
A Style Guide for GNU Documentation
by Ron Hale-Evans

Based largely on comments by Robert J. Chassell
and Richard M. Stallman

Copyright c© 2001 Free Software Foundation, Inc.



Chapter 1: Basic points of style 1

1 Basic points of style

The goal of free GNU documentation is to help the users and developers of
GNU software. There is no need for you to provide examples for software
running under other operating systems. In particular, there is no need for
you to provide examples for operating systems that take away your freedom.
• Show, don’t just tell. Use plenty of examples (but don’t be overly

redundant).
• Move slowly. Do not impose too much of a cognitive load at once on

the reader.
• Explain things in detail if you are writing a tutorial for a novice. Since

one tends to under-explain anyway, pretend you are writing for an in-
telligent person who lives in an undeveloped country and is unfamiliar
with the technology you are explaining.

• Don’t say too little. If you cannot include enough information on a topic
to do more than tantalize a novice, omit it entirely.

• Do not assume the reader has specific knowledge of mathematics or
computer science when it is possible she doesn’t. You may have to
explain what an integer is or what a byte is, at least at the level of a
tutorial.

• Explain your value judgments. For example, if you say a code snippet
is or is not “useful”, explain why it is or is not. Value judgments can
only be formed by people with knowledge of the relevant subject, and
if the reader had the knowledge you use to form your judgments, she
probably wouldn’t need to read your documentation!

• If necessary, repeat yourself, especially if the information you are repeat-
ing is important and might be missed the first time. Also, if your reader
is unlikely to remember a minor point that is nevertheless important to
understand a major one, it is acceptable to repeat the information.

• Avoid editorializing, either about things outside the text (“As we know,
every operating system but GNU sucks”), or about the text itself (“At
last, we can discuss. . . ”).

• Design your text for a blind person; this is a good discipline. Documents,
especially web pages, turn out much better. When you want to know
how a document will sound to a blind person, you can run it through
Festival or Emacspeak.

• Diagrams are sometimes helpful. Similarly, tables and lists of categories
(variable types, types of operator, etc.) can help the reader encompass
a large amount of information without a lot of superfluous connective
text.

• Think of problems the reader might encounter — “gotchas” that you
might have experienced yourself — then point them out. For example,
in C and C++, point out the difference between = and ==.



Chapter 1: Basic points of style 2

• Explain conventions. Note that software programming and usage often
relies on conventions that are not obvious. For example, a ‘0’ return
code in a C program signifies “zero errors”. It is good to explain a
convention such as this.

• Always tell people how to pronounce code when you introduce new
terms. For example, if you are explaining pointers, tell the reader that
*my_ptr can be pronounced “the contents of the memory location my_
ptr.” The idea is to teach those who sound things out when reading to
pronounce code the right way, rather than to come up with an idiosyn-
cratic, personal method of reading, which can hurt their ability to learn
the language.
People who do not pronounce words, but depend entirely upon visual-
ization, will not care much for this, but will not be hurt. Indeed, they
will benefit, since they need to learn pronunciation in order to talk with
other programmers.

• Qualify your statements. Don’t simply say, for example, “Parameters
must have their types declared.” Must all parameters have their types
declared? If so, say so; if not, state which parameters must have their
types declared and which must not; and give examples where necessary.



Chapter 2: Ordering your text 3

2 Ordering your text

Write about first things first.
• Write about the most important things in a section first. You may want

to give each its own subsection. Don’t make the mistake of writing,
“Blah, blah, and blah. Oh, and by the way, this is really important:
. . . ”

• Put important notes to the reader in subsections of their own. This tells
the reader the notes really are important.
While “first things first” usually applies, in some cases, the very end of
a section is the best place for an important note, perhaps prefixed with
‘@strong{Important:}’. People tend to remember best the things they
are shown first and last. Also, an important note can sometimes tie up
a section very nicely.

• Order the information in your nodes from simple to complex.
• Don’t use terms without defining them, at least in a brief, preliminary

way. Do not use them in the process of defining them. Here, for ex-
ample, is a classic error: ‘This variable can take only @dfn{Boolean
values}: true and false.’

• Make your assumptions clear before you use them. For example, if you
assume that the reader knows basic trigonometry, say so before you
launch into an example involving it. You might also give pointers to
where the reader could learn about the subject in question.

• Recursion and nested data structures are difficult. Your text can easily
get out of control. Be extra careful to phrase your explanations clearly
so the reader does not end up in a tangle.

Bad: “All variables local to a block are invisible outside their
block, but visible within every block their block contains.”

Good: “A local variable is visible within its own block and the ones
that block contains, but invisible outside its own block.”

• If your chapter is titled “About foo and bar”, do not discuss your topics
in the order “bar” and “foo”. Be parallel and consistent throughout the
section in question. This may mean you will have to order your text
carefully in advance, but your readers will thank you.

