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Abstract

This is the proof document of the IsarMathLib project version 1.3.0.
IsarMathLib is a library of formalized mathematics for Isabelle 2005
(ZF logic).
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1 Fol1.thy

theory Fol1 imports Trancl

begin

1.1 Mission statement

Until we come up with something better let’s just say that writing formal-
ized proofs protects from Alzheimer’s disease better than solving crossword
puzzles.

1.2 Release notes

This release continues the process of importing Metamath’s [4] set.mm
database into IsarMathLib, adding about 440 facts and 200 translated proofs.
We also add a construction of a model of complex numbers from a complete
ordered field.

1.3 Overview of the project

The theory files Fo11, ZF1, Nat_ZF, func1, func_ZF, EquivClass1, Finite1,
Finite_ZF, Order_ZF contain some background material that is needed for
the remaining theories.
The Topology_ZF series covers basics of general topology: interior, closure,
boundary, compact sets, separation axioms and continuous functions.
Group_ZF, Group_ZF_1, and Group_ZF_2 provide basic facts of the group the-
ory. Group_ZF_3 considers the notion of almost homomorphisms that is
nedeed for the real numbers construction in Real_ZF.
Ring_ZF defines rings. Ring_ZF_1 covers the properties of rings that are
specific to the real numbers construction in Real_ZF.
Int_ZF theory considers the integers as a monoid (multiplication) and an
abelian ordered group (addition). In Int_ZF_1 we show that integers form
a commutative ring. Int_ZF_2 contains some facts about slopes (almost
homomorphisms on integers) needed for real numbers construction, used in
Real_ZF_1.
Field_ZF and OrderedField_ZF contain basic facts about (you guessed it)
fields and ordered fields.
The Real_ZF and Real_ZF_1 theories contain the construction of real numbers
based on the paper [2] by R. D. Arthan (not Cauchy sequences, not Dedekind
sections). The heavy lifting is done mostly in Group_ZF_3, Ring_ZF_1 Int_ZF_2.
Real_ZF contains the part of the construction that can be done starting
from generic abelian groups (rather than additive group of integers). This
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allows to show that real numbers form a ring. Real_ZF_1 continues the con-
struction using properties specific to the integers showing that real numbers
constructed this way form a complete ordered field.
In Complex_ZF we construct complex numbers starting from a complete or-
dered field (a model of real numbers). We also define the notation for writing
about complex numbers and prove that the structure of complex numbers
constructed there satisfies the axioms of complex numbers used in Meta-
math.
The MMI_prelude defines the mmisar0 context in which most theorems trans-
lated from Metamath are proven. It also contains a chapter explaining how
the translation works.
In the Metamath_interface theory we prove a theorem that the mmisar0

context is valid (can be used) in the complex0 context. All theories us-
ing the translated results will import the Metamath_interface theory. The
Metamath_sampler theory provides some examples of using the translated
theorems in the complex0 context.
The theories MMI_logic_and_sets, MMI_Complex.thy and MMI_Complex_1 con-
tain the theorems imported from the Metamath’s set.mm database. As
the translated proofs are rather verbose these theories are not printed in
this proof document. The full list of translated facts can be found in
the known_theorems.txt file included in the IsarMathLib distribution. The
MMI_examples provides some theorems imported from Metamath that are
printed in this proof document as examples of how translated proofs looks
like.

1.4 Notions and lemmas in FOL

This section contains mostly shortcuts and workarounds that allow to use
more readable coding style.

The next lemma serves as a workaround to problems with applying the
definition of transitivity (of a relation) in our coding style (any attempt to do
something like using trans_def results up Isabelle in an infinite loop). We
reluctantly use (unfold trans_def) after the proof keyword to workaround
this.

lemma Fol1_L2: assumes
A1: ∀ x y z. 〈x, y〉 ∈ r ∧ 〈y, z〉 ∈ r −→ 〈x, z〉 ∈ r
shows trans(r)

proof (unfold trans_def)
from A1 show
∀ x y z. 〈x, y〉 ∈ r −→ 〈y, z〉 ∈ r −→ 〈x, z〉 ∈ r
using imp_conj by blast

qed
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Another workaround for the problem of Isabelle simplifier looping when the
transitivity definition is used.

lemma Fol1_L3: assumes A1: trans(r) and A2: <a,b> ∈ r ∧ <b,c> ∈ r
shows <a,c> ∈ r

proof -
from A1 have ∀ x y z. 〈x, y〉 ∈ r −→ 〈y, z〉 ∈ r −→ 〈x, z〉 ∈ r

by (unfold trans_def)
with A2 show thesis using imp_conj by fast

qed

There is a problem with application of the definition of asymetry for rela-
tions. The next lemma is a workaround.

lemma Fol1_L4:
assumes A1: antisym(r) and A2: <a,b> ∈ r <b,a> ∈ r
shows a=b

proof -
from A1 have ∀ x y. <x,y> ∈ r −→ <y,x> ∈ r −→ x=y

by (unfold antisym_def)
with A2 show a=b using imp_conj by fast

qed

The definition below implements a common idiom that states that (perhaps
under some assumptions) exactly one of give three statements is true.

constdefs
Exactly_1_of_3_holds(p,q,r) ≡
(p∨q∨r) ∧ (p −→ ¬q ∧ ¬r) ∧ (q −→ ¬p ∧ ¬r) ∧ (r −→ ¬p ∧ ¬q)

The next lemma allows to prove statements of the form Exactly_1_of_3_holds

(p,q,r).

lemma Fol1_L5:
assumes p∨q∨r
and p −→ ¬q ∧ ¬r
and q −→ ¬p ∧ ¬r
and r −→ ¬p ∧ ¬q
shows Exactly_1_of_3_holds (p,q,r)

proof -
from prems have
(p∨q∨r) ∧ (p −→ ¬q ∧ ¬r) ∧ (q −→ ¬p ∧ ¬r) ∧ (r −→ ¬p ∧ ¬q)
by blast

then show Exactly_1_of_3_holds (p,q,r)
by (unfold Exactly_1_of_3_holds_def)

qed

If exactly one of p, q, r holds and p is not true, then q or r.

lemma Fol1_L6:
assumes A1: ¬p and A2: Exactly_1_of_3_holds (p,q,r)
shows q∨r
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proof -
from A2 have
(p∨q∨r) ∧ (p −→ ¬q ∧ ¬r) ∧ (q −→ ¬p ∧ ¬r) ∧ (r −→ ¬p ∧ ¬q)
by (unfold Exactly_1_of_3_holds_def)

then have p∨q∨r by blast
with A1 show q∨r by simp

qed

If exactly one of p, q, r holds and q is true, then r can not be true.

lemma Fol1_L7:
assumes A1: q and A2: Exactly_1_of_3_holds (p,q,r)
shows ¬r

proof -
from A2 have
(p∨q∨r) ∧ (p −→ ¬q ∧ ¬r) ∧ (q −→ ¬p ∧ ¬r) ∧ (r −→ ¬p ∧ ¬q)
by (unfold Exactly_1_of_3_holds_def)

with A1 show ¬r by blast
qed

The next lemma demonstrates an elegant form of the Exactly_1_of_3_holds

(p,q,r) predicate. More on that at www.solcon.nl/mklooster/calc/calc-
tri.html .

lemma Fol1_L8:
shows Exactly_1_of_3_holds (p,q,r) ←→ (p←→q←→r) ∧ ¬(p∧q∧r)

proof
assume Exactly_1_of_3_holds (p,q,r)
then have
(p∨q∨r) ∧ (p −→ ¬q ∧ ¬r) ∧ (q −→ ¬p ∧ ¬r) ∧ (r −→ ¬p ∧ ¬q)
by (unfold Exactly_1_of_3_holds_def)

thus (p←→q←→r) ∧ ¬(p∧q∧r) by blast
next assume (p←→q←→r) ∧ ¬(p∧q∧r)

then have
(p∨q∨r) ∧ (p −→ ¬q ∧ ¬r) ∧ (q −→ ¬p ∧ ¬r) ∧ (r −→ ¬p ∧ ¬q)
by auto

thus Exactly_1_of_3_holds (p,q,r)
using Exactly_1_of_3_holds_def by (unfold Exactly_1_of_3_holds_def)

qed

A property of the Exactly_1_of_3_holds predicate.

lemma Fol1_L8A: assumes A1: Exactly_1_of_3_holds (p,q,r)
shows p ←→ ¬(q ∨ r)

proof -
from A1 have (p∨q∨r) ∧ (p −→ ¬q ∧ ¬r) ∧ (q −→ ¬p ∧ ¬r) ∧ (r −→

¬p ∧ ¬q)
by (unfold Exactly_1_of_3_holds_def)

then show p ←→ ¬(q ∨ r) by blast
qed

Exclusive or definition. There is one also defined in the standard Isabelle,
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denoted xor, but it relates to boolean values, which are sets. Here we define
a logical functor.

constdefs
Xor (infixl Xor 66)
p Xor q ≡ (p∨q) ∧ ¬(p ∧ q)

The ”exclusive or” is the same as negation of equivalence.

lemma Fol1_L9: shows p Xor q ←→ ¬(p←→q)
using Xor_def by auto

Equivalence relations are symmetric.

lemma equiv_is_sym: assumes A1: equiv(X,r) and A2: 〈x,y〉 ∈ r
shows 〈y,x〉 ∈ r

proof -
from A1 have sym(r) using equiv_def by simp
then have ∀ x y. 〈x,y〉 ∈ r −→ 〈y,x〉 ∈ r

by (unfold sym_def)
with A2 show 〈y,x〉 ∈ r by blast

qed

This lemma is needed to be used as a rule in some very complicated cases.

lemma five_more_conj: assumes Axs Ax1 Ax2 Ax3 Ax4 Ax5
shows Ax1 ∧ Ax2 ∧ Ax3 ∧ Ax4 ∧ Ax5 ∧ Axs using prems by simp

end
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2 ZF1.thy

theory ZF1 imports pair

begin

2.1 Lemmas in Zermelo-Fraenkel set theory

Here we put lemmas from the set theory that we could not find in the
standard Isabelle distribution.

If all sets of a nonempty collection are the same, then its union is the same.

lemma ZF1_1_L1: assumes C 6=0 and ∀ y∈C. b(y) = A
shows (

⋃
y∈C. b(y)) = A using prems by blast

The union af all values of a constant meta-function belongs to the same set
as the constant.

lemma ZF1_1_L2: assumes A1:C6=0 and A2: ∀ x∈C. b(x) ∈ A
and A3: ∀ x y. x∈C ∧ y∈C −→ b(x) = b(y)
shows (

⋃
x∈C. b(x))∈A

proof -
from A1 obtain x where D1:x∈C by auto
with A3 have ∀ y∈C. b(y) = b(x) by blast
with A1 have (

⋃
y∈C. b(y)) = b(x)

using ZF1_1_L1 by simp
with D1 A2 show thesis by simp

qed

A purely technical lemma that shows what it means that something belongs
to a subset of cartesian product defined by separation. Seems there is no
way to avoid that ugly lambda notation.

lemma ZF1_1_L3: assumes A1: x∈X y∈Y and A2: z = a(x,y)
shows z ∈ {a(x,y).〈x,y〉 ∈ X×Y}

proof
from A2 show z = (λ 〈x,y〉. a(x, y))(<x,y>) by simp
from A1 show <x,y> ∈ X×Y by simp

qed

If two meta-functions are the same on a cartesian product, then the subsets
defined by them are the same. I am surprised blast can not handle this.

lemma ZF1_1_L4: assumes A1: ∀ x∈X.∀ y∈Y. a(x,y) = b(x,y)
shows {a(x,y). 〈x,y〉 ∈ X×Y} = {b(x,y). 〈x,y〉 ∈ X×Y}

proof
show {a(x, y). 〈x,y〉 ∈ X × Y} ⊆ {b(x, y). 〈x,y〉 ∈ X × Y}
proof

fix z assume z ∈ {a(x, y) . 〈x,y〉 ∈ X × Y}
then obtain x y where T1: z = a(x,y) x∈X y∈Y

by auto
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with A1 have z = b(x,y) x∈X y∈Y by simp
then show z ∈ {b(x,y).〈x,y〉 ∈ X×Y}

using ZF1_1_L3 by simp
qed
show {b(x, y). 〈x,y〉 ∈ X × Y} ⊆ {a(x, y). 〈x,y〉 ∈ X × Y}
proof

fix z assume z ∈ {b(x, y). 〈x,y〉 ∈ X × Y}
then obtain x y where T1: z = b(x,y) x∈X y∈Y

by auto
with A1 have z = a(x,y) x∈X y∈Y by simp
then show z ∈ {a(x,y).〈x,y〉 ∈ X×Y}

using ZF1_1_L3 by simp
qed

qed

If two meta-functions are the same on a cartesian product, then the subsets
defined by them are the same. I am surprised blast can not handle this.
This is similar to ZF1_1_L4, except that the set definition varies over p∈X×Y
rather than <x,y>∈X×Y.

lemma ZF1_1_L4A: assumes A1: ∀ x∈X.∀ y∈Y. a(<x,y>) = b(x,y)
shows {a(p). p ∈ X×Y} = {b(x,y). 〈x,y〉 ∈ X×Y}

proof
{ fix z assume z ∈ {a(p). p∈X×Y}

then obtain p where D1: z=a(p) p∈X×Y by auto
let x = fst(p) let y = snd(p)
from A1 D1 have z ∈ {b(x,y). 〈x,y〉 ∈ X×Y} by auto

} then show {a(p). p ∈ X×Y} ⊆ {b(x,y). 〈x,y〉 ∈ X×Y} by blast
next

{ fix z assume z ∈ {b(x,y). 〈x,y〉 ∈ X×Y}
then obtain x y where D1: 〈x,y〉 ∈ X×Y z=b(x,y) by auto
let p = <x,y>
from A1 D1 have p∈X×Y z = a(p) by auto
then have z ∈ {a(p). p ∈ X×Y} by auto

} then show {b(x,y). 〈x,y〉 ∈ X×Y} ⊆ {a(p). p ∈ X×Y} by blast
qed

If two meta-functions are the same on a set, then they define the same set
by separation.

lemma ZF1_1_L4B: assumes ∀ x∈X. a(x) = b(x)
shows {a(x). x∈X} = {b(x). x∈X}
using prems by simp

A set defined by a constant meta-function is a singleton.

lemma ZF1_1_L5: assumes X 6=0 and ∀ x∈X. b(x) = c
shows {b(x). x∈X} = {c} using prems by blast

Most of the time, auto does this job, but there are strange cases when the
next lemma is needed.
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lemma subset_with_property: assumes Y = {x∈X. b(x)}
shows Y ⊆ X
using prems by auto

We can choose an element from a nonempty set.

lemma nonempty_has_element: assumes X6=0 shows ∃ x. x∈X
using prems by auto

For two collections S, T of sets we define the product collection as the col-
lections of cartesian products A×B, where A ∈ S, B ∈ T .

constdefs
ProductCollection(T,S) ≡

⋃
U∈T.{U×V. V∈S}

The untion of the product collection of collections S, T* is the cartesian
product of

⋃
S and

⋃
T .

lemma ZF1_1_L6: shows
⋃

ProductCollection(S,T) =
⋃
S ×

⋃
T

using ProductCollection_def by auto

An intersection of subsets is a subset.

lemma ZF1_1_L7: assumes A1: I6=0 and A2: ∀ i∈I. P(i) ⊆ X
shows (

⋂
i∈I. P(i) ) ⊆ X

proof -
from A1 obtain i0 where i0 ∈ I by auto
with A2 have (

⋂
i∈I. P(i) ) ⊆ P(i0) and P(i0) ⊆ X

by auto
thus (

⋂
i∈I. P(i) ) ⊆ X by auto

qed

end
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3 Nat ZF.thy

theory Nat_ZF imports Nat

begin

This theory contains lemmas that are missing from the standard Isabelle’s
Nat.thy file.

3.1 Induction

The induction lemmas in the standard Isabelle’s Nat.thy file like for example
nat_induct require the induction step to be a higher order statement (the
one that uses the =⇒ sign). I found it difficult to apply from Isar, which
is perhaps more of an indication of my Isar skills than anything else. Any-
way, here we provide a first order version that is easier to reference in Isar
declarative style proofs.

The induction step for the first order induction.

lemma Nat_ZF_1_L1: assumes x∈nat P(x)
and ∀ k∈nat. P(k)−→P(succ(k))
shows P(succ(x)) using prems by simp

The actual first order induction on natural numbers.

lemma Nat_ZF_1_L2:
assumes A1: n∈nat and A2: P(0) and A3: ∀ k∈nat. P(k)−→P(succ(k))
shows P(n)

proof -
from A1 A2 have n∈nat P(0) by auto
then show P(n) using Nat_ZF_1_L1 by (rule nat_induct)

qed

A nonzero natural number has a predecessor.

lemma Nat_ZF_1_L3: assumes A1: n∈nat and A2: n6=0
shows ∃ k∈nat. n = succ(k)

proof -
from A1 have n ∈ {0} ∪ {succ(k). k∈nat}

using nat_unfold by simp
with A2 show thesis by simp

qed

end
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4 func1.thy

theory func1 imports func Fol1 ZF1

begin

We define the notion of function that preserves a collection here. Given two
collection of sets a function preserves the collections if the inverse image
of sets in one collection belongs to the second one. This notion does not
have a name in romantic math. It is used to define continuous functions
in Topology_ZF_2 theory. We define it here so that we can use it for other
purposes, like defining measurable functions. Recall that f-(A) means the
inverse image of the set A.

constdefs
PresColl(f,S,T) ≡ ∀ A∈T. f-(A)∈S

4.1 Properties of functions, function spaces and (inverse) im-
ages.

If a function maps A into another set, then A is the domain of the function.

lemma func1_1_L1: assumes f:A→C shows domain(f) = A
using prems domain_of_fun by simp

A first-order version of Pi_type.

lemma func1_1_L1A: assumes A1: f:X→Y and A2: ∀ x∈X. f(x) ∈ Z
shows f:X→Z

proof -
{ fix x assume x∈X

with A2 have f(x) ∈ Z by simp }
with A1 show f:X→Z by (rule Pi_type)

qed

There is a value for each argument.

lemma func1_1_L2: assumes A1: f:X→Y x∈X
shows ∃ y∈Y. <x,y> ∈ f

proof-
from A1 have f(x) ∈ Y using apply_type by simp
moreover from A1 have <x,f(x)>∈ f using apply_Pair by simp
ultimately show thesis by auto

qed

Inverse image of any set is contained in the domain.

lemma func1_1_L3: assumes A1: f:X→Y shows f-(D) ⊆ X
proof-

have ∀ x. x∈f-(D) −→ x∈domain(f)
using vimage_iff domain_iff by auto

with A1 have ∀ x. (x ∈ f-(D)) −→ (x∈X) using func1_1_L1 by simp
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then show thesis by auto
qed

The inverse image of the range is the domain.

lemma func1_1_L4: assumes f:X→Y shows f-(Y) = X
using prems func1_1_L3 func1_1_L2 vimage_iff by blast

The arguments belongs to the domain and values to the range.

lemma func1_1_L5:
assumes A1: <x,y> ∈ f and A2: f:X→Y
shows x∈X ∧ y∈Y

proof
from A1 A2 show x∈X using apply_iff by simp
with A2 have f(x)∈ Y using apply_type by simp
with A1 A2 show y∈Y using apply_iff by simp

qed

The (argument, value) pair belongs to the graph of the function.

lemma func1_1_L5A:
assumes A1: f:X→Y x∈X y = f(x)
shows <x,y> ∈ f y ∈ range(f)

proof -
from A1 show <x,y> ∈ f using apply_Pair by simp
then show y ∈ range(f) using rangeI by simp

qed

The range of function thet maps X into Y is contained in Y .

lemma func1_1_L5B:
assumes A1:f:X→Y shows range(f) ⊆ Y

proof
fix y assume y ∈ range(f)
then obtain x where <x,y> ∈ f

using range_def converse_def domain_def by auto
with A1 show y∈Y using func1_1_L5 by blast

qed

The image of any set is contained in the range.

lemma func1_1_L6: assumes A1: f:X→Y
shows f(B) ⊆ range(f) f(B) ⊆ Y

proof -
show f(B) ⊆ range(f) using image_iff rangeI by auto
with A1 show f(B) ⊆ Y using func1_1_L5B by blast

qed

The inverse image of any set is contained in the domain.

lemma func1_1_L6A: assumes A1: f:X→Y shows f-(A)⊆X
proof

fix x
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assume A2: x∈f-(A) then obtain y where <x,y> ∈ f
using vimage_iff by auto

with A1 show x∈X using func1_1_L5 by fast
qed

Inverse image of a greater set is greater.

