .

These macros pick out keyword arguments from rest-arg, but do not modify it. This
is consistent at least with Common Lisp, which duplicates keyword arguments in the
rest argument. More explanation of what keyword arguments in a lambda list look like
can be found below in the documentation for lambda* (see Section 5.8.3.3 [lambda*
Reference], page 227). bindings can have the same form as for let-optional. If allow-
other-keys? is false, an error will be thrown if anything that looks like a keyword
argument but does not match a known keyword parameter will result in an error.

After binding the variables, the expressions expr . . . are evaluated in order.

5.8.3.3 lambda* Reference

When using optional and keyword argument lists, lambda for creating a procedure then
let-optional or let-keywords is a bit lengthy. lambda* combines the features of those
macros into a single convenient syntax.

[library syntax]lambda* ([var. . . ]
[#:optional vardef. . . ]
[#:key vardef. . . [#:allow-other-keys]]
[#:rest var | . var])
body

Create a procedure which takes optional and/or keyword arguments speci�ed with
#:optional and #:key. For example,

(lambda* (a b #:optional c d . e) '())

is a procedure with �xed arguments a and b, optional arguments c and d, and rest
argument e. If the optional arguments are omitted in a call, the variables for them
are bound to #f.
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lambda* can also take keyword arguments. For example, a procedure de�ned like
this:

(lambda* (#:key xyzzy larch) '())

can be called with any of the argument lists (#:xyzzy 11), (#:larch 13), (#:larch
42 #:xyzzy 19), (). Whichever arguments are given as keywords are bound to values
(and those not given are #f).

Optional and keyword arguments can also have default values to take when not present
in a call, by giving a two-element list of variable name and expression. For example
in

(lambda* (foo #:optional (bar 42) #:key (baz 73))

(list foo bar baz))

foo is a �xed argument, bar is an optional argument with default value 42, and baz is a
keyword argument with default value 73. Default value expressions are not evaluated
unless they are needed, and until the procedure is called.

Normally it's an error if a call has keywords other than those speci�ed by #:key, but
adding #:allow-other-keys to the de�nition (after the keyword argument declara-
tions) will ignore unknown keywords.

If a call has a keyword given twice, the last value is used. For example,

((lambda* (#:key (heads 0) (tails 0))

(display (list heads tails)))

#:heads 37 #:tails 42 #:heads 99)

a (99 42)

#:rest is a synonym for the dotted syntax rest argument. The argument lists (a . b)

and (a #:rest b) are equivalent in all respects. This is provided for more similarity
to DSSSL, MIT-Scheme and Kawa among others, as well as for refugees from other
Lisp dialects.

When #:key is used together with a rest argument, the keyword parameters in a call
all remain in the rest list. This is the same as Common Lisp. For example,

((lambda* (#:key (x 0) #:allow-other-keys #:rest r)

(display r))

#:x 123 #:y 456)

a (#:x 123 #:y 456)

#:optional and #:key establish their bindings successively, from left to right, as per
let-optional* and let-keywords*. This means default expressions can refer back
to prior parameters, for example

(lambda* (start #:optional (end (+ 10 start)))

(do ((i start (1+ i)))

((> i end))

(display i)))

5.8.3.4 de�ne* Reference

Just like define has a shorthand notation for de�ning procedures (see Section 3.1.2.4
[Lambda Alternatives], page 18), define* is provided as an abbreviation of the combi-
nation of define and lambda*.
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define*-public is the lambda* version of define-public; defmacro* and defmacro*-

public exist for de�ning macros with the improved argument list handling possibilities.
The -public versions not only de�ne the procedures/macros, but also export them from
the current module.

[library syntax]define* formals body
[library syntax]define*-public formals body

define* and define*-public support optional arguments with a similar syntax to
lambda*. They also support arbitrary-depth currying, just like Guile's de�ne. Some
examples:

(define* (x y #:optional a (z 3) #:key w . u)

(display (list y z u)))

de�nes a procedure x with a �xed argument y, an optional argument a, another
optional argument z with default value 3, a keyword argument w, and a rest argument
u.

(define-public* ((foo #:optional bar) #:optional baz) '())

This illustrates currying. A procedure foo is de�ned, which, when called with an
optional argument bar, returns a procedure that takes an optional argument baz.

Of course, define*[-public] also supports #:rest and #:allow-other-keys in the
same way as lambda*.

[library syntax]defmacro* name formals body
[library syntax]defmacro*-public name formals body

These are just like defmacro and defmacro-public except that they take lambda*-
style extended parameter lists, where #:optional, #:key, #:allow-other-keys and
#:rest are allowed with the usual semantics. Here is an example of a macro with an
optional argument:

(defmacro* transmorgify (a #:optional b)

(a 1))

5.8.4 Procedure Properties and Meta-information

Procedures always have attached the environment in which they were created and infor-
mation about how to apply them to actual arguments. In addition to that, properties and
meta-information can be stored with procedures. The procedures in this section can be used
to test whether a given procedure satis�es a condition; and to access and set a procedure's
property.

The �rst group of procedures are predicates to test whether a Scheme object is a pro-
cedure, or a special procedure, respectively. procedure? is the most general predicates, it
returns #t for any kind of procedure. closure? does not return #t for primitive procedures,
and thunk? only returns #t for procedures which do not accept any arguments.

[Scheme Procedure]procedure? obj
[C Function]scm_procedure_p (obj)

Return #t if obj is a procedure.

[Scheme Procedure]closure? obj
[C Function]scm_closure_p (obj)

Return #t if obj is a closure.
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[Scheme Procedure]thunk? obj
[C Function]scm_thunk_p (obj)

Return #t if obj is a thunk.

Procedure properties are general properties to be attached to procedures. These can be
the name of a procedure or other relevant information, such as debug hints.

[Scheme Procedure]procedure-name proc
[C Function]scm_procedure_name (proc)

Return the name of the procedure proc

[Scheme Procedure]procedure-source proc
[C Function]scm_procedure_source (proc)

Return the source of the procedure proc.

[Scheme Procedure]procedure-environment proc
[C Function]scm_procedure_environment (proc)

Return the environment of the procedure proc.

[Scheme Procedure]procedure-properties proc
[C Function]scm_procedure_properties (proc)

Return obj's property list.

[Scheme Procedure]procedure-property obj key
[C Function]scm_procedure_property (obj, key)

Return the property of obj with name key.

[Scheme Procedure]set-procedure-properties! proc alist
[C Function]scm_set_procedure_properties_x (proc, alist)

Set obj's property list to alist.

[Scheme Procedure]set-procedure-property! obj key value
[C Function]scm_set_procedure_property_x (obj, key, value)

In obj's property list, set the property named key to value.

Documentation for a procedure can be accessed with the procedure procedure-

documentation.

[Scheme Procedure]procedure-documentation proc
[C Function]scm_procedure_documentation (proc)

Return the documentation string associated with proc. By convention, if a procedure
contains more than one expression and the �rst expression is a string constant, that
string is assumed to contain documentation for that procedure.

5.8.5 Procedures with Setters

A procedure with setter is a special kind of procedure which normally behaves like any
accessor procedure, that is a procedure which accesses a data structure. The di�erence is
that this kind of procedure has a so-called setter attached, which is a procedure for storing
something into a data structure.
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Procedures with setters are treated specially when the procedure appears in the special
form set! (REFFIXME). How it works is best shown by example.

Suppose we have a procedure called foo-ref, which accepts two arguments, a value of
type foo and an integer. The procedure returns the value stored at the given index in the
foo object. Let f be a variable containing such a foo data structure.1

(foo-ref f 0) ) bar

(foo-ref f 1) ) braz

Also suppose that a corresponding setter procedure called foo-set! does exist.

(foo-set! f 0 'bla)

(foo-ref f 0) ) bla

Now we could create a new procedure called foo, which is a procedure with setter, by
calling make-procedure-with-setter with the accessor and setter procedures foo-ref and
foo-set!. Let us call this new procedure foo.

(define foo (make-procedure-with-setter foo-ref foo-set!))

foo can from now an be used to either read from the data structure stored in f, or to
write into the structure.

(set! (foo f 0) 'dum)

(foo f 0) ) dum

[Scheme Procedure]make-procedure-with-setter procedure setter
[C Function]scm_make_procedure_with_setter (procedure, setter)

Create a new procedure which behaves like procedure, but with the associated setter
setter.

[Scheme Procedure]procedure-with-setter? obj
[C Function]scm_procedure_with_setter_p (obj)

Return #t if obj is a procedure with an associated setter procedure.

[Scheme Procedure]procedure proc
[C Function]scm_procedure (proc)

Return the procedure of proc, which must be either a procedure with setter, or an
operator struct.

[Scheme Procedure]setter proc
Return the setter of proc, which must be either a procedure with setter or an operator
struct.

5.8.6 Lisp Style Macro De�nitions

Macros are objects which cause the expression that they appear in to be transformed in some
way before being evaluated. In expressions that are intended for macro transformation, the
identi�er that names the relevant macro must appear as the �rst element, like this:

1 Working de�nitions would be:

(define foo-ref vector-ref)
(define foo-set! vector-set!)
(define f (make-vector 2 #f))



234 Guile Reference Manual

(macro-name macro-args ...)

In Lisp-like languages, the traditional way to de�ne macros is very similar to procedure
de�nitions. The key di�erences are that the macro de�nition body should return a list
that describes the transformed expression, and that the de�nition is marked as a macro
de�nition (rather than a procedure de�nition) by the use of a di�erent de�nition keyword:
in Lisp, defmacro rather than defun, and in Scheme, define-macro rather than define.

Guile supports this style of macro de�nition using both defmacro and define-macro.
The only di�erence between them is how the macro name and arguments are grouped
together in the de�nition:

(defmacro name (args ...) body ...)

is the same as

(define-macro (name args ...) body ...)

The di�erence is analogous to the corresponding di�erence between Lisp's defun and
Scheme's define.

false-if-exception, from the `boot-9.scm' �le in the Guile distribution, is a good
example of macro de�nition using defmacro:

(defmacro false-if-exception (expr)

`(catch #t

(lambda () ,expr)

(lambda args #f)))

The e�ect of this de�nition is that expressions beginning with the identi�er false-if-

exception are automatically transformed into a catch expression following the macro def-
inition speci�cation. For example:

(false-if-exception (open-input-file "may-not-exist"))

�
(catch #t

(lambda () (open-input-file "may-not-exist"))

(lambda args #f))

5.8.7 The R5RS syntax-rules System

R5RS de�nes an alternative system for macro and syntax transformations using the key-
words define-syntax, let-syntax, letrec-syntax and syntax-rules.

The main di�erence between the R5RS system and the traditional macros of the previous
section is how the transformation is speci�ed. In R5RS, rather than permitting a macro
de�nition to return an arbitrary expression, the transformation is speci�ed in a pattern
language that

� does not require complicated quoting and extraction of components of the source ex-
pression using caddr etc.

� is designed such that the bindings associated with identi�ers in the transformed ex-
pression are well de�ned, and such that it is impossible for the transformed expression
to construct new identi�ers.

The last point is commonly referred to as being hygienic: the R5RS syntax-case system
provides hygienic macros.



Chapter 5: API Reference 235

For example, the R5RS pattern language for the false-if-exception example of the
previous section looks like this:

(syntax-rules ()

((_ expr)

(catch #t

(lambda () expr)

(lambda args #f))))

In Guile, the syntax-rules system is provided by the (ice-9 syncase) module. To
make these facilities available in your code, include the expression (use-syntax (ice-9

syncase)) (see Section 5.16.3.2 [Using Guile Modules], page 305) before the �rst usage
of define-syntax etc. If you are writing a Scheme module, you can alternatively in-
clude the form #:use-syntax (ice-9 syncase) in your define-module declaration (see
Section 5.16.3.3 [Creating Guile Modules], page 307).

5.8.7.1 The syntax-rules Pattern Language

5.8.7.2 Top Level Syntax De�nitions

de�ne-syntax: The gist is

(de�ne-syntax <keyword> <transformer-spec>)

makes the <keyword> into a macro so that

(<keyword> ...)

expands at compile or read time (i.e. before any evaluation begins) into some ex-
pression that is given by the <transformer-spec>.

5.8.7.3 Local Syntax De�nitions

5.8.8 Support for the syntax-case System

5.8.9 Internal Representation of Macros and Syntax

Internally, Guile uses three di�erent avors of macros. The three avors are called acro (or
syntax), macro and mmacro.

Given the expression

(foo ...)

with foo being some avor of macro, one of the following things will happen when the
expression is evaluated.

� When foo has been de�ned to be an acro, the procedure used in the acro de�nition of
foo is passed the whole expression and the current lexical environment, and whatever
that procedure returns is the value of evaluating the expression. You can think of this
a procedure that receives its argument as an unevaluated expression.

� When foo has been de�ned to be a macro, the procedure used in the macro de�nition of
foo is passed the whole expression and the current lexical environment, and whatever
that procedure returns is evaluated again. That is, the procedure should return a valid
Scheme expression.
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� When foo has been de�ned to be a mmacro, the procedure used in the mmacro def-
inition of `foo' is passed the whole expression and the current lexical environment,
and whatever that procedure returns replaces the original expression. Evaluation then
starts over from the new expression that has just been returned.

The key di�erence between a macro and a mmacro is that the expression returned by
a mmacro procedure is remembered (or memoized) so that the expansion does not need to
be done again next time the containing code is evaluated.

The primitives procedure->syntax, procedure->macro and procedure->memoizing-

macro are used to construct acros, macros and mmacros respectively. However, if you do
not have a very special reason to use one of these primitives, you should avoid them: they
are very speci�c to Guile's current implementation and therefore likely to change. Use
defmacro, define-macro (see Section 5.8.6 [Macros], page 231) or define-syntax (see
Section 5.8.7 [Syntax Rules], page 232) instead. (In low level terms, defmacro, define-
macro and define-syntax are all implemented as mmacros.)

[Scheme Procedure]procedure->syntax code
[C Function]scm_makacro (code)

Return a macro which, when a symbol de�ned to this value appears as the �rst
symbol in an expression, returns the result of applying code to the expression and
the environment.

[Scheme Procedure]procedure->macro code
[C Function]scm_makmacro (code)

Return a macro which, when a symbol de�ned to this value appears as the �rst
symbol in an expression, evaluates the result of applying code to the expression and
the environment. For example:

(define trace

(procedure->macro

(lambda (x env)

`(set! ,(cadr x) (tracef ,(cadr x) ',(cadr x))))))

(trace foo)

�
(set! foo (tracef foo 'foo)).

[Scheme Procedure]procedure->memoizing-macro code
[C Function]scm_makmmacro (code)

Return a macro which, when a symbol de�ned to this value appears as the �rst
symbol in an expression, evaluates the result of applying code to the expression and
the environment. procedure->memoizing-macro is the same as procedure->macro,
except that the expression returned by code replaces the original macro expression in
the memoized form of the containing code.

In the following primitives, acro avor macros are referred to as syntax transformers.

[Scheme Procedure]macro? obj
[C Function]scm_macro_p (obj)

Return #t if obj is a regular macro, a memoizing macro or a syntax transformer.
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[Scheme Procedure]macro-type m
[C Function]scm_macro_type (m)

Return one of the symbols syntax, macro or macro!, depending on whether m is a
syntax transformer, a regular macro, or a memoizing macro, respectively. If m is not
a macro, #f is returned.

[Scheme Procedure]macro-name m
[C Function]scm_macro_name (m)

Return the name of the macro m.

[Scheme Procedure]macro-transformer m
[C Function]scm_macro_transformer (m)

Return the transformer of the macro m.

[Scheme Procedure]cons-source xorig x y
[C Function]scm_cons_source (xorig, x, y)

Create and return a new pair whose car and cdr are x and y. Any source properties
associated with xorig are also associated with the new pair.
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5.9 General Utility Functions

This chapter contains information about procedures which are not cleanly tied to a speci�c
data type. Because of their wide range of applications, they are collected in a utility chapter.

5.9.1 Equality

There are three kinds of core equality predicates in Scheme, described below. The same
kinds of comparisons arise in other functions, like memq and friends (see Section 5.6.2.7 [List
Searching], page 173).

For all three tests, objects of di�erent types are never equal. So for instance a list and a
vector are not equal?, even if their contents are the same. Exact and inexact numbers are
considered di�erent types too, and are hence not equal even if their values are the same.

eq? tests just for the same object (essentially a pointer comparison). This is fast, and can
be used when searching for a particular object, or when working with symbols or keywords
(which are always unique objects).

eqv? extends eq? to look at the value of numbers and characters. It can for instance be
used somewhat like = (see Section 5.5.2.8 [Comparison], page 111) but without an error if
one operand isn't a number.

equal? goes further, it looks (recursively) into the contents of lists, vectors, etc. This is
good for instance on lists that have been read or calculated in various places and are the
same, just not made up of the same pairs. Such lists look the same (when printed), and
equal? will consider them the same.

[Scheme Procedure]eq? x y
[C Function]scm_eq_p (x, y)

Return #t if x and y are the same object, except for numbers and characters. For
example,

(define x (vector 1 2 3))

(define y (vector 1 2 3))

(eq? x x) ) #t

(eq? x y) ) #f

Numbers and characters are not equal to any other object, but the problem is they're
not necessarily eq? to themselves either. This is even so when the number comes
directly from a variable,

(let ((n (+ 2 3)))

(eq? n n)) ) *unspecified*

Generally eqv? below should be used when comparing numbers or characters. = (see
Section 5.5.2.8 [Comparison], page 111) or char=? (see Section 5.5.3 [Characters],
page 121) can be used too.

It's worth noting that end-of-list (), #t, #f, a symbol of a given name, and a keyword
of a given name, are unique objects. There's just one of each, so for instance no
matter how () arises in a program, it's the same object and can be compared with
eq?,
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(define x (cdr '(123)))

(define y (cdr '(456)))

(eq? x y) ) #t

(define x (string->symbol "foo"))

(eq? x 'foo) ) #t

[C Function]int scm_is_eq (SCM x, SCM y)
Return 1 when x and y are equal in the sense of eq?, otherwise return 0.

The == operator should not be used on SCM values, an SCM is a C type which cannot
necessarily be compared using == (see Section 5.2 [The SCM Type], page 94).

[Scheme Procedure]eqv? x y
[C Function]scm_eqv_p (x, y)

Return #t if x and y are the same object, or for characters and numbers the same
value.

On objects except characters and numbers, eqv? is the same as eq? above, it's true
if x and y are the same object.

If x and y are numbers or characters, eqv? compares their type and value. An exact
number is not eqv? to an inexact number (even if their value is the same).

(eqv? 3 (+ 1 2)) ) #t

(eqv? 1 1.0) ) #f

[Scheme Procedure]equal? x y
[C Function]scm_equal_p (x, y)

Return #t if x and y are the same type, and their contents or value are equal.

For a pair, string, vector, array or structure, equal? compares the contents, and does
so using using the same equal? recursively, so a deep structure can be traversed.

(equal? (list 1 2 3) (list 1 2 3)) ) #t

(equal? (list 1 2 3) (vector 1 2 3)) ) #f

For other objects, equal? compares as per eqv? above, which means characters and
numbers are compared by type and value (and like eqv?, exact and inexact numbers
are not equal?, even if their value is the same).

(equal? 3 (+ 1 2)) ) #t

(equal? 1 1.0) ) #f

Hash tables are currently only compared as per eq?, so two di�erent tables are not
equal?, even if their contents are the same.

equal? does not support circular data structures, it may go into an in�nite loop if
asked to compare two circular lists or similar.

New application-de�ned object types (see Section 4.4 [De�ning New Types (Smobs)],
page 68) have an equalp handler which is called by equal?. This lets an application
traverse the contents or control what is considered equal? for two objects of such a
type. If there's no such handler, the default is to just compare as per eq?.
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5.9.2 Object Properties

It's often useful to associate a piece of additional information with a Scheme object even
though that object does not have a dedicated slot available in which the additional infor-
mation could be stored. Object properties allow you to do just that.

Guile's representation of an object property is a procedure-with-setter (see Section 5.8.5
[Procedures with Setters], page 230) that can be used with the generalized form of set!
(REFFIXME) to set and retrieve that property for any Scheme object. So, setting a prop-
erty looks like this:

(set! (my-property obj1) value-for-obj1)

(set! (my-property obj2) value-for-obj2)

And retrieving values of the same property looks like this:

(my-property obj1)
)
value-for-obj1

(my-property obj2)
)
value-for-obj2

To create an object property in the �rst place, use the make-object-property proce-
dure:

(define my-property (make-object-property))

[Scheme Procedure]make-object-property
Create and return an object property. An object property is a procedure-with-setter
that can be called in two ways. (set! (property obj) val) sets obj's property to
val. (property obj) returns the current setting of obj's property.

A single object property created by make-object-property can associate distinct prop-
erty values with all Scheme values that are distinguishable by eq? (including, for example,
integers).

Internally, object properties are implemented using a weak key hash table. This means
that, as long as a Scheme value with property values is protected from garbage collection,
its property values are also protected. When the Scheme value is collected, its entry in the
property table is removed and so the (ex-) property values are no longer protected by the
table.

5.9.2.1 Low Level Property Implementation.

[Scheme Procedure]primitive-make-property not-found-proc
[C Function]scm_primitive_make_property (not found proc)

Create a property token that can be used with primitive-property-ref and
primitive-property-set!. See primitive-property-ref for the signi�cance of
not-found-proc.

[Scheme Procedure]primitive-property-ref prop obj
[C Function]scm_primitive_property_ref (prop, obj)

Return the property prop of obj.
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When no value has yet been associated with prop and obj, the not-found-proc from
prop is used. A call (not-found-proc prop obj) is made and the result set as the
property value. If not-found-proc is #f then #f is the property value.

[Scheme Procedure]primitive-property-set! prop obj val
[C Function]scm_primitive_property_set_x (prop, obj, val)

Set the property prop of obj to val.

[Scheme Procedure]primitive-property-del! prop obj
[C Function]scm_primitive_property_del_x (prop, obj)

Remove any value associated with prop and obj.

5.9.2.2 An Older Approach to Properties

Traditionally, Lisp systems provide a di�erent object property interface to that provided
by make-object-property, in which the object property that is being set or retrieved is
indicated by a symbol.

Guile includes this older kind of interface as well, but it may well be removed in a future
release, as it is less powerful than make-object-property and so increases the size of the
Guile library for no bene�t. (And it is trivial to write a compatibility layer in Scheme.)

[Scheme Procedure]object-properties obj
[C Function]scm_object_properties (obj)

Return obj's property list.

[Scheme Procedure]set-object-properties! obj alist
[C Function]scm_set_object_properties_x (obj, alist)

Set obj's property list to alist.

[Scheme Procedure]object-property obj key
[C Function]scm_object_property (obj, key)

Return the property of obj with name key.

[Scheme Procedure]set-object-property! obj key value
[C Function]scm_set_object_property_x (obj, key, value)

In obj's property list, set the property named key to value.

5.9.3 Sorting

Sorting is very important in computer programs. Therefore, Guile comes with several
sorting procedures built-in. As always, procedures with names ending in ! are side-e�ecting,
that means that they may modify their parameters in order to produce their results.

The �rst group of procedures can be used to merge two lists (which must be already
sorted on their own) and produce sorted lists containing all elements of the input lists.

[Scheme Procedure]merge alist blist less
[C Function]scm_merge (alist, blist, less)

Merge two already sorted lists into one. Given two lists alist and blist, such that
(sorted? alist less?) and (sorted? blist less?), return a new list in which the
elements of alist and blist have been stably interleaved so that (sorted? (merge

alist blist less?) less?). Note: this does not accept vectors.
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[Scheme Procedure]merge! alist blist less
[C Function]scm_merge_x (alist, blist, less)

Takes two lists alist and blist such that (sorted? alist less?) and (sorted? blist

less?) and returns a new list in which the elements of alist and blist have been
stably interleaved so that (sorted? (merge alist blist less?) less?). This is
the destructive variant of merge Note: this does not accept vectors.

The following procedures can operate on sequences which are either vectors or list.
According to the given arguments, they return sorted vectors or lists, respectively. The
�rst of the following procedures determines whether a sequence is already sorted, the other
sort a given sequence. The variants with names starting with stable- are special in that
they maintain a special property of the input sequences: If two or more elements are the
same according to the comparison predicate, they are left in the same order as they appeared
in the input.

[Scheme Procedure]sorted? items less
[C Function]scm_sorted_p (items, less)

Return #t i� items is a list or a vector such that for all 1 <= i <= m, the predicate
less returns true when applied to all elements i - 1 and i

[Scheme Procedure]sort items less
[C Function]scm_sort (items, less)

Sort the sequence items, which may be a list or a vector. less is used for comparing
the sequence elements. This is not a stable sort.

[Scheme Procedure]sort! items less
[C Function]scm_sort_x (items, less)

Sort the sequence items, which may be a list or a vector. less is used for comparing
the sequence elements. The sorting is destructive, that means that the input sequence
is modi�ed to produce the sorted result. This is not a stable sort.

[Scheme Procedure]stable-sort items less
[C Function]scm_stable_sort (items, less)

Sort the sequence items, which may be a list or a vector. less is used for comparing
the sequence elements. This is a stable sort.

[Scheme Procedure]stable-sort! items less
[C Function]scm_stable_sort_x (items, less)

Sort the sequence items, which may be a list or a vector. less is used for comparing
the sequence elements. The sorting is destructive, that means that the input sequence
is modi�ed to produce the sorted result. This is a stable sort.

The procedures in the last group only accept lists or vectors as input, as their names
indicate.

[Scheme Procedure]sort-list items less
[C Function]scm_sort_list (items, less)

Sort the list items, using less for comparing the list elements. This is a stable sort.
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[Scheme Procedure]sort-list! items less
[C Function]scm_sort_list_x (items, less)

Sort the list items, using less for comparing the list elements. The sorting is destruc-
tive, that means that the input list is modi�ed to produce the sorted result. This is
a stable sort.

[Scheme Procedure]restricted-vector-sort! vec less startpos endpos
[C Function]scm_restricted_vector_sort_x (vec, less, startpos, endpos)

Sort the vector vec, using less for comparing the vector elements. startpos (inclu-
sively) and endpos (exclusively) delimit the range of the vector which gets sorted.
The return value is not speci�ed.

5.9.4 Copying Deep Structures

The procedures for copying lists (see Section 5.6.2 [Lists], page 168) only produce a at
copy of the input list, and currently Guile does not even contain procedures for copying
vectors. copy-tree can be used for these application, as it does not only copy the spine of
a list, but also copies any pairs in the cars of the input lists.

[Scheme Procedure]copy-tree obj
[C Function]scm_copy_tree (obj)

Recursively copy the data tree that is bound to obj, and return a the new data
structure. copy-tree recurses down the contents of both pairs and vectors (since
both cons cells and vector cells may point to arbitrary objects), and stops recursing
when it hits any other object.

5.9.5 General String Conversion

When debugging Scheme programs, but also for providing a human-friendly interface, a
procedure for converting any Scheme object into string format is very useful. Conversion
from/to strings can of course be done with specialized procedures when the data type of
the object to convert is known, but with this procedure, it is often more comfortable.

object->string converts an object by using a print procedure for writing to a string
port, and then returning the resulting string. Converting an object back from the string is
only possible if the object type has a read syntax and the read syntax is preserved by the
printing procedure.

[Scheme Procedure]object->string obj [printer]
[C Function]scm_object_to_string (obj, printer)

Return a Scheme string obtained by printing obj. Printing function can be speci�ed
by the optional second argument printer (default: write).

5.9.6 Hooks

A hook is a list of procedures to be called at well de�ned points in time. Typically, an
application provides a hook h and promises its users that it will call all of the procedures
in h at a de�ned point in the application's processing. By adding its own procedure to h,
an application user can tap into or even inuence the progress of the application.

Guile itself provides several such hooks for debugging and customization purposes: these
are listed in a subsection below.



244 Guile Reference Manual

When an application �rst creates a hook, it needs to know how many arguments will be
passed to the hook's procedures when the hook is run. The chosen number of arguments
(which may be none) is declared when the hook is created, and all the procedures that are
added to that hook must be capable of accepting that number of arguments.

A hook is created using make-hook. A procedure can be added to or removed from a
hook using add-hook! or remove-hook!, and all of a hook's procedures can be removed
together using reset-hook!. When an application wants to run a hook, it does so using
run-hook.

5.9.6.1 Hook Usage by Example

Hook usage is shown by some examples in this section. First, we will de�ne a hook of arity
2 | that is, the procedures stored in the hook will have to accept two arguments.

(define hook (make-hook 2))

hook
) #<hook 2 40286c90>

Now we are ready to add some procedures to the newly created hook with add-hook!.
In the following example, two procedures are added, which print di�erent messages and do
di�erent things with their arguments.

(add-hook! hook (lambda (x y)

(display "Foo: ")

(display (+ x y))

(newline)))

(add-hook! hook (lambda (x y)

(display "Bar: ")

(display (* x y))

(newline)))

Once the procedures have been added, we can invoke the hook using run-hook.

(run-hook hook 3 4)

a Bar: 12

a Foo: 7

Note that the procedures are called in the reverse of the order with which they were
added. This is because the default behaviour of add-hook! is to add its procedure to the
front of the hook's procedure list. You can force add-hook! to add its procedure to the end
of the list instead by providing a third #t argument on the second call to add-hook!.

(add-hook! hook (lambda (x y)

(display "Foo: ")

(display (+ x y))

(newline)))

(add-hook! hook (lambda (x y)

(display "Bar: ")

(display (* x y))

(newline))

#t) ; <- Change here!

(run-hook hook 3 4)
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a Foo: 7

a Bar: 12

5.9.6.2 Hook Reference

When you create a hook with make-hook, you must specify the arity of the procedures which
can be added to the hook. If the arity is not given explicitly as an argument to make-hook,
it defaults to zero. All procedures of a given hook must have the same arity, and when the
procedures are invoked using run-hook, the number of arguments passed must match the
arity speci�ed at hook creation time.

The order in which procedures are added to a hook matters. If the third parameter to
add-hook! is omitted or is equal to #f, the procedure is added in front of the procedures
which might already be on that hook, otherwise the procedure is added at the end. The
procedures are always called from the front to the end of the list when they are invoked via
run-hook.

The ordering of the list of procedures returned by hook->list matches the order in
which those procedures would be called if the hook was run using run-hook.

Note that the C functions in the following entries are for handling Scheme-level hooks
in C. There are also C-level hooks which have their own interface (see Section 5.9.6.4 [C
Hooks], page 244).

[Scheme Procedure]make-hook [n args]
[C Function]scm_make_hook (n args)

Create a hook for storing procedure of arity n args. n args defaults to zero. The
returned value is a hook object to be used with the other hook procedures.

[Scheme Procedure]hook? x
[C Function]scm_hook_p (x)

Return #t if x is a hook, #f otherwise.

[Scheme Procedure]hook-empty? hook
[C Function]scm_hook_empty_p (hook)

Return #t if hook is an empty hook, #f otherwise.

[Scheme Procedure]add-hook! hook proc [append p]
[C Function]scm_add_hook_x (hook, proc, append p)

Add the procedure proc to the hook hook. The procedure is added to the end if
append p is true, otherwise it is added to the front. The return value of this procedure
is not speci�ed.

[Scheme Procedure]remove-hook! hook proc
[C Function]scm_remove_hook_x (hook, proc)

Remove the procedure proc from the hook hook. The return value of this procedure
is not speci�ed.

[Scheme Procedure]reset-hook! hook
[C Function]scm_reset_hook_x (hook)

Remove all procedures from the hook hook. The return value of this procedure is not
speci�ed.
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[Scheme Procedure]hook->list hook
[C Function]scm_hook_to_list (hook)

Convert the procedure list of hook to a list.

[Scheme Procedure]run-hook hook . args
[C Function]scm_run_hook (hook, args)

Apply all procedures from the hook hook to the arguments args. The order of the
procedure application is �rst to last. The return value of this procedure is not speci-
�ed.

If, in C code, you are certain that you have a hook object and well formed argument list
for that hook, you can also use scm_c_run_hook, which is identical to scm_run_hook but
does no type checking.

[C Function]void scm_c_run_hook (SCM hook, SCM args)
The same as scm_run_hook but without any type checking to con�rm that hook is
actually a hook object and that args is a well-formed list matching the arity of the
hook.

For C code, SCM_HOOKP is a faster alternative to scm_hook_p:

[C Macro]int SCM_HOOKP (x)
Return 1 if x is a Scheme-level hook, 0 otherwise.

5.9.6.3 Handling Scheme-level hooks from C code

Here is an example of how to handle Scheme-level hooks from C code using the above
functions.

if (scm_is_true (scm_hook_p (obj)))

/* handle Scheme-level hook using C functions */

scm_reset_hook_x (obj);

else

/* do something else (obj is not a hook) */

5.9.6.4 Hooks For C Code.

The hooks already described are intended to be populated by Scheme-level procedures. In
addition to this, the Guile library provides an independent set of interfaces for the creation
and manipulation of hooks that are designed to be populated by functions implemented in
C.

The original motivation here was to provide a kind of hook that could safely be invoked
at various points during garbage collection. Scheme-level hooks are unsuitable for this
purpose as running them could itself require memory allocation, which would then invoke
garbage collection recursively . . . However, it is also the case that these hooks are easier to
work with than the Scheme-level ones if you only want to register C functions with them.
So if that is mainly what your code needs to do, you may prefer to use this interface.

To create a C hook, you should allocate storage for a structure of type scm_t_c_hook

and then initialize it using scm_c_hook_init.

[C Type]scm_t_c_hook
Data type for a C hook. The internals of this type should be treated as opaque.
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[C Enum]scm_t_c_hook_type
Enumeration of possible hook types, which are:

SCM_C_HOOK_NORMAL

Type of hook for which all the registered functions will always be called.

SCM_C_HOOK_OR

Type of hook for which the sequence of registered functions will be called
only until one of them returns C true (a non-NULL pointer).

SCM_C_HOOK_AND

Type of hook for which the sequence of registered functions will be called
only until one of them returns C false (a NULL pointer).

[C Function]void scm_c_hook_init (scm t c hook *hook, void *hook data,
scm t c hook type type)

Initialize the C hook at memory pointed to by hook. type should be one of the values
of the scm_t_c_hook_type enumeration, and controls how the hook functions will be
called. hook data is a closure parameter that will be passed to all registered hook
functions when they are called.

To add or remove a C function from a C hook, use scm_c_hook_add or scm_c_hook_
remove. A hook function must expect three void * parameters which are, respectively:

hook data The hook closure data that was speci�ed at the time the hook was initialized
by scm_c_hook_init.

func data The function closure data that was speci�ed at the time that that function was
registered with the hook by scm_c_hook_add.

data The call closure data speci�ed by the scm_c_hook_run call that runs the hook.

[C Type]scm_t_c_hook_function
Function type for a C hook function: takes three void * parameters and returns a
void * result.

[C Function]void scm_c_hook_add (scm t c hook *hook, scm t c hook function
func, void *func data, int appendp)

Add function func, with function closure data func data, to the C hook hook. The new
function is appended to the hook's list of functions if appendp is non-zero, otherwise
prepended.

[C Function]void scm_c_hook_remove (scm t c hook *hook,
scm t c hook function func, void *func data)

Remove function func, with function closure data func data, from the C hook hook.
scm_c_hook_remove checks both func and func data so as to allow for the same func
being registered multiple times with di�erent closure data.

Finally, to invoke a C hook, call the scm_c_hook_run function specifying the hook and
the call closure data for this run:
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[C Function]void * scm_c_hook_run (scm t c hook *hook, void *data)
Run the C hook hook will call closure data data. Subject to the variations for hook
types SCM_C_HOOK_OR and SCM_C_HOOK_AND, scm_c_hook_run calls hook's registered
functions in turn, passing them the hook's closure data, each function's closure data,
and the call closure data.

scm_c_hook_run's return value is the return value of the last function to be called.

5.9.6.5 Hooks for Garbage Collection

Whenever Guile performs a garbage collection, it calls the following hooks in the order
shown.

[C Hook]scm_before_gc_c_hook
C hook called at the very start of a garbage collection, after setting scm_gc_running_
p to 1, but before entering the GC critical section.

If garbage collection is blocked because scm_block_gc is non-zero, GC exits early
soon after calling this hook, and no further hooks will be called.

[C Hook]scm_before_mark_c_hook
C hook called before beginning the mark phase of garbage collection, after the GC
thread has entered a critical section.

[C Hook]scm_before_sweep_c_hook
C hook called before beginning the sweep phase of garbage collection. This is the
same as at the end of the mark phase, since nothing else happens between marking
and sweeping.

[C Hook]scm_after_sweep_c_hook
C hook called after the end of the sweep phase of garbage collection, but while the
GC thread is still inside its critical section.

[C Hook]scm_after_gc_c_hook
C hook called at the very end of a garbage collection, after the GC thread has left its
critical section.

[Scheme Hook]after-gc-hook
Scheme hook with arity 0. This hook is run asynchronously (see Section 5.17.2
[Asyncs], page 323) soon after the GC has completed and any other events that
were deferred during garbage collection have been processed. (Also accessible from C
with the name scm_after_gc_hook.)

All the C hooks listed here have type SCM_C_HOOK_NORMAL, are initialized with hook
closure data NULL, are are invoked by scm_c_hook_run with call closure data NULL.

The Scheme hook after-gc-hook is particularly useful in conjunction with guardians
(see Section 5.14.4 [Guardians], page 301). Typically, if you are using a guardian, you
want to call the guardian after garbage collection to see if any of the objects added to the
guardian have been collected. By adding a thunk that performs this call to after-gc-hook,
you can ensure that your guardian is tested after every garbage collection cycle.

5.9.6.6 Hooks into the Guile REPL
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5.10 De�nitions and Variable Bindings

Scheme supports the de�nition of variables in di�erent contexts. Variables can be de�ned
at the top level, so that they are visible in the entire program, and variables can be de-
�ned locally to procedures and expressions. This is important for modularity and data
abstraction.

5.10.1 Top Level Variable De�nitions

On the top level of a program (i.e. when not inside the body of a procedure de�nition or a
let, let* or letrec expression), a de�nition of the form

(define a value)

de�nes a variable called a and sets it to the value value.

If the variable already exists, because it has already been created by a previous define
expression with the same name, its value is simply changed to the new value. In this case,
then, the above form is completely equivalent to

(set! a value)

This equivalence means that define can be used interchangeably with set! to change the
value of variables at the top level of the REPL or a Scheme source �le. It is useful during
interactive development when reloading a Scheme �le that you have modi�ed, because it
allows the define expressions in that �le to work as expected both the �rst time that the
�le is loaded and on subsequent occasions.

Note, though, that define and set! are not always equivalent. For example, a set! is
not allowed if the named variable does not already exist, and the two expressions can behave
di�erently in the case where there are imported variables visible from another module.

[Scheme Syntax]define name value
Create a top level variable named name with value value. If the named variable
already exists, just change its value. The return value of a define expression is
unspeci�ed.

The C API equivalents of define are scm_define and scm_c_define, which di�er from
each other in whether the variable name is speci�ed as a SCM symbol or as a null-terminated
C string.

[C Function]scm_define (sym, value)
[C Function]scm_c_define (const char *name, value)

C equivalents of define, with variable name speci�ed either by sym, a symbol, or
by name, a null-terminated C string. Both variants return the new or preexisting
variable object.

define (when it occurs at top level), scm_define and scm_c_define all create or set
the value of a variable in the top level environment of the current module. If there was not
already a variable with the speci�ed name belonging to the current module, but a similarly
named variable from another module was visible through having been imported, the newly
created variable in the current module will shadow the imported variable, such that the
imported variable is no longer visible.

Attention: Scheme de�nitions inside local binding constructs (see Section 5.10.2 [Local
Bindings], page 248) act di�erently (see Section 5.10.3 [Internal De�nitions], page 249).
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5.10.2 Local Variable Bindings

As opposed to de�nitions at the top level, which are visible in the whole program (or current
module, when Guile modules are used), it is also possible to de�ne variables which are only
visible in a well-de�ned part of the program. Normally, this part of a program will be a
procedure or a subexpression of a procedure.

With the constructs for local binding (let, let* and letrec), the Scheme language
has a block structure like most other programming languages since the days of Algol 60.
Readers familiar to languages like C or Java should already be used to this concept, but
the family of let expressions has a few properties which are well worth knowing.

The �rst local binding construct is let. The other constructs let* and letrec are
specialized versions for usage where using plain let is a bit inconvenient.

[syntax]let bindings body
bindings has the form

((variable1 init1) ...)

that is zero or more two-element lists of a variable and an arbitrary expression each.
All variable names must be distinct.

A let expression is evaluated as follows.

� All init expressions are evaluated.

� New storage is allocated for the variables.

� The values of the init expressions are stored into the variables.

� The expressions in body are evaluated in order, and the value of the last expres-
sion is returned as the value of the let expression.

� The storage for the variables is freed.

The init expressions are not allowed to refer to any of the variables.

[syntax]let* bindings body
Similar to let, but the variable bindings are performed sequentially, that means that
all init expression are allowed to use the variables de�ned on their left in the binding
list.

A let* expression can always be expressed with nested let expressions.

(let* ((a 1) (b a))

b)

�
(let ((a 1))

(let ((b a))

b))

[syntax]letrec bindings body
Similar to let, but it is possible to refer to the variable from lambda expression
created in any of the inits. That is, procedures created in the init expression can
recursively refer to the de�ned variables.

(letrec ((even?

(lambda (n)
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(if (zero? n)

#t

(odd? (- n 1)))))

(odd?

(lambda (n)

(if (zero? n)

#f

(even? (- n 1))))))

(even? 88))
)
#t

There is also an alternative form of the let form, which is used for expressing iteration.
Because of the use as a looping construct, this form (the named let) is documented in the
section about iteration (see Section 5.11.4 [while do], page 252)

5.10.3 Internal de�nitions

A define form which appears inside the body of a lambda, let, let*, letrec or equivalent
expression is called an internal de�nition. An internal de�nition di�ers from a top level
de�nition (see Section 5.10.1 [Top Level], page 247), because the de�nition is only visible
inside the complete body of the enclosing form. Let us examine the following example.

(let ((frumble "froz"))

(define banana (lambda () (apple 'peach)))

(define apple (lambda (x) x))

(banana))
)
peach

Here the enclosing form is a let, so the defines in the let-body are internal de�nitions.
Because the scope of the internal de�nitions is the complete body of the let-expression,
the lambda-expression which gets bound to the variable banana may refer to the variable
apple, even though it's de�nition appears lexically after the de�nition of banana. This is
because a sequence of internal de�nition acts as if it were a letrec expression.

(let ()

(define a 1)

(define b 2)

(+ a b))

is equivalent to

(let ()

(letrec ((a 1) (b 2))

(+ a b)))

Another noteworthy di�erence to top level de�nitions is that within one group of internal
de�nitions all variable names must be distinct. That means where on the top level a second
de�ne for a given variable acts like a set!, an exception is thrown for internal de�nitions
with duplicate bindings.
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5.10.4 Querying variable bindings

Guile provides a procedure for checking whether a symbol is bound in the top level envi-
ronment.

[Scheme Procedure]defined? sym [env]
[C Function]scm_defined_p (sym, env)

Return #t if sym is de�ned in the lexical environment env. When env is not speci�ed,
look in the top-level environment as de�ned by the current module.
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5.11 Controlling the Flow of Program Execution

See Section 4.3.3 [Control Flow], page 63 for a discussion of how the more general control
ow of Scheme a�ects C code.

5.11.1 Evaluating a Sequence of Expressions

The begin syntax is used for grouping several expressions together so that they are treated
as if they were one expression. This is particularly important when syntactic expressions
are used which only allow one expression, but the programmer wants to use more than one
expression in that place. As an example, consider the conditional expression below:

(if (> x 0)

(begin (display "greater") (newline)))

If the two calls to display and newline were not embedded in a begin-statement, the
call to newline would get misinterpreted as the else-branch of the if-expression.

[syntax]begin expr1 expr2 . . .
The expression(s) are evaluated in left-to-right order and the value of the last expres-
sion is returned as the value of the begin-expression. This expression type is used
when the expressions before the last one are evaluated for their side e�ects.

Guile also allows the expression (begin), a begin with no sub-expressions. Such an
expression returns the `unspeci�ed' value.

5.11.2 Simple Conditional Evaluation

Guile provides three syntactic constructs for conditional evaluation. if is the normal if-
then-else expression (with an optional else branch), cond is a conditional expression with
multiple branches and case branches if an expression has one of a set of constant values.

[syntax]if test consequent [alternate]
All arguments may be arbitrary expressions. First, test is evaluated. If it returns a
true value, the expression consequent is evaluated and alternate is ignored. If test
evaluates to #f, alternate is evaluated instead. The value of the evaluated branch
(consequent or alternate) is returned as the value of the if expression.

When alternate is omitted and the test evaluates to #f, the value of the expression
is not speci�ed.

[syntax]cond clause1 clause2 . . .
Each cond-clause must look like this:

(test expression ...)

where test and expression are arbitrary expression, or like this

(test => expression)

where expression must evaluate to a procedure.

The tests of the clauses are evaluated in order and as soon as one of them evaluates to
a true values, the corresponding expressions are evaluated in order and the last value
is returned as the value of the cond-expression. For the => clause type, expression is
evaluated and the resulting procedure is applied to the value of test. The result of
this procedure application is then the result of the cond-expression.

One additional cond-clause is available as an extension to standard Scheme:
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(test guard => expression)

where guard and expression must evaluate to procedures. For this clause type, test
may return multiple values, and cond ignores its boolean state; instead, cond evaluates
guard and applies the resulting procedure to the value(s) of test, as if guard were the
consumer argument of call-with-values. I� the result of that procedure call is a
true value, it evaluates expression and applies the resulting procedure to the value(s)
of test, in the same manner as the guard was called.

The test of the last clause may be the symbol else. Then, if none of the preceding
tests is true, the expressions following the else are evaluated to produce the result
of the cond-expression.

[syntax]case key clause1 clause2 . . .
key may be any expression, the clauses must have the form

((datum1 ...) expr1 expr2 ...)

and the last clause may have the form

(else expr1 expr2 ...)

All datums must be distinct. First, key is evaluated. The the result of this evaluation
is compared against all datums using eqv?. When this comparison succeeds, the
expression(s) following the datum are evaluated from left to right, returning the value
of the last expression as the result of the case expression.

If the key matches no datum and there is an else-clause, the expressions following
the else are evaluated. If there is no such clause, the result of the expression is
unspeci�ed.

5.11.3 Conditional Evaluation of a Sequence of Expressions

and and or evaluate all their arguments in order, similar to begin, but evaluation stops as
soon as one of the expressions evaluates to false or true, respectively.

[syntax]and expr . . .
Evaluate the exprs from left to right and stop evaluation as soon as one expression
evaluates to #f; the remaining expressions are not evaluated. The value of the last
evaluated expression is returned. If no expression evaluates to #f, the value of the
last expression is returned.

If used without expressions, #t is returned.

[syntax]or expr . . .
Evaluate the exprs from left to right and stop evaluation as soon as one expression
evaluates to a true value (that is, a value di�erent from #f); the remaining expressions
are not evaluated. The value of the last evaluated expression is returned. If all
expressions evaluate to #f, #f is returned.

If used without expressions, #f is returned.

5.11.4 Iteration mechanisms

Scheme has only few iteration mechanisms, mainly because iteration in Scheme programs
is normally expressed using recursion. Nevertheless, R5RS de�nes a construct for program-
ming loops, calling do. In addition, Guile has an explicit looping syntax called while.
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[syntax]do ((variable init [step]) . . . ) (test [expr . . . ]) body . . .
Bind variables and evaluate body until test is true. The return value is the last expr
after test, if given. A simple example will illustrate the basic form,

(do ((i 1 (1+ i)))

((> i 4))

(display i))

a 1234

Or with two variables and a �nal return value,

(do ((i 1 (1+ i))

(p 3 (* 3 p)))

((> i 4)

p)

(format #t "3**~s is ~s\n" i p))

a
3**1 is 3

3**2 is 9

3**3 is 27

3**4 is 81
)
789

The variable bindings are established like a let, in that the expressions are all eval-
uated and then all bindings made. When iterating, the optional step expressions are
evaluated with the previous bindings in scope, then new bindings all made.

The test expression is a termination condition. Looping stops when the test is true.
It's evaluated before running the body each time, so if it's true the �rst time then
body is not run at all.

The optional exprs after the test are evaluated at the end of looping, with the �nal
variable bindings available. The last expr gives the return value, or if there are no
exprs the return value is unspeci�ed.

Each iteration establishes bindings to fresh locations for the variables, like a new
let for each iteration. This is done for variables without step expressions too. The
following illustrates this, showing how a new i is captured by the lambda in each
iteration (see Section 3.1.4 [The Concept of Closure], page 24).

(define lst '())

(do ((i 1 (1+ i)))

((> i 4))

(set! lst (cons (lambda () i) lst)))

(map (lambda (proc) (proc)) lst)
)
(4 3 2 1)

[syntax]while cond body . . .
Run a loop executing the body forms while cond is true. cond is tested at the start
of each iteration, so if it's #f the �rst time then body is not executed at all. The
return value is unspeci�ed.
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Within while, two extra bindings are provided, they can be used from both cond and
body.

[Scheme Procedure]break
Break out of the while form.

[Scheme Procedure]continue
Abandon the current iteration, go back to the start and test cond again, etc.

Each while form gets its own break and continue procedures, operating on that
while. This means when loops are nested the outer break can be used to escape all
the way out. For example,

(while (test1)

(let ((outer-break break))

(while (test2)

(if (something)

(outer-break #f))

...)))

Note that each break and continue procedure can only be used within the dynamic
extent of its while. Outside the while their behaviour is unspeci�ed.

Another very common way of expressing iteration in Scheme programs is the use of the
so-called named let.

Named let is a variant of let which creates a procedure and calls it in one step. Because
of the newly created procedure, named let is more powerful than do{it can be used for
iteration, but also for arbitrary recursion.

[syntax]let variable bindings body
For the de�nition of bindings see the documentation about let (see Section 5.10.2
[Local Bindings], page 248).

Named let works as follows:

� A new procedure which accepts as many arguments as are in bindings is created
and bound locally (using let) to variable. The new procedure's formal argument
names are the name of the variables.

� The body expressions are inserted into the newly created procedure.

� The procedure is called with the init expressions as the formal arguments.

The next example implements a loop which iterates (by recursion) 1000 times.

(let lp ((x 1000))

(if (positive? x)

(lp (- x 1))

x))
)
0
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5.11.5 Continuations

A \continuation" is the code that will execute when a given function or expression returns.
For example, consider

(define (foo)

(display "hello\n")

(display (bar)) (newline)

(exit))

The continuation from the call to bar comprises a display of the value returned, a
newline and an exit. This can be expressed as a function of one argument.

(lambda (r)

(display r) (newline)

(exit))

In Scheme, continuations are represented as special procedures just like this. The special
property is that when a continuation is called it abandons the current program location and
jumps directly to that represented by the continuation.

A continuation is like a dynamic label, capturing at run-time a point in program execu-
tion, including all the nested calls that have lead to it (or rather the code that will execute
when those calls return).

Continuations are created with the following functions.

[Scheme Procedure]call-with-current-continuation proc
[Scheme Procedure]call/cc proc

Capture the current continuation and call (proc cont) with it. The return value is
the value returned by proc, or when (cont value) is later invoked, the return is the
value passed.

Normally cont should be called with one argument, but when the location resumed is
expecting multiple values (see Section 5.11.6 [Multiple Values], page 257) then they
should be passed as multiple arguments, for instance (cont x y z).

cont may only be used from the same side of a continuation barrier as it was cre-
ated (see Section 5.17.3 [Continuation Barriers], page 325), and in a multi-threaded
program only from the thread in which it was created.

The call to proc is not part of the continuation captured, it runs only when the
continuation is created. Often a program will want to store cont somewhere for later
use; this can be done in proc.

The call in the name call-with-current-continuation refers to the way a call to
proc gives the newly created continuation. It's not related to the way a call is used
later to invoke that continuation.

call/cc is an alias for call-with-current-continuation. This is in common use
since the latter is rather long.

[C Function]SCM scm_make_continuation (int *�rst)
Capture the current continuation as described above. The return value is the new
continuation, and *�rst is set to 1.
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When the continuation is invoked, scm_make_continuation will return again, this
time returning the value (or set of multiple values) passed in that invocation, and
with *�rst set to 0.

Here is a simple example,

(define kont #f)

(format #t "the return is ~a\n"

(call/cc (lambda (k)

(set! kont k)

1)))
) the return is 1

(kont 2)
) the return is 2

call/cc captures a continuation in which the value returned is going to be displayed by
format. The lambda stores this in kont and gives an initial return 1 which is displayed.
The later invocation of kont resumes the captured point, but this time returning 2, which
is displayed.

When Guile is run interactively, a call to format like this has an implicit return back
to the read-eval-print loop. call/cc captures that like any other return, which is why
interactively kont will come back to read more input.

C programmers may note that call/cc is like setjmp in the way it records at runtime a
point in program execution. A call to a continuation is like a longjmp in that it abandons
the present location and goes to the recorded one. Like longjmp, the value passed to the
continuation is the value returned by call/cc on resuming there. However longjmp can
only go up the program stack, but the continuation mechanism can go anywhere.

When a continuation is invoked, call/cc and subsequent code e�ectively \returns" a
second time. It can be confusing to imagine a function returning more times than it was
called. It may help instead to think of it being stealthily re-entered and then program ow
going on as normal.

dynamic-wind (see Section 5.11.9 [Dynamic Wind], page 266) can be used to ensure
setup and cleanup code is run when a program locus is resumed or abandoned through the
continuation mechanism.

Continuations are a powerful mechanism, and can be used to implement almost any sort
of control structure, such as loops, coroutines, or exception handlers.

However the implementation of continuations in Guile is not as e�cient as one might
hope, because Guile is designed to cooperate with programs written in other languages,
such as C, which do not know about continuations. Basically continuations are captured
by a block copy of the stack, and resumed by copying back.

For this reason, generally continuations should be used only when there is no other simple
way to achieve the desired result, or when the elegance of the continuation mechanism
outweighs the need for performance.
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Escapes upwards from loops or nested functions are generally best handled with excep-
tions (see Section 5.11.7 [Exceptions], page 258). Coroutines can be e�ciently implemented
with cooperating threads (a thread holds a full program stack but doesn't copy it around
the way continuations do).

5.11.6 Returning and Accepting Multiple Values

Scheme allows a procedure to return more than one value to its caller. This is quite di�erent
to other languages which only allow single-value returns. Returning multiple values is
di�erent from returning a list (or pair or vector) of values to the caller, because conceptually
not one compound object is returned, but several distinct values.

The primitive procedures for handling multiple values are values and call-with-

values. values is used for returning multiple values from a procedure. This is done
by placing a call to values with zero or more arguments in tail position in a procedure
body. call-with-values combines a procedure returning multiple values with a procedure
which accepts these values as parameters.

[Scheme Procedure]values arg1 . . . argN
[C Function]scm_values (args)

Delivers all of its arguments to its continuation. Except for continuations created by
the call-with-values procedure, all continuations take exactly one value. The e�ect
of passing no value or more than one value to continuations that were not created by
call-with-values is unspeci�ed.

For scm_values, args is a list of arguments and the return is a multiple-values ob-
ject which the caller can return. In the current implementation that object shares
structure with args, so args should not be modi�ed subsequently.

[Scheme Procedure]call-with-values producer consumer
Calls its producer argument with no values and a continuation that, when passed
some values, calls the consumer procedure with those values as arguments. The
continuation for the call to consumer is the continuation of the call to call-with-

values.

(call-with-values (lambda () (values 4 5))

(lambda (a b) b))
) 5

(call-with-values * -)
) -1

In addition to the fundamental procedures described above, Guile has a module which
exports a syntax called receive, which is much more convenient. This is in the (ice-9

receive) and is the same as speci�ed by SRFI-8 (see Section 6.4.7 [SRFI-8], page 439).

(use-modules (ice-9 receive))

[library syntax]receive formals expr body . . .
Evaluate the expression expr, and bind the result values (zero or more) to the formal
arguments in formals. formals is a list of symbols, like the argument list in a lambda
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(see Section 5.8.1 [Lambda], page 225). After binding the variables, the expressions in
body . . . are evaluated in order, the return value is the result from the last expression.

For example getting results from partition in SRFI-1 (see Section 6.4.3 [SRFI-1],
page 424),

(receive (odds evens)

(partition odd? '(7 4 2 8 3))

(display odds)

(display " and ")

(display evens))

a (7 3) and (4 2 8)

5.11.7 Exceptions

A common requirement in applications is to want to jump non-locally from the depths
of a computation back to, say, the application's main processing loop. Usually, the place
that is the target of the jump is somewhere in the calling stack of procedures that called
the procedure that wants to jump back. For example, typical logic for a key press driven
application might look something like this:

main-loop:

read the next key press and call dispatch-key

dispatch-key:

lookup the key in a keymap and call an appropriate procedure,

say find-file

find-file:

interactively read the required file name, then call

find-specified-file

find-specified-file:

check whether file exists; if not, jump back to main-loop

...

The jump back to main-loop could be achieved by returning through the stack one pro-
cedure at a time, using the return value of each procedure to indicate the error condition, but
Guile (like most modern programming languages) provides an additional mechanism called
exception handling that can be used to implement such jumps much more conveniently.

5.11.7.1 Exception Terminology

There are several variations on the terminology for dealing with non-local jumps. It is useful
to be aware of them, and to realize that they all refer to the same basic mechanism.

� Actually making a non-local jump may be called raising an exception, raising a sig-
nal, throwing an exception or doing a long jump. When the jump indicates an error
condition, people may talk about signalling, raising or throwing an error.

� Handling the jump at its target may be referred to as catching or handling the excep-
tion, signal or, where an error condition is involved, error.
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Where signal and signalling are used, special care is needed to avoid the risk of confusion
with POSIX signals.

This manual prefers to speak of throwing and catching exceptions, since this terminology
matches the corresponding Guile primitives.

5.11.7.2 Catching Exceptions

catch is used to set up a target for a possible non-local jump. The arguments of a catch

expression are a key, which restricts the set of exceptions to which this catch applies, a
thunk that speci�es the code to execute and one or two handler procedures that say what
to do if an exception is thrown while executing the code. If the execution thunk executes
normally, which means without throwing any exceptions, the handler procedures are not
called at all.

When an exception is thrown using the throw function, the �rst argument of the throw
is a symbol that indicates the type of the exception. For example, Guile throws an exception
using the symbol numerical-overflow to indicate numerical overow errors such as division
by zero:

(/ 1 0)
)
ABORT: (numerical-overflow)

The key argument in a catch expression corresponds to this symbol. key may be a
speci�c symbol, such as numerical-overflow, in which case the catch applies speci�cally
to exceptions of that type; or it may be #t, which means that the catch applies to all
exceptions, irrespective of their type.

The second argument of a catch expression should be a thunk (i.e. a procedure that
accepts no arguments) that speci�es the normal case code. The catch is active for the
execution of this thunk, including any code called directly or indirectly by the thunk's
body. Evaluation of the catch expression activates the catch and then calls this thunk.

The third argument of a catch expression is a handler procedure. If an exception
is thrown, this procedure is called with exactly the arguments speci�ed by the throw.
Therefore, the handler procedure must be designed to accept a number of arguments that
corresponds to the number of arguments in all throw expressions that can be caught by
this catch.

The fourth, optional argument of a catch expression is another handler procedure, called
the pre-unwind handler. It di�ers from the third argument in that if an exception is thrown,
it is called, before the third argument handler, in exactly the dynamic context of the throw
expression that threw the exception. This means that it is useful for capturing or displaying
the stack at the point of the throw, or for examining other aspects of the dynamic context,
such as uid values, before the context is unwound back to that of the prevailing catch.

[Scheme Procedure]catch key thunk handler [pre-unwind-handler]
[C Function]scm_catch_with_pre_unwind_handler (key, thunk, handler,

pre unwind handler)
[C Function]scm_catch (key, thunk, handler)

Invoke thunk in the dynamic context of handler for exceptions matching key. If thunk
throws to the symbol key, then handler is invoked this way:
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(handler key args ...)

key is a symbol or #t.

thunk takes no arguments. If thunk returns normally, that is the return value of
catch.

Handler is invoked outside the scope of its own catch. If handler again throws to the
same key, a new handler from further up the call chain is invoked.

If the key is #t, then a throw to any symbol will match this call to catch.

If a pre-unwind-handler is given and thunk throws an exception that matches key,
Guile calls the pre-unwind-handler before unwinding the dynamic state and invoking
the main handler. pre-unwind-handler should be a procedure with the same signature
as handler, that is (lambda (key . args)). It is typically used to save the stack at
the point where the exception occurred, but can also query other parts of the dynamic
state at that point, such as uid values.

A pre-unwind-handler can exit either normally or non-locally. If it exits normally,
Guile unwinds the stack and dynamic context and then calls the normal (third argu-
ment) handler. If it exits non-locally, that exit determines the continuation.

If a handler procedure needs to match a variety of throw expressions with varying num-
bers of arguments, you should write it like this:

(lambda (key . args)

...)

The key argument is guaranteed always to be present, because a throw without a key is
not valid. The number and interpretation of the args varies from one type of exception to
another, but should be speci�ed by the documentation for each exception type.

Note that, once the normal (post-unwind) handler procedure is invoked, the catch that
led to the handler procedure being called is no longer active. Therefore, if the handler
procedure itself throws an exception, that exception can only be caught by another active
catch higher up the call stack, if there is one.

[C Function]SCM scm_c_catch (SCM tag, scm t catch body body, void *body data,
scm t catch handler handler, void *handler data, scm t catch handler
pre unwind handler, void *pre unwind handler data)

[C Function]SCM scm_internal_catch (SCM tag, scm t catch body body, void
*body data, scm t catch handler handler, void *handler data)

The above scm_catch_with_pre_unwind_handler and scm_catch take Scheme pro-
cedures as body and handler arguments. scm_c_catch and scm_internal_catch are
equivalents taking C functions.

body is called as body (body_data) with a catch on exceptions of the given tag type.
If an exception is caught, pre unwind handler and handler are called as handler

(handler_data, key, args). key and args are the SCM key and argument list from
the throw.

body and handler should have the following prototypes. scm_t_catch_body and
scm_t_catch_handler are pointer typedefs for these.
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SCM body (void *data);

SCM handler (void *data, SCM key, SCM args);

The body data and handler data parameters are passed to the respective calls so an
application can communicate extra information to those functions.

If the data consists of an SCM object, care should be taken that it isn't garbage collected
while still required. If the SCM is a local C variable, one way to protect it is to pass a
pointer to that variable as the data parameter, since the C compiler will then know the
value must be held on the stack. Another way is to use scm_remember_upto_here_1
(see Section 4.4.6 [Remembering During Operations], page 75).

5.11.7.3 Throw Handlers

It's sometimes useful to be able to intercept an exception that is being thrown, but without
changing where in the dynamic context that exception will eventually be caught. This could
be to clean up some related state or to pass information about the exception to a debugger,
for example. The with-throw-handler procedure provides a way to do this.

[Scheme Procedure]with-throw-handler key thunk handler
[C Function]scm_with_throw_handler (key, thunk, handler)

Add handler to the dynamic context as a throw handler for key key, then invoke
thunk.

[C Function]SCM scm_c_with_throw_handler (SCM tag, scm t catch body body,
void *body data, scm t catch handler handler, void *handler data, int
lazy catch p)

The above scm_with_throw_handler takes Scheme procedures as body (thunk) and
handler arguments. scm_c_with_throw_handler is an equivalent taking C functions.
See scm_c_catch (see Section 5.11.7.2 [Catch], page 259) for a description of the
parameters, the behaviour however of course follows with-throw-handler.

If thunk throws an exception, Guile handles that exception by invoking the innermost
catch or throw handler whose key matches that of the exception. When the innermost thing
is a throw handler, Guile calls the speci�ed handler procedure using (apply handler key

args). The handler procedure may either return normally or exit non-locally. If it returns
normally, Guile passes the exception on to the next innermost catch or throw handler. If
it exits non-locally, that exit determines the continuation.

The behaviour of a throw handler is very similar to that of a catch expression's optional
pre-unwind handler. In particular, a throw handler's handler procedure is invoked in the
exact dynamic context of the throw expression, just as a pre-unwind handler is. with-

throw-handler may be seen as a half-catch: it does everything that a catch would do
until the point where catch would start unwinding the stack and dynamic context, but
then it rethrows to the next innermost catch or throw handler instead.

5.11.7.4 Catch Without Unwinding

Before version 1.8, Guile's closest equivalent to with-throw-handler was lazy-catch.
From version 1.8 onwards we recommend using with-throw-handler because its behaviour
is more useful than that of lazy-catch, but lazy-catch is still supported as well.
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A lazy catch is used in the same way as a normal catch, with key, thunk and handler
arguments specifying the exception type, normal case code and handler procedure, but
di�ers in one important respect: the handler procedure is executed without unwinding the
call stack from the context of the throw expression that caused the handler to be invoked.