• If you have two tables or lists of information that discuss the same
items, combine them! Don’t make the reader flip from one to the other,
correlating them in her head.

• Don’t combine different topics in the same paragraph or node. If you
want to start a new topic, start a new paragraph or a new node.

• After you have made an important point in a paragraph, end the para-
graph and let the reader “walk away with” that information. Don’t
clutter the paragraph with details, trailing off into irrelevance; save the
details for later.



Chapter 2: Ordering your text 4

• When you are explaining a feature of a program, it is often helpful to
awaken the reader’s interest by first outlining a problem the feature
solves or a need it fulfills. Write text that “motivates” the reader to
understand why the feature is needed. You should assume that most
people will not themselves think that they need the feature ahead of
time, and that when the feature is introduced, only the really smart
readers will figure out for themselves why it is a good idea.



Chapter 3: Code examples 5

3 Code examples

Examples should follow the GNU style. Consult the GNU Coding Standards
for further information.
• Give sample output for code examples wherever possible.
• Don’t waste the reader’s time with frivolous examples that have no real

use. For example, in the GNU C Tutorial, it was judged too frivolous to
show the reader how to print out the values of pointers (of the pointers
themselves, not the addresses pointed to), even though earlier editions
of the book had done so.

• When you discuss a function, do not include the parentheses in its name
unless you are illustrating a function call. For example, use cos rather
than cos().

• In an example, snuggle code up to the @example and @end example lines;
do not insert blank lines between the lines containing the formatting
commands and the lines containing the code.

• Always check your code examples by compiling and running them be-
fore including them in your text. This applies even to small examples.
Double-check your mathematical examples as well as your code. Noth-
ing will make your reader lose confidence in your documentation faster
than catching you in a simple error.

• Use the present “timeless” tense when talking about what a code ex-
ample does. Example: “The foo function takes an integer variable bar
and multiplies it by 5.”

• Put ellipses inside dummy code blocks, unless you want to imply they
are no-ops.

• In examples of code, use all-caps only for macros and the like that
are normally written in uppercase letters. Use lowercase letters for
everything else.

• Don’t use examples that will become dated. You don’t know how long
your text will be read. Example: If you are writing in the year 2002,
and you want to use an example of a variable containing a year, rather
than creating a variable called cur_year and making it equal to ‘2002’,
it is better to create a variable called moon_landing and make it equal
to ‘1969’.

• In your code examples, use variable names that are concrete rather than
abstract. Concrete names are less confusing. For example, a variable
called cost_of_lunch is better than one called humdinger or foo. On
the other hand, do not use variable names that are so concrete that the
example itself takes over and the lesson it is supposed to convey is lost.

• Satisfy the reader’s curiosity about whether alternate coding practices
are possible, but make your recommendations clear.



Chapter 4: Metaphors 6

4 Metaphors

People reason using metaphors.
• Develop your metaphors explicitly. For example, if you say local vari-

ables are “invisible” outside their functions, explain that this usage
stems from a metaphor in which functions are something like buildings
and local variables are like people looking from one building to another.

• Jargon often has a metaphorical underpinning. For example, pointers
“point to” memory addresses. It is helpful to explain these metaphorical
underpinnings when introducing a jargon term.

• Explain where your metaphors fail. For example, when explaining point-
ers in C, explain that while, with the same finger, you can point to any-
thing you like in real life (whether it be animal, vegetable, or mineral)
a given pointer can only point to a certain type of variable (only to
integers or only to floats, for example).

• Use a metaphor consistently; do not mix metaphors. For example, when
discussing local variables, do not at one point say they are “invisible”
outside their functions and at another point say that they are “nonex-
istent” outside their functions. Stick to one metaphor or the other.
If you must use more than one metaphor, introduce transitional material
and explain how and why you are switching metaphors.

• Avoid idioms and implicit metaphors wherever possible. People trans-
late GNU documentation into many different languages. English idioms
such as “this feature opens the door to the possibility of . . . ” only make
more work for translators whose languages do not possess the idiom.



Chapter 5: English usage 7

5 English usage

Consult good books on English style. For example, a classic text is The
Elements of Style by Strunk and White. Early editions of it are now in the
public domain and are therefore free in the GNU sense.
Also consult the GNU Coding Standards, which discusses documentation as
well as code.
• Don’t mention non-free software by name unless it is unavoidable.
• Refer to GNU more and Unix less.

Always write “GNU/Linux”, never just “Linux”, unless you are only
referring to the Linux kernel.

• Use “illegal” only for matters of the law and government. For violations
of the rules of C or other languages, use “invalid”.

• Always address the reader as “you”. Example: “If you want to display
the diagram, press the 〈RET〉 key.”