lemma func1_1_L7: assumes A⊆B and function(f)
shows f-(A)⊆ f-(B) using prems function_vimage_Diff by auto

Image of a greater set is greater.

lemma func1_1_L8: assumes A1: A⊆B shows f(A)⊆ f(B)
using prems image_Un by auto

A set is contained in the the inverse image of its image. There is similar
theorem in equalities.thy (function_image_vimage) which shows that the
image of inverse image of a set is contained in the set.

lemma func1_1_L9: assumes A1: f:X→Y and A2: A⊆X
shows A ⊆ f-(f(A))

proof -
from A1 A2 have ∀ x∈A. <x,f(x)> ∈ f using apply_Pair by auto
then show thesis using image_iff by auto

qed

A technical lemma needed to make the func1_1_L11 proof more clear.

lemma func1_1_L10:
assumes A1: f ⊆ X×Y and A2: ∃ !y. (y∈Y & <x,y> ∈ f)
shows ∃ !y. <x,y> ∈ f

proof
from A2 show ∃ y. 〈x, y〉 ∈ f by auto
fix y n assume <x,y> ∈ f and <x,n> ∈ f
with A1 A2 show y=n by auto

qed

If f ⊆ X × Y and for every x ∈ X there is exactly one y ∈ Y such that
(x, y) ∈ f then f maps X to Y .

lemma func1_1_L11:
assumes f ⊆ X×Y and ∀ x∈X. ∃ !y. y∈Y & <x,y> ∈ f
shows f: X→Y using prems func1_1_L10 Pi_iff_old by simp

A set defined by a lambda-type expression is a fuction. There is a similar
lemma in func.thy, but I had problems with lamda expressions syntax so
I could not apply it. This lemma is a workaround this. Besides, lambda
expressions are not readable.

lemma func1_1_L11A: assumes A1: ∀ x∈X. b(x)∈Y
shows {<x,y> ∈ X×Y. b(x) = y} : X→Y

proof -
let f = {<x,y> ∈ X×Y. b(x) = y}
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have f ⊆ X×Y by auto
moreover have ∀ x∈X. ∃ !y. y∈Y & <x,y> ∈ f
proof

fix x assume A2: x∈X
show ∃ !y. y∈Y ∧ 〈x, y〉 ∈ {〈x,y〉 ∈ X×Y . b(x) = y}
proof

def y ≡ b(x)
with A2 A1 show
∃ y. y∈Y & 〈x, y〉 ∈ {〈x,y〉 ∈ X×Y . b(x) = y}
by simp

next
fix y y1
assume y∈Y ∧ 〈x, y〉 ∈ {〈x,y〉 ∈ X×Y . b(x) = y}

and y1∈Y ∧ 〈x, y1〉 ∈ {〈x,y〉 ∈ X×Y . b(x) = y}
then show y = y1 by simp

qed
qed
ultimately show {<x,y> ∈ X×Y. b(x) = y} : X→Y

using func1_1_L11 by simp
qed

The next lemma will replace func1_1_L11A one day.

lemma ZF_fun_from_total: assumes A1: ∀ x∈X. b(x)∈Y
shows {〈x,b(x)〉. x∈X} : X→Y

proof -
let f = {〈x,b(x)〉. x∈X}
{ fix x assume A2: x∈X

have ∃ !y. y∈Y ∧ 〈x, y〉 ∈ f
proof

def y ≡ b(x)
with A1 A2 show ∃ y. y∈Y ∧ 〈x, y〉 ∈ f

by simp
next fix y y1 assume y∈Y ∧ 〈x, y〉 ∈ f

and y1∈Y ∧ 〈x, y1〉 ∈ f
then show y = y1 by simp

qed
} then have ∀ x∈X. ∃ !y. y∈Y ∧ <x,y> ∈ f

by simp
moreover from A1 have f ⊆ X×Y by auto
ultimately show thesis using func1_1_L11

by simp
qed

The value of a function defined by a meta-function is this meta-function.

lemma func1_1_L11B:
assumes A1: f:X→Y x∈X
and A2: f = {<x,y> ∈ X×Y. b(x) = y}
shows f(x) = b(x)

proof -
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from A1 have <x,f(x)> ∈ f using apply_iff by simp
with A2 show thesis by simp

qed

The next lemma will replace func1_1_L11B one day.

lemma ZF_fun_from_tot_val:
assumes A1: f:X→Y x∈X
and A2: f = {〈x,b(x)〉. x∈X}
shows f(x) = b(x)

proof -
from A1 have <x,f(x)> ∈ f using apply_iff by simp
with A2 show thesis by simp

qed

We can extend a function by specifying its values on a set disjoint with the
domain.

lemma func1_1_L11C: assumes A1: f:X→Y and A2: ∀ x∈A. b(x)∈B
and A3: X∩A = 0 and Dg : g = f ∪ {〈x,b(x)〉. x∈A}
shows
g : X∪A → Y∪B
∀ x∈X. g(x) = f(x)
∀ x∈A. g(x) = b(x)

proof -
let h = {〈x,b(x)〉. x∈A}
from A1 A2 A3 have
I: f:X→Y h : A→B X∩A = 0
using ZF_fun_from_total by auto

then have f∪h : X∪A → Y∪B
by (rule fun_disjoint_Un)

with Dg show g : X∪A → Y∪B by simp
{ fix x assume A4: x∈A

with A1 A3 have (f∪h)(x) = h(x)
using func1_1_L1 fun_disjoint_apply2
by blast

moreover from I A4 have h(x) = b(x)
using ZF_fun_from_tot_val by simp

ultimately have (f∪h)(x) = b(x)
by simp

} with Dg show ∀ x∈A. g(x) = b(x) by simp
{ fix x assume A5: x∈X

with A3 I have x /∈ domain(h)
using func1_1_L1 by auto

then have (f∪h)(x) = f(x)
using fun_disjoint_apply1 by simp

} with Dg show ∀ x∈X. g(x) = f(x) by simp
qed

We can extend a function by specifying its value at a point that does not
belong to the domain.
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lemma func1_1_L11D: assumes A1: f:X→Y and A2: a/∈X
and Dg: g = f ∪ {〈a,b〉}
shows
g : X∪{a} → Y∪{b}
∀ x∈X. g(x) = f(x)
g(a) = b

proof -
let h = {〈a,b〉}
from A1 A2 Dg have I:
f:X→Y ∀ x∈{a}. b∈{b} X∩{a} = 0 g = f ∪ {〈x,b〉. x∈{a}}
by auto

then show g : X∪{a} → Y∪{b}
by (rule func1_1_L11C)

from I show ∀ x∈X. g(x) = f(x)
by (rule func1_1_L11C)

from I have ∀ x∈{a}. g(x) = b
by (rule func1_1_L11C)

then show g(a) = b by auto
qed

A technical lemma about extending a function both by defining on a set
disjoint with the domain and on a point that does not belong to any of
those sets.

lemma func1_1_L11E:
assumes A1: f:X→Y and
A2: ∀ x∈A. b(x)∈B and
A3: X∩A = 0 and A4: a/∈ X∪A
and Dg: g = f ∪ {〈x,b(x)〉. x∈A} ∪ {〈a,c〉}
shows
g : X∪A∪{a} → Y∪B∪{c}
∀ x∈X. g(x) = f(x)
∀ x∈A. g(x) = b(x)
g(a) = c

proof -
let h = f ∪ {〈x,b(x)〉. x∈A}
from prems show g : X∪A∪{a} → Y∪B∪{c}

using func1_1_L11C func1_1_L11D by simp
from A1 A2 A3 have I:
f:X→Y ∀ x∈A. b(x)∈B X∩A = 0 h = f ∪ {〈x,b(x)〉. x∈A}
by auto

from prems have
II: h : X∪A → Y∪B a/∈ X∪A g = h ∪ {〈a,c〉}
using func1_1_L11C by auto

then have III: ∀ x∈X∪A. g(x) = h(x) by (rule func1_1_L11D)
moreover from I have ∀ x∈X. h(x) = f(x)

by (rule func1_1_L11C)
ultimately show ∀ x∈X. g(x) = f(x) by simp
from I have ∀ x∈A. h(x) = b(x) by (rule func1_1_L11C)
with III show ∀ x∈A. g(x) = b(x) by simp
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from II show g(a) = c by (rule func1_1_L11D)
qed

The inverse image of an intersection of a nonempty collection of sets is the
intersection of the inverse images. This generalizes function_vimage_Int

which is proven for the case of two sets.

lemma func1_1_L12:
assumes A1: B⊆Pow(Y) and A2: B6=0 and A3: f:X→Y
shows f-(

⋂
B) = (

⋂
U∈B. f-(U))

proof
from A2 show f-(

⋂
B) ⊆ (

⋂
U∈B. f-(U)) by blast

show (
⋂
U∈B. f-(U)) ⊆ f-(

⋂
B)

proof
fix x assume A4: x ∈ (

⋂
U∈B. f-(U))

from A3 have ∀ U∈B. f-(U) ⊆ X using func1_1_L6A by simp
with A4 have ∀ U∈B. x∈X by auto
with A2 have x∈X by auto
with A3 have ∃ !y. <x,y> ∈ f using Pi_iff_old by simp
with A2 A4 show x ∈ f-(

⋂
B) using vimage_iff by blast

qed
qed

If the inverse image of a set is not empty, then the set is not empty. Proof
by contradiction.

lemma func1_1_L13: assumes A1:f-(A)6=0 shows A6=0
proof (rule ccontr)

assume A2:¬ A 6= 0 from A2 A1 show False by simp
qed

If the image of a set is not empty, then the set is not empty. Proof by
contradiction.

lemma func1_1_L13A: assumes A1: f(A)6=0 shows A6=0
proof (rule ccontr)

assume A2:¬ A 6= 0 from A2 A1 show False by simp
qed

What is the inverse image of a singleton?

lemma func1_1_L14: assumes f∈X→Y
shows f-({y}) = {x∈X. f(x) = y}
using prems func1_1_L6A vimage_singleton_iff apply_iff by auto

A more familiar definition of inverse image.

lemma func1_1_L15: assumes A1: f:X→Y
shows f-(A) = {x∈X. f(x) ∈ A}

proof -
have f-(A) = (

⋃
y∈A . f-{y})

by (rule vimage_eq_UN)
with A1 show thesis using func1_1_L14 by auto
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qed

A more familiar definition of image.

lemma func_imagedef: assumes A1: f:X→Y and A2: A⊆X
shows f(A) = {f(x). x ∈ A}

proof
from A1 show f(A) ⊆ {f(x). x ∈ A}

using image_iff apply_iff by auto
show {f(x). x ∈ A} ⊆ f(A)
proof

fix y assume y ∈ {f(x). x ∈ A}
then obtain x where x∈A ∧ y = f(x)

by auto
with A1 A2 show y ∈ f(A)

using apply_iff image_iff by auto
qed

qed

The image of an intersection is contained in the intersection of the images.

lemma image_of_Inter: assumes A1: f:X→Y and
A2: I6=0 and A3: ∀ i∈I. P(i) ⊆ X
shows f(

⋂
i∈I. P(i)) ⊆ (

⋂
i∈I. f(P(i)) )

proof
fix y assume A4: y ∈ f(

⋂
i∈I. P(i))

from A1 A2 A3 have f(
⋂
i∈I. P(i)) = {f(x). x ∈ (

⋂
i∈I. P(i) )}

using ZF1_1_L7 func_imagedef by simp
with A4 obtain x where x ∈ (

⋂
i∈I. P(i) ) and y = f(x)

by auto
with A1 A2 A3 show y ∈ (

⋂
i∈I. f(P(i)) ) using func_imagedef

by auto
qed

The image of a nonempty subset of domain is nonempty.

lemma func1_1_L15A:
assumes A1: f: X→Y and A2: A⊆X and A3: A6=0
shows f(A) 6= 0

proof -
from A3 obtain x where x∈A by auto
with A1 A2 have f(x) ∈ f(A)

using func_imagedef by auto
then show f(A) 6= 0 by auto

qed

The next lemma allows to prove statements about the values in the domain
of a function given a statement about values in the range.

lemma func1_1_L15B:
assumes f:X→Y and A⊆X and ∀ y∈f(A). P(y)
shows ∀ x∈A. P(f(x))

22



using prems func_imagedef by simp

An image of an image is the image of a composition.

lemma func1_1_L15C: assumes A1: f:X→Y and A2: g:Y→Z
and A3: A⊆X
shows
g(f(A)) = {g(f(x)). x∈A}
g(f(A)) = (g O f)(A)

proof -
from A1 A3 have {f(x). x∈A} ⊆ Y

using apply_funtype by auto
with A2 have g{f(x). x∈A} = {g(f(x)). x∈A}

using func_imagedef by auto
with A1 A3 show I: g(f(A)) = {g(f(x)). x∈A}

using func_imagedef by simp
from A1 A3 have ∀ x∈A. (g O f)(x) = g(f(x))

using comp_fun_apply by auto
with I have g(f(A)) = {(g O f)(x). x∈A}

by simp
moreover from A1 A2 A3 have (g O f)(A) = {(g O f)(x). x∈A}

using comp_fun func_imagedef by blast
ultimately show g(f(A)) = (g O f)(A)

by simp
qed

If an element of the domain of a function belongs to a set, then its value
belongs to the imgage of that set.

lemma func1_1_L15D: assumes f:X→Y x∈A A⊆X
shows f(x) ∈ f(A)
using prems func_imagedef by auto

What is the image of a set defined by a meta-fuction?

lemma func1_1_L17:
assumes A1: f ∈ X→Y and A2: ∀ x∈A. b(x) ∈ X
shows f({b(x). x∈A}) = {f(b(x)). x∈A}

proof -
from A2 have {b(x). x∈A} ⊆ X by auto
with A1 show thesis using func_imagedef by auto

qed

What are the values of composition of three functions?

lemma func1_1_L18: assumes A1: f:A→B g:B→C h:C→D
and A2: x∈A
shows
(h O g O f)(x) ∈ D
(h O g O f)(x) = h(g(f(x)))

proof -
from A1 have (h O g O f) : A→D
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using comp_fun by blast
with A2 show (h O g O f)(x) ∈ D using apply_funtype

by simp
from A1 A2 have (h O g O f)(x) = h( (g O f)(x))

using comp_fun comp_fun_apply by blast
with A1 A2 show (h O g O f)(x) = h(g(f(x)))

using comp_fun_apply by simp
qed

4.2 Functions restricted to a set

What is the inverse image of a set under a restricted fuction?

lemma func1_2_L1: assumes A1: f:X→Y and A2: B⊆X
shows restrict(f,B)-(A) = f-(A) ∩ B

proof -
let g = restrict(f,B)
from A1 A2 have g:B→Y

using restrict_type2 by simp
with A2 A1 show g-(A) = f-(A) ∩ B

using func1_1_L15 restrict_if by auto
qed

A criterion for when one function is a restriction of another. The lemma
below provides a result useful in the actual proof of the criterion and appli-
cations.

lemma func1_2_L2:
assumes A1: f:X→Y and A2: g ∈ A→Z
and A3: A⊆X and A4: f ∩ A×Z = g
shows ∀ x∈A. g(x) = f(x)

proof
fix x assume x∈A
with A2 have <x,g(x)> ∈ g using apply_Pair by simp
with A4 A1 show g(x) = f(x) using apply_iff by auto

qed

Here is the actual criterion.

lemma func1_2_L3:
assumes A1: f:X→Y and A2: g:A→Z
and A3: A⊆X and A4: f ∩ A×Z = g
shows g = restrict(f,A)

proof
from A4 show g ⊆ restrict(f, A) using restrict_iff by auto
show restrict(f, A) ⊆ g
proof

fix z assume A5:z ∈ restrict(f,A)
then obtain x y where D1:z∈f & x∈A & z = <x,y>

using restrict_iff by auto
with A1 have y = f(x) using apply_iff by auto
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with A1 A2 A3 A4 D1 have y = g(x) using func1_2_L2 by simp
with A2 D1 show z∈g using apply_Pair by simp

qed
qed

Which function space a restricted function belongs to?

lemma func1_2_L4:
assumes A1: f:X→Y and A2: A⊆X and A3: ∀ x∈A. f(x) ∈ Z
shows restrict(f,A) : A→Z

proof -
let g = restrict(f,A)
from A1 A2 have g : A→Y

using restrict_type2 by simp
moreover {

fix x assume x∈A
with A1 A3 have g(x) ∈ Z using restrict by simp}

ultimately show thesis by (rule Pi_type)
qed

4.3 Constant functions

We define constant(= c) functions on a set X in a natural way as ConstantFunction(X, c).

constdefs
ConstantFunction(X,c) ≡ X×{c}

Constant function belongs to the function space.

lemma func1_3_L1:
assumes A1: c∈Y shows ConstantFunction(X,c) : X→Y

proof -
from A1 have X×{c} = {<x,y> ∈ X×Y. c = y}

by auto
with A1 show thesis using func1_1_L11A ConstantFunction_def

by simp
qed

Constant function is equal to the constant on its domain.

lemma func1_3_L2: assumes A1: x∈X
shows ConstantFunction(X,c)(x) = c

proof -
have ConstantFunction(X,c) ∈ X→{c}

using func1_3_L1 by simp
moreover from A1 have <x,c> ∈ ConstantFunction(X,c)

using ConstantFunction_def by simp
ultimately show thesis using apply_iff by simp

qed
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4.4 Injections, surjections, bijections etc.

In this section we prove the properties of the spaces of injections, surjections
and bijections that we can’t find in the standard Isabelle’s Perm.thy.

The domain of a bijection between X and Y is X.

lemma domain_of_bij:
assumes A1: f ∈ bij(X,Y) shows domain(f) = X

proof -
from A1 have f:X→Y using bij_is_fun by simp
then show domain(f) = X using func1_1_L1 by simp

qed

The value of the inverse of an injection on a point of the image of a set
belongs to that set.

lemma inj_inv_back_in_set:
assumes A1: f ∈ inj(A,B) and A2: C⊆A and A3: y ∈ f(C)
shows
converse(f)(y) ∈ C
f(converse(f)(y)) = y

proof -
from A1 have I: f:A→B using inj_is_fun by simp
with A2 A3 obtain x where II: x∈C y = f(x)

using func_imagedef by auto
with A1 A2 show converse(f)(y) ∈ C using left_inverse

by auto
from A1 A2 I II show f(converse(f)(y)) = y

using func1_1_L5A right_inverse by auto
qed

For injections if a value at a point belongs to the image of a set, then the
point belongs to the set.

lemma inj_point_of_image:
assumes A1: f ∈ inj(A,B) and A2: C⊆A and
A3: x∈A and A4: f(x) ∈ f(C)
shows x ∈ C

proof -
from A1 A2 A4 have converse(f)(f(x)) ∈ C

using inj_inv_back_in_set by simp
moreover from A1 A3 have converse(f)(f(x)) = x

using left_inverse_eq by simp
ultimately show x ∈ C by simp

qed

For injections the image of intersection is the intersection of images.

lemma inj_image_of_Inter: assumes A1: f ∈ inj(A,B) and
A2: I6=0 and A3: ∀ i∈I. P(i) ⊆ A
shows f(

⋂
i∈I. P(i)) = (

⋂
i∈I. f(P(i)) )
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proof
from A1 A2 A3 show f(

⋂
i∈I. P(i)) ⊆ (

⋂
i∈I. f(P(i)) )

using inj_is_fun image_of_Inter by auto
from A1 A2 A3 have f:A→B and (

⋂
i∈I. P(i) ) ⊆ A

using inj_is_fun ZF1_1_L7 by auto
then have I: f(

⋂
i∈I. P(i)) = { f(x). x ∈ (

⋂
i∈I. P(i) ) }

using func_imagedef by simp
{ fix y assume A4: y ∈ (

⋂
i∈I. f(P(i)) )

let x = converse(f)(y)
from A2 obtain i0 where i0 ∈ I by auto
with A1 A4 have II: y ∈ range(f) using inj_is_fun func1_1_L6

by auto
with A1 have III: f(x) = y using right_inverse by simp
from A1 II have IV: x ∈ A using inj_converse_fun apply_funtype

by blast
{ fix i assume i∈I

with A3 A4 III have P(i) ⊆ A and f(x) ∈ f(P(i))
by auto

with A1 IV have x ∈ P(i) using inj_point_of_image
by blast

} then have ∀ i∈I. x ∈ P(i) by simp
with A2 I have f(x) ∈ f(

⋂
i∈I. P(i) )

by auto
with III have y ∈ f(

⋂
i∈I. P(i) ) by simp

} then show (
⋂
i∈I. f(P(i)) ) ⊆ f(

⋂
i∈I. P(i) )

by auto
qed

This concludes func1.thy.

end
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5 Order ZF.thy

theory Order_ZF imports Fol1

begin

This theory file considers various notion related to order. We redefine the
notions of a total order, linear order and partial order to have the same
terminology as wikipedia (I found it very consistent across different areas of
math). We also define and study the notions of intervals and bounded sets.
We show the inclusion relations between the intervals with endpoints being
in certain order. We also show that union of bounded sets are bounded.
This allows to show that finite sets are bounded in Finite ZF.thy.