[Scheme Procedure]lazy-catch key thunk handler
[C Function]scm_lazy_catch (key, thunk, handler)

This behaves exactly like catch, except that it does not unwind the stack before
invoking handler. If the handler procedure returns normally, Guile rethrows the
same exception again to the next innermost catch, lazy-catch or throw handler. If
the handler exits non-locally, that exit determines the continuation.

[C Function]SCM scm_internal_lazy_catch (SCM tag, scm t catch body body,
void *body data, scm t catch handler handler, void *handler data)

The above scm_lazy_catch takes Scheme procedures as body and handler arguments.
scm_internal_lazy_catch is an equivalent taking C functions. See scm_internal_
catch (see Section 5.11.7.2 [Catch], page 259) for a description of the parameters, the
behaviour however of course follows lazy-catch.

Typically handler is used to display a backtrace of the stack at the point where the
corresponding throw occurred, or to save o� this information for possible display later.

Not unwinding the stack means that throwing an exception that is caught by a lazy-

catch is almost equivalent to calling the lazy-catch's handler inline instead of each throw,
and then omitting the surrounding lazy-catch. In other words,

(lazy-catch 'key

(lambda () ... (throw 'key args ...) ...)

handler)

is almost equivalent to

((lambda () ... (handler 'key args ...) ...))

But why only almost? The di�erence is that with lazy-catch (as with normal catch), the
dynamic context is unwound back to just outside the lazy-catch expression before invoking
the handler. (For an introduction to what is meant by dynamic context, See Section 5.11.9
[Dynamic Wind], page 266.)

Then, when the handler itself throws an exception, that exception must be caught by
some kind of catch (including perhaps another lazy-catch) higher up the call stack.

The dynamic context also includes with-fluids blocks (see Section 5.17.8 [Fluids and
Dynamic States], page 330), so the e�ect of unwinding the dynamic context can also be
seen in uid variable values. This is illustrated by the following code, in which the normal
case thunk uses with-fluids to temporarily change the value of a uid:

(define f (make-fluid))

(fluid-set! f "top level value")

(define (handler . args)

(cons (fluid-ref f) args))

(lazy-catch 'foo
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(lambda ()

(with-fluids ((f "local value"))

(throw 'foo)))

handler)
)
("top level value" foo)

((lambda ()

(with-fluids ((f "local value"))

(handler 'foo))))
)
("local value" foo)

In the lazy-catch version, the unwinding of dynamic context restores f to its value out-
side the with-fluids block before the handler is invoked, so the handler's (fluid-ref f)

returns the external value.

lazy-catch is useful because it permits the implementation of debuggers and other
reective programming tools that need to access the state of the call stack at the exact point
where an exception or an error is thrown. For an example of this, see REFFIXME:stack-
catch.

It should be obvious from the above that lazy-catch is very similar to with-throw-

handler. In fact Guile implements lazy-catch in exactly the same way as with-throw-
handler, except with a ag set to say \where there are slight di�erences between what
with-throw-handler and lazy-catch would do, do what lazy-catch has always done".
There are two such di�erences:

1. with-throw-handler handlers execute in the full dynamic context of the originating
throw call. lazy-catch handlers execute in the dynamic context of the lazy-catch

expression, excepting only that the stack has not yet been unwound from the point of
the throw call.

2. If a with-throw-handler handler throws to a key that does not match the with-

throw-handler expression's key, the new throw may be handled by a catch or throw
handler that is closer to the throw than the �rst with-throw-handler. If a lazy-

catch handler throws, it will always be handled by a catch or throw handler that is
higher up the dynamic context than the �rst lazy-catch.

Here is an example to illustrate the second di�erence:

(catch 'a

(lambda ()

(with-throw-handler 'b

(lambda ()

(catch 'a

(lambda ()

(throw 'b))

inner-handler))

(lambda (key . args)

(throw 'a))))

outer-handler)
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This code will call inner-handler and then continue with the continuation of the inner
catch. If the with-throw-handler was changed to lazy-catch, however, the code would
call outer-handler and then continue with the continuation of the outer catch.

Modulo these two di�erences, any statements in the previous and following subsections
about throw handlers apply to lazy catches as well.

5.11.7.5 Throwing Exceptions

The throw primitive is used to throw an exception. One argument, the key, is mandatory,
and must be a symbol; it indicates the type of exception that is being thrown. Following
the key, throw accepts any number of additional arguments, whose meaning depends on
the exception type. The documentation for each possible type of exception should specify
the additional arguments that are expected for that kind of exception.

[Scheme Procedure]throw key . args
[C Function]scm_throw (key, args)

Invoke the catch form matching key, passing args to the handler.

key is a symbol. It will match catches of the same symbol or of #t.

If there is no handler at all, Guile prints an error and then exits.

When an exception is thrown, it will be caught by the innermost catch or throw handler
that applies to the type of the thrown exception; in other words, whose key is either #t

or the same symbol as that used in the throw expression. Once Guile has identi�ed the
appropriate catch or throw handler, it handles the exception by applying the relevant
handler procedure(s) to the arguments of the throw.

If there is no appropriate catch or throw handler for a thrown exception, Guile prints an
error to the current error port indicating an uncaught exception, and then exits. In practice,
it is quite di�cult to observe this behaviour, because Guile when used interactively installs
a top level catch handler that will catch all exceptions and print an appropriate error
message without exiting. For example, this is what happens if you try to throw an unhandled
exception in the standard Guile REPL; note that Guile's command loop continues after the
error message:

guile> (throw 'badex)

<unnamed port>:3:1: In procedure gsubr-apply ...

<unnamed port>:3:1: unhandled-exception: badex

ABORT: (misc-error)

guile>

The default uncaught exception behaviour can be observed by evaluating a throw ex-
pression from the shell command line:

$ guile -c "(begin (throw 'badex) (display \"here\\n\"))"

guile: uncaught throw to badex: ()

$

That Guile exits immediately following the uncaught exception is shown by the absence of
any output from the display expression, because Guile never gets to the point of evaluating
that expression.
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5.11.7.6 How Guile Implements Exceptions

It is traditional in Scheme to implement exception systems using call-with-current-

continuation. Continuations (see Section 5.11.5 [Continuations], page 255) are such a
powerful concept that any other control mechanism | including catch and throw | can
be implemented in terms of them.

Guile does not implement catch and throw like this, though. Why not? Because Guile
is speci�cally designed to be easy to integrate with applications written in C. In a mixed
Scheme/C environment, the concept of continuation must logically include \what happens
next" in the C parts of the application as well as the Scheme parts, and it turns out that
the only reasonable way of implementing continuations like this is to save and restore the
complete C stack.

So Guile's implementation of call-with-current-continuation is a stack copying one.
This allows it to interact well with ordinary C code, but means that creating and calling a
continuation is slowed down by the time that it takes to copy the C stack.

The more targeted mechanism provided by catch and throw does not need to save and
restore the C stack because the throw always jumps to a location higher up the stack of the
code that executes the throw. Therefore Guile implements the catch and throw primitives
independently of call-with-current-continuation, in a way that takes advantage of this
upwards only nature of exceptions.

5.11.8 Procedures for Signaling Errors

Guile provides a set of convenience procedures for signaling error conditions that are im-
plemented on top of the exception primitives just described.

[Scheme Procedure]error msg args . . .
Raise an error with key misc-error and a message constructed by displaying msg
and writing args.

[Scheme Procedure]scm-error key subr message args data
[C Function]scm_error_scm (key, subr, message, args, data)

Raise an error with key key. subr can be a string naming the procedure associated
with the error, or #f. message is the error message string, possibly containing ~S

and ~A escapes. When an error is reported, these are replaced by formatting the
corresponding members of args: ~A (was %s in older versions of Guile) formats using
display and ~S (was %S) formats using write. data is a list or #f depending on key :
if key is system-error then it should be a list containing the Unix errno value; If
key is signal then it should be a list containing the Unix signal number; If key is
out-of-range or wrong-type-arg, it is a list containing the bad value; otherwise it
will usually be #f.

[Scheme Procedure]strerror err
[C Function]scm_strerror (err)

Return the Unix error message corresponding to err, an integer errno value.

When setlocale has been called (see Section 6.2.13 [Locales], page 417), the message
is in the language and charset of LC_MESSAGES. (This is done by the C library.)
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[syntax]false-if-exception expr
Returns the result of evaluating its argument; however if an exception occurs then #f

is returned instead.

5.11.9 Dynamic Wind

For Scheme code, the fundamental procedure to react to non-local entry and exits of dynamic
contexts is dynamic-wind. C code could use scm_internal_dynamic_wind, but since C
does not allow the convenient construction of anonymous procedures that close over lexical
variables, this will be, well, inconvenient.

Therefore, Guile o�ers the functions scm_dynwind_begin and scm_dynwind_end to de-
limit a dynamic extent. Within this dynamic extent, which is calles a dynwind context, you
can perform various dynwind actions that control what happens when the dynwind context
is entered or left. For example, you can register a cleanup routine with scm_dynwind_

unwind_handler that is executed when the context is left. There are several other more
specialized dynwind actions as well, for example to temporarily block the execution of
asyncs or to temporarily change the current output port. They are described elsewhere in
this manual.

Here is an example that shows how to prevent memory leaks.

/* Suppose there is a function called FOO in some library that you

would like to make available to Scheme code (or to C code that

follows the Scheme conventions).

FOO takes two C strings and returns a new string. When an error has

occurred in FOO, it returns NULL.

*/

char *foo (char *s1, char *s2);

/* SCM_FOO interfaces the C function FOO to the Scheme way of life.

It takes care to free up all temporary strings in the case of

non-local exits.

*/

SCM

scm_foo (SCM s1, SCM s2)

{

char *c_s1, *c_s2, *c_res;

scm_dynwind_begin (0);

c_s1 = scm_to_locale_string (s1);

/* Call 'free (c_s1)' when the dynwind context is left.

*/

scm_dynwind_unwind_handler (free, c_s1, SCM_F_WIND_EXPLICITLY);
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c_s2 = scm_to_locale_string (s2);

/* Same as above, but more concisely.

*/

scm_dynwind_free (c_s2);

c_res = foo (c_s1, c_s2);

if (c_res == NULL)

scm_memory_error ("foo");

scm_dynwind_end ();

return scm_take_locale_string (res);

}

[Scheme Procedure]dynamic-wind in guard thunk out guard
[C Function]scm_dynamic_wind (in guard, thunk, out guard)

All three arguments must be 0-argument procedures. in guard is called, then thunk,
then out guard.

If, any time during the execution of thunk, the dynamic extent of the dynamic-wind
expression is escaped non-locally, out guard is called. If the dynamic extent of the
dynamic-wind is re-entered, in guard is called. Thus in guard and out guard may be
called any number of times.

(define x 'normal-binding)
) x

(define a-cont

(call-with-current-continuation

(lambda (escape)

(let ((old-x x))

(dynamic-wind

;; in-guard:

;;

(lambda () (set! x 'special-binding))

;; thunk

;;

(lambda () (display x) (newline)

(call-with-current-continuation escape)

(display x) (newline)

x)

;; out-guard:

;;

(lambda () (set! x old-x)))))))

;; Prints:

special-binding



270 Guile Reference Manual

;; Evaluates to:
) a-cont

x
) normal-binding

(a-cont #f)

;; Prints:

special-binding

;; Evaluates to:
) a-cont ;; the value of the (define a-cont...)

x
) normal-binding

a-cont
) special-binding

[C Type]scm_t_dynwind_flags
This is an enumeration of several ags that modify the behavior of scm_dynwind_
begin. The ags are listed in the following table.

SCM_F_DYNWIND_REWINDABLE

The dynamic context is rewindable. This means that it can be reentered
non-locally (via the invokation of a continuation). The default is that a
dynwind context can not be reentered non-locally.

[C Function]void scm_dynwind_begin (scm t dynwind ags ags)
The function scm_dynwind_begin starts a new dynamic context and makes it the
`current' one.

The ags argument determines the default behavior of the context. Normally, use 0.
This will result in a context that can not be reentered with a captured continuation.
When you are prepared to handle reentries, include SCM_F_DYNWIND_REWINDABLE in
ags.

Being prepared for reentry means that the e�ects of unwind handlers can be undone
on reentry. In the example above, we want to prevent a memory leak on non-local exit
and thus register an unwind handler that frees the memory. But once the memory is
freed, we can not get it back on reentry. Thus reentry can not be allowed.

The consequence is that continuations become less useful when non-reenterable con-
texts are captured, but you don't need to worry about that too much.

The context is ended either implicitly when a non-local exit happens, or explicitly
with scm_dynwind_end. You must make sure that a dynwind context is indeed ended
properly. If you fail to call scm_dynwind_end for each scm_dynwind_begin, the be-
havior is unde�ned.

[C Function]void scm_dynwind_end ()
End the current dynamic context explicitly and make the previous one current.

[C Type]scm_t_wind_flags
This is an enumeration of several ags that modify the behavior of scm_dynwind_
unwind_handler and scm_dynwind_rewind_handler. The ags are listed in the fol-
lowing table.
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SCM_F_WIND_EXPLICITLY

The registered action is also carried out when the dynwind context is
entered or left locally.

[C Function]void scm_dynwind_unwind_handler (void (*func)(void *), void
*data, scm t wind ags ags)

[C Function]void scm_dynwind_unwind_handler_with_scm (void (*func)(SCM),
SCM data, scm t wind ags ags)

Arranges for func to be called with data as its arguments when the current context
ends implicitly. If ags contains SCM_F_WIND_EXPLICITLY, func is also called when
the context ends explicitly with scm_dynwind_end.

The function scm_dynwind_unwind_handler_with_scm takes care that data is pro-
tected from garbage collection.

[C Function]void scm_dynwind_rewind_handler (void (*func)(void *), void
*data, scm t wind ags ags)

[C Function]void scm_dynwind_rewind_handler_with_scm (void (*func)(SCM),
SCM data, scm t wind ags ags)

Arrange for func to be called with data as its argument when the current context
is restarted by rewinding the stack. When ags contains SCM_F_WIND_EXPLICITLY,
func is called immediately as well.

The function scm_dynwind_rewind_handler_with_scm takes care that data is pro-
tected from garbage collection.

[C Function]void scm_dynwind_free (void *mem)
Arrange for mem to be freed automatically whenever the current context is exited,
whether normally or non-locally. scm_dynwind_free (mem) is an equivalent short-
hand for scm_dynwind_unwind_handler (free, mem, SCM_F_WIND_EXPLICITLY).

5.11.10 How to Handle Errors

Error handling is based on catch and throw. Errors are always thrown with a key and four
arguments:

� key : a symbol which indicates the type of error. The symbols used by libguile are
listed below.

� subr: the name of the procedure from which the error is thrown, or #f.

� message: a string (possibly language and system dependent) describing the error. The
tokens ~A and ~S can be embedded within the message: they will be replaced with
members of the args list when the message is printed. ~A indicates an argument printed
using display, while ~S indicates an argument printed using write. message can also
be #f, to allow it to be derived from the key by the error handler (may be useful if the
key is to be thrown from both C and Scheme).

� args: a list of arguments to be used to expand ~A and ~S tokens in message. Can also
be #f if no arguments are required.

� rest: a list of any additional objects required. e.g., when the key is 'system-error,
this contains the C errno value. Can also be #f if no additional objects are required.

In addition to catch and throw, the following Scheme facilities are available:
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[Scheme Procedure]display-error stack port subr message args rest
[C Function]scm_display_error (stack, port, subr, message, args, rest)

Display an error message to the output port port. stack is the saved stack for the
error, subr is the name of the procedure in which the error occurred and message
is the actual error message, which may contain formatting instructions. These will
format the arguments in the list args accordingly. rest is currently ignored.

The following are the error keys de�ned by libguile and the situations in which they are
used:

� error-signal: thrown after receiving an unhandled fatal signal such as SIGSEGV,
SIGBUS, SIGFPE etc. The rest argument in the throw contains the coded signal
number (at present this is not the same as the usual Unix signal number).

� system-error: thrown after the operating system indicates an error condition. The
rest argument in the throw contains the errno value.

� numerical-overflow: numerical overow.

� out-of-range: the arguments to a procedure do not fall within the accepted domain.

� wrong-type-arg: an argument to a procedure has the wrong type.

� wrong-number-of-args: a procedure was called with the wrong number of arguments.

� memory-allocation-error: memory allocation error.

� stack-overflow: stack overow error.

� regular-expression-syntax: errors generated by the regular expression library.

� misc-error: other errors.

5.11.10.1 C Support

In the following C functions, SUBR and MESSAGE parameters can be NULL to give the
e�ect of #f described above.

[C Function]SCM scm_error (SCM key, char *subr, char *message, SCM args,
SCM rest )

Throw an error, as per scm-error above.

[C Function]void scm_syserror (char *subr )
[C Function]void scm_syserror_msg (char *subr, char *message, SCM args )

Throw an error with key system-error and supply errno in the rest argument. For
scm_syserror the message is generated using strerror.

Care should be taken that any code in between the failing operation and the call to
these routines doesn't change errno.

[C Function]void scm_num_overflow (char *subr )
[C Function]void scm_out_of_range (char *subr, SCM bad_value )
[C Function]void scm_wrong_num_args (SCM proc )
[C Function]void scm_wrong_type_arg (char *subr, int argnum, SCM

bad_value )
[C Function]void scm_memory_error (char *subr )

Throw an error with the various keys described above.

For scm_wrong_num_args, proc should be a Scheme symbol which is the name of the
procedure incorrectly invoked.
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5.12 Input and Output

5.12.1 Ports

Sequential input/output in Scheme is represented by operations on a port. This chapter
explains the operations that Guile provides for working with ports.

Ports are created by opening, for instance open-file for a �le (see Section 5.12.9.1 [File
Ports], page 280). Characters can be read from an input port and written to an output
port, or both on an input/output port. A port can be closed (see Section 5.12.4 [Closing],
page 275) when no longer required, after which any attempt to read or write is an error.

The formal de�nition of a port is very generic: an input port is simply \an object which
can deliver characters on demand," and an output port is \an object which can accept
characters." Because this de�nition is so loose, it is easy to write functions that simulate
ports in software. Soft ports and string ports are two interesting and powerful examples
of this technique. (see Section 5.12.9.3 [Soft Ports], page 283, and Section 5.12.9.2 [String
Ports], page 282.)

Ports are garbage collected in the usual way (see Section 5.14 [Memory Management],
page 296), and will be closed at that time if not already closed. In this case any errors
occuring in the close will not be reported. Usually a program will want to explicitly close so
as to be sure all its operations have been successful. Of course if a program has abandoned
something due to an error or other condition then closing problems are probably not of
interest.

It is strongly recommended that �le ports be closed explicitly when no longer required.
Most systems have limits on how many �les can be open, both on a per-process and a
system-wide basis. A program that uses many �les should take care not to hit those limits.
The same applies to similar system resources such as pipes and sockets.

Note that automatic garbage collection is triggered only by memory consumption, not
by �le or other resource usage, so a program cannot rely on that to keep it away from system
limits. An explicit call to gc can of course be relied on to pick up unreferenced ports. If
program ow makes it hard to be certain when to close then this may be an acceptable way
to control resource usage.

All �le access uses the \LFS" large �le support functions when available, so �les bigger
than 2 Gbytes (231 bytes) can be read and written on a 32-bit system.

[Scheme Procedure]input-port? x
[C Function]scm_input_port_p (x)

Return #t if x is an input port, otherwise return #f. Any object satisfying this
predicate also satis�es port?.

[Scheme Procedure]output-port? x
[C Function]scm_output_port_p (x)

Return #t if x is an output port, otherwise return #f. Any object satisfying this
predicate also satis�es port?.

[Scheme Procedure]port? x
[C Function]scm_port_p (x)

Return a boolean indicating whether x is a port. Equivalent to (or (input-port?

x) (output-port? x)).
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5.12.2 Reading

[Generic procedures for reading from ports.]

[Scheme Procedure]eof-object? x
[C Function]scm_eof_object_p (x)

Return #t if x is an end-of-�le object; otherwise return #f.

[Scheme Procedure]char-ready? [port]
[C Function]scm_char_ready_p (port)

Return #t if a character is ready on input port and return #f otherwise. If char-
ready? returns #t then the next read-char operation on port is guaranteed not to
hang. If port is a �le port at end of �le then char-ready? returns #t.

char-ready? exists to make it possible for a program to accept characters from
interactive ports without getting stuck waiting for input. Any input editors associated
with such ports must make sure that characters whose existence has been asserted by
char-ready? cannot be rubbed out. If char-ready? were to return #f at end of �le,
a port at end of �le would be indistinguishable from an interactive port that has no
ready characters.

[Scheme Procedure]read-char [port]
[C Function]scm_read_char (port)

Return the next character available from port, updating port to point to the following
character. If no more characters are available, the end-of-�le object is returned.

[C Function]size_t scm_c_read (SCM port, void *bu�er, size t size)
Read up to size bytes from port and store them in bu�er. The return value is the
number of bytes actually read, which can be less than size if end-of-�le has been
reached.

Note that this function does not update port-line and port-column below.

[Scheme Procedure]peek-char [port]
[C Function]scm_peek_char (port)

Return the next character available from port, without updating port to point to
the following character. If no more characters are available, the end-of-�le object is
returned.

The value returned by a call to peek-char is the same as the value that would have
been returned by a call to read-char on the same port. The only di�erence is that
the very next call to read-char or peek-char on that port will return the value
returned by the preceding call to peek-char. In particular, a call to peek-char on
an interactive port will hang waiting for input whenever a call to read-char would
have hung.

[Scheme Procedure]unread-char cobj [port]
[C Function]scm_unread_char (cobj, port)

Place char in port so that it will be read by the next read operation. If called multiple
times, the unread characters will be read again in last-in �rst-out order. If port is
not supplied, the current input port is used.



Chapter 5: API Reference 275

[Scheme Procedure]unread-string str port
[C Function]scm_unread_string (str, port)

Place the string str in port so that its characters will be read from left-to-right as
the next characters from port during subsequent read operations. If called multiple
times, the unread characters will be read again in last-in �rst-out order. If port is
not supplied, the current-input-port is used.

[Scheme Procedure]drain-input port
[C Function]scm_drain_input (port)

This procedure clears a port's input bu�ers, similar to the way that force-output
clears the output bu�er. The contents of the bu�ers are returned as a single string,
e.g.,

(define p (open-input-file ...))

(drain-input p) => empty string, nothing buffered yet.

(unread-char (read-char p) p)

(drain-input p) => initial chars from p, up to the buffer size.

Draining the bu�ers may be useful for cleanly �nishing bu�ered I/O so that the �le
descriptor can be used directly for further input.

[Scheme Procedure]port-column port
[Scheme Procedure]port-line port

[C Function]scm_port_column (port)
[C Function]scm_port_line (port)

Return the current column number or line number of port. If the number is unknown,
the result is #f. Otherwise, the result is a 0-origin integer - i.e. the �rst character
of the �rst line is line 0, column 0. (However, when you display a �le position, for
example in an error message, we recommend you add 1 to get 1-origin integers. This
is because lines and column numbers traditionally start with 1, and that is what
non-programmers will �nd most natural.)

[Scheme Procedure]set-port-column! port column
[Scheme Procedure]set-port-line! port line

[C Function]scm_set_port_column_x (port, column)
[C Function]scm_set_port_line_x (port, line)

Set the current column or line number of port.

5.12.3 Writing

[Generic procedures for writing to ports.]

[Scheme Procedure]get-print-state port
[C Function]scm_get_print_state (port)

Return the print state of the port port. If port has no associated print state, #f is
returned.

[Scheme Procedure]write obj [port]
Send a representation of obj to port or to the current output port if not given.

The output is designed to be machine readable, and can be read back with read (see
Section 5.12.2 [Reading], page 272). Strings are printed in doublequotes, with escapes
if necessary, and characters are printed in `#\' notation.
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[Scheme Procedure]display obj [port]
Send a representation of obj to port or to the current output port if not given.

The output is designed for human readability, it di�ers from write in that strings are
printed without doublequotes and escapes, and characters are printed as per write-
char, not in `#\' form.

[Scheme Procedure]newline [port]
[C Function]scm_newline (port)

Send a newline to port. If port is omitted, send to the current output port.

[Scheme Procedure]port-with-print-state port [pstate]
[C Function]scm_port_with_print_state (port, pstate)

Create a new port which behaves like port, but with an included print state pstate.
pstate is optional. If pstate isn't supplied and port already has a print state, the old
print state is reused.

[Scheme Procedure]print-options-interface [setting]
[C Function]scm_print_options (setting)

Option interface for the print options. Instead of using this procedure directly, use
the procedures print-enable, print-disable, print-set! and print-options.

[Scheme Procedure]simple-format destination message . args
[C Function]scm_simple_format (destination, message, args)

Write message to destination, defaulting to the current output port. message can
contain ~A (was %s) and ~S (was %S) escapes. When printed, the escapes are replaced
with corresponding members of ARGS: ~A formats using display and ~S formats
using write. If destination is #t, then use the current output port, if destination
is #f, then return a string containing the formatted text. Does not add a trailing
newline.

[Scheme Procedure]write-char chr [port]
[C Function]scm_write_char (chr, port)

Send character chr to port.

[C Function]void scm_c_write (SCM port, const void *bu�er, size t size)
Write size bytes at bu�er to port.

Note that this function does not update port-line and port-column (see Sec-
tion 5.12.2 [Reading], page 272).

[Scheme Procedure]force-output [port]
[C Function]scm_force_output (port)

Flush the speci�ed output port, or the current output port if port is omitted. The
current output bu�er contents are passed to the underlying port implementation (e.g.,
in the case of fports, the data will be written to the �le and the output bu�er will be
cleared.) It has no e�ect on an unbu�ered port.

The return value is unspeci�ed.
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[Scheme Procedure]flush-all-ports
[C Function]scm_flush_all_ports ()

Equivalent to calling force-output on all open output ports. The return value is
unspeci�ed.

5.12.4 Closing

[Scheme Procedure]close-port port
[C Function]scm_close_port (port)

Close the speci�ed port object. Return #t if it successfully closes a port or #f if it
was already closed. An exception may be raised if an error occurs, for example when
ushing bu�ered output. See also Section 6.2.2 [Ports and File Descriptors], page 374,
for a procedure which can close �le descriptors.

[Scheme Procedure]close-input-port port
[Scheme Procedure]close-output-port port

[C Function]scm_close_input_port (port)
[C Function]scm_close_output_port (port)

Close the speci�ed input or output port. An exception may be raised if an error
occurs while closing. If port is already closed, nothing is done. The return value is
unspeci�ed.

See also Section 6.2.2 [Ports and File Descriptors], page 374, for a procedure which
can close �le descriptors.

[Scheme Procedure]port-closed? port
[C Function]scm_port_closed_p (port)

Return #t if port is closed or #f if it is open.

5.12.5 Random Access

[Scheme Procedure]seek fd port o�set whence
[C Function]scm_seek (fd port, o�set, whence)

Sets the current position of fd/port to the integer o�set, which is interpreted according
to the value of whence.

One of the following variables should be supplied for whence:

[Variable]SEEK_SET
Seek from the beginning of the �le.

[Variable]SEEK_CUR
Seek from the current position.

[Variable]SEEK_END
Seek from the end of the �le.

If fd/port is a �le descriptor, the underlying system call is lseek. port may be a
string port.

The value returned is the new position in the �le. This means that the current position
of a port can be obtained using:

(seek port 0 SEEK_CUR)
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[Scheme Procedure]ftell fd port
[C Function]scm_ftell (fd port)

Return an integer representing the current position of fd/port, measured from the
beginning. Equivalent to:

(seek port 0 SEEK_CUR)

[Scheme Procedure]truncate-file �le [length]
[C Function]scm_truncate_file (�le, length)

Truncate �le to length bytes. �le can be a �lename string, a port object, or an integer
�le descriptor. The return value is unspeci�ed.

For a port or �le descriptor length can be omitted, in which case the �le is truncated
at the current position (per ftell above).

On most systems a �le can be extended by giving a length greater than the current
size, but this is not mandatory in the POSIX standard.

5.12.6 Line Oriented and Delimited Text

The delimited-I/O module can be accessed with:

(use-modules (ice-9 rdelim))

It can be used to read or write lines of text, or read text delimited by a speci�ed set
of characters. It's similar to the (scsh rdelim) module from guile-scsh, but does not use
multiple values or character sets and has an extra procedure write-line.

[Scheme Procedure]read-line [port] [handle-delim]
Return a line of text from port if speci�ed, otherwise from the value returned by
(current-input-port). Under Unix, a line of text is terminated by the �rst end-of-
line character or by end-of-�le.

If handle-delim is speci�ed, it should be one of the following symbols:

trim Discard the terminating delimiter. This is the default, but it will be
impossible to tell whether the read terminated with a delimiter or end-
of-�le.

concat Append the terminating delimiter (if any) to the returned string.

peek Push the terminating delimiter (if any) back on to the port.

split Return a pair containing the string read from the port and the terminating
delimiter or end-of-�le object.

[Scheme Procedure]read-line! buf [port]
Read a line of text into the supplied string buf and return the number of characters
added to buf. If buf is �lled, then #f is returned. Read from port if speci�ed,
otherwise from the value returned by (current-input-port).

[Scheme Procedure]read-delimited delims [port] [handle-delim]
Read text until one of the characters in the string delims is found or end-of-�le is
reached. Read from port if supplied, otherwise from the value returned by (current-

input-port). handle-delim takes the same values as described for read-line.
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[Scheme Procedure]read-delimited! delims buf [port] [handle-delim] [start] [end]
Read text into the supplied string buf and return the number of characters added
to buf (subject to handle-delim, which takes the same values speci�ed for read-

line. If buf is �lled, #f is returned for both the number of characters read and the
delimiter. Also terminates if one of the characters in the string delims is found or
end-of-�le is reached. Read from port if supplied, otherwise from the value returned
by (current-input-port).

[Scheme Procedure]write-line obj [port]
[C Function]scm_write_line (obj, port)

Display obj and a newline character to port. If port is not speci�ed, (current-
output-port) is used. This function is equivalent to:

(display obj [port])

(newline [port])

Some of the abovementioned I/O functions rely on the following C primitives. These
will mainly be of interest to people hacking Guile internals.

[Scheme Procedure]%read-delimited! delims str gobble [port [start [end]]]
[C Function]scm_read_delimited_x (delims, str, gobble, port, start, end)

Read characters from port into str until one of the characters in the delims string is
encountered. If gobble is true, discard the delimiter character; otherwise, leave it in
the input stream for the next read. If port is not speci�ed, use the value of (current-
input-port). If start or end are speci�ed, store data only into the substring of str
bounded by start and end (which default to the beginning and end of the string,
respectively).

Return a pair consisting of the delimiter that terminated the string and the number
of characters read. If reading stopped at the end of �le, the delimiter returned is the
eof-object; if the string was �lled without encountering a delimiter, this value is #f.

[Scheme Procedure]%read-line [port]
[C Function]scm_read_line (port)

Read a newline-terminated line from port, allocating storage as necessary. The new-
line terminator (if any) is removed from the string, and a pair consisting of the line
and its delimiter is returned. The delimiter may be either a newline or the eof-object;
if %read-line is called at the end of �le, it returns the pair (#<eof> . #<eof>).

5.12.7 Block reading and writing

The Block-string-I/O module can be accessed with:
(use-modules (ice-9 rw))

It currently contains procedures that help to implement the (scsh rw) module in guile-
scsh.

[Scheme Procedure]read-string!/partial str [port or fdes [start [end]]]
[C Function]scm_read_string_x_partial (str, port or fdes, start, end)

Read characters from a port or �le descriptor into a string str. A port must have an
underlying �le descriptor | a so-called fport. This procedure is scsh-compatible and
can e�ciently read large strings. It will:
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� attempt to �ll the entire string, unless the start and/or end arguments are sup-
plied. i.e., start defaults to 0 and end defaults to (string-length str)

� use the current input port if port or fdes is not supplied.

� return fewer than the requested number of characters in some cases, e.g., on end
of �le, if interrupted by a signal, or if not all the characters are immediately
available.

� wait inde�nitely for some input if no characters are currently available, unless
the port is in non-blocking mode.

� read characters from the port's input bu�ers if available, instead from the un-
derlying �le descriptor.

� return #f if end-of-�le is encountered before reading any characters, otherwise
return the number of characters read.

� return 0 if the port is in non-blocking mode and no characters are immediately
available.

� return 0 if the request is for 0 bytes, with no end-of-�le check.

[Scheme Procedure]write-string/partial str [port or fdes [start [end]]]
[C Function]scm_write_string_partial (str, port or fdes, start, end)

Write characters from a string str to a port or �le descriptor. A port must have an
underlying �le descriptor | a so-called fport. This procedure is scsh-compatible and
can e�ciently write large strings. It will:

� attempt to write the entire string, unless the start and/or end arguments are
supplied. i.e., start defaults to 0 and end defaults to (string-length str)

� use the current output port if port of fdes is not supplied.

� in the case of a bu�ered port, store the characters in the port's output bu�er,
if all will �t. If they will not �t then any existing bu�ered characters will be
ushed before attempting to write the new characters directly to the underlying
�le descriptor. If the port is in non-blocking mode and bu�ered characters can
not be ushed immediately, then an EAGAIN system-error exception will be raised
(Note: scsh does not support the use of non-blocking bu�ered ports.)

� write fewer than the requested number of characters in some cases, e.g., if inter-
rupted by a signal or if not all of the output can be accepted immediately.

� wait inde�nitely for at least one character from str to be accepted by the port,
unless the port is in non-blocking mode.

� return the number of characters accepted by the port.

� return 0 if the port is in non-blocking mode and can not accept at least one
character from str immediately

� return 0 immediately if the request size is 0 bytes.

5.12.8 Default Ports for Input, Output and Errors

[Scheme Procedure]current-input-port
[C Function]scm_current_input_port ()

Return the current input port. This is the default port used by many input proce-
dures.



Chapter 5: API Reference 281

Initially this is the standard input in Unix and C terminology. When the standard
input is a tty the port is unbu�ered, otherwise it's fully bu�ered.

Unbu�ered input is good if an application runs an interactive subprocess, since any
type-ahead input won't go into Guile's bu�er and be unavailable to the subprocess.

Note that Guile bu�ering is completely separate from the tty \line discipline". In
the usual cooked mode on a tty Guile only sees a line of input once the user presses
hReturni.

[Scheme Procedure]current-output-port
[C Function]scm_current_output_port ()

Return the current output port. This is the default port used by many output pro-
cedures.

Initially this is the standard output in Unix and C terminology. When the standard
output is a tty this port is unbu�ered, otherwise it's fully bu�ered.

Unbu�ered output to a tty is good for ensuring progress output or a prompt is seen.
But an application which always prints whole lines could change to line bu�ered, or
an application with a lot of output could go fully bu�ered and perhaps make explicit
force-output calls (see Section 5.12.3 [Writing], page 273) at selected points.

[Scheme Procedure]current-error-port
[C Function]scm_current_error_port ()

Return the port to which errors and warnings should be sent.

Initially this is the standard error in Unix and C terminology. When the standard
error is a tty this port is unbu�ered, otherwise it's fully bu�ered.

[Scheme Procedure]set-current-input-port port
[Scheme Procedure]set-current-output-port port
[Scheme Procedure]set-current-error-port port

[C Function]scm_set_current_input_port (port)
[C Function]scm_set_current_output_port (port)
[C Function]scm_set_current_error_port (port)

Change the ports returned by current-input-port, current-output-port and
current-error-port, respectively, so that they use the supplied port for input or
output.

[C Function]void scm_dynwind_current_input_port (SCM port)
[C Function]void scm_dynwind_current_output_port (SCM port)
[C Function]void scm_dynwind_current_error_port (SCM port)

These functions must be used inside a pair of calls to scm_dynwind_begin and scm_

dynwind_end (see Section 5.11.9 [Dynamic Wind], page 266). During the dynwind
context, the indicated port is set to port.

More precisely, the current port is swapped with a `backup' value whenever the dyn-
wind context is entered or left. The backup value is initialized with the port argument.

5.12.9 Types of Port

[Types of port; how to make them.]



282 Guile Reference Manual

5.12.9.1 File Ports

The following procedures are used to open �le ports. See also Section 6.2.2 [Ports and File
Descriptors], page 374, for an interface to the Unix open system call.

Most systems have limits on how many �les can be open, so it's strongly recommended
that �le ports be closed explicitly when no longer required (see Section 5.12.1 [Ports],
page 271).

[Scheme Procedure]open-file �lename mode
[C Function]scm_open_file (�lename, mode)

Open the �le whose name is �lename, and return a port representing that �le. The
attributes of the port are determined by the mode string. The way in which this is
interpreted is similar to C stdio. The �rst character must be one of the following:

`r' Open an existing �le for input.

`w' Open a �le for output, creating it if it doesn't already exist or removing
its contents if it does.

`a' Open a �le for output, creating it if it doesn't already exist. All writes to
the port will go to the end of the �le. The "append mode" can be turned
o� while the port is in use see Section 6.2.2 [Ports and File Descriptors],
page 374

The following additional characters can be appended:

`+' Open the port for both input and output. E.g., r+: open an existing �le
for both input and output.

`0' Create an "unbu�ered" port. In this case input and output operations are
passed directly to the underlying port implementation without additional
bu�ering. This is likely to slow down I/O operations. The bu�ering mode
can be changed while a port is in use see Section 6.2.2 [Ports and File
Descriptors], page 374

`l' Add line-bu�ering to the port. The port output bu�er will be automati-
cally ushed whenever a newline character is written.

`b' Use binary mode. On DOS systems the default text mode converts
CR+LF in the �le to newline for the program, whereas binary mode reads
and writes all bytes unchanged. On Unix-like systems there is no such
distinction, text �les already contain just newlines and no conversion is
ever made. The b ag is accepted on all systems, but has no e�ect on
Unix-like systems.

(For reference, Guile leaves text versus binary up to the C library, b
here just adds O_BINARY to the underlying open call, when that ag is
available.)

If a �le cannot be opened with the access requested, open-file throws an exception.

In theory we could create read/write ports which were bu�ered in one direction only.
However this isn't included in the current interfaces.
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[Scheme Procedure]open-input-file �lename
Open �lename for input. Equivalent to

(open-file filename "r")

[Scheme Procedure]open-output-file �lename
Open �lename for output. Equivalent to

(open-file filename "w")

[Scheme Procedure]call-with-input-file �lename proc
[Scheme Procedure]call-with-output-file �lename proc

Open �lename for input or output, and call (proc port) with the resulting port.
Return the value returned by proc. �lename is opened as per open-input-file or
open-output-file respectively, and an error is signalled if it cannot be opened.

When proc returns, the port is closed. If proc does not return (eg. if it throws an
error), then the port might not be closed automatically, though it will be garbage
collected in the usual way if not otherwise referenced.

[Scheme Procedure]with-input-from-file �lename thunk
[Scheme Procedure]with-output-to-file �lename thunk
[Scheme Procedure]with-error-to-file �lename thunk

Open �lename and call (thunk) with the new port setup as respectively the current-
input-port, current-output-port, or current-error-port. Return the value re-
turned by thunk. �lename is opened as per open-input-file or open-output-file
respectively, and an error is signalled if it cannot be opened.

When thunk returns, the port is closed and the previous setting of the respective
current port is restored.

The current port setting is managed with dynamic-wind, so the previous value is
restored no matter how thunk exits (eg. an exception), and if thunk is re-entered (via
a captured continuation) then it's set again to the FILENAME port.

The port is closed when thunk returns normally, but not when exited via an exception
or new continuation. This ensures it's still ready for use if thunk is re-entered by a
captured continuation. Of course the port is always garbage collected and closed in
the usual way when no longer referenced anywhere.

[Scheme Procedure]port-mode port
[C Function]scm_port_mode (port)

Return the port modes associated with the open port port. These will not necessar-
ily be identical to the modes used when the port was opened, since modes such as
"append" which are used only during port creation are not retained.

[Scheme Procedure]port-filename port
[C Function]scm_port_filename (port)

Return the �lename associated with port. This function returns the strings "standard
input", "standard output" and "standard error" when called on the current input,
output and error ports respectively.

port must be open, port-filename cannot be used once the port is closed.



284 Guile Reference Manual

[Scheme Procedure]set-port-filename! port �lename
[C Function]scm_set_port_filename_x (port, �lename)

Change the �lename associated with port, using the current input port if none is
speci�ed. Note that this does not change the port's source of data, but only the value
that is returned by port-filename and reported in diagnostic output.

[Scheme Procedure]file-port? obj
[C Function]scm_file_port_p (obj)

Determine whether obj is a port that is related to a �le.

5.12.9.2 String Ports

The following allow string ports to be opened by analogy to R4R* �le port facilities:

[Scheme Procedure]call-with-output-string proc
[C Function]scm_call_with_output_string (proc)

Calls the one-argument procedure proc with a newly created output port. When
the function returns, the string composed of the characters written into the port is
returned. proc should not close the port.

[Scheme Procedure]call-with-input-string string proc
[C Function]scm_call_with_input_string (string, proc)

Calls the one-argument procedure proc with a newly created input port from which
string 's contents may be read. The value yielded by the proc is returned.

[Scheme Procedure]with-output-to-string thunk
Calls the zero-argument procedure thunk with the current output port set temporarily
to a new string port. It returns a string composed of the characters written to the
current output.

[Scheme Procedure]with-input-from-string string thunk
Calls the zero-argument procedure thunk with the current input port set temporarily
to a string port opened on the speci�ed string. The value yielded by thunk is returned.

[Scheme Procedure]open-input-string str
[C Function]scm_open_input_string (str)

Take a string and return an input port that delivers characters from the string. The
port can be closed by close-input-port, though its storage will be reclaimed by the
garbage collector if it becomes inaccessible.

[Scheme Procedure]open-output-string
[C Function]scm_open_output_string ()

Return an output port that will accumulate characters for retrieval by get-output-

string. The port can be closed by the procedure close-output-port, though its
storage will be reclaimed by the garbage collector if it becomes inaccessible.

[Scheme Procedure]get-output-string port
[C Function]scm_get_output_string (port)

Given an output port created by open-output-string, return a string consisting of
the characters that have been output to the port so far.

get-output-string must be used before closing port, once closed the string cannot
be obtained.
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A string port can be used in many procedures which accept a port but which are not
dependent on implementation details of fports. E.g., seeking and truncating will work on a
string port, but trying to extract the �le descriptor number will fail.

5.12.9.3 Soft Ports

A soft-port is a port based on a vector of procedures capable of accepting or delivering
characters. It allows emulation of I/O ports.

[Scheme Procedure]make-soft-port pv modes
[C Function]scm_make_soft_port (pv, modes)

Return a port capable of receiving or delivering characters as speci�ed by the modes
string (see Section 5.12.9.1 [File Ports], page 280). pv must be a vector of length 5
or 6. Its components are as follows:

0. procedure accepting one character for output

1. procedure accepting a string for output

2. thunk for ushing output

3. thunk for getting one character

4. thunk for closing port (not by garbage collection)

5. (if present and not #f) thunk for computing the number of characters that can
be read from the port without blocking.

For an output-only port only elements 0, 1, 2, and 4 need be procedures. For an
input-only port only elements 3 and 4 need be procedures. Thunks 2 and 4 can
instead be #f if there is no useful operation for them to perform.

If thunk 3 returns #f or an eof-object (see section \Input" in The Revised^5 Report
on Scheme) it indicates that the port has reached end-of-�le. For example:

(define stdout (current-output-port))

(define p (make-soft-port

(vector

(lambda (c) (write c stdout))

(lambda (s) (display s stdout))

(lambda () (display "." stdout))

(lambda () (char-upcase (read-char)))

(lambda () (display "@" stdout)))

"rw"))

(write p p) ) #<input-output: soft 8081e20>

5.12.9.4 Void Ports

This kind of port causes any data to be discarded when written to, and always returns the
end-of-�le object when read from.

[Scheme Procedure]%make-void-port mode
[C Function]scm_sys_make_void_port (mode)

Create and return a new void port. A void port acts like `/dev/null'. The mode
argument speci�es the input/output modes for this port: see the documentation for
open-file in Section 5.12.9.1 [File Ports], page 280.
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5.12.10 Using and Extending Ports in C

5.12.10.1 C Port Interface

This section describes how to use Scheme ports from C.

Port basics

There are two main data structures. A port type object (ptob) is of type scm_ptob_

descriptor. A port instance is of type scm_port. Given an SCM variable which points to
a port, the corresponding C port object can be obtained using the SCM_PTAB_ENTRY macro.
The ptob can be obtained by using SCM_PTOBNUM to give an index into the scm_ptobs global
array.

Port bu�ers

An input port always has a read bu�er and an output port always has a write bu�er.
However the size of these bu�ers is not guaranteed to be more than one byte (e.g., the
shortbuf �eld in scm_port which is used when no other bu�er is allocated). The way in
which the bu�ers are allocated depends on the implementation of the ptob. For example in
the case of an fport, bu�ers may be allocated with malloc when the port is created, but in
the case of an strport the underlying string is used as the bu�er.

The rw_random ag

Special treatment is required for ports which can be seeked at random. Before various
operations, such as seeking the port or changing from input to output on a bidirectional
port or vice versa, the port implementation must be given a chance to update its state. The
write bu�er is updated by calling the flush ptob procedure and the input bu�er is updated
by calling the end_input ptob procedure. In the case of an fport, flush causes bu�ered
output to be written to the �le descriptor, while end_input causes the descriptor position
to be adjusted to account for bu�ered input which was never read.

The special treatment must be performed if the rw_random ag in the port is non-zero.

The rw_active variable

The rw_active variable in the port is only used if rw_random is set. It's de�ned as an enum
with the following values:

SCM_PORT_READ

the read bu�er may have unread data.

SCM_PORT_WRITE

the write bu�er may have unwritten data.

SCM_PORT_NEITHER

neither the write nor the read bu�er has data.

Reading from a port.

To read from a port, it's possible to either call existing libguile procedures such as scm_getc
and scm_read_line or to read data from the read bu�er directly. Reading from the bu�er
involves the following steps:
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1. Flush output on the port, if rw_active is SCM_PORT_WRITE.

2. Fill the read bu�er, if it's empty, using scm_fill_input.

3. Read the data from the bu�er and update the read position in the bu�er. Steps 2) and
3) may be repeated as many times as required.

4. Set rw active to SCM_PORT_READ if rw_random is set.

5. update the port's line and column counts.

Writing to a port.

To write data to a port, calling scm_lfwrite should be su�cient for most purposes. This
takes care of the following steps:

1. End input on the port, if rw_active is SCM_PORT_READ.

2. Pass the data to the ptob implementation using the write ptob procedure. The advan-
tage of using the ptob write instead of manipulating the write bu�er directly is that it
allows the data to be written in one operation even if the port is using the single-byte
shortbuf.

3. Set rw_active to SCM_PORT_WRITE if rw_random is set.

5.12.10.2 Port Implementation

This section describes how to implement a new port type in C.

As described in the previous section, a port type object (ptob) is a structure of type
scm_ptob_descriptor. A ptob is created by calling scm_make_port_type.

[Function]scm_t_bits scm_make_port_type (char *name, int (*�ll input) (SCM
port), void (*write) (SCM port, const void *data, size t size))

Return a new port type object. The name, �ll input and write parameters are initial
values for those port type �elds, as described below. The other �elds are initialized
with default values and can be changed later.

All of the elements of the ptob, apart from name, are procedures which collectively
implement the port behaviour. Creating a new port type mostly involves writing these
procedures.

name A pointer to a NUL terminated string: the name of the port type. This is the
only element of scm_ptob_descriptor which is not a procedure. Set via the
�rst argument to scm_make_port_type.

mark Called during garbage collection to mark any SCM objects that a port object
may contain. It doesn't need to be set unless the port has SCM components. Set
using

[Function]void scm_set_port_mark (scm t bits tc, SCM (*mark)
(SCM port))

free Called when the port is collected during gc. It should free any resources used
by the port. Set using
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[Function]void scm_set_port_free (scm t bits tc, size t (*free)
(SCM port))

print Called when write is called on the port object, to print a port description.
E.g., for an fport it may produce something like: #<input: /etc/passwd 3>.
Set using

[Function]void scm_set_port_print (scm t bits tc, int (*print) (SCM
port, SCM dest port, scm print state *pstate))

The �rst argument port is the object being printed, the second argument
dest port is where its description should go.

equalp Not used at present. Set using

[Function]void scm_set_port_equalp (scm t bits tc, SCM (*equalp)
(SCM, SCM))

close Called when the port is closed, unless it was collected during gc. It should free
any resources used by the port. Set using

[Function]void scm_set_port_close (scm t bits tc, int (*close) (SCM
port))

write Accept data which is to be written using the port. The port implementation
may choose to bu�er the data instead of processing it directly. Set via the third
argument to scm_make_port_type.

flush Complete the processing of bu�ered output data. Reset the value of rw_active
to SCM_PORT_NEITHER. Set using

[Function]void scm_set_port_flush (scm t bits tc, void (*ush)
(SCM port))

end_input

Perform any synchronization required when switching from input to output on
the port. Reset the value of rw_active to SCM_PORT_NEITHER. Set using

[Function]void scm_set_port_end_input (scm t bits tc, void
(*end input) (SCM port, int o�set))

fill_input

Read new data into the read bu�er and return the �rst character. It can be
assumed that the read bu�er is empty when this procedure is called. Set via
the second argument to scm_make_port_type.

input_waiting

Return a lower bound on the number of bytes that could be read from the port
without blocking. It can be assumed that the current state of rw_active is
SCM_PORT_NEITHER. Set using

[Function]void scm_set_port_input_waiting (scm t bits tc, int
(*input waiting) (SCM port))

seek Set the current position of the port. The procedure can not make any assump-
tions about the value of rw_active when it's called. It can reset the bu�ers
�rst if desired by using something like:



Chapter 5: API Reference 289

if (pt->rw_active == SCM_PORT_READ)

scm_end_input (port);

else if (pt->rw_active == SCM_PORT_WRITE)

ptob->flush (port);

However note that this will have the side e�ect of discarding any data in the
unread-char bu�er, in addition to any side e�ects from the end_input and
flush ptob procedures. This is undesirable when seek is called to measure the
current position of the port, i.e., (seek p 0 SEEK_CUR). The libguile fport and
string port implementations take care to avoid this problem.

The procedure is set using

[Function]void scm_set_port_seek (scm t bits tc, o� t (*seek) (SCM
port, o� t o�set, int whence))

truncate Truncate the port data to be speci�ed length. It can be assumed that the
current state of rw_active is SCM_PORT_NEITHER. Set using

[Function]void scm_set_port_truncate (scm t bits tc, void
(*truncate) (SCM port, o� t length))
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5.13 Reading and Evaluating Scheme Code

This chapter describes Guile functions that are concerned with reading, loading and evalu-
ating Scheme code at run time.

5.13.1 Scheme Syntax: Standard and Guile Extensions

5.13.1.1 Expression Syntax

An expression to be evaluated takes one of the following forms.

symbol A symbol is evaluated by dereferencing. A binding of that symbol is sought
and the value there used. For example,

(define x 123)

x ) 123

(proc args...)

A parenthesised expression is a function call. proc and each argument are
evaluated, then the function (which proc evaluated to) is called with those
arguments.

The order in which proc and the arguments are evaluated is unspeci�ed, so be
careful when using expressions with side e�ects.

(max 1 2 3) ) 3

(define (get-some-proc) min)

((get-some-proc) 1 2 3) ) 1

The same sort of parenthesised form is used for a macro invocation, but in that
case the arguments are not evaluated. See the descriptions of macros for more
on this (see Section 5.8.6 [Macros], page 231, and see Section 5.8.7 [Syntax
Rules], page 232).

constant Number, string, character and boolean constants evaluate \to themselves", so
can appear as literals.

123 ) 123

99.9 ) 99.9

"hello" ) "hello"

#\z ) #\z

#t ) #t

Note that an application must not attempt to modify literal strings, since they
may be in read-only memory.

(quote data)

'data Quoting is used to obtain a literal symbol (instead of a variable reference), a
literal list (instead of a function call), or a literal vector. ' is simply a shorthand
for a quote form. For example,

'x ) x

'(1 2 3) ) (1 2 3)

'#(1 (2 3) 4) ) #(1 (2 3) 4)

(quote x) ) x
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(quote (1 2 3)) ) (1 2 3)

(quote #(1 (2 3) 4)) ) #(1 (2 3) 4)

Note that an application must not attempt to modify literal lists or vectors
obtained from a quote form, since they may be in read-only memory.

(quasiquote data)

`data Backquote quasi-quotation is like quote, but selected sub-expressions are eval-
uated. This is a convenient way to construct a list or vector structure most of
which is constant, but at certain points should have expressions substituted.

The same e�ect can always be had with suitable list, cons or vector calls,
but quasi-quoting is often easier.

(unquote expr)

,expr Within the quasiquote data, unquote or , indicates an expression
to be evaluated and inserted. The comma syntax , is simply a
shorthand for an unquote form. For example,

`(1 2 ,(* 9 9) 3 4) ) (1 2 81 3 4)

`(1 (unquote (+ 1 1)) 3) ) (1 2 3)

`#(1 ,(/ 12 2)) ) #(1 6)

(unquote-splicing expr)

,@expr Within the quasiquote data, unquote-splicing or ,@ indicates an
expression to be evaluated and the elements of the returned list
inserted. expr must evaluate to a list. The \comma-at" syntax ,@

is simply a shorthand for an unquote-splicing form.

(define x '(2 3))

`(1 ,@x 4) ) (1 2 3 4)

`(1 (unquote-splicing (map 1+ x))) ) (1 3 4)

`#(9 ,@x 9) ) #(9 2 3 9)

Notice ,@ di�ers from plain , in the way one level of nesting
is stripped. For ,@ the elements of a returned list are inserted,
whereas with , it would be the list itself inserted.

5.13.1.2 Comments

Comments in Scheme source �les are written by starting them with a semicolon character
(;). The comment then reaches up to the end of the line. Comments can begin at any
column, and the may be inserted on the same line as Scheme code.

; Comment

;; Comment too

(define x 1) ; Comment after expression

(let ((y 1))

;; Display something.

(display y)

;;; Comment at left margin.

(display (+ y 1)))

It is common to use a single semicolon for comments following expressions on a line, to
use two semicolons for comments which are indented like code, and three semicolons for
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comments which start at column 0, even if they are inside an indented code block. This
convention is used when indenting code in Emacs' Scheme mode.

5.13.1.3 Block Comments

In addition to the standard line comments de�ned by R5RS, Guile has another comment
type for multiline comments, called block comments. This type of comment begins with
the character sequence #! and ends with the characters !#, which must appear on a line of
their own. These comments are compatible with the block comments in the Scheme Shell
`scsh' (see Section 6.14 [The Scheme shell (scsh)], page 483). The characters #! were chosen
because they are the magic characters used in shell scripts for indicating that the name of
the program for executing the script follows on the same line.

Thus a Guile script often starts like this.

#! /usr/local/bin/guile -s

!#

More details on Guile scripting can be found in the scripting section (see Section 3.3
[Guile Scripting], page 33).

5.13.1.4 Case Sensitivity

Scheme as de�ned in R5RS is not case sensitive when reading symbols. Guile, on the
contrary is case sensitive by default, so the identi�ers

guile-whuzzy

Guile-Whuzzy

are the same in R5RS Scheme, but are di�erent in Guile.

It is possible to turn o� case sensitivity in Guile by setting the reader option case-

insensitive. More on reader options can be found at (see Section 5.18.3.3 [Reader options],
page 339).

(read-enable 'case-insensitive)

Note that this is seldom a problem, because Scheme programmers tend not to use up-
percase letters in their identi�ers anyway.

5.13.1.5 Keyword Syntax

5.13.1.6 Reader Extensions

[Scheme Procedure]read-hash-extend chr proc
[C Function]scm_read_hash_extend (chr, proc)

Install the procedure proc for reading expressions starting with the character sequence
# and chr. proc will be called with two arguments: the character chr and the port to
read further data from. The object returned will be the return value of read.

5.13.2 Reading Scheme Code

[Scheme Procedure]read [port]
[C Function]scm_read (port)

Read an s-expression from the input port port, or from the current input port if port
is not speci�ed. Any whitespace before the next token is discarded.
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The behaviour of Guile's Scheme reader can be modi�ed by manipulating its read options.
For more information about options, See Section 5.18.3.2 [User level options interfaces],
page 339. If you want to know which reader options are available, See Section 5.18.3.3
[Reader options], page 339.

[Scheme Procedure]read-options [setting]
Display the current settings of the read options. If setting is omitted, only a short
form of the current read options is printed. Otherwise, setting should be one of the
following symbols:

help Display the complete option settings.

full Like help, but also print programmer options.

[Scheme Procedure]read-enable option-name
[Scheme Procedure]read-disable option-name
[Scheme Procedure]read-set! option-name value

Modify the read options. read-enable should be used with boolean options and
switches them on, read-disable switches them o�. read-set! can be used to set an
option to a speci�c value.

[Scheme Procedure]read-options-interface [setting]
[C Function]scm_read_options (setting)

Option interface for the read options. Instead of using this procedure directly, use
the procedures read-enable, read-disable, read-set! and read-options.

5.13.3 Procedures for On the Fly Evaluation

See Section 5.16.2 [Environments], page 303.

[Scheme Procedure]eval exp module or state
[C Function]scm_eval (exp, module or state)

Evaluate exp, a list representing a Scheme expression, in the top-level environment
speci�ed by module. While exp is evaluated (using primitive-eval), module is
made the current module. The current module is reset to its previous value when eval
returns. XXX - dynamic states. Example: (eval '(+ 1 2) (interaction-environment))

[Scheme Procedure]interaction-environment
[C Function]scm_interaction_environment ()

Return a speci�er for the environment that contains implementation{de�ned bindings,
typically a superset of those listed in the report. The intent is that this procedure
will return the environment in which the implementation would evaluate expressions
dynamically typed by the user.

[Scheme Procedure]eval-string string [module]
[C Function]scm_eval_string (string)
[C Function]scm_eval_string_in_module (string, module)

Evaluate string as the text representation of a Scheme form or forms, and return
whatever value they produce. Evaluation takes place in the given module, or in the
current module when no module is given. While the code is evaluated, the given
module is made the current one. The current module is restored when this procedure
returns.
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[C Function]SCM scm_c_eval_string (const char *string)
scm_eval_string, but taking a C string instead of an SCM.

[Scheme Procedure]apply proc arg1 . . . argN arglst
[C Function]scm_apply_0 (proc, arglst)
[C Function]scm_apply_1 (proc, arg1, arglst)
[C Function]scm_apply_2 (proc, arg1, arg2, arglst)
[C Function]scm_apply_3 (proc, arg1, arg2, arg3, arglst)
[C Function]scm_apply (proc, arg, rest)

Call proc with arguments arg1 . . . argN plus the elements of the arglst list.

scm_apply takes parameters corresponding to a Scheme level (lambda (proc arg .

rest) ...). So arg and all but the last element of the rest list make up arg1 . . .argN
and the last element of rest is the arglst list. Or if rest is the empty list SCM_EOL then
there's no arg1 . . .argN and arg is the arglst.

arglst is not modi�ed, but the rest list passed to scm_apply is modi�ed.

[C Function]scm_call_0 (proc)
[C Function]scm_call_1 (proc, arg1)
[C Function]scm_call_2 (proc, arg1, arg2)
[C Function]scm_call_3 (proc, arg1, arg2, arg3)
[C Function]scm_call_4 (proc, arg1, arg2, arg3, arg4)

Call proc with the given arguments.

[Scheme Procedure]apply:nconc2last lst
[C Function]scm_nconc2last (lst)

lst should be a list (arg1 . . . argN arglst), with arglst being a list. This function
returns a list comprising arg1 to argN plus the elements of arglst. lst is modi�ed to
form the return. arglst is not modi�ed, though the return does share structure with
it.

This operation collects up the arguments from a list which is apply style parameters.

[Scheme Procedure]primitive-eval exp
[C Function]scm_primitive_eval (exp)

Evaluate exp in the top-level environment speci�ed by the current module.

5.13.4 Loading Scheme Code from File

[Scheme Procedure]load �lename [reader]
Load �lename and evaluate its contents in the top-level environment. The load paths
are not searched.

reader if provided should be either #f, or a procedure with the signature (lambda

(port) ...) which reads the next expression from port. If reader is #f or absent,
Guile's built-in read procedure is used (see Section 5.13.2 [Scheme Read], page 290).

The reader argument takes e�ect by setting the value of the current-reader uid
(see below) before loading the �le, and restoring its previous value when loading
is complete. The Scheme code inside �lename can itself change the current reader
procedure on the y by setting current-reader uid.
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If the variable %load-hook is de�ned, it should be bound to a procedure that will
be called before any code is loaded. See documentation for %load-hook later in this
section.

[Scheme Procedure]load-from-path �lename
Similar to load, but searches for �lename in the load paths.

[Scheme Procedure]primitive-load �lename
[C Function]scm_primitive_load (�lename)

Load the �le named �lename and evaluate its contents in the top-level environment.
The load paths are not searched; �lename must either be a full pathname or be a
pathname relative to the current directory. If the variable %load-hook is de�ned, it
should be bound to a procedure that will be called before any code is loaded. See the
documentation for %load-hook later in this section.

[C Function]SCM scm_c_primitive_load (const char *�lename)
scm_primitive_load, but taking a C string instead of an SCM.

[Scheme Procedure]primitive-load-path �lename
[C Function]scm_primitive_load_path (�lename)

Search %load-path for the �le named �lename and load it into the top-level environ-
ment. If �lename is a relative pathname and is not found in the list of search paths,
an error is signalled.

[Scheme Procedure]%search-load-path �lename
[C Function]scm_sys_search_load_path (�lename)

Search %load-path for the �le named �lename, which must be readable by the current
user. If �lename is found in the list of paths to search or is an absolute pathname,
return its full pathname. Otherwise, return #f. Filenames may have any of the
optional extensions in the %load-extensions list; %search-load-path will try each
extension automatically.

[Variable]current-reader
current-reader holds the read procedure that is currently being used by the above
loading procedures to read expressions (from the �le that they are loading). current-
reader is a uid, so it has an independent value in each dynamic root and should
be read and set using fluid-ref and fluid-set! (see Section 5.17.8 [Fluids and
Dynamic States], page 330).

[Variable]%load-hook
A procedure to be called (%load-hook filename) whenever a �le is loaded, or #f

for no such call. %load-hook is used by all of the above loading functions (load,
load-path, primitive-load and primitive-load-path).

For example an application can set this to show what's loaded,

(set! %load-hook (lambda (filename)

(format #t "Loading ~a ...\n" filename)))

(load-from-path "foo.scm")

a Loading /usr/local/share/guile/site/foo.scm ...
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[Scheme Procedure]current-load-port
[C Function]scm_current_load_port ()

Return the current-load-port. The load port is used internally by primitive-load.

[Variable]%load-extensions
A list of default �le extensions for �les containing Scheme code. %search-load-path
tries each of these extensions when looking for a �le to load. By default, %load-
extensions is bound to the list ("" ".scm").

5.13.5 Delayed Evaluation

Promises are a convenient way to defer a calculation until its result is actually needed, and
to run such a calculation only once.

[syntax]delay expr
Return a promise object which holds the given expr expression, ready to be evaluated
by a later force.

[Scheme Procedure]promise? obj
[C Function]scm_promise_p (obj)

Return true if obj is a promise.

[Scheme Procedure]force p
[C Function]scm_force (p)

Return the value obtained from evaluating the expr in the given promise p. If p has
previously been forced then its expr is not evaluated again, instead the value obtained
at that time is simply returned.

During a force, an expr can call force again on its own promise, resulting in a
recursive evaluation of that expr. The �rst evaluation to return gives the value for
the promise. Higher evaluations run to completion in the normal way, but their results
are ignored, force always returns the �rst value.

5.13.6 Local Evaluation

[the-environment]

[Scheme Procedure]local-eval exp [env]
[C Function]scm_local_eval (exp, env)

Evaluate exp in its environment. If env is supplied, it is the environment in which
to evaluate exp. Otherwise, exp must be a memoized code object (in which case, its
environment is implicit).

5.13.7 Evaluator Behaviour

The behaviour of Guile's evaluator can be modi�ed by manipulating the evaluator options.
For more information about options, See Section 5.18.3.2 [User level options interfaces],
page 339. If you want to know which evaluator options are available, See Section 5.18.3.5
[Evaluator options], page 340.

[Scheme Procedure]eval-options [setting]
Display the current settings of the evaluator options. If setting is omitted, only a
short form of the current evaluator options is printed. Otherwise, setting should be
one of the following symbols:
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help Display the complete option settings.

full Like help, but also print programmer options.

[Scheme Procedure]eval-enable option-name
[Scheme Procedure]eval-disable option-name
[Scheme Procedure]eval-set! option-name value

Modify the evaluator options. eval-enable should be used with boolean options and
switches them on, eval-disable switches them o�. eval-set! can be used to set an
option to a speci�c value.

[Scheme Procedure]eval-options-interface [setting]
[C Function]scm_eval_options_interface (setting)

Option interface for the evaluation options. Instead of using this procedure directly,
use the procedures eval-enable, eval-disable, eval-set! and eval-options.

[Scheme Procedure]traps [setting]
Display the current settings of the evaluator traps options. If setting is omitted, only
a short form of the current evaluator traps options is printed. Otherwise, setting
should be one of the following symbols:

help Display the complete option settings.

full Like help, but also print programmer options.