• Use “must”, “should”, “may”, and “can” appropriately. Do not conflate
them when discussing actions you must, should, may, or can perform
while using software.

• Examples are not “given” but “shown”. Only useful stand-alone pro-
grams qualify as gifts.

• “Kinds of” and “types of” are followed by a singular noun. For example:

Bad: “kinds of computers”, “types of variables”

Good: “kinds of computer”, “types of variable”
• There should be no text between “as follows” and what is said to follow.
• Be careful to separate English from C code (or the code of whatever

computer language you are using). For example, in the first example
below, the English word “or” might be confused by the reader with the
Boolean operator or.

Bad: ‘@dfn{logical operator} (or operator on Boolean
values)’

Good: ‘@dfn{logical operator} (an operator on Boolean
values)’

• Failure to process negatives is a common problem in reading. Phrase
your text so that a reader is not likely to miss an important “not”. Do
not repeat the negative information in a manner that could make it
appear positive.

• Distinguish computer science terms and jargon from the language of
the reader’s everyday experience. For example, you may need to tell
the reader that the Boolean value true is true and only true, while in
real life “true” might mean “only partly true”, as in “that’s a true story,
although parts are exaggerated”.



Chapter 5: English usage 8

• Most people except LISP programmers dislike parentheses. Use as few
as possible. If you can, avoid using parentheses in tables.

Bad: unary plus (example: +5)

Good: unary plus, example: +5
• Use language precisely. For example, when discussing C, a “declaration”

is not the same as a “definition”. Many distinct terms sound alike and
are used in similar ways, but that is no excuse for you to conflate them,
or to fail to distinguish them for your readers. Moreover, don’t simply
say that two terms are different, but explain their differences.
Similarly, distinguish one use of a jargon word from another. For exam-
ple: “value of a variable” vs. “passing by value”.



Chapter 6: Texinfo usage 9

6 Texinfo usage

Please read the Texinfo manual through; it will do you good.
• Use ‘@code’, ‘@samp’, ‘@file’, etc. correctly; for clarification, see the

Texinfo Manual.
• Use ‘@xref’ properly; never use it in mid-sentence.
• To emphasize, use ‘@emph’ or ‘@strong’, not all-caps.
• For meta-syntactic variables, use ‘@var’, not angle brackets.
• End every sentence with two spaces so Emacs can see where sentences

begin and end. (See the “Sentences” section in The GNU Emacs Man-
ual, which describes convenient sentence-related commands.)

• Use ‘@group’ to hold together examples that should stay all on one page.
Note that the @group command does not currently work with the
@table command. Instead, use the @need command with @table. Sim-
ilarly, use the @need command before a plain text paragraph that in-
troduces an example or list. (See the Texinfo Manual.)

• Never use typesetting commands for markup! Always use logical
markup instead. You gain nothing in Info by putting “Important:”
in boldface. Unless your reader uses an unusual stylesheet, you
will not help Emacspeak, either. Replace ‘@b{Important:}’ with
‘@strong{Important:}’ so formatting software can figure out how to
handle the markup appropriately. The use of typesetting markup is the
bane of the HTML world; logical markup works better, and one reason
that XML was invented.
The only legitimate use of a typesetting command in GNU documenta-
tion is to cause plain, explanatory text in a table or example to be in a
Roman font. Use the @r command to do this.



Chapter 7: Format As You Write 10

7 Format As You Write

Format your text as you write. This eases your final cleanup.
Then, at the end of your project, again check how your text will look in Info,
on a Web page, and typeset for printing. Listen to it as well; or, at at the
very least, consider how it sounds when read out loud.
• As you write, make sure your file will compile as an Info document. In

GNU Emacs, you can do the following:
1. Run C-c C-m C-b (makeinfo-buffer), then
2. run C-u C-c C-u C-a (which is texinfo-all-menus-update, with

a prefix argument); then
3. fix the remaining errors, then
4. repeat this sequence until there are no more errors.

• Run the spell-checker!
• When polishing the text, make sure your page layout is attractive; for

example, make sure you don’t use too much whitespace. You can group
chunks of text together with the @group and @need commands.

• In tables and code examples, line up columns neatly:
Bad:

a: 1

b : 2

c:3

Good:

a : 1

b : 2

c : 3

• When you email your manuscript to your editor, consider compressing
it with gzip and sending it as a uuencoded or base-64 encoded attach-
ment. This will prevent it from being mangled in email. Some email
programs transform a ‘From’ at the start of a line to ‘>From’. Gzipped
and encoded attachments are not vulnerable to this sort of corruption.
(Short documents without a ‘From’ at the start of a line do not need to
be compressed and encoded.)

• As I said before, look at your text in all three major output formats: in
Info, on a Web page, and typeset for printing. In addition, listen to it;
or else consider how it sounds when read out loud.