5.1 Definitions

In this section we formulate the definitions related to order relations.

We define a linear order as a binary relation that is antisymmetric, transitive
and total. Note that this terminology is different than the one used the
standard Order.thy file. The sets that are bounded below and above are
also defined, as are bounded sets. Empty sets are defined as bounded. The
notation for the definition of an interval may be mysterious for some readers,
see Order_ZF_2_L1 for more intuitive notation. We aslo define the maximum
(the greater of) two elemnts and the minmum (the smaller of) two elements.
We say that a set has a maximum (minimum) if it has an element that is not
smaller (not greater, resp.) that any other one. We show that under some
conditions this element of the set is unique (if exists). The element with
this property is called the maximum (minimum) of the set. The supremum
of a set A is defined as the minimum of the set of upper bounds, i.e. the
set {u.∀a∈A〈a, u〉 ∈ r} =

⋂
a∈A r{a}. Infimum is defined analogously. Recall

that r-(A)={x : 〈x, y〉 ∈ r for some y ∈ A is the inverse image of the set A
by relation r. We define a (order) relation to be complete if every nonempty
bounded above set has a supremum. This terminolgy may conflict with the
one for complete metric space. We will worry about that when we actually
define a complete metric space.

constdefs

IsTotal (infixl {is total on} 65)
r {is total on} X ≡ (∀ a∈X.∀ b∈X. <a,b> ∈ r ∨ <b,a> ∈ r)

IsLinOrder(X,r) ≡ ( antisym(r) ∧ trans(r) ∧ (r {is total on} X))

IsPartOrder(X,r) ≡ (refl(X,r) ∧ antisym(r) ∧ trans(r))

IsBoundedAbove(A,r) ≡ ( A=0 ∨ (∃ u. ∀ x∈A. <x,u> ∈ r))
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IsBoundedBelow(A,r) ≡ (A=0 ∨ (∃ l. ∀ x∈A. <l,x> ∈ r))

IsBounded(A,r) ≡ (IsBoundedAbove(A,r) ∧ IsBoundedBelow(A,r))

Interval(r,a,b) ≡ r{a} ∩ r-{b}

GreaterOf(r,a,b) ≡ (if <a,b> ∈ r then b else a)

SmallerOf(r,a,b) ≡ (if <a,b> ∈ r then a else b)

HasAmaximum(r,A) ≡ ∃ M∈A.∀ x∈A. <x,M> ∈ r

HasAminimum(r,A) ≡ ∃ m∈A.∀ x∈A. <m,x> ∈ r

Maximum(r,A) ≡ THE M. M∈A ∧ (∀ x∈A. <x,M> ∈ r)

Minimum(r,A) ≡ THE m. m∈A ∧ (∀ x∈A. <m,x> ∈ r)

Supremum(r,A) ≡ Minimum(r,
⋂
a∈A. r{a})

Infimum(r,A) ≡ Maximum(r,
⋂
a∈A. r-{a})

IsComplete (_ {is complete})
r {is complete} ≡
∀ A. IsBoundedAbove(A,r) ∧ A6=0 −→ HasAminimum(r,

⋂
a∈A. r{a})

The essential condition to show that a total relation is reflexive.

lemma Order_ZF_1_L1: assumes r {is total on} X and a∈X
shows <a,a> ∈ r using prems IsTotal_def by auto

A total relation is reflexive.

lemma total_is_refl:
assumes r {is total on} X
shows refl(X,r) using prems Order_ZF_1_L1 refl_def by simp

A linear order is partial order.

lemma Order_ZF_1_L2: assumes IsLinOrder(X,r)
shows IsPartOrder(X,r)
using prems IsLinOrder_def IsPartOrder_def refl_def Order_ZF_1_L1
by auto

Partial order that is total is linear.

lemma Order_ZF_1_L3:
assumes IsPartOrder(X,r) and r {is total on} X
shows IsLinOrder(X,r)
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using prems IsPartOrder_def IsLinOrder_def
by simp

Relation that is total on a set is total on any subset.

lemma Order_ZF_1_L4: assumes r {is total on} X and A⊆X
shows r {is total on} A
using prems IsTotal_def by auto

If the relation is total, then every set is a union of those elements that are
nongreater than a given one and nonsmaller than a given one.

lemma Order_ZF_1_L5:
assumes r {is total on} X and A⊆X and a∈X
shows A = {x∈A. 〈x,a〉 ∈ r} ∪ {x∈A. 〈a,x〉 ∈ r}
using prems IsTotal_def by auto

5.2 Intervals

In this section we discuss intervals.

The next lemma explains the notation of the definition of an interval.

lemma Order_ZF_2_L1:
shows x ∈ Interval(r,a,b) ←→ <a,x> ∈ r ∧ <x,b> ∈ r
using Interval_def by auto

Since there are some problems with applying the above lemma (seems that
simp and auto don’t handle equivalence very well), we split Order_ZF_2_L1

into two lemmas.

lemma Order_ZF_2_L1A: assumes x ∈ Interval(r,a,b)
shows <a,x> ∈ r <x,b> ∈ r
using prems Order_ZF_2_L1 by auto

Order_ZF_2_L1, implication from right to left.

lemma Order_ZF_2_L1B: assumes <a,x> ∈ r <x,b> ∈ r
shows x ∈ Interval(r,a,b)
using prems Order_ZF_2_L1 by simp

If the relation is reflexive, the endpoints belong to the interval.

lemma Order_ZF_2_L2: assumes refl(X,r)
and a∈X b∈X and <a,b> ∈ r
shows
a ∈ Interval(r,a,b)
b ∈ Interval(r,a,b)
using prems refl_def Order_ZF_2_L1 by auto

Under the assumptions of Order_ZF_2_L2, the interval is nonempty.

lemma Order_ZF_2_L2A: assumes refl(X,r)
and a∈X b∈X and <a,b> ∈ r
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shows Interval(r,a,b) 6= 0
proof -

from prems have a ∈ Interval(r,a,b)
using Order_ZF_2_L2 by simp

then show Interval(r,a,b) 6= 0 by auto
qed

If a, b, c, d are in this order, then [b, c] ⊆ [a, d]. We only need trasitivity for
this to be true.

lemma Order_ZF_2_L3:
assumes A1: trans(r) and A2:<a,b>∈r <b,c>∈r <c,d>∈r

shows Interval(r,b,c) ⊆ Interval(r,a,d)
proof

fix x assume A3: x ∈ Interval(r, b, c)
from A1 have trans(r) .
moreover from A2 A3 have <a,b> ∈ r ∧ <b,x> ∈ r using Order_ZF_2_L1A

by simp
ultimately have T1: <a,x> ∈ r by (rule Fol1_L3)
from A1 have trans(r) .
moreover from A2 A3 have <x,c> ∈ r ∧ <c,d> ∈ r using Order_ZF_2_L1A

by simp
ultimately have <x,d> ∈ r by (rule Fol1_L3)
with T1 show x ∈ Interval(r,a,d) using Order_ZF_2_L1B

by simp
qed

For reflexive and antisymmetric relations the interval with equal endpoints
consists only of that endpoint.

lemma Order_ZF_2_L4:
assumes A1: refl(X,r) and A2: antisym(r) and A3: a∈X
shows Interval(r,a,a) = {a}

proof
from A1 A3 have <a,a> ∈ r using refl_def by simp
with A1 A3 show {a} ⊆ Interval(r,a,a) using Order_ZF_2_L2 by simp
from A2 show Interval(r,a,a) ⊆ {a} using Order_ZF_2_L1A Fol1_L4

by fast
qed

For transitive relations the endpoints have to be in the relation for the
interval to be nonempty.

lemma Order_ZF_2_L5: assumes A1: trans(r) and A2: <a,b> /∈ r
shows Interval(r,a,b) = 0

proof (rule ccontr)
assume Interval(r,a,b)6=0 then obtain x where x ∈ Interval(r,a,b)

by auto
with A1 A2 show False using Order_ZF_2_L1A Fol1_L3 by fast

qed

If a relation is defined on a set, then intervals are subsets of that set.
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lemma Order_ZF_2_L6: assumes A1: r ⊆ X×X
shows Interval(r,a,b) ⊆ X
using prems Interval_def by auto

5.3 Bounded sets

In this section we consider properties of bounded sets.

For reflexive relations singletons are bounded.

lemma Order_ZF_3_L1: assumes refl(X,r) and a∈X
shows IsBounded({a},r)
using prems refl_def IsBoundedAbove_def IsBoundedBelow_def
IsBounded_def by auto

Sets that are bounded above are contained in the domain of the relation.

lemma Order_ZF_3_L1A: assumes r ⊆ X×X
and IsBoundedAbove(A,r)
shows A⊆X using prems IsBoundedAbove_def by auto

Sets that are bounded below are contained in the domain of the relation.

lemma Order_ZF_3_L1B: assumes r ⊆ X×X
and IsBoundedBelow(A,r)
shows A⊆X using prems IsBoundedBelow_def by auto

For a total relation, the greater of two elements, as defined above, is indeed
greater of any of the two.

lemma Order_ZF_3_L2: assumes r {is total on} X
and x∈X y∈X
shows
〈x,GreaterOf(r,x,y)〉 ∈ r
〈y,GreaterOf(r,x,y)〉 ∈ r
〈SmallerOf(r,x,y),x〉 ∈ r
〈SmallerOf(r,x,y),y〉 ∈ r
using prems IsTotal_def Order_ZF_1_L1 GreaterOf_def SmallerOf_def
by auto

If A is bounded above by u, B is bounded above by w, then A∪B is bounded
above by the greater of u, w.

lemma Order_ZF_3_L2B:
assumes A1: r {is total on} X and A2: trans(r)
and A3: u∈X w∈X
and A4: ∀ x∈A. <x,u> ∈ r ∀ x∈B. <x,w> ∈ r
shows ∀ x∈A∪B. 〈x,GreaterOf(r,u,w)〉 ∈ r

proof
let v = GreaterOf(r,u,w)
from A1 A3 have T1: <u,v> ∈ r and T2: <w,v> ∈ r

using Order_ZF_3_L2 by auto
fix x assume A5: x∈A∪B show 〈x,v〉 ∈ r
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proof (cases x∈A)
assume x∈A
with A4 T1 have <x,u> ∈ r ∧ <u,v> ∈ r by simp
with A2 show 〈x,v〉 ∈ r by (rule Fol1_L3)

next assume x/∈A
with A5 A4 T2 have <x,w> ∈ r ∧ <w,v> ∈ r by simp
with A2 show 〈x,v〉 ∈ r by (rule Fol1_L3)

qed
qed

For total and transitive relation the union of two sets bounded above is
bounded above.

lemma Order_ZF_3_L3:
assumes A1: r {is total on} X and A2: trans(r)
and A3: IsBoundedAbove(A,r) IsBoundedAbove(B,r)
and A4: r ⊆ X×X
shows IsBoundedAbove(A∪B,r)

proof (cases A=0 ∨ B=0)
assume A=0 ∨ B=0
with A3 show thesis by auto

next assume ¬ (A = 0 ∨ B = 0)
then have T1: A6=0 B6=0 by auto
with A3 obtain u w where D1: ∀ x∈A. <x,u> ∈ r ∀ x∈B. <x,w> ∈ r

using IsBoundedAbove_def by auto
let U = GreaterOf(r,u,w)
from T1 A4 D1 have u∈X w∈X by auto
with A1 A2 D1 have ∀ x∈A∪B.<x,U> ∈ r

using Order_ZF_3_L2B by blast
then show IsBoundedAbove(A∪B,r)

using IsBoundedAbove_def by auto
qed

For total and transitive relations if a set A is bounded above then A ∪ {a}
is bounded above.

lemma Order_ZF_3_L4:
assumes A1: r {is total on} X and A2: trans(r)
and A3: IsBoundedAbove(A,r) and A4: a∈X and A5: r ⊆ X×X
shows IsBoundedAbove(A∪{a},r)

proof -
from A1 have refl(X,r)

using total_is_refl by simp
with prems show thesis using
Order_ZF_3_L1 IsBounded_def Order_ZF_3_L3 by simp

qed

If A is bounded below by l, B is bounded below by m, then A∪B is bounded
below by the smaller of u, w.

lemma Order_ZF_3_L5B:
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assumes A1: r {is total on} X and A2: trans(r)
and A3: l∈X m∈X
and A4: ∀ x∈A. <l,x> ∈ r ∀ x∈B. <m,x> ∈ r
shows ∀ x∈A∪B. 〈SmallerOf(r,l,m),x〉 ∈ r

proof
let k = SmallerOf(r,l,m)
from A1 A3 have T1: <k,l> ∈ r and T2: <k,m> ∈ r

using Order_ZF_3_L2 by auto
fix x assume A5: x∈A∪B show 〈k,x〉 ∈ r
proof (cases x∈A)

assume x∈A
with A4 T1 have <k,l> ∈ r ∧ <l,x> ∈ r by simp
with A2 show 〈k,x〉 ∈ r by (rule Fol1_L3)

next assume x/∈A
with A5 A4 T2 have <k,m> ∈ r ∧ <m,x> ∈ r by simp
with A2 show 〈k,x〉 ∈ r by (rule Fol1_L3)

qed
qed

For total and transitive relation the union of two sets bounded below is
bounded below.

lemma Order_ZF_3_L6:
assumes A1: r {is total on} X and A2: trans(r)
and A3: IsBoundedBelow(A,r) IsBoundedBelow(B,r)
and A4: r ⊆ X×X
shows IsBoundedBelow(A∪B,r)

proof (cases A=0 ∨ B=0)
assume A=0 ∨ B=0
with A3 show thesis by auto

next assume ¬ (A = 0 ∨ B = 0)
then have T1: A6=0 B6=0 by auto
with A3 obtain l m where D1: ∀ x∈A. <l,x> ∈ r ∀ x∈B. <m,x> ∈ r

using IsBoundedBelow_def by auto
let L = SmallerOf(r,l,m)
from T1 A4 D1 have T1: l∈X m∈X by auto
with A1 A2 D1 have ∀ x∈A∪B.<L,x> ∈ r

using Order_ZF_3_L5B by blast
then show IsBoundedBelow(A∪B,r)

using IsBoundedBelow_def by auto
qed

For total and transitive relations if a set A is bounded below then A ∪ {a}
is bounded below.

lemma Order_ZF_3_L7:
assumes A1: r {is total on} X and A2: trans(r)
and A3: IsBoundedBelow(A,r) and A4: a∈X and A5: r ⊆ X×X
shows IsBoundedBelow(A∪{a},r)

proof -
from A1 have refl(X,r)
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using total_is_refl by simp
with prems show thesis using
Order_ZF_3_L1 IsBounded_def Order_ZF_3_L6 by simp

qed

For total and transitive relations unions of two bounded sets are bounded.

theorem Order_ZF_3_T1:
assumes r {is total on} X and trans(r)
and IsBounded(A,r) IsBounded(B,r)
and r ⊆ X×X
shows IsBounded(A∪B,r)
using prems Order_ZF_3_L3 Order_ZF_3_L6 Order_ZF_3_L7 IsBounded_def
by simp

For total and transitive relations if a set A is bounded then A ∪ {a} is
bounded.

lemma Order_ZF_3_L8:
assumes r {is total on} X and trans(r)
and IsBounded(A,r) and a∈X and r ⊆ X×X
shows IsBounded(A∪{a},r)
using prems total_is_refl Order_ZF_3_L1 Order_ZF_3_T1 by blast

A sufficient condition for a set to be bounded below.

lemma Order_ZF_3_L9: assumes A1: ∀ a∈A. 〈l,a〉 ∈ r
shows IsBoundedBelow(A,r)

proof -
from A1 have ∃ l. ∀ x∈A. 〈l,x〉 ∈ r

by auto
then show IsBoundedBelow(A,r)

using IsBoundedBelow_def by simp
qed

A sufficient condition for a set to be bounded above.

lemma Order_ZF_3_L10: assumes A1: ∀ a∈A. 〈a,u〉 ∈ r
shows IsBoundedAbove(A,r)

proof -
from A1 have ∃ u. ∀ x∈A. 〈x,u〉 ∈ r

by auto
then show IsBoundedAbove(A,r)

using IsBoundedAbove_def by simp
qed

Intervals are bounded.

lemma Order_ZF_3_L11: shows
IsBoundedAbove(Interval(r,a,b),r)
IsBoundedBelow(Interval(r,a,b),r)
IsBounded(Interval(r,a,b),r)

proof -
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{ fix x assume x ∈ Interval(r,a,b)
then have <x,b> ∈ r <a,x> ∈ r

using Order_ZF_2_L1A by auto
} then have

∃ u. ∀ x∈Interval(r,a,b). <x,u> ∈ r
∃ l. ∀ x∈Interval(r,a,b). <l,x> ∈ r

by auto
then show
IsBoundedAbove(Interval(r,a,b),r)
IsBoundedBelow(Interval(r,a,b),r)
IsBounded(Interval(r,a,b),r)
using IsBoundedAbove_def IsBoundedBelow_def IsBounded_def
by auto

qed

A subset of a set that is bounded below is bounded below.

lemma Order_ZF_3_L12: assumes IsBoundedBelow(A,r) and B⊆A
shows IsBoundedBelow(B,r)
using prems IsBoundedBelow_def by auto

A subset of a set that is bounded above is bounded above.

lemma Order_ZF_3_L13: assumes IsBoundedAbove(A,r) and B⊆A
shows IsBoundedAbove(B,r)
using prems IsBoundedAbove_def by auto

If for every element of X we can find one in A that is greater, then the A
can not be bounded above. Works for relations that are total, transitive and
antisymmetric.

lemma Order_ZF_3_L14:
assumes A1: r {is total on} X
and A2: trans(r) and A3: antisym(r)
and A4: r ⊆ X×X and A5: X6=0
and A6: ∀ x∈X. ∃ a∈A. x6=a ∧ 〈x,a〉 ∈ r
shows ¬IsBoundedAbove(A,r)

proof -
{ from A5 A6 have I: A6=0 by auto

moreover assume IsBoundedAbove(A,r)
ultimately obtain u where II: ∀ x∈A. <x,u> ∈ r

using IsBounded_def IsBoundedAbove_def by auto
with A4 I have u∈X by auto
with A6 obtain b where b∈A and III: u6=b and 〈u,b〉 ∈ r

by auto
with II have 〈b,u〉 ∈ r 〈u,b〉 ∈ r by auto
with A3 have b=u by (rule Fol1_L4)
with III have False by simp

} thus ¬IsBoundedAbove(A,r) by auto
qed

The set of elements in a set A that are nongreater than a given element is
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bounded above.

lemma Order_ZF_3_L15: shows IsBoundedAbove({x∈A. 〈x,a〉 ∈ r},r)
using IsBoundedAbove_def by auto

If A is bounded below, then the set of elements in a set A that are nongreater
than a given element is bounded.

lemma Order_ZF_3_L16: assumes A1: IsBoundedBelow(A,r)
shows IsBounded({x∈A. 〈x,a〉 ∈ r},r)

proof (cases A=0)
assume A=0
then show IsBounded({x∈A. 〈x,a〉 ∈ r},r)

using IsBoundedBelow_def IsBoundedAbove_def IsBounded_def
by auto

next assume A6=0
with A1 obtain l where I: ∀ x∈A. 〈l,x〉 ∈ r

using IsBoundedBelow_def by auto
then have ∀ y∈{x∈A. 〈x,a〉 ∈ r}. 〈l,y〉 ∈ r by simp
then have IsBoundedBelow({x∈A. 〈x,a〉 ∈ r},r)

by (rule Order_ZF_3_L9)
then show IsBounded({x∈A. 〈x,a〉 ∈ r},r)

using Order_ZF_3_L15 IsBounded_def by simp
qed

5.4 Maximum and minimum of a set

In this section we show that maximum and minimum are unique if they
exist. We also show that union of sets that have maxima (minima) has a
maximum (minimum). We also show that singletons have maximum and
minimum. All this allows to show (in Finite ZF.thy) that every finite set
has well-defined maximum and minimum.