[Scheme Procedure]trap-enable option-name
[Scheme Procedure]trap-disable option-name
[Scheme Procedure]trap-set! option-name value

Modify the evaluator options. trap-enable should be used with boolean options and
switches them on, trap-disable switches them o�. trap-set! can be used to set an
option to a speci�c value.

[Scheme Procedure]evaluator-traps-interface [setting]
[C Function]scm_evaluator_traps (setting)

Option interface for the evaluator trap options.
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5.14 Memory Management and Garbage Collection

Guile uses a garbage collector to manage most of its objects. While the garbage collector
is designed to be mostly invisible, you sometimes need to interact with it explicitely.

See Section 4.3.2 [Garbage Collection], page 62 for a general discussion of how garbage
collection relates to using Guile from C.

5.14.1 Function related to Garbage Collection

[Scheme Procedure]gc
[C Function]scm_gc ()

Scans all of SCM objects and reclaims for further use those that are no longer accessi-
ble. You normally don't need to call this function explicitly. It is called automatically
when appropriate.

[C Function]SCM scm_gc_protect_object (SCM obj )
Protects obj from being freed by the garbage collector, when it otherwise might be.
When you are done with the object, call scm_gc_unprotect_object on the object.
Calls to scm_gc_protect/scm_gc_unprotect_object can be nested, and the object
remains protected until it has been unprotected as many times as it was protected.
It is an error to unprotect an object more times than it has been protected. Returns
the SCM object it was passed.

[C Function]SCM scm_gc_unprotect_object (SCM obj )
Unprotects an object from the garbage collector which was protected by scm_gc_

unprotect_object. Returns the SCM object it was passed.

[C Function]SCM scm_permanent_object (SCM obj )
Similar to scm_gc_protect_object in that it causes the collector to always mark the
object, except that it should not be nested (only call scm_permanent_object on an
object once), and it has no corresponding unpermanent function. Once an object is
declared permanent, it will never be freed. Returns the SCM object it was passed.

[C Macro]void scm_remember_upto_here_1 (SCM obj)
[C Macro]void scm_remember_upto_here_2 (SCM obj1, SCM obj2)

Create a reference to the given object or objects, so they're certain to be present on
the stack or in a register and hence will not be freed by the garbage collector before
this point.

Note that these functions can only be applied to ordinary C local variables (ie. \au-
tomatics"). Objects held in global or static variables or some malloced block or the
like cannot be protected with this mechanism.

[Scheme Procedure]gc-stats
[C Function]scm_gc_stats ()

Return an association list of statistics about Guile's current use of storage.

[Scheme Procedure]gc-live-object-stats
[C Function]scm_gc_live_object_stats ()

Return an alist of statistics of the current live objects.
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[Function]void scm_gc_mark (SCM x )
Mark the object x, and recurse on any objects x refers to. If x's mark bit is already
set, return immediately. This function must only be called during the mark-phase of
garbage collection, typically from a smob mark function.

5.14.2 Memory Blocks

In C programs, dynamic management of memory blocks is normally done with the functions
malloc, realloc, and free. Guile has additional functions for dynamic memory allocation that
are integrated into the garbage collector and the error reporting system.

Memory blocks that are associated with Scheme objects (for example a smob) should be
allocated and freed with scm_gc_malloc and scm_gc_free. The function scm_gc_malloc

will either return a valid pointer or signal an error. It will also assume that the new memory
can be freed by a garbage collection. The garbage collector uses this information to decide
when to try to actually collect some garbage. Memory blocks allocated with scm_gc_malloc

must be freed with scm_gc_free.

For memory that is not associated with a Scheme object, you can use scm_malloc

instead of malloc. Like scm_gc_malloc, it will either return a valid pointer or signal an
error. However, it will not assume that the new memory block can be freed by a garbage
collection. The memory can be freed with free.

There is also scm_gc_realloc and scm_realloc, to be used in place of realloc when
appropriate, and scm_gc_calloc and scm_calloc, to be used in place of calloc when
appropriate.

The function scm_dynwind_free can be useful when memory should be freed when a
dynwind context, See Section 5.11.9 [Dynamic Wind], page 266.

For really specialized needs, take at look at scm_gc_register_collectable_memory

and scm_gc_unregister_collectable_memory.

[C Function]void * scm_malloc (size t size )
[C Function]void * scm_calloc (size t size )

Allocate size bytes of memory and return a pointer to it. When size is 0, return NULL.
When not enough memory is available, signal an error. This function runs the GC to
free up some memory when it deems it appropriate.

The memory is allocated by the libc malloc function and can be freed with free.
There is no scm_free function to go with scm_malloc to make it easier to pass
memory back and forth between di�erent modules.

The function scm_calloc is similar to scm_malloc, but initializes the block of memory
to zero as well.

[C Function]void * scm_realloc (void *mem, size t new_size )
Change the size of the memory block at mem to new size and return its new location.
When new size is 0, this is the same as calling free on mem and NULL is returned.
When mem is NULL, this function behaves like scm_malloc and allocates a new block
of size new size.

When not enough memory is available, signal an error. This function runs the GC to
free up some memory when it deems it appropriate.
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[C Function]void scm_gc_register_collectable_memory (void *mem, size t
size, const char *what )

Informs the GC that the memory at mem of size size can potentially be freed during
a GC. That is, announce that mem is part of a GC controlled object and when the
GC happens to free that object, size bytes will be freed along with it. The GC will
not free the memory itself, it will just know that so-and-so much bytes of memory
are associated with GC controlled objects and the memory system �gures this into
its decisions when to run a GC.

mem does not need to come from scm_malloc. You can only call this function once
for every memory block.

The what argument is used for statistical purposes. It should describe the type of
object that the memory will be used for so that users can identify just what strange
objects are eating up their memory.

[C Function]void scm_gc_unregister_collectable_memory (void *mem, size t
size )

Informs the GC that the memory atmem of size size is no longer associated with a GC
controlled object. You must take care to match up every call to scm_gc_register_

collectable_memory with a call to scm_gc_unregister_collectable_memory. If
you don't do this, the GC might have a wrong impression of what is going on and
run much less e�ciently than it could.

[C Function]void * scm_gc_malloc (size t size, const char *what )
[C Function]void * scm_gc_realloc (void *mem, size t old_size, size t

new_size, const char *what );
[C Function]void * scm_gc_calloc (size t size, const char *what )

Like scm_malloc, scm_realloc or scm_calloc, but also call scm_gc_register_

collectable_memory. Note that you need to pass the old size of a reallocated memory
block as well. See below for a motivation.

[C Function]void scm_gc_free (void *mem, size t size, const char *what )
Like free, but also call scm_gc_unregister_collectable_memory.

Note that you need to explicitely pass the size parameter. This is done since it should
normally be easy to provide this parameter (for memory that is associated with GC
controlled objects) and this frees us from tracking this value in the GC itself, which
will keep the memory management overhead very low.

[C Function]void scm_frame_free (void *mem)
Equivalent to scm_frame_unwind_handler (free, mem, SCM_F_WIND_EXPLICITLY).
That is, the memory block at mem will be freed when the current frame is left.

[Scheme Procedure]malloc-stats
Return an alist ((what . n) ...) describing number of malloced objects. what is the
second argument to scm_gc_malloc, n is the number of objects of that type currently
allocated.
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5.14.2.1 Upgrading from scm must malloc et al.

Version 1.6 of Guile and earlier did not have the functions from the previous section. In
their place, it had the functions scm_must_malloc, scm_must_realloc and scm_must_free.
This section explains why we want you to stop using them, and how to do this.

The functions scm_must_malloc and scm_must_realloc behaved like scm_gc_malloc

and scm_gc_realloc do now, respectively. They would inform the GC about the newly
allocated memory via the internal equivalent of scm_gc_register_collectable_memory.
However, scm_must_free did not unregister the memory it was about to free. The usual
way to unregister memory was to return its size from a smob free function.

This disconnectedness of the actual freeing of memory and reporting this to the GC
proved to be bad in practice. It was easy to make mistakes and report the wrong size because
allocating and freeing was not done with symmetric code, and because it is cumbersome
to compute the total size of nested data structures that were freed with multiple calls to
scm_must_free. Additionally, there was no equivalent to scm_malloc, and it was tempting
to just use scm_must_malloc and never to tell the GC that the memory has been freed.

The e�ect was that the internal statistics kept by the GC drifted out of sync with reality
and could even overow in long running programs. When this happened, the result was a
dramatic increase in (senseless) GC activity which would e�ectively stop the program dead.

The functions scm_done_malloc and scm_done_free were introduced to help restore
balance to the force, but existing bugs did not magically disappear, of course.

Therefore we decided to force everybody to review their code by deprecating the existing
functions and introducing new ones in their place that are hopefully easier to use correctly.

For every use of scm_must_malloc you need to decide whether to use scm_malloc or
scm_gc_malloc in its place. When the memory block is not part of a smob or some other
Scheme object whose lifetime is ultimately managed by the garbage collector, use scm_

malloc and free. When it is part of a smob, use scm_gc_malloc and change the smob free
function to use scm_gc_free instead of scm_must_free or free and make it return zero.

The important thing is to always pair scm_malloc with free; and to always pair scm_
gc_malloc with scm_gc_free.

The same reasoning applies to scm_must_realloc and scm_realloc versus scm_gc_

realloc.

5.14.3 Weak References

[FIXME: This chapter is based on Mikael Djurfeldt's answer to a question by Michael
Livshin. Any mistakes are not theirs, of course. ]

Weak references let you attach bookkeeping information to data so that the additional
information automatically disappears when the original data is no longer in use and gets
garbage collected. In a weak key hash, the hash entry for that key disappears as soon as the
key is no longer referenced from anywhere else. For weak value hashes, the same happens
as soon as the value is no longer in use. Entries in a doubly weak hash disappear when
either the key or the value are not used anywhere else anymore.

Object properties o�er the same kind of functionality as weak key hashes in many situ-
ations. (see Section 5.9.2 [Object Properties], page 238)
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Here's an example (a little bit strained perhaps, but one of the examples is actually used
in Guile):

Assume that you're implementing a debugging system where you want to associate infor-
mation about �lename and position of source code expressions with the expressions them-
selves.

Hashtables can be used for that, but if you use ordinary hash tables it will be impossible
for the scheme interpreter to "forget" old source when, for example, a �le is reloaded.

To implement the mapping from source code expressions to positional information it is
necessary to use weak-key tables since we don't want the expressions to be remembered just
because they are in our table.

To implement a mapping from source �le line numbers to source code expressions you
would use a weak-value table.

To implement a mapping from source code expressions to the procedures they constitute
a doubly-weak table has to be used.

5.14.3.1 Weak hash tables

[Scheme Procedure]make-weak-key-hash-table size
[Scheme Procedure]make-weak-value-hash-table size
[Scheme Procedure]make-doubly-weak-hash-table size

[C Function]scm_make_weak_key_hash_table (size)
[C Function]scm_make_weak_value_hash_table (size)
[C Function]scm_make_doubly_weak_hash_table (size)

Return a weak hash table with size buckets. As with any hash table, choosing a good
size for the table requires some caution.

You can modify weak hash tables in exactly the same way you would modify regular
hash tables. (see Section 5.6.12 [Hash Tables], page 215)

[Scheme Procedure]weak-key-hash-table? obj
[Scheme Procedure]weak-value-hash-table? obj
[Scheme Procedure]doubly-weak-hash-table? obj

[C Function]scm_weak_key_hash_table_p (obj)
[C Function]scm_weak_value_hash_table_p (obj)
[C Function]scm_doubly_weak_hash_table_p (obj)

Return #t if obj is the speci�ed weak hash table. Note that a doubly weak hash table
is neither a weak key nor a weak value hash table.

5.14.3.2 Weak vectors

Weak vectors are mainly useful in Guile's implementation of weak hash tables.

[Scheme Procedure]make-weak-vector size [�ll]
[C Function]scm_make_weak_vector (size, �ll)

Return a weak vector with size elements. If the optional argument �ll is given, all
entries in the vector will be set to �ll. The default value for �ll is the empty list.

[Scheme Procedure]weak-vector . l
[Scheme Procedure]list->weak-vector l
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[C Function]scm_weak_vector (l)
Construct a weak vector from a list: weak-vector uses the list of its arguments while
list->weak-vector uses its only argument l (a list) to construct a weak vector the
same way list->vector would.

[Scheme Procedure]weak-vector? obj
[C Function]scm_weak_vector_p (obj)

Return #t if obj is a weak vector. Note that all weak hashes are also weak vectors.

5.14.4 Guardians

Guardians provide a way to be noti�ed about objects that would otherwise be collected as
garbage. Guarding them prevents the objects from being collected and cleanup actions can
be performed on them, for example.

See R. Kent Dybvig, Carl Bruggeman, and David Eby (1993) "Guardians in a
Generation-Based Garbage Collector". ACM SIGPLAN Conference on Programming
Language Design and Implementation, June 1993.

[Scheme Procedure]make-guardian
[C Function]scm_make_guardian ()

Create a new guardian. A guardian protects a set of objects from garbage collection,
allowing a program to apply cleanup or other actions.

make-guardian returns a procedure representing the guardian. Calling the guardian
procedure with an argument adds the argument to the guardian's set of protected
objects. Calling the guardian procedure without an argument returns one of the
protected objects which are ready for garbage collection, or #f if no such object is
available. Objects which are returned in this way are removed from the guardian.

You can put a single object into a guardian more than once and you can put a single
object into more than one guardian. The object will then be returned multiple times
by the guardian procedures.

An object is eligible to be returned from a guardian when it is no longer referenced
from outside any guardian.

There is no guarantee about the order in which objects are returned from a guardian.
If you want to impose an order on �nalization actions, for example, you can do that
by keeping objects alive in some global data structure until they are no longer needed
for �nalizing other objects.

Being an element in a weak vector, a key in a hash table with weak keys, or a value
in a hash table with weak values does not prevent an object from being returned by
a guardian. But as long as an object can be returned from a guardian it will not be
removed from such a weak vector or hash table. In other words, a weak link does
not prevent an object from being considered collectable, but being inside a guardian
prevents a weak link from being broken.

A key in a weak key hash table can be thought of as having a strong reference to
its associated value as long as the key is accessible. Consequently, when the key is
only accessible from within a guardian, the reference from the key to the value is also
considered to be coming from within a guardian. Thus, if there is no other reference
to the value, it is eligible to be returned from a guardian.
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5.15 Objects

[Scheme Procedure]entity? obj
[C Function]scm_entity_p (obj)

Return #t if obj is an entity.

[Scheme Procedure]operator? obj
[C Function]scm_operator_p (obj)

Return #t if obj is an operator.

[Scheme Procedure]set-object-procedure! obj proc
[C Function]scm_set_object_procedure_x (obj, proc)

Set the object procedure of obj to proc. obj must be either an entity or an operator.

[Scheme Procedure]make-class-object metaclass layout
[C Function]scm_make_class_object (metaclass, layout)

Create a new class object of class metaclass, with the slot layout speci�ed by layout.

[Scheme Procedure]make-subclass-object class layout
[C Function]scm_make_subclass_object (class, layout)

Create a subclass object of class, with the slot layout speci�ed by layout.
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5.16 Modules

When programs become large, naming conicts can occur when a function or global variable
de�ned in one �le has the same name as a function or global variable in another �le. Even
just a similarity between function names can cause hard-to-�nd bugs, since a programmer
might type the wrong function name.

The approach used to tackle this problem is called information encapsulation, which
consists of packaging functional units into a given name space that is clearly separated from
other name spaces.

The language features that allow this are usually called the module system because
programs are broken up into modules that are compiled separately (or loaded separately in
an interpreter).

Older languages, like C, have limited support for name space manipulation and protec-
tion. In C a variable or function is public by default, and can be made local to a module
with the static keyword. But you cannot reference public variables and functions from
another module with di�erent names.

More advanced module systems have become a common feature in recently designed
languages: ML, Python, Perl, and Modula 3 all allow the renaming of objects from a
foreign module, so they will not clutter the global name space.

In addition, Guile o�ers variables as �rst-class objects. They can be used for interacting
with the module system.

5.16.1 provide and require

Aubrey Ja�er, mostly to support his portable Scheme library SLIB, implemented a pro-
vide/require mechanism for many Scheme implementations. Library �les in SLIB provide

a feature, and when user programs require that feature, the library �le is loaded in.

For example, the �le `random.scm' in the SLIB package contains the line
(provide 'random)

so to use its procedures, a user would type
(require 'random)

and they would magically become available, but still have the same names! So this
method is nice, but not as good as a full-featured module system.

When SLIB is used with Guile, provide and require can be used to access its facilities.

5.16.2 Environments

Scheme, as de�ned in R5RS, does not have a full module system. However it does de�ne
the concept of a top-level environment. Such an environment maps identi�ers (symbols) to
Scheme objects such as procedures and lists: Section 3.1.4 [About Closure], page 24. In
other words, it implements a set of bindings.

Environments in R5RS can be passed as the second argument to eval (see Section 5.13.3
[Fly Evaluation], page 291). Three procedures are de�ned to return environments:
scheme-report-environment, null-environment and interaction-environment (see
Section 5.13.3 [Fly Evaluation], page 291).

In addition, in Guile any module can be used as an R5RS environment, i.e., passed as
the second argument to eval.
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Note: the following two procedures are available only when the (ice-9 r5rs) module is
loaded:

(use-modules (ice-9 r5rs))

[Scheme Procedure]scheme-report-environment version
[Scheme Procedure]null-environment version

version must be the exact integer `5', corresponding to revision 5 of the Scheme report
(the Revised^5 Report on Scheme). scheme-report-environment returns a speci�er
for an environment that is empty except for all bindings de�ned in the report that
are either required or both optional and supported by the implementation. null-

environment returns a speci�er for an environment that is empty except for the
(syntactic) bindings for all syntactic keywords de�ned in the report that are either
required or both optional and supported by the implementation.

Currently Guile does not support values of version for other revisions of the report.

The e�ect of assigning (through the use of eval) a variable bound in a scheme-

report-environment (for example car) is unspeci�ed. Currently the environments
speci�ed by scheme-report-environment are not immutable in Guile.

5.16.3 The Guile module system

The Guile module system extends the concept of environments, discussed in the previous
section, with mechanisms to de�ne, use and customise sets of bindings.

In 1996 Tom Lord implemented a full-featured module system for Guile which allows
loading Scheme source �les into a private name space. This system has been available since
at least Guile version 1.1.

For Guile version 1.5.0 and later, the system has been improved to have better integration
from C code, more �ne-grained user control over interfaces, and documentation.

Although it is anticipated that the module system implementation will change in the
future, the Scheme programming interface described in this manual should be considered
stable. The C programming interface is considered relatively stable, although at the time
of this writing, there is still some ux.

5.16.3.1 General Information about Modules

A Guile module can be thought of as a collection of named procedures, variables and macros.
More precisely, it is a set of bindings of symbols (names) to Scheme objects.

An environment is a mapping from identi�ers (or symbols) to locations, i.e., a set of
bindings. There are top-level environments and lexical environments. The environment in
which a lambda is executed is remembered as part of its de�nition.

Within a module, all bindings are visible. Certain bindings can be declared public, in
which case they are added to the module's so-called export list; this set of public bind-
ings is called the module's public interface (see Section 5.16.3.3 [Creating Guile Modules],
page 307).

A client module uses a providing module's bindings by either accessing the providing
module's public interface, or by building a custom interface (and then accessing that). In
a custom interface, the client module can select which bindings to access and can also
algorithmically rename bindings. In contrast, when using the providing module's public
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interface, the entire export list is available without renaming (see Section 5.16.3.2 [Using
Guile Modules], page 305).

To use a module, it must be found and loaded. All Guile modules have a unique module
name, which is a list of one or more symbols. Examples are (ice-9 popen) or (srfi srfi-

11). When Guile searches for the code of a module, it constructs the name of the �le to
load by concatenating the name elements with slashes between the elements and appending
a number of �le name extensions from the list %load-extensions (see Section 5.13.4 [Load-
ing], page 292). The resulting �le name is then searched in all directories in the variable
%load-path (see Section 5.18.1 [Build Con�g], page 334). For example, the (ice-9 popen)

module would result in the �lename ice-9/popen.scm and searched in the installation
directories of Guile and in all other directories in the load path.

Every module has a so-called syntax transformer associated with it. This is a procedure
which performs all syntax transformation for the time the module is read in and evalu-
ated. When working with modules, you can manipulate the current syntax transformer
using the use-syntax syntactic form or the #:use-syntax module de�nition option (see
Section 5.16.3.3 [Creating Guile Modules], page 307).

Please note that there are some problems with the current module system you should
keep in mind (see Section 5.16.3.5 [Module System Quirks], page 310). We hope to address
these eventually.

5.16.3.2 Using Guile Modules

To use a Guile module is to access either its public interface or a custom interface (see
Section 5.16.3.1 [General Information about Modules], page 304). Both types of access are
handled by the syntactic form use-modules, which accepts one or more interface speci�-
cations and, upon evaluation, arranges for those interfaces to be available to the current
module. This process may include locating and loading code for a given module if that code
has not yet been loaded, following %load-path (see Section 5.18.1 [Build Con�g], page 334).

An interface speci�cation has one of two forms. The �rst variation is simply to name
the module, in which case its public interface is the one accessed. For example:

(use-modules (ice-9 popen))

Here, the interface speci�cation is (ice-9 popen), and the result is that the current
module now has access to open-pipe, close-pipe, open-input-pipe, and so on (see Sec-
tion 5.16.3.6 [Included Guile Modules], page 311).

Note in the previous example that if the current module had already de�ned open-pipe,
that de�nition would be overwritten by the de�nition in (ice-9 popen). For this reason
(and others), there is a second variation of interface speci�cation that not only names a
module to be accessed, but also selects bindings from it and renames them to suit the
current module's needs. For example:

(use-modules ((ice-9 popen)
:select ((open-pipe . pipe-open) close-pipe)
:renamer (symbol-prefix-proc 'unixy:)))

Here, the interface speci�cation is more complex than before, and the result is that a
custom interface with only two bindings is created and subsequently accessed by the current
module. The mapping of old to new names is as follows:

(ice-9 popen) sees: current module sees:
open-pipe unixy:pipe-open
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close-pipe unixy:close-pipe

This example also shows how to use the convenience procedure symbol-prefix-proc.

You can also directly refer to bindings in a module by using the @ syntax. For example,
instead of using the use-modules statement from above and writing unixy:pipe-open to
refer to the pipe-open from the (ice-9 popen), you could also write (@ (ice-9 popen)

open-pipe). Thus an alternative to the complete use-modules statement would be

(define unixy:pipe-open (@ (ice-9 popen) open-pipe))
(define unixy:close-pipe (@ (ice-9 popen) close-pipe))

There is also @@, which can be used like @, but does not check whether the variable that
is being accessed is actually exported. Thus, @@ can be thought of as the impolite version
of @ and should only be used as a last resort or for debugging, for example.

Note that just as with a use-modules statement, any module that has not yet been
loaded yet will be loaded when referenced by a @ or @@ form.

You can also use the @ and @@ syntaxes as the target of a set! when the binding refers
to a variable.

[Scheme Procedure]symbol-prefix-proc pre�x-sym
Return a procedure that pre�xes its arg (a symbol) with pre�x-sym.

[syntax]use-modules spec . . .
Resolve each interface speci�cation spec into an interface and arrange for these to be
accessible by the current module. The return value is unspeci�ed.

spec can be a list of symbols, in which case it names a module whose public interface
is found and used.

spec can also be of the form:

(MODULE-NAME [:select SELECTION] [:renamer RENAMER])

in which case a custom interface is newly created and used. module-name is a list of
symbols, as above; selection is a list of selection-specs; and renamer is a procedure
that takes a symbol and returns its new name. A selection-spec is either a symbol
or a pair of symbols (ORIG . SEEN), where orig is the name in the used module and
seen is the name in the using module. Note that seen is also passed through renamer.

The :select and :renamer clauses are optional. If both are omitted, the returned
interface has no bindings. If the :select clause is omitted, renamer operates on the
used module's public interface.

Signal error if module name is not resolvable.

[syntax]use-syntax module-name
Load the module module-name and use its system transformer as the system trans-
former for the currently de�ned module, as well as installing it as the current system
transformer.

[syntax]@ module-name binding-name
Refer to the binding named binding-name in modulemodule-name. The binding must
have been exported by the module.
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[syntax]@@ module-name binding-name
Refer to the binding named binding-name in modulemodule-name. The binding must
not have been exported by the module. This syntax is only intended for debugging
purposes or as a last resort.

5.16.3.3 Creating Guile Modules

When you want to create your own modules, you have to take the following steps:

� Create a Scheme source �le and add all variables and procedures you wish to export,
or which are required by the exported procedures.

� Add a define-module form at the beginning.

� Export all bindings which should be in the public interface, either by using define-

public or export (both documented below).

[syntax]define-module module-name [options . . . ]
module-name is of the form (hierarchy file). One example of this is

(define-module (ice-9 popen))

define-module makes this module available to Guile programs under the given
module-name.

The options are keyword/value pairs which specify more about the de�ned module.
The recognized options and their meaning is shown in the following table.

#:use-module interface-specification

Equivalent to a (use-modules interface-specification) (see
Section 5.16.3.2 [Using Guile Modules], page 305).

#:use-syntax module

Use module when loading the currently de�ned module, and install it as
the syntax transformer.

#:autoload module symbol-list

Load module when any of symbol-list are accessed. For example,

(define-module (my mod)

#:autoload (srfi srfi-1) (partition delete-duplicates))

...

(if something

(set! foo (delete-duplicates ...)))

When a module is autoloaded, all its bindings become available. symbol-
list is just those that will �rst trigger the load.

An autoload is a good way to put o� loading a big module until it's
really needed, for instance for faster startup or if it will only be needed
in certain circumstances.

@ can do a similar thing (see Section 5.16.3.2 [Using Guile Modules],
page 305), but in that case an @ form must be written every time a
binding from the module is used.

#:export list

Export all identi�ers in list which must be a list of symbols. This is
equivalent to (export list) in the module body.
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#:re-export list

Re-export all identi�ers in list which must be a list of symbols. The sym-
bols in list must be imported by the current module from other modules.
This is equivalent to re-export below.

#:export-syntax list

Export all identi�ers in list which must be a list of symbols. The iden-
ti�ers in list must refer to macros (see Section 5.8.6 [Macros], page 231)
de�ned in the current module. This is equivalent to (export-syntax

list) in the module body.

#:re-export-syntax list

Re-export all identi�ers in list which must be a list of symbols. The
symbols in list must refer to macros imported by the current module
from other modules. This is equivalent to (re-export-syntax list) in
the module body.

#:replace list

Export all identi�ers in list (a list of symbols) and mark them as replac-
ing bindings. In the module user's name space, this will have the e�ect
of replacing any binding with the same name that is not also \replac-
ing". Normally a replacement results in an \override" warning message,
#:replace avoids that.

This is useful for modules that export bindings that have the same name
as core bindings. #:replace, in a sense, lets Guile know that the module
purposefully replaces a core binding. It is important to note, however,
that this binding replacement is con�ned to the name space of the module
user. In other words, the value of the core binding in question remains
unchanged for other modules.

For instance, SRFI-39 exports a binding named current-input-port

(see Section 6.4.18 [SRFI-39], page 452) that is a function which is up-
wardly compatible with the core current-input-port function. There-
fore, SRFI-39 exports its version with #:replace.

SRFI-19, on the other hand, exports its own version of current-time
(see Section 6.4.15.2 [SRFI-19 Time], page 444) which is not compatible
with the core current-time function (see Section 6.2.5 [Time], page 389).
Therefore, SRFI-19 does not use #:replace.

The #:replace option can also be used by a module which is intentionally
producing a new special kind of environment and should override any core
or other bindings already in scope. For example perhaps a logic processing
environment where <= is an inference instead of a comparison.

The #:duplicates (see below) provides �ne-grain control about duplicate
binding handling on the module-user side.

#:duplicates list

Tell Guile to handle duplicate bindings for the bindings imported by the
current module according to the policy de�ned by list, a list of symbols.
listmust contain symbols representing a duplicate binding handling policy
chosen among the following:
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check Raises an error when a binding is imported from more than
one place.

warn Issue a warning when a binding is imported from more than
one place and leave the responsibility of actually handling the
duplication to the next duplicate binding handler.

replace When a new binding is imported that has the same name as
a previously imported binding, then do the following:

1. If the old binding was said to be replacing (via the
#:replace option above) and the new binding is not
replacing, the keep the old binding.

2. If the old binding was not said to be replacing and the
new binding is replacing, then replace the old binding
with the new one.

3. If neither the old nor the new binding is replacing, then
keep the old one.

warn-override-core

Issue a warning when a core binding is being overwritten and
actually override the core binding with the new one.

first In case of duplicate bindings, the �rstly imported binding is
always the one which is kept.

last In case of duplicate bindings, the lastly imported binding is
always the one which is kept.

noop In case of duplicate bindings, leave the responsibility to the
next duplicate handler.

If list contains more than one symbol, then the duplicate binding handlers
which appear �rst will be used �rst when resolving a duplicate binding
situation. As mentioned above, some resolution policies may explicitly
leave the responsibility of handling the duplication to the next handler
in list.

The default duplicate binding resolution policy is given by the default-
duplicate-binding-handler procedure, and is

(replace warn-override-core warn last)

#:no-backtrace

Tell Guile not to record information for procedure backtraces when exe-
cuting the procedures in this module.

#:pure Create a pure module, that is a module which does not contain any of the
standard procedure bindings except for the syntax forms. This is useful
if you want to create safe modules, that is modules which do not know
anything about dangerous procedures.

[syntax]export variable . . .
Add all variables (which must be symbols) to the list of exported bindings of the
current module.
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[syntax]define-public . . .
Equivalent to (begin (define foo ...) (export foo)).

[syntax]re-export variable . . .
Add all variables (which must be symbols) to the list of re-exported bindings of the
current module. Re-exported bindings must be imported by the current module from
some other module.

5.16.3.4 Module System Reection

The previous sections have described a declarative view of the module system. You can
also work with it programmatically by accessing and modifying various parts of the Scheme
objects that Guile uses to implement the module system.

At any time, there is a current module. This module is the one where a top-level
define and similar syntax will add new bindings. You can �nd other module objects with
resolve-module, for example.

These module objects can be used as the second argument to eval.

[Scheme Procedure]current-module
Return the current module object.

[Scheme Procedure]set-current-module module
Set the current module to module and return the previous current module.

[Scheme Procedure]resolve-module name
Find the module named name and return it. When it has not already been de�ned,
try to auto-load it. When it can't be found that way either, create an empty module.
The name is a list of symbols.

[Scheme Procedure]resolve-interface name
Find the module named name as with resolve-module and return its interface. The
interface of a module is also a module object, but it contains only the exported
bindings.

[Scheme Procedure]module-use! module interface
Add interface to the front of the use-list ofmodule. Both arguments should be module
objects, and interface should very likely be a module returned by resolve-interface.

5.16.3.5 Module System Quirks

Although the programming interfaces are relatively stable, the Guile module system itself
is still evolving. Here are some situations where usage surpasses design.

� When using a module which exports a macro de�nition, the other module must export
all bindings the macro expansion uses, too, because the expanded code would otherwise
not be able to see these de�nitions and issue a \variable unbound" error, or worse, would
use another binding which might be present in the scope of the expansion.

� When two or more used modules export bindings with the same names, the last ac-
cessed module wins, and the exported binding of that last module will silently be used.
This might lead to hard-to-�nd errors because wrong procedures or variables are used.
To avoid this kind of name-clash situation, use a custom interface speci�cation (see
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Section 5.16.3.2 [Using Guile Modules], page 305). (We include this entry for the pos-
sible bene�t of users of Guile versions previous to 1.5.0, when custom interfaces were
added to the module system.)

� [Add other quirks here.]

5.16.3.6 Included Guile Modules

Some modules are included in the Guile distribution; here are references to the entries in
this manual which describe them in more detail:

boot-9 boot-9 is Guile's initialization module, and it is always loaded when Guile starts
up.

(ice-9 debug)
Mikael Djurfeldt's source-level debugging support for Guile (see Section 3.4
[Debugging Features], page 40).

(ice-9 expect)
Actions based on matching input from a port (see Section 6.13 [Expect],
page 480).

(ice-9 format)
Formatted output in the style of Common Lisp (see Section 6.8 [Formatted
Output], page 463).

(ice-9 ftw) File tree walker (see Section 6.9 [File Tree Walk], page 473).

(ice-9 getopt-long)
Command line option processing (see Section 6.3 [getopt-long], page 418).

(ice-9 history)
Refer to previous interactive expressions (see Section 6.6 [Value History],
page 461).

(ice-9 popen)
Pipes to and from child processes (see Section 6.2.10 [Pipes], page 401).

(ice-9 pretty-print)
Nicely formatted output of Scheme expressions and objects (see Section 6.7
[Pretty Printing], page 462).

(ice-9 q) First-in �rst-out queues (see Section 6.10 [Queues], page 475).

(ice-9 rdelim)
Line- and character-delimited input (see Section 5.12.6 [Line/Delimited],
page 276).

(ice-9 readline)
readline interactive command line editing (see Section 6.5 [Readline Support],
page 457).

(ice-9 receive)
Multiple-value handling with receive (see Section 5.11.6 [Multiple Values],
page 257).
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(ice-9 regex)
Regular expression matching (see Section 5.5.6 [Regular Expressions],
page 146).

(ice-9 rw) Block string input/output (see Section 5.12.7 [Block Reading and Writing],
page 277).

(ice-9 streams)
Sequence of values calculated on-demand (see Section 6.11 [Streams], page 477).

(ice-9 syncase)
R5RS syntax-rulesmacro system (see Section 5.8.7 [Syntax Rules], page 232).

(ice-9 threads)
Guile's support for multi threaded execution (see Section 5.17 [Scheduling],
page 323).

(ice-9 documentation)
Online documentation (REFFIXME).

(sr� sr�-1)
A library providing a lot of useful list and pair processing procedures (see
Section 6.4.3 [SRFI-1], page 424).

(sr� sr�-2)
Support for and-let* (see Section 6.4.4 [SRFI-2], page 437).

(sr� sr�-4)
Support for homogeneous numeric vectors (see Section 6.4.5 [SRFI-4],
page 438).

(sr� sr�-6)
Support for some additional string port procedures (see Section 6.4.6 [SRFI-6],
page 438).

(sr� sr�-8)
Multiple-value handling with receive (see Section 6.4.7 [SRFI-8], page 439).

(sr� sr�-9)
Record de�nition with define-record-type (see Section 6.4.8 [SRFI-9],
page 439).

(sr� sr�-10)
Read hash extension #,() (see Section 6.4.9 [SRFI-10], page 440).

(sr� sr�-11)
Multiple-value handling with let-values and let-values* (see Section 6.4.10
[SRFI-11], page 442).

(sr� sr�-13)
String library (see Section 6.4.11 [SRFI-13], page 442).

(sr� sr�-14)
Character-set library (see Section 6.4.12 [SRFI-14], page 442).
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(sr� sr�-16)
case-lambda procedures of variable arity (see Section 6.4.13 [SRFI-16],
page 442).

(sr� sr�-17)
Getter-with-setter support (see Section 6.4.14 [SRFI-17], page 443).

(sr� sr�-19)
Time/Date library (see Section 6.4.15 [SRFI-19], page 443).

(sr� sr�-26)
Convenient syntax for partial application (see Section 6.4.16 [SRFI-26],
page 450)

(sr� sr�-31)
rec convenient recursive expressions (see Section 6.4.17 [SRFI-31], page 452)

(ice-9 slib)
This module contains hooks for using Aubrey Ja�er's portable Scheme library
SLIB from Guile (see Section 6.1 [SLIB], page 372).

5.16.3.7 Accessing Modules from C

The last sections have described how modules are used in Scheme code, which is the rec-
ommended way of creating and accessing modules. You can also work with modules from
C, but it is more cumbersome.

The following procedures are available.

[C Procedure]SCM scm_current_module ()
Return the module that is the current module.

[C Procedure]SCM scm_set_current_module (SCM module )
Set the current module to module and return the previous current module.

[C Procedure]SCM scm_c_call_with_current_module (SCM module, SCM
(*func )(void *), void *data )

Call func and make module the current module during the call. The argument data is
passed to func. The return value of scm_c_call_with_current_module is the return
value of func.

[C Procedure]SCM scm_c_lookup (const char *name )
Return the variable bound to the symbol indicated by name in the current module.
If there is no such binding or the symbol is not bound to a variable, signal an error.

[C Procedure]SCM scm_lookup (SCM name )
Like scm_c_lookup, but the symbol is speci�ed directly.

[C Procedure]SCM scm_c_module_lookup (SCM module, const char *name )
[C Procedure]SCM scm_module_lookup (SCM module, SCM name )

Like scm_c_lookup and scm_lookup, but the speci�ed module is used instead of the
current one.
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[C Procedure]SCM scm_c_define (const char *name, SCM val )
Bind the symbol indicated by name to a variable in the current module and set that
variable to val. When name is already bound to a variable, use that. Else create a
new variable.

[C Procedure]SCM scm_define (SCM name, SCM val )
Like scm_c_define, but the symbol is speci�ed directly.

[C Procedure]SCM scm_c_module_define (SCM module, const char *name, SCM
val )

[C Procedure]SCM scm_module_define (SCM module, SCM name, SCM val )
Like scm_c_define and scm_define, but the speci�ed module is used instead of the
current one.

[C Procedure]SCM scm_module_reverse_lookup (SCM module, SCM variable )
Find the symbol that is bound to variable in module. When no such binding is found,
return #f.

[C Procedure]SCM scm_c_define_module (const char *name, void (*init )(void *),
void *data )

De�ne a new module named name and make it current while init is called, passing it
data. Return the module.

The parameter name is a string with the symbols that make up the module name,
separated by spaces. For example, `"foo bar"' names the module `(foo bar)'.

When there already exists a module named name, it is used unchanged, otherwise,
an empty module is created.

[C Procedure]SCM scm_c_resolve_module (const char *name )
Find the module name name and return it. When it has not already been de�ned,
try to auto-load it. When it can't be found that way either, create an empty module.
The name is interpreted as for scm_c_define_module.

[C Procedure]SCM scm_resolve_module (SCM name )
Like scm_c_resolve_module, but the name is given as a real list of symbols.

[C Procedure]SCM scm_c_use_module (const char *name )
Add the module named name to the uses list of the current module, as with (use-

modules name). The name is interpreted as for scm_c_define_module.

[C Procedure]SCM scm_c_export (const char *name, ...)
Add the bindings designated by name, ... to the public interface of the current module.
The list of names is terminated by NULL.

5.16.4 Dynamic Libraries

Most modern Unices have something called shared libraries. This ordinarily means that
they have the capability to share the executable image of a library between several running
programs to save memory and disk space. But generally, shared libraries give a lot of
additional exibility compared to the traditional static libraries. In fact, calling them
`dynamic' libraries is as correct as calling them `shared'.



Chapter 5: API Reference 317

Shared libraries really give you a lot of exibility in addition to the memory and disk
space savings. When you link a program against a shared library, that library is not closely
incorporated into the �nal executable. Instead, the executable of your program only contains
enough information to �nd the needed shared libraries when the program is actually run.
Only then, when the program is starting, is the �nal step of the linking process performed.
This means that you need not recompile all programs when you install a new, only slightly
modi�ed version of a shared library. The programs will pick up the changes automatically
the next time they are run.

Now, when all the necessary machinery is there to perform part of the linking at run-
time, why not take the next step and allow the programmer to explicitly take advantage
of it from within his program? Of course, many operating systems that support shared
libraries do just that, and chances are that Guile will allow you to access this feature from
within your Scheme programs. As you might have guessed already, this feature is called
dynamic linking.1

As with many aspects of Guile, there is a low-level way to access the dynamic linking
apparatus, and a more high-level interface that integrates dynamically linked libraries into
the module system.

5.16.4.1 Low level dynamic linking

When using the low level procedures to do your dynamic linking, you have complete control
over which library is loaded when and what gets done with it.

[Scheme Procedure]dynamic-link library
[C Function]scm_dynamic_link (library)

Find the shared library denoted by library (a string) and link it into the running
Guile application. When everything works out, return a Scheme object suitable for
representing the linked object �le. Otherwise an error is thrown. How object �les are
searched is system dependent.

Normally, library is just the name of some shared library �le that will be searched
for in the places where shared libraries usually reside, such as in `/usr/lib' and
`/usr/local/lib'.

[Scheme Procedure]dynamic-object? obj
[C Function]scm_dynamic_object_p (obj)

Return #t if obj is a dynamic library handle, or #f otherwise.

[Scheme Procedure]dynamic-unlink dobj
[C Function]scm_dynamic_unlink (dobj)

Unlink the indicated object �le from the application. The argument dobj must have
been obtained by a call to dynamic-link. After dynamic-unlink has been called on
dobj, its content is no longer accessible.

[Scheme Procedure]dynamic-func name dobj

1 Some people also refer to the �nal linking stage at program startup as `dynamic linking', so if you want to
make yourself perfectly clear, it is probably best to use the more technical term dlopening, as suggested
by Gordon Matzigkeit in his libtool documentation.
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[C Function]scm_dynamic_func (name, dobj)
Search the dynamic object dobj for the C function indicated by the string name and
return some Scheme handle that can later be used with dynamic-call to actually
call the function.

Regardless whether your C compiler prepends an underscore `_' to the global names in
a program, you should not include this underscore in function. Guile knows whether
the underscore is needed or not and will add it when necessary.

[Scheme Procedure]dynamic-call func dobj
[C Function]scm_dynamic_call (func, dobj)

Call the C function indicated by func and dobj. The function is passed no arguments
and its return value is ignored. When function is something returned by dynamic-
func, call that function and ignore dobj. When func is a string , look it up in dynobj;
this is equivalent to

(dynamic-call (dynamic-func func dobj) #f)

Interrupts are deferred while the C function is executing (with SCM_DEFER_INTS/SCM_
ALLOW_INTS).

[Scheme Procedure]dynamic-args-call func dobj args
[C Function]scm_dynamic_args_call (func, dobj, args)

Call the C function indicated by func and dobj, just like dynamic-call, but pass it
some arguments and return its return value. The C function is expected to take two
arguments and return an int, just like main:

int c_func (int argc, char **argv);

The parameter args must be a list of strings and is converted into an array of char
*. The array is passed in argv and its size in argc. The return value is converted to
a Scheme number and returned from the call to dynamic-args-call.

When dynamic linking is disabled or not supported on your system, the above functions
throw errors, but they are still available.

Here is a small example that works on GNU/Linux:

(define libc-obj (dynamic-link "libc.so"))
libc-obj
) #<dynamic-object "libc.so">
(dynamic-args-call 'rand libc-obj '())
) 269167349
(dynamic-unlink libc-obj)
libc-obj
) #<dynamic-object "libc.so" (unlinked)>

As you can see, after calling dynamic-unlink on a dynamically linked library, it is
marked as `(unlinked)' and you are no longer able to use it with dynamic-call, etc.
Whether the library is really removed from you program is system-dependent and will
generally not happen when some other parts of your program still use it. In the example
above, libc is almost certainly not removed from your program because it is badly needed
by almost everything.

The functions to call a function from a dynamically linked library, dynamic-call and
dynamic-args-call, are not very powerful. They are mostly intended to be used for calling
specially written initialization functions that will then add new primitives to Guile. For
example, we do not expect that you will dynamically link `libX11' with dynamic-link
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and then construct a beautiful graphical user interface just by using dynamic-call and
dynamic-args-call. Instead, the usual way would be to write a special Guile<->X11
glue library that has intimate knowledge about both Guile and X11 and does whatever is
necessary to make them inter-operate smoothly. This glue library could then be dynamically
linked into a vanilla Guile interpreter and activated by calling its initialization function.
That function would add all the new types and primitives to the Guile interpreter that it
has to o�er.

From this setup the next logical step is to integrate these glue libraries into the module
system of Guile so that you can load new primitives into a running system just as you can
load new Scheme code.

There is, however, another possibility to get a more thorough access to the functions
contained in a dynamically linked library. Anthony Green has written `libffi', a library
that implements a foreign function interface for a number of di�erent platforms. With
it, you can extend the Spartan functionality of dynamic-call and dynamic-args-call

considerably. There is glue code available in the Guile contrib archive to make `libffi'
accessible from Guile.

5.16.4.2 Putting Compiled Code into Modules

The new primitives that you add to Guile with scm_c_define_gsubr (see Section 5.8.2
[Primitive Procedures], page 226) or with any of the other mechanisms are placed into the
(guile-user) module by default. However, it is also possible to put new primitives into
other modules.

The mechanism for doing so is not very well thought out and is likely to change when
the module system of Guile itself is revised, but it is simple and useful enough to document
it as it stands.

What scm_c_define_gsubr and the functions used by the snarfer really do is to add
the new primitives to whatever module is the current module when they are called. This
is analogous to the way Scheme code is put into modules: the define-module expression
at the top of a Scheme source �le creates a new module and makes it the current module
while the rest of the �le is evaluated. The define expressions in that �le then add their
new de�nitions to this current module.

Therefore, all we need to do is to make sure that the right module is current when calling
scm_c_define_gsubr for our new primitives.

5.16.4.3 Dynamic Linking and Compiled Code Modules

The most interesting application of dynamically linked libraries is probably to use them
for providing compiled code modules to Scheme programs. As much fun as programming
in Scheme is, every now and then comes the need to write some low-level C stu� to make
Scheme even more fun.

Not only can you put these new primitives into their own module (see the previous
section), you can even put them into a shared library that is only then linked to your
running Guile image when it is actually needed.

An example will hopefully make everything clear. Suppose we want to make the Bessel
functions of the C library available to Scheme in the module `(math bessel)'. First we
need to write the appropriate glue code to convert the arguments and return values of the
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functions from Scheme to C and back. Additionally, we need a function that will add them
to the set of Guile primitives. Because this is just an example, we will only implement this
for the j0 function.

#include <math.h>
#include <libguile.h>

SCM
j0_wrapper (SCM x)
{
return scm_double2num (j0 (scm_num2dbl (x, "j0")));

}

void
init_math_bessel ()
{
scm_c_define_gsubr ("j0", 1, 0, 0, j0_wrapper);

}

We can already try to bring this into action by manually calling the low level functions
for performing dynamic linking. The C source �le needs to be compiled into a shared library.
Here is how to do it on GNU/Linux, please refer to the libtool documentation for how to
create dynamically linkable libraries portably.

gcc -shared -o libbessel.so -fPIC bessel.c

Now �re up Guile:

(define bessel-lib (dynamic-link "./libbessel.so"))
(dynamic-call "init_math_bessel" bessel-lib)
(j0 2)
) 0.223890779141236

The �lename `./libbessel.so' should be pointing to the shared library produced with
the gcc command above, of course. The second line of the Guile interaction will call the
init_math_bessel function which in turn will register the C function j0_wrapper with the
Guile interpreter under the name j0. This function becomes immediately available and we
can call it from Scheme.

Fun, isn't it? But we are only half way there. This is what apropos has to say about
j0:

(apropos "j0")

a (guile-user): j0 #<primitive-procedure j0>

As you can see, j0 is contained in the root module, where all the other Guile primitives
like display, etc live. In general, a primitive is put into whatever module is the current
module at the time scm_c_define_gsubr is called.

A compiled module should have a specially named module init function. Guile knows
about this special name and will call that function automatically after having linked in the
shared library. For our example, we replace init_math_bessel with the following code in
`bessel.c':

void
init_math_bessel (void *unused)
{
scm_c_define_gsubr ("j0", 1, 0, 0, j0_wrapper);
scm_c_export ("j0", NULL);

}
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void
scm_init_math_bessel_module ()
{
scm_c_define_module ("math bessel", init_math_bessel, NULL);

}

The general pattern for the name of a module init function is: `scm_init_', followed
by the name of the module where the individual hierarchical components are concatenated
with underscores, followed by `_module'.

After `libbessel.so' has been rebuilt, we need to place the shared library into the right
place.

Once the module has been correctly installed, it should be possible to use it like this:

guile> (load-extension "./libbessel.so" "scm_init_math_bessel_module")
guile> (use-modules (math bessel))
guile> (j0 2)
0.223890779141236
guile> (apropos "j0")

a (math bessel): j0 #<primitive-procedure j0>

That's it!

[Scheme Procedure]load-extension lib init
[C Function]scm_load_extension (lib, init)

Load and initialize the extension designated by LIB and INIT. When there is no
pre-registered function for LIB/INIT, this is equivalent to

(dynamic-call INIT (dynamic-link LIB))

When there is a pre-registered function, that function is called instead.

Normally, there is no pre-registered function. This option exists only for situations
where dynamic linking is unavailable or unwanted. In that case, you would statically
link your program with the desired library, and register its init function right after
Guile has been initialized.

LIB should be a string denoting a shared library without any �le type su�x such as
".so". The su�x is provided automatically. It should also not contain any directory
components. Libraries that implement Guile Extensions should be put into the normal
locations for shared libraries. We recommend to use the naming convention libguile-
bla-blum for a extension related to a module `(bla blum)'.

The normal way for a extension to be used is to write a small Scheme �le that de�nes a
module, and to load the extension into this module. When the module is auto-loaded,
the extension is loaded as well. For example,

(define-module (bla blum))

(load-extension "libguile-bla-blum" "bla_init_blum")

5.16.4.4 Compiled Code Installation

The simplest way to write a module using compiled C code is

(define-module (foo bar))

(load-extension "foobar-c-code" "foo_bar_init")
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When loaded with (use-modules (foo bar)), the load-extension call looks for the
`foobar-c-code.so' (etc) object �le in the standard system locations, such as `/usr/lib'
or `/usr/local/lib'.

If someone installs your module to a non-standard location then the object �le won't
be found. You can address this by inserting the install location in the `foo/bar.scm' �le.
This is convenient for the user and also guarantees the intended object is read, even if stray
older or newer versions are in the loader's path.

The usual way to specify an install location is with a prefix at the con�g-
ure stage, for instance `./configure prefix=/opt' results in library �les as say
`/opt/lib/foobar-c-code.so'. When using Autoconf (see section \Introduction" in The
GNU Autoconf Manual), the library location is in a libdir variable. Its value is intended
to be expanded by make, and can by substituted into a source �le like `foo.scm.in'

(define-module (foo bar))

(load-extension "XXlibdirXX/foobar-c-code" "foo_bar_init")

with the following in a `Makefile', using sed (see section \Introduction" in SED),

foo.scm: foo.scm.in

sed 's|XXlibdirXX|$(libdir)|' <foo.scm.in >foo.scm

The actual pattern XXlibdirXX is arbitrary, it's only something which doesn't otherwise
occur. If several modules need the value, it can be easier to create one `foo/config.scm'
with a de�ne of the libdir location, and use that as required.

(define-module (foo config))

(define-public foo-config-libdir "XXlibdirXX"")

Such a �le might have other locations too, for instance a data directory for auxiliary
�les, or localedir if the module has its own gettext message catalogue (see Section 5.20
[Internationalization], page 345).

When installing multiple C code objects, it can be convenient to put them in a subdi-
rectory of libdir, thus giving for example /usr/lib/foo/some-obj.so. If the objects are
only meant to be used through the module, then a subdirectory keeps them out of sight.

It will be noted all of the above requires that the Scheme code to be found in %load-

path (see Section 5.18.1 [Build Con�g], page 334). Presently it's left up to the system
administrator or each user to augment that path when installing Guile modules in non-
default locations. But having reached the Scheme code, that code should take care of
hitting any of its own private �les etc.

Presently there's no convention for having a Guile version number in module C code
�lenames or directories. This is primarily because there's no established principles for two
versions of Guile to be installed under the same pre�x (eg. two both under `/usr'). Assum-
ing upward compatibility is maintained then this should be unnecessary, and if compatibility
is not maintained then it's highly likely a package will need to be revisited anyway.

The present suggestion is that modules should assume when they're installed under a
particular prefix that there's a single version of Guile there, and the guile-config at
build time has the necessary information about it. C code or Scheme code might adapt
itself accordingly (allowing for features not available in an older version for instance).
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5.16.5 Variables

Each module has its own hash table, sometimes known as an obarray, that maps the names
de�ned in that module to their corresponding variable objects.

A variable is a box-like object that can hold any Scheme value. It is said to be unde�ned
if its box holds a special Scheme value that denotes unde�ned-ness (which is di�erent from
all other Scheme values, including for example #f); otherwise the variable is de�ned.

On its own, a variable object is anonymous. A variable is said to be bound when it is
associated with a name in some way, usually a symbol in a module obarray. When this
happens, the relationship is mutual: the variable is bound to the name (in that module),
and the name (in that module) is bound to the variable.

(That's the theory, anyway. In practice, de�ned-ness and bound-ness sometimes get
confused, because Lisp and Scheme implementations have often conated | or deliberately
drawn no distinction between | a name that is unbound and a name that is bound to a
variable whose value is unde�ned. We will try to be clear about the di�erence and explain
any confusion where it is unavoidable.)

Variables do not have a read syntax. Most commonly they are created and bound
implicitly by define expressions: a top-level define expression of the form

(define name value)

creates a variable with initial value value and binds it to the name name in the current mod-
ule. But they can also be created dynamically by calling one of the constructor procedures
make-variable and make-undefined-variable.

First-class variables are especially useful for interacting with the current module system
(see Section 5.16.3 [The Guile module system], page 304).

[Scheme Procedure]make-undefined-variable
[C Function]scm_make_undefined_variable ()

Return a variable that is initially unbound.

[Scheme Procedure]make-variable init
[C Function]scm_make_variable (init)

Return a variable initialized to value init.

[Scheme Procedure]variable-bound? var
[C Function]scm_variable_bound_p (var)

Return #t i� var is bound to a value. Throws an error if var is not a variable object.

[Scheme Procedure]variable-ref var
[C Function]scm_variable_ref (var)

Dereference var and return its value. var must be a variable object; see make-

variable and make-undefined-variable.

[Scheme Procedure]variable-set! var val
[C Function]scm_variable_set_x (var, val)

Set the value of the variable var to val. var must be a variable object, val can be any
value. Return an unspeci�ed value.
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[Scheme Procedure]variable? obj
[C Function]scm_variable_p (obj)

Return #t i� obj is a variable object, else return #f.
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5.17 Threads, Mutexes, Asyncs and Dynamic Roots

[FIXME: This is pasted in from Tom Lord's original guile.texi chapter plus the Cygnus
programmer's manual; it should be *very* carefully reviewed and largely reorganized.]

5.17.1 Arbiters

Arbiters are synchronization objects, they can be used by threads to control access to a
shared resource. An arbiter can be locked to indicate a resource is in use, and unlocked
when done.

An arbiter is like a light-weight mutex (see Section 5.17.5 [Mutexes and Condition Vari-
ables], page 326). It uses less memory and may be faster, but there's no way for a thread
to block waiting on an arbiter, it can only test and get the status returned.

[Scheme Procedure]make-arbiter name
[C Function]scm_make_arbiter (name)

Return an object of type arbiter and name name. Its state is initially unlocked.
Arbiters are a way to achieve process synchronization.

[Scheme Procedure]try-arbiter arb
[C Function]scm_try_arbiter (arb)
[C Function]scm_try_arbiter (arb)

If arb is unlocked, then lock it and return #t. If arb is already locked, then do nothing
and return #f.

[Scheme Procedure]release-arbiter arb
[C Function]scm_release_arbiter (arb)

If arb is locked, then unlock it and return #t. If arb is already unlocked, then do
nothing and return #f.

Typical usage is for the thread which locked an arbiter to later release it, but that's
not required, any thread can release it.

5.17.2 Asyncs

Asyncs are a means of deferring the excution of Scheme code until it is safe to do so.

Guile provides two kinds of asyncs that share the basic concept but are otherwise quite
di�erent: system asyncs and user asyncs. System asyncs are integrated into the core of
Guile and are executed automatically when the system is in a state to allow the execution
of Scheme code. For example, it is not possible to execute Scheme code in a POSIX signal
handler, but such a signal handler can queue a system async to be executed in the near
future, when it is safe to do so.

System asyncs can also be queued for threads other than the current one. This way, you
can cause threads to asynchronously execute arbitrary code.

User asyncs o�er a convenient means of queueing procedures for future execution and
triggering this execution. They will not be executed automatically.

5.17.2.1 System asyncs

To cause the future asynchronous execution of a procedure in a given thread, use system-
async-mark.
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Automatic invocation of system asyncs can be temporarily disabled by calling call-

with-blocked-asyncs. This function works by temporarily increasing the async blocking

level of the current thread while a given procedure is running. The blocking level starts out
at zero, and whenever a safe point is reached, a blocking level greater than zero will prevent
the execution of queued asyncs.

Analogously, the procedure call-with-unblocked-asyncs will temporarily decrease the
blocking level of the current thread. You can use it when you want to disable asyncs by
default and only allow them temporarily.

In addition to the C versions of call-with-blocked-asyncs and call-with-

unblocked-asyncs, C code can use scm_dynwind_block_asyncs and scm_dynwind_

unblock_asyncs inside a dynamic context (see Section 5.11.9 [Dynamic Wind], page 266)
to block or unblock system asyncs temporarily.

[Scheme Procedure]system-async-mark proc [thread]
[C Function]scm_system_async_mark (proc)
[C Function]scm_system_async_mark_for_thread (proc, thread)

Mark proc (a procedure with zero arguments) for future execution in thread. When
proc has already been marked for thread but has not been executed yet, this call
has no e�ect. When thread is omitted, the thread that called system-async-mark is
used.

This procedure is not safe to be called from signal handlers. Use scm_sigaction or
scm_sigaction_for_thread to install signal handlers.

[Scheme Procedure]call-with-blocked-asyncs proc
[C Function]scm_call_with_blocked_asyncs (proc)
[C Function]void * scm c call with blocked asyncs (void * (*proc) (void *data),

void *data)
Call proc and block the execution of system asyncs by one level for the current thread
while it is running. Return the value returned by proc. For the �rst two variants, call
proc with no arguments; for the third, call it with data.

[Scheme Procedure]call-with-unblocked-asyncs proc
[C Function]scm_call_with_unblocked_asyncs (proc)
[C Function]void * scm c call with unblocked asyncs (void *(*p) (void *d), void *d)

Call proc and unblock the execution of system asyncs by one level for the current
thread while it is running. Return the value returned by proc. For the �rst two
variants, call proc with no arguments; for the third, call it with data.

[C Function]void scm_dynwind_block_asyncs ()
This function must be used inside a pair of calls to scm_dynwind_begin and scm_

dynwind_end (see Section 5.11.9 [Dynamic Wind], page 266). During the dynwind
context, asyncs are blocked by one level.

[C Function]void scm_dynwind_unblock_asyncs ()
This function must be used inside a pair of calls to scm_dynwind_begin and scm_

dynwind_end (see Section 5.11.9 [Dynamic Wind], page 266). During the dynwind
context, asyncs are unblocked by one level.
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5.17.2.2 User asyncs

A user async is a pair of a thunk (a parameterless procedure) and a mark. Setting the
mark on a user async will cause the thunk to be executed when the user async is passed to
run-asyncs. Setting the mark more than once is satis�ed by one execution of the thunk.

User asyncs are created with async. They are marked with async-mark.

[Scheme Procedure]async thunk
[C Function]scm_async (thunk)

Create a new user async for the procedure thunk.

[Scheme Procedure]async-mark a
[C Function]scm_async_mark (a)

Mark the user async a for future execution.

[Scheme Procedure]run-asyncs list of a
[C Function]scm_run_asyncs (list of a)

Execute all thunks from the marked asyncs of the list list of a.

5.17.3 Continuation Barriers

The non-local ow of control caused by continuations might sometimes not be wanted. You
can use with-continuation-barrier etc to errect fences that continuations can not pass.

[Scheme Procedure]with-continuation-barrier proc
[C Function]scm_with_continuation_barrier (proc)

Call proc and return its result. Do not allow the invocation of continuations that
would leave or enter the dynamic extent of the call to with-continuation-barrier.
Such an attempt causes an error to be signaled.

Throws (such as errors) that are not caught from within proc are caught by with-

continuation-barrier. In that case, a short message is printed to the current error
port and #f is returned.

Thus, with-continuation-barrier returns exactly once.

[C Function]void * scm_c_with_continuation_barrier (void *(*func) (void
*), void *data)

Like scm_with_continuation_barrier but call func on data. When an error is
caught, NULL is returned.

5.17.4 Threads

[Scheme Procedure]all-threads
[C Function]scm_all_threads ()

Return a list of all threads.

[Scheme Procedure]current-thread
[C Function]scm_current_thread ()

Return the thread that called this function.



328 Guile Reference Manual

[Scheme Procedure]call-with-new-thread thunk [handler]
Call thunk in a new thread and with a new dynamic state, returning the new thread.
The procedure thunk is called via with-continuation-barrier.

When handler is speci�ed, then thunk is called from within a catch with tag #t that
has handler as its handler. This catch is established inside the continuation barrier.

Once thunk or handler returns, the return value is made the exit value of the thread
and the thread is terminated.

[C Function]SCM scm_spawn_thread (scm t catch body body, void *body data,
scm t catch handler handler, void *handler data)

Call body in a new thread, passing it body data, returning the new thread. The
function body is called via scm_c_with_continuation_barrier.

When handler is non-NULL, body is called via scm_internal_catch with tag SCM_

BOOL_T that has handler and handler data as the handler and its data. This catch is
established inside the continuation barrier.

Once body or handler returns, the return value is made the exit value of the thread
and the thread is terminated.

[Scheme Procedure]join-thread thread
Wait for thread to terminate and return its exit value. Threads that have not been
created with call-with-new-thread or scm_spawn_thread have an exit value of #f.

[Scheme Procedure]thread-exited? thread
[C Function]scm_thread_exited_p (thread)

Return #t i� thread has exited.

[Scheme Procedure]yield
If one or more threads are waiting to execute, calling yield forces an immediate context
switch to one of them. Otherwise, yield has no e�ect.

Higher level thread procedures are available by loading the (ice-9 threads) module.
These provide standardized thread creation.

[macro]make-thread proc [args. . . ]
Apply proc to args in a new thread formed by call-with-new-thread using a default
error handler that display the error to the current error port. The args. . . expressions
are evaluated in the new thread.

[macro]begin-thread �rst [rest. . . ]
Evaluate forms �rst and rest in a new thread formed by call-with-new-thread using
a default error handler that display the error to the current error port.

5.17.5 Mutexes and Condition Variables

A mutex is a thread synchronization object, it can be used by threads to control access to a
shared resource. A mutex can be locked to indicate a resource is in use, and other threads
can then block on the mutex to wait for the resource (or can just test and do something
else if not available). \Mutex" is short for \mutual exclusion".
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There are two types of mutexes in Guile, \standard" and \recursive". They're created
by make-mutex and make-recursive-mutex respectively, the operation functions are then
common to both.

Note that for both types of mutex there's no protection against a \deadly embrace". For
instance if one thread has locked mutex A and is waiting on mutex B, but another thread
owns B and is waiting on A, then an endless wait will occur (in the current implementation).
Acquiring requisite mutexes in a �xed order (like always A before B) in all threads is one
way to avoid such problems.

[Scheme Procedure]make-mutex
[C Function]scm_make_mutex ()

Return a new standard mutex. It is initially unlocked.

[Scheme Procedure]make-recursive-mutex
[C Function]scm_make_recursive_mutex ()

Create a new recursive mutex. It is initialloy unlocked.

[Scheme Procedure]lock-mutex mutex
[C Function]scm_lock_mutex (mutex)

Lock mutex. If the mutex is already locked by another thread then block and return
only when mutex has been acquired.

For standard mutexes (make-mutex), and error is signalled if the thread has itself
already locked mutex.

For a recursive mutex (make-recursive-mutex), if the thread has itself already locked
mutex, then a further lock-mutex call increments the lock count. An additional
unlock-mutex will be required to �nally release.

When a system async (see Section 5.17.2.1 [System asyncs], page 323) is activated for
a thread blocked in lock-mutex, the wait is interrupted and the async is executed.
When the async returns, the wait resumes.

[C Function]void scm_dynwind_lock_mutex (SCM mutex)
Arrange for mutex to be locked whenever the current dynwind context is entered and
to be unlocked when it is exited.

[Scheme Procedure]try-mutex mx
[C Function]scm_try_mutex (mx)

Try to lock mutex as per lock-mutex. If mutex can be acquired immediately then
this is done and the return is #t. Ifmutex is locked by some other thread then nothing
is done and the return is #f.

[Scheme Procedure]unlock-mutex mutex
[C Function]scm_unlock_mutex (mutex)

Unlock mutex. An error is signalled if mutex is not locked by the calling thread.

[Scheme Procedure]make-condition-variable
[C Function]scm_make_condition_variable ()

Return a new condition variable.
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[Scheme Procedure]wait-condition-variable condvar mutex [time]
[C Function]scm_wait_condition_variable (condvar, mutex, time)

Wait until condvar has been signalled. While waiting, mutex is atomically unlocked
(as with unlock-mutex) and is locked again when this function returns. When time
is given, it speci�es a point in time where the waiting should be aborted. It can be
either a integer as returned by current-time or a pair as returned by gettimeofday.
When the waiting is aborted, #f is returned. When the condition variable has in
fact been signalled, #t is returned. The mutex is re-locked in any case before wait-
condition-variable returns.