For antisymmetric relations maximum of a set is unique if it exists.

lemma Order_ZF_4_L1: assumes A1: antisym(r) and A2: HasAmaximum(r,A)
shows ∃ !M. M∈A ∧ (∀ x∈A. <x,M> ∈ r)

proof
from A2 show ∃ M. M ∈ A ∧ (∀ x∈A. 〈x, M〉 ∈ r)

using HasAmaximum_def by auto
fix M1 M2 assume
A2: M1 ∈ A ∧ (∀ x∈A. 〈x, M1〉 ∈ r) M2 ∈ A ∧ (∀ x∈A. 〈x, M2〉 ∈ r)
then have 〈M1,M2〉 ∈ r 〈M2,M1〉 ∈ r by auto
with A1 show M1=M2 by (rule Fol1_L4)

qed

For antisymmetric relations minimum of a set is unique if it exists.

lemma Order_ZF_4_L2: assumes A1: antisym(r) and A2: HasAminimum(r,A)
shows ∃ !m. m∈A ∧ (∀ x∈A. <m,x> ∈ r)

proof
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from A2 show ∃ m. m ∈ A ∧ (∀ x∈A. 〈m, x〉 ∈ r)
using HasAminimum_def by auto

fix m1 m2 assume
A2: m1 ∈ A ∧ (∀ x∈A. 〈m1, x〉 ∈ r) m2 ∈ A ∧ (∀ x∈A. 〈m2, x〉 ∈ r)
then have 〈m1,m2〉 ∈ r 〈m2,m1〉 ∈ r by auto
with A1 show m1=m2 by (rule Fol1_L4)

qed

Maximum of a set has desired properties.

lemma Order_ZF_4_L3: assumes A1: antisym(r) and A2: HasAmaximum(r,A)
shows Maximum(r,A) ∈ A ∀ x∈A. 〈x,Maximum(r,A)〉 ∈ r

proof -
let Max = THE M. M∈A ∧ (∀ x∈A. <x,M> ∈ r)
from A1 A2 have ∃ !M. M∈A ∧ (∀ x∈A. <x,M> ∈ r)

by (rule Order_ZF_4_L1)
then have Max ∈ A ∧ (∀ x∈A. <x,Max> ∈ r)

by (rule theI)
then show Maximum(r,A) ∈ A ∀ x∈A. 〈x,Maximum(r,A)〉 ∈ r

using Maximum_def by auto
qed

Minimum of a set has desired properties.

lemma Order_ZF_4_L4: assumes A1: antisym(r) and A2: HasAminimum(r,A)
shows Minimum(r,A) ∈ A ∀ x∈A. 〈Minimum(r,A),x〉 ∈ r

proof -
let Min = THE m. m∈A ∧ (∀ x∈A. <m,x> ∈ r)
from A1 A2 have ∃ !m. m∈A ∧ (∀ x∈A. <m,x> ∈ r)

by (rule Order_ZF_4_L2)
then have Min ∈ A ∧ (∀ x∈A. <Min,x> ∈ r)

by (rule theI)
then show Minimum(r,A) ∈ A ∀ x∈A. 〈Minimum(r,A),x〉 ∈ r

using Minimum_def by auto
qed

For total and transitive relations a union a of two sets that have maxima
has a maximum.

lemma Order_ZF_4_L5:
assumes A1: r {is total on} (A∪B) and A2: trans(r)
and A3: HasAmaximum(r,A) HasAmaximum(r,B)
shows HasAmaximum(r,A∪B)

proof -
from A3 obtain M K where
D1: M∈A ∧ (∀ x∈A. <x,M> ∈ r) K∈B ∧ (∀ x∈B. <x,K> ∈ r)
using HasAmaximum_def by auto

let L = GreaterOf(r,M,K)
from D1 have T1: M ∈ A∪B K ∈ A∪B
∀ x∈A. <x,M> ∈ r ∀ x∈B. <x,K> ∈ r
by auto

with A1 A2 have ∀ x∈A∪B.<x,L> ∈ r by (rule Order_ZF_3_L2B)
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moreover from T1 have L ∈ A∪B using GreaterOf_def IsTotal_def
by simp

ultimately show HasAmaximum(r,A∪B) using HasAmaximum_def by auto
qed

For total and transitive relations A union a of two sets that have minima
has a minimum.

lemma Order_ZF_4_L6:
assumes A1: r {is total on} (A∪B) and A2: trans(r)
and A3: HasAminimum(r,A) HasAminimum(r,B)
shows HasAminimum(r,A∪B)

proof -
from A3 obtain m k where
D1: m∈A ∧ (∀ x∈A. <m,x> ∈ r) k∈B ∧ (∀ x∈B. <k,x> ∈ r)
using HasAminimum_def by auto

let l = SmallerOf(r,m,k)
from D1 have T1: m ∈ A∪B k ∈ A∪B
∀ x∈A. <m,x> ∈ r ∀ x∈B. <k,x> ∈ r
by auto

with A1 A2 have ∀ x∈A∪B.<l,x> ∈ r by (rule Order_ZF_3_L5B)
moreover from T1 have l ∈ A∪B using SmallerOf_def IsTotal_def

by simp
ultimately show HasAminimum(r,A∪B) using HasAminimum_def by auto

qed

Set that has a maximum is bounded above.

lemma Order_ZF_4_L7:
assumes HasAmaximum(r,A)
shows IsBoundedAbove(A,r)
using prems HasAmaximum_def IsBoundedAbove_def by auto

Set that has a minimum is bounded below.

lemma Order_ZF_4_L8A:
assumes HasAminimum(r,A)
shows IsBoundedBelow(A,r)
using prems HasAminimum_def IsBoundedBelow_def by auto

For reflexive relations singletons have a minimum and maximum.

lemma Order_ZF_4_L8: assumes refl(X,r) and a∈X
shows HasAmaximum(r,{a}) HasAminimum(r,{a})
using prems refl_def HasAmaximum_def HasAminimum_def by auto

For total and transitive relations if we add an element to a set that has a
maximum, the set still has a maximum.

lemma Order_ZF_4_L9:
assumes A1: r {is total on} X and A2: trans(r)
and A3: A⊆X and A4: a∈X and A5: HasAmaximum(r,A)
shows HasAmaximum(r,A∪{a})
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proof -
from A3 A4 have A∪{a} ⊆ X by auto
with A1 have r {is total on} (A∪{a})

using Order_ZF_1_L4 by blast
moreover from A1 A2 A4 A5 have
trans(r) HasAmaximum(r,A) by auto

moreover from A1 A4 have HasAmaximum(r,{a})
using total_is_refl Order_ZF_4_L8 by blast

ultimately show HasAmaximum(r,A∪{a}) by (rule Order_ZF_4_L5)
qed

For total and transitive relations if we add an element to a set that has a
minimum, the set still has a minimum.

lemma Order_ZF_4_L10:
assumes A1: r {is total on} X and A2: trans(r)
and A3: A⊆X and A4: a∈X and A5: HasAminimum(r,A)
shows HasAminimum(r,A∪{a})

proof -
from A3 A4 have A∪{a} ⊆ X by auto
with A1 have r {is total on} (A∪{a})

using Order_ZF_1_L4 by blast
moreover from A1 A2 A4 A5 have
trans(r) HasAminimum(r,A) by auto

moreover from A1 A4 have HasAminimum(r,{a})
using total_is_refl Order_ZF_4_L8 by blast

ultimately show HasAminimum(r,A∪{a}) by (rule Order_ZF_4_L6)
qed

If the order relation has a property that every nonempty bounded set attains
a minimum (for example integers are like that), then every nonempty set
bounded below attains a minimum.

lemma Order_ZF_4_L11:
assumes A1: r {is total on} X and
A2: trans(r) and
A3: r ⊆ X×X and
A4: ∀ A. IsBounded(A,r) ∧ A 6=0 −→ HasAminimum(r,A) and
A5: B6=0 and A6: IsBoundedBelow(B,r)
shows HasAminimum(r,B)

proof -
from A5 obtain b where T: b∈B by auto
let L = {x∈B. 〈x,b〉 ∈ r}
from A3 A6 T have T1: b∈X using Order_ZF_3_L1B by blast
with A1 T have T2: b ∈ L

using total_is_refl refl_def by simp
then have L 6= 0 by auto
moreover have IsBounded(L,r)
proof -

have L ⊆ B by auto
with A6 have IsBoundedBelow(L,r)
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using Order_ZF_3_L12 by simp
moreover have IsBoundedAbove(L,r)

by (rule Order_ZF_3_L15)
ultimately have IsBoundedAbove(L,r) ∧ IsBoundedBelow(L,r)

by blast
then show IsBounded(L,r) using IsBounded_def

by simp
qed
ultimately have IsBounded(L,r) ∧ L 6= 0 by blast
with A4 have HasAminimum(r,L) by simp
then obtain m where I: m∈L and II: ∀ x∈L. <m,x> ∈ r

using HasAminimum_def by auto
then have III: 〈m,b〉 ∈ r by simp
from I have m∈B by simp
moreover have ∀ x∈B. 〈m,x〉 ∈ r
proof

fix x assume A7: x∈B
from A3 A6 have B⊆X using Order_ZF_3_L1B by blast
with A1 A7 T1 have x ∈ L ∪ {x∈B. 〈b,x〉 ∈ r}

using Order_ZF_1_L5 by simp
then have x∈L ∨ 〈b,x〉 ∈ r by auto
moreover
{ assume x∈L

with II have 〈m,x〉 ∈ r by simp }
moreover
{ assume 〈b,x〉 ∈ r

with A2 III have trans(r) and 〈m,b〉 ∈ r ∧ 〈b,x〉 ∈ r
by auto

then have 〈m,x〉 ∈ r by (rule Fol1_L3) }
ultimately show 〈m,x〉 ∈ r by auto

qed
ultimately show HasAminimum(r,B) using HasAminimum_def

by auto
qed

A dual to Order_ZF_4_L11: If the order relation has a property that every
nonempty bounded set attains a maximum (for example integers are like
that), then every nonempty set bounded above attains a maximum.

lemma Order_ZF_4_L11A:
assumes A1: r {is total on} X and
A2: trans(r) and
A3: r ⊆ X×X and
A4: ∀ A. IsBounded(A,r) ∧ A 6=0 −→ HasAmaximum(r,A) and
A5: B6=0 and A6: IsBoundedAbove(B,r)
shows HasAmaximum(r,B)

proof -
from A5 obtain b where T: b∈B by auto
let U = {x∈B. 〈b,x〉 ∈ r}
from A3 A6 T have T1: b∈X using Order_ZF_3_L1A by blast
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with A1 T have T2: b ∈ U
using total_is_refl refl_def by simp

then have U 6= 0 by auto
moreover have IsBounded(U,r)
proof -

have U ⊆ B by auto
with A6 have IsBoundedAbove(U,r)

using Order_ZF_3_L13 by blast
moreover have IsBoundedBelow(U,r)

using IsBoundedBelow_def by auto
ultimately have IsBoundedAbove(U,r) ∧ IsBoundedBelow(U,r)

by blast
then show IsBounded(U,r) using IsBounded_def

by simp
qed
ultimately have IsBounded(U,r) ∧ U 6= 0 by blast
with A4 have HasAmaximum(r,U) by simp
then obtain m where I: m∈U and II: ∀ x∈U. 〈x,m〉 ∈ r

using HasAmaximum_def by auto
then have III: 〈b,m〉 ∈ r by simp
from I have m∈B by simp
moreover have ∀ x∈B. 〈x,m〉 ∈ r
proof

fix x assume A7: x∈B
from A3 A6 have B⊆X using Order_ZF_3_L1A by blast
with A1 A7 T1 have x ∈ {x∈B. 〈x,b〉 ∈ r} ∪ U

using Order_ZF_1_L5 by simp
then have x∈U ∨ 〈x,b〉 ∈ r by auto
moreover
{ assume x∈U

with II have 〈x,m〉 ∈ r by simp }
moreover
{ assume 〈x,b〉 ∈ r

with A2 III have trans(r) and 〈x,b〉 ∈ r ∧ 〈b,m〉 ∈ r
by auto

then have 〈x,m〉 ∈ r by (rule Fol1_L3) }
ultimately show 〈x,m〉 ∈ r by auto

qed
ultimately show HasAmaximum(r,B) using HasAmaximum_def

by auto
qed

If a set has a minimum and L is less or equal than all elements of the set,
then L is less or equal than the minimum.

lemma Order_ZF_4_L12:
assumes antisym(r) and HasAminimum(r,A) and ∀ a∈A. 〈L,a〉 ∈ r
shows 〈L,Minimum(r,A)〉 ∈ r
using prems Order_ZF_4_L4 by simp
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If a set has a maximum and all its elements are less or equal than M , then
the maximum of the set is less or equal than M .

lemma Order_ZF_4_L13:
assumes antisym(r) and HasAmaximum(r,A) and ∀ a∈A. 〈a,M〉 ∈ r
shows 〈Maximum(r,A),M〉 ∈ r
using prems Order_ZF_4_L3 by simp

If an element belongs to a set and is greater or equal than all elements of
that set, then it is the maximum of that set.

lemma Order_ZF_4_L14:
assumes A1: antisym(r) and A2: M ∈ A and
A3: ∀ a∈A. 〈a,M〉 ∈ r
shows Maximum(r,A) = M

proof -
from A2 A3 have I: HasAmaximum(r,A) using HasAmaximum_def

by auto
with A1 have ∃ !M. M∈A ∧ (∀ x∈A. 〈x,M〉 ∈ r)

using Order_ZF_4_L1 by simp
moreover from A2 A3 have M∈A ∧ (∀ x∈A. 〈x,M〉 ∈ r) by simp
moreover from A1 I have
Maximum(r,A) ∈ A ∧ (∀ x∈A. 〈x,Maximum(r,A)〉 ∈ r)
using Order_ZF_4_L3 by simp

ultimately show Maximum(r,A) = M by auto
qed

If an element belongs to a set and is less or equal than all elements of that
set, then it is the minimum of that set.

lemma Order_ZF_4_L15:
assumes A1: antisym(r) and A2: m ∈ A and
A3: ∀ a∈A. 〈m,a〉 ∈ r
shows Minimum(r,A) = m

proof -
from A2 A3 have I: HasAminimum(r,A) using HasAminimum_def

by auto
with A1 have ∃ !m. m∈A ∧ (∀ x∈A. 〈m,x〉 ∈ r)

using Order_ZF_4_L2 by simp
moreover from A2 A3 have m∈A ∧ (∀ x∈A. 〈m,x〉 ∈ r) by simp
moreover from A1 I have
Minimum(r,A) ∈ A ∧ (∀ x∈A. 〈Minimum(r,A),x〉 ∈ r)
using Order_ZF_4_L4 by simp

ultimately show Minimum(r,A) = m by auto
qed

If a set does not have a maximum, then for any its element we can find one
that is (strictly) greater.

lemma Order_ZF_4_L16:
assumes A1: antisym(r) and A2: r {is total on} X and
A3: A⊆X and
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A4: ¬HasAmaximum(r,A) and
A5: x∈A
shows ∃ y∈A. 〈x,y〉 ∈ r ∧ y6=x

proof -
{ assume A6: ∀ y∈A. 〈x,y〉 /∈ r ∨ y=x

have ∀ y∈A. 〈y,x〉 ∈ r
proof

fix y assume A7: y∈A
with A6 have 〈x,y〉 /∈ r ∨ y=x by simp
with A2 A3 A5 A7 show 〈y,x〉 ∈ r

using IsTotal_def Order_ZF_1_L1 by auto
qed
with A5 have ∃ x∈A.∀ y∈A. 〈y,x〉 ∈ r

by auto
with A4 have False using HasAmaximum_def by simp

} then show ∃ y∈A. 〈x,y〉 ∈ r ∧ y 6=x by auto
qed

5.5 Supremum and Infimum

In this section we consider the notions of supremum and infimum a set.

Elements of the set of upper bounds are indeed upper bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L1: assumes u ∈ (
⋂
a∈A. r{a}) and a∈A

shows 〈a,u〉 ∈ r
using prems by auto

Elements of the set of lower bounds are indeed lower bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L2: assumes l ∈ (
⋂
a∈A. r-{a}) and a∈A

shows 〈l,a〉 ∈ r
using prems by auto

If the set of upper bounds has a minimum, then the supremum is less or equal
than any upper bound. We can probably do away with the assumption that
A is not empty, (ab)using the fact that intersection over an empty family is
defined in Isabelle to be empty.

lemma Order_ZF_5_L3: assumes A1: antisym(r) and A2: A6=0 and
A3: HasAminimum(r,

⋂
a∈A. r{a}) and

A4: ∀ a∈A. 〈a,u〉 ∈ r
shows 〈Supremum(r,A),u〉 ∈ r

proof -
let U =

⋂
a∈A. r{a}

from A4 have ∀ a∈A. u ∈ r{a} using image_singleton_iff
by simp

with A2 have u∈U by auto
with A1 A3 show 〈Supremum(r,A),u〉 ∈ r
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using Order_ZF_4_L4 Supremum_def by simp
qed

Infimum is greater or equal than any lower bound.

lemma Order_ZF_5_L4: assumes A1: antisym(r) and A2: A6=0 and
A3: HasAmaximum(r,

⋂
a∈A. r-{a}) and

A4: ∀ a∈A. 〈l,a〉 ∈ r
shows 〈l,Infimum(r,A)〉 ∈ r

proof -
let L =

⋂
a∈A. r-{a}

from A4 have ∀ a∈A. l ∈ r-{a} using vimage_singleton_iff
by simp

with A2 have l∈L by auto
with A1 A3 show 〈l,Infimum(r,A)〉 ∈ r

using Order_ZF_4_L3 Infimum_def by simp
qed

If z is an upper bound for A and is greater or equal than any other upper
bound, then z is the supremum of A.

lemma Order_ZF_5_L5: assumes A1: antisym(r) and A2: A6=0 and
A3: ∀ x∈A. 〈x,z〉 ∈ r and
A4: ∀ y. (∀ x∈A. 〈x,y〉 ∈ r) −→ 〈z,y〉 ∈ r
shows
HasAminimum(r,

⋂
a∈A. r{a})

z = Supremum(r,A)
proof -

let B =
⋂
a∈A. r{a}

from A2 A3 A4 have I: z ∈ B ∀ y∈B. 〈z,y〉 ∈ r
by auto

then show HasAminimum(r,
⋂
a∈A. r{a})

using HasAminimum_def by auto
from A1 I show z = Supremum(r,A)

using Order_ZF_4_L15 Supremum_def by simp
qed

If a set has a maximum, then the maximum is the supremum.

lemma Order_ZF_5_L6:
assumes A1: antisym(r) and A2: A6=0 and
A3: HasAmaximum(r,A)
shows
HasAminimum(r,

⋂
a∈A. r{a})

Maximum(r,A) = Supremum(r,A)
proof -

let M = Maximum(r,A)
from A1 A3 have I: M ∈ A and II: ∀ x∈A. 〈x,M〉 ∈ r

using Order_ZF_4_L3 by auto
from I have III: ∀ y. (∀ x∈A. 〈x,y〉 ∈ r) −→ 〈M,y〉 ∈ r

by simp
with A1 A2 II show HasAminimum(r,

⋂
a∈A. r{a})
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by (rule Order_ZF_5_L5)
from A1 A2 II III show M = Supremum(r,A)

by (rule Order_ZF_5_L5)
qed

Properties of supremum of a set for complete relations.

lemma Order_ZF_5_L7:
assumes A1: r ⊆ X×X and A2: antisym(r) and
A3: r {is complete} and
A4: A⊆X A6=0 and A5: ∃ x∈X. ∀ y∈A. 〈y,x〉 ∈ r
shows
Supremum(r,A) ∈ X
∀ x∈A. 〈x,Supremum(r,A)〉 ∈ r

proof -
from A5 have IsBoundedAbove(A,r) using IsBoundedAbove_def

by auto
with A3 A4 have HasAminimum(r,

⋂
a∈A. r{a})

using IsComplete_def by simp
with A2 have Minimum(r,

⋂
a∈A. r{a}) ∈ (

⋂
a∈A. r{a} )

using Order_ZF_4_L4 by simp
moreover have Minimum(r,

⋂
a∈A. r{a}) = Supremum(r,A)

using Supremum_def by simp
ultimately have I: Supremum(r,A) ∈ (

⋂
a∈A. r{a} )

by simp
moreover from A4 obtain a where a∈A by auto
ultimately have 〈a,Supremum(r,A)〉 ∈ r using Order_ZF_5_L1

by simp
with A1 show Supremum(r,A) ∈ X by auto
from I show ∀ x∈A. 〈x,Supremum(r,A)〉 ∈ r using Order_ZF_5_L1

by simp
qed

If the relation is a linear order then for any element y smaller than the
supremum of a set we can find one element of the set that is greater than y.

lemma Order_ZF_5_L8:
assumes A1: r ⊆ X×X and A2: IsLinOrder(X,r) and
A3: r {is complete} and
A4: A⊆X A6=0 and A5: ∃ x∈X. ∀ y∈A. 〈y,x〉 ∈ r and
A6: 〈y,Supremum(r,A)〉 ∈ r y 6= Supremum(r,A)
shows ∃ z∈A. 〈y,z〉 ∈ r ∧ y 6= z

proof -
from A2 have
I: antisym(r) and
II: trans(r) and
III: r {is total on} X
using IsLinOrder_def by auto

from A1 A6 have T1: y∈X by auto
{ assume A7: ∀ z ∈ A. 〈y,z〉 /∈ r ∨ y=z

from A4 I have antisym(r) and A 6=0 by auto
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moreover have ∀ x∈A. 〈x,y〉 ∈ r
proof

fix x assume A8: x∈A
with A4 have T2: x∈X by auto
from A7 A8 have 〈y,x〉 /∈ r ∨ y=x by simp
with III T1 T2 show 〈x,y〉 ∈ r

using IsTotal_def total_is_refl refl_def by auto
qed
moreover have ∀ u. (∀ x∈A. 〈x,u〉 ∈ r) −→ 〈y,u〉 ∈ r
proof-

{ fix u assume A9: ∀ x∈A. 〈x,u〉 ∈ r
from A4 A5 have IsBoundedAbove(A,r) and A6=0

using IsBoundedAbove_def by auto
with A3 A4 A6 I A9 have
〈y,Supremum(r,A)〉 ∈ r ∧ 〈Supremum(r,A),u〉 ∈ r
using IsComplete_def Order_ZF_5_L3 by simp

with II have 〈y,u〉 ∈ r by (rule Fol1_L3)
} then show ∀ u. (∀ x∈A. 〈x,u〉 ∈ r) −→ 〈y,u〉 ∈ r

by simp
qed
ultimately have y = Supremum(r,A)

by (rule Order_ZF_5_L5)
with A6 have False by simp

} then show ∃ z∈A. 〈y,z〉 ∈ r ∧ y 6= z by auto
qed

5.6 Strict versions of order relations

One of the problems with translating formalized mathematics from Meta-
math to IsarMathLib is that Metamath uses strict orders (of the < type)
while in IsarMathLib we mostly use nonstrict orders (of the ≤ type). This
doesn’t really make any difference, but is annoying as we have to prove
many theorems twice. In this section we prove some theorems to make it
easier to translate the statements about strict orders to statements about
the corresponding non-strict order and vice versa.