When a system async is activated for a thread that is blocked in a call to wait-

condition-variable, the waiting is interrupted, the mutex is locked, and the async
is executed. When the async returns, the mutex is unlocked again and the waiting is
resumed. When the thread block while re-acquiring the mutex, execution of asyncs
is blocked.

[Scheme Procedure]signal-condition-variable condvar
[C Function]scm_signal_condition_variable (condvar)

Wake up one thread that is waiting for condvar.

[Scheme Procedure]broadcast-condition-variable condvar
[C Function]scm_broadcast_condition_variable (condvar)

Wake up all threads that are waiting for condvar.

The following are higher level operations on mutexes. These are available from

(use-modules (ice-9 threads))

[macro]with-mutex mutex [body. . . ]
Lock mutex, evaluate the body forms, then unlock mutex. The return value is the
return from the last body form.

The lock, body and unlock form the branches of a dynamic-wind (see Section 5.11.9
[Dynamic Wind], page 266), so mutex is automatically unlocked if an error or new
continuation exits body, and is re-locked if body is re-entered by a captured contin-
uation.

[macro]monitor body. . .
Evaluate the body forms, with a mutex locked so only one thread can execute that
code at any one time. The return value is the return from the last body form.

Each monitor form has its own private mutex and the locking and evaluation is as
per with-mutex above. A standard mutex (make-mutex) is used, which means body
must not recursively re-enter the monitor form.

The term \monitor" comes from operating system theory, where it means a particular
bit of code managing access to some resource and which only ever executes on behalf
of one process at any one time.
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5.17.6 Blocking in Guile Mode

A thread must not block outside of a libguile function while it is in guile mode. The following
functions can be used to temporily leave guile mode or to perform some common blocking
operations in a supported way.

[C Function]void * scm_without_guile (void *(*func) (void *), void *data)
Leave guile mode, call func on data, enter guile mode and return the result of calling
func.

While a thread has left guile mode, it must not call any libguile functions except
scm_with_guile or scm_without_guile and must not use any libguile macros. Also,
local variables of type SCM that are allocated while not in guile mode are not protected
from the garbage collector.

When used from non-guile mode, calling scm_without_guile is still allowed: it simply
calls func. In that way, you can leave guile mode without having to know whether
the current thread is in guile mode or not.

[C Function]int scm_pthread_mutex_lock (pthread mutex t *mutex)
Like pthread_mutex_lock, but leaves guile mode while waiting for the mutex.

[C Function]int scm_pthread_cond_wait (pthread cond t *cond,
pthread mutex t *mutex)

[C Function]int scm_pthread_cond_timedwait (pthread cond t *cond,
pthread mutex t *mutex, struct timespec *abstime)

Like pthread_cond_wait and pthread_cond_timedwait, but leaves guile mode while
waiting for the condition variable.

[C Function]int scm_std_select (int nfds, fd set *readfds, fd set *writefds, fd set
*exceptfds, struct timeval *timeout)

Like select but leaves guile mode while waiting. Also, the delivery of a system async
causes this function to be interrupted with error code EINTR.

[C Function]unsigned int scm_std_sleep (unsigned int seconds)
Like sleep, but leaves guile mode while sleeping. Also, the delivery of a system async
causes this function to be interrupted.

[C Function]unsigned long scm_std_usleep (unsigned long usecs)
Like usleep, but leaves guile mode while sleeping. Also, the delivery of a system
async causes this function to be interrupted.

5.17.7 Critical Sections

[C Macro]SCM_CRITICAL_SECTION_START
[C Macro]SCM_CRITICAL_SECTION_END

These two macros can be used to delimit a critical section. Syntactically, they are
both statements and need to be followed immediately by a semicolon.

Executing SCM_CRITICAL_SECTION_START will lock a recursive mutex and block the
executing of system asyncs. Executing SCM_CRITICAL_SECTION_END will unblock the
execution of system asyncs and unlock the mutex. Thus, the code that executes
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between these two macros can only be executed in one thread at any one time and
no system asyncs will run. However, because the mutex is a recursive one, the code
might still be reentered by the same thread. You must either allow for this or avoid
it, both by careful coding.

On the other hand, critical sections delimited with these macros can be nested since
the mutex is recursive.

You must make sure that for each SCM_CRITICAL_SECTION_START, the corresponding
SCM_CRITICAL_SECTION_END is always executed. This means that no non-local exit
(such as a signalled error) might happen, for example.

[C Function]void scm_dynwind_critical_section (SCM mutex)
Call scm_dynwind_lock_mutex on mutex and call scm_dynwind_block_asyncs.
When mutex is false, a recursive mutex provided by Guile is used instead.

The e�ect of a call to scm_dynwind_critical_section is that the current dynwind
context (see Section 5.11.9 [Dynamic Wind], page 266) turns into a critical section.
Because of the locked mutex, no second thread can enter it concurrently and because
of the blocked asyncs, no system async can reenter it from the current thread.

When the current thread reenters the critical section anyway, the kind of mutex
determines what happens: When mutex is recursive, the reentry is allowed. When it
is a normal mutex, an error is signalled.

5.17.8 Fluids and Dynamic States

A uid is an object that can store one value per dynamic state. Each thread has a current
dynamic state, and when accessing a uid, this current dynamic state is used to provide the
actual value. In this way, uids can be used for thread local storage, but they are in fact
more exible: dynamic states are objects of their own and can be made current for more
than one thread at the same time, or only be made current temporarily, for example.

Fluids can also be used to simulate the desirable e�ects of dynamically scoped variables.
Dynamically scoped variables are useful when you want to set a variable to a value during
some dynamic extent in the execution of your program and have them revert to their
original value when the control ow is outside of this dynamic extent. See the description
of with-fluids below for details.

New uids are created with make-fluid and fluid? is used for testing whether an
object is actually a uid. The values stored in a uid can be accessed with fluid-ref and
fluid-set!.

[Scheme Procedure]make-fluid
[C Function]scm_make_fluid ()

Return a newly created uid. Fluids are objects that can hold one value per dynamic
state. That is, modi�cations to this value are only visible to code that executes
with the same dynamic state as the modifying code. When a new dynamic state
is constructed, it inherits the values from its parent. Because each thread normally
executes with its own dynamic state, you can use uids for thread local storage.

[Scheme Procedure]fluid? obj
[C Function]scm_fluid_p (obj)

Return #t i� obj is a uid; otherwise, return #f.
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[Scheme Procedure]fluid-ref uid
[C Function]scm_fluid_ref (uid)

Return the value associated with uid in the current dynamic root. If uid has not
been set, then return #f.

[Scheme Procedure]fluid-set! uid value
[C Function]scm_fluid_set_x (uid, value)

Set the value associated with uid in the current dynamic root.

with-fluids* temporarily changes the values of one or more uids, so that the given
procedure and each procedure called by it access the given values. After the procedure
returns, the old values are restored.

[Scheme Procedure]with-fluid* uid value thunk
[C Function]scm_with_fluid (uid, value, thunk)

Set uid to value temporarily, and call thunk. thunk must be a procedure with no
argument.

[Scheme Procedure]with-fluids* uids values thunk
[C Function]scm_with_fluids (uids, values, thunk)

Set uids to values temporary, and call thunk. uids must be a list of uids and
values must be the same number of their values to be applied. Each substitution is
done in the order given. thunk must be a procedure with no argument. it is called
inside a dynamic-wind and the uids are set/restored when control enter or leaves
the established dynamic extent.

[Scheme Macro]with-fluids ((uid value) ...) body...
Execute body... while each uid is set to the corresponding value. Both uid and value
are evaluated and uid must yield a uid. body... is executed inside a dynamic-wind

and the uids are set/restored when control enter or leaves the established dynamic
extent.

[C Function]SCM scm_c_with_fluids (SCM uids, SCM vals, SCM (*cproc)(void
*), void *data)

[C Function]SCM scm_c_with_fluid (SCM uid, SCM val, SCM (*cproc)(void *),
void *data)

The function scm_c_with_fluids is like scm_with_fluids except that it takes a C
function to call instead of a Scheme thunk.

The function scm_c_with_fluid is similar but only allows one uid to be set instead
of a list.

[C Function]void scm_dynwind_fluid (SCM uid, SCM val)
This function must be used inside a pair of calls to scm_dynwind_begin and scm_

dynwind_end (see Section 5.11.9 [Dynamic Wind], page 266). During the dynwind
context, the uid uid is set to val.

More precisely, the value of the uid is swapped with a `backup' value whenever
the dynwind context is entered or left. The backup value is initialized with the val
argument.
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[Scheme Procedure]make-dynamic-state [parent]
[C Function]scm_make_dynamic_state (parent)

Return a copy of the dynamic state object parent or of the current dynamic state
when parent is omitted.

[Scheme Procedure]dynamic-state? obj
[C Function]scm_dynamic_state_p (obj)

Return #t if obj is a dynamic state object; return #f otherwise.

[C Procedure]int scm_is_dynamic_state (SCM obj)
Return non-zero if obj is a dynamic state object; return zero otherwise.

[Scheme Procedure]current-dynamic-state
[C Function]scm_current_dynamic_state ()

Return the current dynamic state object.

[Scheme Procedure]set-current-dynamic-state state
[C Function]scm_set_current_dynamic_state (state)

Set the current dynamic state object to state and return the previous current dynamic
state object.

[Scheme Procedure]with-dynamic-state state proc
[C Function]scm_with_dynamic_state (state, proc)

Call proc while state is the current dynamic state object.

[C Procedure]void scm_dynwind_current_dynamic_state (SCM state)
Set the current dynamic state to state for the current dynwind context.

[C Procedure]void * scm_c_with_dynamic_state (SCM state, void
*(*func)(void *), void *data)

Like scm_with_dynamic_state, but call func with data.

5.17.9 Parallel forms

The functions described in this section are available from

(use-modules (ice-9 threads))

[syntax]parallel expr1 . . . exprN
Evaluate each expr expression in parallel, each in its own thread. Return the results
as a set of N multiple values (see Section 5.11.6 [Multiple Values], page 257).

[syntax]letpar ((var1 expr1) . . . (varN exprN)) body. . .
Evaluate each expr in parallel, each in its own thread, then bind the results to the
corresponding var variables and evaluate body.

letpar is like let (see Section 5.10.2 [Local Bindings], page 248), but all the expres-
sions for the bindings are evaluated in parallel.

[Scheme Procedure]par-map proc lst1 . . . lstN
[Scheme Procedure]par-for-each proc lst1 . . . lstN

Call proc on the elements of the given lists. par-map returns a list comprising the
return values from proc. par-for-each returns an unspeci�ed value, but waits for
all calls to complete.
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The proc calls are (proc elem1 ... elemN), where each elem is from the correspond-
ing lst. Each lst must be the same length. The calls are made in parallel, each in its
own thread.

These functions are like map and for-each (see Section 5.6.2.8 [List Mapping],
page 174), but make their proc calls in parallel.

[Scheme Procedure]n-par-map n proc lst1 . . . lstN
[Scheme Procedure]n-par-for-each n proc lst1 . . . lstN

Call proc on the elements of the given lists, in the same way as par-map and par-

for-each above, but use no more than n threads at any one time. The order in which
calls are initiated within that threads limit is unspeci�ed.

These functions are good for controlling resource consumption if proc calls might be
costly, or if there are many to be made. On a dual-CPU system for instance n = 4
might be enough to keep the CPUs utilized, and not consume too much memory.

[Scheme Procedure]n-for-each-par-map n sproc pproc lst1 . . . lstN
Apply pproc to the elements of the given lists, and apply sproc to each result returned
by pproc. The �nal return value is unspeci�ed, but all calls will have been completed
before returning.

The calls made are (sproc (pproc elem1 ... elemN)), where each elem is from the
corresponding lst. Each lst must have the same number of elements.

The pproc calls are made in parallel, in separate threads. No more than n threads
are used at any one time. The order in which pproc calls are initiated within that
limit is unspeci�ed.

The sproc calls are made serially, in list element order, one at a time. pproc calls
on later elements may execute in parallel with the sproc calls. Exactly which thread
makes each sproc call is unspeci�ed.

This function is designed for individual calculations that can be done in parallel, but
with results needing to be handled serially, for instance to write them to a �le. The
n limit on threads controls system resource usage when there are many calculations
or when they might be costly.

It will be seen that n-for-each-par-map is like a combination of n-par-map and
for-each,

(for-each sproc (n-par-map n pproc lst1 ... lstN))

But the actual implementation is more e�cient since each sproc call, in turn, can be
initiated once the relevant pproc call has completed, it doesn't need to wait for all to
�nish.



336 Guile Reference Manual

5.18 Con�guration, Features and Runtime Options

Why is my Guile di�erent from your Guile? There are three kinds of possible variation:

� build di�erences | di�erent versions of the Guile source code, installation directories,
con�guration ags that control pieces of functionality being included or left out, etc.

� di�erences in dynamically loaded code | behaviour and features provided by modules
that can be dynamically loaded into a running Guile

� di�erent runtime options | some of the options that are provided for controlling Guile's
behaviour may be set di�erently.

Guile provides \introspective" variables and procedures to query all of these possible
variations at runtime. For runtime options, it also provides procedures to change the settings
of options and to obtain documentation on what the options mean.

5.18.1 Con�guration, Build and Installation

The following procedures and variables provide information about how Guile was con�gured,
built and installed on your system.

[Scheme Procedure]version
[Scheme Procedure]effective-version
[Scheme Procedure]major-version
[Scheme Procedure]minor-version
[Scheme Procedure]micro-version

[C Function]scm_version ()
[C Function]scm_effective_version ()
[C Function]scm_major_version ()
[C Function]scm_minor_version ()
[C Function]scm_micro_version ()

Return a string describing Guile's full version number, e�ective version number, ma-
jor, minor or micro version number, respectively. The effective-version function
returns the version name that should remain unchanged during a stable series. Cur-
rently that means that it omits the micro version. The e�ective version should be
used for items like the versioned share directory name i.e. `/usr/share/guile/1.6/'

(version) ) "1.6.0"

(effective-version) ) "1.6"

(major-version) ) "1"

(minor-version) ) "6"

(micro-version) ) "0"

[Scheme Procedure]%package-data-dir
[C Function]scm_sys_package_data_dir ()

Return the name of the directory under which Guile Scheme �les in general
are stored. On Unix-like systems, this is usually `/usr/local/share/guile' or
`/usr/share/guile'.

[Scheme Procedure]%library-dir
[C Function]scm_sys_library_dir ()

Return the name of the directory where the Guile Scheme �les that
belong to the core Guile installation (as opposed to �les from a
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3rd party package) are installed. On Unix-like systems, this is
usually `/usr/local/share/guile/<GUILE_EFFECTIVE_VERSION>' or
`/usr/share/guile/<GUILE_EFFECTIVE_VERSION>', for example: `/usr/local/share/guile/1.6'.

[Scheme Procedure]%site-dir
[C Function]scm_sys_site_dir ()

Return the name of the directory where Guile Scheme �les speci�c to your site should
be installed. On Unix-like systems, this is usually `/usr/local/share/guile/site'
or `/usr/share/guile/site'.

[Variable]%load-path
List of directories which should be searched for Scheme modules and li-
braries. %load-path is initialized when Guile starts up to (list (%site-dir)

(%library-dir) (%package-data-dir) "."), prepended with the contents of the
GUILE LOAD PATH environment variable, if it is set.

[Scheme Procedure]parse-path path [tail]
[C Function]scm_parse_path (path, tail)

Parse path, which is expected to be a colon-separated string, into a list and return
the resulting list with tail appended. If path is #f, tail is returned.

[Scheme Procedure]search-path path �lename [extensions]
[C Function]scm_search_path (path, �lename, extensions)

Search path for a directory containing a �le named �lename. The �le must be read-
able, and not a directory. If we �nd one, return its full �lename; otherwise, return #f.
If �lename is absolute, return it unchanged. If given, extensions is a list of strings;
for each directory in path, we search for �lename concatenated with each extension.

[Variable]%guile-build-info
Alist of information collected during the building of a particular Guile. Entries can
be grouped into one of several categories: directories, env vars, and versioning info.

Briey, here are the keys in %guile-build-info, by group:

directories srcdir, top srcdir, pre�x, exec pre�x, bindir, sbindir, libexecdir,
datadir, sysconfdir, sharedstatedir, localstatedir, libdir, infodir, mandir,
includedir, pkgdatadir, pkglibdir, pkgincludedir

env vars LIBS

versioning info
guileversion, libguileinterface, buildstamp

Values are all strings. The value for LIBS is typically found also as a part of "guile-
con�g link" output. The value for guileversion has form X.Y.Z, and should be
the same as returned by (version). The value for libguileinterface is libtool
compatible and has form CURRENT:REVISION:AGE (see section \Library interface
versions" in GNU Libtool). The value for buildstamp is the output of the date(1)
command.

In the source, %guile-build-info is initialized from libguile/libpath.h, which is com-
pletely generated, so deleting this �le before a build guarantees up-to-date values for
that build.
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5.18.2 Feature Tracking

Guile has a Scheme level variable *features* that keeps track to some extent of the features
that are available in a running Guile. *features* is a list of symbols, for example threads,
each of which describes a feature of the running Guile process.

[Variable]*features*
A list of symbols describing available features of the Guile process.

You shouldn't modify the *features* variable directly using set!. Instead, see the
procedures that are provided for this purpose in the following subsection.

5.18.2.1 Feature Manipulation

To check whether a particular feature is available, use the provided? procedure:

[Scheme Procedure]provided? feature
[Deprecated Scheme Procedure]feature? feature

Return #t if the speci�ed feature is available, otherwise #f.

To advertise a feature from your own Scheme code, you can use the provide procedure:

[Scheme Procedure]provide feature
Add feature to the list of available features in this Guile process.

For C code, the equivalent function takes its feature name as a char * argument for
convenience:

[C Function]void scm_add_feature (const char *str)
Add a symbol with name str to the list of available features in this Guile process.

5.18.2.2 Common Feature Symbols

In general, a particular feature may be available for one of two reasons. Either because
the Guile library was con�gured and compiled with that feature enabled | i.e. the feature
is built into the library on your system. Or because some C or Scheme code that was
dynamically loaded by Guile has added that feature to the list.

In the �rst category, here are the features that the current version of Guile may de�ne
(depending on how it is built), and what they mean.

array Indicates support for arrays (see Section 5.6.7 [Arrays], page 191).

array-for-each

Indicates availability of array-for-each and other array mapping procedures
(see Section 5.6.7 [Arrays], page 191).

char-ready?

Indicates that the char-ready? function is available (see Section 5.12.2 [Read-
ing], page 272).

complex Indicates support for complex numbers.

current-time

Indicates availability of time-related functions: times, get-internal-run-

time and so on (see Section 6.2.5 [Time], page 389).
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debug-extensions

Indicates that the debugging evaluator is available, together with the options
for controlling it.

delay Indicates support for promises (see Section 5.13.5 [Delayed Evaluation],
page 294).

EIDs Indicates that the geteuid and getegid really return e�ective user and group
IDs (see Section 6.2.7 [Processes], page 393).

inexact Indicates support for inexact numbers.

i/o-extensions

Indicates availability of the following extended I/O procedures: ftell,
redirect-port, dup->fdes, dup2, fileno, isatty?, fdopen, primitive-

move->fdes and fdes->ports (see Section 6.2.2 [Ports and File Descriptors],
page 374).

net-db Indicates availability of network database functions: scm_gethost,
scm_getnet, scm_getproto, scm_getserv, scm_sethost, scm_setnet,
scm_setproto, scm_setserv, and their `byXXX' variants (see Section 6.2.11.2
[Network Databases], page 404).

posix Indicates support for POSIX functions: pipe, getgroups, kill, execl and so
on (see Section 6.2 [POSIX], page 373).

random Indicates availability of random number generation functions: random, copy-
random-state, random-uniform and so on (see Section 5.5.2.15 [Random],
page 119).

reckless Indicates that Guile was built with important checks omitted | you should
never see this!

regex Indicates support for POSIX regular expressions using make-regexp, regexp-
exec and friends (see Section 5.5.6.1 [Regexp Functions], page 146).

socket Indicates availability of socket-related functions: socket, bind, connect and
so on (see Section 6.2.11.4 [Network Sockets and Communication], page 410).

sort Indicates availability of sorting and merging functions (see Section 5.9.3 [Sort-
ing], page 239).

system Indicates that the system function is available (see Section 6.2.7 [Processes],
page 393).

threads Indicates support for multithreading (see Section 5.17.4 [Threads], page 325).

values Indicates support for multiple return values using values and call-with-

values (see Section 5.11.6 [Multiple Values], page 257).

Available features in the second category depend, by de�nition, on what additional code
your Guile process has loaded in. The following table lists features that you might encounter
for this reason.

defmacro Indicates that the defmacro macro is available (see Section 5.8.6 [Macros],
page 231).
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describe Indicates that the (oop goops describe) module has been loaded, which pro-
vides a procedure for describing the contents of GOOPS instances.

readline Indicates that Guile has loaded in Readline support, for command line editing
(see Section 6.5 [Readline Support], page 457).

record Indicates support for record de�nition using make-record-type and friends
(see Section 5.6.8 [Records], page 204).

Although these tables may seem exhaustive, it is probably unwise in practice to rely on
them, as the correspondences between feature symbols and available procedures/behaviour
are not strictly de�ned. If you are writing code that needs to check for the existence of
some procedure, it is probably safer to do so directly using the defined? procedure than
to test for the corresponding feature using provided?.

5.18.3 Runtime Options

Guile's runtime behaviour can be modi�ed by setting options. For example, is the language
that Guile accepts case sensitive, or should the debugger automatically show a backtrace
on error?

Guile has two levels of interface for managing options: a low-level control interface, and
a user-level interface which allows the enabling or disabling of options.

Moreover, the options are classi�ed in groups according to whether they con�gure read-

ing, printing, debugging or evaluating.

5.18.3.1 Low Level Options Interfaces

[Scheme Procedure]read-options-interface [setting]
[Scheme Procedure]eval-options-interface [setting]
[Scheme Procedure]print-options-interface [setting]
[Scheme Procedure]debug-options-interface [setting]
[Scheme Procedure]evaluator-traps-interface [setting]

[C Function]scm_read_options (setting)
[C Function]scm_eval_options_interface (setting)
[C Function]scm_print_options (setting)
[C Function]scm_debug_options (setting)
[C Function]scm_evaluator_traps (setting)

If one of these procedures is called with no arguments (or with setting == SCM_

UNDEFINED in C code), it returns a list describing the current setting of the read,
eval, print, debug or evaluator traps options respectively. The setting of a boolean
option is indicated simply by the presence or absence of the option symbol in the list.
The setting of a non-boolean option is indicated by the presence of the option symbol
immediately followed by the option's current value.

If called with a list argument, these procedures interpret the list as an option setting
and modify the relevant options accordingly. [FIXME | this glosses over a lot of
details!]

If called with any other argument, such as 'help, these procedures return a list of
entries like (OPTION-SYMBOL DEFAULT-VALUE DOC-STRING), with each entry giving
the default value and documentation for each option symbol in the relevant set of
options.
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5.18.3.2 User Level Options Interfaces

[Scheme Procedure]<group>-options [arg]
[Scheme Procedure]read-options [arg]
[Scheme Procedure]print-options [arg]
[Scheme Procedure]debug-options [arg]
[Scheme Procedure]traps [arg]

These functions list the options in their group. The optional argument arg is a symbol
which modi�es the form in which the options are presented.

With no arguments, <group>-options returns the values of the options in that par-
ticular group. If arg is 'help, a description of each option is given. If arg is 'full,
programmers' options are also shown.

arg can also be a list representing the state of all options. In this case, the list contains
single symbols (for enabled boolean options) and symbols followed by values.

[FIXME: I don't think 'full is ever any di�erent from 'help. What's up?]

[Scheme Procedure]<group>-enable option-symbol
[Scheme Procedure]read-enable option-symbol
[Scheme Procedure]print-enable option-symbol
[Scheme Procedure]debug-enable option-symbol
[Scheme Procedure]trap-enable option-symbol

These functions set the speci�ed option-symbol in their options group. They only
work if the option is boolean, and throw an error otherwise.

[Scheme Procedure]<group>-disable option-symbol
[Scheme Procedure]read-disable option-symbol
[Scheme Procedure]print-disable option-symbol
[Scheme Procedure]debug-disable option-symbol
[Scheme Procedure]trap-disable option-symbol

These functions turn o� the speci�ed option-symbol in their options group. They
only work if the option is boolean, and throw an error otherwise.

[syntax]<group>-set! option-symbol value
[syntax]read-set! option-symbol value
[syntax]print-set! option-symbol value
[syntax]debug-set! option-symbol value
[syntax]trap-set! option-symbol value

These functions set a non-boolean option-symbol to the speci�ed value.

5.18.3.3 Reader options

Here is the list of reader options generated by typing (read-options 'full) in Guile. You
can also see the default values.

keywords #f Style of keyword recognition: #f or 'prefix
case-insensitive no Convert symbols to lower case.
positions yes Record positions of source code expressions.
copy no Copy source code expressions.

Notice that while Standard Scheme is case insensitive, to ease translation of other Lisp
dialects, notably Emacs Lisp, into Guile, Guile is case-sensitive by default.
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To make Guile case insensitive, you can type
(read-enable 'case-insensitive)

5.18.3.4 Printing options

Here is the list of print options generated by typing (print-options 'full) in Guile. You
can also see the default values.

quote-keywordish-symbols reader How to print symbols that have a colon
as their first or last character. The
value '#f' does not quote the colons;
'#t' quotes them; 'reader' quotes
them when the reader option
'keywords' is not '#f'.

highlight-prefix { The string to print before highlighted values.
highlight-suffix } The string to print after highlighted values.

source no Print closures with source.
closure-hook #f Hook for printing closures.

5.18.3.5 Evaluator options

These are the evaluator options with their default values, as they are printed by typing
(eval-options 'full) in Guile.

stack 22000 Size of thread stacks (in machine words).

5.18.3.6 Evaluator trap options

[FIXME: These ags, together with their corresponding handlers, are not user level options.
Probably this entire section should be moved to the documentation about the low-level
programmer debugging interface.]

Here is the list of evaluator trap options generated by typing (traps 'full) in Guile.
You can also see the default values.

exit-frame no Trap when exiting eval or apply.
apply-frame no Trap when entering apply.
enter-frame no Trap when eval enters new frame.
traps yes Enable evaluator traps.

[apply-frame-handler]key cont tailp
Called when a procedure is being applied.

Called if:

� evaluator traps are enabled [traps interface], and

� either

� apply-frame is enabled [traps interface], or

� trace mode is on [debug-options interface], and the procedure being called
has the trace property enabled.

cont is a \debug object", which means that it can be passed to make-stack to discover
the stack at the point of the trap. The apply frame handler's code can capture a
restartable continuation if it wants to by using call-with-current-continuation

in the usual way.

tailp is true if this is a tail call
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[exit-frame-handler]key cont retval
Called when a value is returned from a procedure.

Called if:

� evaluator traps are enabled [traps interface], and

� either

� exit-frame is enabled [traps interface], or

� trace mode is on [debug-options interface], and the procedure being called
has the trace property enabled.

cont is a \debug object", which means that it can be passed to make-stack to discover
the stack at the point of the trap. The exit frame handler's code can capture a
restartable continuation if it wants to by using call-with-current-continuation

in the usual way.

retval is the return value.

5.18.3.7 Debugger options

Here is the list of print options generated by typing (debug-options 'full) in Guile. You
can also see the default values.

stack 20000 Stack size limit (0 = no check).
debug yes Use the debugging evaluator.
backtrace no Show backtrace on error.
depth 20 Maximal length of printed backtrace.
maxdepth 1000 Maximal number of stored backtrace frames.
frames 3 Maximum number of tail-recursive frames in backtrace.
indent 10 Maximal indentation in backtrace.
backwards no Display backtrace in anti-chronological order.
procnames yes Record procedure names at definition.
trace no *Trace mode.
breakpoints no *Check for breakpoints.
cheap yes *This option is now obsolete. Setting it has no effect.

Stack overow

Stack overow errors are caused by a computation trying to use more stack space than has
been enabled by the stack option. They are reported like this:

(non-tail-recursive-factorial 500)

a
ERROR: Stack overflow

ABORT: (stack-overflow)

If you get an error like this, you can either try rewriting your code to use less stack space,
or increase the maximum stack size. To increase the maximum stack size, use debug-set!,
for example:

(debug-set! stack 200000)
)
(show-file-name #t stack 200000 debug backtrace depth 20 maxdepth 1000 frames 3 indent 10 width 79 procnames cheap)

(non-tail-recursive-factorial 500)
)
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122013682599111006870123878542304692625357434...

If you prefer to try rewriting your code, you may be able to save stack space by making
some of your procedures tail recursive (see Section 3.1.3.2 [Tail Calls], page 22).

5.18.3.8 Examples of option use

Here is an example of a session in which some read and debug option handling procedures
are used. In this example, the user

1. Notices that the symbols abc and aBc are not the same

2. Examines the read-options, and sees that case-insensitive is set to \no".

3. Enables case-insensitive

4. Veri�es that now aBc and abc are the same

5. Disables case-insensitive and enables debugging backtrace

6. Reproduces the error of displaying aBc with backtracing enabled [FIXME: this last
example is lame because there is no depth in the backtrace. Need to give a better
example, possibly putting debugging option examples in a separate session.]
guile> (define abc "hello")
guile> abc
"hello"
guile> aBc
ERROR: In expression aBc:
ERROR: Unbound variable: aBc
ABORT: (misc-error)

Type "(backtrace)" to get more information.
guile> (read-options 'help)
keywords #f Style of keyword recognition: #f or 'prefix
case-insensitive no Convert symbols to lower case.
positions yes Record positions of source code expressions.
copy no Copy source code expressions.
guile> (debug-options 'help)
stack 20000 Stack size limit (0 = no check).
debug yes Use the debugging evaluator.
backtrace no Show backtrace on error.
depth 20 Maximal length of printed backtrace.
maxdepth 1000 Maximal number of stored backtrace frames.
frames 3 Maximum number of tail-recursive frames in backtrace.
indent 10 Maximal indentation in backtrace.
backwards no Display backtrace in anti-chronological order.
procnames yes Record procedure names at definition.
trace no *Trace mode.
breakpoints no *Check for breakpoints.
cheap yes *This option is now obsolete. Setting it has no effect.
guile> (read-enable 'case-insensitive)
(keywords #f case-insensitive positions)
guile> aBc
"hello"
guile> (read-disable 'case-insensitive)
(keywords #f positions)
guile> (debug-enable 'backtrace)
(stack 20000 debug backtrace depth 20 maxdepth 1000 frames 3 indent 10 procnames cheap)
guile> aBc

Backtrace:
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0* aBc

ERROR: In expression aBc:
ERROR: Unbound variable: aBc
ABORT: (misc-error)
guile>
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5.19 Support for Translating Other Languages

[Describe translation framework.]

5.19.1 Emacs Lisp Support

[Scheme Procedure]nil-car x
[C Function]scm_nil_car (x)

Return the car of x, but convert it to LISP nil if it is Scheme's end-of-list.

[Scheme Procedure]nil-cdr x
[C Function]scm_nil_cdr (x)

Return the cdr of x, but convert it to LISP nil if it is Scheme's end-of-list.

[Scheme Procedure]nil-cons x y
[C Function]scm_nil_cons (x, y)

Create a new cons cell with x as the car and y as the cdr, but convert y to Scheme's
end-of-list if it is a Lisp nil.

[Scheme Procedure]nil-eq x y
Compare x and y and return Lisp's t if they are eq?, return Lisp's nil otherwise.

[Scheme Procedure]null x
[C Function]scm_null (x)

Return Lisp's t if x is nil in the LISP sense, return Lisp's nil otherwise.



Chapter 5: API Reference 347

5.20 Support for Internationalization

Guile provides an interface to GNU gettext for translating message strings (see section
\Introduction" in GNU gettext utilities).

Messages are collected in domains, so di�erent libraries and programs maintain di�erent
message catalogues. The domain parameter in the functions below is a string (it becomes
part of the message catalog �lename).

When gettext is not available, or if Guile was con�gured `--without-nls', dummy
functions doing no translation are provided.

[Scheme Procedure]gettext msg [domain [category]]
[C Function]scm_gettext (msg, domain, category)

Return the translation of msg in domain. domain is optional and defaults to the
domain set through textdomain below. category is optional and defaults to LC_

MESSAGES (see Section 6.2.13 [Locales], page 417).

Normal usage is for msg to be a literal string. xgettext can extract those from the
source to form a message catalogue ready for translators (see section \Invoking the
xgettext Program" in GNU gettext utilities).

(display (gettext "You are in a maze of twisty passages."))

_ is a commonly used shorthand, an application can make that an alias for gettext.
Or a library can make a de�nition that uses its speci�c domain (so an application can
change the default without a�ecting the library).

(define (_ msg) (gettext msg "mylibrary"))

(display (_ "File not found."))

_ is also a good place to perhaps strip disambiguating extra text from the message
string, as for instance in section \How to use gettext in GUI programs" in GNU
gettext utilities.

[Scheme Procedure]ngettext msg msgplural n [domain [category]]
[C Function]scm_ngettext (msg, msgplural, n, domain, category)

Return the translation of msg/msgplural in domain, with a plural form chosen ap-
propriately for the number n. domain is optional and defaults to the domain set
through textdomain below. category is optional and defaults to LC_MESSAGES (see
Section 6.2.13 [Locales], page 417).

msg is the singular form, and msgplural the plural. When no translation is available,
msg is used if n = 1, or msgplural otherwise. When translated, the message catalogue
can have a di�erent rule, and can have more than two possible forms.

As per gettext above, normal usage is for msg and msgplural to be literal strings,
since xgettext can extract them from the source to build a message catalogue. For
example,

(define (done n)

(format #t (ngettext "~a file processed\n"

"~a files processed\n" n)

n))

(done 1) a 1 file processed
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(done 3) a 3 files processed

It's important to use ngettext rather than plain gettext for plurals, since the rules
for singular and plural forms in English are not the same in other languages. Only
ngettext will allow translators to give correct forms (see section \Additional func-
tions for plural forms" in GNU gettext utilities).

[Scheme Procedure]textdomain [domain]
[C Function]scm_textdomain (domain)

Get or set the default gettext domain. When called with no parameter the current
domain is returned. When called with a parameter, domain is set as the current
domain, and that new value returned. For example,

(textdomain "myprog")
) "myprog"

[Scheme Procedure]bindtextdomain domain [directory]
[C Function]scm_bindtextdomain (domain, directory)

Get or set the directory under which to �nd message �les for domain. When called
without a directory the current setting is returned. When called with a directory,
directory is set for domain and that new setting returned. For example,

(bindtextdomain "myprog" "/my/tree/share/locale")
) "/my/tree/share/locale"

When using Autoconf/Automake, an application should arrange for the con�gured
localedir to get into the program (by substituting, or by generating a con�g �le)
and set that for its domain. This ensures the catalogue can be found even when
installed in a non-standard location.

[Scheme Procedure]bind-textdomain-codeset domain [encoding]
[C Function]scm_bind_textdomain_codeset (domain, encoding)

Get or set the text encoding to be used by gettext for messages from domain.
encoding is a string, the name of a coding system, for instance "8859_1". (On a
Unix/POSIX system the iconv program can list all available encodings.)

When called without an encoding the current setting is returned, or #f if none yet
set. When called with an encoding, it is set for domain and that new setting returned.
For example,

(bind-textdomain-codeset "myprog")
) #f

(bind-textdomain-codeset "myprog" "latin-9")
) "latin-9"

The encoding requested can be di�erent from the translated data �le, messages will
be recoded as necessary. But note that when there is no translation, gettext returns
its msg unchanged, ie. without any recoding. For that reason source message strings
are best as plain ASCII.

Currently Guile has no understanding of multi-byte characters, and string functions
won't recognise character boundaries in multi-byte strings. An application will at
least be able to pass such strings through to some output though. Perhaps this will
change in the future.
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5.21 Debugging Infrastructure

5.21.1 Interactive Debugging

[Scheme Procedure]backtrace [highlights]
[C Function]scm_backtrace_with_highlights (highlights)
[C Function]scm_backtrace ()

Display a backtrace of the stack saved by the last error to the current output port.
When highlights is given, it should be a list and all members of it are highligthed in
the backtrace.

[Scheme Procedure]debug
Invoke the Guile debugger to explore the context of the last error.

5.21.2 Breakpoints

[Generic Function]set-breakpoint! behaviour . location-args
Set a breakpoint with behaviour behaviour at the location speci�ed by location-args.

The form of the location-args depends upon what methods for set-breakpoint! have
been provided by the implementations of subclasses of the <breakpoint> base class.

[Generic Function]get-breakpoint . location-args
Find and return the breakpoint instance at the location speci�ed by location-args.

The form of the location-args depends upon what methods for get-breakpoint have
been provided by the implementations of subclasses of the <breakpoint> base class.

[Method]set-breakpoint! behaviour (proc <procedure>)
Set a breakpoint with behaviour behaviour before applications of the procedure proc.

[Method]set-breakpoint! behaviour x-as-read (x-pairi�ed <pair>)
Set a breakpoint with behaviour behaviour on the source expression x-pairi�ed, stor-
ing x-as-read for use in messages describing the breakpoint.

[Method]set-breakpoint! behaviour (number <integer>)
Change the behaviour of existing breakpoint number number to behaviour.

[Accessor]bp-behaviour breakpoint
Get or set the behaviour of the breakpoint instance breakpoint.

[Accessor]bp-enabled? breakpoint
Get or set the enabled state of the speci�ed breakpoint.

[Procedure]enable-breakpoint! . location-args
[Procedure]disable-breakpoint! . location-args

Enable or disable the breakpoint at the location speci�ed by location-args.

[Generic Function]bp-delete! breakpoint
Delete breakpoint breakpoint. This means (1) doing whatever is needed to prevent the
breakpoint from triggering again, and (2) removing it from the global list of current
breakpoints.
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[Procedure]delete-breakpoint! . location-args
Delete the breakpoint at the location speci�ed by location-args.

[Generic Function]bp-describe breakpoint port
Print a description of breakpoint to the speci�ed port. port can be #t for standard
output, or else any output port.

[Procedure]describe-breakpoint . location-args
Print (to standard output) a description of the breakpoint at location speci�ed by
location-args.

[Procedure]all-breakpoints
Return a list of all current breakpoints, ordered by breakpoint number.

[Procedure]describe-all-breakpoints
Print a description of all current breakpoints to standard output.

5.21.3 Source Properties

As Guile reads in Scheme code from �le or from standard input, it remembers the �le
name, line number and column number where each expression begins. These pieces of
information are known as the source properties of the expression. If an expression undergoes
transformation | for example, if there is a syntax transformer in e�ect, or the expression is
a macro call | the source properties are copied from the untransformed to the transformed
expression so that, if an error occurs when evaluating the transformed expression, Guile's
debugger can point back to the �le and location where the expression originated.

The way that source properties are stored means that Guile can only associate source
properties with parenthesized expressions, and not, for example, with individual symbols,
numbers or strings. The di�erence can be seen by typing (xxx) and xxx at the Guile prompt
(where the variable xxx has not been de�ned):

guile> (xxx)

standard input:2:1: In expression (xxx):

standard input:2:1: Unbound variable: xxx

ABORT: (unbound-variable)

guile> xxx

<unnamed port>: In expression xxx:

<unnamed port>: Unbound variable: xxx

ABORT: (unbound-variable)

In the latter case, no source properties were stored, so the best that Guile could say regarding
the location of the problem was \<unnamed port>".

The recording of source properties is controlled by the read option named \positions"
(see Section 5.18.3.3 [Reader options], page 339). This option is switched on by default,
together with the debug options \debug" and \backtrace" (see Section 5.18.3.7 [Debugger
options], page 341), when Guile is run interactively; all these options are o� by default
when Guile runs a script non-interactively.

The following procedures can be used to access and set the source properties of read
expressions.
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[Scheme Procedure]set-source-properties! obj plist
[C Function]scm_set_source_properties_x (obj, plist)

Install the association list plist as the source property list for obj.

[Scheme Procedure]set-source-property! obj key datum
[C Function]scm_set_source_property_x (obj, key, datum)

Set the source property of object obj, which is speci�ed by key to datum. Normally,
the key will be a symbol.

[Scheme Procedure]source-properties obj
[C Function]scm_source_properties (obj)

Return the source property association list of obj.

[Scheme Procedure]source-property obj key
[C Function]scm_source_property (obj, key)

Return the source property speci�ed by key from obj's source property list.

In practice there are only two ways that you should use the ability to set an expression's
source breakpoints.

� To set a breakpoint on an expression, use (set-source-property! expr 'breakpoint

#t). If you do this, you should also set the traps and enter-frame-handler trap
options (see Section 5.18.3.6 [Evaluator trap options], page 340) and breakpoints

debug option (see Section 5.18.3.7 [Debugger options], page 341) appropriately, and
the evaluator will then call your enter frame handler whenever it is about to evaluate
that expression.

� To make a read or constructed expression appear to have come from a di�erent source
than what the expression's source properties already say, you can use set-source-

property! to set the expression's filename, line and column properties. The prop-
erties that you set will then show up later if that expression is involved in a backtrace
or error report.

If you are looking for a way to attach arbitrary information to an expression other than
these properties, you should use make-object-property instead (see Section 5.9.2 [Object
Properties], page 238), because that will avoid bloating the source property hash table,
which is really only intended for the speci�c purposes described in this section.

5.21.4 Using Traps

[Scheme Procedure]with-traps thunk
[C Function]scm_with_traps (thunk)

Call thunk with traps enabled.

[Scheme Procedure]debug-object? obj
[C Function]scm_debug_object_p (obj)

Return #t if obj is a debug object.

5.21.5 Capturing the Stack or Innermost Stack Frame

When an error occurs in a running program, or the program hits a breakpoint, its state at
that point can be represented by a stack of all the evaluations and procedure applications



352 Guile Reference Manual

that are logically in progress at that time, each of which is known as a frame. The pro-
grammer can learn more about the program's state at the point of interruption or error by
inspecting the stack and its frames.

[Scheme Procedure]make-stack obj . args
[C Function]scm_make_stack (obj, args)

Create a new stack. If obj is #t, the current evaluation stack is used for creating the
stack frames, otherwise the frames are taken from obj (which must be either a debug
object or a continuation).

args should be a list containing any combination of integer, procedure and #t values.

These values specify various ways of cutting away uninteresting stack frames from the
top and bottom of the stack that make-stack returns. They come in pairs like this:
(inner_cut_1 outer_cut_1 inner_cut_2 outer_cut_2 ...).

Each inner cut N can be #t, an integer, or a procedure. #t means to cut away all
frames up to but excluding the �rst user module frame. An integer means to cut
away exactly that number of frames. A procedure means to cut away all frames up
to but excluding the application frame whose procedure matches the speci�ed one.

Each outer cut N can be an integer or a procedure. An integer means to cut away
that number of frames. A procedure means to cut away frames down to but excluding
the application frame whose procedure matches the speci�ed one.

If the outer cut N of the last pair is missing, it is taken as 0.

[Scheme Procedure]last-stack-frame obj
[C Function]scm_last_stack_frame (obj)

Return a stack which consists of a single frame, which is the last stack frame for obj.
obj must be either a debug object or a continuation.

5.21.6 Examining the Stack

[Scheme Procedure]stack? obj
[C Function]scm_stack_p (obj)

Return #t if obj is a calling stack.

[Scheme Procedure]stack-id stack
[C Function]scm_stack_id (stack)

Return the identi�er given to stack by start-stack.

[Scheme Procedure]stack-length stack
[C Function]scm_stack_length (stack)

Return the length of stack.

[Scheme Procedure]stack-ref stack index
[C Function]scm_stack_ref (stack, index)

Return the index'th frame from stack.

[Scheme Procedure]display-backtrace stack port [�rst [depth [highlights]]]
[C Function]scm_display_backtrace_with_highlights (stack, port, �rst,

depth, highlights)
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[C Function]scm_display_backtrace (stack, port, �rst, depth)
Display a backtrace to the output port port. stack is the stack to take the backtrace
from, �rst speci�es where in the stack to start and depth how much frames to display.
Both �rst and depth can be #f, which means that default values will be used. When
highlights is given, it should be a list and all members of it are highligthed in the
backtrace.

5.21.7 Examining Stack Frames

[Scheme Procedure]frame? obj
[C Function]scm_frame_p (obj)

Return #t if obj is a stack frame.

[Scheme Procedure]frame-number frame
[C Function]scm_frame_number (frame)

Return the frame number of frame.

[Scheme Procedure]frame-previous frame
[C Function]scm_frame_previous (frame)

Return the previous frame of frame, or #f if frame is the �rst frame in its stack.

[Scheme Procedure]frame-next frame
[C Function]scm_frame_next (frame)

Return the next frame of frame, or #f if frame is the last frame in its stack.

[Scheme Procedure]frame-source frame
[C Function]scm_frame_source (frame)

Return the source of frame.

[Scheme Procedure]frame-procedure? frame
[C Function]scm_frame_procedure_p (frame)

Return #t if a procedure is associated with frame.

[Scheme Procedure]frame-procedure frame
[C Function]scm_frame_procedure (frame)

Return the procedure for frame, or #f if no procedure is associated with frame.

[Scheme Procedure]frame-arguments frame
[C Function]scm_frame_arguments (frame)

Return the arguments of frame.

[Scheme Procedure]frame-evaluating-args? frame
[C Function]scm_frame_evaluating_args_p (frame)

Return #t if frame contains evaluated arguments.

[Scheme Procedure]frame-overflow? frame
[C Function]scm_frame_overflow_p (frame)

Return #t if frame is an overow frame.

[Scheme Procedure]frame-real? frame
[C Function]scm_frame_real_p (frame)

Return #t if frame is a real frame.
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[Scheme Procedure]display-application frame [port [indent]]
[C Function]scm_display_application (frame, port, indent)

Display a procedure application frame to the output port port. indent speci�es the
indentation of the output.

5.21.8 Decoding Memoized Source Expressions

[Scheme Procedure]memoized? obj
[C Function]scm_memoized_p (obj)

Return #t if obj is memoized.

[Scheme Procedure]unmemoize m
[C Function]scm_unmemoize (m)

Unmemoize the memoized expression m,

[Scheme Procedure]memoized-environment m
[C Function]scm_memoized_environment (m)

Return the environment of the memoized expression m.

5.21.9 Starting a New Stack

[Scheme Syntax]start-stack id exp
Evaluate exp on a new calling stack with identity id. If exp is interrupted during
evaluation, backtraces will not display frames farther back than exp's top-level form.
This macro is a way of arti�cially limiting backtraces and stack procedures, largely
as a convenience to the user.
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5.22 GH: A Portable C to Scheme Interface

This chapter shows how to use the GH interface to call Guile from your application's C
code, and to add new Scheme level procedures to Guile whose behaviour is speci�ed by
application speci�c code written in C.

Note, however, that the GH interface is now deprecated, and developers are encouraged
to switch to using the scm interface instead. Therefore, for each GH feature, this chapter
also documents how to achieve the same result using the scm interface.

5.22.1 Why the GH Interface is Now Deprecated

Historically, the GH interface was the product of a practical problem and a neat idea. The
practical problem was that the interface of the scm_ functions with which Guile itself was
written (inherited from Aubrey Ja�er's SCM) was so closely tied to the (rather arcane)
details of the internal data representation that it was extremely di�cult to write a Guile
extension using these functions. The neat idea was to de�ne a high level language extension
interface in such a way that other extension language projects, not just Guile, would be
able to provide an implementation of that interface; then applications using this interface
could be compiled with whichever of the various available implementations they chose.
So the GH interface was created, and advertised both as the recommended interface for
application developers wishing to use Guile, and as a portable high level interface that
could theoretically be implemented by other extension language projects.

Time passed, and various things changed. Crucially, an enormous number of improve-
ments were made to the scm_ interface that Guile itself uses in its implementation, with
the result that it is now both easy and comfortable to write a Guile extension with this
interface. At the same time, the contents of the GH interface were somewhat neglected
by the core Guile developers, such that some key operations | such as smob creation and
management | are simply not possible using GH alone. Finally, the idea of multiple im-
plementations of the GH interface did not really crystallize (apart, I believe, from a short
lived implementation by the MzScheme project).

For all these reasons, the Guile developers have decided to deprecate the GH interface
| which means that support for GH will be completely removed after the next few releases
| and to focus only on the scm_ interface, with additions to ensure that it is as easy to use
in all respects as GH was.

It remains an open question whether a deep kind of interface portability would be useful
for extension language-based applications, and it may still be an interesting project to
attempt to de�ne a corresponding GH-like interface, but the Guile developers no longer
plan to try to do this as part of the core Guile project.

5.22.2 Transitioning away from GH

The following table summarizes how to transition from the GH to the scm interface. The
replacements that are recommended are not always completely equivalent to the GH func-
tionality that they should replace. Therefore, you should read the reference documentation
of the replacements carefully if you are not yet familiar with them.

Header �le
Use #include <libguile.h> instead of #include <guile/gh.h>.
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Compiling and Linking
Use guile-config to pick up the ags required to compile C or C++ code that
uses libguile, like so

$(CC) -o prog.o -c prog.c `guile-config compile`

If you are using libtool to link your executables, just use -lguile in your link
command. Libtool will expand this into the needed linker options automatically.
If you are not using libtool, use the guile-config program to query the needed
options explicitly. A linker command like

$(CC) -o prog prog.o `guile-config link`

should be all that is needed. To link shared libraries that will be used as Guile
Extensions, use libtool to control both the compilation and the link stage.

The SCM type
No change: the scm interface also uses this type to represent an arbitrary
Scheme value.

SCM_BOOL_F and SCM_BOOL_T

No change.

SCM_UNSPECIFIED and SCM_UNDEFINED

No change.

gh_enter Use scm_boot_guile instead, but note that scm_boot_guile has a slightly
di�erent calling convention from gh_enter: scm_boot_guile, and the main
program function that you specify for scm_boot_guile to call, both take an
additional closure parameter. Section 4.1.1 [Guile Initialization Functions],
page 55 for more details.

gh_repl Use scm_shell instead.

gh_init Use scm_init_guile instead.

gh_catch Use scm_internal_catch instead.

gh_eval_str

Use scm_c_eval_string instead.

gh_eval_str_with_catch

Use scm_c_eval_string together with scm_internal_catch instead.

gh_eval_str_with_standard_handler

Use scm_c_eval_string together with scm_internal_catch and scm_handle_
by_message_no_exit instead.

gh_eval_str_with_stack_saving_handler

Use scm_c_eval_string together with scm_internal_stack_catch and scm_

handle_by_message_no_exit instead.

gh_eval_file or gh_load
Use scm_c_primitive_load instead.

gh_eval_file_with_catch

Use scm_c_primitive_load together with scm_internal_catch instead.
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gh_eval_file_with_standard_handler

Use scm_c_primitive_load together with scm_internal_catch and
scm_handle_by_message_no_exit instead.

gh_new_procedure

gh_new_procedure0_0

gh_new_procedure0_1

gh_new_procedure0_2

gh_new_procedure1_0

gh_new_procedure1_1

gh_new_procedure1_2

gh_new_procedure2_0

gh_new_procedure2_1

gh_new_procedure2_2

gh_new_procedure3_0

gh_new_procedure4_0

gh_new_procedure5_0

Use scm_c_define_gsubr instead, but note that the arguments are in a di�er-
ent order: for scm_c_define_gsubr the C function pointer is the last argument.
Section 4.2.1 [A Sample Guile Extension], page 58 for an example.

gh_defer_ints and gh_allow_ints

Use SCM_CRITICAL_SECTION_START and SCM_CRITICAL_SECTION_END instead.
Note that these macros are used without parentheses, as in SCM_DEFER_INTS;.

gh_bool2scm

Use scm_from_bool instead.

gh_int2scm

Use scm_from_int instead.

gh_ulong2scm

Use scm_from_ulong instead.

gh_long2scm

Use scm_from_long instead.

gh_double2scm

Use scm_make_real instead.

gh_char2scm

Use SCM_MAKE_CHAR instead.

gh_str2scm

Use scm_from_locale_stringn instead.

gh_str02scm

Use scm_from_locale_string instead.

gh_set_substr

Use scm_string_copy_x.

gh_symbol2scm

Use scm_from_locale_symbol instead.
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gh_ints2scm

gh_doubles2scm

gh_chars2byvect

gh_shorts2svect

gh_longs2ivect

gh_ulongs2uvect

gh_floats2fvect

gh_doubles2dvect

Use the uniform numeric vector function, See Section 5.6.4 [Uniform Numeric
Vectors], page 178.

gh_scm2bool

Use scm_is_true or scm_to_bool instead.

gh_scm2int

Use scm_to_int instead.

gh_scm2ulong

Use scm_to_ulong instead.

gh_scm2long

Use scm_to_long instead.

gh_scm2double

Use scm_to_double instead.

gh_scm2char

Use scm_to_char instead.

gh_scm2newstr

Use scm_to_locale_string or similar instead.

gh_get_substr

Use scm_c_substring together with scm_to_locale_string or similar instead.

gh_symbol2newstr

Use scm_symbol_to_string together with scm_to_locale_string or similar
instead.

gh_scm2chars

Use scm_from_locale_string (or similar) or the uniform numeric vector func-
tions (see Section 5.6.4 [Uniform Numeric Vectors], page 178) instead.

gh_scm2shorts

gh_scm2longs

gh_scm2floats

gh_scm2doubles

Use the uniform numeric vector function, See Section 5.6.4 [Uniform Numeric
Vectors], page 178.

gh_boolean_p

Use scm_is_bool instead.

gh_symbol_p

Use scm_is_symbol instead.
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gh_char_p

Replace gh_char_p (obj) with

scm_is_true (scm_char_p (obj))

gh_vector_p

Replace gh_vector_p (obj) with

scm_is_true (scm_vector_p (obj))

gh_pair_p

Replace gh_pair_p (obj) with

scm_is_true (scm_pair_p (obj))

gh_number_p

Use scm_is_number instead.

gh_string_p

Use scm_is_string instead.

gh_procedure_p

Replace gh_procedure_p (obj) by

scm_is_true (scm_procedure_p (obj))

gh_list_p

Replace gh_list_p (obj) with

scm_is_true (scm_list_p (obj))

gh_inexact_p

Replace gh_inexact_p (obj) with

scm_is_true (scm_inexact_p (obj))

gh_exact_p

Replace gh_exact_p (obj) with

scm_is_true (scm_exact_p (obj))

gh_eq_p Use scm_is_eq instead.

gh_eqv_p Replace gh_eqv_p (x, y) with

scm_is_true (scm_eqv_p (x, y))

gh_equal_p

Replace gh_equal_p (x, y) with

scm_is_true (scm_equal_p (x, y))

gh_string_equal_p

Replace gh_string_equal_p (x, y) with

scm_is_true (scm_string_equal_p (x, y))

gh_null_p

Use scm_is_null instead.

gh_not Use scm_not instead.

gh_make_string

Use scm_make_string instead.
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gh_string_length

Use scm_string_length instead.

gh_string_ref

Use scm_string_ref instead.

gh_string_set_x

Use scm_string_set_x instead.

gh_substring

Use scm_substring instead.

gh_string_append

Use scm_string_append instead.

gh_cons Use scm_cons instead.

gh_car and gh_cdr

Use scm_car and scm_cdr instead.

gh_cxxr and gh_cxxxr

(Where each x is either `a' or `d'.) Use the corresponding scm_cxxr or scm_
cxxxr function instead.

gh_set_car_x and gh_set_cdr_x

Use scm_set_car_x and scm_set_cdr_x instead.

gh_list Use scm_list_n instead.

gh_length

Replace gh_length (lst) with

scm_to_size_t (scm_length (lst))

gh_append

Use scm_append instead.

gh_append2, gh_append3, gh_append4
Replace gh_appendN (l1, ..., lN) by

scm_append (scm_list_n (l1, ..., lN, SCM_UNDEFINED))

gh_reverse

Use scm_reverse instead.

gh_list_tail and gh_list_ref

Use scm_list_tail and scm_list_ref instead.

gh_memq, gh_memv and gh_member

Use scm_memq, scm_memv and scm_member instead.

gh_assq, gh_assv and gh_assoc

Use scm_assq, scm_assv and scm_assoc instead.

gh_make_vector

Use scm_make_vector instead.

gh_vector or gh_list_to_vector
Use scm_vector instead.
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gh_vector_ref and gh_vector_set_x

Use scm_vector_ref and scm_vector_set_x instead.

gh_vector_length

Use scm_c_vector_length instead.

gh_uniform_vector_length

Use scm_c_uniform_vector_length instead.

gh_uniform_vector_ref

Use scm_c_uniform_vector_ref instead.

gh_vector_to_list

Use scm_vector_to_list instead.

gh_apply Use scm_apply_0 instead.

gh_call0

gh_call1

gh_call2

gh_call3 Use scm_call_0, scm_call_1, etc instead.

gh_display

gh_write

gh_newline

Use scm_display (obj, scm_current_output_port ()) instead, etc.

gh_lookup

Use scm_variable_ref (scm_c_lookup (name)) instead.

gh_module_lookup

Use scm_variable_ref (scm_c_module_lookup (module, name)) instead.

5.22.3 GH preliminaries
To use gh, you must have the following toward the beginning of your C source:

#include <guile/gh.h>

When you link, you will have to add at least -lguile to the list of libraries. If you are
using more of Guile than the basic Scheme interpreter, you will have to add more libraries.

5.22.4 Data types and constants de�ned by GH

The following C constants and data types are de�ned in gh:

SCM is a C data type used to store all Scheme data, no matter what the Scheme type. Val-
ues are converted between C data types and the SCM type with utility functions described
below (see Section 5.22.9 [Converting data between C and Scheme], page 363). [FIXME:
put in references to Jim's essay and so forth.]

[Constant]SCM_BOOL_T
[Constant]SCM_BOOL_F

The Scheme values returned by many boolean procedures in libguile.

This can cause confusion because they are di�erent from 0 and 1. In testing a boolean
function in libguile programming, you must always make sure that you check the spec:
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gh_ and scm_ functions will usually return SCM_BOOL_T and SCM_BOOL_F, but other
C functions usually can be tested against 0 and 1, so programmers' �ngers tend to
just type if (boolean_function()) { ... }

[Constant]SCM_UNSPECIFIED
This is a SCM value that is not the same as any legal Scheme value. It is the value
that a Scheme function returns when its speci�cation says that its return value is
unspeci�ed.

[Constant]SCM_UNDEFINED
This is another SCM value that is not the same as any legal Scheme value. It is the
value used to mark variables that do not yet have a value, and it is also used in C to
terminate functions with variable numbers of arguments, such as gh_list().

5.22.5 Starting and controlling the interpreter

In almost every case, your �rst gh_ call will be:

[Function]void gh_enter (int argc, char *argv [], void (*main_prog )())
Starts up a Scheme interpreter with all the builtin Scheme primitives. gh_enter()

never exits, and the user's code should all be in the main_prog() function. argc and
argv will be passed to main prog.

[Function]void main_prog (int argc, char *argv [])
This is the user's main program. It will be invoked by gh_enter() after Guile
has been started up.

Note that you can use gh_repl inside gh_enter (in other words, inside the code for
main-prog) if you want the program to be controlled by a Scheme read-eval-print
loop.

A convenience routine which enters the Guile interpreter with the standard Guile read-
eval-print loop (REPL) is:

[Function]void gh_repl (int argc, char *argv [])
Enters the Scheme interpreter giving control to the Scheme REPL. Arguments are
processed as if the Guile program `guile' were being invoked.

Note that gh_repl should be used inside gh_enter, since any Guile interpreter calls
are meaningless unless they happen in the context of the interpreter.

Also note that when you use gh_repl, your program will be controlled by Guile's
REPL (which is written in Scheme and has many useful features). Use straight C
code inside gh_enter if you want to maintain execution control in your C program.

You will typically use gh_enter and gh_repl when you want a Guile interpreter en-
hanced by your own libraries, but otherwise quite normal. For example, to build a Guile{
derived program that includes some random number routines GSL (GNU Scienti�c Library),
you would write a C program that looks like this:

#include <guile/gh.h>
#include <gsl_ran.h>
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/* random number suite */
SCM gw_ran_seed(SCM s)
{
gsl_ran_seed(gh_scm2int(s));
return SCM_UNSPECIFIED;

}

SCM gw_ran_random()
{
SCM x;

x = gh_ulong2scm(gsl_ran_random());
return x;

}

SCM gw_ran_uniform()
{
SCM x;

x = gh_double2scm(gsl_ran_uniform());
return x;

}
SCM gw_ran_max()
{
return gh_double2scm(gsl_ran_max());

}

void
init_gsl()
{
/* random number suite */
gh_new_procedure("gsl-ran-seed", gw_ran_seed, 1, 0, 0);
gh_new_procedure("gsl-ran-random", gw_ran_random, 0, 0, 0);
gh_new_procedure("gsl-ran-uniform", gw_ran_uniform, 0, 0, 0);
gh_new_procedure("gsl-ran-max", gw_ran_max, 0, 0, 0);

}

void
main_prog (int argc, char *argv[])
{
init_gsl();

gh_repl(argc, argv);
}

int
main (int argc, char *argv[])
{
gh_enter (argc, argv, main_prog);

}

Then, supposing the C program is in `guile-gsl.c', you could compile it with gcc -o

guile-gsl guile-gsl.c -lguile -lgsl.

The resulting program `guile-gsl' would have new primitive procedures gsl-ran-

random, gsl-ran-gaussian and so forth.
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5.22.6 Error messages

[FIXME: need to �ll this based on Jim's new mechanism]

5.22.7 Executing Scheme code

Once you have an interpreter running, you can ask it to evaluate Scheme code. There are
two calls that implement this:

[Function]SCM gh_eval_str (char *scheme_code )
This asks the interpreter to evaluate a single string of Scheme code, and returns the
result of the last expression evaluated.

Note that the line of code in scheme code must be a well formed Scheme expres-
sion. If you have many lines of code before you balance parentheses, you must either
concatenate them into one string, or use gh_eval_file().

[Function]SCM gh_eval_file (char *fname )
[Function]SCM gh_load (char *fname )

gh_eval_file is completely analogous to gh_eval_str(), except that a whole �le is
evaluated instead of a string. gh_eval_file returns SCM_UNSPECIFIED.

gh_load is identical to gh_eval_file (it's a macro that calls gh_eval_file on its
argument). It is provided to start making the gh_ interface match the R5RS Scheme
procedures closely.

5.22.8 De�ning new Scheme procedures in C

The real interface between C and Scheme comes when you can write new Scheme procedures
in C. This is done through the routine

[Libguile high]SCM gh_new_procedure (char *proc_name, SCM (*fn )(), int
n_required_args, int n_optional_args, int restp )

gh_new_procedure de�nes a new Scheme procedure. Its Scheme name will be
proc name, it will be implemented by the C function (*fn)(), it will take at least
n required args arguments, and at most n optional args extra arguments.

When the restp parameter is 1, the procedure takes a �nal argument: a list of re-
maining parameters.

gh_new_procedure returns an SCM value representing the procedure.

The C function fn should have the form

[Libguile high]SCM fn (SCM req1, SCM req2, ..., SCM opt1, SCM opt2, ...,
SCM rest_args )

The arguments are all passed as SCM values, so the user will have to use the
conversion functions to convert to standard C types.

Examples of C functions used as new Scheme primitives can be found in the
sample programs learn0 and learn1.

Rationale: this is the correct way to de�ne new Scheme procedures in C. The ugly mess
of arguments is required because of how C handles procedures with variable numbers of
arguments.
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NB: what about documentation strings?
� �

There are several important considerations to be made when writing the C routine
(*fn)().

First of all the C routine has to return type SCM.

Second, all arguments passed to the C function will be of type SCM.

Third: the C routine is now subject to Scheme ow control, which means that it could be
interrupted at any point, and then reentered. This means that you have to be very careful
with operations such as allocating memory, modifying static data . . .

Fourth: to get around the latter issue, you can use GH_DEFER_INTS and GH_ALLOW_INTS.

 	

[Macro]GH_DEFER_INTS
[Macro]GH_ALLOW_INTS

These macros disable and re-enable Scheme's ow control. They

5.22.9 Converting data between C and Scheme

Guile provides mechanisms to convert data between C and Scheme. This allows new builtin
procedures to understand their arguments (which are of type SCM) and return values of type
SCM.

5.22.9.1 C to Scheme

[Function]SCM gh_bool2scm (int x )
Returns #f if x is zero, #t otherwise.

[Function]SCM gh_ulong2scm (unsigned long x )
[Function]SCM gh_long2scm (long x )
[Function]SCM gh_double2scm (double x )
[Function]SCM gh_char2scm (char x )

Returns a Scheme object with the value of the C quantity x.

[Function]SCM gh_str2scm (char *s, int len )
Returns a new Scheme string with the (not necessarily null-terminated) C array s
data.

[Function]SCM gh_str02scm (char *s )
Returns a new Scheme string with the null-terminated C string s data.

[Function]SCM gh_set_substr (char *src, SCM dst, int start, int len )
Copy len characters at src into the existing Scheme string dst, starting at start. start
is an index into dst; zero means the beginning of the string.

If start + len is o� the end of dst, signal an out-of-range error.

[Function]SCM gh_symbol2scm (char *name )
Given a null-terminated string name, return the symbol with that name.

[Function]SCM gh_ints2scm (int *dptr, int n )
[Function]SCM gh_doubles2scm (double *dptr, int n )

Make a scheme vector containing the n ints or doubles at memory location dptr.
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[Function]SCM gh_chars2byvect (char *dptr, int n )
[Function]SCM gh_shorts2svect (short *dptr, int n )
[Function]SCM gh_longs2ivect (long *dptr, int n )
[Function]SCM gh_ulongs2uvect (ulong *dptr, int n )
[Function]SCM gh_floats2fvect (oat *dptr, int n )
[Function]SCM gh_doubles2dvect (double *dptr, int n )

Make a scheme uniform vector containing the n chars, shorts, longs, unsigned longs,
oats or doubles at memory location dptr.

5.22.9.2 Scheme to C

[Function]int gh_scm2bool (SCM obj )
[Function]unsigned long gh_scm2ulong (SCM obj )
[Function]long gh_scm2long (SCM obj )
[Function]double gh_scm2double (SCM obj )
[Function]int gh_scm2char (SCM obj )

These routines convert the Scheme object to the given C type.

[Function]char * gh_scm2newstr (SCM str, size t *lenp )
Given a Scheme string str, return a pointer to a new copy of its contents, followed by
a null byte. If lenp is non-null, set *lenp to the string's length.

This function uses malloc to obtain storage for the copy; the caller is responsible for
freeing it.

Note that Scheme strings may contain arbitrary data, including null characters. This
means that null termination is not a reliable way to determine the length of the
returned value. However, the function always copies the complete contents of str, and
sets *lenp to the true length of the string (when lenp is non-null).

[Function]void gh_get_substr (SCM str, char *return str, int *lenp)
Copy len characters at start from the Scheme string src to memory at dst. start is an
index into src; zero means the beginning of the string. dst has already been allocated
by the caller.

If start + len is o� the end of src, signal an out-of-range error.

[Function]char * gh_symbol2newstr (SCM sym, int *lenp )
Takes a Scheme symbol and returns a string of the form "'symbol-name". If lenp is
non-null, the string's length is returned in *lenp .

This function uses malloc to obtain storage for the returned string; the caller is
responsible for freeing it.

[Function]char * gh_scm2chars (SCM vector, chars *result )
[Function]short * gh_scm2shorts (SCM vector, short *result )
[Function]long * gh_scm2longs (SCM vector, long *result )
[Function]float * gh_scm2floats (SCM vector, oat *result )
[Function]double * gh_scm2doubles (SCM vector, double *result )

Copy the numbers in vector to the array pointed to by result and return it. If result
is NULL, allocate a double array large enough.
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vector can be an ordinary vector, a weak vector, or a signed or unsigned uniform
vector of the same type as the result array. For chars, vector can be a string or
substring. For oats and doubles, vector can contain a mix of inexact and integer
values.

If vector is of unsigned type and contains values too large to �t in the signed desti-
nation array, those values will be wrapped around, that is, data will be copied as if
the destination array was unsigned.

5.22.10 Type predicates

These C functions mirror Scheme's type predicate procedures with one important di�erence.
The C routines return C boolean values (0 and 1) instead of SCM_BOOL_T and SCM_BOOL_F.

The Scheme notational convention of putting a ? at the end of predicate procedure names
is mirrored in C by placing _p at the end of the procedure. For example, (pair? ...) maps
to gh_pair_p(...).

[Function]int gh_boolean_p (SCM val )
Returns 1 if val is a boolean, 0 otherwise.

[Function]int gh_symbol_p (SCM val )
Returns 1 if val is a symbol, 0 otherwise.

[Function]int gh_char_p (SCM val )
Returns 1 if val is a char, 0 otherwise.

[Function]int gh_vector_p (SCM val )
Returns 1 if val is a vector, 0 otherwise.

[Function]int gh_pair_p (SCM val )
Returns 1 if val is a pair, 0 otherwise.

[Function]int gh_procedure_p (SCM val )
Returns 1 if val is a procedure, 0 otherwise.

[Function]int gh_list_p (SCM val )
Returns 1 if val is a list, 0 otherwise.

[Function]int gh_inexact_p (SCM val )
Returns 1 if val is an inexact number, 0 otherwise.

[Function]int gh_exact_p (SCM val )
Returns 1 if val is an exact number, 0 otherwise.

5.22.11 Equality predicates

These C functions mirror Scheme's equality predicate procedures with one important dif-
ference. The C routines return C boolean values (0 and 1) instead of SCM_BOOL_T and
SCM_BOOL_F.

The Scheme notational convention of putting a ? at the end of predicate procedure names
is mirrored in C by placing _p at the end of the procedure. For example, (equal? ...)

maps to gh_equal_p(...).
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[Function]int gh_eq_p (SCM x, SCM y)
Returns 1 if x and y are equal in the sense of Scheme's eq? predicate, 0 otherwise.

[Function]int gh_eqv_p (SCM x, SCM y)
Returns 1 if x and y are equal in the sense of Scheme's eqv? predicate, 0 otherwise.

[Function]int gh_equal_p (SCM x, SCM y)
Returns 1 if x and y are equal in the sense of Scheme's equal? predicate, 0 otherwise.

[Function]int gh_string_equal_p (SCM s1, SCM s2 )
Returns 1 if the strings s1 and s2 are equal, 0 otherwise.

[Function]int gh_null_p (SCM l )
Returns 1 if l is an empty list or pair; 0 otherwise.

5.22.12 Memory allocation and garbage collection

5.22.13 Calling Scheme procedures from C

Many of the Scheme primitives are available in the gh_ interface; they take and return
objects of type SCM, and one could basically use them to write C code that mimics Scheme
code.

I will list these routines here without much explanation, since what they do is the same
as documented in section \Standard procedures" in R5RS. But I will point out that when
a procedure takes a variable number of arguments (such as gh_list), you should pass the
constant SCM UNDEFINED from C to signify the end of the list.

[Function]SCM gh_define (char *name, SCM val )
Corresponds to the Scheme (define name val): it binds a value to the given name
(which is a C string). Returns the new object.

Pairs and lists

[Function]SCM gh_cons (SCM a, SCM b )
[Function]SCM gh_list (SCM l0, SCM l1, ... , SCM UNDEFINED)

These correspond to the Scheme (cons a b) and (list l0 l1 ...) procedures. Note
that gh_list() is a C macro that invokes scm_list_n().

[Function]SCM gh_car (SCM obj )
[Function]SCM gh_cdr (SCM obj )

. . .

[Function]SCM gh_c[ad][ad][ad][ad]r (SCM obj )
These correspond to the Scheme (caadar ls) procedures etc . . .

[Function]SCM gh_set_car_x (SCM pair, SCM value )
Modi�es the CAR of pair to be value. This is equivalent to the Scheme procedure
(set-car! ...).

[Function]SCM gh_set_cdr_x (SCM pair, SCM value )
Modi�es the CDR of pair to be value. This is equivalent to the Scheme procedure
(set-cdr! ...).
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[Function]unsigned long gh_length (SCM ls )
Returns the length of the list.

[Function]SCM gh_append (SCM args )
[Function]SCM gh_append2 (SCM l1, SCM l2 )
[Function]SCM gh_append3 (SCM l1, SCM l2, l3 )
[Function]SCM gh_append4 (SCM l1, SCM l2, l3, l4 )

gh_append() takes args, which is a list of lists (list1 list2 ...), and returns a list
containing all the elements of the individual lists.

A typical invocation of gh_append() to append 5 lists together would be

gh_append(gh_list(l1, l2, l3, l4, l5, SCM_UNDEFINED));

The functions gh_append2(), gh_append2(), gh_append3() and gh_append4() are
convenience routines to make it easier for C programs to form the list of lists that
goes as an argument to gh_append().

[Function]SCM gh_reverse (SCM ls )
Returns a new list that has the same elements as ls but in the reverse order. Note
that this is implemented as a macro which calls scm_reverse().

[Function]SCM gh_list_tail (SCM ls, SCM k )
Returns the sublist of ls with the last k elements.

[Function]SCM gh_list_ref (SCM ls, SCM k )
Returns the kth element of the list ls.

[Function]SCM gh_memq (SCM x, SCM ls )
[Function]SCM gh_memv (SCM x, SCM ls )
[Function]SCM gh_member (SCM x, SCM ls )

These functions return the �rst sublist of ls whose CAR is x. They correspond to
(memq x ls), (memv x ls) and (member x ls), and hence use (respectively) eq?, eqv?
and equal? to do comparisons.

If x does not appear in ls, the value SCM_BOOL_F (not the empty list) is returned.

Note that these functions are implemented as macros which call scm_memq(), scm_
memv() and scm_member() respectively.

[Function]SCM gh_assq (SCM x, SCM alist )
[Function]SCM gh_assv (SCM x, SCM alist )
[Function]SCM gh_assoc (SCM x, SCM alist )

These functions search an association list (list of pairs) alist for the �rst pair whose
CAR is x, and they return that pair.

If no pair in alist has x as its CAR, the value SCM_BOOL_F (not the empty list) is
returned.

Note that these functions are implemented as macros which call scm_assq(), scm_
assv() and scm_assoc() respectively.

Symbols
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Vectors

[Function]SCM gh_make_vector (SCM n, SCM fill )
[Function]SCM gh_vector (SCM ls )
[Function]SCM gh_vector_ref (SCM v, SCM i )
[Function]SCM gh_vector_set (SCM v, SCM i, SCM val )
[Function]unsigned long gh_vector_length (SCM v )
[Function]SCM gh_list_to_vector (SCM ls )

These correspond to the Scheme (make-vector n fill), (vector a b c ...)

(vector-ref v i) (vector-set v i value) (vector-length v) (list->vector

ls) procedures.

The correspondence is not perfect for gh_vector: this routine takes a list ls instead
of the individual list elements, thus making it identical to gh_list_to_vector.

There is also a di�erence in gh vector length: the value returned is a C unsigned

long instead of an SCM object.

Procedures

[Function]SCM gh_apply (SCM proc, SCM args)
Call the Scheme procedure proc, with the elements of args as arguments. args must
be a proper list.

[Function]SCM gh_call0 (SCM proc)
[Function]SCM gh_call1 (SCM proc, SCM arg)
[Function]SCM gh_call2 (SCM proc, SCM arg1, SCM arg2)
[Function]SCM gh_call3 (SCM proc, SCM arg1, SCM arg2, SCM arg3)

Call the Scheme procedure proc with no arguments (gh_call0), one argument (gh_
call1), and so on. You can get the same e�ect by wrapping the arguments up into
a list, and calling gh_apply; Guile provides these functions for convenience.

[Function]SCM gh_catch (SCM key, SCM thunk, SCM handler)
[Function]SCM gh_throw (SCM key, SCM args)

Corresponds to the Scheme catch and throw procedures, which in Guile are provided
as primitives.

[Function]SCM gh_is_eq (SCM a, SCM b)
[Function]SCM gh_is_eqv (SCM a, SCM b)
[Function]SCM gh_is_equal (SCM a, SCM b)

These correspond to the Scheme eq?, eqv? and equal? predicates.

[Function]int gh_obj_length (SCM obj )
Returns the raw object length.

Data lookup

For now I just include Tim Pierce's comments from the `gh_data.c' �le; it should be
organized into a documentation of the two functions here.



Chapter 5: API Reference 371

/* Data lookups between C and Scheme

Look up a symbol with a given name, and return the object to which
it is bound. gh_lookup examines the Guile top level, and
gh_module_lookup checks the module name space specified by the
`vec' argument.

The return value is the Scheme object to which SNAME is bound, or
SCM_UNDEFINED if SNAME is not bound in the given context. [FIXME:
should this be SCM_UNSPECIFIED? Can a symbol ever legitimately be
bound to SCM_UNDEFINED or SCM_UNSPECIFIED? What is the difference?
-twp] */
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6 Guile Modules
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6.1 SLIB

Before the SLIB facilities can be used, the following Scheme expression must be executed:
(use-modules (ice-9 slib))

require can then be used in the usual way (see section \Require" in The SLIB Manual).
For example,

(use-modules (ice-9 slib))

(require 'primes)

(probably-prime? 13)
) #t

Note that the following Guile core functions are overridden by (ice-9 slib), to imple-
ment SLIB speci�ed semantics.

delete-file

Returns #t for success or #f for failure (see section \Input/Output" in The
SLIB Manual), as opposed to the Guile core version unspeci�ed for success and
throwing an error for failure (see Section 6.2.3 [File System], page 381).

provided?

Accepts a feature speci�cation containing and and or forms combining symbols
(see section \Feature" in The SLIB Manual), as opposed to the Guile core taking
only plain symbols (see Section 5.18.2.1 [Feature Manipulation], page 336).

open-file

Takes a symbol r, rb, w or wb for the open mode (see section \Input/Output"
in The SLIB Manual), as opposed to the Guile core version taking a string (see
Section 5.12.9.1 [File Ports], page 280).

system Returns a plain exit code 0 to 255 (see section \System Interface" in The SLIB
Manual), as opposed to the Guile core version returning a wait status that
must be examined with status:exit-val etc (see Section 6.2.7 [Processes],
page 393).

6.1.1 SLIB installation

The following seems to work (e.g., with slib versions 2c7 and 2d2):

1. Unpack slib somewhere, e.g., `/usr/local/share/slib'.

2. Create a symlink in the Guile site directory to slib, e.g.,:

ln -s /usr/local/share/slib /usr/local/share/guile/site/slib

3. Use Guile to create the catalog �le, e.g.,:

# guile

guile> (use-modules (ice-9 slib))

guile> (load "/usr/local/share/slib/mklibcat.scm")

guile> (quit)

The catalog data should now be in `/usr/local/share/guile/site/slibcat'.

If instead you get an error such as:

Unbound variable: scheme-implementation-type

then a solution is to get a newer version of Guile, or to modify `ice-9/slib.scm' to
use define-public for the o�ending variables.
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4. Install the documentation:

cd /usr/local/share/slib

rm /usr/local/info/slib.info*

cp slib.info /usr/local/info

install-info slib.info /usr/local/info/dir

6.1.2 JACAL

Jacal is a symbolic math package written in Scheme by Aubrey Ja�er. It is usually installed
as an extra package in SLIB.

You can use Guile's interface to SLIB to invoke Jacal:
(use-modules (ice-9 slib))
(slib:load "math")
(math)

For complete documentation on Jacal, please read the Jacal manual. If it has been installed
on line, you can look at section \Jacal" in JACAL Symbolic Mathematics System. Other-
wise you can �nd it on the web at http://www-swiss.ai.mit.edu/~jaffer/JACAL.html

6.2 POSIX System Calls and Networking

6.2.1 POSIX Interface Conventions

These interfaces provide access to operating system facilities. They provide a simple wrap-
ping around the underlying C interfaces to make usage from Scheme more convenient. They
are also used to implement the Guile port of scsh (see Section 6.14 [The Scheme shell (scsh)],
page 483).

Generally there is a single procedure for each corresponding Unix facility. There are
some exceptions, such as procedures implemented for speed and convenience in Scheme
with no primitive Unix equivalent, e.g. copy-file.

The interfaces are intended as far as possible to be portable across di�erent versions of
Unix. In some cases procedures which can't be implemented on particular systems may
become no-ops, or perform limited actions. In other cases they may throw errors.

General naming conventions are as follows:

� The Scheme name is often identical to the name of the underlying Unix facility.

� Underscores in Unix procedure names are converted to hyphens.

� Procedures which destructively modify Scheme data have exclamation marks appended,
e.g., recv!.

� Predicates (returning only #t or #f) have question marks appended, e.g., access?.

� Some names are changed to avoid conict with dissimilar interfaces de�ned by scsh,
e.g., primitive-fork.

� Unix preprocessor names such as EPERM or R_OK are converted to Scheme variables of
the same name (underscores are not replaced with hyphens).

Unexpected conditions are generally handled by raising exceptions. There are a few
procedures which return a special value if they don't succeed, e.g., getenv returns #f if
it the requested string is not found in the environment. These cases are noted in the
documentation.

http://www-swiss.ai.mit.edu/~jaffer/JACAL.html
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For ways to deal with exceptions, see Section 5.11.7 [Exceptions], page 258.

Errors which the C library would report by returning a null pointer or through some other
means are reported by raising a system-error exception with scm-error (see Section 5.11.8
[Error Reporting], page 265). The data parameter is a list containing the Unix errno value
(an integer). For example,

(define (my-handler key func fmt fmtargs data)

(display key) (newline)

(display func) (newline)

(apply format #t fmt fmtargs) (newline)

(display data) (newline))

(catch 'system-error

(lambda () (dup2 -123 -456))

my-handler)

a
system-error

dup2

Bad file descriptor

(9)

[Function]system-error-errno arglist
Return the errno value from a list which is the arguments to an exception handler.
If the exception is not a system-error, then the return is #f. For example,

(catch

'system-error

(lambda ()

(mkdir "/this-ought-to-fail-if-I'm-not-root"))

(lambda stuff

(let ((errno (system-error-errno stuff)))

(cond

((= errno EACCES)

(display "You're not allowed to do that."))

((= errno EEXIST)

(display "Already exists."))

(#t

(display (strerror errno))))

(newline))))

6.2.2 Ports and File Descriptors

Conventions generally follow those of scsh, Section 6.14 [The Scheme shell (scsh)], page 483.

File ports are implemented using low-level operating system I/O facilities, with optional
bu�ering to improve e�ciency; see Section 5.12.9.1 [File Ports], page 280.

Note that some procedures (e.g., recv!) will accept ports as arguments, but will actually
operate directly on the �le descriptor underlying the port. Any port bu�ering is ignored,
including the bu�er which implements peek-char and unread-char.
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The force-output and drain-input procedures can be used to clear the bu�ers.

Each open �le port has an associated operating system �le descriptor. File descriptors
are generally not useful in Scheme programs; however they may be needed when interfacing
with foreign code and the Unix environment.

A �le descriptor can be extracted from a port and a new port can be created from a �le
descriptor. However a �le descriptor is just an integer and the garbage collector doesn't
recognize it as a reference to the port. If all other references to the port were dropped, then
it's likely that the garbage collector would free the port, with the side-e�ect of closing the
�le descriptor prematurely.

To assist the programmer in avoiding this problem, each port has an associated revealed
count which can be used to keep track of how many times the underlying �le descriptor has
been stored in other places. If a port's revealed count is greater than zero, the �le descriptor
will not be closed when the port is garbage collected. A programmer can therefore ensure
that the revealed count will be greater than zero if the �le descriptor is needed elsewhere.

For the simple case where a �le descriptor is \imported" once to become a port, it does
not matter if the �le descriptor is closed when the port is garbage collected. There is no need
to maintain a revealed count. Likewise when \exporting" a �le descriptor to the external
environment, setting the revealed count is not required provided the port is kept open (i.e.,
is pointed to by a live Scheme binding) while the �le descriptor is in use.

To correspond with traditional Unix behaviour, three �le descriptors (0, 1, and 2) are
automatically imported when a program starts up and assigned to the initial values of the
current/standard input, output, and error ports, respectively. The revealed count for each
is initially set to one, so that dropping references to one of these ports will not result in its
garbage collection: it could be retrieved with fdopen or fdes->ports.

[Scheme Procedure]port-revealed port
[C Function]scm_port_revealed (port)

Return the revealed count for port.

[Scheme Procedure]set-port-revealed! port rcount
[C Function]scm_set_port_revealed_x (port, rcount)

Sets the revealed count for a port to rcount. The return value is unspeci�ed.

[Scheme Procedure]fileno port
[C Function]scm_fileno (port)

Return the integer �le descriptor underlying port. Does not change its revealed count.

[Scheme Procedure]port->fdes port
Returns the integer �le descriptor underlying port. As a side e�ect the revealed count
of port is incremented.

[Scheme Procedure]fdopen fdes modes
[C Function]scm_fdopen (fdes, modes)

Return a new port based on the �le descriptor fdes. Modes are given by the string
modes. The revealed count of the port is initialized to zero. The modes string is the
same as that accepted by open-file (see Section 5.12.9.1 [File Ports], page 280).
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[Scheme Procedure]fdes->ports fd
[C Function]scm_fdes_to_ports (fd)

Return a list of existing ports which have fdes as an underlying �le descriptor, without
changing their revealed counts.

[Scheme Procedure]fdes->inport fdes
Returns an existing input port which has fdes as its underlying �le descriptor, if one
exists, and increments its revealed count. Otherwise, returns a new input port with
a revealed count of 1.

[Scheme Procedure]fdes->outport fdes
Returns an existing output port which has fdes as its underlying �le descriptor, if one
exists, and increments its revealed count. Otherwise, returns a new output port with
a revealed count of 1.

[Scheme Procedure]primitive-move->fdes port fd
[C Function]scm_primitive_move_to_fdes (port, fd)

Moves the underlying �le descriptor for port to the integer value fdes without changing
the revealed count of port. Any other ports already using this descriptor will be
automatically shifted to new descriptors and their revealed counts reset to zero. The
return value is #f if the �le descriptor already had the required value or #t if it was
moved.

[Scheme Procedure]move->fdes port fdes
Moves the underlying �le descriptor for port to the integer value fdes and sets its
revealed count to one. Any other ports already using this descriptor will be automat-
ically shifted to new descriptors and their revealed counts reset to zero. The return
value is unspeci�ed.

[Scheme Procedure]release-port-handle port
Decrements the revealed count for a port.

[Scheme Procedure]fsync object
[C Function]scm_fsync (object)

Copies any unwritten data for the speci�ed output �le descriptor to disk. If port/fd
is a port, its bu�er is ushed before the underlying �le descriptor is fsync'd. The
return value is unspeci�ed.

[Scheme Procedure]open path ags [mode]
[C Function]scm_open (path, ags, mode)

Open the �le named by path for reading and/or writing. ags is an integer specifying
how the �le should be opened. mode is an integer specifying the permission bits of
the �le, if it needs to be created, before the umask (see Section 6.2.7 [Processes],
page 393) is applied. The default is 666 (Unix itself has no default).

ags can be constructed by combining variables using logior. Basic ags are:

[Variable]O_RDONLY
Open the �le read-only.
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[Variable]O_WRONLY
Open the �le write-only.

[Variable]O_RDWR
Open the �le read/write.

[Variable]O_APPEND
Append to the �le instead of truncating.

[Variable]O_CREAT
Create the �le if it does not already exist.

See section \File Status Flags" in The GNU C Library Reference Manual, for addi-
tional ags.

[Scheme Procedure]open-fdes path ags [mode]
[C Function]scm_open_fdes (path, ags, mode)

Similar to open but return a �le descriptor instead of a port.

[Scheme Procedure]close fd or port
[C Function]scm_close (fd or port)

Similar to close-port (see Section 5.12.4 [Closing], page 275), but also works on �le
descriptors. A side e�ect of closing a �le descriptor is that any ports using that �le
descriptor are moved to a di�erent �le descriptor and have their revealed counts set
to zero.

[Scheme Procedure]close-fdes fd
[C Function]scm_close_fdes (fd)

A simple wrapper for the close system call. Close �le descriptor fd, which must be
an integer. Unlike close, the �le descriptor will be closed even if a port is using it.
The return value is unspeci�ed.

[Scheme Procedure]unread-char char [port]
[C Function]scm_unread_char (char, port)

Place char in port so that it will be read by the next read operation on that port. If
called multiple times, the unread characters will be read again in \last-in, �rst-out"
order (i.e. a stack). If port is not supplied, the current input port is used.

[Scheme Procedure]unread-string str port
Place the string str in port so that its characters will be read in subsequent read
operations. If called multiple times, the unread characters will be read again in last-
in �rst-out order. If port is not supplied, the current-input-port is used.

[Scheme Procedure]pipe
[C Function]scm_pipe ()

Return a newly created pipe: a pair of ports which are linked together on the local
machine. The CAR is the input port and the CDR is the output port. Data written
(and ushed) to the output port can be read from the input port. Pipes are commonly
used for communication with a newly forked child process. The need to ush the
output port can be avoided by making it unbu�ered using setvbuf.
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[Variable]PIPE_BUF
A write of up to PIPE_BUF many bytes to a pipe is atomic, meaning when done
it goes into the pipe instantaneously and as a contiguous block (see section
\Atomicity of Pipe I/O" in The GNU C Library Reference Manual).

Note that the output port is likely to block if too much data has been written but
not yet read from the input port. Typically the capacity is PIPE_BUF bytes.

The next group of procedures perform a dup2 system call, if newfd (an integer) is sup-
plied, otherwise a dup. The �le descriptor to be duplicated can be supplied as an integer
or contained in a port. The type of value returned varies depending on which procedure is
used.

All procedures also have the side e�ect when performing dup2 that any ports using newfd
are moved to a di�erent �le descriptor and have their revealed counts set to zero.

[Scheme Procedure]dup->fdes fd or port [fd]
[C Function]scm_dup_to_fdes (fd or port, fd)

Return a new integer �le descriptor referring to the open �le designated by fd or port,
which must be either an open �le port or a �le descriptor.

[Scheme Procedure]dup->inport port/fd [newfd]
Returns a new input port using the new �le descriptor.

[Scheme Procedure]dup->outport port/fd [newfd]
Returns a new output port using the new �le descriptor.

[Scheme Procedure]dup port/fd [newfd]
Returns a new port if port/fd is a port, with the same mode as the supplied port,
otherwise returns an integer �le descriptor.

[Scheme Procedure]dup->port port/fd mode [newfd]
Returns a new port using the new �le descriptor. mode supplies a mode string for
the port (see Section 5.12.9.1 [File Ports], page 280).

[Scheme Procedure]duplicate-port port modes
Returns a new port which is opened on a duplicate of the �le descriptor underlying
port, with mode string modes as for Section 5.12.9.1 [File Ports], page 280. The two
ports will share a �le position and �le status ags.

Unexpected behaviour can result if both ports are subsequently used and the original
and/or duplicate ports are bu�ered. The mode string can include 0 to obtain an
unbu�ered duplicate port.

This procedure is equivalent to (dup->port port modes).

[Scheme Procedure]redirect-port old new
[C Function]scm_redirect_port (old, new)

This procedure takes two ports and duplicates the underlying �le descriptor from
old-port into new-port. The current �le descriptor in new-port will be closed. After
the redirection the two ports will share a �le position and �le status ags.

The return value is unspeci�ed.



Chapter 6: Guile Modules 381

Unexpected behaviour can result if both ports are subsequently used and the original
and/or duplicate ports are bu�ered.

This procedure does not have any side e�ects on other ports or revealed counts.

[Scheme Procedure]dup2 oldfd newfd
[C Function]scm_dup2 (oldfd, newfd)

A simple wrapper for the dup2 system call. Copies the �le descriptor oldfd to descrip-
tor number newfd, replacing the previous meaning of newfd. Both oldfd and newfd
must be integers. Unlike for dup->fdes or primitive-move->fdes, no attempt is
made to move away ports which are using newfd. The return value is unspeci�ed.

[Scheme Procedure]port-mode port
Return the port modes associated with the open port port. These will not necessar-
ily be identical to the modes used when the port was opened, since modes such as
\append" which are used only during port creation are not retained.

[Scheme Procedure]port-for-each proc
[C Function]scm_port_for_each (SCM proc)
[C Function]scm_c_port_for_each (void (*proc)(void *, SCM), void *data)

Apply proc to each port in the Guile port table (FIXME: what is the Guile port
table?) in turn. The return value is unspeci�ed. More speci�cally, proc is applied
exactly once to every port that exists in the system at the time port-for-each is
invoked. Changes to the port table while port-for-each is running have no e�ect as
far as port-for-each is concerned.

The C function scm_port_for_each takes a Scheme procedure encoded as a SCM

value, while scm_c_port_for_each takes a pointer to a C function and passes along
a arbitrary data cookie.

[Scheme Procedure]setvbuf port mode [size]
[C Function]scm_setvbuf (port, mode, size)

Set the bu�ering mode for port. mode can be:

[Variable]_IONBF
non-bu�ered

[Variable]_IOLBF
line bu�ered

[Variable]_IOFBF
block bu�ered, using a newly allocated bu�er of size bytes. If size is omitted,
a default size will be used.

[Scheme Procedure]fcntl port/fd cmd [value]
[C Function]scm_fcntl (object, cmd, value)

Apply cmd on port/fd, either a port or �le descriptor. The value argument is used
by the SET commands described below, it's an integer value.

Values for cmd are:

[Variable]F_DUPFD
Duplicate the �le descriptor, the same as dup->fdes above does.
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[Variable]F_GETFD
[Variable]F_SETFD

Get or set ags associated with the �le descriptor. The only ag is the following,

[Variable]FD_CLOEXEC
\Close on exec", meaning the �le descriptor will be closed on an exec

call (a successful such call). For example to set that ag,

(fcntl port F_SETFD FD_CLOEXEC)

Or better, set it but leave any other possible future ags unchanged,

(fcntl port F_SETFD (logior FD_CLOEXEC

(fcntl port F_GETFD)))

[Variable]F_GETFL
[Variable]F_SETFL

Get or set ags associated with the open �le. These ags are O_RDONLY etc
described under open above.

A common use is to set O_NONBLOCK on a network socket. The following sets
that ag, and leaves other ags unchanged.

(fcntl sock F_SETFL (logior O_NONBLOCK

(fcntl sock F_GETFL)))

[Variable]F_GETOWN
[Variable]F_SETOWN

Get or set the process ID of a socket's owner, for SIGIO signals.

[Scheme Procedure]flock �le operation
[C Function]scm_flock (�le, operation)

Apply or remove an advisory lock on an open �le. operation speci�es the action to
be done:

[Variable]LOCK_SH
Shared lock. More than one process may hold a shared lock for a given �le at
a given time.

[Variable]LOCK_EX
Exclusive lock. Only one process may hold an exclusive lock for a given �le at
a given time.

[Variable]LOCK_UN
Unlock the �le.

[Variable]LOCK_NB
Don't block when locking. This is combined with one of the other operations
using logior (see Section 5.5.2.14 [Bitwise Operations], page 117). If flock
would block an EWOULDBLOCK error is thrown (see Section 6.2.1 [Conventions],
page 373).

The return value is not speci�ed. �le may be an open �le descriptor or an open �le
descriptor port.

Note that flock does not lock �les across NFS.



Chapter 6: Guile Modules 383

[Scheme Procedure]select reads writes excepts [secs [usecs]]
[C Function]scm_select (reads, writes, excepts, secs, usecs)

This procedure has a variety of uses: waiting for the ability to provide input, accept
output, or the existence of exceptional conditions on a collection of ports or �le
descriptors, or waiting for a timeout to occur. It also returns if interrupted by a
signal.

reads, writes and excepts can be lists or vectors, with each member a port or a
�le descriptor. The value returned is a list of three corresponding lists or vectors
containing only the members which meet the speci�ed requirement. The ability of
port bu�ers to provide input or accept output is taken into account. Ordering of the
input lists or vectors is not preserved.

The optional arguments secs and usecs specify the timeout. Either secs can be speci-
�ed alone, as either an integer or a real number, or both secs and usecs can be speci�ed
as integers, in which case usecs is an additional timeout expressed in microseconds.
If secs is omitted or is #f then select will wait for as long as it takes for one of the
other conditions to be satis�ed.

The scsh version of select di�ers as follows: Only vectors are accepted for the �rst
three arguments. The usecs argument is not supported. Multiple values are returned
instead of a list. Duplicates in the input vectors appear only once in output. An
additional select! interface is provided.

6.2.3 File System

These procedures allow querying and setting �le system attributes (such as owner, per-
missions, sizes and types of �les); deleting, copying, renaming and linking �les; creating
and removing directories and querying their contents; syncing the �le system and creating
special �les.

[Scheme Procedure]access? path how
[C Function]scm_access (path, how)

Test accessibility of a �le under the real UID and GID of the calling process. The
return is #t if path exists and the permissions requested by how are all allowed, or
#f if not.

how is an integer which is one of the following values, or a bitwise-OR (logior) of
multiple values.

[Variable]R_OK
Test for read permission.

[Variable]W_OK
Test for write permission.

[Variable]X_OK
Test for execute permission.

[Variable]F_OK
Test for existence of the �le. This is implied by each of the other tests, so
there's no need to combine it with them.
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It's important to note that access? does not simply indicate what will happen on
attempting to read or write a �le. In normal circumstances it does, but in a set-UID
or set-GID program it doesn't because access? tests the real ID, whereas an open or
execute attempt uses the e�ective ID.

A program which will never run set-UID/GID can ignore the di�erence between real
and e�ective IDs, but for maximum generality, especially in library functions, it's
best not to use access? to predict the result of an open or execute, instead simply
attempt that and catch any exception.

The main use for access? is to let a set-UID/GID program determine what the
invoking user would have been allowed to do, without the greater (or perhaps lesser)
privileges a�orded by the e�ective ID. For more on this, see section \Testing File
Access" in The GNU C Library Reference Manual.

[Scheme Procedure]stat object
[C Function]scm_stat (object)

Return an object containing various information about the �le determined by obj.
obj can be a string containing a �le name or a port or integer �le descriptor which is
open on a �le (in which case fstat is used as the underlying system call).

The object returned by stat can be passed as a single parameter to the following
procedures, all of which return integers:

[Scheme Procedure]stat:dev st
The device number containing the �le.

[Scheme Procedure]stat:ino st
The �le serial number, which distinguishes this �le from all other �les on the
same device.

[Scheme Procedure]stat:mode st
The mode of the �le. This is an integer which incorporates �le type information
and �le permission bits. See also stat:type and stat:perms below.

[Scheme Procedure]stat:nlink st
The number of hard links to the �le.

[Scheme Procedure]stat:uid st
The user ID of the �le's owner.

[Scheme Procedure]stat:gid st
The group ID of the �le.

[Scheme Procedure]stat:rdev st
Device ID; this entry is de�ned only for character or block special �les. On
some systems this �eld is not available at all, in which case stat:rdev returns
#f.

[Scheme Procedure]stat:size st
The size of a regular �le in bytes.
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[Scheme Procedure]stat:atime st
The last access time for the �le.

[Scheme Procedure]stat:mtime st
The last modi�cation time for the �le.

[Scheme Procedure]stat:ctime st
The last modi�cation time for the attributes of the �le.

[Scheme Procedure]stat:blksize st
The optimal block size for reading or writing the �le, in bytes. On some sys-
tems this �eld is not available, in which case stat:blksize returns a sensible
suggested block size.

[Scheme Procedure]stat:blocks st
The amount of disk space that the �le occupies measured in units of 512 byte
blocks. On some systems this �eld is not available, in which case stat:blocks
returns #f.

In addition, the following procedures return the information from stat:mode in a
more convenient form:

[Scheme Procedure]stat:type st
A symbol representing the type of �le. Possible values are `regular',
`directory', `symlink', `block-special', `char-special', `fifo', `socket',
and `unknown'.

[Scheme Procedure]stat:perms st
An integer representing the access permission bits.

[Scheme Procedure]lstat str
[C Function]scm_lstat (str)

Similar to stat, but does not follow symbolic links, i.e., it will return information
about a symbolic link itself, not the �le it points to. path must be a string.

[Scheme Procedure]readlink path
[C Function]scm_readlink (path)

Return the value of the symbolic link named by path (a string), i.e., the �le that the
link points to.

[Scheme Procedure]chown object owner group
[C Function]scm_chown (object, owner, group)

Change the ownership and group of the �le referred to by object to the integer values
owner and group. object can be a string containing a �le name or, if the platform
supports fchown (see section \File Owner" in The GNU C Library Reference Man-
ual), a port or integer �le descriptor which is open on the �le. The return value is
unspeci�ed.

If object is a symbolic link, either the ownership of the link or the ownership of
the referenced �le will be changed depending on the operating system (lchown is
unsupported at present). If owner or group is speci�ed as -1, then that ID is not
changed.
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[Scheme Procedure]chmod object mode
[C Function]scm_chmod (object, mode)

Changes the permissions of the �le referred to by obj. obj can be a string containing
a �le name or a port or integer �le descriptor which is open on a �le (in which case
fchmod is used as the underlying system call). mode speci�es the new permissions as
a decimal number, e.g., (chmod "foo" #o755). The return value is unspeci�ed.

[Scheme Procedure]utime pathname [actime [modtime]]
[C Function]scm_utime (pathname, actime, modtime)

utime sets the access and modi�cation times for the �le named by path. If actime or
modtime is not supplied, then the current time is used. actime and modtime must
be integer time values as returned by the current-time procedure.

(utime "foo" (- (current-time) 3600))

will set the access time to one hour in the past and the modi�cation time to the
current time.

[Scheme Procedure]delete-file str
[C Function]scm_delete_file (str)

Deletes (or \unlinks") the �le whose path is speci�ed by str.

[Scheme Procedure]copy-file old�le new�le
[C Function]scm_copy_file (old�le, new�le)

Copy the �le speci�ed by old�le to new�le. The return value is unspeci�ed.

[Scheme Procedure]rename-file oldname newname
[C Function]scm_rename (oldname, newname)

Renames the �le speci�ed by oldname to newname. The return value is unspeci�ed.

[Scheme Procedure]link oldpath newpath
[C Function]scm_link (oldpath, newpath)

Creates a new name newpath in the �le system for the �le named by oldpath. If
oldpath is a symbolic link, the link may or may not be followed depending on the
system.

[Scheme Procedure]symlink oldpath newpath
[C Function]scm_symlink (oldpath, newpath)

Create a symbolic link named newpath with the value (i.e., pointing to) oldpath. The
return value is unspeci�ed.

[Scheme Procedure]mkdir path [mode]
[C Function]scm_mkdir (path, mode)

Create a new directory named by path. If mode is omitted then the permissions of the
directory �le are set using the current umask (see Section 6.2.7 [Processes], page 393).
Otherwise they are set to the decimal value speci�ed with mode. The return value is
unspeci�ed.

[Scheme Procedure]rmdir path
[C Function]scm_rmdir (path)

Remove the existing directory named by path. The directory must be empty for this
to succeed. The return value is unspeci�ed.
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[Scheme Procedure]opendir dirname
[C Function]scm_opendir (dirname)

Open the directory speci�ed by dirname and return a directory stream.

[Scheme Procedure]directory-stream? object
[C Function]scm_directory_stream_p (object)

Return a boolean indicating whether object is a directory stream as returned by
opendir.

[Scheme Procedure]readdir stream
[C Function]scm_readdir (stream)

Return (as a string) the next directory entry from the directory stream stream. If
there is no remaining entry to be read then the end of �le object is returned.

[Scheme Procedure]rewinddir stream
[C Function]scm_rewinddir (stream)

Reset the directory port stream so that the next call to readdir will return the �rst
directory entry.

[Scheme Procedure]closedir stream
[C Function]scm_closedir (stream)

Close the directory stream stream. The return value is unspeci�ed.

Here is an example showing how to display all the entries in a directory:

(define dir (opendir "/usr/lib"))

(do ((entry (readdir dir) (readdir dir)))

((eof-object? entry))

(display entry)(newline))

(closedir dir)

[Scheme Procedure]sync
[C Function]scm_sync ()

Flush the operating system disk bu�ers. The return value is unspeci�ed.

[Scheme Procedure]mknod path type perms dev
[C Function]scm_mknod (path, type, perms, dev)

Creates a new special �le, such as a �le corresponding to a device. path speci�es the
name of the �le. type should be one of the following symbols: `regular', `directory',
`symlink', `block-special', `char-special', `fifo', or `socket'. perms (an integer)
speci�es the �le permissions. dev (an integer) speci�es which device the special �le
refers to. Its exact interpretation depends on the kind of special �le being created.

E.g.,

(mknod "/dev/fd0" 'block-special #o660 (+ (* 2 256) 2))

The return value is unspeci�ed.

[Scheme Procedure]tmpnam
[C Function]scm_tmpnam ()

Return an auto-generated name of a temporary �le, a �le which doesn't already exist.
The name includes a path, it's usually in `/tmp' but that's system dependent.
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Care must be taken when using tmpnam. In between choosing the name and creating
the �le another program might use that name, or an attacker might even make it a
symlink pointing at something important and causing you to overwrite that.

The safe way is to create the �le using open with O_EXCL to avoid any overwriting.
A loop can try again with another name if the �le exists (error EEXIST). mkstemp!

below does that.

[Scheme Procedure]mkstemp! tmpl
[C Function]scm_mkstemp (tmpl)

Create a new unique �le in the �le system and return a new bu�ered port open for
reading and writing to the �le.

tmpl is a string specifying where the �le should be created: it must end with `XXXXXX'
and those `X's will be changed in the string to return the name of the �le. (port-
filename on the port also gives the name.)

POSIX doesn't specify the permissions mode of the �le, on GNU and most systems
it's #o600. An application can use chmod to relax that if desired. For example #o666
less umask, which is usual for ordinary �le creation,

(let ((port (mkstemp! (string-copy "/tmp/myfile-XXXXXX"))))

(chmod port (logand #o666 (lognot (umask))))

...)

[Scheme Procedure]dirname �lename
[C Function]scm_dirname (�lename)

Return the directory name component of the �le name �lename. If �lename does not
contain a directory component, . is returned.

[Scheme Procedure]basename �lename [su�x]
[C Function]scm_basename (�lename, su�x)

Return the base name of the �le name �lename. The base name is the �le name
without any directory components. If su�x is provided, and is equal to the end of
basename, it is removed also.

(basename "/tmp/test.xml" ".xml")
) "test"

6.2.4 User Information

The facilities in this section provide an interface to the user and group database. They
should be used with care since they are not reentrant.

The following functions accept an object representing user information and return a
selected component:

[Scheme Procedure]passwd:name pw
The name of the userid.

[Scheme Procedure]passwd:passwd pw
The encrypted passwd.

[Scheme Procedure]passwd:uid pw
The user id number.
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[Scheme Procedure]passwd:gid pw
The group id number.

[Scheme Procedure]passwd:gecos pw
The full name.

[Scheme Procedure]passwd:dir pw
The home directory.

[Scheme Procedure]passwd:shell pw
The login shell.

[Scheme Procedure]getpwuid uid
Look up an integer userid in the user database.

[Scheme Procedure]getpwnam name
Look up a user name string in the user database.

[Scheme Procedure]setpwent
Initializes a stream used by getpwent to read from the user database. The next use
of getpwent will return the �rst entry. The return value is unspeci�ed.

[Scheme Procedure]getpwent
Read the next entry in the user database stream. The return is a passwd user object
as above, or #f when no more entries.

[Scheme Procedure]endpwent
Closes the stream used by getpwent. The return value is unspeci�ed.

[Scheme Procedure]setpw [arg]
[C Function]scm_setpwent (arg)

If called with a true argument, initialize or reset the password data stream. Otherwise,
close the stream. The setpwent and endpwent procedures are implemented on top
of this.

[Scheme Procedure]getpw [user]
[C Function]scm_getpwuid (user)

Look up an entry in the user database. obj can be an integer, a string, or omitted,
giving the behaviour of getpwuid, getpwnam or getpwent respectively.

The following functions accept an object representing group information and return a
selected component:

[Scheme Procedure]group:name gr
The group name.

[Scheme Procedure]group:passwd gr
The encrypted group password.

[Scheme Procedure]group:gid gr
The group id number.
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[Scheme Procedure]group:mem gr
A list of userids which have this group as a supplementary group.

[Scheme Procedure]getgrgid gid
Look up an integer group id in the group database.

[Scheme Procedure]getgrnam name
Look up a group name in the group database.

[Scheme Procedure]setgrent
Initializes a stream used by getgrent to read from the group database. The next use
of getgrent will return the �rst entry. The return value is unspeci�ed.

[Scheme Procedure]getgrent
Return the next entry in the group database, using the stream set by setgrent.

[Scheme Procedure]endgrent
Closes the stream used by getgrent. The return value is unspeci�ed.

[Scheme Procedure]setgr [arg]
[C Function]scm_setgrent (arg)

If called with a true argument, initialize or reset the group data stream. Otherwise,
close the stream. The setgrent and endgrent procedures are implemented on top
of this.

[Scheme Procedure]getgr [name]
[C Function]scm_getgrgid (name)

Look up an entry in the group database. obj can be an integer, a string, or omitted,
giving the behaviour of getgrgid, getgrnam or getgrent respectively.

In addition to the accessor procedures for the user database, the following shortcut
procedures are also available.

[Scheme Procedure]cuserid
[C Function]scm_cuserid ()

Return a string containing a user name associated with the e�ective user id of the
process. Return #f if this information cannot be obtained.

This function has been removed from the latest POSIX speci�cation, Guile provides
it only if the system has it. Using (getpwuid (geteuid)) may be a better idea.

[Scheme Procedure]getlogin
[C Function]scm_getlogin ()

Return a string containing the name of the user logged in on the controlling terminal
of the process, or #f if this information cannot be obtained.
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6.2.5 Time

[Scheme Procedure]current-time
[C Function]scm_current_time ()

Return the number of seconds since 1970-01-01 00:00:00 UTC, excluding leap seconds.

[Scheme Procedure]gettimeofday
[C Function]scm_gettimeofday ()

Return a pair containing the number of seconds and microseconds since 1970-01-01
00:00:00 UTC, excluding leap seconds. Note: whether true microsecond resolution is
available depends on the operating system.

The following procedures either accept an object representing a broken down time and
return a selected component, or accept an object representing a broken down time and a
value and set the component to the value. The numbers in parentheses give the usual range.

[Scheme Procedure]tm:sec tm
[Scheme Procedure]set-tm:sec tm val

Seconds (0-59).

[Scheme Procedure]tm:min tm
[Scheme Procedure]set-tm:min tm val

Minutes (0-59).

[Scheme Procedure]tm:hour tm
[Scheme Procedure]set-tm:hour tm val

Hours (0-23).

[Scheme Procedure]tm:mday tm
[Scheme Procedure]set-tm:mday tm val

Day of the month (1-31).

[Scheme Procedure]tm:mon tm
[Scheme Procedure]set-tm:mon tm val

Month (0-11).

[Scheme Procedure]tm:year tm
[Scheme Procedure]set-tm:year tm val

Year (70-), the year minus 1900.

[Scheme Procedure]tm:wday tm
[Scheme Procedure]set-tm:wday tm val

Day of the week (0-6) with Sunday represented as 0.

[Scheme Procedure]tm:yday tm
[Scheme Procedure]set-tm:yday tm val

Day of the year (0-364, 365 in leap years).

[Scheme Procedure]tm:isdst tm
[Scheme Procedure]set-tm:isdst tm val

Daylight saving indicator (0 for \no", greater than 0 for \yes", less than 0 for \un-
known").
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[Scheme Procedure]tm:gmtoff tm
[Scheme Procedure]set-tm:gmtoff tm val

Time zone o�set in seconds west of UTC (-46800 to 43200). For example on East
coast USA (zone `EST+5') this would be 18000 (ie. 5 � 60 � 60) in winter, or 14400
(ie. 4� 60� 60) during daylight savings.

Note tm:gmtoff is not the same as tm_gmtoff in the C tm structure. tm_gmtoff is
seconds east and hence the negative of the value here.

[Scheme Procedure]tm:zone tm
[Scheme Procedure]set-tm:zone tm val

Time zone label (a string), not necessarily unique.

[Scheme Procedure]localtime time [zone]
[C Function]scm_localtime (time, zone)

Return an object representing the broken down components of time, an integer like
the one returned by current-time. The time zone for the calculation is optionally
speci�ed by zone (a string), otherwise the TZ environment variable or the system
default is used.

[Scheme Procedure]gmtime time
[C Function]scm_gmtime (time)

Return an object representing the broken down components of time, an integer like
the one returned by current-time. The values are calculated for UTC.

[Scheme Procedure]mktime sbd-time [zone]
[C Function]scm_mktime (sbd time, zone)

For a broken down time object sbd-time, return a pair the car of which is an integer
time like current-time, and the cdr of which is a new broken down time with
normalized �elds.

zone is a timezone string, or the default is the TZ environment variable or the system
default (see section \Specifying the Time Zone with TZ" in GNU C Library Reference
Manual). sbd-time is taken to be in that zone.

The following �elds of sbd-time are used: tm:year, tm:mon, tm:mday, tm:hour,
tm:min, tm:sec, tm:isdst. The values can be outside their usual ranges. For exam-
ple tm:hour normally goes up to 23, but a value say 33 would mean 9 the following
day.

tm:isdst in sbd-time says whether the time given is with daylight savings or not.
This is ignored if zone doesn't have any daylight savings adjustment amount.

The broken down time in the return normalizes the values of sbd-time by bringing
them into their usual ranges, and using the actual daylight savings rule for that time
in zone (which may di�er from what sbd-time had). The easiest way to think of this
is that sbd-time plus zone converts to the integer UTC time, then a localtime is
applied to get the normal presentation of that time, in zone.

[Scheme Procedure]tzset
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[C Function]scm_tzset ()
Initialize the timezone from the TZ environment variable or the system default. It's
not usually necessary to call this procedure since it's done automatically by other
procedures that depend on the timezone.

[Scheme Procedure]strftime format tm
[C Function]scm_strftime (format, tm)

Return a string which is broken-down time structure tm formatted according to the
given format string.

format contains �eld speci�cations introduced by a `%' character. See section \Format-
ting Calendar Time" in The GNU C Library Reference Manual, or `man 3 strftime',
for the available formatting.

(strftime "%c" (localtime (current-time)))
) "Mon Mar 11 20:17:43 2002"

If setlocale has been called (see Section 6.2.13 [Locales], page 417), month and day
names are from the current locale and in the locale character set.

Note that `%Z' might print the tm:zone in tm or it might print just the current zone
(tzset above). A GNU system prints tm:zone, a strict C99 system like NetBSD
prints the current zone. Perhaps in the future Guile will try to get tm:zone used
always.

[Scheme Procedure]strptime format string
[C Function]scm_strptime (format, string)

Performs the reverse action to strftime, parsing string according to the speci�cation
supplied in template. The interpretation of month and day names is dependent on
the current locale. The value returned is a pair. The CAR has an object with time
components in the form returned by localtime or gmtime, but the time zone com-
ponents are not usefully set. The CDR reports the number of characters from string
which were used for the conversion.

[Variable]internal-time-units-per-second
The value of this variable is the number of time units per second reported by the
following procedures.

[Scheme Procedure]times
[C Function]scm_times ()

Return an object with information about real and processor time. The following
procedures accept such an object as an argument and return a selected component:

[Scheme Procedure]tms:clock tms
The current real time, expressed as time units relative to an arbitrary base.

[Scheme Procedure]tms:utime tms
The CPU time units used by the calling process.

[Scheme Procedure]tms:stime tms
The CPU time units used by the system on behalf of the calling process.
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[Scheme Procedure]tms:cutime tms
The CPU time units used by terminated child processes of the calling process,
whose status has been collected (e.g., using waitpid).

[Scheme Procedure]tms:cstime tms
Similarly, the CPU times units used by the system on behalf of terminated child
processes.

[Scheme Procedure]get-internal-real-time
[C Function]scm_get_internal_real_time ()

Return the number of time units since the interpreter was started.

[Scheme Procedure]get-internal-run-time
[C Function]scm_get_internal_run_time ()

Return the number of time units of processor time used by the interpreter. Both
system and user time are included but subprocesses are not.

6.2.6 Runtime Environment

[Scheme Procedure]program-arguments
[Scheme Procedure]command-line

[C Function]scm_program_arguments ()
Return the list of command line arguments passed to Guile, as a list of strings. The list
includes the invoked program name, which is usually "guile", but excludes switches
and parameters for command line options like -e and -l.

[Scheme Procedure]getenv nam
[C Function]scm_getenv (nam)

Looks up the string name in the current environment. The return value is #f unless
a string of the form NAME=VALUE is found, in which case the string VALUE is returned.

[Scheme Procedure]setenv name value
Modi�es the environment of the current process, which is also the default environment
inherited by child processes.

If value is #f, then name is removed from the environment. Otherwise, the string
name=value is added to the environment, replacing any existing string with name
matching name.

The return value is unspeci�ed.

[Scheme Procedure]unsetenv name
Remove variable name from the environment. The name can not contain a `=' char-
acter.

[Scheme Procedure]environ [env]
[C Function]scm_environ (env)

If env is omitted, return the current environment (in the Unix sense) as a list of
strings. Otherwise set the current environment, which is also the default environment
for child processes, to the supplied list of strings. Each member of env should be of
the form NAME=VALUE and values of NAME should not be duplicated. If env is
supplied then the return value is unspeci�ed.
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[Scheme Procedure]putenv str
[C Function]scm_putenv (str)

Modi�es the environment of the current process, which is also the default environment
inherited by child processes.

If string is of the form NAME=VALUE then it will be written directly into the environ-
ment, replacing any existing environment string with name matching NAME. If string
does not contain an equal sign, then any existing string with name matching string
will be removed.

The return value is unspeci�ed.

6.2.7 Processes

[Scheme Procedure]chdir str
[C Function]scm_chdir (str)

Change the current working directory to path. The return value is unspeci�ed.

[Scheme Procedure]getcwd
[C Function]scm_getcwd ()

Return the name of the current working directory.

[Scheme Procedure]umask [mode]
[C Function]scm_umask (mode)

If mode is omitted, returns a decimal number representing the current �le creation
mask. Otherwise the �le creation mask is set to mode and the previous value is
returned. See section \Assigning File Permissions" in The GNU C Library Reference
Manual, for more on how to use umasks.

E.g., (umask #o022) sets the mask to octal 22/decimal 18.

[Scheme Procedure]chroot path
[C Function]scm_chroot (path)

Change the root directory to that speci�ed in path. This directory will be used for
path names beginning with `/'. The root directory is inherited by all children of the
current process. Only the superuser may change the root directory.

[Scheme Procedure]getpid
[C Function]scm_getpid ()

Return an integer representing the current process ID.

[Scheme Procedure]getgroups
[C Function]scm_getgroups ()

Return a vector of integers representing the current supplementary group IDs.

[Scheme Procedure]getppid
[C Function]scm_getppid ()

Return an integer representing the process ID of the parent process.

[Scheme Procedure]getuid
[C Function]scm_getuid ()

Return an integer representing the current real user ID.



396 Guile Reference Manual

[Scheme Procedure]getgid
[C Function]scm_getgid ()

Return an integer representing the current real group ID.

[Scheme Procedure]geteuid
[C Function]scm_geteuid ()

Return an integer representing the current e�ective user ID. If the system does not
support e�ective IDs, then the real ID is returned. (provided? 'EIDs) reports
whether the system supports e�ective IDs.

[Scheme Procedure]getegid
[C Function]scm_getegid ()

Return an integer representing the current e�ective group ID. If the system does
not support e�ective IDs, then the real ID is returned. (provided? 'EIDs) reports
whether the system supports e�ective IDs.

[Scheme Procedure]setgroups vec
[C Function]scm_setgroups (vec)

Set the current set of supplementary group IDs to the integers in the given vector
vec. The return value is unspeci�ed.

Generally only the superuser can set the process group IDs (see section \Setting
Groups" in The GNU C Library Reference Manual).

[Scheme Procedure]setuid id
[C Function]scm_setuid (id)

Sets both the real and e�ective user IDs to the integer id, provided the process has
appropriate privileges. The return value is unspeci�ed.

[Scheme Procedure]setgid id
[C Function]scm_setgid (id)

Sets both the real and e�ective group IDs to the integer id, provided the process has
appropriate privileges. The return value is unspeci�ed.

[Scheme Procedure]seteuid id
[C Function]scm_seteuid (id)

Sets the e�ective user ID to the integer id, provided the process has appropriate
privileges. If e�ective IDs are not supported, the real ID is set instead|(provided?

'EIDs) reports whether the system supports e�ective IDs. The return value is un-
speci�ed.

[Scheme Procedure]setegid id
[C Function]scm_setegid (id)

Sets the e�ective group ID to the integer id, provided the process has appropriate
privileges. If e�ective IDs are not supported, the real ID is set instead|(provided?

'EIDs) reports whether the system supports e�ective IDs. The return value is un-
speci�ed.

[Scheme Procedure]getpgrp
[C Function]scm_getpgrp ()

Return an integer representing the current process group ID. This is the POSIX de�-
nition, not BSD.
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[Scheme Procedure]setpgid pid pgid
[C Function]scm_setpgid (pid, pgid)

Move the process pid into the process group pgid. pid or pgid must be integers: they
can be zero to indicate the ID of the current process. Fails on systems that do not
support job control. The return value is unspeci�ed.

[Scheme Procedure]setsid
[C Function]scm_setsid ()

Creates a new session. The current process becomes the session leader and is put in
a new process group. The process will be detached from its controlling terminal if it
has one. The return value is an integer representing the new process group ID.

[Scheme Procedure]waitpid pid [options]
[C Function]scm_waitpid (pid, options)

This procedure collects status information from a child process which has terminated
or (optionally) stopped. Normally it will suspend the calling process until this can
be done. If more than one child process is eligible then one will be chosen by the
operating system.

The value of pid determines the behaviour:

pid greater than 0
Request status information from the speci�ed child process.

pid equal to -1 or WAIT_ANY
Request status information for any child process.

pid equal to 0 or WAIT_MYPGRP
Request status information for any child process in the current process
group.

pid less than -1
Request status information for any child process whose process group ID
is �pid.

The options argument, if supplied, should be the bitwise OR of the values of zero or
more of the following variables:

[Variable]WNOHANG
Return immediately even if there are no child processes to be collected.

[Variable]WUNTRACED
Report status information for stopped processes as well as terminated processes.

The return value is a pair containing:

1. The process ID of the child process, or 0 if WNOHANG was speci�ed and no process
was collected.

2. The integer status value.

The following three functions can be used to decode the process status code returned by
waitpid.
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[Scheme Procedure]status:exit-val status
[C Function]scm_status_exit_val (status)

Return the exit status value, as would be set if a process ended normally through a
call to exit or _exit, if any, otherwise #f.

[Scheme Procedure]status:term-sig status
[C Function]scm_status_term_sig (status)

Return the signal number which terminated the process, if any, otherwise #f.

[Scheme Procedure]status:stop-sig status
[C Function]scm_status_stop_sig (status)

Return the signal number which stopped the process, if any, otherwise #f.

[Scheme Procedure]system [cmd]
[C Function]scm_system (cmd)

Execute cmd using the operating system's \command processor". Under Unix this is
usually the default shell sh. The value returned is cmd's exit status as returned by
waitpid, which can be interpreted using the functions above.

If system is called without arguments, return a boolean indicating whether the com-
mand processor is available.

[Scheme Procedure]system* . args
[C Function]scm_system_star (args)

Execute the command indicated by args. The �rst element must be a string indicating
the command to be executed, and the remaining items must be strings representing
each of the arguments to that command.

This function returns the exit status of the command as provided by waitpid. This
value can be handled with status:exit-val and the related functions.

system* is similar to system, but accepts only one string per-argument, and performs
no shell interpretation. The command is executed using fork and execlp. Accordingly
this function may be safer than system in situations where shell interpretation is not
required.

Example: (system* "echo" "foo" "bar")

[Scheme Procedure]primitive-exit [status]
[Scheme Procedure]primitive-_exit [status]

[C Function]scm_primitive_exit (status)
[C Function]scm_primitive__exit (status)

Terminate the current process without unwinding the Scheme stack. The exit status
is status if supplied, otherwise zero.

primitive-exit uses the C exit function and hence runs usual C level cleanups
(ush output streams, call atexit functions, etc, see section \Normal Termination"
in The GNU C Library Reference Manual)).

primitive-_exit is the _exit system call (see section \Termination Internals" in
The GNU C Library Reference Manual). This terminates the program immediately,
with neither Scheme-level nor C-level cleanups.
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The typical use for primitive-_exit is from a child process created with primitive-

fork. For example in a Gdk program the child process inherits the X server connection
and a C-level atexit cleanup which will close that connection. But closing in the
child would upset the protocol in the parent, so primitive-_exit should be used to
exit without that.

[Scheme Procedure]execl �lename . args
[C Function]scm_execl (�lename, args)

Executes the �le named by path as a new process image. The remaining arguments are
supplied to the process; from a C program they are accessible as the argv argument
to main. Conventionally the �rst arg is the same as path. All arguments must be
strings.

If arg is missing, path is executed with a null argument list, which may have system-
dependent side-e�ects.

This procedure is currently implemented using the execv system call, but we call it
execl because of its Scheme calling interface.

[Scheme Procedure]execlp �lename . args
[C Function]scm_execlp (�lename, args)

Similar to execl, however if �lename does not contain a slash then the �le to execute
will be located by searching the directories listed in the PATH environment variable.

This procedure is currently implemented using the execvp system call, but we call it
execlp because of its Scheme calling interface.

[Scheme Procedure]execle �lename env . args
[C Function]scm_execle (�lename, env, args)

Similar to execl, but the environment of the new process is speci�ed by env, which
must be a list of strings as returned by the environ procedure.

This procedure is currently implemented using the execve system call, but we call it
execle because of its Scheme calling interface.

[Scheme Procedure]primitive-fork
[C Function]scm_fork ()

Creates a new \child" process by duplicating the current \parent" process. In the
child the return value is 0. In the parent the return value is the integer process ID of
the child.

This procedure has been renamed from fork to avoid a naming conict with the scsh
fork.

[Scheme Procedure]nice incr
[C Function]scm_nice (incr)

Increment the priority of the current process by incr. A higher priority value means
that the process runs less often. The return value is unspeci�ed.

[Scheme Procedure]setpriority which who prio
[C Function]scm_setpriority (which, who, prio)

Set the scheduling priority of the process, process group or user, as indicated by which
and who. which is one of the variables PRIO_PROCESS, PRIO_PGRP or PRIO_USER, and
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who is interpreted relative to which (a process identi�er for PRIO_PROCESS, process
group identi�er for PRIO_PGRP, and a user identi�er for PRIO_USER. A zero value
of who denotes the current process, process group, or user. prio is a value in the
range [�20,20]. The default priority is 0; lower priorities (in numerical terms) cause
more favorable scheduling. Sets the priority of all of the speci�ed processes. Only the
super-user may lower priorities. The return value is not speci�ed.

[Scheme Procedure]getpriority which who
[C Function]scm_getpriority (which, who)

Return the scheduling priority of the process, process group or user, as indicated by
which and who. which is one of the variables PRIO_PROCESS, PRIO_PGRP or PRIO_

USER, and who should be interpreted depending on which (a process identi�er for
PRIO_PROCESS, process group identi�er for PRIO_PGRP, and a user identi�er for PRIO_
USER). A zero value of who denotes the current process, process group, or user.
Return the highest priority (lowest numerical value) of any of the speci�ed processes.

6.2.8 Signals

Procedures to raise, handle and wait for signals.

[Scheme Procedure]kill pid sig
[C Function]scm_kill (pid, sig)

Sends a signal to the speci�ed process or group of processes.

pid speci�es the processes to which the signal is sent:

pid greater than 0
The process whose identi�er is pid.

pid equal to 0
All processes in the current process group.

pid less than -1
The process group whose identi�er is -pid

pid equal to -1
If the process is privileged, all processes except for some special system
processes. Otherwise, all processes with the current e�ective user ID.

sig should be speci�ed using a variable corresponding to the Unix symbolic name,
e.g.,

[Variable]SIGHUP
Hang-up signal.

[Variable]SIGINT
Interrupt signal.

A full list of signals on the GNU system may be found in section \Standard Signals"
in The GNU C Library Reference Manual.

[Scheme Procedure]raise sig
[C Function]scm_raise (sig)

Sends a speci�ed signal sig to the current process, where sig is as described for the
kill procedure.
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[Scheme Procedure]sigaction signum [handler [ags [thread]]]
[C Function]scm_sigaction (signum, handler, ags)
[C Function]scm_sigaction_for_thread (signum, handler, ags, thread)

Install or report the signal handler for a speci�ed signal.

signum is the signal number, which can be speci�ed using the value of variables such
as SIGINT.

If handler is omitted, sigaction returns a pair: the CAR is the current signal hander,
which will be either an integer with the value SIG_DFL (default action) or SIG_IGN
(ignore), or the Scheme procedure which handles the signal, or #f if a non-Scheme
procedure handles the signal. The CDR contains the current sigaction ags for the
handler.

If handler is provided, it is installed as the new handler for signum. handler can be
a Scheme procedure taking one argument, or the value of SIG_DFL (default action)
or SIG_IGN (ignore), or #f to restore whatever signal handler was installed before
sigaction was �rst used. When a scheme procedure has been speci�ed, that proce-
dure will run in the given thread. When no thread has been given, the thread that
made this call to sigaction is used.

ags is a logior (see Section 5.5.2.14 [Bitwise Operations], page 117) of the following
(where provided by the system), or 0 for none.

[Variable]SA_NOCLDSTOP
By default, SIGCHLD is signalled when a child process stops (ie. receives
SIGSTOP), and when a child process terminates. With the SA_NOCLDSTOP ag,
SIGCHLD is only signalled for termination, not stopping.

SA_NOCLDSTOP has no e�ect on signals other than SIGCHLD.