We define a strict version of a relation by removing the y = x line from the
relation.

constdefs
StrictVersion(r) ≡ r - {〈x,x〉. x ∈ domain(r)}

A reformulation of the definition of a strict version of an order.

lemma def_of_strict_ver: shows
〈x,y〉 ∈ StrictVersion(r) ←→ 〈x,y〉 ∈ r ∧ x 6=y
using StrictVersion_def domain_def by auto

The next lemma is about the strict version of an antisymmetric relation.

lemma strict_of_antisym:
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assumes A1: antisym(r) and A2: 〈a,b〉 ∈ StrictVersion(r)
shows 〈b,a〉 /∈ StrictVersion(r)

proof -
{ assume A3: 〈b,a〉 ∈ StrictVersion(r)

with A2 have 〈a,b〉 ∈ r and 〈b,a〉 ∈ r
using def_of_strict_ver by auto

with A1 have a=b by (rule Fol1_L4)
with A2 have False using def_of_strict_ver

by simp
} then show 〈b,a〉 /∈ StrictVersion(r) by auto

qed

The strict version of totality.

lemma strict_of_tot:
assumes r {is total on} X and a∈X b∈X a6=b
shows 〈a,b〉 ∈ StrictVersion(r) ∨ 〈b,a〉 ∈ StrictVersion(r)
using prems IsTotal_def def_of_strict_ver by auto

A trichotomy law for the strict version of a total and antisymmetric relation.
It is kind of interesting that one does not need the full linear order for this.

lemma strict_ans_tot_trich:
assumes A1: antisym(r) and A2: r {is total on} X
and A3: a∈X b∈X
and A4: s = StrictVersion(r)
shows Exactly_1_of_3_holds(〈a,b〉 ∈ s, a=b,〈b,a〉 ∈ s)

proof -
let p = 〈a,b〉 ∈ s
let q = a=b
let r = 〈b,a〉 ∈ s
from A2 A3 A4 have p ∨ q ∨ r

using strict_of_tot by auto
moreover from A1 A4 have p −→ ¬q ∧ ¬r

using def_of_strict_ver strict_of_antisym by simp
moreover from A4 have q −→ ¬p ∧ ¬r

using def_of_strict_ver by simp
moreover from A1 A4 have r −→ ¬p ∧ ¬q

using def_of_strict_ver strict_of_antisym by auto
ultimately show Exactly_1_of_3_holds(p, q, r)

by (rule Fol1_L5)
qed

A trichotomy law for linear order. This is a special case of strict_ans_tot_trich.

corollary strict_lin_trich: assumes A1: IsLinOrder(X,r) and
A2: a∈X b∈X and
A3: s = StrictVersion(r)
shows Exactly_1_of_3_holds(〈a,b〉 ∈ s, a=b,〈b,a〉 ∈ s)
using prems IsLinOrder_def strict_ans_tot_trich by auto

For an antisymmetric relation if a pair is in relation then the reversed pair
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is not in the strict version of the relation.

lemma geq_impl_not_less:
assumes A1: antisym(r) and A2: 〈a,b〉 ∈ r
shows 〈b,a〉 /∈ StrictVersion(r)

proof -
{ assume A3: 〈b,a〉 ∈ StrictVersion(r)

with A2 have 〈a,b〉 ∈ StrictVersion(r)
using def_of_strict_ver by auto

with A1 A3 have False using strict_of_antisym
by blast

} then show 〈b,a〉 /∈ StrictVersion(r) by auto
qed

If an antisymmetric relation is transitive, then the strict version is also
transitive, an explicit version strict_of_transB below.

lemma strict_of_transA:
assumes A1: trans(r) and A2: antisym(r) and
A3: s= StrictVersion(r) and A4: 〈a,b〉 ∈ s 〈b,c〉 ∈ s
shows 〈a,c〉 ∈ s

proof -
from A3 A4 have I: 〈a,b〉 ∈ r ∧ 〈b,c〉 ∈ r

using def_of_strict_ver by simp
with A1 have 〈a,c〉 ∈ r by (rule Fol1_L3)
moreover
{ assume a=c

with I have 〈a,b〉 ∈ r and 〈b,a〉 ∈ r by auto
with A2 have a=b by (rule Fol1_L4)
with A3 A4 have False using def_of_strict_ver by simp

} then have a6=c by auto
ultimately have 〈a,c〉 ∈ StrictVersion(r)

using def_of_strict_ver by simp
with A3 show thesis by simp

qed

If an antisymmetric relation is transitive, then the strict version is also
transitive.

lemma strict_of_transB:
assumes A1: trans(r) and A2: antisym(r)
shows trans(StrictVersion(r))

proof -
let s = StrictVersion(r)
from A1 A2 have
∀ x y z. 〈x, y〉 ∈ s ∧ 〈y, z〉 ∈ s −→ 〈x, z〉 ∈ s
using strict_of_transA by blast

then show trans(StrictVersion(r)) by (rule Fol1_L2)
qed

The next lemma provides a condition that is satisfied by the strict version
of a relation if the original relation is a complete linear order.
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lemma strict_of_compl:
assumes A1: r ⊆ X×X and A2: IsLinOrder(X,r) and
A3: r {is complete} and
A4: A⊆X A6=0 and A5: s = StrictVersion(r) and
A6: ∃ u∈X. ∀ y∈A. 〈y,u〉 ∈ s
shows
∃ x∈X. ( ∀ y∈A. 〈x,y〉 /∈ s ) ∧ (∀ y∈X. 〈y,x〉 ∈ s −→ (∃ z∈A. 〈y,z〉 ∈ s))

proof -
let x = Supremum(r,A)
from A2 have I: antisym(r) using IsLinOrder_def

by simp
moreover from A5 A6 have ∃ u∈X. ∀ y∈A. 〈y,u〉 ∈ r

using def_of_strict_ver by auto
moreover note A1 A3 A4
ultimately have II: x ∈ X ∀ y∈A. 〈y,x〉 ∈ r

using Order_ZF_5_L7 by auto
then have III: ∃ x∈X. ∀ y∈A. 〈y,x〉 ∈ r by auto
from A5 I II have x ∈ X ∀ y∈A. 〈x,y〉 /∈ s

using geq_impl_not_less by auto
moreover from A1 A2 A3 A4 A5 III have
∀ y∈X. 〈y,x〉 ∈ s −→ (∃ z∈A. 〈y,z〉 ∈ s)
using def_of_strict_ver Order_ZF_5_L8 by simp

ultimately show
∃ x∈X. ( ∀ y∈A. 〈x,y〉 /∈ s ) ∧ (∀ y∈X. 〈y,x〉 ∈ s −→ (∃ z∈A. 〈y,z〉 ∈

s))
by auto

qed

Strict version of a relation on a set is a relation on that set.

lemma strict_ver_rel: assumes A1: r ⊆ A×A
shows StrictVersion(r) ⊆ A×A
using prems StrictVersion_def by auto

end
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6 func ZF.thy

theory func_ZF imports Order func1 Order_ZF

begin

In this theory we consider properties of functions that are binary operations,
that is they map X×X into X. We also consider some properties of functions
related to order.

6.1 Lifting operations to a function space

It happens quite often that we have a binary operation on some set and
we need a similar operation that is defined for functions on that set. For
example once we know how to add real numbers we also know how to add
real-valued functions: for f, g : X → R we define (f + g)(x) = f(x) + g(x).
Note that formally the + means something different on the left hand side of
this equality than on the right hand side. This section aims at formalizing
this process. We will call it ”lifting to a function space”, if you have a
suggestion for a better name, please let me know.

constdefs
Lift2FcnSpce (infix {lifted to function space over} 65)
f {lifted to function space over} X ≡
{<p,g> ∈ ((X→range(f))×(X→range(f)))×(X→range(f)).
{<x,y> ∈ X×range(f). f<fst(p)(x),snd(p)(x)> = y} = g}

The result of the lift belongs to the function space.

lemma func_ZF_1_L1:
assumes A1: f : Y×Y→Y
and A2: p ∈(X→range(f))×(X→range(f))
shows
{<x,y> ∈ X×range(f). f<fst(p)(x),snd(p)(x)> = y} : X→range(f)
proof -

have ∀ x∈X. f<fst(p)(x),snd(p)(x)> ∈ range(f)
proof

fix x assume A3:x∈X
let p = <fst(p)(x),snd(p)(x)>
from A2 A3 have
fst(p)(x) ∈ range(f) snd(p)(x) ∈ range(f)
using apply_type by auto

with A1 have p ∈ Y×Y
using func1_1_L5B by blast

with A1 have <p, f(p)> ∈ f
using apply_Pair by simp

with A1 show
f(p) ∈ range(f)
using rangeI by simp
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qed
then show thesis using func1_1_L11A by simp

qed

The values of the lift are defined by the value of the liftee in a natural way.
lemma func_ZF_1_L2:

assumes f : Y×Y→Y
and p∈(X→range(f))×(X→range(f)) and x∈X
and P = {<x,y> ∈ X×range(f). f<fst(p)(x),snd(p)(x)> = y}
shows P(x) = f〈fst(p)(x),snd(p)(x)〉
using prems func_ZF_1_L1 func1_1_L11B by simp

Function lifted to a function space results in a function space operator.
lemma func_ZF_1_L3:

assumes f ∈ Y×Y→Y
and F = f {lifted to function space over} X
shows F : (X→range(f))×(X→range(f))→(X→range(f))
using prems Lift2FcnSpce_def func_ZF_1_L1 func1_1_L11A by simp

The values of the lift are defined by the values of the liftee in the natural
way. For some reason we need to be extremely detailed and explicit to be
able to apply func1_3_L2. simp and auto fail miserably here.
lemma func_ZF_1_L4:

assumes A1: f : Y×Y→Y
and A2: F = f {lifted to function space over} X
and A3: s:X→range(f) r:X→range(f)
and A4: x∈X
shows (F<s,r>)(x) = f<s(x),r(x)>

proof -
let P = {<x,y> ∈ X×range(f). f<s(x),r(x)> = y}
let p = <s,r>
from A1 have f ∈ Y×Y→Y .
moreover from A3 have
p ∈ (X→range(f))×(X→range(f))
by simp

moreover from A4 have x∈X .
moreover have
P = {<x,y> ∈ X×range(f). f<fst(p)(x),snd(p)(x)> = y}
by simp

ultimately have P(x) = f〈fst(p)(x),snd(p)(x)〉
by (rule func_ZF_1_L2)

with A1 A2 A3 show thesis using func_ZF_1_L3 Lift2FcnSpce_def func1_1_L11B
by simp

qed

6.2 Associative and commutative operations

In this section we define associative and commutative oparations and prove
that they remain such when we lift them to a function space.
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constdefs

IsAssociative (infix {is associative on} 65)
f {is associative on} G ≡ f ∈ G×G→G ∧
(∀ x ∈ G. ∀ y ∈ G. ∀ z ∈ G.
( f(<f(<x,y>),z>) = f( < x,f(<y,z>)> )))

IsCommutative (infix {is commutative on} 65)
f {is commutative on} G ≡ ∀ x∈G. ∀ y∈G. f<x,y> = f<y,x>

The lift of a commutative function is commutative.

lemma func_ZF_2_L1:
assumes A1: f : G×G→G
and A2: F = f {lifted to function space over} X
and A3: s : X→range(f) r : X→range(f)
and A4: f {is commutative on} G
shows F<s,r> = F<r,s>

proof -
from A1 A2 have
F : (X→range(f))×(X→range(f))→(X→range(f))
using func_ZF_1_L3 by simp

with A3 have
F<s,r> : X→range(f) F<r,s> : X→range(f)
using apply_type by auto

moreover have
∀ x∈X. (F<s,r>)(x) = (F<r,s>)(x)

proof
fix x assume A5:x∈X
from A1 have range(f)⊆G

using func1_1_L5B by simp
with A3 A5 have T1:s(x) ∈ G r(x) ∈ G

using apply_type by auto
with A1 A2 A3 A4 A5 show
(F<s,r>)(x) = (F<r,s>)(x)
using func_ZF_1_L4 IsCommutative_def by simp

qed
ultimately show thesis using fun_extension_iff

by simp
qed

The lift of a commutative function is commutative on the function space.

lemma func_ZF_2_L2:
assumes f : G×G→G
and f {is commutative on} G
and F = f {lifted to function space over} X
shows F {is commutative on} (X→range(f))
using prems IsCommutative_def func_ZF_2_L1 by simp

The lift of an associative function is associative.
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lemma func_ZF_2_L3:
assumes A2: F = f {lifted to function space over} X
and A3: s : X→range(f) r : X→range(f) q : X→range(f)
and A4: f {is associative on} G
shows F〈F<s,r>,q〉 = F〈s,F<r,q>〉

proof -
from A4 A2 have
F : (X→range(f))×(X→range(f))→(X→range(f))
using IsAssociative_def func_ZF_1_L3 by auto

with A3 have T1:
F<s,r> : X→range(f)
F<r,q> : X→range(f)
F<F<s,r>,q> : X→range(f)
F<s,F<r,q> >: X→range(f)
using apply_type by auto

moreover have
∀ x∈X. (F〈F<s,r>,q〉)(x) = (F〈s,F<r,q>〉)(x)

proof
fix x assume A5:x∈X
from A4 have T2:f:G×G→G

using IsAssociative_def by simp
then have range(f)⊆G

using func1_1_L5B by simp
with A3 A5 have
s(x) ∈ G r(x) ∈ G q(x) ∈ G
using apply_type by auto

with T2 A2 T1 A3 A5 A4 show
(F〈F<s,r>,q〉)(x) = (F〈s,F<r,q>〉)(x)
using func_ZF_1_L4 IsAssociative_def by simp

qed
ultimately show thesis using fun_extension_iff

by simp
qed

The lift of an associative function is associative on the function space.

lemma func_ZF_2_L4:
assumes A1: f {is associative on} G
and A2: F = f {lifted to function space over} X
shows F {is associative on} (X→range(f))

proof -
from A1 A2 have
F : (X→range(f))×(X→range(f))→(X→range(f))
using IsAssociative_def func_ZF_1_L3 by auto

moreover from A1 A2 have
∀ s ∈ X→range(f). ∀ r ∈ X→range(f). ∀ q ∈ X→range(f).
F<F<s,r>,q> = F<s,F<r,q> >
using func_ZF_2_L3 by simp

ultimately show thesis using IsAssociative_def
by simp
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qed

6.3 Restricting operations

In this section we consider when restriction of the operation to a set inherits
properties like commutativity and associativity.

The commutativity is inherited when restricting a function to a set.

lemma func_ZF_4_L1:
assumes A1: f:X×X→Y and A2: A⊆X
and A3: f {is commutative on} X
shows restrict(f,A×A) {is commutative on} A

proof -
{ fix x y assume A4: x∈A ∧ y∈A

with A2 A3 have
f<x,y> = f<y,x>
using IsCommutative_def by auto

moreover from A4 have
restrict(f,A×A)<x,y> = f<x,y>
restrict(f,A×A)<y,x> = f<y,x>
using restrict_if by auto

ultimately have
restrict(f,A×A)<x,y> = restrict(f,A×A)<y,x>
by simp }

then show thesis using IsCommutative_def by simp
qed

Next we define sets closed with respect to an operation.

constdefs
IsOpClosed (infix {is closed under} 65)
A {is closed under} f ≡ ∀ x∈A. ∀ y∈A. f<x,y> ∈ A

Associative operation restricted to a set that is closed with resp. to this
operation is associative.

lemma func_ZF_4_L2:assumes A1: f {is associative on} X
and A2: A⊆X and A3: A {is closed under} f
and A4: x∈A y∈A z∈A
and A5: g = restrict(f,A×A)
shows g〈g<x,y>,z〉 = g〈x,g<y,z>〉

proof -
from A4 A2 have T1:
x∈X y∈X z∈X
by auto

from A3 A4 A5 have
g<g<x,y>,z> = f<f<x,y>,z>
g<x,g<y,z> > = f<x,f<y,z> >
using IsOpClosed_def restrict_if by auto

moreover from A1 T1 have
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f<f<x,y>,z> = f<x,f<y,z> >
using IsAssociative_def by simp

ultimately show thesis by simp
qed

Associative operation restricted to a set that is closed with resp. to this
operation is associative on the set.

lemma func_ZF_4_L3: assumes A1: f {is associative on} X
and A2: A⊆X and A3: A {is closed under} f
shows restrict(f,A×A) {is associative on} A

proof -
let g = restrict(f,A×A)
from A1 have f:X×X→X

using IsAssociative_def by simp
moreover from A2 have A×A ⊆ X×X by auto
moreover from A3 have ∀ p ∈ A×A. g(p) ∈ A

using IsOpClosed_def restrict_if by auto
ultimately have g : A×A→A

using func1_2_L4 by simp
moreover from A1 A2 A3 have
∀ x ∈ A. ∀ y ∈ A. ∀ z ∈ A.
g<g<x,y>,z> = g< x,g<y,z> >
using func_ZF_4_L2 by simp

ultimately show thesis
using IsAssociative_def by simp

qed

The essential condition to show that if a set A is closed with respect to an
operation, then it is closed under this operation restricted to any superset
of A.

lemma func_ZF_4_L4: assumes A {is closed under} f
and A⊆B and x∈A y∈A and g = restrict(f,B×B)
shows g<x,y> ∈ A
using prems IsOpClosed_def restrict by auto

If a set A is closed under an operation, then it is closed under this operation
restricted to any superset of A.

lemma func_ZF_4_L5:
assumes A1: A {is closed under} f
and A2: A⊆B
shows A {is closed under} restrict(f,B×B)

proof -
let g = restrict(f,B×B)
from A1 A2 have ∀ x∈A. ∀ y∈A. g<x,y> ∈ A

using func_ZF_4_L4 by simp
then show thesis using IsOpClosed_def by simp

qed
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The essential condition to show that intersection of sets that are closed with
respect to an operation is closed with respect to the operation.