[Variable]SA_RESTART
If a signal occurs while in a system call, deliver the signal then restart the
system call (as opposed to returning an EINTR error from that call).

Guile always enables this ag where available, no matter what ags are speci-
�ed. This avoids spurious error returns in low level operations.

The return value is a pair with information about the old handler as described above.

This interface does not provide access to the \signal blocking" facility. Maybe this
is not needed, since the thread support may provide solutions to the problem of
consistent access to data structures.

[Scheme Procedure]restore-signals
[C Function]scm_restore_signals ()

Return all signal handlers to the values they had before any call to sigaction was
made. The return value is unspeci�ed.

[Scheme Procedure]alarm i
[C Function]scm_alarm (i)

Set a timer to raise a SIGALRM signal after the speci�ed number of seconds (an integer).
It's advisable to install a signal handler for SIGALRM beforehand, since the default
action is to terminate the process.
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The return value indicates the time remaining for the previous alarm, if any. The
new value replaces the previous alarm. If there was no previous alarm, the return
value is zero.

[Scheme Procedure]pause
[C Function]scm_pause ()

Pause the current process (thread?) until a signal arrives whose action is to either
terminate the current process or invoke a handler procedure. The return value is
unspeci�ed.

[Scheme Procedure]sleep i
[C Function]scm_sleep (i)

Wait for the given number of seconds (an integer) or until a signal arrives. The return
value is zero if the time elapses or the number of seconds remaining otherwise.

[Scheme Procedure]usleep i
[C Function]scm_usleep (i)

Sleep for i microseconds. usleep is not available on all platforms. [FIXME: so what
happens when it isn't?]

[Scheme Procedure]setitimer which timer interval seconds interval microseconds
value seconds value microseconds

[C Function]scm_setitimer (which timer, interval seconds, interval microseconds,
value seconds, value microseconds)

Set the timer speci�ed by which timer according to the given interval seconds, inter-
val microseconds, value seconds, and value microseconds values.

Return information about the timer's previous setting.

The timers available are: ITIMER_REAL, ITIMER_VIRTUAL, and ITIMER_PROF.

The return value will be a list of two cons pairs representing the current state of the
given timer. The �rst pair is the seconds and microseconds of the timer it_interval,
and the second pair is the seconds and microseconds of the timer it_value.

[Scheme Procedure]getitimer which timer
[C Function]scm_getitimer (which timer)

Return information about the timer speci�ed by which timer.

The timers available are: ITIMER_REAL, ITIMER_VIRTUAL, and ITIMER_PROF.

The return value will be a list of two cons pairs representing the current state of the
given timer. The �rst pair is the seconds and microseconds of the timer it_interval,
and the second pair is the seconds and microseconds of the timer it_value.

6.2.9 Terminals and Ptys

[Scheme Procedure]isatty? port
[C Function]scm_isatty_p (port)

Return #t if port is using a serial non{�le device, otherwise #f.

[Scheme Procedure]ttyname port
[C Function]scm_ttyname (port)

Return a string with the name of the serial terminal device underlying port.
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[Scheme Procedure]ctermid
[C Function]scm_ctermid ()

Return a string containing the �le name of the controlling terminal for the current
process.

[Scheme Procedure]tcgetpgrp port
[C Function]scm_tcgetpgrp (port)

Return the process group ID of the foreground process group associated with the
terminal open on the �le descriptor underlying port.

If there is no foreground process group, the return value is a number greater than 1
that does not match the process group ID of any existing process group. This can
happen if all of the processes in the job that was formerly the foreground job have
terminated, and no other job has yet been moved into the foreground.

[Scheme Procedure]tcsetpgrp port pgid
[C Function]scm_tcsetpgrp (port, pgid)

Set the foreground process group ID for the terminal used by the �le descriptor
underlying port to the integer pgid. The calling process must be a member of the
same session as pgid and must have the same controlling terminal. The return value
is unspeci�ed.

6.2.10 Pipes

The following procedures are similar to the popen and pclose system routines. The code
is in a separate \popen" module:

(use-modules (ice-9 popen))

[Scheme Procedure]open-pipe command mode
[Scheme Procedure]open-pipe* mode prog [args...]

Execute a command in a subprocess, with a pipe to it or from it, or with pipes in
both directions.

open-pipe runs the shell command using `/bin/sh -c'. open-pipe* executes prog
directly, with the optional args arguments (all strings).

mode should be one of the following values. OPEN_READ is an input pipe, ie. to read
from the subprocess. OPEN_WRITE is an output pipe, ie. to write to it.

[Variable]OPEN_READ
[Variable]OPEN_WRITE
[Variable]OPEN_BOTH

For an input pipe, the child's standard output is the pipe and standard input is
inherited from current-input-port. For an output pipe, the child's standard input
is the pipe and standard output is inherited from current-output-port. In all
cases cases the child's standard error is inherited from current-error-port (see
Section 5.12.8 [Default Ports], page 278).

If those current-X-ports are not �les of some kind, and hence don't have �le de-
scriptors for the child, then `/dev/null' is used instead.

Care should be taken with OPEN_BOTH, a deadlock will occur if both parent and
child are writing, and waiting until the write completes before doing any reading.
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Each direction has PIPE_BUF bytes of bu�ering (see Section 6.2.2 [Ports and File
Descriptors], page 374), which will be enough for small writes, but not for say putting
a big �le through a �lter.

[Scheme Procedure]open-input-pipe command
Equivalent to open-pipe with mode OPEN_READ.

(let* ((port (open-input-pipe "date --utc"))

(str (read-line port)))

(close-pipe port)

str)
) "Mon Mar 11 20:10:44 UTC 2002"

[Scheme Procedure]open-output-pipe command
Equivalent to open-pipe with mode OPEN_WRITE.

(let ((port (open-output-pipe "lpr")))

(display "Something for the line printer.\n" port)

(if (not (eqv? 0 (status:exit-val (close-pipe port))))

(error "Cannot print")))

[Scheme Procedure]open-input-output-pipe command
Equivalent to open-pipe with mode OPEN_BOTH.

[Scheme Procedure]close-pipe port
Close a pipe created by open-pipe, wait for the process to terminate, and return the
wait status code. The status is as per waitpid and can be decoded with status:exit-
val etc (see Section 6.2.7 [Processes], page 393)

waitpid WAIT_ANY should not be used when pipes are open, since it can reap a pipe's
child process, causing an error from a subsequent close-pipe.

close-port (see Section 5.12.4 [Closing], page 275) can close a pipe, but it doesn't reap
the child process.

The garbage collector will close a pipe no longer in use, and reap the child process with
waitpid. If the child hasn't yet terminated the garbage collector doesn't block, but instead
checks again in the next GC.

Many systems have per-user and system-wide limits on the number of processes, and
a system-wide limit on the number of pipes, so pipes should be closed explicitly when no
longer needed, rather than letting the garbage collector pick them up at some later time.

6.2.11 Networking

6.2.11.1 Network Address Conversion

This section describes procedures which convert internet addresses between numeric and
string formats.
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IPv4 Address Conversion

An IPv4 Internet address is a 4-byte value, represented in Guile as an integer in host byte
order, so that say \0.0.0.1" is 1, or \1.0.0.0" is 16777216.

Some underlying C functions use network byte order for addresses, Guile converts as
necessary so that at the Scheme level its host byte order everywhere.

[Variable]INADDR_ANY
For a server, this can be used with bind (see Section 6.2.11.4 [Network Sockets and
Communication], page 410) to allow connections from any interface on the machine.

[Variable]INADDR_BROADCAST
The broadcast address on the local network.

[Variable]INADDR_LOOPBACK
The address of the local host using the loopback device, ie. `127.0.0.1'.

[Scheme Procedure]inet-aton address
[C Function]scm_inet_aton (address)

Convert an IPv4 Internet address from printable string (dotted decimal notation) to
an integer. E.g.,

(inet-aton "127.0.0.1") ) 2130706433

[Scheme Procedure]inet-ntoa inetid
[C Function]scm_inet_ntoa (inetid)

Convert an IPv4 Internet address to a printable (dotted decimal notation) string.
E.g.,

(inet-ntoa 2130706433) ) "127.0.0.1"

[Scheme Procedure]inet-netof address
[C Function]scm_inet_netof (address)

Return the network number part of the given IPv4 Internet address. E.g.,

(inet-netof 2130706433) ) 127

[Scheme Procedure]inet-lnaof address
[C Function]scm_lnaof (address)

Return the local-address-with-network part of the given IPv4 Internet address, using
the obsolete class A/B/C system. E.g.,

(inet-lnaof 2130706433) ) 1

[Scheme Procedure]inet-makeaddr net lna
[C Function]scm_inet_makeaddr (net, lna)

Make an IPv4 Internet address by combining the network number net with the local-
address-within-network number lna. E.g.,

(inet-makeaddr 127 1) ) 2130706433
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IPv6 Address Conversion

An IPv6 Internet address is a 16-byte value, represented in Guile as an integer in host byte
order, so that say \::1" is 1.

[Scheme Procedure]inet-ntop family address
[C Function]scm_inet_ntop (family, address)

Convert a network address from an integer to a printable string. family can be AF_

INET or AF_INET6. E.g.,

(inet-ntop AF_INET 2130706433) ) "127.0.0.1"

(inet-ntop AF_INET6 (- (expt 2 128) 1)) )
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff

[Scheme Procedure]inet-pton family address
[C Function]scm_inet_pton (family, address)

Convert a string containing a printable network address to an integer address. family
can be AF_INET or AF_INET6. E.g.,

(inet-pton AF_INET "127.0.0.1") ) 2130706433

(inet-pton AF_INET6 "::1") ) 1

6.2.11.2 Network Databases

This section describes procedures which query various network databases. Care should be
taken when using the database routines since they are not reentrant.

The Host Database

A host object is a structure that represents what is known about a network host, and is the
usual way of representing a system's network identity inside software.

The following functions accept a host object and return a selected component:

[Scheme Procedure]hostent:name host
The \o�cial" hostname for host.

[Scheme Procedure]hostent:aliases host
A list of aliases for host.

[Scheme Procedure]hostent:addrtype host
The host address type, one of the AF constants, such as AF_INET or AF_INET6.

[Scheme Procedure]hostent:length host
The length of each address for host, in bytes.

[Scheme Procedure]hostent:addr-list host
The list of network addresses associated with host. For AF_INET these are integer
IPv4 address (see Section 6.2.11.1 [Network Address Conversion], page 402).

The following procedures are used to search the host database:

[Scheme Procedure]gethost [host]
[Scheme Procedure]gethostbyname hostname
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[Scheme Procedure]gethostbyaddr address
[C Function]scm_gethost (host)

Look up a host by name or address, returning a host object. The gethost procedure
will accept either a string name or an integer address; if given no arguments, it behaves
like gethostent (see below). If a name or address is supplied but the address can not
be found, an error will be thrown to one of the keys: host-not-found, try-again,
no-recovery or no-data, corresponding to the equivalent h_error values. Unusual
conditions may result in errors thrown to the system-error or misc_error keys.

(gethost "www.gnu.org")
) #("www.gnu.org" () 2 4 (3353880842))

(gethostbyname "www.emacs.org")
) #("emacs.org" ("www.emacs.org") 2 4 (1073448978))

The following procedures may be used to step through the host database from beginning
to end.

[Scheme Procedure]sethostent [stayopen]
Initialize an internal stream from which host objects may be read. This procedure
must be called before any calls to gethostent, and may also be called afterward to
reset the host entry stream. If stayopen is supplied and is not #f, the database is
not closed by subsequent gethostbyname or gethostbyaddr calls, possibly giving an
e�ciency gain.

[Scheme Procedure]gethostent
Return the next host object from the host database, or #f if there are no more hosts
to be found (or an error has been encountered). This procedure may not be used
before sethostent has been called.

[Scheme Procedure]endhostent
Close the stream used by gethostent. The return value is unspeci�ed.

[Scheme Procedure]sethost [stayopen]
[C Function]scm_sethost (stayopen)

If stayopen is omitted, this is equivalent to endhostent. Otherwise it is equivalent
to sethostent stayopen.

The Network Database

The following functions accept an object representing a network and return a selected
component:

[Scheme Procedure]netent:name net
The \o�cial" network name.

[Scheme Procedure]netent:aliases net
A list of aliases for the network.

[Scheme Procedure]netent:addrtype net
The type of the network number. Currently, this returns only AF_INET.
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[Scheme Procedure]netent:net net
The network number.

The following procedures are used to search the network database:

[Scheme Procedure]getnet [net]
[Scheme Procedure]getnetbyname net-name
[Scheme Procedure]getnetbyaddr net-number

[C Function]scm_getnet (net)
Look up a network by name or net number in the network database. The net-name
argument must be a string, and the net-number argument must be an integer. getnet
will accept either type of argument, behaving like getnetent (see below) if no argu-
ments are given.

The following procedures may be used to step through the network database from be-
ginning to end.

[Scheme Procedure]setnetent [stayopen]
Initialize an internal stream from which network objects may be read. This procedure
must be called before any calls to getnetent, and may also be called afterward to
reset the net entry stream. If stayopen is supplied and is not #f, the database is
not closed by subsequent getnetbyname or getnetbyaddr calls, possibly giving an
e�ciency gain.

[Scheme Procedure]getnetent
Return the next entry from the network database.

[Scheme Procedure]endnetent
Close the stream used by getnetent. The return value is unspeci�ed.

[Scheme Procedure]setnet [stayopen]
[C Function]scm_setnet (stayopen)

If stayopen is omitted, this is equivalent to endnetent. Otherwise it is equivalent to
setnetent stayopen.

The Protocol Database

The following functions accept an object representing a protocol and return a selected
component:

[Scheme Procedure]protoent:name protocol
The \o�cial" protocol name.

[Scheme Procedure]protoent:aliases protocol
A list of aliases for the protocol.

[Scheme Procedure]protoent:proto protocol
The protocol number.

The following procedures are used to search the protocol database:
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[Scheme Procedure]getproto [protocol]
[Scheme Procedure]getprotobyname name
[Scheme Procedure]getprotobynumber number

[C Function]scm_getproto (protocol)
Look up a network protocol by name or by number. getprotobyname takes a string
argument, and getprotobynumber takes an integer argument. getproto will accept
either type, behaving like getprotoent (see below) if no arguments are supplied.

The following procedures may be used to step through the protocol database from be-
ginning to end.

[Scheme Procedure]setprotoent [stayopen]
Initialize an internal stream from which protocol objects may be read. This procedure
must be called before any calls to getprotoent, and may also be called afterward to
reset the protocol entry stream. If stayopen is supplied and is not #f, the database
is not closed by subsequent getprotobyname or getprotobynumber calls, possibly
giving an e�ciency gain.

[Scheme Procedure]getprotoent
Return the next entry from the protocol database.

[Scheme Procedure]endprotoent
Close the stream used by getprotoent. The return value is unspeci�ed.

[Scheme Procedure]setproto [stayopen]
[C Function]scm_setproto (stayopen)

If stayopen is omitted, this is equivalent to endprotoent. Otherwise it is equivalent
to setprotoent stayopen.

The Service Database

The following functions accept an object representing a service and return a selected com-
ponent:

[Scheme Procedure]servent:name serv
The \o�cial" name of the network service.

[Scheme Procedure]servent:aliases serv
A list of aliases for the network service.

[Scheme Procedure]servent:port serv
The Internet port used by the service.

[Scheme Procedure]servent:proto serv
The protocol used by the service. A service may be listed many times in the database
under di�erent protocol names.

The following procedures are used to search the service database:
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[Scheme Procedure]getserv [name [protocol]]
[Scheme Procedure]getservbyname name protocol
[Scheme Procedure]getservbyport port protocol

[C Function]scm_getserv (name, protocol)
Look up a network service by name or by service number, and return a network
service object. The protocol argument speci�es the name of the desired protocol;
if the protocol found in the network service database does not match this name, a
system error is signalled.

The getserv procedure will take either a service name or number as its �rst argument;
if given no arguments, it behaves like getservent (see below).

(getserv "imap" "tcp")
) #("imap2" ("imap") 143 "tcp")

(getservbyport 88 "udp")
) #("kerberos" ("kerberos5" "krb5") 88 "udp")

The following procedures may be used to step through the service database from begin-
ning to end.

[Scheme Procedure]setservent [stayopen]
Initialize an internal stream from which service objects may be read. This procedure
must be called before any calls to getservent, and may also be called afterward to
reset the service entry stream. If stayopen is supplied and is not #f, the database is
not closed by subsequent getservbyname or getservbyport calls, possibly giving an
e�ciency gain.

[Scheme Procedure]getservent
Return the next entry from the services database.

[Scheme Procedure]endservent
Close the stream used by getservent. The return value is unspeci�ed.

[Scheme Procedure]setserv [stayopen]
[C Function]scm_setserv (stayopen)

If stayopen is omitted, this is equivalent to endservent. Otherwise it is equivalent
to setservent stayopen.

6.2.11.3 Network Socket Address

A socket address object identi�es a socket endpoint for communication. In the case of
AF_INET for instance, the socket address object comprises the host address (or interface on
the host) and a port number which speci�es a particular open socket in a running client or
server process. A socket address object can be created with,

[Scheme Procedure]make-socket-address AF INET ipv4addr port
[Scheme Procedure]make-socket-address AF INET6 ipv6addr port [owinfo

[scopeid]]
[Scheme Procedure]make-socket-address AF UNIX path
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[C Function]scm_make_socket_address family address arglist
Return a new socket address object. The �rst argument is the address family, one of
the AF constants, then the arguments vary according to the family.

For AF_INET the arguments are an IPv4 network address number (see Section 6.2.11.1
[Network Address Conversion], page 402), and a port number.

For AF_INET6 the arguments are an IPv6 network address number and a port number.
Optional owinfo and scopeid arguments may be given (both integers, default 0).

For AF_UNIX the argument is a �lename (a string).

The C function scm_make_socket_address takes the family and address arguments
directly, then arglist is a list of further arguments, being the port for IPv4, port and
optional owinfo and scopeid for IPv6, or the empty list SCM_EOL for Unix domain.

The following functions access the �elds of a socket address object,

[Scheme Procedure]sockaddr:fam sa
Return the address family from socket address object sa. This is one of the AF

constants (eg. AF_INET).

[Scheme Procedure]sockaddr:path sa
For an AF_UNIX socket address object sa, return the �lename.

[Scheme Procedure]sockaddr:addr sa
For an AF_INET or AF_INET6 socket address object sa, return the network address
number.

[Scheme Procedure]sockaddr:port sa
For an AF_INET or AF_INET6 socket address object sa, return the port number.

[Scheme Procedure]sockaddr:flowinfo sa
For an AF_INET6 socket address object sa, return the owinfo value.

[Scheme Procedure]sockaddr:scopeid sa
For an AF_INET6 socket address object sa, return the scope ID value.

The functions below convert to and from the C struct sockaddr (see section \Address
Formats" in The GNU C Library Reference Manual). That structure is a generic type,
an application can cast to or from struct sockaddr_in, struct sockaddr_in6 or struct
sockaddr_un according to the address family.

In a struct sockaddr taken or returned, the byte ordering in the �elds follows the
C conventions (see section \Byte Order Conversion" in The GNU C Library Reference
Manual). This means network byte order for AF_INET host address (sin_addr.s_addr) and
port number (sin_port), and AF_INET6 port number (sin6_port). But at the Scheme level
these values are taken or returned in host byte order, so the port is an ordinary integer, and
the host address likewise is an ordinary integer (as described in Section 6.2.11.1 [Network
Address Conversion], page 402).

[C Function]struct sockaddr * scm_c_make_socket_address (SCM family,
SCM address, SCM args, size t *outsize)

Return a newly-malloced struct sockaddr created from arguments like those taken
by scm_make_socket_address above.
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The size (in bytes) of the struct sockaddr return is stored into *outsize . An
application must call free to release the returned structure when no longer required.

[C Function]SCM scm_from_sockaddr (const struct sockaddr *address, unsigned
address size)

Return a Scheme socket address object from the C address structure. address size is
the size in bytes of address.

[C Function]struct sockaddr * scm_to_sockaddr (SCM address, size t
*address size)

Return a newly-malloced struct sockaddr from a Scheme level socket address ob-
ject.

The size (in bytes) of the struct sockaddr return is stored into *outsize . An
application must call free to release the returned structure when no longer required.

6.2.11.4 Network Sockets and Communication

Socket ports can be created using socket and socketpair. The ports are initially un-
bu�ered, to make reading and writing to the same port more reliable. A bu�er can be
added to the port using setvbuf; see Section 6.2.2 [Ports and File Descriptors], page 374.

Most systems have limits on how many �les and sockets can be open, so it's strongly rec-
ommended that socket ports be closed explicitly when no longer required (see Section 5.12.1
[Ports], page 271).

Some of the underlying C functions take values in network byte order, but the convention
in Guile is that at the Scheme level everything is ordinary host byte order and conversions
are made automatically where necessary.

[Scheme Procedure]socket family style proto
[C Function]scm_socket (family, style, proto)

Return a new socket port of the type speci�ed by family, style and proto. All three
parameters are integers. The possible values for family are as follows, where supported
by the system,

[Variable]PF_UNIX
[Variable]PF_INET
[Variable]PF_INET6

The possible values for style are as follows, again where supported by the system,

[Variable]SOCK_STREAM
[Variable]SOCK_DGRAM
[Variable]SOCK_RAW
[Variable]SOCK_RDM
[Variable]SOCK_SEQPACKET

proto can be obtained from a protocol name using getprotobyname (see
Section 6.2.11.2 [Network Databases], page 404). A value of zero means the default
protocol, which is usually right.

A socket cannot by used for communication until it has been connected somewhere,
usually with either connect or accept below.
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[Scheme Procedure]socketpair family style proto
[C Function]scm_socketpair (family, style, proto)

Return a pair, the car and cdr of which are two unnamed socket ports connected
to each other. The connection is full-duplex, so data can be transferred in either
direction between the two.

family, style and proto are as per socket above. But many systems only support
socket pairs in the PF_UNIX family. Zero is likely to be the only meaningful value for
proto.

[Scheme Procedure]getsockopt sock level optname
[Scheme Procedure]setsockopt sock level optname value

[C Function]scm_getsockopt (sock, level, optname)
[C Function]scm_setsockopt (sock, level, optname, value)

Get or set an option on socket port sock. getsockopt returns the current value.
setsockopt sets a value and the return is unspeci�ed.

level is an integer specifying a protocol layer, either SOL_SOCKET for socket level
options, or a protocol number from the IPPROTO constants or getprotoent (see Sec-
tion 6.2.11.2 [Network Databases], page 404).

[Variable]SOL_SOCKET
[Variable]IPPROTO_IP
[Variable]IPPROTO_TCP
[Variable]IPPROTO_UDP

optname is an integer specifying an option within the protocol layer.

For SOL_SOCKET level the following optnames are de�ned (when provided by the
system). For their meaning see section \Socket-Level Options" in The GNU C Library
Reference Manual, or man 7 socket.

[Variable]SO_DEBUG
[Variable]SO_REUSEADDR
[Variable]SO_STYLE
[Variable]SO_TYPE
[Variable]SO_ERROR
[Variable]SO_DONTROUTE
[Variable]SO_BROADCAST
[Variable]SO_SNDBUF
[Variable]SO_RCVBUF
[Variable]SO_KEEPALIVE
[Variable]SO_OOBINLINE
[Variable]SO_NO_CHECK
[Variable]SO_PRIORITY

The value taken or returned is an integer.

[Variable]SO_LINGER
The value taken or returned is a pair of integers (ENABLE . TIMEOUT). On old
systems without timeout support (ie. without struct linger), only ENABLE
has an e�ect but the value in Guile is always a pair.
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For IP level (IPPROTO_IP) the following optnames are de�ned (when provided by the
system). See man ip for what they mean.

[Variable]IP_ADD_MEMBERSHIP
[Variable]IP_DROP_MEMBERSHIP

These can be used only with setsockopt, not getsockopt. value is a pair
(MULTIADDR . INTERFACEADDR) of integer IPv4 addresses (see Section 6.2.11.1
[Network Address Conversion], page 402). MULTIADDR is a multicast ad-
dress to be added to or dropped from the interface INTERFACEADDR. IN-
TERFACEADDR can be INADDR_ANY to have the system select the interface.
INTERFACEADDR can also be an interface index number, on systems sup-
porting that.

[Scheme Procedure]shutdown sock how
[C Function]scm_shutdown (sock, how)

Sockets can be closed simply by using close-port. The shutdown procedure allows
reception or transmission on a connection to be shut down individually, according to
the parameter how :

0 Stop receiving data for this socket. If further data arrives, reject it.

1 Stop trying to transmit data from this socket. Discard any data waiting
to be sent. Stop looking for acknowledgement of data already sent; don't
retransmit it if it is lost.

2 Stop both reception and transmission.

The return value is unspeci�ed.

[Scheme Procedure]connect sock sockaddr
[Scheme Procedure]connect sock AF INET ipv4addr port
[Scheme Procedure]connect sock AF INET6 ipv6addr port [owinfo [scopeid]]
[Scheme Procedure]connect sock AF UNIX path

[C Function]scm_connect (sock, fam, address, args)
Initiate a connection on socket port sock to a given address. The destination is either
a socket address object, or arguments the same as make-socket-address would take
to make such an object (see Section 6.2.11.3 [Network Socket Address], page 408).
The return value is unspeci�ed.

(connect sock AF_INET INADDR_LOCALHOST 23)

(connect sock (make-socket-address AF_INET INADDR_LOCALHOST 23))

[Scheme Procedure]bind sock sockaddr
[Scheme Procedure]bind sock AF INET ipv4addr port
[Scheme Procedure]bind sock AF INET6 ipv6addr port [owinfo [scopeid]]
[Scheme Procedure]bind sock AF UNIX path

[C Function]scm_bind (sock, fam, address, args)
Bind socket port sock to the given address. The address is either a socket address
object, or arguments the same as make-socket-address would take to make such an
object (see Section 6.2.11.3 [Network Socket Address], page 408). The return value
is unspeci�ed.
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Generally a socket is only explicitly bound to a particular address when making a
server, ie. to listen on a particular port. For an outgoing connection the system will
assign a local address automatically, if not already bound.

(bind sock AF_INET INADDR_ANY 12345)

(bind sock (make-socket-object AF_INET INADDR_ANY 12345))

[Scheme Procedure]listen sock backlog
[C Function]scm_listen (sock, backlog)

Enable sock to accept connection requests. backlog is an integer specifying the max-
imum length of the queue for pending connections. If the queue �lls, new clients will
fail to connect until the server calls accept to accept a connection from the queue.

The return value is unspeci�ed.

[Scheme Procedure]accept sock
[C Function]scm_accept (sock)

Accept a connection from socket port sock which has been enabled for listening with
listen above. If there are no incoming connections in the queue, wait until one is
available (unless O_NONBLOCK has been set on the socket, see Section 6.2.2 [Ports and
File Descriptors], page 374).

The return value is a pair. The car is a new socket port, connected and ready to
communicate. The cdr is a socket address object (see Section 6.2.11.3 [Network Socket
Address], page 408) which is where the remote connection is from (like getpeername
below).

All communication takes place using the new socket returned. The given sock remains
bound and listening, and accept may be called on it again to get another incoming
connection when desired.

[Scheme Procedure]getsockname sock
[C Function]scm_getsockname (sock)

Return a socket address object which is the where sock is bound locally. sock may
have obtained its local address from bind (above), or if a connect is done with an
otherwise unbound socket (which is usual) then the system will have assigned an
address.

Note that on many systems the address of a socket in the AF_UNIX namespace cannot
be read.

[Scheme Procedure]getpeername sock
[C Function]scm_getpeername (sock)

Return a socket address object which is where sock is connected to, ie. the remote
endpoint.

Note that on many systems the address of a socket in the AF_UNIX namespace cannot
be read.

[Scheme Procedure]recv! sock buf [ags]
[C Function]scm_recv (sock, buf, ags)

Receive data from a socket port. sock must already be bound to the address from
which data is to be received. buf is a string into which the data will be written. The
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size of buf limits the amount of data which can be received: in the case of packet
protocols, if a packet larger than this limit is encountered then some data will be
irrevocably lost.

The optional ags argument is a value or bitwise OR of MSG_OOB, MSG_PEEK, MSG_
DONTROUTE etc.

The value returned is the number of bytes read from the socket.

Note that the data is read directly from the socket �le descriptor: any unread bu�ered
port data is ignored.

[Scheme Procedure]send sock message [ags]
[C Function]scm_send (sock, message, ags)

Transmit the string message on a socket port sock. sock must already be bound to
a destination address. The value returned is the number of bytes transmitted|it's
possible for this to be less than the length of message if the socket is set to be non-
blocking. The optional ags argument is a value or bitwise OR of MSG_OOB, MSG_PEEK,
MSG_DONTROUTE etc.

Note that the data is written directly to the socket �le descriptor: any unushed
bu�ered port data is ignored.

[Scheme Procedure]recvfrom! sock str [ags [start [end]]]
[C Function]scm_recvfrom (sock, str, ags, start, end)

Receive data from socket port sock, returning the originating address as well as the
data. This function is usually for datagram sockets, but can be used on stream-
oriented sockets too.

The data received is stored in the given str, the whole string or just the region between
the optional start and end positions. The size of str limits the amount of data which
can be received. For datagram protocols if a packet larger than this is received then
excess bytes are irrevocably lost.

The return value is a pair. The car is the number of bytes read. The cdr is a socket
address object (see Section 6.2.11.3 [Network Socket Address], page 408) which is
where the data came from, or #f if the origin is unknown.

The optional ags argument is a or bitwise-OR (logior) of MSG_OOB, MSG_PEEK, MSG_
DONTROUTE etc.

Data is read directly from the socket �le descriptor, any bu�ered port data is ignored.

On a GNU/Linux system recvfrom! is not multi-threading, all threads stop while a
recvfrom! call is in progress. An application may need to use select, O_NONBLOCK
or MSG_DONTWAIT to avoid this.

[Scheme Procedure]sendto sock message sockaddr [ags]
[Scheme Procedure]sendto sock message AF INET ipv4addr port [ags]
[Scheme Procedure]sendto sock message AF INET6 ipv6addr port [owinfo [scopeid

[ags]]]
[Scheme Procedure]sendto sock message AF UNIX path [ags]

[C Function]scm_sendto (sock, message, fam, address, args and ags)
Transmit the string message as a datagram on socket port sock. The destination
is speci�ed either as a socket address object, or as arguments the same as would
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be taken by make-socket-address to create such an object (see Section 6.2.11.3
[Network Socket Address], page 408).

The destination address may be followed by an optional ags argument which is a
logior (see Section 5.5.2.14 [Bitwise Operations], page 117) of MSG_OOB, MSG_PEEK,
MSG_DONTROUTE etc.

The value returned is the number of bytes transmitted { it's possible for this to be
less than the length of message if the socket is set to be non-blocking. Note that the
data is written directly to the socket �le descriptor: any unushed bu�ered port data
is ignored.

The following functions can be used to convert short and long integers between \host"
and \network" order. Although the procedures above do this automatically for addresses,
the conversion will still need to be done when sending or receiving encoded integer data
from the network.

[Scheme Procedure]htons value
[C Function]scm_htons (value)

Convert a 16 bit quantity from host to network byte ordering. value is packed into 2
bytes, which are then converted and returned as a new integer.

[Scheme Procedure]ntohs value
[C Function]scm_ntohs (value)

Convert a 16 bit quantity from network to host byte ordering. value is packed into 2
bytes, which are then converted and returned as a new integer.

[Scheme Procedure]htonl value
[C Function]scm_htonl (value)

Convert a 32 bit quantity from host to network byte ordering. value is packed into 4
bytes, which are then converted and returned as a new integer.

[Scheme Procedure]ntohl value
[C Function]scm_ntohl (value)

Convert a 32 bit quantity from network to host byte ordering. value is packed into 4
bytes, which are then converted and returned as a new integer.

These procedures are inconvenient to use at present, but consider:

(define write-network-long

(lambda (value port)

(let ((v (make-uniform-vector 1 1 0)))

(uniform-vector-set! v 0 (htonl value))

(uniform-vector-write v port))))

(define read-network-long

(lambda (port)

(let ((v (make-uniform-vector 1 1 0)))

(uniform-vector-read! v port)

(ntohl (uniform-vector-ref v 0)))))
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6.2.11.5 Network Socket Examples

The following give examples of how to use network sockets.

Internet Socket Client Example

The following example demonstrates an Internet socket client. It connects to the HTTP
daemon running on the local machine and returns the contents of the root index URL.

(let ((s (socket PF_INET SOCK_STREAM 0)))

(connect s AF_INET (inet-aton "127.0.0.1") 80)

(display "GET / HTTP/1.0\r\n\r\n" s)

(do ((line (read-line s) (read-line s)))

((eof-object? line))

(display line)

(newline)))

Internet Socket Server Example

The following example shows a simple Internet server which listens on port 2904 for incoming
connections and sends a greeting back to the client.

(let ((s (socket PF_INET SOCK_STREAM 0)))

(setsockopt s SOL_SOCKET SO_REUSEADDR 1)

;; Speci�c address?
;; (bind s AF INET (inet-aton "127.0.0.1") 2904)
(bind s AF_INET INADDR_ANY 2904)

(listen s 5)

(simple-format #t "Listening for clients in pid: ~S" (getpid))

(newline)

(while #t

(let* ((client-connection (accept s))

(client-details (cdr client-connection))

(client (car client-connection)))

(simple-format #t "Got new client connection: ~S"

client-details)

(newline)

(simple-format #t "Client address: ~S"

(gethostbyaddr

(sockaddr:addr client-details)))

(newline)

;; Send back the greeting to the client port
(display "Hello client\r\n" client)

(close client))))

6.2.12 System Identi�cation

This section lists the various procedures Guile provides for accessing information about the
system it runs on.
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[Scheme Procedure]uname
[C Function]scm_uname ()

Return an object with some information about the computer system the program is
running on.

The following procedures accept an object as returned by uname and return a selected
component (all of which are strings).

[Scheme Procedure]utsname:sysname un
The name of the operating system.

[Scheme Procedure]utsname:nodename un
The network name of the computer.

[Scheme Procedure]utsname:release un
The current release level of the operating system implementation.

[Scheme Procedure]utsname:version un
The current version level within the release of the operating system.

[Scheme Procedure]utsname:machine un
A description of the hardware.

[Scheme Procedure]gethostname
[C Function]scm_gethostname ()

Return the host name of the current processor.

[Scheme Procedure]sethostname name
[C Function]scm_sethostname (name)

Set the host name of the current processor to name. May only be used by the
superuser. The return value is not speci�ed.

6.2.13 Locales

[Scheme Procedure]setlocale category [locale]
[C Function]scm_setlocale (category, locale)

Get or set the current locale, used for various internationalizations. Locales are
strings, such as `sv_SE'.

If locale is given then the locale for the given category is set and the new value
returned. If locale is not given then the current value is returned. category should
be one of the following values

[Variable]LC_ALL
[Variable]LC_COLLATE
[Variable]LC_CTYPE
[Variable]LC_MESSAGES
[Variable]LC_MONETARY
[Variable]LC_NUMERIC
[Variable]LC_TIME

A common usage is `(setlocale LC_ALL "")', which initializes all categories based
on standard environment variables (LANG etc). For full details on categories and
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locale names see section \Locales and Internationalization" in The GNU C Library
Reference Manual.

6.2.14 Encryption

Please note that the procedures in this section are not suited for strong encryption, they
are only interfaces to the well-known and common system library functions of the same
name. They are just as good (or bad) as the underlying functions, so you should refer to
your system documentation before using them.

[Scheme Procedure]crypt key salt
[C Function]scm_crypt (key, salt)

Encrypt key using salt as the salt value to the crypt(3) library call.

Although getpass is not an encryption procedure per se, it appears here because it is
often used in combination with crypt:

[Scheme Procedure]getpass prompt
[C Function]scm_getpass (prompt)

Display prompt to the standard error output and read a password from `/dev/tty'.
If this �le is not accessible, it reads from standard input. The password may be up to
127 characters in length. Additional characters and the terminating newline character
are discarded. While reading the password, echoing and the generation of signals by
special characters is disabled.

6.3 The (ice-9 getopt-long) Module

The (ice-9 getopt-long) module exports two procedures: getopt-long and option-ref.

� getopt-long takes a list of strings | the command line arguments | and an option
speci�cation. It parses the command line arguments according to the option speci�ca-
tion and returns a data structure that encapsulates the results of the parsing.

� option-ref then takes the parsed data structure and a speci�c option's name, and
returns information about that option in particular.

To make these procedures available to your Guile script, include the expression (use-

modules (ice-9 getopt-long)) somewhere near the top, before the �rst usage of getopt-
long or option-ref.

6.3.1 A Short getopt-long Example

This section illustrates how getopt-long is used by presenting and dissecting a simple
example. The �rst thing that we need is an option speci�cation that tells getopt-long

how to parse the command line. This speci�cation is an association list with the long
option name as the key. Here is how such a speci�cation might look:

(define option-spec

'((version (single-char #\v) (value #f))

(help (single-char #\h) (value #f))))

This alist tells getopt-long that it should accept two long options, called version and
help, and that these options can also be selected by the single-letter abbreviations v and h,
respectively. The (value #f) clauses indicate that neither of the options accepts a value.
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With this speci�cation we can use getopt-long to parse a given command line:

(define options (getopt-long (command-line) option-spec))

After this call, options contains the parsed command line and is ready to be examined
by option-ref. option-ref is called like this:

(option-ref options 'help #f)

It expects the parsed command line, a symbol indicating the option to examine, and a
default value. The default value is returned if the option was not present in the command
line, or if the option was present but without a value; otherwise the value from the command
line is returned. Usually option-ref is called once for each possible option that a script
supports.

The following example shows a main program which puts all this together to parse its
command line and �gure out what the user wanted.

(define (main args)

(let* ((option-spec '((version (single-char #\v) (value #f))

(help (single-char #\h) (value #f))))

(options (getopt-long args option-spec))

(help-wanted (option-ref options 'help #f))

(version-wanted (option-ref options 'version #f)))

(if (or version-wanted help-wanted)

(begin

(if version-wanted

(display "getopt-long-example version 0.3\n"))

(if help-wanted

(display "\

getopt-long-example [options]

-v, --version Display version

-h, --help Display this help

")))

(begin

(display "Hello, World!") (newline)))))

6.3.2 How to Write an Option Speci�cation

An option speci�cation is an association list (see Section 5.6.11 [Association Lists], page 210)
with one list element for each supported option. The key of each list element is a symbol
that names the option, while the value is a list of option properties:

OPTION-SPEC ::= '( (OPT-NAME1 (PROP-NAME PROP-VALUE) ...)

(OPT-NAME2 (PROP-NAME PROP-VALUE) ...)

(OPT-NAME3 (PROP-NAME PROP-VALUE) ...)

...

)

Each opt-name speci�es the long option name for that option. For example, a list element
with opt-name background speci�es an option that can be speci�ed on the command line
using the long option --background. Further information about the option | whether it
takes a value, whether it is required to be present in the command line, and so on | is
speci�ed by the option properties.
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In the example of the preceding section, we already saw that a long option name can have
a equivalent short option character. The equivalent short option character can be set for an
option by specifying a single-char property in that option's property list. For example,
a list element like '(output (single-char #\o) ...) speci�es an option with long name
--output that can also be speci�ed by the equivalent short name -o.

The value property speci�es whether an option requires or accepts a value. If the value
property is set to #t, the option requires a value: getopt-long will signal an error if the
option name is present without a corresponding value. If set to #f, the option does not
take a value; in this case, a non-option word that follows the option name in the command
line will be treated as a non-option argument. If set to the symbol optional, the option
accepts a value but does not require one: a non-option word that follows the option name
in the command line will be interpreted as that option's value. If the option name for an
option with '(value optional) is immediately followed in the command line by another

option name, the value for the �rst option is implicitly #t.

The required? property indicates whether an option is required to be present in the
command line. If the required? property is set to #t, getopt-long will signal an error if
the option is not speci�ed.

Finally, the predicate property can be used to constrain the possible values of an option.
If used, the predicate property should be set to a procedure that takes one argument | the
proposed option value as a string | and returns either #t or #f according as the proposed
value is or is not acceptable. If the predicate procedure returns #f, getopt-long will signal
an error.

By default, options do not have single-character equivalents, are not required, and do
not take values. Where the list element for an option includes a value property but no
predicate property, the option values are unconstrained.

6.3.3 Expected Command Line Format

In order for getopt-long to correctly parse a command line, that command line must
conform to a standard set of rules for how command line options are speci�ed. This section
explains what those rules are.

getopt-long splits a given command line into several pieces. All elements of the argu-
ment list are classi�ed to be either options or normal arguments. Options consist of two
dashes and an option name (so-called long options), or of one dash followed by a single
letter (short options).

Options can behave as switches, when they are given without a value, or they can be used
to pass a value to the program. The value for an option may be speci�ed using an equals
sign, or else is simply the next word in the command line, so the following two invocations
are equivalent:

$ ./foo.scm --output=bar.txt

$ ./foo.scm --output bar.txt

Short options can be used instead of their long equivalents and can be grouped together
after a single dash. For example, the following commands are equivalent.

$ ./foo.scm --version --help

$ ./foo.scm -v --help

$ ./foo.scm -vh
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If an option requires a value, it can only be grouped together with other short options
if it is the last option in the group; the value is the next argument. So, for example, with
the following option speci�cation |

((apples (single-char #\a))

(blimps (single-char #\b) (value #t))

(catalexis (single-char #\c) (value #t)))

| the following command lines would all be acceptable:

$ ./foo.scm -a -b bang -c couth

$ ./foo.scm -ab bang -c couth

$ ./foo.scm -ac couth -b bang

But the next command line is an error, because -b is not the last option in its combi-
nation, and because a group of short options cannot include two options that both require
values:

$ ./foo.scm -abc couth bang

If an option's value is optional, getopt-long decides whether the option has a value by
looking at what follows it in the argument list. If the next element is a string, and it does
not appear to be an option itself, then that string is the option's value.

If the option -- appears in the argument list, argument parsing stops there and subse-
quent arguments are returned as ordinary arguments, even if they resemble options. So,
with the command line

$ ./foo.scm --apples "Granny Smith" -- --blimp Goodyear

getopt-long will recognize the --apples option as having the value "Granny Smith", but
will not treat --blimp as an option. The strings --blimp and Goodyear will be returned
as ordinary argument strings.

6.3.4 Reference Documentation for getopt-long

[Scheme Procedure]getopt-long args grammar
Parse the command line given in args (which must be a list of strings) according to
the option speci�cation grammar.

The grammar argument is expected to be a list of this form:

((option (property value) ...) ...)

where each option is a symbol denoting the long option, but without the two leading
dashes (e.g. version if the option is called --version).

For each option, there may be list of arbitrarily many property/value pairs. The
order of the pairs is not important, but every property may only appear once in the
property list. The following table lists the possible properties:

(single-char char)

Accept -char as a single-character equivalent to --option . This is how
to specify traditional Unix-style ags.

(required? bool)

If bool is true, the option is required. getopt-long will raise an error if
it is not found in args.
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(value bool)

If bool is #t, the option accepts a value; if it is #f, it does not; and if it
is the symbol optional, the option may appear in args with or without
a value.

(predicate func)

If the option accepts a value (i.e. you speci�ed (value #t) for this op-
tion), then getopt-long will apply func to the value, and throw an ex-
ception if it returns #f. func should be a procedure which accepts a string
and returns a boolean value; you may need to use quasiquotes to get it
into grammar.

getopt-long's args parameter is expected to be a list of strings like the one returned by
command-line, with the �rst element being the name of the command. Therefore getopt-
long ignores the �rst element in args and starts argument interpretation with the second
element.

getopt-long signals an error if any of the following conditions hold.

� The option grammar has an invalid syntax.

� One of the options in the argument list was not speci�ed by the grammar.

� A required option is omitted.

� An option which requires an argument did not get one.

� An option that doesn't accept an argument does get one (this can only happen using
the long option --opt=value syntax).

� An option predicate fails.

6.3.5 Reference Documentation for option-ref

[Scheme Procedure]option-ref options key default
Search options for a command line option named key and return its value, if found.
If the option has no value, but was given, return #t. If the option was not given,
return default. options must be the result of a call to getopt-long.

option-ref always succeeds, either by returning the requested option value from the
command line, or the default value.

The special key '() can be used to get a list of all non-option arguments.
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6.4 SRFI Support Modules

SRFI is an acronym for Scheme Request For Implementation. The SRFI documents de�ne
a lot of syntactic and procedure extensions to standard Scheme as de�ned in R5RS.

Guile has support for a number of SRFIs. This chapter gives an overview over the
available SRFIs and some usage hints. For complete documentation, design rationales and
further examples, we advise you to get the relevant SRFI documents from the SRFI home
page http://srfi.schemers.org.

6.4.1 About SRFI Usage

SRFI support in Guile is currently implemented partly in the core library, and partly as add-
on modules. That means that some SRFIs are automatically available when the interpreter
is started, whereas the other SRFIs require you to use the appropriate support module
explicitly.

There are several reasons for this inconsistency. First, the feature checking syntactic
form cond-expand (see Section 6.4.2 [SRFI-0], page 423) must be available immediately,
because it must be there when the user wants to check for the Scheme implementation, that
is, before she can know that it is safe to use use-modules to load SRFI support modules.
The second reason is that some features de�ned in SRFIs had been implemented in Guile
before the developers started to add SRFI implementations as modules (for example SRFI-6
(see Section 6.4.6 [SRFI-6], page 438)). In the future, it is possible that SRFIs in the core
library might be factored out into separate modules, requiring explicit module loading when
they are needed. So you should be prepared to have to use use-modules someday in the
future to access SRFI-6 bindings. If you want, you can do that already. We have included
the module (srfi srfi-6) in the distribution, which currently does nothing, but ensures
that you can write future-safe code.

Generally, support for a speci�c SRFI is made available by using modules named (srfi

srfi-number), where number is the number of the SRFI needed. Another possibility
is to use the command line option --use-srfi, which will load the necessary modules
automatically (see Section 3.3.2 [Invoking Guile], page 33).

6.4.2 SRFI-0 - cond-expand

This SRFI lets a portable Scheme program test for the presence of certain features, and
adapt itself by using di�erent blocks of code, or fail if the necessary features are not available.
There's no module to load, this is in the Guile core.

A program designed only for Guile will generally not need this mechanism, such a pro-
gram can of course directly use the various documented parts of Guile.

[syntax]cond-expand (feature body. . . ) . . .
Expand to the body of the �rst clause whose feature speci�cation is satis�ed. It is
an error if no feature is satis�ed.

Features are symbols such as srfi-1, and a feature speci�cation can use and, or and
not forms to test combinations. The last clause can be an else, to be used if no
other passes.

For example, de�ne a private version of alist-cons if SRFI-1 is not available.

http://srfi.schemers.org
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(cond-expand (srfi-1

)

(else

(define (alist-cons key val alist)

(cons (cons key val) alist))))

Or demand a certain set of SRFIs (list operations, string ports, receive and string
operations), failing if they're not available.

(cond-expand ((and srfi-1 srfi-6 srfi-8 srfi-13)

))

The Guile core has the following features,

guile

r5rs

srfi-0

srfi-4

srfi-6

srfi-13

srfi-14

Other SRFI feature symbols are de�ned once their code has been loaded with use-

modules, since only then are their bindings available.

The `--use-srfi' command line option (see Section 3.3.2 [Invoking Guile], page 33) is
a good way to load SRFIs to satisfy cond-expand when running a portable program.

Testing the guile feature allows a program to adapt itself to the Guile module sys-
tem, but still run on other Scheme systems. For example the following demands SRFI-8
(receive), but also knows how to load it with the Guile mechanism.

(cond-expand (srfi-8

)

(guile

(use-modules (srfi srfi-8))))

It should be noted that cond-expand is separate from the *features* mechanism (see
Section 5.18.2 [Feature Tracking], page 336), feature symbols in one are unrelated to those
in the other.

6.4.3 SRFI-1 - List library

The list library de�ned in SRFI-1 contains a lot of useful list processing procedures for
construction, examining, destructuring and manipulating lists and pairs.

Since SRFI-1 also de�nes some procedures which are already contained in R5RS and
thus are supported by the Guile core library, some list and pair procedures which appear
in the SRFI-1 document may not appear in this section. So when looking for a particular
list/pair processing procedure, you should also have a look at the sections Section 5.6.2
[Lists], page 168 and Section 5.6.1 [Pairs], page 166.

6.4.3.1 Constructors

New lists can be constructed by calling one of the following procedures.
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[Scheme Procedure]xcons d a
Like cons, but with interchanged arguments. Useful mostly when passed to higher-
order procedures.

[Scheme Procedure]list-tabulate n init-proc
Return an n-element list, where each list element is produced by applying the proce-
dure init-proc to the corresponding list index. The order in which init-proc is applied
to the indices is not speci�ed.

[Scheme Procedure]list-copy lst
Return a new list containing the elements of the list lst.

This function di�ers from the core list-copy (see Section 5.6.2.3 [List Constructors],
page 170) in accepting improper lists too. And if lst is not a pair at all then it's treated
as the �nal tail of an improper list and simply returned.

[Scheme Procedure]circular-list elt1 elt2 . . .
Return a circular list containing the given arguments elt1 elt2 . . . .

[Scheme Procedure]iota count [start step]
Return a list containing count numbers, starting from start and adding step each
time. The default start is 0, the default step is 1. For example,

(iota 6) ) (0 1 2 3 4 5)

(iota 4 2.5 -2) ) (2.5 0.5 -1.5 -3.5)

This function takes its name from the corresponding primitive in the APL language.

6.4.3.2 Predicates

The procedures in this section test speci�c properties of lists.

[Scheme Procedure]proper-list? obj
Return #t if obj is a proper list, or #f otherwise. This is the same as the core list?
(see Section 5.6.2.2 [List Predicates], page 169).

A proper list is a list which ends with the empty list () in the usual way. The empty
list () itself is a proper list too.

(proper-list? '(1 2 3)) ) #t

(proper-list? '()) ) #t

[Scheme Procedure]circular-list? obj
Return #t if obj is a circular list, or #f otherwise.

A circular list is a list where at some point the cdr refers back to a previous pair in
the list (either the start or some later point), so that following the cdrs takes you
around in a circle, with no end.

(define x (list 1 2 3 4))

(set-cdr! (last-pair x) (cddr x))

x ) (1 2 3 4 3 4 3 4 ...)

(circular-list? x) ) #t
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[Scheme Procedure]dotted-list? obj
Return #t if obj is a dotted list, or #f otherwise.

A dotted list is a list where the cdr of the last pair is not the empty list (). Any
non-pair obj is also considered a dotted list, with length zero.

(dotted-list? '(1 2 . 3)) ) #t

(dotted-list? 99) ) #t

It will be noted that any Scheme object passes exactly one of the above three tests
proper-list?, circular-list? and dotted-list?. Non-lists are dotted-list?, �nite
lists are either proper-list? or dotted-list?, and in�nite lists are circular-list?.

[Scheme Procedure]null-list? lst
Return #t if lst is the empty list (), #f otherwise. If something else than a proper or
circular list is passed as lst, an error is signalled. This procedure is recommended for
checking for the end of a list in contexts where dotted lists are not allowed.

[Scheme Procedure]not-pair? obj
Return #t is obj is not a pair, #f otherwise. This is shorthand notation (not (pair?

obj)) and is supposed to be used for end-of-list checking in contexts where dotted
lists are allowed.

[Scheme Procedure]list= elt= list1 . . .
Return #t if all argument lists are equal, #f otherwise. List equality is determined
by testing whether all lists have the same length and the corresponding elements are
equal in the sense of the equality predicate elt=. If no or only one list is given, #t is
returned.

6.4.3.3 Selectors

[Scheme Procedure]first pair
[Scheme Procedure]second pair
[Scheme Procedure]third pair
[Scheme Procedure]fourth pair
[Scheme Procedure]fifth pair
[Scheme Procedure]sixth pair
[Scheme Procedure]seventh pair
[Scheme Procedure]eighth pair
[Scheme Procedure]ninth pair
[Scheme Procedure]tenth pair

These are synonyms for car, cadr, caddr, . . . .

[Scheme Procedure]car+cdr pair
Return two values, the car and the cdr of pair.

[Scheme Procedure]take lst i
[Scheme Procedure]take! lst i

Return a list containing the �rst i elements of lst.

take! may modify the structure of the argument list lst in order to produce the result.
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[Scheme Procedure]drop lst i
Return a list containing all but the �rst i elements of lst.

[Scheme Procedure]take-right lst i
Return the a list containing the i last elements of lst. The return shares a common
tail with lst.

[Scheme Procedure]drop-right lst i
[Scheme Procedure]drop-right! lst i

Return the a list containing all but the i last elements of lst.

drop-right always returns a new list, even when i is zero. drop-right! may modify
the structure of the argument list lst in order to produce the result.

[Scheme Procedure]split-at lst i
[Scheme Procedure]split-at! lst i

Return two values, a list containing the �rst i elements of the list lst and a list
containing the remaining elements.

split-at! may modify the structure of the argument list lst in order to produce the
result.

[Scheme Procedure]last lst
Return the last element of the non-empty, �nite list lst.

6.4.3.4 Length, Append, Concatenate, etc.

[Scheme Procedure]length+ lst
Return the length of the argument list lst. When lst is a circular list, #f is returned.

[Scheme Procedure]concatenate list-of-lists
[Scheme Procedure]concatenate! list-of-lists

Construct a list by appending all lists in list-of-lists.

concatenate! may modify the structure of the given lists in order to produce the
result.

concatenate is the same as (apply append list-of-lists). It exists because some
Scheme implementations have a limit on the number of arguments a function takes,
which the apply might exceed. In Guile there is no such limit.

[Scheme Procedure]append-reverse rev-head tail
[Scheme Procedure]append-reverse! rev-head tail

Reverse rev-head, append tail to it, and return the result. This is equivalent to
(append (reverse rev-head) tail), but its implementation is more e�cient.

(append-reverse '(1 2 3) '(4 5 6)) ) (3 2 1 4 5 6)

append-reverse! may modify rev-head in order to produce the result.

[Scheme Procedure]zip lst1 lst2 . . .
Return a list as long as the shortest of the argument lists, where each element is a
list. The �rst list contains the �rst elements of the argument lists, the second list
contains the second elements, and so on.
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[Scheme Procedure]unzip1 lst
[Scheme Procedure]unzip2 lst
[Scheme Procedure]unzip3 lst
[Scheme Procedure]unzip4 lst
[Scheme Procedure]unzip5 lst

unzip1 takes a list of lists, and returns a list containing the �rst elements of each list,
unzip2 returns two lists, the �rst containing the �rst elements of each lists and the
second containing the second elements of each lists, and so on.

[Scheme Procedure]count pred lst1 . . . lstN
Return a count of the number of times pred returns true when called on elements
from the given lists.

pred is called with N parameters (pred elem1 ... elemN), each element being from
the corresponding lst1 . . . lstN. The �rst call is with the �rst element of each list,
the second with the second element from each, and so on.

Counting stops when the end of the shortest list is reached. At least one list must be
non-circular.

6.4.3.5 Fold, Unfold & Map

[Scheme Procedure]fold proc init lst1 . . . lstN
[Scheme Procedure]fold-right proc init lst1 . . . lstN

Apply proc to the elements of lst1 . . . lstN to build a result, and return that result.

Each proc call is (proc elem1 ... elemN previous), where elem1 is from lst1,
through elemN from lstN. previous is the return from the previous call to proc,
or the given init for the �rst call. If any list is empty, just init is returned.

fold works through the list elements from �rst to last. The following shows a list
reversal and the calls it makes,

(fold cons '() '(1 2 3))

(cons 1 '())

(cons 2 '(1))

(cons 3 '(2 1)
) (3 2 1)

fold-right works through the list elements from last to �rst, ie. from the right. So
for example the following �nds the longest string, and the last among equal longest,

(fold-right (lambda (str prev)

(if (> (string-length str) (string-length prev))

str

prev))

""

'("x" "abc" "xyz" "jk"))
) "xyz"

If lst1 through lstN have di�erent lengths, fold stops when the end of the shortest
is reached; fold-right commences at the last element of the shortest. Ie. elements
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past the length of the shortest are ignored in the other lsts. At least one lst must be
non-circular.

fold should be preferred over fold-right if the order of processing doesn't matter,
or can be arranged either way, since fold is a little more e�cient.

The way fold builds a result from iterating is quite general, it can do more than
other iterations like say map or filter. The following for example removes adjacent
duplicate elements from a list,

(define (delete-adjacent-duplicates lst)

(fold-right (lambda (elem ret)

(if (equal? elem (first ret))

ret

(cons elem ret)))

(list (last lst))

lst))

(delete-adjacent-duplicates '(1 2 3 3 4 4 4 5))
) (1 2 3 4 5)

Clearly the same sort of thing can be done with a for-each and a variable in which to
build the result, but a self-contained proc can be re-used in multiple contexts, where
a for-each would have to be written out each time.

[Scheme Procedure]pair-fold proc init lst1 . . . lstN
[Scheme Procedure]pair-fold-right proc init lst1 . . . lstN

The same as fold and fold-right, but apply proc to the pairs of the lists instead
of the list elements.

[Scheme Procedure]reduce proc default lst
[Scheme Procedure]reduce-right proc default lst

reduce is a variant of fold, where the �rst call to proc is on two elements from lst,
rather than one element and a given initial value.

If lst is empty, reduce returns default (this is the only use for default). If lst has just
one element then that's the return value. Otherwise proc is called on the elements of
lst.

Each proc call is (proc elem previous), where elem is from lst (the second and
subsequent elements of lst), and previous is the return from the previous call to proc.
The �rst element of lst is the previous for the �rst call to proc.

For example, the following adds a list of numbers, the calls made to + are shown. (Of
course + accepts multiple arguments and can add a list directly, with apply.)

(reduce + 0 '(5 6 7)) ) 18

(+ 6 5) ) 11

(+ 7 11) ) 18

reduce can be used instead of fold where the init value is an \identity", meaning a
value which under proc doesn't change the result, in this case 0 is an identity since
(+ 5 0) is just 5. reduce avoids that unnecessary call.
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reduce-right is a similar variation on fold-right, working from the end (ie. the
right) of lst. The last element of lst is the previous for the �rst call to proc, and the
elem values go from the second last.

reduce should be preferred over reduce-right if the order of processing doesn't
matter, or can be arranged either way, since reduce is a little more e�cient.

[Scheme Procedure]unfold p f g seed [tail-gen]
unfold is de�ned as follows:

(unfold p f g seed) =

(if (p seed) (tail-gen seed)

(cons (f seed)

(unfold p f g (g seed))))

p Determines when to stop unfolding.

f Maps each seed value to the corresponding list element.

g Maps each seed value to next seed valu.

seed The state value for the unfold.

tail-gen Creates the tail of the list; defaults to (lambda (x) '()).

g produces a series of seed values, which are mapped to list elements by f. These
elements are put into a list in left-to-right order, and p tells when to stop unfolding.

[Scheme Procedure]unfold-right p f g seed [tail]
Construct a list with the following loop.

(let lp ((seed seed) (lis tail))

(if (p seed) lis

(lp (g seed)

(cons (f seed) lis))))

p Determines when to stop unfolding.

f Maps each seed value to the corresponding list element.

g Maps each seed value to next seed valu.

seed The state value for the unfold.

tail-gen Creates the tail of the list; defaults to (lambda (x) '()).

[Scheme Procedure]map f lst1 lst2 . . .
Map the procedure over the list(s) lst1, lst2, . . . and return a list containing the
results of the procedure applications. This procedure is extended with respect to
R5RS, because the argument lists may have di�erent lengths. The result list will
have the same length as the shortest argument lists. The order in which f will be
applied to the list element(s) is not speci�ed.

[Scheme Procedure]for-each f lst1 lst2 . . .
Apply the procedure f to each pair of corresponding elements of the list(s) lst1, lst2,
. . . . The return value is not speci�ed. This procedure is extended with respect to
R5RS, because the argument lists may have di�erent lengths. The shortest argument
list determines the number of times f is called. f will be applied to the list elements
in left-to-right order.
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[Scheme Procedure]append-map f lst1 lst2 . . .
[Scheme Procedure]append-map! f lst1 lst2 . . .

Equivalent to

(apply append (map f clist1 clist2 ...))

and

(apply append! (map f clist1 clist2 ...))

Map f over the elements of the lists, just as in the map function. However, the results
of the applications are appended together to make the �nal result. append-map uses
append to append the results together; append-map! uses append!.

The dynamic order in which the various applications of f are made is not speci�ed.

[Scheme Procedure]map! f lst1 lst2 . . .
Linear-update variant of map { map! is allowed, but not required, to alter the cons
cells of lst1 to construct the result list.

The dynamic order in which the various applications of f are made is not speci�ed.
In the n-ary case, lst2, lst3, . . . must have at least as many elements as lst1.

[Scheme Procedure]pair-for-each f lst1 lst2 . . .
Like for-each, but applies the procedure f to the pairs from which the argument
lists are constructed, instead of the list elements. The return value is not speci�ed.

[Scheme Procedure]filter-map f lst1 lst2 . . .
Like map, but only results from the applications of f which are true are saved in the
result list.

6.4.3.6 Filtering and Partitioning

Filtering means to collect all elements from a list which satisfy a speci�c condition. Parti-
tioning a list means to make two groups of list elements, one which contains the elements
satisfying a condition, and the other for the elements which don't.

The filter and filter! functions are implemented in the Guile core, See Section 5.6.2.6
[List Modi�cation], page 172.

[Scheme Procedure]partition pred lst
[Scheme Procedure]partition! pred lst

Split lst into those elements which do and don't satisfy the predicate pred.

The return is two values (see Section 5.11.6 [Multiple Values], page 257), the �rst
being a list of all elements from lst which satisfy pred, the second a list of those which
do not.

The elements in the result lists are in the same order as in lst but the order in which
the calls (pred elem) are made on the list elements is unspeci�ed.

partition does not change lst, but one of the returned lists may share a tail with it.
partition! may modify lst to construct its return.

[Scheme Procedure]remove pred lst
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[Scheme Procedure]remove! pred lst
Return a list containing all elements from lst which do not satisfy the predicate pred.
The elements in the result list have the same order as in lst. The order in which pred
is applied to the list elements is not speci�ed.

remove! is allowed, but not required to modify the structure of the input list.

6.4.3.7 Searching

The procedures for searching elements in lists either accept a predicate or a comparison
object for determining which elements are to be searched.

[Scheme Procedure]find pred lst
Return the �rst element of lst which satis�es the predicate pred and #f if no such
element is found.

[Scheme Procedure]find-tail pred lst
Return the �rst pair of lst whose car satis�es the predicate pred and #f if no such
element is found.

[Scheme Procedure]take-while pred lst
[Scheme Procedure]take-while! pred lst

Return the longest initial pre�x of lst whose elements all satisfy the predicate pred.

take-while! is allowed, but not required to modify the input list while producing
the result.

[Scheme Procedure]drop-while pred lst
Drop the longest initial pre�x of lst whose elements all satisfy the predicate pred.

[Scheme Procedure]span pred lst
[Scheme Procedure]span! pred lst
[Scheme Procedure]break pred lst
[Scheme Procedure]break! pred lst

span splits the list lst into the longest initial pre�x whose elements all satisfy the
predicate pred, and the remaining tail. break inverts the sense of the predicate.

span! and break! are allowed, but not required to modify the structure of the input
list lst in order to produce the result.

Note that the name break conicts with the break binding established by while (see
Section 5.11.4 [while do], page 252). Applications wanting to use break from within
a while loop will need to make a new de�ne under a di�erent name.

[Scheme Procedure]any pred lst1 lst2 . . . lstN
Test whether any set of elements from lst1 . . . lstN satis�es pred. If so the return
value is the return from the successful pred call, or if not the return is #f.

Each pred call is (pred elem1 ... elemN) taking an element from each lst. The
calls are made successively for the �rst, second, etc elements of the lists, stopping
when pred returns non-#f, or when the end of the shortest list is reached.

The pred call on the last set of elements (ie. when the end of the shortest list has
been reached), if that point is reached, is a tail call.
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[Scheme Procedure]every pred lst1 lst2 . . . lstN
Test whether every set of elements from lst1 . . . lstN satis�es pred. If so the return
value is the return from the �nal pred call, or if not the return is #f.

Each pred call is (pred elem1 ... elemN) taking an element from each lst. The
calls are made successively for the �rst, second, etc elements of the lists, stopping if
pred returns #f, or when the end of any of the lists is reached.

The pred call on the last set of elements (ie. when the end of the shortest list has
been reached) is a tail call.

If one of lst1 . . . lstN is empty then no calls to pred are made, and the return is #t.

[Scheme Procedure]list-index pred lst1 . . . lstN
Return the index of the �rst set of elements, one from each of lst1 . . . lstN, which
satis�es pred.

pred is called as (pred elem1 ... elemN). Searching stops when the end of the
shortest lst is reached. The return index starts from 0 for the �rst set of elements. If
no set of elements pass then the return is #f.

(list-index odd? '(2 4 6 9)) ) 3

(list-index = '(1 2 3) '(3 1 2)) ) #f

[Scheme Procedure]member x lst [=]
Return the �rst sublist of lst whose car is equal to x. If x does not appear in lst,
return #f.