lemma func_ZF_4_L6:
assumes A {is closed under} f
and B {is closed under} f
and x ∈ A∩B y∈ A∩B
shows f<x,y> ∈ A∩B using prems IsOpClosed_def by auto

Intersection of sets that are closed with respect to an operation is closed
under the operation.

lemma func_ZF_4_L7:
assumes A {is closed under} f
B {is closed under} f
shows A∩B {is closed under} f
using prems IsOpClosed_def by simp

6.4 Composition

For any set X we can consider a binary operation on the set of functions f :
X → X defined by C(f, g) = f ◦ g. Composition of functions (or relations)
is defined in the standard Isabelle distribution as a higher order function.
In this section we consider the corresponding two-argument ZF-function
(binary operation), that is a subset of ((X → X)× (X → X))× (X → X).

constdefs
Composition(X) ≡
{<p,f> ∈ ((X→X)×(X→X))×(X→X). fst(p) O snd(p) = f}

Composition operation is a function that maps (X → X) × (X → X) into
X → X.

lemma func_ZF_5_L1: shows Composition(X) : (X→X)×(X→X)→(X→X)
using comp_fun Composition_def func1_1_L11A by simp

The value of the composition operation is the composition of arguments.

lemma func_ZF_5_L2: assumes f:X→X g:X→X
shows Composition(X)<f,g> = f O g
using prems func_ZF_5_L1 Composition_def func1_1_L11B by simp

What is the falue of a composition on an argument?

lemma func_ZF_5_L3: assumes f:X→X and g:X→X and x∈X
shows (Composition(X)<f,g>)(x) = f(g(x))
using prems func_ZF_5_L2 comp_fun_apply by simp

The essential condition to show that composition is associative.

lemma func_ZF_5_L4: assumes A1: f:X→X g:X→X h:X→X
and A2: C = Composition(X)
shows C〈C<f,g>,h〉 = C〈 f,C<g,h>〉
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proof -
from A2 have C : ((X→X)×(X→X))→(X→X)

using func_ZF_5_L1 by simp
with A1 have T1:
C<f,g> : X→X
C<g,h> : X→X
C<C<f,g>,h> : X→X
C< f,C<g,h> > : X→X
using apply_funtype by auto

moreover have
∀ x ∈ X. C〈C<f,g>,h〉(x) = C〈f,C<g,h>〉(x)

proof
fix x assume A3:x∈X
with A1 A2 T1 have
C<C<f,g>,h> (x) = f(g(h(x)))
C< f,C<g,h> >(x) = f(g(h(x)))
using func_ZF_5_L3 apply_funtype by auto

then show C〈C<f,g>,h〉(x) = C〈 f,C<g,h>〉(x)
by simp

qed
ultimately show thesis using fun_extension_iff by simp

qed

Composition is an associative operation on X → X (the space of functions
that map X into itself).

lemma func_ZF_5_L5: shows Composition(X) {is associative on} (X→X)
proof -

let C = Composition(X)
have ∀ f∈X→X. ∀ g∈X→X. ∀ h∈X→X.
C<C<f,g>,h> = C< f,C<g,h> >
using func_ZF_5_L4 by simp

then show thesis using func_ZF_5_L1 IsAssociative_def
by simp

qed

6.5 Identity function

In this section we show some additional facts about the identity function
defined in the standard Isabelle’s Perm.thy file.

Composing a function with identity does not change the function.

lemma func_ZF_6_L1A: assumes A1: f : X→X
shows Composition(X)<f,id(X)> = f
Composition(X)<id(X),f> = f

proof -
have Composition(X) : (X→X)×(X→X)→(X→X)

using func_ZF_5_L1 by simp
with A1 have Composition(X)<id(X),f> : X→X
Composition(X)<f,id(X)> : X→X
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using id_type apply_funtype by auto
moreover from A1 have f : X→X .
moreover from A1 have
∀ x∈X. (Composition(X)<id(X),f>)(x) = f(x)
∀ x∈X. (Composition(X)<f,id(X)>)(x) = f(x)
using id_type func_ZF_5_L3 apply_funtype id_conv
by auto

ultimately show Composition(X)<id(X),f> = f
Composition(X)<f,id(X)> = f
using fun_extension_iff by auto

qed

6.6 Distributive operations

In this section we deal with pairs of operations such that one is distributive
with respect to the other, that is a·(b+c) = a·b+a·c and (b+c)·a = b·a+c·a.
We show that this property is preserved under restriction to a set closed
with respect to both operations. In EquivClass1.thy we show that this
property is preserved by projections to the quotient space if both operations
are congruent with respect to the equivalence relation.

We define distributivity as a statement about three sets. The first set is the
set on which the operations act. The second set is the additive operation (a
ZF function) and the third is the multiplicative operation.

constdefs
IsDistributive(X,A,M) ≡ (∀ a∈X.∀ b∈X.∀ c∈X.
M〈a,A<b,c>〉 = A〈M<a,b>,M<a,c>〉 ∧
M〈A<b,c>,a〉 = A〈M<b,a>,M<c,a> 〉)

The essential condition to show that distributivity is preserved by restric-
tions to sets that are closed with respect to both operations.

lemma func_ZF_7_L1:
assumes A1: IsDistributive(X,A,M)
and A2: Y⊆X
and A3: Y {is closed under} A Y {is closed under} M
and A4: Ar = restrict(A,Y×Y) Mr = restrict(M,Y×Y)
and A5: a∈Y b∈Y c∈Y
shows Mr〈 a,Ar<b,c> 〉 = Ar〈 Mr<a,b>,Mr<a,c> 〉 ∧
Mr〈 Ar<b,c>,a 〉 = Ar〈 Mr<b,a>,Mr<c,a> 〉

proof
from A3 A5 have A<b,c> ∈ Y M<a,b> ∈ Y M<a,c> ∈ Y
M<b,a> ∈ Y M<c,a> ∈ Y using IsOpClosed_def by auto

with A5 A4 have T1:Ar<b,c> ∈ Y Mr<a,b> ∈ Y Mr<a,c> ∈ Y
Mr<b,a> ∈ Y Mr<c,a> ∈ Y
using restrict by auto

with A1 A2 A4 A5 show Mr〈 a,Ar<b,c> 〉 = Ar〈 Mr<a,b>,Mr<a,c> 〉
Mr〈 Ar<b,c>,a 〉 = Ar〈 Mr<b,a>,Mr<c,a> 〉
using restrict IsDistributive_def by auto
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qed

Distributivity is preserved by restrictions to sets that are closed with respect
to both operations.

lemma func_ZF_7_L2:
assumes IsDistributive(X,A,M)
and Y⊆X
and Y {is closed under} A
Y {is closed under} M
and Ar = restrict(A,Y×Y) Mr = restrict(M,Y×Y)
shows IsDistributive(Y,Ar,Mr)

proof -
from prems have ∀ a∈Y.∀ b∈Y.∀ c∈Y.
Mr〈 a,Ar<b,c> 〉 = Ar〈 Mr<a,b>,Mr<a,c> 〉 ∧
Mr〈 Ar<b,c>,a 〉 = Ar〈 Mr<b,a>,Mr<c,a> 〉
using func_ZF_7_L1 by simp

then show thesis using IsDistributive_def by simp
qed

6.7 Functions and order

This section deals with functions between ordered sets.

If every value of a function on a set is bounded below by a constant, then
the image of the set is bounded below.

lemma func_ZF_8_L1:
assumes f:X→Y and A⊆X and ∀ x∈A. 〈L,f(x)〉 ∈ r
shows IsBoundedBelow(f(A),r)

proof -
from prems have ∀ y ∈ f(A). 〈L,y〉 ∈ r

using func_imagedef by simp
then show IsBoundedBelow(f(A),r)

by (rule Order_ZF_3_L9)
qed

If every value of a function on a set is bounded above by a constant, then
the image of the set is bounded above.

lemma func_ZF_8_L2:
assumes f:X→Y and A⊆X and ∀ x∈A. 〈f(x),U〉 ∈ r
shows IsBoundedAbove(f(A),r)

proof -
from prems have ∀ y ∈ f(A). 〈y,U〉 ∈ r

using func_imagedef by simp
then show IsBoundedAbove(f(A),r)

by (rule Order_ZF_3_L10)
qed
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6.8 Projections in cartesian products

In this section we consider maps arising naturally in cartesian products.

There is a natural bijection etween X = Y ×{y} (a ”slice”) and Y . We will
call this the SliceProjection(Y×{y}). This is really the ZF equivalent of
the meta-function fst(x).

constdefs
SliceProjection(X) ≡ {〈p,fst(p)〉. p ∈ X }

A slice projection is a bijection between X × {y} and X.

lemma slice_proj_bij: shows
SliceProjection(X×{y}): X×{y} → X
domain(SliceProjection(X×{y})) = X×{y}
∀ p∈X×{y}. SliceProjection(X×{y})(p) = fst(p)
SliceProjection(X×{y}) ∈ bij(X×{y},X)

proof -
let P = SliceProjection(X×{y})
have ∀ p ∈ X×{y}. fst(p) ∈ X by simp
moreover from this have
{〈p,fst(p)〉. p ∈ X×{y} } : X×{y} → X
by (rule ZF_fun_from_total)

ultimately show
I: P: X×{y} → X and II: ∀ p∈X×{y}. P(p) = fst(p)
using ZF_fun_from_tot_val SliceProjection_def by auto

hence
∀ a ∈ X×{y}. ∀ b ∈ X×{y}. P(a) = P(b) −→ a=b
by auto

with I have P ∈ inj(X×{y},X) using inj_def
by simp

moreover from II have ∀ x∈X. ∃ p∈X×{y}. P(p) = x
by simp

with I have P ∈ surj(X×{y},X) using surj_def
by simp

ultimately show P ∈ bij(X×{y},X)
using bij_def by simp

from I show domain(SliceProjection(X×{y})) = X×{y}
using func1_1_L1 by simp

qed

6.9 Induced relations and order isomorphisms

When we have two sets X, Y , function f : X → Y and a relation R on Y we
can define a relation r on X by saying that x r y if and only if f(x) R f(y).
This is especially interesting when f is a bijection as all reasonable properties
of R are inherited by r. This section treats mostly the case when R is an
order relation and f is a bijection. The standard Isabelle’s Order.thy theory
defines the notion of a space of order isomorphisms between two sets relative
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to a relation. We expand that material proving that order isomrphisms
preserve interesting properties of the relation.

We call the relation created by a relation on Y and a mapping f : X → Y
the InducedRelation(f,R).

constdefs
InducedRelation(f,R) ≡
{p ∈ domain(f)×domain(f). 〈f(fst(p)),f(snd(p))〉 ∈ R}

A reformulation of the definition of the relation induced by a function.

lemma def_of_ind_relA:
assumes 〈x,y〉 ∈ InducedRelation(f,R)
shows 〈f(x),f(y)〉 ∈ R
using prems InducedRelation_def by simp

A reformulation of the definition of the relation induced by a function, kind
of converse of def_of_ind_relA.

lemma def_of_ind_relB: assumes f:A→B and
x∈A y∈A and 〈f(x),f(y)〉 ∈ R
shows 〈x,y〉 ∈ InducedRelation(f,R)
using prems func1_1_L1 InducedRelation_def by simp

A property of order isomorphisms that is missing from standard Isabelle’s
Order.thy.

lemma ord_iso_apply_conv:
assumes f ∈ ord_iso(A,r,B,R) and
〈f(x),f(y)〉 ∈ R and x∈A y∈A
shows 〈x,y〉 ∈ r
using prems ord_iso_def by simp

The next lemma tells us where the induced relation is defined

lemma ind_rel_domain:
assumes R ⊆ B×B and f:A→B
shows InducedRelation(f,R) ⊆ A×A
using prems func1_1_L1 InducedRelation_def
by auto

A bijection is an order homomorphisms between a relation and the induced
one.

lemma bij_is_ord_iso: assumes A1: f ∈ bij(A,B)
shows f ∈ ord_iso(A,InducedRelation(f,R),B,R)

proof -
let r = InducedRelation(f,R)
{ fix x y assume A2: x∈A y∈A

have 〈x,y〉 ∈ r ←→ 〈f(x),f(y)〉 ∈ R
proof

assume 〈x,y〉 ∈ r then show 〈f(x),f(y)〉 ∈ R
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using def_of_ind_relA by simp
next assume 〈f(x),f(y)〉 ∈ R

with A1 A2 show 〈x,y〉 ∈ r
using bij_is_fun def_of_ind_relB by blast

qed }
with A1 show f ∈ ord_iso(A,InducedRelation(f,R),B,R)

using ord_isoI by simp
qed

An order isomoprhism preserves antisymmetry.

lemma ord_iso_pres_antsym: assumes A1: f ∈ ord_iso(A,r,B,R) and
A2: r ⊆ A×A and A3: antisym(R)
shows antisym(r)

proof -
{ fix x y

assume A4: 〈x,y〉 ∈ r 〈y,x〉 ∈ r
from A1 have f ∈ inj(A,B)

using ord_iso_is_bij bij_is_inj by simp
moreover
from A1 A2 A4 have
〈f(x), f(y)〉 ∈ R and 〈f(y), f(x)〉 ∈ R
using ord_iso_apply by auto

with A3 have f(x) = f(y) by (rule Fol1_L4)
moreover from A2 A4 have x∈A y∈A by auto
ultimately have x=y by (rule inj_apply_equality)

} then have ∀ x y. 〈x,y〉 ∈ r ∧ 〈y,x〉 ∈ r −→ x=y by auto
then show antisym(r) using imp_conj antisym_def

by simp
qed

Order isomoprhisms preserve transitivity.

lemma ord_iso_pres_trans: assumes A1: f ∈ ord_iso(A,r,B,R) and
A2: r ⊆ A×A and A3: trans(R)
shows trans(r)

proof -
{ fix x y z

assume A4: 〈x, y〉 ∈ r 〈y, z〉 ∈ r
note A1
moreover
from A1 A2 A4 have
〈f(x), f(y)〉 ∈ R ∧ 〈f(y), f(z)〉 ∈ R
using ord_iso_apply by auto

with A3 have 〈f(x),f(z)〉 ∈ R by (rule Fol1_L3)
moreover from A2 A4 have x∈A z∈A by auto
ultimately have 〈x, z〉 ∈ r using ord_iso_apply_conv

by simp
} then have ∀ x y z. 〈x, y〉 ∈ r ∧ 〈y, z〉 ∈ r −→ 〈x, z〉 ∈ r

by blast
then show trans(r) by (rule Fol1_L2)
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qed

Order isomorphisms preserve totality.

lemma ord_iso_pres_tot: assumes A1: f ∈ ord_iso(A,r,B,R) and
A2: r ⊆ A×A and A3: R {is total on} B
shows r {is total on} A

proof -
{ fix x y

assume A4: x∈A y∈A 〈x,y〉 /∈ r
with A1 have 〈f(x),f(y)〉 /∈ R using ord_iso_apply_conv

by auto
moreover
from A1 have f:A→B using ord_iso_is_bij bij_is_fun

by simp
with A3 A4 have 〈f(x),f(y)〉 ∈ R ∨ 〈f(y),f(x)〉 ∈ R

using apply_funtype IsTotal_def by simp
ultimately have 〈f(y),f(x)〉 ∈ R by simp
with A1 A4 have 〈y,x〉 ∈ r using ord_iso_apply_conv

by simp
} then have ∀ x∈A. ∀ y∈A. 〈x,y〉 ∈ r ∨ 〈y,x〉 ∈ r

by blast
then show r {is total on} A using IsTotal_def

by simp
qed

Order isomorphisms preserve linearity.

lemma ord_iso_pres_lin: assumes f ∈ ord_iso(A,r,B,R) and
r ⊆ A×A and IsLinOrder(B,R)
shows IsLinOrder(A,r)
using prems ord_iso_pres_antsym ord_iso_pres_trans ord_iso_pres_tot
IsLinOrder_def by simp

If a relation is a linear order, then the relation induced on another set is by
a bijection is also a linear order.

lemma ind_rel_pres_lin:
assumes A1: f ∈ bij(A,B) and A2: IsLinOrder(B,R)
shows IsLinOrder(A,InducedRelation(f,R))

proof -
let r = InducedRelation(f,R)
from A1 have f ∈ ord_iso(A,r,B,R) and r ⊆ A×A

using bij_is_ord_iso domain_of_bij InducedRelation_def
by auto

with A2 show IsLinOrder(A,r) using ord_iso_pres_lin
by simp

qed

The image by an order isomorphism of a bounded above and nonempty set
is bounded above.
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lemma ord_iso_pres_bound_above:
assumes A1: f ∈ ord_iso(A,r,B,R) and A2: r ⊆ A×A and
A3: IsBoundedAbove(C,r) C6=0
shows IsBoundedAbove(f(C),R) f(C) 6= 0

proof -
from A3 obtain u where I: ∀ x∈C. 〈x,u〉 ∈ r

using IsBoundedAbove_def by auto
from A1 have II: f:A→B using ord_iso_is_bij bij_is_fun

by simp
from A2 A3 have III: C⊆A using Order_ZF_3_L1A by blast
from A3 obtain x where x∈C by auto
with A2 I have IV: u∈A by auto
{ fix y assume y ∈ f(C)

with II III obtain x where x∈C and y = f(x)
using func_imagedef by auto

with A1 I III IV have 〈y,f(u)〉 ∈ R
using ord_iso_apply by auto

} then have ∀ y ∈ f(C). 〈y,f(u)〉 ∈ R by simp
then show IsBoundedAbove(f(C),R) by (rule Order_ZF_3_L10)
from A3 II III show f(C) 6= 0 using func1_1_L15A

by simp
qed

Order isomorphisms preserve the property of having a minimum.

lemma ord_iso_pres_has_min:
assumes A1: f ∈ ord_iso(A,r,B,R) and A2: r ⊆ A×A and
A3: C⊆A and A4: HasAminimum(R,f(C))
shows HasAminimum(r,C)

proof -
from A4 obtain m where
I: m ∈ f(C) and II: ∀ y ∈ f(C). 〈m,y〉 ∈ R
using HasAminimum_def by auto

let k = converse(f)(m)
from A1 have III: f:A→B using ord_iso_is_bij bij_is_fun

by simp
from A1 have f ∈ inj(A,B) using ord_iso_is_bij bij_is_inj

by simp
with A3 I have IV: k ∈ C and V: f(k) = m

using inj_inv_back_in_set by auto
moreover
{ fix x assume A5: x∈C

with A3 II III IV V have
k ∈ A x∈A 〈f(k),f(x)〉 ∈ R
using func_imagedef by auto

with A1 have 〈k,x〉 ∈ r using ord_iso_apply_conv
by simp

} then have ∀ x∈C. 〈k,x〉 ∈ r by simp
ultimately show HasAminimum(r,C) using HasAminimum_def by auto

qed
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Order isomorhisms preserve the images of relations. In other words taking
the image of a point by a relation commutes with the function.

lemma ord_iso_pres_rel_image:
assumes A1: f ∈ ord_iso(A,r,B,R) and
A2: r ⊆ A×A R ⊆ B×B and
A3: a∈A
shows f(r{a}) = R{f(a)}

proof
from A1 have f:A→B using ord_iso_is_bij bij_is_fun

by simp
moreover from A2 A3 have I: r{a} ⊆ A by auto
ultimately have I: f(r{a}) = {f(x). x ∈ r{a} }

using func_imagedef by simp
{ fix y assume A4: y ∈ f(r{a})

with I obtain x where
x ∈ r{a} and II: y = f(x)
by auto

with A1 A2 have 〈f(a),f(x)〉 ∈ R using ord_iso_apply
by auto

with II have y ∈ R{f(a)} by auto
} then show f(r{a}) ⊆ R{f(a)} by auto
{ fix y assume A5: y ∈ R{f(a)}

let x = converse(f)(y)
from A2 A5 have
〈f(a),y〉 ∈ R f(a) ∈ B and IV: y∈B
by auto

with A1 have III: 〈converse(f)(f(a)),x〉 ∈ r
using ord_iso_converse by simp

moreover from A1 A3 have converse(f)(f(a)) = a
using ord_iso_is_bij left_inverse_bij by blast

ultimately have f(x) ∈ {f(x). x ∈ r{a} }
by auto

moreover from A1 IV have f(x) = y
using ord_iso_is_bij right_inverse_bij by blast

moreover from A1 I have f(r{a}) = {f(x). x ∈ r{a} }
using ord_iso_is_bij bij_is_fun func_imagedef by blast

ultimately have y ∈ f(r{a}) by simp
} then show R{f(a)} ⊆ f(r{a}) by auto

qed

Order isomorphisms preserve collections of upper bounds.

lemma ord_iso_pres_up_bounds:
assumes A1: f ∈ ord_iso(A,r,B,R) and
A2: r ⊆ A×A R ⊆ B×B and
A3: C⊆A
shows {f(r{a}). a∈C} = {R{b}. b ∈ f(C)}

proof
from A1 have T: f:A→B

using ord_iso_is_bij bij_is_fun by simp
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{ fix Y assume Y ∈ {f(r{a}). a∈C}
then obtain a where I: a∈C and II: Y = f(r{a})

by auto
from A3 I have a∈A by auto
with A1 A2 have f(r{a}) = R{f(a)}

using ord_iso_pres_rel_image by simp
moreover from A3 T I have f(a) ∈ f(C)

using func_imagedef by auto
ultimately have f(r{a}) ∈ { R{b}. b ∈ f(C) }

by auto
with II have Y ∈ { R{b}. b ∈ f(C) } by simp

} then show {f(r{a}). a∈C} ⊆ {R{b}. b ∈ f(C)}
by blast

{ fix Y assume Y ∈ {R{b}. b ∈ f(C)}
then obtain b where III: b ∈ f(C) and IV: Y = R{b}

by auto
with A3 T obtain a where V: a∈C and b = f(a)

using func_imagedef by auto
with A3 IV have a∈A and Y = R{f(a)} by auto
with A1 A2 have Y = f(r{a})

using ord_iso_pres_rel_image by simp
with V have Y ∈ {f(r{a}). a∈C} by auto

} then show {R{b}. b ∈ f(C)} ⊆ {f(r{a}). a∈C}
by auto

qed

The image of the set of upper bounds is the set of upper bounds of the
image.

lemma ord_iso_pres_min_up_bounds:
assumes A1: f ∈ ord_iso(A,r,B,R) and A2: r ⊆ A×A R ⊆ B×B and
A3: C⊆A and A4: C6=0
shows f(

⋂
a∈C. r{a}) = (

⋂
b∈f(C). R{b})

proof -
from A1 have f ∈ inj(A,B)

using ord_iso_is_bij bij_is_inj by simp
moreover note A4
moreover from A2 A3 have ∀ a∈C. r{a} ⊆ A by auto
ultimately have
f(

⋂
a∈C. r{a}) = (

⋂
a∈C. f(r{a}) )

using inj_image_of_Inter by simp
also from A1 A2 A3 have
(

⋂
a∈C. f(r{a}) ) = (

⋂
b∈f(C). R{b} )

using ord_iso_pres_up_bounds by simp
finally show f(

⋂
a∈C. r{a}) = (

⋂
b∈f(C). R{b})

by simp
qed

Order isomorphisms preserve completeness.

lemma ord_iso_pres_compl:

67



assumes A1: f ∈ ord_iso(A,r,B,R) and
A2: r ⊆ A×A R ⊆ B×B and A3: R {is complete}
shows r {is complete}

proof -
{ fix C

assume A4: IsBoundedAbove(C,r) C6=0
with A1 A2 A3 have
HasAminimum(R,

⋂
b ∈ f(C). R{b})

using ord_iso_pres_bound_above IsComplete_def
by simp

moreover
from A2 A4 have I: C ⊆ A using Order_ZF_3_L1A

by blast
with A1 A2 A4 have f(

⋂
a∈C. r{a}) = (

⋂
b∈f(C). R{b})

using ord_iso_pres_min_up_bounds by simp
ultimately have HasAminimum(R,f(

⋂
a∈C. r{a}))

by simp
moreover
from A2 A4 have C 6=0 and ∀ a∈C. r{a} ⊆ A by auto
then have (

⋂
a∈C. r{a} ) ⊆ A using ZF1_1_L7 by simp

moreover note A1 A2
ultimately have HasAminimum(r,

⋂
a∈C. r{a} )

using ord_iso_pres_has_min by simp
} then show r {is complete} using IsComplete_def

by simp
qed

If the original relation is complete, then the induced one is complete.

lemma ind_rel_pres_compl: assumes A1: f ∈ bij(A,B)
and A2: R ⊆ B×B and A3: R {is complete}
shows InducedRelation(f,R) {is complete}

proof -
let r = InducedRelation(f,R)
from A1 have f ∈ ord_iso(A,r,B,R)

using bij_is_ord_iso by simp
moreover from A1 A2 have r ⊆ A×A

using bij_is_fun ind_rel_domain by simp
moreover note A2 A3
ultimately show r {is complete}

using ord_iso_pres_compl by simp
qed

end
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7 EquivClass1.thy

theory EquivClass1 imports EquivClass func_ZF ZF1

begin

In this theory file we extend the work on equivalence relations done in the
standard Isabelle’s EquivClass.thy file. The problem that we have with the
EquivClass.thy is that the notions congruent and congruent2 are defined for
meta-functions rather then ZF - functions (subsets of Cartesian products).
This causes inflexibility (that is typical for typed set theories) in making
the notions depend on additional parameters For example the congruent2
there takes [i, [i, i] => i] as parameters, that is the second parameter is a
meta-function that takes two sets and results in a set. So, when our function
depends on additional parameters, (for example the function we want to be
congruent depends on a group and we want to show that for all groups the
function is congruent) there is no easy way to use that notion. The ZF
functions are sets and there is no problem if in actual application this set
depends on some parameters.

7.1 Congruent functions and projections on the quotient

First we define the notion of function that maps equivalent elements to
equivalent values. We use similar names as in the original EquivClass.thy
file to indicate the conceptual correspondence of the notions. Then we define
the projection of a function onto the quotient space. We will show that if the
function is congruent the projection is a mapping from the quotient space
into itself. In standard math the condion that the function is congruent
allows to show that the value of the projection does not depend on the
choice of elements that represent the equivalence classes. We set up things
a little differently to avoid making choices.

constdefs
Congruent(r,f) ≡
(∀ x y. <x,y> ∈ r −→ <f(x),f(y)> ∈ r)

ProjFun(A,r,f) ≡
{<c,d> ∈ (A//r)×(A//r). (

⋃
x∈c. r{f(x)}) = d}

Elements of equivalence classes belong to the set.

lemma EquivClass_1_L1:
assumes A1: equiv(A,r) and A2: C ∈ A//r and A3: x∈C
shows x∈A

proof -
from A2 have C ⊆

⋃
(A//r) by auto

with A1 A3 show x∈A
using Union_quotient by auto
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qed

The image of a subset of X under projection is a subset of A/r.

lemma EquivClass_1_L1A:
assumes A⊆X shows {r{x}. x∈A} ⊆ X//r
using prems quotientI by auto

If an element belongs to an equivalence class, then its image under relation
is this equivalence class.

lemma EquivClass_1_L2:
assumes A1: equiv(A,r) C ∈ A//r and A2: x∈C
shows r{x} = C

proof -
from A1 A2 have x ∈ r{x}

using EquivClass_1_L1 equiv_class_self by simp
with A2 have T1:r{x}∩C 6= 0 by auto
from A1 A2 have r{x} ∈ A//r

using EquivClass_1_L1 quotientI by simp
with A1 T1 show thesis

using quotient_disj by blast
qed

Elements that belong to the same equivalence class are equivalent.

lemma EquivClass_1_L2A:
assumes equiv(A,r) C ∈ A//r x∈C y∈C
shows <x,y> ∈ r
using prems EquivClass_1_L2 EquivClass_1_L1 equiv_class_eq_iff
by simp

Every x is in the class of y, then they are equivalent.

lemma EquivClass_1_L2B:
assumes A1: equiv(A,r) and A2: y∈A and A3: x ∈ r{y}
shows <x,y> ∈ r

proof -
from A2 have r{y} ∈ A//r

using quotientI by simp
with A1 A3 show thesis using
EquivClass_1_L1 equiv_class_self equiv_class_nondisjoint by blast

qed

If a function is congruent then the equivalence classes of the values that
come from the arguments from the same class are the same.

lemma EquivClass_1_L3:
assumes A1: equiv(A,r) and A2: Congruent(r,f)
and A3: C ∈ A//r x∈C y∈C
shows r{f(x)} = r{f(y)}

proof -
from A1 A3 have <x,y> ∈ r
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using EquivClass_1_L2A by simp
with A2 have <f(x),f(y)> ∈ r

using Congruent_def by simp
with A1 show thesis using equiv_class_eq by simp

qed

The values of congruent functions are in the space.

lemma EquivClass_1_L4:
assumes A1: equiv(A,r) and A2: C ∈ A//r x∈C
and A3: Congruent(r,f)
shows f(x) ∈ A

proof -
from A1 A2 have x∈A

using EquivClass_1_L1 by simp
with A1 have <x,x> ∈ r

using equiv_def refl_def by simp
with A3 have <f(x),f(x)> ∈ r

using Congruent_def by simp
with A1 show thesis using equiv_type by auto

qed

Equivalence classes are not empty.

lemma EquivClass_1_L5:
assumes A1: refl(A,r) and A2: C ∈ A//r
shows C6=0

proof -
from A2 obtain x where D1: C = r{x} and D2: x∈A

using quotient_def by auto
from D2 A1 have x ∈ r{x} using refl_def by auto
with D1 show thesis by auto

qed

To avoid using an axiom of choice, we define the projection using the ex-
pression

⋃
x∈C r({f(x)}). The next lemma shows that for congruent function

this is in the quotient space A/r.

lemma EquivClass_1_L6:
assumes A1: equiv(A,r) and A2: Congruent(r,f)
and A3:C ∈ A//r
shows (

⋃
x∈C. r{f(x)}) ∈ A//r

proof -
from A1 A3 have C6=0

using equiv_def EquivClass_1_L5 by auto
moreover from A2 A3 A1 have ∀ x∈C. r{f(x)} ∈ A//r

using EquivClass_1_L4 quotientI by auto
moreover from A1 A2 A3 have
∀ x y. x∈C ∧ y∈C −→ r{f(x)} = r{f(y)}
using EquivClass_1_L3 by blast

ultimately show thesis by (rule ZF1_1_L2)
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qed

Congruent functions can be projected.

lemma EquivClass_1_T1:
assumes equiv(A,r) Congruent(r,f)
shows ProjFun(A,r,f) ∈ A//r → A//r
using prems EquivClass_1_L6 ProjFun_def func1_1_L11A
by simp

We now define congruent functions of two variables. Congruent2 corresponds
to congruent2 in EquivClass.thy, but uses ZF-functions rather than meta-
functions.

constdefs
Congruent2(r,f) ≡
(∀ x1 x2 y1 y2. <x1,x2> ∈ r ∧ <y1,y2> ∈ r −→
<f<x1,y1>,f<x2,y2> > ∈ r)

ProjFun2(A,r,f) ≡
{<p,d> ∈ ((A//r)×(A//r))×(A//r) .
(
⋃

z ∈ fst(p)×snd(p). r{f(z)}) = d}

The following lemma is a two-variables equivalent of EquivClass_1_L3.

lemma EquivClass_1_L7:
assumes A1: equiv(A,r) and A2: Congruent2(r,f)
and A3: C1 ∈ A//r C2 ∈ A//r
and A4: z1 ∈ C1×C2 z2 ∈ C1×C2
shows r{f(z1)} = r{f(z2)}

proof -
from A4 obtain x1 y1 x2 y2 where
x1∈C1 and y1∈C2 and D1:z1 = <x1,y1> and
x2∈C1 and y2∈C2 and D2:z2 = <x2,y2>
by auto

with A1 A3 have <x1,x2> ∈ r and <y1,y2> ∈ r
using EquivClass_1_L2A by auto

with A2 have <f<x1,y1>,f<x2,y2> > ∈ r
using Congruent2_def by simp

with A1 D1 D2 show thesis using equiv_class_eq by simp
qed

The values of congruent functions of two variables are in the space.

lemma EquivClass_1_L8:
assumes A1: equiv(A,r) and A2: C1 ∈ A//r and A3: C2 ∈ A//r
and A4: z ∈ C1×C2 and A5: Congruent2(r,f)
shows f(z) ∈ A

proof -
from A4 obtain x y where x∈C1 and y∈C2 and D1:z = <x,y>

by auto
with A1 A2 A3 have x∈A and y∈A
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using EquivClass_1_L1 by auto
with A1 A4 have <x,x> ∈ r and <y,y> ∈ r

using equiv_def refl_def by auto
with A5 have <f<x,y>, f<x,y> > ∈ r

using Congruent2_def by simp
with A1 D1 show thesis using equiv_type by auto

qed

The values of congruent functions are in the space. Note that although this
lemma is intended to be used with functions, we don’t need to assume that
we f is a function.

lemma EquivClass_1_L8A:
assumes A1: equiv(A,r) and A2: x∈A y∈A
and A3: Congruent2(r,f)
shows f<x,y> ∈ A

proof -
from A1 A2 have r{x} ∈ A//r r{y} ∈ A//r
<x,y> ∈ r{x}×r{y}
using equiv_class_self quotientI by auto

with A1 A3 show thesis using EquivClass_1_L8 by simp
qed

The following lemma is a two-variables equivalent of EquivClass_1_L6.

lemma EquivClass_1_L9:
assumes A1: equiv(A,r) and A2: Congruent2(r,f)
and A3: p ∈ (A//r)×(A//r)
shows (

⋃
z ∈ fst(p)×snd(p). r{f(z)}) ∈ A//r

proof -
from A3 have D1:fst(p) ∈ A//r and D2:snd(p) ∈ A//r

by auto
with A1 A2 have
T1:∀ z ∈ fst(p)×snd(p). f(z) ∈ A
using EquivClass_1_L8 by simp

from A3 A1 have fst(p)×snd(p) 6= 0
using equiv_def EquivClass_1_L5 Sigma_empty_iff
by auto

moreover from A1 T1 have
∀ z ∈ fst(p)×snd(p). r{f(z)} ∈ A//r
using quotientI by simp

moreover from A1 A2 D1 D2 have
∀ z1 z2. z1 ∈ fst(p)×snd(p) ∧ z2 ∈ fst(p)×snd(p) −→
r{f(z1)} = r{f(z2)}
using EquivClass_1_L7 by blast

ultimately show thesis by (rule ZF1_1_L2)
qed

Congruent functions of two variables can be projected.

theorem EquivClass_1_T1:
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assumes equiv(A,r) Congruent2(r,f)
shows ProjFun2(A,r,f) ∈ (A//r)×(A//r) → A//r
using prems EquivClass_1_L9 ProjFun2_def func1_1_L11A by simp

We define the projection on the quotient space as a function that takes an
element of A and assigns its equivalence class in A/r.

constdefs
Proj(A,r) ≡ {<x,c> ∈ A×(A//r). r{x} = c}

The projection diagram commutes. I wish I knew how to draw this diagram
in LATEX.

lemma EquivClass_1_L10: assumes A1: equiv(A,r) and A2: Congruent2(r,f)

and A3: x∈A y∈A
shows ProjFun2(A,r,f)<r{x},r{y}> = r{f<x,y>}

proof -
from A3 A1 have r{x} × r{y} 6= 0

using quotientI equiv_def EquivClass_1_L5 Sigma_empty_iff
by auto

moreover have
∀ z ∈ r{x}×r{y}. r{f(z)} = r{f<x,y>}

proof
fix z assume A4:z ∈ r{x}×r{y}
from A1 A3 have
r{x} ∈ A//r r{y} ∈ A//r
<x,y> ∈ r{x}×r{y}
using quotientI equiv_class_self by auto

with A1 A2 A4 show
r{f(z)} = r{f<x,y>}
using EquivClass_1_L7 by blast

qed
ultimately have
(
⋃
z ∈ r{x}×r{y}. r{f(z)}) = r{f<x,y>}

by (rule ZF1_1_L1)
moreover from A3 A1 A2 have
ProjFun2(A,r,f)<r{x},r{y}> =
(
⋃
z ∈ r{x}×r{y}. r{f(z)})

using quotientI EquivClass_1_T1 ProjFun2_def func1_1_L11B
by simp

ultimately show thesis by simp
qed

7.2 Projecting commutative, associative and distributive op-
erations.

In this section we show that if the operations are congruent with respect to
an equivalence relation then the projection to the quotient space preserves
commutativity, associativity and distributivity.
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The projection of commutative operation is commutative.

lemma EquivClass_2_L1: assumes
A1: equiv(A,r) and A2: Congruent2(r,f)
and A3: f {is commutative on} A
and A4: c1 ∈ A//r c2 ∈ A//r
shows ProjFun2(A,r,f) <c1,c2> = ProjFun2(A,r,f)<c2,c1>

proof -
from A4 obtain x y where D1:
c1 = r{x} c2 = r{y}
x∈A y∈A
using quotient_def by auto

with A1 A2 have ProjFun2(A,r,f) <c1,c2> = r{f<x,y>}
using EquivClass_1_L10 by simp

also from A3 D1 have
r{f<x,y>} = r{f<y,x>}
using IsCommutative_def by simp

also from A1 A2 D1 have
r{f<y,x>} = ProjFun2(A,r,f) <c2,c1>
using EquivClass_1_L10 by simp

finally show thesis by simp
qed

The projection of commutative operation is commutative.

theorem EquivClass_2_T1:
assumes equiv(A,r) and Congruent2(r,f)
and f {is commutative on} A
shows ProjFun2(A,r,f) {is commutative on} A//r
using prems IsCommutative_def EquivClass_2_L1 by simp

The projection of an associative operation is associative.

lemma EquivClass_2_L2:
assumes A1: equiv(A,r) and A2: Congruent2(r,f)
and A3: f {is associative on} A
and A4: c1 ∈ A//r c2 ∈ A//r c3 ∈ A//r
and A5: g = ProjFun2(A,r,f)
shows g〈g<c1,c2>,c3〉 = g〈c1,g<c2,c3>〉

proof -
from A4 obtain x y z where D1:
c1 = r{x} c2 = r{y} c3 = r{z}
x∈A y∈A z∈A
using quotient_def by auto

with A3 have T1:f<x,y> ∈ A f<y,z> ∈ A
using IsAssociative_def apply_type by auto

with A1 A2 D1 A5 have
g〈g<c1,c2>,c3〉 = r{f<f<x,y>,z>}
using EquivClass_1_L10 by simp

also from D1 A3 have
. . . = r{f<x,f<y,z> >}
using IsAssociative_def by simp
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also from T1 A1 A2 D1 A5 have
. . . = g〈c1,g<c2,c3>〉
using EquivClass_1_L10 by simp

finally show thesis by simp
qed

The projection of an associative operation is associative on the quotient.

theorem EquivClass_2_T2:
assumes A1: equiv(A,r) and A2: Congruent2(r,f)
and A3: f {is associative on} A
shows ProjFun2(A,r,f) {is associative on} A//r

proof -
let g = ProjFun2(A,r,f)
from A1 A2 have
g ∈ (A//r)×(A//r) → A//r
using EquivClass_1_T1 by simp

moreover from A1 A2 A3 have
∀ c1 ∈ A//r.∀ c2 ∈ A//r.∀ c3 ∈ A//r.
g<g<c1,c2>,c3> = g< c1,g<c2,c3> >
using EquivClass_2_L2 by simp

ultimately show thesis
using IsAssociative_def by simp

qed

The essential condition to show that distributivity is preserved by projec-
tions to quotient spaces, provided both operations are congruent with re-
spect to the equivalence relation.

lemma EquivClass_2_L3:
assumes A1: IsDistributive(X,A,M)
and A2: equiv(X,r)
and A3: Congruent2(r,A) Congruent2(r,M)
and A4: a ∈ X//r b ∈ X//r c ∈ X//r
and A5: Ap = ProjFun2(X,r,A) Mp = ProjFun2(X,r,M)
shows Mp〈a,Ap<b,c>〉 = Ap〈 Mp<a,b>,Mp<a,c>〉 ∧
Mp〈 Ap<b,c>,a 〉 = Ap〈 Mp<b,a>,Mp<c,a>〉

proof
from A4 obtain x y z where x∈X y∈X z∈X
a = r{x} b = r{y} c = r{z}
using quotient_def by auto

with A1 A2 A3 A5 show
Mp〈a,Ap<b,c>〉 = Ap〈 Mp<a,b>,Mp<a,c>〉
Mp〈 Ap<b,c>,a 〉 = Ap〈 Mp<b,a>,Mp<c,a>〉
using EquivClass_1_L8A EquivClass_1_L10 IsDistributive_def
by auto

qed

Distributivity is preserved by projections to quotient spaces, provided both
operations are congruent with respect to the equivalence relation.

lemma EquivClass_2_L4: assumes A1: IsDistributive(X,A,M)
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and A2: equiv(X,r)
and A3: Congruent2(r,A) Congruent2(r,M)
shows IsDistributive(X//r,ProjFun2(X,r,A),ProjFun2(X,r,M))

proof-
let Ap = ProjFun2(X,r,A)
let Mp = ProjFun2(X,r,M)
from A1 A2 A3 have
∀ a∈X//r.∀ b∈X//r.∀ c∈X//r.
Mp< a,Ap<b,c> > = Ap< Mp<a,b>,Mp<a,c> > ∧
Mp< Ap<b,c>,a > = Ap< Mp<b,a>,Mp<c,a> >
using EquivClass_2_L3 by simp

then show thesis using IsDistributive_def by simp
qed

7.3 Saturated sets

In this section we consider sets that are saturated with respect to an equiv-
alence relation. A set A is saturated with respect to a relation r if A =
r−1(r(A)). For equivalence relations saturated sets are unions of equiv-
alemce classes. This makes them useful as a tool to define subsets of the
quoutient space using properties of representants. Namely, we often define
a set B ⊆ X/r by saying that [x]r ∈ B iff x ∈ A. If A is a saturated set, this
definition is consistent in the sense that it does not depend on the choice of
x to represent [x]r.