Equality is determined by equal?, or by the equality predicate = if given. = is called
(= x elem), ie. with the given x �rst, so for example to �nd the �rst element greater
than 5,

(member 5 '(3 5 1 7 2 9) <) ) (7 2 9)

This version of member extends the core member (see Section 5.6.2.7 [List Searching],
page 173) by accepting an equality predicate.

6.4.3.8 Deleting

[Scheme Procedure]delete x lst [=]
[Scheme Procedure]delete! x lst [=]

Return a list containing the elements of lst but with those equal to x deleted. The
returned elements will be in the same order as they were in lst.

Equality is determined by the = predicate, or equal? if not given. An equality call
is made just once for each element, but the order in which the calls are made on the
elements is unspeci�ed.

The equality calls are always (= x elem), ie. the given x is �rst. This means for
instance elements greater than 5 can be deleted with (delete 5 lst <).

delete does not modify lst, but the return might share a common tail with lst.
delete! may modify the structure of lst to construct its return.

These functions extend the core delete and delete! (see Section 5.6.2.6 [List Modi�-
cation], page 172) in accepting an equality predicate. See also lset-difference (see
Section 6.4.3.10 [SRFI-1 Set Operations], page 435) for deleting multiple elements
from a list.
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[Scheme Procedure]delete-duplicates lst [=]
[Scheme Procedure]delete-duplicates! lst [=]

Return a list containing the elements of lst but without duplicates.

When elements are equal, only the �rst in lst is retained. Equal elements can be
anywhere in lst, they don't have to be adjacent. The returned list will have the
retained elements in the same order as they were in lst.

Equality is determined by the = predicate, or equal? if not given. Calls (= x y) are
made with element x being before y in lst. A call is made at most once for each
combination, but the sequence of the calls across the elements is unspeci�ed.

delete-duplicates does not modify lst, but the return might share a common tail
with lst. delete-duplicates!may modify the structure of lst to construct its return.

In the worst case, this is an O(N2) algorithm because it must check each element
against all those preceding it. For long lists it is more e�cient to sort and then
compare only adjacent elements.

6.4.3.9 Association Lists

Association lists are described in detail in section Section 5.6.11 [Association Lists],
page 210. The present section only documents the additional procedures for dealing with
association lists de�ned by SRFI-1.

[Scheme Procedure]assoc key alist [=]
Return the pair from alist which matches key. This extends the core assoc (see Sec-
tion 5.6.11.3 [Retrieving Alist Entries], page 212) by taking an optional = comparison
procedure.

The default comparison is equal?. If an = parameter is given it's called (= key

alistcar), ie. the given target key is the �rst argument, and a car from alist is
second.

For example a case-insensitive string lookup,

(assoc "yy" '(("XX" . 1) ("YY" . 2)) string-ci=?)
) ("YY" . 2)

[Scheme Procedure]alist-cons key datum alist
Cons a new association key and datum onto alist and return the result. This is
equivalent to

(cons (cons key datum) alist)

acons (see Section 5.6.11.2 [Adding or Setting Alist Entries], page 210) in the Guile
core does the same thing.

[Scheme Procedure]alist-copy alist
Return a newly allocated copy of alist, that means that the spine of the list as well
as the pairs are copied.

[Scheme Procedure]alist-delete key alist [=]
[Scheme Procedure]alist-delete! key alist [=]

Return a list containing the elements of alist but with those elements whose keys are
equal to key deleted. The returned elements will be in the same order as they were
in alist.
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Equality is determined by the = predicate, or equal? if not given. The order in which
elements are tested is unspeci�ed, but each equality call is made (= key alistkey),
ie. the given key parameter is �rst and the key from alist second. This means for
instance all associations with a key greater than 5 can be removed with (alist-

delete 5 alist <).

alist-delete does not modify alist, but the return might share a common tail with
alist. alist-delete! may modify the list structure of alist to construct its return.

6.4.3.10 Set Operations on Lists

Lists can be used to represent sets of objects. The procedures in this section operate on
such lists as sets.

Note that lists are not an e�cient way to implement large sets. The procedures here
typically take time m� n when operating on m and n element lists. Other data structures
like trees, bitsets (see Section 5.6.5 [Bit Vectors], page 187) or hash tables (see Section 5.6.12
[Hash Tables], page 215) are faster.

All these procedures take an equality predicate as the �rst argument. This predicate is
used for testing the objects in the list sets for sameness. This predicate must be consistent
with eq? (see Section 5.9.1 [Equality], page 236) in the sense that if two list elements are
eq? then they must also be equal under the predicate. This simply means a given object
must be equal to itself.

[Scheme Procedure]lset<= = list1 list2 . . .
Return #t if each list is a subset of the one following it. Ie. list1 a subset of list2,
list2 a subset of list3, etc, for as many lists as given. If only one list or no lists are
given then the return is #t.

A list x is a subset of y if each element of x is equal to some element in y. Elements
are compared using the given = procedure, called as (= xelem yelem).

(lset<= eq?) ) #t

(lset<= eqv? '(1 2 3) '(1)) ) #f

(lset<= eqv? '(1 3 2) '(4 3 1 2)) ) #t

[Scheme Procedure]lset= = list1 list2 . . .
Return #t if all argument lists are set-equal. list1 is compared to list2, list2 to list3,
etc, for as many lists as given. If only one list or no lists are given then the return is
#t.

Two lists x and y are set-equal if each element of x is equal to some element of
y and conversely each element of y is equal to some element of x. The order of
the elements in the lists doesn't matter. Element equality is determined with the
given = procedure, called as (= xelem yelem), but exactly which calls are made is
unspeci�ed.

(lset= eq?) ) #t

(lset= eqv? '(1 2 3) '(3 2 1)) ) #t

(lset= string-ci=? '("a" "A" "b") '("B" "b" "a")) ) #t
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[Scheme Procedure]lset-adjoin = list elem1 . . .
Add to list any of the given elems not already in the list. elems are consed onto
the start of list (so the return shares a common tail with list), but the order they're
added is unspeci�ed.

The given = procedure is used for comparing elements, called as (= listelem elem),
ie. the second argument is one of the given elem parameters.

(lset-adjoin eqv? '(1 2 3) 4 1 5) ) (5 4 1 2 3)

[Scheme Procedure]lset-union = list1 list2 . . .
[Scheme Procedure]lset-union! = list1 list2 . . .

Return the union of the argument list sets. The result is built by taking the union of
list1 and list2, then the union of that with list3, etc, for as many lists as given. For
one list argument that list itself is the result, for no list arguments the result is the
empty list.

The union of two lists x and y is formed as follows. If x is empty then the result is y.
Otherwise start with x as the result and consider each y element (from �rst to last).
A y element not equal to something already in the result is consed onto the result.

The given = procedure is used for comparing elements, called as (= relem yelem).
The �rst argument is from the result accumulated so far, and the second is from the
list being union-ed in. But exactly which calls are made is otherwise unspeci�ed.

Notice that duplicate elements in list1 (or the �rst non-empty list) are preserved, but
that repeated elements in subsequent lists are only added once.

(lset-union eqv?) ) ()

(lset-union eqv? '(1 2 3)) ) (1 2 3)

(lset-union eqv? '(1 2 1 3) '(2 4 5) '(5)) ) (5 4 1 2 1 3)

lset-union doesn't change the given lists but the result may share a tail with the
�rst non-empty list. lset-union! can modify all of the given lists to form the result.

[Scheme Procedure]lset-intersection = list1 list2 . . .
[Scheme Procedure]lset-intersection! = list1 list2 . . .

Return the intersection of list1 with the other argument lists, meaning those elements
of list1 which are also in all of list2 etc. For one list argument, just that list is returned.

The test for an element of list1 to be in the return is simply that it's equal to some
element in each of list2 etc. Notice this means an element appearing twice in list1
but only once in each of list2 etc will go into the return twice. The return has its
elements in the same order as they were in list1.

The given = procedure is used for comparing elements, called as (= elem1 elemN).
The �rst argument is from list1 and the second is from one of the subsequent lists.
But exactly which calls are made and in what order is unspeci�ed.

(lset-intersection eqv? '(x y)) ) (x y)

(lset-intersection eqv? '(1 2 3) '(4 3 2)) ) (2 3)

(lset-intersection eqv? '(1 1 2 2) '(1 2) '(2 1) '(2)) ) (2 2)

The return from lset-intersection may share a tail with list1. lset-

intersection! may modify list1 to form its result.
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[Scheme Procedure]lset-difference = list1 list2 . . .
[Scheme Procedure]lset-difference! = list1 list2 . . .

Return list1 with any elements in list2, list3 etc removed (ie. subtracted). For one
list argument, just that list is returned.

The given = procedure is used for comparing elements, called as (= elem1 elemN).
The �rst argument is from list1 and the second from one of the subsequent lists. But
exactly which calls are made and in what order is unspeci�ed.

(lset-difference eqv? '(x y)) ) (x y)

(lset-difference eqv? '(1 2 3) '(3 1)) ) (2)

(lset-difference eqv? '(1 2 3) '(3) '(2)) ) (1)

The return from lset-difference may share a tail with list1. lset-difference!

may modify list1 to form its result.

[Scheme Procedure]lset-diff+intersection = list1 list2 . . .
[Scheme Procedure]lset-diff+intersection! = list1 list2 . . .

Return two values (see Section 5.11.6 [Multiple Values], page 257), the di�erence and
intersection of the argument lists as per lset-difference and lset-intersection

above.

For two list arguments this partitions list1 into those elements of list1 which are in
list2 and not in list2. (But for more than two arguments there can be elements of
list1 which are neither part of the di�erence nor the intersection.)

One of the return values from lset-diff+intersection may share a tail with list1.
lset-diff+intersection! may modify list1 to form its results.

[Scheme Procedure]lset-xor = list1 list2 . . .
[Scheme Procedure]lset-xor! = list1 list2 . . .

Return an XOR of the argument lists. For two lists this means those elements which
are in exactly one of the lists. For more than two lists it means those elements which
appear in an odd number of the lists.

To be precise, the XOR of two lists x and y is formed by taking those elements of
x not equal to any element of y, plus those elements of y not equal to any element
of x. Equality is determined with the given = procedure, called as (= e1 e2). One
argument is from x and the other from y, but which way around is unspeci�ed.
Exactly which calls are made is also unspeci�ed, as is the order of the elements in the
result.

(lset-xor eqv? '(x y)) ) (x y)

(lset-xor eqv? '(1 2 3) '(4 3 2)) ) (4 1)

The return from lset-xor may share a tail with one of the list arguments. lset-xor!
may modify list1 to form its result.

6.4.4 SRFI-2 - and-let*

The following syntax can be obtained with

(use-modules (srfi srfi-2))

[library syntax]and-let* (clause . . . ) body . . .
A combination of and and let*.
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Each clause is evaluated in turn, and if #f is obtained then evaluation stops and #f is
returned. If all are non-#f then body is evaluated and the last form gives the return
value, or if body is empty then the result is #t. Each clause should be one of the
following,

(symbol expr)

Evaluate expr, check for #f, and bind it to symbol. Like let*, that
binding is available to subsequent clauses.

(expr) Evaluate expr and check for #f.

symbol Get the value bound to symbol and check for #f.

Notice that (expr) has an \extra" pair of parentheses, for instance ((eq? x y)). One
way to remember this is to imagine the symbol in (symbol expr) is omitted.

and-let* is good for calculations where a #f value means termination, but where a
non-#f value is going to be needed in subsequent expressions.

The following illustrates this, it returns text between brackets `[...]' in a string, or
#f if there are no such brackets (ie. either string-index gives #f).

(define (extract-brackets str)

(and-let* ((start (string-index str #\[))

(end (string-index str #\] start)))

(substring str (1+ start) end)))

The following shows plain variables and expressions tested too. diagnostic-levels
is taken to be an alist associating a diagnostic type with a level. str is printed only
if the type is known and its level is high enough.

(define (show-diagnostic type str)

(and-let* (want-diagnostics

(level (assq-ref diagnostic-levels type))

((>= level current-diagnostic-level)))

(display str)))

The advantage of and-let* is that an extended sequence of expressions and tests
doesn't require lots of nesting as would arise from separate and and let*, or from
cond with =>.

6.4.5 SRFI-4 - Homogeneous numeric vector datatypes

The SRFI-4 procedures and data types are always available, See Section 5.6.4 [Uniform
Numeric Vectors], page 178.

6.4.6 SRFI-6 - Basic String Ports

SRFI-6 de�nes the procedures open-input-string, open-output-string and
get-output-string. These procedures are included in the Guile core, so using this
module does not make any di�erence at the moment. But it is possible that support for
SRFI-6 will be factored out of the core library in the future, so using this module does not
hurt, after all.
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6.4.7 SRFI-8 - receive

receive is a syntax for making the handling of multiple-value procedures easier. It is
documented in See Section 5.11.6 [Multiple Values], page 257.

6.4.8 SRFI-9 - de�ne-record-type

This SRFI is a syntax for de�ning new record types and creating predicate, constructor,
and �eld getter and setter functions. In Guile this is simply an alternate interface to the
core record functionality (see Section 5.6.8 [Records], page 204). It can be used with,

(use-modules (srfi srfi-9))

[library syntax]define-record-type type
(constructor �eldname . . . )
predicate
(�eldname accessor [modi�er]) . . .

Create a new record type, and make various defines for using it. This syntax can
only occur at the top-level, not nested within some other form.

type is bound to the record type, which is as per the return from the core make-

record-type. type also provides the name for the record, as per record-type-name.

constructor is bound to a function to be called as (constructor fieldval ...) to
create a new record of this type. The arguments are initial values for the �elds, one
argument for each �eld, in the order they appear in the define-record-type form.

The �eldnames provide the names for the record �elds, as per the core record-type-
fields etc, and are referred to in the subsequent accessor/modi�er forms.

predictate is bound to a function to be called as (predicate obj). It returns #t or
#f according to whether obj is a record of this type.

Each accessor is bound to a function to be called (accessor record) to retrieve the
respective �eld from a record. Similarly each modi�er is bound to a function to be
called (modifier record val) to set the respective �eld in a record.

An example will illustrate typical usage,

(define-record-type employee-type

(make-employee name age salary)

employee?

(name get-employee-name)

(age get-employee-age set-employee-age)

(salary get-employee-salary set-employee-salary))

This creates a new employee data type, with name, age and salary �elds. Accessor
functions are created for each �eld, but no modi�er function for the name (the intention in
this example being that it's established only when an employee object is created). These
can all then be used as for example,

employee-type ) #<record-type employee-type>

(define fred (make-employee "Fred" 45 20000.00))
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(employee? fred) ) #t

(get-employee-age fred) ) 45

(set-employee-salary fred 25000.00) ;; pay rise

The functions created by define-record-type are ordinary top-level defines. They
can be rede�ned or set! as desired, exported from a module, etc.

6.4.9 SRFI-10 - Hash-Comma Reader Extension

This SRFI implements a reader extension #,() called hash-comma. It allows the reader to
give new kinds of objects, for use both in data and as constants or literals in source code.
This feature is available with

(use-modules (srfi srfi-10))

The new read syntax is of the form

#,(tag arg...)

where tag is a symbol and the args are objects taken as parameters. tags are registered
with the following procedure.

[Scheme Procedure]define-reader-ctor tag proc
Register proc as the constructor for a hash-comma read syntax starting with symbol
tag, ie. #,(tag arg...). proc is called with the given arguments (proc arg...)

and the object it returns is the result of the read.

For example, a syntax giving a list of N copies of an object.

(define-reader-ctor 'repeat

(lambda (obj reps)

(make-list reps obj)))

(display '#,(repeat 99 3))

a (99 99 99)

Notice the quote ' when the #,( ) is used. The repeat handler returns a list and the
program must quote to use it literally, the same as any other list. Ie.

(display '#,(repeat 99 3))
)
(display '(99 99 99))

When a handler returns an object which is self-evaluating, like a number or a string, then
there's no need for quoting, just as there's no need when giving those directly as literals.
For example an addition,

(define-reader-ctor 'sum

(lambda (x y)

(+ x y)))

(display #,(sum 123 456)) a 579

A typical use for #,() is to get a read syntax for objects which don't otherwise have one.
For example, the following allows a hash table to be given literally, with tags and values,
ready for fast lookup.

(define-reader-ctor 'hash

(lambda elems
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(let ((table (make-hash-table)))

(for-each (lambda (elem)

(apply hash-set! table elem))

elems)

table)))

(define (animal->family animal)

(hash-ref '#,(hash ("tiger" "cat")

("lion" "cat")

("wolf" "dog"))

animal))

(animal->family "lion") ) "cat"

Or for example the following is a syntax for a compiled regular expression (see Sec-
tion 5.5.6 [Regular Expressions], page 146).

(use-modules (ice-9 regex))

(define-reader-ctor 'regexp make-regexp)

(define (extract-angs str)

(let ((match (regexp-exec '#,(regexp "<([A-Z0-9]+)>") str)))

(and match

(match:substring match 1))))

(extract-angs "foo <BAR> quux") ) "BAR"

#,() is somewhat similar to define-macro (see Section 5.8.6 [Macros], page 231) in
that handler code is run to produce a result, but #,() operates at the read stage, so it can
appear in data for read (see Section 5.13.2 [Scheme Read], page 290), not just in code to
be executed.

Because #,() is handled at read-time it has no direct access to variables etc. A symbol
in the arguments is just a symbol, not a variable reference. The arguments are essentially
constants, though the handler procedure can use them in any complicated way it might
want.

Once (srfi srfi-10) has loaded, #,() is available globally, there's no need to use
(srfi srfi-10) in later modules. Similarly the tags registered are global and can be used
anywhere once registered.

There's no attempt to record what previous #,() forms have been seen, if two identical
forms occur then two calls are made to the handler procedure. The handler might like to
maintain a cache or similar to avoid making copies of large objects, depending on expected
usage.

In code the best uses of #,() are generally when there's a lot of objects of a particular
kind as literals or constants. If there's just a few then some local variables and initializers
are �ne, but that becomes tedious and error prone when there's a lot, and the anonymous
and compact syntax of #,() is much better.
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6.4.10 SRFI-11 - let-values

This module implements the binding forms for multiple values let-values and
let-values*. These forms are similar to let and let* (see Section 5.10.2 [Local
Bindings], page 248), but they support binding of the values returned by multiple-valued
expressions.

Write (use-modules (srfi srfi-11)) to make the bindings available.

(let-values (((x y) (values 1 2))

((z f) (values 3 4)))

(+ x y z f))
)
10

let-values performs all bindings simultaneously, which means that no expression in
the binding clauses may refer to variables bound in the same clause list. let-values*,
on the other hand, performs the bindings sequentially, just like let* does for single-valued
expressions.

6.4.11 SRFI-13 - String Library

The SRFI-13 procedures are always available, See Section 5.5.5 [Strings], page 129.

6.4.12 SRFI-14 - Character-set Library

The SRFI-14 data type and procedures are always available, See Section 5.5.4 [Character
Sets], page 123.

6.4.13 SRFI-16 - case-lambda

The syntactic form case-lambda creates procedures, just like lambda, but has syntactic
extensions for writing procedures of varying arity easier.

The syntax of the case-lambda form is de�ned in the following EBNF grammar.

<case-lambda>

--> (case-lambda <case-lambda-clause>)

<case-lambda-clause>

--> (<formals> <definition-or-command>*)

<formals>

--> (<identifier>*)

| (<identifier>* . <identifier>)

| <identifier>

The value returned by a case-lambda form is a procedure which matches the number
of actual arguments against the formals in the various clauses, in order. Formals means
a formal argument list just like with lambda (see Section 5.8.1 [Lambda], page 225). The
�rst matching clause is selected, the corresponding values from the actual parameter list
are bound to the variable names in the clauses and the body of the clause is evaluated. If
no clause matches, an error is signalled.

The following (silly) de�nition creates a procedure foo which acts di�erently, depending
on the number of actual arguments. If one argument is given, the constant #t is returned,
two arguments are added and if more arguments are passed, their product is calculated.
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(define foo (case-lambda

((x) #t)

((x y) (+ x y))

(z

(apply * z))))

(foo 'bar)
)
#t

(foo 2 4)
)
6

(foo 3 3 3)
)
27

(foo)
)
1

The last expression evaluates to 1 because the last clause is matched, z is bound to the
empty list and the following multiplication, applied to zero arguments, yields 1.

6.4.14 SRFI-17 - Generalized set!

This is an implementation of SRFI-17: Generalized set!

It exports the Guile procedure make-procedure-with-setter under the SRFI name
getter-with-setter and exports the standard procedures car, cdr, . . . , cdddr, string-
ref and vector-ref as procedures with setters, as required by the SRFI.

SRFI-17 was heavily criticized during its discussion period but it was �nalized anyway.
One issue was its concept of globally associating setter properties with (procedure) values,
which is non-Schemy. For this reason, this implementation chooses not to provide a way
to set the setter of a procedure. In fact, (set! (setter proc) setter) signals an error.
The only way to attach a setter to a procedure is to create a new object (a procedure
with setter) via the getter-with-setter procedure. This procedure is also speci�ed in the
SRFI. Using it avoids the described problems.

6.4.15 SRFI-19 - Time/Date Library

This is an implementation of the SRFI-19 time/date library. The functions and variables
described here are provided by

(use-modules (srfi srfi-19))

Caution: The current code in this module incorrectly extends the Gregorian calendar
leap year rule back prior to the introduction of those reforms in 1582 (or the appropriate
year in various countries). The Julian calendar was used prior to 1582, and there were 10
days skipped for the reform, but the code doesn't implement that.

This will be �xed some time. Until then calculations for 1583 onwards are correct, but
prior to that any day/month/year and day of the week calculations are wrong.
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6.4.15.1 SRFI-19 Introduction

This module implements time and date representations and calculations, in various time
systems, including universal time (UTC) and atomic time (TAI).

For those not familiar with these time systems, TAI is based on a �xed length second
derived from oscillations of certain atoms. UTC di�ers from TAI by an integral number
of seconds, which is increased or decreased at announced times to keep UTC aligned to a
mean solar day (the orbit and rotation of the earth are not quite constant).

So far, only increases in the TAI $ UTC di�erence have been needed. Such an increase
is a \leap second", an extra second of TAI introduced at the end of a UTC day. When
working entirely within UTC this is never seen, every day simply has 86400 seconds. But
when converting from TAI to a UTC date, an extra 23:59:60 is present, where normally a
day would end at 23:59:59. E�ectively the UTC second from 23:59:59 to 00:00:00 has taken
two TAI seconds.

In the current implementation, the system clock is assumed to be UTC, and a table of
leap seconds in the code converts to TAI. See comments in `srfi-19.scm' for how to update
this table.

Also, for those not familiar with the terminology, a Julian Day is a real number which
is a count of days and fraction of a day, in UTC, starting from -4713-01-01T12:00:00Z,
ie. midday Monday 1 Jan 4713 B.C. A Modi�ed Julian Day is the same, but starting
from 1858-11-17T00:00:00Z, ie. midnight 17 November 1858 UTC. That time is julian day
2400000.5.

6.4.15.2 SRFI-19 Time

A time object has type, seconds and nanoseconds �elds representing a point in time starting
from some epoch. This is an arbitrary point in time, not just a time of day. Although times
are represented in nanoseconds, the actual resolution may be lower.

The following variables hold the possible time types. For instance (current-time time-

process) would give the current CPU process time.

[Variable]time-utc
Universal Coordinated Time (UTC).

[Variable]time-tai
International Atomic Time (TAI).

[Variable]time-monotonic
Monotonic time, meaning a monotonically increasing time starting from an unspeci-
�ed epoch.

Note that in the current implementation time-monotonic is the same as time-tai,
and unfortunately is therefore a�ected by adjustments to the system clock. Perhaps
this will change in the future.

[Variable]time-duration
A duration, meaning simply a di�erence between two times.

[Variable]time-process
CPU time spent in the current process, starting from when the process began.
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[Variable]time-thread
CPU time spent in the current thread. Not currently implemented.

[Function]time? obj
Return #t if obj is a time object, or #f if not.

[Function]make-time type nanoseconds seconds
Create a time object with the given type, seconds and nanoseconds.

[Function]time-type time
[Function]time-nanosecond time
[Function]time-second time
[Function]set-time-type! time type
[Function]set-time-nanosecond! time nsec
[Function]set-time-second! time sec

Get or set the type, seconds or nanoseconds �elds of a time object.

set-time-type! merely changes the �eld, it doesn't convert the time value. For
conversions, see Section 6.4.15.4 [SRFI-19 Time/Date conversions], page 447.

[Function]copy-time time
Return a new time object, which is a copy of the given time.

[Function]current-time [type]
Return the current time of the given type. The default type is time-utc.

Note that the name current-time conicts with the Guile core current-time func-
tion (see Section 6.2.5 [Time], page 389). Applications wanting to use both will need
to use a di�erent name for one of them.

[Function]time-resolution [type]
Return the resolution, in nanoseconds, of the given time type. The default type is
time-utc.

[Function]time<=? t1 t2
[Function]time<? t1 t2
[Function]time=? t1 t2
[Function]time>=? t1 t2
[Function]time>? t1 t2

Return #t or #f according to the respective relation between time objects t1 and t2.
t1 and t2 must be the same time type.

[Function]time-difference t1 t2
[Function]time-difference! t1 t2

Return a time object of type time-duration representing the period between t1 and
t2. t1 and t2 must be the same time type.

time-difference returns a new time object, time-difference! may modify t1 to
form its return.
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[Function]add-duration time duration
[Function]add-duration! time duration
[Function]subtract-duration time duration
[Function]subtract-duration! time duration

Return a time object which is time with the given duration added or subtracted.
duration must be a time object of type time-duration.

add-duration and subtract-duration return a new time object. add-duration!

and subtract-duration! may modify the given time to form their return.

6.4.15.3 SRFI-19 Date

A date object represents a date in the Gregorian calendar and a time of day on that date
in some timezone.

The �elds are year, month, day, hour, minute, second, nanoseconds and timezone. A
date object is immutable, its �elds can be read but they cannot be modi�ed once the object
is created.

[Function]date? obj
Return #t if obj is a date object, or #f if not.

[Function]make-date nsecs seconds minutes hours date month year zone-o�set
Create a new date object.

[Function]date-nanosecond date
Nanoseconds, 0 to 999999999.

[Function]date-second date
Seconds, 0 to 59, or 60 for a leap second. 60 is never seen when working entirely
within UTC, it's only when converting to or from TAI.

[Function]date-minute date
Minutes, 0 to 59.

[Function]date-hour date
Hour, 0 to 23.

[Function]date-day date
Day of the month, 1 to 31 (or less, according to the month).

[Function]date-month date
Month, 1 to 12.

[Function]date-year date
Year, eg. 2003. Dates B.C. are negative, eg. �46 is 46 B.C. There is no year 0, year
�1 is followed by year 1.

[Function]date-zone-offset date
Time zone, an integer number of seconds east of Greenwich.

[Function]date-year-day date
Day of the year, starting from 1 for 1st January.
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[Function]date-week-day date
Day of the week, starting from 0 for Sunday.

[Function]date-week-number date dstartw
Week of the year, ignoring a �rst partial week. dstartw is the day of the week which
is taken to start a week, 0 for Sunday, 1 for Monday, etc.

[Function]current-date [tz-o�set]
Return a date object representing the current date/time, in UTC o�set by tz-o�set.
tz-o�set is seconds east of Greenwich and defaults to the local timezone.

[Function]current-julian-day
Return the current Julian Day.

[Function]current-modified-julian-day
Return the current Modi�ed Julian Day.

6.4.15.4 SRFI-19 Time/Date conversions

[Function]date->julian-day date
[Function]date->modified-julian-day date
[Function]date->time-monotonic date
[Function]date->time-tai date
[Function]date->time-utc date

[Function]julian-day->date jdn [tz-o�set]
[Function]julian-day->time-monotonic jdn
[Function]julian-day->time-tai jdn
[Function]julian-day->time-utc jdn

[Function]modified-julian-day->date jdn [tz-o�set]
[Function]modified-julian-day->time-monotonic jdn
[Function]modified-julian-day->time-tai jdn
[Function]modified-julian-day->time-utc jdn

[Function]time-monotonic->date time [tz-o�set]
[Function]time-monotonic->time-tai time
[Function]time-monotonic->time-tai! time
[Function]time-monotonic->time-utc time
[Function]time-monotonic->time-utc! time

[Function]time-tai->date time [tz-o�set]
[Function]time-tai->julian-day time
[Function]time-tai->modified-julian-day time
[Function]time-tai->time-monotonic time
[Function]time-tai->time-monotonic! time
[Function]time-tai->time-utc time
[Function]time-tai->time-utc! time

[Function]time-utc->date time [tz-o�set]
[Function]time-utc->julian-day time
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[Function]time-utc->modified-julian-day time
[Function]time-utc->time-monotonic time
[Function]time-utc->time-monotonic! time
[Function]time-utc->time-tai time
[Function]time-utc->time-tai! time

Convert between dates, times and days of the respective types. For instance time-

tai->time-utc accepts a time object of type time-tai and returns an object of type
time-utc.

The ! variants may modify their time argument to form their return. The plain
functions create a new object.

For conversions to dates, tz-o�set is seconds east of Greenwich. The default is the
local timezone, at the given time, as provided by the system, using localtime (see
Section 6.2.5 [Time], page 389).

On 32-bit systems, localtime is limited to a 32-bit time_t, so a default tz-o�set is
only available for times between Dec 1901 and Jan 2038. For prior dates an application
might like to use the value in 1902, though some locations have zone changes prior
to that. For future dates an application might like to assume today's rules extend
inde�nitely. But for correct daylight savings transitions it will be necessary to take an
o�set for the same day and time but a year in range and which has the same starting
weekday and same leap/non-leap (to support rules like last Sunday in October).

6.4.15.5 SRFI-19 Date to string

[Function]date->string date [format]
Convert a date to a string under the control of a format. format should be a string
containing `~' escapes, which will be expanded as per the following conversion table.
The default format is `~c', a locale-dependent date and time.

Many of these conversion characters are the same as POSIX strftime (see Sec-
tion 6.2.5 [Time], page 389), but there are some extras and some variations.

~~ literal ~
~a locale abbreviated weekday, eg. `Sun'
~A locale full weekday, eg. `Sunday'
~b locale abbreviated month, eg. `Jan'
~B locale full month, eg. `January'
~c locale date and time, eg.

`Fri Jul 14 20:28:42-0400 2000'

~d day of month, zero padded, `01' to `31'

~e day of month, blank padded, ` 1' to `31'
~f seconds and fractional seconds, with locale decimal point, eg. `5.2'
~h same as ~b
~H hour, 24-hour clock, zero padded, `00' to `23'
~I hour, 12-hour clock, zero padded, `01' to `12'
~j day of year, zero padded, `001' to `366'
~k hour, 24-hour clock, blank padded, ` 0' to `23'
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~l hour, 12-hour clock, blank padded, ` 1' to `12'
~m month, zero padded, `01' to `12'
~M minute, zero padded, `00' to `59'
~n newline
~N nanosecond, zero padded, `000000000' to `999999999'
~p locale AM or PM
~r time, 12 hour clock, `~I:~M:~S ~p'
~s number of full seconds since \the epoch" in UTC
~S second, zero padded `00' to `60'

(usual limit is 59, 60 is a leap second)

~t horizontal tab character
~T time, 24 hour clock, `~H:~M:~S'
~U week of year, Sunday �rst day of week, `00' to `52'
~V week of year, Monday �rst day of week, `01' to `53'
~w day of week, 0 for Sunday, `0' to `6'
~W week of year, Monday �rst day of week, `00' to `52'

~y year, two digits, `00' to `99'
~Y year, full, eg. `2003'
~z time zone, RFC-822 style
~Z time zone symbol (not currently implemented)
~1 ISO-8601 date, `~Y-~m-~d'
~2 ISO-8601 time+zone, `~k:~M:~S~z'
~3 ISO-8601 time, `~k:~M:~S'
~4 ISO-8601 date/time+zone, `~Y-~m-~dT~k:~M:~S~z'
~5 ISO-8601 date/time, `~Y-~m-~dT~k:~M:~S'

Conversions `~D', `~x' and `~X' are not currently described here, since the speci�cation
and reference implementation di�er.

Currently Guile doesn't implement any localizations for the above, all outputs are in
English, and the `~c' conversion is POSIX ctime style `~a ~b ~d ~H:~M:~S~z ~Y'. This
may change in the future.

6.4.15.6 SRFI-19 String to date

[Function]string->date input template
Convert an input string to a date under the control of a template string. Return a
newly created date object.

Literal characters in template must match characters in input and `~' escapes must
match the input forms described in the table below. \Skip to" means characters up
to one of the given type are ignored, or \no skip" for no skipping. \Read" is what's
then read, and \Set" is the �eld a�ected in the date object.

For example `~Y' skips input characters until a digit is reached, at which point it
expects a year and stores that to the year �eld of the date.

Skip to Read Set
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~~ no skip literal ~ nothing

~a char-alphabetic? locale abbreviated weekday name nothing

~A char-alphabetic? locale full weekday name nothing

~b char-alphabetic? locale abbreviated month name date-month

~B char-alphabetic? locale full month name date-month

~d char-numeric? day of month date-day

~e no skip day of month, blank padded date-day

~h same as `~b'

~H char-numeric? hour date-hour

~k no skip hour, blank padded date-hour

~m char-numeric? month date-month

~M char-numeric? minute date-minute

~S char-numeric? second date-second

~y no skip 2-digit year date-year within
50 years

~Y char-numeric? year date-year

~z no skip time zone date-zone-o�set

Notice that the weekday matching forms don't a�ect the date object returned, instead
the weekday will be derived from the day, month and year.

Currently Guile doesn't implement any localizations for the above, month and week-
day names are always expected in English. This may change in the future.

6.4.16 SRFI-26 - specializing parameters

This SRFI provides a syntax for conveniently specializing selected parameters of a function.
It can be used with,

(use-modules (srfi srfi-26))

[library syntax]cut slot . . .
[library syntax]cute slot . . .

Return a new procedure which will make a call (slot . . . ) but with selected parameters
specialized to given expressions.
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An example will illustrate the idea. The following is a specialization of write, sending
output to my-output-port,

(cut write <> my-output-port)
)
(lambda (obj) (write obj my-output-port))

The special symbol <> indicates a slot to be �lled by an argument to the new proce-
dure. my-output-port on the other hand is an expression to be evaluated and passed,
ie. it specializes the behaviour of write.

<> A slot to be �lled by an argument from the created procedure. Arguments
are assigned to <> slots in the order they appear in the cut form, there's
no way to re-arrange arguments.

The �rst argument to cut is usually a procedure (or expression giving a
procedure), but <> is allowed there too. For example,

(cut <> 1 2 3)
)
(lambda (proc) (proc 1 2 3))

<...> A slot to be �lled by all remaining arguments from the new procedure.
This can only occur at the end of a cut form.

For example, a procedure taking a variable number of arguments like max
but in addition enforcing a lower bound,

(define my-lower-bound 123)

(cut max my-lower-bound <...>)
)
(lambda arglist (apply max my-lower-bound arglist))

For cut the specializing expressions are evaluated each time the new procedure is
called. For cute they're evaluated just once, when the new procedure is created. The
name cute stands for \cut with evaluated arguments". In all cases the evaluations
take place in an unspeci�ed order.

The following illustrates the di�erence between cut and cute,

(cut format <> "the time is ~s" (current-time))
)
(lambda (port) (format port "the time is ~s" (current-time)))

(cute format <> "the time is ~s" (current-time))
)
(let ((val (current-time)))

(lambda (port) (format port "the time is ~s" val))

(There's no provision for a mixture of cut and cute where some expressions would
be evaluated every time but others evaluated only once.)

cut is really just a shorthand for the sort of lambda forms shown in the above exam-
ples. But notice cut avoids the need to name unspecialized parameters, and is more
compact. Use in functional programming style or just with map, for-each or similar
is typical.
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(map (cut * 2 <>) '(1 2 3 4))

(for-each (cut write <> my-port) my-list)

6.4.17 SRFI-31 - A special form `rec' for recursive evaluation

SRFI-31 de�nes a special form that can be used to create self-referential expressions more
conveniently. The syntax is as follows:

<rec expression> --> (rec <variable> <expression>)

<rec expression> --> (rec (<variable>+) <body>)

The �rst syntax can be used to create self-referential expressions, for example:

guile> (define tmp (rec ones (cons 1 (delay ones))))

The second syntax can be used to create anonymous recursive functions:

guile> (define tmp (rec (display-n item n)

(if (positive? n)

(begin (display n) (display-n (- n 1))))))

guile> (tmp 42 3)

424242

guile>

6.4.18 SRFI-39 - Parameters

This SRFI provides parameter objects, which implement dynamically bound locations for
values. The functions below are available from

(use-modules (srfi srfi-39))

A parameter object is a procedure. Called with no arguments it returns its value, called
with one argument it sets the value.

(define my-param (make-parameter 123))

(my-param) ) 123

(my-param 456)

(my-param) ) 456

The parameterize special form establishes new locations for parameters, those new lo-
cations having e�ect within the dynamic scope of the parameterize body. Leaving restores
the previous locations, or re-entering through a saved continuation will again use the new
locations.

(parameterize ((my-param 789))

(my-param) ) 789

)

(my-param) ) 456

Parameters are like dynamically bound variables in other Lisp dialets. They allow an
application to establish parameter settings (as the name suggests) just for the execution
of a particular bit of code, restoring when done. Examples of such parameters might be
case-sensitivity for a search, or a prompt for user input.

Global variables are not as good as parameter objects for this sort of thing. Changes
to them are visible to all threads, but in Guile parameter object locations are per-thread,
thereby truely limiting the e�ect of parameterize to just its dynamic execution.
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Passing arguments to functions is thread-safe, but that soon becomes tedious when
there's more than a few or when they need to pass down through several layers of calls
before reaching the point they should a�ect. And introducing a new setting to existing
code is often easier with a parameter object than adding arguments.

[Function]make-parameter init [converter]
Return a new parameter object, with initial value init.

A parameter object is a procedure. When called (param) it returns its value, or a
call (param val) sets its value. For example,

(define my-param (make-parameter 123))

(my-param) ) 123

(my-param 456)

(my-param) ) 456

If a converter is given, then a call (converter val) is made for each value set, its
return is the value stored. Such a call is made for the init initial value too.

A converter allows values to be validated, or put into a canonical form. For example,

(define my-param (make-parameter 123

(lambda (val)

(if (not (number? val))

(error "must be a number"))

(inexact->exact val))))

(my-param 0.75)

(my-param) ) 3/4

[library syntax]parameterize ((param value) . . . ) body . . .
Establish a new dynamic scope with the given params bound to new locations and set
to the given values. body is evaluated in that environment, the result is the return
from the last form in body.

Each param is an expression which is evaluated to get the parameter object. Often
this will just be the name of a variable holding the object, but it can be anything
that evaluates to a parameter.

The param expressions and value expressions are all evaluated before establishing the
new dynamic bindings, and they're evaluated in an unspeci�ed order.

For example,

(define prompt (make-parameter "Type something: "))

(define (get-input)

(display (prompt))

...)

(parameterize ((prompt "Type a number: "))

(get-input)

...)

[Parameter object]current-input-port [new-port]
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[Parameter object]current-output-port [new-port]
[Parameter object]current-error-port [new-port]

This SRFI extends the core current-input-port and current-output-port, mak-
ing them parameter objects. The Guile-speci�c current-error-port is extended
too, for consistency. (see Section 5.12.8 [Default Ports], page 278.)

This is an upwardly compatible extension, a plain call like (current-input-port)

still returns the current input port, and set-current-input-port can still be used.
But the port can now also be set with (current-input-port my-port) and bound
dynamically with parameterize.

[Function]with-parameters* param-list value-list thunk
Establish a new dynamic scope, as per parameterize above, taking parameters from
param-list and corresponding values from values-list. A call (thunk) is made in the
new scope and the result from that thunk is the return from with-parameters*.

This function is a Guile-speci�c addition to the SRFI, it's similar to the core with-

fluids* (see Section 5.17.8 [Fluids and Dynamic States], page 330).

Parameter objects are implemented using uids (see Section 5.17.8 [Fluids and Dynamic
States], page 330), so each dynamic state has it's own parameter locations. That includes
the separate locations when outside any parameterize form. When a parameter is created
it gets a separate initial location in each dynamic state, all initialized to the given init value.

As alluded to above, because each thread usually has a separate dynamic state, each
thread has it's own locations behind parameter objects, and changes in one thread are
not visible to any other. When a new dynamic state or thread is created, the values of
parameters in the originating context are copied, into new locations.

SRFI-39 doesn't specify the interaction between parameter objects and threads, so the
threading behaviour described here should be regarded as Guile-speci�c.

6.4.19 SRFI-55 - Requiring Features

SRFI-55 provides require-extension which is a portable mechanism to load selected SRFI
modules. This is implemented in the Guile core, there's no module needed to get SRFI-55
itself.

[library syntax]require-extension clause. . .
Require each of the given clause features, throwing an error if any are unavailable.

A clause is of the form (identifier arg...). The only identi�er currently sup-
ported is srfi and the arguments are SRFI numbers. For example to get SRFI-1 and
SRFI-6,

(require-extension (srfi 1 6))

require-extension can only be used at the top-level.

A Guile-speci�c program can simply use-modules to load SRFIs not already in the
core, require-extension is for programs designed to be portable to other Scheme
implementations.
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6.4.20 SRFI-60 - Integers as Bits

This SRFI provides various functions for treating integers as bits and for bitwise manipu-
lations. These functions can be obtained with,

(use-modules (srfi srfi-60))

Integers are treated as in�nite precision twos-complement, the same as in the core logical
functions (see Section 5.5.2.14 [Bitwise Operations], page 117). And likewise bit indexes
start from 0 for the least signi�cant bit. The following functions in this SRFI are already
in the Guile core,

logand, logior, logxor, lognot, logtest, logcount, integer-length,
logbit?, ash

[Function]bitwise-and n1 ...
[Function]bitwise-ior n1 ...
[Function]bitwise-xor n1 ...
[Function]bitwise-not n
[Function]any-bits-set? j k
[Function]bit-set? index n
[Function]arithmetic-shift n count
[Function]bit-field n start end
[Function]bit-count n

Aliases for logand, logior, logxor, lognot, logtest, logbit?, ash, bit-extract
and logcount respectively.

Note that the name bit-count conicts with bit-count in the core (see Section 5.6.5
[Bit Vectors], page 187).

[Function]bitwise-if mask n1 n0
[Function]bitwise-merge mask n1 n0

Return an integer with bits selected from n1 and n0 according to mask. Those bits
where mask has 1s are taken from n1, and those where mask has 0s are taken from
n0.

(bitwise-if 3 #b0101 #b1010) ) 9

[Function]log2-binary-factors n
[Function]first-set-bit n

Return a count of how many factors of 2 are present in n. This is also the bit index
of the lowest 1 bit in n. If n is 0, the return is �1.

(log2-binary-factors 6) ) 1

(log2-binary-factors -8) ) 3

[Function]copy-bit index n newbit
Return n with the bit at index set according to newbit. newbit should be #t to set
the bit to 1, or #f to set it to 0. Bits other than at index are unchanged in the return.

(copy-bit 1 #b0101 #t) ) 7

[Function]copy-bit-field n newbits start end
Return n with the bits from start (inclusive) to end (exclusive) changed to the value
newbits.
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The least signi�cant bit in newbits goes to start, the next to start+1, etc. Anything
in newbits past the end given is ignored.

(copy-bit-field #b10000 #b11 1 3) ) #b10110

[Function]rotate-bit-field n count start end
Return n with the bit �eld from start (inclusive) to end (exclusive) rotated upwards
by count bits.

count can be positive or negative, and it can be more than the �eld width (it'll be
reduced modulo the width).

(rotate-bit-field #b0110 2 1 4) ) #b1010

[Function]reverse-bit-field n start end
Return n with the bits from start (inclusive) to end (exclusive) reversed.

(reverse-bit-field #b101001 2 4) ) #b100101

[Function]integer->list n [len]
Return bits from n in the form of a list of #t for 1 and #f for 0. The least signi�cant
len bits are returned, and the �rst list element is the most signi�cant of those bits.
If len is not given, the default is (integer-length n) (see Section 5.5.2.14 [Bitwise
Operations], page 117).

(integer->list 6) ) (#t #t #f)

(integer->list 1 4) ) (#f #f #f #t)

[Function]list->integer lst
[Function]booleans->integer bool. . .

Return an integer formed bitwise from the given lst list of booleans, or for booleans-
>integer from the bool arguments.

Each boolean is #t for a 1 and #f for a 0. The �rst element becomes the most
signi�cant bit in the return.

(list->integer '(#t #f #t #f)) ) 10

6.4.21 SRFI-61 - A more general cond clause

This SRFI extends RnRS cond to support test expressions that return multiple values, as
well as arbitrary de�nitions of test success. SRFI 61 is implemented in the Guile core; there's
no module needed to get SRFI-61 itself. Extended cond is documented in Section 5.11.2
[Simple Conditional Evaluation], page 251.
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6.5 Readline Support

Guile comes with an interface module to the readline library (see section \Top" in GNU
Readline Library). This makes interactive use much more convenient, because of the
command-line editing features of readline. Using (ice-9 readline), you can navigate
through the current input line with the cursor keys, retrieve older command lines from the
input history and even search through the history entries.

6.5.1 Loading Readline Support

The module is not loaded by default and so has to be loaded and activated explicitly. This
is done with two simple lines of code:

(use-modules (ice-9 readline))

(activate-readline)

The �rst line will load the necessary code, and the second will activate readline's features
for the REPL. If you plan to use this module often, you should save these to lines to your
`.guile' personal startup �le.

You will notice that the REPL's behaviour changes a bit when you have loaded the
readline module. For example, when you press Enter before typing in the closing parentheses
of a list, you will see the continuation prompt, three dots: ... This gives you a nice visual
feedback when trying to match parentheses. To make this even easier, bouncing parentheses
are implemented. That means that when you type in a closing parentheses, the cursor will
jump to the corresponding opening parenthesis for a short time, making it trivial to make
them match.

Once the readline module is activated, all lines entered interactively will be stored in
a history and can be recalled later using the cursor-up and -down keys. Readline also
understands the Emacs keys for navigating through the command line and history.

When you quit your Guile session by evaluating (quit) or pressing Ctrl-D, the history
will be saved to the �le `.guile_history' and read in when you start Guile for the next
time. Thus you can start a new Guile session and still have the (probably long-winded)
de�nition expressions available.

You can specify a di�erent history �le by setting the environment variable GUILE_

HISTORY. And you can make Guile speci�c customizations to your `.inputrc' by testing for
application `Guile' (see section \Conditional Init Constructs" in GNU Readline Library).
For instance to de�ne a key inserting a matched pair of parentheses,

$if Guile

"\C-o": "()\C-b"

$endif

6.5.2 Readline Options

The readline interface module can be con�gured in several ways to better suit the user's
needs. Con�guration is done via the readline module's options interface, in a similar way
to the evaluator and debugging options (see Section 5.18.3 [Runtime Options], page 338).

Here is the list of readline options generated by typing (readline-options 'full) in
Guile. You can also see the default values.

bounce-parens 500 Time (ms) to show matching opening parenthesis (0 = off).
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history-length 200 History length.
history-file yes Use history file.

The history length speci�es how many input lines will be remembered. If the history
contains that many lines and additional lines are entered, the oldest lines will be lost. You
can switch on/o� the usage of the history �le using the following call.

(readline-disable 'history)

The readline options interface can only be used after loading the readline module, be-
cause it is de�ned in that module.

6.5.3 Readline Functions

The following functions are provided by

(use-modules (ice-9 readline))

There are two ways to use readline from Scheme code, either make calls to readline

directly to get line by line input, or use the readline port below with all the usual reading
functions.

[Function]readline [prompt]
Read a line of input from the user and return it as a string (without a newline at the
end). prompt is the prompt to show, or the default is the string set in set-readline-

prompt! below.

(readline "Type something: ") ) "hello"

[Function]set-readline-input-port! port
[Function]set-readline-output-port! port

Set the input and output port the readline function should read from and write to.
port must be a �le port (see Section 5.12.9.1 [File Ports], page 280), and should
usually be a terminal.

The default is the current-input-port and current-output-port (see
Section 5.12.8 [Default Ports], page 278) when (ice-9 readline) loads, which in an
interactive user session means the Unix \standard input" and \standard output".

6.5.3.1 Readline Port

[Function]readline-port
Return a bu�ered input port (see Section 6.12 [Bu�ered Input], page 479) which calls
the readline function above to get input. This port can be used with all the usual
reading functions (read, read-char, etc), and the user gets the interactive editing
features of readline.

There's only a single readline port created. readline-port creates it when �rst
called, and on subsequent calls just returns what it previously made.

[Function]activate-readline
If the current-input-port is a terminal (see Section 6.2.9 [isatty?], page 400)
then enable readline for all reading from current-input-port (see Section 5.12.8
[Default Ports], page 278) and enable readline features in the interactive REPL (see
Section 3.1.3.3 [The REPL], page 23).
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(activate-readline)

(read-char)

activate-readline enables readline on current-input-port simply by a
set-current-input-port to the readline-port above. An application can do that
directly if the extra REPL features that activate-readline adds are not wanted.

[Function]set-readline-prompt! prompt1 [prompt2]
Set the prompt string to print when reading input. This is used when reading through
readline-port, and is also the default prompt for the readline function above.

prompt1 is the initial prompt shown. If a user might enter an expression across
multiple lines, then prompt2 is a di�erent prompt to show further input required. In
the Guile REPL for instance this is an ellipsis (`...').

See set-buffered-input-continuation?! (see Section 6.12 [Bu�ered Input],
page 479) for an application to indicate the boundaries of logical expressions
(assuming of course an application has such a notion).

6.5.3.2 Completion

[Function]with-readline-completion-function completer thunk
Call (thunk) with completer as the readline tab completion function to be used in
any readline calls within that thunk. completer can be #f for no completion.

completer will be called as (completer text state), as described in (see section
\How Completing Works" in GNU Readline Library). text is a partial word to be
completed, and each completer call should return a possible completion string or #f
when no more. state is #f for the �rst call asking about a new text then #t while
getting further completions of that text.

Here's an example completer for user login names from the password �le (see Sec-
tion 6.2.4 [User Information], page 386), much like readline's own rl_username_

completion_function,

(define (username-completer-function text state)

(if (not state)

(setpwent)) ;; new, go to start of database

(let more ((pw (getpwent)))

(if pw

(if (string-prefix? text (passwd:name pw))

(passwd:name pw) ;; this name matches, return it

(more (getpwent))) ;; doesn't match, look at next

(begin

;; end of database, close it and return #f

(endpwent)

#f))))

[Function]apropos-completion-function text state
A completion function o�ering completions for Guile functions and variables (all
defines). This is the default completion function.
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[Function]filename-completion-function text state
A completion function o�ering �lename completions. This is readline's rl_filename_
completion_function (see section \Completion Functions" in GNU Readline Li-
brary).

[Function]make-completion-function string-list
Return a completion function which o�ers completions from the possibilities in string-
list. Matching is case-sensitive.
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6.6 Value History

Another module which makes command line usage more convenient is (ice-9 history).
This module will change the REPL so that each value which is evaluated and printed will
be remembered under a name constructed from the dollar character ($) and the number of
the evaluated expression.

Consider an example session.

guile> (use-modules (ice-9 history))

guile> 1

$1 = 1

guile> (+ $1 $1)

$2 = 2

guile> (* $2 $2)

$3 = 4

After loading the value history module (ice-9 history), one (trivial) expression is
evaluated. The result is stored into the variable $1. This fact is indicated by the output
$1 = , which is also caused by (ice-9 history). In the next line, this variable is used two
times, to produce the value $2, which in turn is used in the calculation for $3.
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6.7 Pretty Printing

The module (ice-9 pretty-print) provides the procedure pretty-print, which provides
nicely formatted output of Scheme objects. This is especially useful for deeply nested or
complex data structures, such as lists and vectors.

The module is loaded by simply saying.

(use-modules (ice-9 pretty-print))

This makes the procedure pretty-print available. As an example how pretty-print

will format the output, see the following:

(pretty-print '(define (foo) (lambda (x)

(cond ((zero? x) #t) ((negative? x) -x) (else

(if (= x 1) 2 (* x x x)))))))

a
(define (foo)

(lambda (x)

(cond ((zero? x) #t)

((negative? x) -x)

(else (if (= x 1) 2 (* x x x))))))

[Scheme Procedure]pretty-print obj [port] [keyword-options]
Print the textual representation of the Scheme object obj to port. port defaults to
the current output port, if not given.

The further keyword-options are keywords and parameters as follows,

#:display? ag
If ag is true then print using display. The default is #f which means
use write style. (see Section 5.12.3 [Writing], page 273)

#:per-line-prefix string
Print the given string as a pre�x on each line. The default is no pre�x.

#:width columns
Print within the given columns. The default is 79.
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6.8 Formatted Output

The format function is a powerful way to print numbers, strings and other objects together
with literal text under the control of a format string. This function is available from

(use-modules (ice-9 format))

A format string is generally more compact and easier than using just the standard
procedures like display, write and newline. Parameters in the output string allow various
output styles, and parameters can be taken from the arguments for runtime exibility.

format is similar to the Common Lisp procedure of the same name, but it's not identical
and doesn't have quite all the features found in Common Lisp.

C programmers will note the similarity between format and printf, though escape
sequences are marked with ~ instead of %, and are more powerful.

[Scheme Procedure]format dest fmt [args. . . ]
Write output speci�ed by the fmt string to dest. dest can be an output port, #t for
current-output-port (see Section 5.12.8 [Default Ports], page 278), a number for
current-error-port, or #f to return the output as a string.

fmt can contain literal text to be output, and ~ escapes. Each escape has the form

~ [param [, param...] [:] [@] code

code is a character determining the escape sequence. The : and @ characters are op-
tional modi�ers, one or both of which change the way various codes operate. Optional
parameters are accepted by some codes too. Parameters have the following forms,

[+/-]number

An integer, with optional + or -.

' (apostrophe)
The following character in the format string, for instance 'z for z.

v The next function argument as the parameter. v stands for \variable", a
parameter can be calculated at runtime and included in the arguments.
Upper case V can be used too.

# The number of arguments remaining. (See ~* below for some usages.)

Parameters are separated by commas (,). A parameter can be left empty to keep its
default value when supplying later parameters.

The following escapes are available. The code letters are not case-sensitive, upper
and lower case are the same.

~a

~s Object output. Parameters: minwidth, padinc, minpad, padchar.

~a outputs an argument like display, ~s outputs an argument like write
(see Section 5.12.3 [Writing], page 273).

(format #t "~a" "foo") a foo

(format #t "~s" "foo") a "foo"

~:a and ~:s put objects that don't have an external representation in
quotes like a string.
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(format #t "~:a" car) a "#<primitive-procedure car>"

If the output is less than minwidth characters (default 0), it's padded on
the right with padchar (default space). ~@a and ~@s put the padding on
the left instead.

(format #f "~5a" 'abc) ) "abc "

(format #f "~5,,,'-@a" 'abc) ) "--abc"

minpad is a minimum for the padding then plus a multiple of padinc. Ie.
the padding isminpad+N�padinc, where n is the smallest integer making
the total object plus padding greater than or equal to minwidth. The
default minpad is 0 and the default padinc is 1 (imposing no minimum
or multiple).

(format #f "~5,1,4a" 'abc) ) "abc "

~c Character. Parameter: charnum.

Output a character. The default is to simply output, as per write-char
(see Section 5.12.3 [Writing], page 273). ~@c prints in write style. ~:c

prints control characters (ASCII 0 to 31) in ^X form.

(format #t "~c" #\z) a z

(format #t "~@c" #\z) a #\z

(format #t "~:c" #\newline) a ^J

If the charnum parameter is given then an argument is not taken but
instead the character is (integer->char charnum) (see Section 5.5.3
[Characters], page 121). This can be used for instance to output charac-
ters given by their ASCII code.

(format #t "~65c") a A

~d

~x

~o

~b Integer. Parameters: minwidth, padchar, commachar, commawidth.

Output an integer argument as a decimal, hexadecimal, octal or binary
integer (respectively).

(format #t "~d" 123) a 123

~@d etc shows a + sign is shown on positive numbers.

(format #t "~@b" 12) a +1100

If the output is less than the minwidth parameter (default no minimum),
it's padded on the left with the padchar parameter (default space).

(format #t "~5,'*d" 12) a ***12

(format #t "~5,'0d" 12) a 00012

(format #t "~3d" 1234) a 1234

~:d adds commas (or the commachar parameter) every three digits (or
the commawidth parameter many).

(format #t "~:d" 1234567) a 1,234,567

(format #t "~10,'*,'/,2:d" 12345) a ***1/23/45
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Hexadecimal ~x output is in lower case, but the ~( and ~) case conversion
directives described below can be used to get upper case.

(format #t "~x" 65261) a feed

(format #t "~:@(~x~)" 65261) a FEED

~r Integer in words, roman numerals, or a speci�ed radix. Parameters: radix,
minwidth, padchar, commachar, commawidth.

With no parameters output is in words as a cardinal like \ten", or ~:r
prints an ordinal like \tenth".

(format #t "~r" 9) a nine ;; cardinal

(format #t "~r" -9) a minus nine ;; cardinal

(format #t "~:r" 9) a ninth ;; ordinal

And also with no parameters, ~@r gives roman numerals and ~:@r gives
old roman numerals. In old roman numerals there's no \subtraction",
so 9 is VIIII instead of IX. In both cases only positive numbers can be
output.

(format #t "~@r" 89) a LXXXIX ;; roman

(format #t "~:@r" 89) a LXXXVIIII ;; old roman

When a parameter is given it means numeric output in the speci�ed
radix. The modi�ers and parameters following the radix are the same as
described for ~d etc above.

(format #f "~3r" 27) ) "1000" ;; base 3

(format #f "~3,5r" 26) ) " 222" ;; base 3 width 5

~f Fixed-point oat. Parameters: width, decimals, scale, overowchar, pad-
char.

Output a number or number string in �xed-point format, ie. with a dec-
imal point.

(format #t "~f" 5) a 5.0

(format #t "~f" "123") a 123.0

(format #t "~f" "1e-1") a 0.1

~@f prints a + sign on positive numbers (including zero).

(format #t "~@f" 0) a +0.0

If the output is less than width characters it's padded on the left with
padchar (space by default). If the output equals or exceeds width then
there's no padding. The default for width is no padding.

(format #f "~6f" -1.5) ) " -1.5"

(format #f "~6,,,,'*f" 23) ) "**23.0"

(format #f "~6f" 1234567.0) ) "1234567.0"

decimals is how many digits to print after the decimal point, with the
value rounded or padded with zeros as necessary. (The default is to
output as many decimals as required.)

(format #t "~1,2f" 3.125) a 3.13

(format #t "~1,2f" 1.5) a 1.50
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scale is a power of 10 applied to the value, moving the decimal point
that many places. A positive scale increases the value shown, a negative
decreases it.

(format #t "~,,2f" 1234) a 123400.0

(format #t "~,,-2f" 1234) a 12.34

If overowchar and width are both given and if the output would exceed
width, then that many overowchars are printed instead of the value.

(format #t "~5,,,'xf" 12345) a 12345

(format #t "~4,,,'xf" 12345) a xxxx

~e Exponential oat. Parameters: width, mantdigits, expdigits, intdigits,
overowchar, padchar, expchar.

Output a number or number string in exponential notation.

(format #t "~e" 5000.25) a 5.00025E+3

(format #t "~e" "123.4") a 1.234E+2

(format #t "~e" "1e4") a 1.0E+4

~@e prints a + sign on positive numbers (including zero). (This is for the
mantissa, a + or - sign is always shown on the exponent.)

(format #t "~@e" 5000.0) a +5.0E+3

If the output is less than width characters it's padded on the left with
padchar (space by default). The default for width is to output with no
padding.

(format #f "~10e" 1234.0) ) " 1.234E+3"

(format #f "~10,,,,,'*e" 0.5) ) "****5.0E-1"

mantdigits is the number of digits shown in the mantissa after the decimal
point. The value is rounded or trailing zeros are added as necessary. The
default mantdigits is to show as much as needed by the value.

(format #f "~,3e" 11111.0) ) "1.111E+4"

(format #f "~,8e" 123.0) ) "1.23000000E+2"

expdigits is the minimum number of digits shown for the exponent, with
leading zeros added if necessary. The default for expdigits is to show only
as many digits as required. At least 1 digit is always shown.

(format #f "~,,1e" 1.0e99) ) "1.0E+99"

(format #f "~,,6e" 1.0e99) ) "1.0E+000099"

intdigits (default 1) is the number of digits to show before the decimal
point in the mantissa. intdigits can be zero, in which case the integer
part is a single 0, or it can be negative, in which case leading zeros are
shown after the decimal point.

(format #t "~,,,3e" 12345.0) a 123.45E+2

(format #t "~,,,0e" 12345.0) a 0.12345E+5

(format #t "~,,,-3e" 12345.0) a 0.00012345E+8

If overowchar is given then width is a hard limit. If the output would
exceed width then instead that many overowchars are printed.
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(format #f "~6,,,,'xe" 100.0) ) "1.0E+2"

(format #f "~3,,,,'xe" 100.0) ) "xxx"

expchar is the exponent marker character (default E).

(format #t "~,,,,,,'ee" 100.0) a 1.0e+2

~g General oat. Parameters: width, mantdigits, expdigits, intdigits, over-
owchar, padchar, expchar.

Output a number or number string in either exponential format the same
as ~e, or �xed-point format like ~f but aligned where the mantissa would
have been and followed by padding where the exponent would have been.

Fixed-point is used when the absolute value is 0.1 or more and it takes
no more space than the mantissa in exponential format, ie. basically up
to mantdigits digits.

(format #f "~12,4,2g" 999.0) ) " 999.0 "

(format #f "~12,4,2g" "100000") ) " 1.0000E+05"

The parameters are interpreted as per ~e above. When �xed-point is
used, the decimals parameter to ~f is established from mantdigits, so as
to give a total mantdigits + 1 �gures.

~$ Monetary style �xed-point oat. Parameters: decimals, intdigits, width,
padchar.

Output a number or number string in �xed-point format, ie. with a dec-
imal point. decimals is the number of decimal places to show, default
2.

(format #t "~$" 5) a 5.00

(format #t "~4$" "2.25") a 2.2500

(format #t "~4$" "1e-2") a 0.0100

~@$ prints a + sign on positive numbers (including zero).

(format #t "~@$" 0) a +0.00

intdigits is a minimum number of digits to show in the integer part of the
value (default 1).

(format #t "~,3$" 9.5) a 009.50

(format #t "~,0$" 0.125) a .13

If the output is less than width characters (default 0), it's padded on the
left with padchar (default space). ~:$ puts the padding after the sign.

(format #f "~,,8$" -1.5) ) " -1.50"

(format #f "~,,8:$" -1.5) ) "- 1.50"

(format #f "~,,8,'.:@$" 3) ) "+...3.00"

Note that oating point for dollar amounts is generally not a good idea,
because a cent 0:01 cannot be represented exactly in the binary oating
point Guile uses, which leads to slowly accumulating rounding errors.
Keeping values as cents (or fractions of a cent) in integers then printing
with the scale option in ~f may be a better approach.

~i Complex �xed-point oat. Parameters: width, decimals, scale, over-
owchar, padchar.
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Output the argument as a complex number, with both real and imaginary
part shown (even if one or both are zero).

The parameters and modi�ers are the same as for �xed-point ~f described
above. The real and imaginary parts are both output with the same
given parameters and modi�ers, except that for the imaginary part the @
modi�er is always enabled, so as to print a + sign between the real and
imaginary parts.

(format #t "~i" 1) a 1.0+0.0i

~p Plural. No parameters.

Output nothing if the argument is 1, or `s' for any other value.

(format #t "enter name~p" 1) a enter name

(format #t "enter name~p" 2) a enter names

~@p prints `y' for 1 or `ies' otherwise.

(format #t "pupp~@p" 1) a puppy

(format #t "pupp~@p" 2) a puppies

~:p re-uses the preceding argument instead of taking a new one, which
can be convenient when printing some sort of count.

(format #t "~d cat~:p" 9) a 9 cats

(format #t "~d pupp~:@p" 5) a 5 puppies

~p is designed for English plurals and there's no attempt to support other
languages. ~[ conditionals (below) may be able to help. When using
gettext to translate messages ngettext is probably best though (see
Section 5.20 [Internationalization], page 345).

~y Pretty print. No parameters.

Output an argument with pretty-print (see Section 6.7 [Pretty Print-
ing], page 462).

~?

~k Sub-format. No parameters.

Take a format string argument and a second argument which is a list of
arguments for that string, and output the result.

(format #t "~?" "~d ~d" '(1 2)) a 1 2

~@? takes arguments for the sub-format directly rather than in a list.

(format #t "~@? ~s" "~d ~d" 1 2 "foo") a 1 2 "foo"

~? and ~k are the same, ~k is provided for T-Scheme compatibility.

~* Argument jumping. Parameter: N.

Move forward N arguments (default 1) in the argument list. ~:* moves
backwards. (N cannot be negative.)

(format #f "~d ~2*~d" 1 2 3 4) ) "1 4"

(format #f "~d ~:*~d" 6) ) "6 6"

~@* moves to argument number N. The �rst argument is number 0 (and
that's the default for N).
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(format #f "~d~d again ~@*~d~d" 1 2) ) "12 again 12"

(format #f "~d~d~d ~1@*~d~d" 1 2 3) ) "123 23"

A # move to the end followed by a : modi�er move back can be used for
an absolute position relative to the end of the argument list, a reverse of
what the @ modi�er does.

(format #t "~#*~2:*~a" 'a 'b 'c 'd) a c

At the end of the format string the current argument postion doesn't
matter, any further arguments are ignored.

~t Advance to a column position. Parameters: colnum, colinc, padchar.

Output padchar (space by default) to move to the given colnum column.
The start of the line is column 0, the default for colnum is 1.

(format #f "~tX") ) " X"

(format #f "~3tX") ) " X"

If the current column is already past colnum, then the move is to there
plus a multiple of colinc, ie. column colnum+N � colinc for the smallest
N which makes that value greater than or equal to the current column.
The default colinc is 1 (which means no further move).

(format #f "abcd~2,5,'.tx") ) "abcd...x"

~@t takes colnum as an o�set from the current column. colnum many pad
characters are output, then further padding to make the current column
a multiple of colinc, if it isn't already so.

(format #f "a~3,5'*@tx") ) "a****x"

~t is implemented using port-column (see Section 5.12.2 [Reading],
page 272), so it works even there has been other output before format.

~~ Tilde character. Parameter: n.

Output a tilde character ~, or n many if a parameter is given. Normally
~ introduces an escape sequence, ~~ is the way to output a literal tilde.

~% Newline. Parameter: n.

Output a newline character, or n many if a parameter is given. A newline
(or a few newlines) can of course be output just by including them in the
format string.

~& Start a new line. Parameter: n.

Output a newline if not already at the start of a line. With a parameter,
output that many newlines, but with the �rst only if not already at the
start of a line. So for instance 3 would be a newline if not already at the
start of a line, and 2 further newlines.

~_ Space character. Parameter: n.

Output a space character, or n many if a parameter is given.

With a variable parameter this is one way to insert runtime calculated
padding (~t or the various �eld widths can do similar things).

(format #f "~v_foo" 4) ) " foo"
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~/ Tab character. Parameter: n.

Output a tab character, or n many if a parameter is given.

~| Formfeed character. Parameter: n.

Output a formfeed character, or n many if a parameter is given.

~! Force output. No parameters.

At the end of output, call force-output to ush any bu�ers on the des-
tination (see Section 5.12.3 [Writing], page 273). ~! can occur anywhere
in the format string, but the force is done at the end of output.

When output is to a string (destination #f), ~! does nothing.

~newline (ie. newline character)
Continuation line. No parameters.

Skip this newline and any following whitespace in the format string, ie.
don't send it to the output. This can be used to break up a long format
string for readability, but not print the extra whitespace.

(format #f "abc~

~d def~

~d" 1 2) ) "abc1 def2"

~:newline skips the newline but leaves any further whitespace to be
printed normally.

~@newline prints the newline then skips following whitespace.

~( ~) Case conversion. No parameters.

Between ~( and ~) the case of all output is changed. The modi�ers on
~( control the conversion.

~( | lower case.

~:@( | upper case.

For example,

(format #t "~(Hello~)") a hello

(format #t "~:@(Hello~)") a HELLO

In the future it's intended the modi�ers : and @ alone will capitalize
the �rst letters of words, as per Common Lisp format, but the current
implementation of this is awed and not recommended for use.

Case conversions do not nest, currently. This might change in the future,
but if it does then it will be to Common Lisp style where the outer-
most conversion has priority, overriding inner ones (making those fairly
pointless).

~{ ~} Iteration. Parameter: maxreps (for ~{).

The format between ~{ and ~} is iterated. The modi�ers to ~{ determine
how arguments are taken. The default is a list argument with each iter-
ation successively consuming elements from it. This is a convenient way
to output a whole list.
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(format #t "~{~d~}" '(1 2 3)) a 123

(format #t "~{~s=~d ~}" '("x" 1 "y" 2)) a "x"=1 "y"=2

~:{ takes a single argument which is a list of lists, each of those contained
lists gives the arguments for the iterated format.

(format #t "~:{~dx~d ~}" '((1 2) (3 4) (5 6)))

a 1x2 3x4 5x6

~@{ takes arguments directly, with each iteration successively consuming
arguments.

(format #t "~@{~d~}" 1 2 3) a 123

(format #t "~@{~s=~d ~}" "x" 1 "y" 2) a "x"=1 "y"=2

~:@{ takes list arguments, one argument for each iteration, using that
list for the format.

(format #t "~:@{~dx~d ~}" '(1 2) '(3 4) '(5 6))

a 1x2 3x4 5x6

Iterating stops when there are no more arguments or when the maxreps
parameter to ~{ is reached (default no maximum).

(format #t "~2{~d~}" '(1 2 3 4)) a 12

If the format between ~{ and ~} is empty, then a format string argument
is taken (before iteration argument(s)) and used instead. This allows a
sub-format (like ~? above) to be iterated.

(format #t "~{~}" "~d" '(1 2 3)) a 123

Iterations can be nested, an inner iteration operates in the same way as
described, but of course on the arguments the outer iteration provides it.
This can be used to work into nested list structures. For example in the
following the inner ~{~d~}x is applied to (1 2) then (3 4 5) etc.

(format #t "~{~{~d~}x~}" '((1 2) (3 4 5))) a 12x345x

See also ~^ below for escaping from iteration.

~[ ~; ~] Conditional. Parameter: selector.

A conditional block is delimited by ~[ and ~], and ~; separates clauses
within the block. ~[ takes an integer argument and that number clause
is used. The �rst clause is number 0.

(format #f "~[peach~;banana~;mango~]" 1) ) "banana"

The selector parameter can be used for the clause number, instead of
taking an argument.

(format #f "~2[peach~;banana~;mango~]") ) "mango"

If the clause number is out of range then nothing is output. Or the last
clause can be ~:; to use that for a number out of range.

(format #f "~[banana~;mango~]" 99) ) ""

(format #f "~[banana~;mango~:;fruit~]" 99) ) "fruit"

~:[ treats the argument as a ag, and expects two clauses. The �rst is
used if the argument is #f or the second otherwise.



474 Guile Reference Manual

(format #f "~:[false~;not false~]" #f) ) "false"

(format #f "~:[false~;not false~]" 'abc) ) "not false"

(let ((n 3))

(format #t "~d gnu~:[s are~; is~] here" n (= 1 n)))

a 3 gnus are here

~@[ also treats the argument as a ag, and expects one clause. If the
argument is #f then no output is produced and the argument is consumed,
otherwise the clause is used and the argument is not consumed, it's left
for the clause. This can be used for instance to suppress output if #f
means something not available.

(format #f "~@[temperature=~d~]" 27) ) "temperature=27"

(format #f "~@[temperature=~d~]" #f) ) ""

~^ Escape. Parameters: val1, val2, val3.

Stop formatting if there are no more arguments. This can be used for
instance to have a format string adapt to a variable number of arguments.

(format #t "~d~^ ~d" 1) a 1

(format #t "~d~^ ~d" 1 2) a 1 2

Within a ~{ ~} iteration, ~^ stops the current iteration step if there are
no more arguments to that step, but continuing with possible further
steps and the rest of the format. This can be used for instance to avoid
a separator on the last iteration, or to adapt to variable length argument
lists.

(format #f "~{~d~^/~} go" '(1 2 3)) ) "1/2/3 go"

(format #f "~:{ ~d~^~d~} go" '((1) (2 3))) ) " 1 23 go"

Within a ~? sub-format, ~^ operates just on that sub-format. If it termi-
nates the sub-format then the originating format will still continue.

(format #t "~? items" "~d~^ ~d" '(1)) a 1 items

(format #t "~? items" "~d~^ ~d" '(1 2)) a 1 2 items

The parameters to ~^ (which are numbers) change the condition used to
terminate. For a single parameter, termination is when that value is zero
(notice this makes plain ~^ equivalent to ~#^). For two parameters, ter-
mination is when those two are equal. For three parameters, termination
is when val1 � val2 and val2 � val3.

~q Inquiry message. Insert a copyright message into the output.

~:q inserts the format implementation version.

It's an error if there are not enough arguments for the escapes in the format string,
but any excess arguments are ignored.

Iterations ~{ ~} and conditionals ~[ ~; ~] can be nested, but must be properly nested,
meaning the inner form must be entirely within the outer form. So it's not possible,
for instance, to try to conditionalize the endpoint of an iteration.
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(format #t "~{ ~[ ... ~] ~}" ...) ;; good

(format #t "~{ ~[ ... ~} ... ~]" ...) ;; bad

The same applies to case conversions ~( ~), they must properly nest with respect
to iterations and conditionals (though currently a case conversion cannot nest within
another case conversion).

When a sub-format (~?) is used, that sub-format string must be self-contained. It
cannot for instance give a ~{ to begin an iteration form and have the ~} up in the
originating format, or similar.

Guile contains a format procedure even when the module (ice-9 format) is not loaded.
The default format is simple-format (see Section 5.12.3 [Writing], page 273), it doesn't
support all escape sequences documented in this section, and will signal an error if you try
to use one of them. The reason for two versions is that the full format is fairly large and
requires some time to load. simple-format is often adequate too.

6.9 File Tree Walk

The functions in this section traverse a tree of �les and directories, in a fashion similar
to the C ftw and nftw routines (see section \Working with Directory Trees" in GNU C
Library Reference Manual).

(use-modules (ice-9 ftw))

[Function]ftw startname proc ['hash-size n]
Walk the �lesystem tree descending from startname, calling proc for each �le and
directory.

Hard links and symbolic links are followed. A �le or directory is reported to proc
only once, and skipped if seen again in another place. One consequence of this is that
ftw is safe against circularly linked directory structures.

Each proc call is (proc filename statinfo flag) and it should return #t to con-
tinue, or any other value to stop.

�lename is the item visited, being startname plus a further path and the name of the
item. statinfo is the return from stat (see Section 6.2.3 [File System], page 381) on
�lename. ag is one of the following symbols,

regular �lename is a �le, this includes special �les like devices, named pipes, etc.

directory

�lename is a directory.

invalid-stat

An error occurred when calling stat, so nothing is known. statinfo is #f
in this case.

directory-not-readable

�lename is a directory, but one which cannot be read and hence won't be
recursed into.
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symlink �lename is a dangling symbolic link. Symbolic links are normally followed
and their target reported, the link itself is reported if the target does not
exist.

The return value from ftw is #t if it ran to completion, or otherwise the non-#t value
from proc which caused the stop.

Optional argument symbol hash-size and an integer can be given to set the size of
the hash table used to track items already visited. (see Section 5.6.12.2 [Hash Table
Reference], page 217)

In the current implementation, returning non-#t from proc is the only valid way to
terminate ftw. proc must not use throw or similar to escape.

[Function]nftw startname proc ['chdir] ['depth] ['hash-size n] ['mount] ['physical]
Walk the �lesystem tree starting at startname, calling proc for each �le and directory.
nftw has extra features over the basic ftw described above.

Like ftw, hard links and symbolic links are followed. A �le or directory is reported
to proc only once, and skipped if seen again in another place. One consequence of
this is that nftw is safe against circular linked directory structures.

Each proc call is (proc filename statinfo flag base level) and it should return
#t to continue, or any other value to stop.

�lename is the item visited, being startname plus a further path and the name of the
item. statinfo is the return from stat on �lename (see Section 6.2.3 [File System],
page 381). base is an integer o�set into �lename which is where the basename for
this item begins. level is an integer giving the directory nesting level, starting from
0 for the contents of startname (or that item itself if it's a �le). ag is one of the
following symbols,

regular �lename is a �le, including special �les like devices, named pipes, etc.

directory

�lename is a directory.

directory-processed

�lename is a directory, and its contents have all been visited. This ag is
given instead of directory when the depth option below is used.

invalid-stat

An error occurred when applying stat to �lename, so nothing is known
about it. statinfo is #f in this case.

directory-not-readable

�lename is a directory, but one which cannot be read and hence won't be
recursed into.

stale-symlink

�lename is a dangling symbolic link. Links are normally followed and
their target reported, the link itself is reported if its target does not
exist.

symlink When the physical option described below is used, this indicates �le-
name is a symbolic link whose target exists (and is not being followed).
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The following optional arguments can be given to modify the way nftw works. Each
is passed as a symbol (and hash-size takes a following integer value).

chdir Change to the directory containing the item before calling proc. When
nftw returns the original current directory is restored.

Under this option, generally the base parameter to each proc call should
be used to pick out the base part of the �lename. The �lename is still a
path but with a changed directory it won't be valid (unless the startname
directory was absolute).

depth Visit �les \depth �rst", meaning proc is called for the contents of each
directory before it's called for the directory itself. Normally a directory
is reported �rst, then its contents.

Under this option, the ag to proc for a directory is directory-

processed instead of directory.

hash-size n

Set the size of the hash table used to track items already visited. (see
Section 5.6.12.2 [Hash Table Reference], page 217)

mount Don't cross a mount point, meaning only visit items on the same �lesys-
tem as startname (ie. the same stat:dev).

physical Don't follow symbolic links, instead report them to proc as symlink.
Dangling links (those whose target doesn't exist) are still reported as
stale-symlink.

The return value from nftw is #t if it ran to completion, or otherwise the non-#t
value from proc which caused the stop.

In the current implementation, returning non-#t from proc is the only valid way to
terminate ftw. proc must not use throw or similar to escape.

6.10 Queues

The functions in this section are provided by

(use-modules (ice-9 q))

This module implements queues holding arbitrary scheme objects and designed for e�-
cient �rst-in / �rst-out operations.

make-q creates a queue, and objects are entered and removed with enq! and deq!.
q-push! and q-pop! can be used too, treating the front of the queue like a stack.

[Scheme Procedure]make-q
Return a new queue.

[Scheme Procedure]q? obj
Return #t if obj is a queue, or #f if not.

Note that queues are not a distinct class of objects but are implemented with cons
cells. For that reason certain list structures can get #t from q?.
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[Scheme Procedure]enq! q obj
Add obj to the rear of q, and return q.

[Scheme Procedure]deq! q
[Scheme Procedure]q-pop! q

Remove and return the front element from q. If q is empty, a q-empty exception is
thrown.

deq! and q-pop! are the same operation, the two names just let an application match
enq! with deq!, or q-push! with q-pop!.

[Scheme Procedure]q-push! q obj
Add obj to the front of q, and return q.

[Scheme Procedure]q-length q
Return the number of elements in q.

[Scheme Procedure]q-empty? q
Return true if q is empty.

[Scheme Procedure]q-empty-check q
Throw a q-empty exception if q is empty.

[Scheme Procedure]q-front q
Return the �rst element of q (without removing it). If q is empty, a q-empty exception
is thrown.

[Scheme Procedure]q-rear q
Return the last element of q (without removing it). If q is empty, a q-empty exception
is thrown.

[Scheme Procedure]q-remove! q obj
Remove all occurences of obj from q, and return q. obj is compared to queue elements
using eq?.

The q-empty exceptions described above are thrown just as (throw 'q-empty), there's
no message etc like an error throw.

A queue is implemented as a cons cell, the car containing a list of queued elements, and
the cdr being the last cell in that list (for ease of enqueuing).

(list . last-cell)

If the queue is empty, list is the empty list and last-cell is #f.

An application can directly access the queue list if desired, for instance to search the
elements or to insert at a speci�c point.

[Scheme Procedure]sync-q! q
Recompute the last-cell �eld in q.

All the operations above maintain last-cell as described, so normally there's no need
for sync-q!. But if an application modi�es the queue list then it must either maintain
last-cell similarly, or call sync-q! to recompute it.
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6.11 Streams

A stream represents a sequence of values, each of which is calculated only when required.
This allows large or even in�nite sequences to be represented and manipulated with familiar
operations like \car", \cdr", \map" or \fold". In such manipulations only as much as needed
is actually held in memory at any one time. The functions in this section are available from

(use-modules (ice-9 streams))

Streams are implemented using promises (see Section 5.13.5 [Delayed Evaluation],
page 294), which is how the underlying calculation of values is made only when needed,
and the values then retained so the calculation is not repeated.

Here is a simple example producing a stream of all odd numbers,

(define odds (make-stream (lambda (state)

(cons state (+ state 2)))

1))

(stream-car odds) ) 1

(stream-car (stream-cdr odds)) ) 3

stream-map could be used to derive a stream of odd squares,

(define (square n) (* n n))

(define oddsquares (stream-map square odds))

These are in�nite sequences, so it's not possible to convert them to a list, but they could
be printed (in�nitely) with for example

(stream-for-each (lambda (n sq)

(format #t "~a squared is ~a\n" n sq))

odds oddsquares)

a
1 squared is 1

3 squared is 9

5 squared is 25

7 squared is 49

...

[Function]make-stream proc initial-state
Return a new stream, formed by calling proc successively.

Each call is (proc state), it should return a pair, the car being the value for the
stream, and the cdr being the new state for the next call. For the �rst call state is
the given initial-state. At the end of the stream, proc should return some non-pair
object.

[Function]stream-car stream
Return the �rst element from stream. stream must not be empty.

[Function]stream-cdr stream
Return a stream which is the second and subsequent elements of stream. stream must
not be empty.

[Function]stream-null? stream
Return true if stream is empty.
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[Function]list->stream list
[Function]vector->stream vector

Return a stream with the contents of list or vector.

list or vector should not be modi�ed subsequently, since it's unspeci�ed whether
changes there will be reected in the stream returned.

[Function]port->stream port readproc
Return a stream which is the values obtained by reading from port using readproc.
Each read call is (readproc port), and it should return an EOF object (see Sec-
tion 5.12.2 [Reading], page 272) at the end of input.

For example a stream of characters from a �le,

(port->stream (open-input-file "/foo/bar.txt") read-char)

[Function]stream->list stream
Return a list which is the entire contents of stream.

[Function]stream->reversed-list stream
Return a list which is the entire contents of stream, but in reverse order.

[Function]stream->list&length stream
Return two values (see Section 5.11.6 [Multiple Values], page 257), being �rstly a list
which is the entire contents of stream, and secondly the number of elements in that
list.

[Function]stream->reversed-list&length stream
Return two values (see Section 5.11.6 [Multiple Values], page 257) being �rstly a list
which is the entire contents of stream, but in reverse order, and secondly the number
of elements in that list.

[Function]stream->vector stream
Return a vector which is the entire contents of stream.

[Function]stream-fold proc init stream0 . . . streamN
Apply proc successively over the elements of the given streams, from �rst to last until
the end of the shortest stream is reached. Return the result from the last proc call.

Each call is (proc elem0 ... elemN prev), where each elem is from the correspond-
ing stream. prev is the return from the previous proc call, or the given init for the
�rst call.

[Function]stream-for-each proc stream0 . . . streamN
Call proc on the elements from the given streams. The return value is unspeci�ed.

Each call is (proc elem0 ... elemN), where each elem is from the corresponding
stream. stream-for-each stops when it reaches the end of the shortest stream.

[Function]stream-map proc stream0 . . . streamN
Return a new stream which is the results of applying proc to the elements of the
given streams.

Each call is (proc elem0 ... elemN), where each elem is from the corresponding
stream. The new stream ends when the end of the shortest given stream is reached.
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6.12 Bu�ered Input

The following functions are provided by

(use-modules (ice-9 buffered-input))

A bu�ered input port allows a reader function to return chunks of characters which are
to be handed out on reading the port. A notion of further input for an application level
logical expression is maintained too, and passed through to the reader.

[Function]make-buffered-input-port reader
Create an input port which returns characters obtained from the given reader func-
tion. reader is called (reader cont), and should return a string or an EOF object.

The new port gives precisely the characters returned by reader, nothing is added, so
if any newline characters or other separators are desired they must come from the
reader function.

The cont parameter to reader is #f for initial input, or #t when continuing an
expression. This is an application level notion, set with set-buffered-input-

continuation?! below. If the user has entered a partial expression then it allows
reader for instance to give a di�erent prompt to show more is required.

[Function]make-line-buffered-input-port reader
Create an input port which returns characters obtained from the speci�ed reader
function, similar to make-buffered-input-port above, but where reader is expected
to be a line-oriented.

reader is called (reader cont), and should return a string or an EOF object as above.
Each string is a line of input without a newline character, the port code inserts a
newline after each string.

[Function]set-buffered-input-continuation?! port cont
Set the input continuation ag for a given bu�ered input port.

An application uses this by calling with a cont ag of #f when beginning to read a new
logical expression. For example with the Scheme read function (see Section 5.13.2
[Scheme Read], page 290),

(define my-port (make-buffered-input-port my-reader))

(set-buffered-input-continuation?! my-port #f)

(let ((obj (read my-port)))

...
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6.13 Expect

The macros in this section are made available with:
(use-modules (ice-9 expect))

expect is a macro for selecting actions based on the output from a port. The name
comes from a tool of similar functionality by Don Libes. Actions can be taken when a
particular string is matched, when a timeout occurs, or when end-of-�le is seen on the port.
The expect macro is described below; expect-strings is a front-end to expect based on
regexec (see the regular expression documentation).

[Macro]expect-strings clause . . .
By default, expect-strings will read from the current input port. The �rst term in
each clause consists of an expression evaluating to a string pattern (regular expres-
sion). As characters are read one-by-one from the port, they are accumulated in a
bu�er string which is matched against each of the patterns. When a pattern matches,
the remaining expression(s) in the clause are evaluated and the value of the last is
returned. For example:

(with-input-from-file "/etc/passwd"
(lambda ()
(expect-strings
("^nobody" (display "Got a nobody user.\n")

(display "That's no problem.\n"))
("^daemon" (display "Got a daemon user.\n")))))

The regular expression is compiled with the REG_NEWLINE ag, so that the ^ and $
anchors will match at any newline, not just at the start and end of the string.

There are two other ways to write a clause:

The expression(s) to evaluate can be omitted, in which case the result of the regular
expression match (converted to strings, as obtained from regexec with match-pick set
to "") will be returned if the pattern matches.

The symbol => can be used to indicate that the expression is a procedure which will
accept the result of a successful regular expression match. E.g.,

("^daemon" => write)
("^d(aemon)" => (lambda args (for-each write args)))
("^da(em)on" => (lambda (all sub)

(write all) (newline)
(write sub) (newline)))

The order of the substrings corresponds to the order in which the opening brackets
occur.

A number of variables can be used to control the behaviour of expect (and expect-

strings). Most have default top-level bindings to the value #f, which produces the
default behaviour. They can be rede�ned at the top level or locally bound in a form
enclosing the expect expression.

expect-port

A port to read characters from, instead of the current input port.

expect-timeout

expect will terminate after this number of seconds, returning #f or the
value returned by expect-timeout-proc.
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expect-timeout-proc

A procedure called if timeout occurs. The procedure takes a single argu-
ment: the accumulated string.

expect-eof-proc

A procedure called if end-of-�le is detected on the input port. The pro-
cedure takes a single argument: the accumulated string.

expect-char-proc

A procedure to be called every time a character is read from the port.
The procedure takes a single argument: the character which was read.

expect-strings-compile-flags

Flags to be used when compiling a regular expression, which are passed
to make-regexp See Section 5.5.6.1 [Regexp Functions], page 146. The
default value is regexp/newline.

expect-strings-exec-flags

Flags to be used when executing a regular expression, which are passed
to regexp-exec See Section 5.5.6.1 [Regexp Functions], page 146. The
default value is regexp/noteol, which prevents $ from matching the end
of the string while it is still accumulating, but still allows it to match
after a line break or at the end of �le.

Here's an example using all of the variables:
(let ((expect-port (open-input-file "/etc/passwd"))

(expect-timeout 1)
(expect-timeout-proc
(lambda (s) (display "Times up!\n")))

(expect-eof-proc
(lambda (s) (display "Reached the end of the file!\n")))

(expect-char-proc display)
(expect-strings-compile-flags (logior regexp/newline regexp/icase))
(expect-strings-exec-flags 0))

(expect-strings
("^nobody" (display "Got a nobody user\n"))))

[Macro]expect clause . . .
expect is used in the same way as expect-strings, but tests are speci�ed not as
patterns, but as procedures. The procedures are called in turn after each character is
read from the port, with two arguments: the value of the accumulated string and a
ag to indicate whether end-of-�le has been reached. The ag will usually be #f, but
if end-of-�le is reached, the procedures are called an additional time with the �nal
accumulated string and #t.

The test is successful if the procedure returns a non-false value.

If the => syntax is used, then if the test succeeds it must return a list containing the
arguments to be provided to the corresponding expression.

In the following example, a string will only be matched at the beginning of the �le:
(let ((expect-port (open-input-file "/etc/passwd")))
(expect

((lambda (s eof?) (string=? s "fnord!"))
(display "Got a nobody user!\n"))))
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The control variables described for expect-strings also inuence the behaviour of
expect, with the exception of variables whose names begin with expect-strings-.
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6.14 The Scheme shell (scsh)

An incomplete port of the Scheme shell (scsh) is available for Guile as a separate package.
The current status of guile-scsh can be found at http://arglist.com/guile/.

For information about scsh see http://www.scsh.net/.

The closest emulation of scsh can be obtained by running:
(load-from-path "scsh/init")

See the USAGE �le supplied with guile-scsh for more details.

http://arglist.com/guile/
http://www.scsh.net/
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Appendix A Data Representation in Guile

by Jim Blandy

[Due to the rather non-orthogonal and performance-oriented nature of the SCM interface,
you need to understand SCM internals *before* you can use the SCM API. That's why this
chapter comes �rst.]

[NOTE: this is Jim Blandy's essay almost entirely unmodi�ed. It has to be adapted to
�t this manual smoothly.]

In order to make sense of Guile's SCM functions, or read libguile's source code, it's
essential to have a good grasp of how Guile actually represents Scheme values. Otherwise,
a lot of the code, and the conventions it follows, won't make very much sense. This essay
is meant to provide the background necessary to read and write C code that manipulates
Scheme values in a way that is compatible with libguile.

We assume you know both C and Scheme, but we do not assume you are familiar with
Guile's implementation.

A.1 Data Representation in Scheme

Scheme is a latently-typed language; this means that the system cannot, in general, deter-
mine the type of a given expression at compile time. Types only become apparent at run
time. Variables do not have �xed types; a variable may hold a pair at one point, an integer
at the next, and a thousand-element vector later. Instead, values, not variables, have �xed
types.

In order to implement standard Scheme functions like pair? and string? and provide
garbage collection, the representation of every value must contain enough information to
accurately determine its type at run time. Often, Scheme systems also use this information
to determine whether a program has attempted to apply an operation to an inappropriately
typed value (such as taking the car of a string).

Because variables, pairs, and vectors may hold values of any type, Scheme implementa-
tions use a uniform representation for values | a single type large enough to hold either a
complete value or a pointer to a complete value, along with the necessary typing informa-
tion.

The following sections will present a simple typing system, and then make some re�ne-
ments to correct its major weaknesses. However, this is not a description of the system
Guile actually uses. It is only an illustration of the issues Guile's system must address. We
provide all the information one needs to work with Guile's data in Section A.2 [How Guile
does it], page 489.

A.1.1 A Simple Representation

The simplest way to meet the above requirements in C would be to represent each value as
a pointer to a structure containing a type indicator, followed by a union carrying the real
value. Assuming that SCM is the name of our universal type, we can write:

enum type { integer, pair, string, vector, ... };

typedef struct value *SCM;
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struct value {

enum type type;

union {

int integer;

struct { SCM car, cdr; } pair;

struct { int length; char *elts; } string;

struct { int length; SCM *elts; } vector;

...

} value;

};

with the ellipses replaced with code for the remaining Scheme types.

This representation is su�cient to implement all of Scheme's semantics. If x is an SCM

value:

� To test if x is an integer, we can write x->type == integer.

� To �nd its value, we can write x->value.integer.

� To test if x is a vector, we can write x->type == vector.

� If we know x is a vector, we can write x->value.vector.elts[0] to refer to its �rst
element.

� If we know x is a pair, we can write x->value.pair.car to extract its car.

A.1.2 Faster Integers

Unfortunately, the above representation has a serious disadvantage. In order to return an
integer, an expression must allocate a struct value, initialize it to represent that integer,
and return a pointer to it. Furthermore, fetching an integer's value requires a memory
reference, which is much slower than a register reference on most processors. Since integers
are extremely common, this representation is too costly, in both time and space. Integers
should be very cheap to create and manipulate.

One possible solution comes from the observation that, on many architectures, structures
must be aligned on a four-byte boundary. (Whether or not the machine actually requires
it, we can write our own allocator for struct value objects that assures this is true.) In
this case, the lower two bits of the structure's address are known to be zero.

This gives us the room we need to provide an improved representation for integers. We
make the following rules:

� If the lower two bits of an SCM value are zero, then the SCM value is a pointer to a
struct value, and everything proceeds as before.

� Otherwise, the SCM value represents an integer, whose value appears in its upper bits.

Here is C code implementing this convention:

enum type { pair, string, vector, ... };

typedef struct value *SCM;

struct value {

enum type type;
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union {

struct { SCM car, cdr; } pair;

struct { int length; char *elts; } string;

struct { int length; SCM *elts; } vector;

...

} value;

};

#define POINTER_P(x) (((int) (x) & 3) == 0)

#define INTEGER_P(x) (! POINTER_P (x))

#define GET_INTEGER(x) ((int) (x) >> 2)

#define MAKE_INTEGER(x) ((SCM) (((x) << 2) | 1))

Notice that integer no longer appears as an element of enum type, and the union has
lost its integer member. Instead, we use the POINTER_P and INTEGER_P macros to make
a coarse classi�cation of values into integers and non-integers, and do further type testing
as before.

Here's how we would answer the questions posed above (again, assume x is an SCM value):

� To test if x is an integer, we can write INTEGER_P (x).

� To �nd its value, we can write GET_INTEGER (x).

� To test if x is a vector, we can write:

POINTER_P (x) && x->type == vector

Given the new representation, we must make sure x is truly a pointer before we deref-
erence it to determine its complete type.

� If we know x is a vector, we can write x->value.vector.elts[0] to refer to its �rst
element, as before.

� If we know x is a pair, we can write x->value.pair.car to extract its car, just as
before.

This representation allows us to operate more e�ciently on integers than the �rst. For
example, if x and y are known to be integers, we can compute their sum as follows:

MAKE_INTEGER (GET_INTEGER (x) + GET_INTEGER (y))

Now, integer math requires no allocation or memory references. Most real Scheme sys-
tems actually use an even more e�cient representation, but this essay isn't about bit-
twiddling. (Hint: what if pointers had 01 in their least signi�cant bits, and integers had
00?)

A.1.3 Cheaper Pairs

However, there is yet another issue to confront. Most Scheme heaps contain more pairs
than any other type of object; Jonathan Rees says that pairs occupy 45% of the heap in
his Scheme implementation, Scheme 48. However, our representation above spends three
SCM-sized words per pair | one for the type, and two for the car and cdr. Is there any
way to represent pairs using only two words?

Let us re�ne the convention we established earlier. Let us assert that:
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� If the bottom two bits of an SCM value are #b00, then it is a pointer, as before.

� If the bottom two bits are #b01, then the upper bits are an integer. This is a bit more
restrictive than before.

� If the bottom two bits are #b10, then the value, with the bottom two bits masked out,
is the address of a pair.

Here is the new C code:

enum type { string, vector, ... };

typedef struct value *SCM;

struct value {

enum type type;

union {

struct { int length; char *elts; } string;

struct { int length; SCM *elts; } vector;

...

} value;

};

struct pair {

SCM car, cdr;

};

#define POINTER_P(x) (((int) (x) & 3) == 0)

#define INTEGER_P(x) (((int) (x) & 3) == 1)

#define GET_INTEGER(x) ((int) (x) >> 2)

#define MAKE_INTEGER(x) ((SCM) (((x) << 2) | 1))

#define PAIR_P(x) (((int) (x) & 3) == 2)

#define GET_PAIR(x) ((struct pair *) ((int) (x) & ~3))

Notice that enum type and struct value now only contain provisions for vectors and
strings; both integers and pairs have become special cases. The code above also assumes
that an int is large enough to hold a pointer, which isn't generally true.

Our list of examples is now as follows:

� To test if x is an integer, we can write INTEGER_P (x); this is as before.

� To �nd its value, we can write GET_INTEGER (x), as before.

� To test if x is a vector, we can write:

POINTER_P (x) && x->type == vector

We must still make sure that x is a pointer to a struct value before dereferencing it
to �nd its type.

� If we know x is a vector, we can write x->value.vector.elts[0] to refer to its �rst
element, as before.
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� We can write PAIR_P (x) to determine if x is a pair, and then write GET_PAIR (x)-

>car to refer to its car.

This change in representation reduces our heap size by 15%. It also makes it cheaper
to decide if a value is a pair, because no memory references are necessary; it su�ces to
check the bottom two bits of the SCM value. This may be signi�cant when traversing lists,
a common activity in a Scheme system.

Again, most real Scheme systems use a slightly di�erent implementation; for example, if
GET PAIR subtracts o� the low bits of x, instead of masking them o�, the optimizer will
often be able to combine that subtraction with the addition of the o�set of the structure
member we are referencing, making a modi�ed pointer as fast to use as an unmodi�ed
pointer.

A.1.4 Guile Is Hairier

We originally started with a very simple typing system | each object has a �eld that
indicates its type. Then, for the sake of e�ciency in both time and space, we moved some
of the typing information directly into the SCM value, and left the rest in the struct value.
Guile itself employs a more complex hierarchy, storing �ner and �ner gradations of type
information in di�erent places, depending on the object's coarser type.

In the author's opinion, Guile could be simpli�ed greatly without signi�cant loss of
e�ciency, but the simpli�ed system would still be more complex than what we've presented
above.

A.2 How Guile does it

Here we present the speci�cs of how Guile represents its data. We don't go into complete
detail; an exhaustive description of Guile's system would be boring, and we do not wish
to encourage people to write code which depends on its details anyway. We do, however,
present everything one need know to use Guile's data.

This section is in limbo. It used to document the 'low-level' C API of Guile that was
used both by clients of libguile and by libguile itself.

In the future, clients should only need to look into the sections Chapter 4 [Programming
in C], page 55 and Chapter 5 [API Reference], page 93. This section will in the end only
contain stu� about the internals of Guile.

A.2.1 General Rules

Any code which operates on Guile datatypes must #include the header �le <libguile.h>.
This �le contains a de�nition for the SCM typedef (Guile's universal type, as in the examples
above), and de�nitions and declarations for a host of macros and functions that operate on
SCM values.

All identi�ers declared by <libguile.h> begin with scm_ or SCM_.

The functions described here generally check the types of their SCM arguments, and
signal an error if their arguments are of an inappropriate type. Macros generally do not,
unless that is their speci�ed purpose. You must verify their argument types beforehand, as
necessary.
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Macros and functions that return a boolean value have names ending in P or _p (for
\predicate"). Those that return a negated boolean value have names starting with SCM_N.
For example, SCM_IMP (x) is a predicate which returns non-zero i� x is an immediate value
(an IM). SCM_NCONSP (x) is a predicate which returns non-zero i� x is not a pair object (a
CONS).

A.2.2 Conservative Garbage Collection

Aside from the latent typing, the major source of constraints on a Scheme implementation's
data representation is the garbage collector. The collector must be able to traverse every
live object in the heap, to determine which objects are not live.

There are many ways to implement this, but Guile uses an algorithm called mark and
sweep. The collector scans the system's global variables and the local variables on the stack
to determine which objects are immediately accessible by the C code. It then scans those
objects to �nd the objects they point to, et cetera. The collector sets a mark bit on each
object it �nds, so each object is traversed only once. This process is called tracing.

When the collector can �nd no unmarked objects pointed to by marked objects, it
assumes that any objects that are still unmarked will never be used by the program (since
there is no path of dereferences from any global or local variable that reaches them) and
deallocates them.

In the above paragraphs, we did not specify how the garbage collector �nds the global and
local variables; as usual, there are many di�erent approaches. Frequently, the programmer
must maintain a list of pointers to all global variables that refer to the heap, and another list
(adjusted upon entry to and exit from each function) of local variables, for the collector's
bene�t.

The list of global variables is usually not too di�cult to maintain, since global variables
are relatively rare. However, an explicitly maintained list of local variables (in the au-
thor's personal experience) is a nightmare to maintain. Thus, Guile uses a technique called
conservative garbage collection, to make the local variable list unnecessary.

The trick to conservative collection is to treat the stack as an ordinary range of memory,
and assume that every word on the stack is a pointer into the heap. Thus, the collector
marks all objects whose addresses appear anywhere in the stack, without knowing for sure
how that word is meant to be interpreted.

Obviously, such a system will occasionally retain objects that are actually garbage, and
should be freed. In practice, this is not a problem. The alternative, an explicitly maintained
list of local variable addresses, is e�ectively much less reliable, due to programmer error.

To accommodate this technique, data must be represented so that the collector can
accurately determine whether a given stack word is a pointer or not. Guile does this as
follows:

� Every heap object has a two-word header, called a cell. Some objects, like pairs, �t
entirely in a cell's two words; others may store pointers to additional memory in either
of the words. For example, strings and vectors store their length in the �rst word, and
a pointer to their elements in the second.

� Guile allocates whole arrays of cells at a time, called heap segments. These segments
are always allocated so that the cells they contain fall on eight-byte boundaries, or
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whatever is appropriate for the machine's word size. Guile keeps all cells in a heap
segment initialized, whether or not they are currently in use.

� Guile maintains a sorted table of heap segments.

Thus, given any random word w fetched from the stack, Guile's garbage collector can
consult the table to see if w falls within a known heap segment, and check w 's alignment.
If both tests pass, the collector knows that w is a valid pointer to a cell, intentional or not,
and proceeds to trace the cell.

Note that heap segments do not contain all the data Guile uses; cells for objects like
vectors and strings contain pointers to other memory areas. However, since those pointers
are internal, and not shared among many pieces of code, it is enough for the collector to
�nd the cell, and then use the cell's type to �nd more pointers to trace.

A.2.3 Immediates vs Non-immediates

Guile classi�es Scheme objects into two kinds: those that �t entirely within an SCM, and
those that require heap storage.

The former class are called immediates. The class of immediates includes small integers,
characters, boolean values, the empty list, the mysterious end-of-�le object, and some others.

The remaining types are called, not surprisingly, non-immediates. They include pairs,
procedures, strings, vectors, and all other data types in Guile.

[Macro]int SCM_IMP (SCM x )
Return non-zero i� x is an immediate object.

[Macro]int SCM_NIMP (SCM x )
Return non-zero i� x is a non-immediate object. This is the exact complement of
SCM_IMP, above.

Note that for versions of Guile prior to 1.4 it was necessary to use the SCM_NIMP macro
before calling a �ner-grained predicate to determine x's type, such as SCM_CONSP or SCM_
VECTORP. This is no longer required: the de�nitions of all Guile type predicates now include
a call to SCM_NIMP where necessary.

A.2.4 Immediate Datatypes

The following datatypes are immediate values; that is, they �t entirely within an SCM

value. The SCM_IMP and SCM_NIMP macros will distinguish these from non-immediates;
see Section A.2.3 [Immediates vs Non-immediates], page 491 for an explanation of the
distinction.

Note that the type predicates for immediate values work correctly on any SCM value; you
do not need to call SCM_IMP �rst, to establish that a value is immediate.

A.2.4.1 Integers

Here are functions for operating on small integers, that �t within an SCM. Such integers
are called immediate numbers, or INUMs. In general, INUMs occupy all but two bits of an
SCM.

Bignums and oating-point numbers are non-immediate objects, and have their own,
separate accessors. The functions here will not work on them. This is not as much of a
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problem as you might think, however, because the system never constructs bignums that
could �t in an INUM, and never uses oating point values for exact integers.

[Macro]int SCM_INUMP (SCM x )
Return non-zero i� x is a small integer value.

[Macro]int SCM_NINUMP (SCM x )
The complement of SCM INUMP.

[Macro]int SCM_INUM (SCM x )
Return the value of x as an ordinary, C integer. If x is not an INUM, the result is
unde�ned.

[Macro]SCM SCM_MAKINUM (int i )
Given a C integer i, return its representation as an SCM. This function does not check
for overow.

A.2.4.2 Characters

Here are functions for operating on characters.

[Macro]int SCM_CHARP (SCM x )
Return non-zero i� x is a character value.

[Macro]unsigned int SCM_CHAR (SCM x )
Return the value of x as a C character. If x is not a Scheme character, the result is
unde�ned.

[Macro]SCM SCM_MAKE_CHAR (int c )
Given a C character c, return its representation as a Scheme character value.

A.2.4.3 Booleans

Booleans are represented as two speci�c immediate SCM values, SCM_BOOL_T and SCM_

BOOL_F. See Section 5.5.1 [Booleans], page 99, for more information.

A.2.4.4 Unique Values

The immediate values that are neither small integers, characters, nor booleans are all unique
values | that is, datatypes with only one instance.

[Macro]SCM SCM_EOL
The Scheme empty list object, or \End Of List" object, usually written in Scheme as
'().

[Macro]SCM SCM_EOF_VAL
The Scheme end-of-�le value. It has no standard written representation, for obvious
reasons.

[Macro]SCM SCM_UNSPECIFIED
The value returned by expressions which the Scheme standard says return an \un-
speci�ed" value.

This is sort of a weirdly literal way to take things, but the standard read-eval-print
loop prints nothing when the expression returns this value, so it's not a bad idea to
return this when you can't think of anything else helpful.
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[Macro]SCM SCM_UNDEFINED
The \unde�ned" value. Its most important property is that is not equal to any valid
Scheme value. This is put to various internal uses by C code interacting with Guile.

For example, when you write a C function that is callable from Scheme and which
takes optional arguments, the interpreter passes SCM_UNDEFINED for any arguments
you did not receive.

We also use this to mark unbound variables.

[Macro]int SCM_UNBNDP (SCM x )
Return true if x is SCM_UNDEFINED. Apply this to a symbol's value to see if it has a
binding as a global variable.

A.2.5 Non-immediate Datatypes

A non-immediate datatype is one which lives in the heap, either because it cannot �t entirely
within a SCM word, or because it denotes a speci�c storage location (in the nomenclature of
the Revised^5 Report on Scheme).

The SCM_IMP and SCM_NIMP macros will distinguish these from immediates; see Sec-
tion A.2.3 [Immediates vs Non-immediates], page 491.

Given a cell, Guile distinguishes between pairs and other non-immediate types by storing
special tag values in a non-pair cell's car, that cannot appear in normal pairs. A cell with a
non-tag value in its car is an ordinary pair. The type of a cell with a tag in its car depends on
the tag; the non-immediate type predicates test this value. If a tag value appears elsewhere
(in a vector, for example), the heap may become corrupted.

Note how the type information for a non-immediate object is split between the SCM word
and the cell that the SCM word points to. The SCM word itself only indicates that the object
is non-immediate | in other words stored in a heap cell. The tag stored in the �rst word
of the heap cell indicates more precisely the type of that object.

The type predicates for non-immediate values work correctly on any SCM value; you do
not need to call SCM_NIMP �rst, to establish that a value is non-immediate.

A.2.5.1 Pairs

Pairs are the essential building block of list structure in Scheme. A pair object has two
�elds, called the car and the cdr.

It is conventional for a pair's car to contain an element of a list, and the cdr to point to
the next pair in the list, or to contain SCM_EOL, indicating the end of the list. Thus, a set of
pairs chained through their cdrs constitutes a singly-linked list. Scheme and libguile de�ne
many functions which operate on lists constructed in this fashion, so although lists chained
through the cars of pairs will work �ne too, they may be less convenient to manipulate,
and receive less support from the community.

Guile implements pairs by mapping the car and cdr of a pair directly into the two
words of the cell.

[Macro]int SCM_CONSP (SCM x )
Return non-zero i� x is a Scheme pair object.
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[Macro]int SCM_NCONSP (SCM x )
The complement of SCM CONSP.

[Function]SCM scm_cons (SCM car, SCM cdr )
Allocate (\CONStruct") a new pair, with car and cdr as its contents.

The macros below perform no type checking. The results are unde�ned if cell is an
immediate. However, since all non-immediate Guile objects are constructed from cells,
and these macros simply return the �rst element of a cell, they actually can be useful on
datatypes other than pairs. (Of course, it is not very modular to use them outside of the
code which implements that datatype.)

[Macro]SCM SCM_CAR (SCM cell )
Return the car, or �rst �eld, of cell.

[Macro]SCM SCM_CDR (SCM cell )
Return the cdr, or second �eld, of cell.

[Macro]void SCM_SETCAR (SCM cell, SCM x )
Set the car of cell to x.

[Macro]void SCM_SETCDR (SCM cell, SCM x )
Set the cdr of cell to x.

[Macro]SCM SCM_CAAR (SCM cell )
[Macro]SCM SCM_CADR (SCM cell )
[Macro]SCM SCM_CDAR (SCM cell ) . . .
[Macro]SCM SCM_CDDDDR (SCM cell )

Return the car of the car of cell, the car of the cdr of cell, et cetera.

A.2.5.2 Vectors, Strings, and Symbols

Vectors, strings, and symbols have some properties in common. They all have a length, and
they all have an array of elements. In the case of a vector, the elements are SCM values; in
the case of a string or symbol, the elements are characters.

All these types store their length (along with some tagging bits) in the car of their
header cell, and store a pointer to the elements in their cdr. Thus, the SCM_CAR and
SCM_CDR macros are (somewhat) meaningful when applied to these datatypes.

[Macro]int SCM_VECTORP (SCM x )
Return non-zero i� x is a vector.

[Macro]int SCM_STRINGP (SCM x )
Return non-zero i� x is a string.

[Macro]int SCM_SYMBOLP (SCM x )
Return non-zero i� x is a symbol.

[Macro]int SCM_VECTOR_LENGTH (SCM x )
[Macro]int SCM_STRING_LENGTH (SCM x )
[Macro]int SCM_SYMBOL_LENGTH (SCM x )

Return the length of the object x. The result is unde�ned if x is not a vector, string,
or symbol, respectively.
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[Macro]SCM * SCM_VECTOR_BASE (SCM x )
Return a pointer to the array of elements of the vector x. The result is unde�ned if
x is not a vector.

[Macro]char * SCM_STRING_CHARS (SCM x )
[Macro]char * SCM_SYMBOL_CHARS (SCM x )

Return a pointer to the characters of x. The result is unde�ned if x is not a symbol
or string, respectively.

There are also a few magic values stu�ed into memory before a symbol's characters, but
you don't want to know about those. What cruft!

Note that SCM_VECTOR_BASE, SCM_STRING_CHARS and SCM_SYMBOL_CHARS return point-
ers to data within the respective object. Care must be taken that the object is not garbage
collected while that data is still being accessed. This is the same as for a smob, See Sec-
tion 4.4.6 [Remembering During Operations], page 75.

A.2.5.3 Procedures

Guile provides two kinds of procedures: closures, which are the result of evaluating a lambda
expression, and subrs, which are C functions packaged up as Scheme objects, to make them
available to Scheme programmers.

(There are actually other sorts of procedures: compiled closures, and continuations; see
the source code for details about them.)

[Function]SCM scm_procedure_p (SCM x )
Return SCM_BOOL_T i� x is a Scheme procedure object, of any sort. Otherwise, return
SCM_BOOL_F.

A.2.5.4 Closures

[FIXME: this needs to be further subbed, but texinfo has no subsubsub]

A closure is a procedure object, generated as the value of a lambda expression in Scheme.
The representation of a closure is straightforward | it contains a pointer to the code of the
lambda expression from which it was created, and a pointer to the environment it closes
over.

In Guile, each closure also has a property list, allowing the system to store information
about the closure. I'm not sure what this is used for at the moment | the debugger,
maybe?

[Macro]int SCM_CLOSUREP (SCM x )
Return non-zero i� x is a closure.

[Macro]SCM SCM_PROCPROPS (SCM x )
Return the property list of the closure x. The results are unde�ned if x is not a
closure.

[Macro]void SCM_SETPROCPROPS (SCM x, SCM p )
Set the property list of the closure x to p. The results are unde�ned if x is not a
closure.
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[Macro]SCM SCM_CODE (SCM x )
Return the code of the closure x. The result is unde�ned if x is not a closure.

This function should probably only be used internally by the interpreter, since the
representation of the code is intimately connected with the interpreter's implementa-
tion.

[Macro]SCM SCM_ENV (SCM x )
Return the environment enclosed by x. The result is unde�ned if x is not a closure.

This function should probably only be used internally by the interpreter, since the
representation of the environment is intimately connected with the interpreter's im-
plementation.

A.2.5.5 Subrs

[FIXME: this needs to be further subbed, but texinfo has no subsubsub]

A subr is a pointer to a C function, packaged up as a Scheme object to make it callable
by Scheme code. In addition to the function pointer, the subr also contains a pointer to the
name of the function, and information about the number of arguments accepted by the C
function, for the sake of error checking.

There is no single type predicate macro that recognizes subrs, as distinct from other kinds
of procedures. The closest thing is scm_procedure_p; see Section A.2.5.3 [Procedures],
page 495.

[Macro]char * SCM_SNAME (x )
Return the name of the subr x. The result is unde�ned if x is not a subr.

[Function]SCM scm_c_define_gsubr (char *name, int req, int opt, int rest, SCM
(*function )())

Create a new subr object named name, based on the C function function, make it
visible to Scheme the value of as a global variable named name, and return the subr
object.

The subr object accepts req required arguments, opt optional arguments, and a rest
argument i� rest is non-zero. The C function function should accept req + opt

arguments, or req + opt + 1 arguments if rest is non-zero.

When a subr object is applied, it must be applied to at least req arguments, or else
Guile signals an error. function receives the subr's �rst req arguments as its �rst req
arguments. If there are fewer than opt arguments remaining, then function receives
the value SCM_UNDEFINED for any missing optional arguments.

If rst is non-zero, then any arguments after the �rst req + opt are packaged up
as a list and passed as function's last argument. function must not modify that
list. (Because when subr is called through apply the list is directly from the apply

argument, which the caller will expect to be unchanged.)

Note that subrs can actually only accept a prede�ned set of combinations of required,
optional, and rest arguments. For example, a subr can take one required argument,
or one required and one optional argument, but a subr can't take one required and
two optional arguments. It's bizarre, but that's the way the interpreter was written.
If the arguments to scm_c_define_gsubr do not �t one of the prede�ned patterns,
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then scm_c_define_gsubr will return a compiled closure object instead of a subr
object.

A.2.5.6 Ports

Haven't written this yet, 'cos I don't understand ports yet.

A.2.6 Signalling Type Errors

Every function visible at the Scheme level should aggressively check the types of its argu-
ments, to avoid misinterpreting a value, and perhaps causing a segmentation fault. Guile
provides some macros to make this easier.

[Macro]void SCM_ASSERT (int test, SCM obj, unsigned int position, const char
*subr )

If test is zero, signal a \wrong type argument" error, attributed to the subroutine
named subr, operating on the value obj, which is the position'th argument of subr.

[Macro]int SCM_ARG1
[Macro]int SCM_ARG2
[Macro]int SCM_ARG3
[Macro]int SCM_ARG4
[Macro]int SCM_ARG5
[Macro]int SCM_ARG6
[Macro]int SCM_ARG7

One of the above values can be used for position to indicate the number of the
argument of subr which is being checked. Alternatively, a positive integer number can
be used, which allows to check arguments after the seventh. However, for parameter
numbers up to seven it is preferable to use SCM_ARGN instead of the corresponding
raw number, since it will make the code easier to understand.

[Macro]int SCM_ARGn
Passing a value of zero or SCM_ARGn for position allows to leave it unspeci�ed which
argument's type is incorrect. Again, SCM_ARGn should be preferred over a raw zero
constant.

A.2.7 Unpacking the SCM Type

The previous sections have explained how SCM values can refer to immediate and non-
immediate Scheme objects. For immediate objects, the complete object value is stored in
the SCM word itself, while for non-immediates, the SCM word contains a pointer to a heap
cell, and further information about the object in question is stored in that cell. This section
describes how the SCM type is actually represented and used at the C level.

In fact, there are two basic C data types to represent objects in Guile: SCM and scm_t_

bits.

A.2.7.1 Relationship between SCM and scm_t_bits

A variable of type SCM is guaranteed to hold a valid Scheme object. A variable of type
scm_t_bits, on the other hand, may hold a representation of a SCM value as a C integral
type, but may also hold any C value, even if it does not correspond to a valid Scheme object.
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For a variable x of type SCM, the Scheme object's type information is stored in a form
that is not directly usable. To be able to work on the type encoding of the scheme value,
the SCM variable has to be transformed into the corresponding representation as a scm_t_

bits variable y by using the SCM_UNPACK macro. Once this has been done, the type of the
scheme object x can be derived from the content of the bits of the scm_t_bits value y, in
the way illustrated by the example earlier in this chapter (see Section A.1.3 [Cheaper Pairs],
page 487). Conversely, a valid bit encoding of a Scheme value as a scm_t_bits variable can
be transformed into the corresponding SCM value using the SCM_PACK macro.

A.2.7.2 Immediate objects

A Scheme object may either be an immediate, i.e. carrying all necessary information by
itself, or it may contain a reference to a cell with additional information on the heap.
Although in general it should be irrelevant for user code whether an object is an immediate
or not, within Guile's own code the distinction is sometimes of importance. Thus, the
following low level macro is provided:

[Macro]int SCM_IMP (SCM x )
A Scheme object is an immediate if it ful�lls the SCM_IMP predicate, otherwise it holds
an encoded reference to a heap cell. The result of the predicate is delivered as a C
style boolean value. User code and code that extends Guile should normally not be
required to use this macro.

Summary:

� Given a Scheme object x of unknown type, check �rst with SCM_IMP (x) if it is an
immediate object.

� If so, all of the type and value information can be determined from the scm_t_bits

value that is delivered by SCM_UNPACK (x).

A.2.7.3 Non-immediate objects

A Scheme object of type SCM that does not ful�ll the SCM_IMP predicate holds an encoded
reference to a heap cell. This reference can be decoded to a C pointer to a heap cell using
the SCM2PTR macro. The encoding of a pointer to a heap cell into a SCM value is done using
the PTR2SCM macro.

[Macro](scm_t_cell *) SCM2PTR (SCM x )
Extract and return the heap cell pointer from a non-immediate SCM object x.

[Macro]SCM PTR2SCM (scm t cell * x )
Return a SCM value that encodes a reference to the heap cell pointer x.

Note that it is also possible to transform a non-immediate SCM value by using SCM_

UNPACK into a scm_t_bits variable. However, the result of SCM_UNPACK may not be used
as a pointer to a scm_t_cell: only SCM2PTR is guaranteed to transform a SCM object into
a valid pointer to a heap cell. Also, it is not allowed to apply PTR2SCM to anything that is
not a valid pointer to a heap cell.

Summary:

� Only use SCM2PTR on SCM values for which SCM_IMP is false!
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� Don't use (scm_t_cell *) SCM_UNPACK (x)! Use SCM2PTR (x) instead!

� Don't use PTR2SCM for anything but a cell pointer!

A.2.7.4 Allocating Cells

Guile provides both ordinary cells with two slots, and double cells with four slots. The
following two function are the most primitive way to allocate such cells.

If the caller intends to use it as a header for some other type, she must pass an ap-
propriate magic value in word 0, to mark it as a member of that type, and pass whatever
value as word 1, etc that the type expects. You should generally not need these func-
tions, unless you are implementing a new datatype, and thoroughly understand the code in
<libguile/tags.h>.

If you just want to allocate pairs, use scm_cons.

[Function]SCM scm_cell (scm t bits word 0, scm t bits word 1)
Allocate a new cell, initialize the two slots with word 0 and word 1, and return it.

Note that word 0 and word 1 are of type scm_t_bits. If you want to pass a SCM

object, you need to use SCM_UNPACK.

[Function]SCM scm_double_cell (scm t bits word 0, scm t bits word 1, scm t bits
word 2, scm t bits word 3)

Like scm_cell, but allocates a double cell with four slots.

A.2.7.5 Heap Cell Type Information

Heap cells contain a number of entries, each of which is either a scheme object of type SCM
or a raw C value of type scm_t_bits. Which of the cell entries contain Scheme objects and
which contain raw C values is determined by the �rst entry of the cell, which holds the cell
type information.

[Macro]scm_t_bits SCM_CELL_TYPE (SCM x )
For a non-immediate Scheme object x, deliver the content of the �rst entry of the
heap cell referenced by x. This value holds the information about the cell type.

[Macro]void SCM_SET_CELL_TYPE (SCM x, scm t bits t )
For a non-immediate Scheme object x, write the value t into the �rst entry of the
heap cell referenced by x. The value t must hold a valid cell type.

A.2.7.6 Accessing Cell Entries

For a non-immediate Scheme object x, the object type can be determined by reading the
cell type entry using the SCM_CELL_TYPE macro. For each di�erent type of cell it is known
which cell entries hold Scheme objects and which cell entries hold raw C data. To access
the di�erent cell entries appropriately, the following macros are provided.

[Macro]scm_t_bits SCM_CELL_WORD (SCM x, unsigned int n )
Deliver the cell entry n of the heap cell referenced by the non-immediate Scheme
object x as raw data. It is illegal, to access cell entries that hold Scheme objects by
using these macros. For convenience, the following macros are also provided.

� SCM CELL WORD 0 (x) ) SCM CELL WORD (x, 0)
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� SCM CELL WORD 1 (x) ) SCM CELL WORD (x, 1)

� . . .

� SCM CELL WORD n (x) ) SCM CELL WORD (x, n)

[Macro]SCM SCM_CELL_OBJECT (SCM x, unsigned int n )
Deliver the cell entry n of the heap cell referenced by the non-immediate Scheme
object x as a Scheme object. It is illegal, to access cell entries that do not hold
Scheme objects by using these macros. For convenience, the following macros are
also provided.

� SCM CELL OBJECT 0 (x) ) SCM CELL OBJECT (x, 0)

� SCM CELL OBJECT 1 (x) ) SCM CELL OBJECT (x, 1)

� . . .

� SCM CELL OBJECT n (x) ) SCM CELL OBJECT (x, n)

[Macro]void SCM_SET_CELL_WORD (SCM x, unsigned int n, scm t bits w )
Write the raw C value w into entry number n of the heap cell referenced by the
non-immediate Scheme value x. Values that are written into cells this way may only
be read from the cells using the SCM_CELL_WORD macros or, in case cell entry 0 is
written, using the SCM_CELL_TYPE macro. For the special case of cell entry 0 it has
to be made sure that w contains a cell type information which does not describe a
Scheme object. For convenience, the following macros are also provided.

� SCM SET CELL WORD 0 (x, w) ) SCM SET CELL WORD (x, 0, w)

� SCM SET CELL WORD 1 (x, w) ) SCM SET CELL WORD (x, 1, w)

� . . .

� SCM SET CELL WORD n (x, w) ) SCM SET CELL WORD (x, n, w)

[Macro]void SCM_SET_CELL_OBJECT (SCM x, unsigned int n, SCM o )
Write the Scheme object o into entry number n of the heap cell referenced by the
non-immediate Scheme value x. Values that are written into cells this way may only
be read from the cells using the SCM_CELL_OBJECT macros or, in case cell entry 0
is written, using the SCM_CELL_TYPE macro. For the special case of cell entry 0 the
writing of a Scheme object into this cell is only allowed if the cell forms a Scheme
pair. For convenience, the following macros are also provided.

� SCM SET CELL OBJECT 0 (x, o) ) SCM SET CELL OBJECT (x, 0, o)

� SCM SET CELL OBJECT 1 (x, o) ) SCM SET CELL OBJECT (x, 1, o)

� . . .

� SCM SET CELL OBJECT n (x, o) ) SCM SET CELL OBJECT (x, n, o)

Summary:

� For a non-immediate Scheme object x of unknown type, get the type information by
using SCM_CELL_TYPE (x).

� As soon as the cell type information is available, only use the appropriate access meth-
ods to read and write data to the di�erent cell entries.
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A.2.7.7 Basic Rules for Accessing Cell Entries

For each cell type it is generally up to the implementation of that type which of the cor-
responding cell entries hold Scheme objects and which hold raw C values. However, there
is one basic rule that has to be followed: Scheme pairs consist of exactly two cell entries,
which both contain Scheme objects. Further, a cell which contains a Scheme object in it
�rst entry has to be a Scheme pair. In other words, it is not allowed to store a Scheme
object in the �rst cell entry and a non Scheme object in the second cell entry.

[Macro]int SCM_CONSP (SCM x )
Determine, whether the Scheme object x is a Scheme pair, i.e. whether x references
a heap cell consisting of exactly two entries, where both entries contain a Scheme
object. In this case, both entries will have to be accessed using the SCM_CELL_OBJECT
macros. On the contrary, if the SCM_CONSP predicate is not ful�lled, the �rst entry of
the Scheme cell is guaranteed not to be a Scheme value and thus the �rst cell entry
must be accessed using the SCM_CELL_WORD_0 macro.
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Appendix B GNU Free Documentation License

Version 1.2, November 2002

Copyright c 2000,2001,2002, 2006 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the e�ective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modi�cations
made by others.

This License is a kind of \copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The \Document",
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as \you". You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A \Modi�ed Version" of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modi�cations and/or translated into
another language.

A \Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The \Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
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under this License. If a section does not �t the above de�nition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The \Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A \Transparent" copy of the Document means a machine-readable copy, represented
in a format whose speci�cation is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent �le format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modi�cation by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not \Transparent" is called \Opaque".

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modi�cation. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The \Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, \Title Page"
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

A section \Entitled XYZ" means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a speci�c section name mentioned below, such
as \Acknowledgements", \Dedications", \Endorsements", or \History".) To \Preserve
the Title" of such a section when you modify the Document means that it remains a
section \Entitled XYZ" according to this de�nition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
e�ect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
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that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to �t legibly, you should put
the �rst ones listed (as many as �t reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modi�ed Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modi�ed Version under precisely
this License, with the Modi�ed Version �lling the role of the Document, thus licensing
distribution and modi�cation of the Modi�ed Version to whoever possesses a copy of
it. In addition, you must do these things in the Modi�ed Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.
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B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modi�cations in the Modi�ed Version, together with at least �ve
of the principal authors of the Document (all of its principal authors, if it has fewer
than �ve), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modi�ed Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modi�cations adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modi�ed Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled \History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modi�ed Version
as given on the Title Page. If there is no section Entitled \History" in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modi�ed Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
\History" section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled \Acknowledgements" or \Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled \Endorsements". Such a section may not be included
in the Modi�ed Version.

N. Do not retitle any existing section to be Entitled \Endorsements" or to conict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modi�ed Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modi�ed Version's license notice. These
titles must be distinct from any other section titles.
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You may add a section Entitled \Endorsements", provided it contains nothing but
endorsements of your Modi�ed Version by various parties|for example, statements of
peer review or that the text has been approved by an organization as the authoritative
de�nition of a standard.

You may add a passage of up to �ve words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modi�ed
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modi�ed
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms de�ned in section 4 above for modi�ed versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodi�ed, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but di�erent contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled \History" in the vari-
ous original documents, forming one section Entitled \History"; likewise combine any
sections Entitled \Acknowledgements", and any sections Entitled \Dedications". You
must delete all sections Entitled \Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
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an \aggregate" if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation's users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document's Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modi�cation, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled \Acknowledgements", \Dedications", or \His-
tory", the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may di�er in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
speci�es that a particular numbered version of this License \or any later version"
applies to it, you have the option of following the terms and conditions either of that
speci�ed version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/
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B.0.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
\with...Texts." line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.
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Concept Index

This index contains concepts, keywords and non-Schemey names for several features, to
make it easier to locate the desired sections.
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B
begin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
binding renamer . . . . . . . . . . . . . . . . . . . . . . . 305, 306
bindir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
bitwise logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
block comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Bu�ered input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
buildstamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

C
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
chaining environments . . . . . . . . . . . . . . . . . . . . . . . 25
charset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
child processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
codeset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
command line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

command line history . . . . . . . . . . . . . . . . . . . . . . . 457
cond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
condition variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
conditional evaluation . . . . . . . . . . . . . . . . . . . . . . . 251
continuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
converting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
copying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
current directory . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

D
data conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
datadir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443, 446
date conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
date to string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
date, from string . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
delayed evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 294
device �le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
directory contents . . . . . . . . . . . . . . . . . . . . . . . . . . 385
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Procedure Index

This is an alphabetical list of all the procedures and macros in Guile.

When looking for a particular procedure, please look under its Scheme name as well as
under its C name. The C name can be constructed from the Scheme names by a simple
transformation described in the section See Section 5.1 [API Overview], page 94.
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Variable Index

This is an alphabetical list of all the important variables and constants in Guile.

When looking for a particular variable or constant, please look under its Scheme name
as well as under its C name. The C name can be constructed from the Scheme names by a
simple transformation described in the section See Section 5.1 [API Overview], page 94.
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Type Index

This is an alphabetical list of all the important data types de�ned in the Guile Programmers
Manual.
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