The following defines the notion of saturated set. Recall that in Isabelle
r-(A) is the inverse image of A with respect to relation r. This definition is
not specific to equivalence relations.

constdefs
IsSaturated(r,A) ≡ A = r-(r(A))

For equivalence relations a set is saturated iff it is an image of itself.

lemma EquivClass_3_L1: assumes A1: equiv(X,r)
shows IsSaturated(r,A) ←→ A = r(A)

proof
assume A2: IsSaturated(r,A)
then have A = (converse(r) O r)(A)

using IsSaturated_def vimage_def image_comp
by simp

also from A1 have . . . = r(A)
using equiv_comp_eq by simp

finally show A = r(A) by simp
next assume A = r(A)

with A1 have A = (converse(r) O r)(A)
using equiv_comp_eq by simp

also have . . . = r-(r(A))
using vimage_def image_comp by simp

finally have A = r-(r(A)) by simp
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then show IsSaturated(r,A) using IsSaturated_def
by simp

qed

For equivalence relations sets are contained in their images.

lemma EquivClass_3_L2: assumes A1: equiv(X,r) and A2: A⊆X
shows A ⊆ r(A)

proof
fix a assume A3: a∈A
with A1 A2 have a ∈ r{a}

using equiv_class_self by auto
with A3 show a ∈ r(A) by auto

qed

The next lemma shows that if ”∼” is an equivalence relation and a set A is
such that a ∈ A and a ∼ b implies b ∈ A, then A is saturated with respect
to the relation.

lemma EquivClass_3_L3: assumes A1: equiv(X,r)
and A2: r ⊆ X×X and A3: A⊆X
and A4: ∀ x∈A. ∀ y∈X. 〈x,y〉 ∈ r −→ y∈A
shows IsSaturated(r,A)

proof -
from A2 A4 have r(A) ⊆ A

using image_iff by blast
moreover from A1 A3 have A ⊆ r(A)

using EquivClass_3_L2 by simp
ultimately have A = r(A) by auto
with A1 show IsSaturated(r,A) using EquivClass_3_L1

by simp
qed

If A ⊆ X and A is saturated and x ∼ y, then x ∈ A iff y ∈ A. Here we we
show only one direction.

lemma EquivClass_3_L4: assumes A1: equiv(X,r)
and A2: IsSaturated(r,A) and A3: A⊆X
and A4: 〈x,y〉 ∈ r
and A5: x∈X y∈A
shows x∈A

proof -
from A1 A5 have x ∈ r{x}

using equiv_class_self by simp
with A1 A3 A4 A5 have x ∈ r(A)

using equiv_class_eq equiv_class_self
by auto

with A1 A2 show x∈A
using EquivClass_3_L1 by simp

qed

If A ⊆ X and A is saturated and x ∼ y, then x ∈ A iff y ∈ A.
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lemma EquivClass_3_L5: assumes A1: equiv(X,r)
and A2: IsSaturated(r,A) and A3: A⊆X
and A4: x∈X y∈X
and A5: 〈x,y〉 ∈ r
shows x∈A ←→ y∈A

proof
assume y∈A
with prems show x∈A using EquivClass_3_L4

by simp
next assume A6: x∈A

from A1 A5 have 〈y,x〉 ∈ r
using equiv_is_sym by blast

with A1 A2 A3 A4 A6 show y∈A
using EquivClass_3_L4 by simp

qed

If A is saturated then x ∈ A iff its class is in the projection of A.

lemma EquivClass_3_L6: assumes A1: equiv(X,r)
and A2: IsSaturated(r,A) and A3: A⊆X and A4: x∈X
and A5: B = {r{x}. x∈A}
shows x∈A ←→ r{x} ∈ B

proof
assume x∈A
with A5 show r{x} ∈ B by auto

next assume r{x} ∈ B
with A5 obtain y where I: y ∈ A and r{x} = r{y}

by auto
with A1 A3 have 〈x,y〉 ∈ r

using eq_equiv_class by auto
with A1 A2 A3 A4 I show x∈A

using EquivClass_3_L4 by simp
qed

A technical lemma involving a projection of a saturated set and a logical
epression with exclusive or.

lemma EquivClass_3_L7: assumes A1: equiv(X,r)
and A2: IsSaturated(r,A) and A3: A⊆X
and A4: x∈X y∈X
and A5: B = {r{x}. x∈A}
and A6: (x∈A) Xor (y∈A)
shows (r{x} ∈ B) Xor (r{y} ∈ B)
using prems EquivClass_3_L6 by simp

end
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8 Finite1.thy

theory Finite1 imports Finite func1 ZF1

begin

8.1 Finite powerset

Intersection of a collection is contained in every element of the collection.
lemma ZF11: assumes A: A ∈ M shows

⋂
M ⊆ A

proof
fix x
assume A1: x ∈

⋂
M

from A1 A show x ∈ A ..
qed

Intersection of a nonempty collection M of subsets of X is a subset of X.
lemma ZF12: assumes A1: ∀ A∈ M. A⊆X and A2:M6=0

shows (
⋂

M) ⊆ X
proof -
from A2 have ∀ A∈ M. (

⋂
M ⊆ A) using ZF11 by simp

with A1 A2 show (
⋂

M) ⊆ X by fast
qed

Here we define a restriction of a collection of sets to a given set. In romantic
math this is typically denoted X ∩M and means {X ∩ A : A ∈ M}. Note
there is also restrict(f,A) defined for relations in ZF.thy.
constdefs
RestrictedTo (infixl {restricted to} 70)
M {restricted to} X ≡ {X ∩ A . A ∈ M}

In Topology_ZFTopology ZF theory we consider induced topology that is
obtained by taking a subset of a topological space. To show that a topology
restricted to a subset is also a topology on that subset we may need a fact
that if T is a collection of sets and A is a set then every finite collection
{Vi} is of the form Vi = Ui ∩ A, where {Ui} is a finite subcollection of T .
This is one of those trivial facts that require suprisingly long formal proof.
Actually, the need for this fact is avoided by requiring intersection two open
sets to be open (rather than intersection of a finite number of open sets).
Still, the fact is left here as an example of a proof by induction.

We will use Fin induct lemma from Finite.thy. First we define a property
of finite sets that we want to show.
constdefs
Prfin(T,A,M) ≡ ( (M = 0) | (∃ N∈ Fin(T). ∀ V∈ M. ∃ U∈ N. (V = U∩A)))

Now we show the main induction step in a separate lemma. This will make
the proof of the theorem FinRestr below look short and nice. The premises
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of the ind step lemma are those needed by the main induction step in lemma
Fin induct (see Finite.thy).

lemma ind_step: assumes A: ∀ V∈ TA. ∃ U∈ T. V=U∩A
and A1: W∈TA and A2:M∈ Fin(TA)
and A3:W/∈M and A4: Prfin(T,A,M)
shows Prfin(T,A,cons(W,M))

proof (cases M=0)
assume A7: M=0 show Prfin(T, A, cons(W, M))
proof-

from A1 A obtain U where A5: U∈T and A6:W=U∩A by fast
let N = {U}
from A5 have T1: N ∈ Fin(T) by simp
from A7 A6 have T2:∀ V∈ cons(W,M). ∃ U∈N. V=U∩A by simp
from A7 T1 T2 show Prfin(T, A, cons(W, M))

using Prfin_def by auto
qed

next
assume A8:M6=0 show Prfin(T, A, cons(W, M))
proof-

from A1 A obtain U where A5: U∈T and A6:W=U∩A by fast
from A8 A4 obtain N0

where A9: N0∈ Fin(T)
and A10: ∀ V∈ M. ∃ U0∈ N0. (V = U0∩A)
using Prfin_def by auto

let N = cons(U,N0)
from A5 A9 have N ∈ Fin(T) by simp
moreover from A10 A6 have ∀ V∈ cons(W,M). ∃ U∈N. V=U∩A by simp
ultimately have ∃ N∈ Fin(T).∀ V∈ cons(W,M). ∃ U∈N. V=U∩A by auto
with A8 show Prfin(T, A, cons(W, M))

using Prfin_def by simp
qed

qed

Now we are ready to prove the statement we need.

theorem FinRestr0: assumes A: ∀ V∈ TA. ∃ U∈ T. V=U∩A
shows ∀ M∈ Fin(TA). Prfin(T,A,M)

proof
fix M
assume A1: M∈ Fin(TA)
have Prfin(T,A,0) using Prfin_def by simp
with A1 show Prfin(T,A,M) using ind_step by (rule Fin_induct)

qed

This is a different form of the above theorem:

theorem ZF1FinRestr:
assumes A1:M∈ Fin(TA) and A2: M6=0
and A3: ∀ V∈ TA. ∃ U∈ T. V=U∩A
shows ∃ N∈ Fin(T). (∀ V∈ M. ∃ U∈ N. (V = U∩A)) ∧ N6=0
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proof -
from A3 A1 have Prfin(T,A,M) using FinRestr0 by blast
then have ∃ N∈ Fin(T). ∀ V∈ M. ∃ U∈ N. (V = U∩A)

using A2 Prfin_def by simp
then obtain N where
D1:N∈ Fin(T) ∧ (∀ V∈ M. ∃ U∈ N. (V = U∩A)) by auto

with A2 have N 6=0 by auto
with D1 show thesis by auto

qed

Purely technical lemma used in Topology ZF 1 to show that if a topology
is T2, then it is T1.

lemma Finite1_L2:
assumes A:∃ U V. (U∈T ∧ V∈T ∧ x∈U ∧ y∈V ∧ U∩V=0)
shows ∃ U∈T. (x∈U ∧ y/∈U)

proof -
from A obtain U V where D1:U∈T ∧ V∈T ∧ x∈U ∧ y∈V ∧ U∩V=0 by auto
with D1 show thesis by auto

qed

A collection closed with respect to taking a union of two sets is closed under
taking finite unions. Proof by induction with the induction step formulated
in a separate lemma.

The induction step:

lemma Finite1_L3_IndStep:
assumes A1:∀ A B. ((A∈C ∧ B∈C) −→ A∪B∈C)
and A2: A∈C and A3:N∈Fin(C) and A4:A/∈N and A5:

⋃
N ∈ C

shows
⋃
cons(A,N) ∈ C

proof -
have

⋃
cons(A,N) = A∪

⋃
N by blast

with A1 A2 A5 show thesis by simp
qed

The lemma:

lemma Finite1_L3:
assumes A1:0 ∈ C and A2:∀ A B. ((A∈C ∧ B∈C) −→ A∪B∈C) and
A3:N∈ Fin(C)
shows

⋃
N∈C

proof -
from A1 have

⋃
0 ∈ C by simp

with A3 show
⋃
N∈ C using Finite1_L3_IndStep by (rule Fin_induct)

qed

A collection closed with respect to taking a intersection of two sets is closed
under taking finite intersections. Proof by induction with the induction
step formulated in a separate lemma. This is sligltly more involved than
the union case in Finite1 L3, because the intersection of empty collection is
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undefined (or should be treated as such). To simplify notation we define the
property to be proven for finite sets as a constdef.

constdefs
IntPr(T,N) ≡ (N = 0 |

⋂
N ∈ T)

The induction step.

lemma Finite1_L4_IndStep:
assumes A1:∀ A B. ((A∈T ∧ B∈T) −→ A∩B∈T)
and A2: A∈T and A3:N∈Fin(T) and A4:A/∈N and A5:IntPr(T,N)
shows IntPr(T,cons(A,N))

proof (cases N=0)
assume A6:N=0 show IntPr(T,cons(A,N))
proof-

from A6 A2 show IntPr(T, cons(A, N)) using IntPr_def by simp
qed
next
assume A7:N6=0 show IntPr(T, cons(A, N))
proof -

from A7 A5 A2 A1 have
⋂
N ∩ A ∈ T using IntPr_def by simp

moreover from A7 have
⋂
cons(A, N) =

⋂
N ∩ A by auto

ultimately show IntPr(T, cons(A, N)) using IntPr_def by simp
qed

qed

The lemma.

lemma Finite1_L4:
assumes A1:∀ A B. A∈T ∧ B∈T −→ A∩B ∈ T
and A2:N∈Fin(T)
shows IntPr(T,N)

proof -
have IntPr(T,0) using IntPr_def by simp
with A2 show IntPr(T,N) using Finite1_L4_IndStep

by (rule Fin_induct)
qed

Next is a restatement of the above lemma that does not depend on the IntPr
meta-function.

lemma Finite1_L5:
assumes A1: ∀ A B. ((A∈T ∧ B∈T) −→ A∩B∈T)
and A2:N6=0 and A3:N∈Fin(T)
shows

⋂
N ∈ T

proof -
from A1 A3 have IntPr(T,N) using Finite1_L4 by simp
with A2 show thesis using IntPr_def by simp

qed

The images of finite subsets by a meta-function are finite. For example in
topology if we have a finite collection of sets, then closing each of them
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results in a finite collection of closed sets. This is a very useful lemma with
many unexpected applications. The proof is by induction.

The induction step:

lemma Finite1_L6_IndStep:
assumes ∀ V∈B. K(V)∈C
and U∈B and N∈Fin(B) and U/∈N and {K(V). V∈N}∈Fin(C)
shows {K(V). V∈cons(U,N)} ∈ Fin(C)
using prems by simp

The lemma:

lemma Finite1_L6: assumes A1:∀ V∈B. K(V)∈C and A2:N∈Fin(B)
shows {K(V). V∈N} ∈ Fin(C)

proof -
have {K(V). V∈0}∈Fin(C) by simp
with A2 show thesis using Finite1_L6_IndStep by (rule Fin_induct)

qed

The image of a finite set is finite.

lemma Finite1_L6A: assumes A1: f:X→Y and A2: N ∈ Fin(X)
shows f(N) ∈ Fin(Y)

proof -
from A1 have ∀ x∈X. f(x) ∈ Y

using apply_type by simp
moreover from A2 have N∈Fin(X) .
ultimately have {f(x). x∈N} ∈ Fin(Y)

by (rule Finite1_L6)
with A1 A2 show thesis

using FinD func_imagedef by simp
qed

If the set defined by a meta-function is finite, then every set defined by a
composition of this meta function with another one is finite.

lemma Finite1_L6B:
assumes A1: ∀ x∈X. a(x) ∈ Y and A2: {b(y).y∈Y} ∈ Fin(Z)
shows {b(a(x)).x∈X} ∈ Fin(Z)

proof -
from A1 have {b(a(x)).x∈X} ⊆ {b(y).y∈Y} by auto
with A2 show thesis using Fin_subset_lemma by blast

qed

If the set defined by a meta-function is finite, then every set defined by a
composition of this meta function with another one is finite.

lemma Finite1_L6C:
assumes A1: ∀ y∈Y. b(y) ∈ Z and A2: {a(x). x∈X} ∈ Fin(Y)
shows {b(a(x)).x∈X} ∈ Fin(Z)

proof -
let N = {a(x). x∈X}
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from A1 A2 have {b(y). y ∈ N} ∈ Fin(Z)
by (rule Finite1_L6)

moreover have {b(a(x)). x∈X} = {b(y). y∈ N}
by auto

ultimately show thesis by simp
qed

Next we show an identity that is used to prove sufficiency of some condition
for a collection of sets to be a base for a topology. Should be in ZF1.thy.

lemma Finite1_L8: assumes A1:∀ U∈C. ∃ A∈B. U =
⋃
A

shows
⋃ ⋃

{
⋃
{A∈B. U =

⋃
A}. U∈C} =

⋃
C

proof
show

⋃
(
⋃
U∈C.

⋃
{A ∈ B . U =

⋃
A}) ⊆

⋃
C by blast

show
⋃
C ⊆

⋃
(
⋃
U∈C.

⋃
{A ∈ B . U =

⋃
A})

proof
fix x assume A2:x ∈

⋃
C

show x∈
⋃
(
⋃
U∈C.

⋃
{A ∈ B . U =

⋃
A})

proof -
from A2 obtain U where D1:U∈C ∧ x∈U by auto
with A1 obtain A where D2:A∈B ∧ U =

⋃
A by auto

from D1 D2 show x∈
⋃
(
⋃
U∈C.

⋃
{A ∈ B . U =

⋃
A}) by auto

qed
qed

qed

If an intersection of a collection is not empty, then the collection is not
empty. We are (ab)using the fact the the intesection of empty collection is
defined to be empty and prove by contradiction. Should be in ZF1.thy

lemma Finite1_L9: assumes A1:
⋂
A 6= 0 shows A6=0

proof (rule ccontr)
assume A2: ¬ A 6= 0
with A1 show False by simp

qed

Cartesian product of finite sets is finite.

lemma Finite1_L12: assumes A1:A ∈ Fin(A) and A2:B ∈ Fin(B)
shows A×B ∈ Fin(A×B)

proof -
have T1:∀ a∈A. ∀ b∈B. {<a,b>} ∈ Fin(A×B) by simp
have ∀ a∈A. {{<a,b>}. b ∈ B} ∈ Fin(Fin(A×B))
proof

fix a assume A3:a ∈ A
with T1 have ∀ b∈B. {<a,b>} ∈ Fin(A×B)

by simp
moreover from A2 have B ∈ Fin(B) .
ultimately show {{<a,b>}. b ∈ B} ∈ Fin(Fin(A×B))

by (rule Finite1_L6)
qed
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then have ∀ a∈A.
⋃

{{<a,b>}. b ∈ B} ∈ Fin(A×B)
using Fin_UnionI by simp

moreover have
∀ a∈A.

⋃
{{<a,b>}. b ∈ B} = {a}× B by blast

ultimately have ∀ a∈A. {a}× B ∈ Fin(A×B) by simp
moreover from A1 have A ∈ Fin(A) .
ultimately have {{a}× B. a∈A} ∈ Fin(Fin(A×B))

by (rule Finite1_L6)
then have

⋃
{{a}× B. a∈A} ∈ Fin(A×B)

using Fin_UnionI by simp
moreover have

⋃
{{a}× B. a∈A} = A×B by blast

ultimately show thesis by simp
qed

We define the characterisic meta-function that is the identity on a set and
assigns a default value everywhere else.

constdefs
Characteristic(A,default,x) ≡ (if x∈A then x else default)

A finite subset is a finite subset of itself.

lemma Finite1_L13:
assumes A1:A ∈ Fin(X) shows A ∈ Fin(A)

proof (cases A=0)
assume A=0 then show A ∈ Fin(A) by simp
next
assume A2: A6=0 then obtain c where D1:c∈A

by auto
then have ∀ x∈X. Characteristic(A,c,x) ∈ A

using Characteristic_def by simp
moreover from A1 have A ∈ Fin(X) .
ultimately have
{Characteristic(A,c,x). x∈A} ∈ Fin(A)
by (rule Finite1_L6)

moreover from D1 have
{Characteristic(A,c,x). x∈A} = A
using Characteristic_def by simp

ultimately show A ∈ Fin(A) by simp
qed

Cartesian product of finite subsets is a finite subset of cartesian product.

lemma Finite1_L14: assumes A1:A ∈ Fin(X) B ∈ Fin(Y)
shows A×B ∈ Fin(X×Y)

proof -
from A1 have A×B ⊆ X×Y using FinD by auto
then have Fin(A×B) ⊆ Fin(X×Y) using Fin_mono by simp
moreover from A1 have A×B ∈ Fin(A×B)

using Finite1_L13 Finite1_L12 by simp
ultimately show thesis by auto

qed
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The next lemma is needed in the Group_ZF_3 theory in a couple of places.

lemma Finite1_L15:
assumes A1: {b(x). x∈A} ∈ Fin(B) {c(x). x∈A} ∈ Fin(C)
and A2: f : B×C→E
shows {f<b(x),c(x)>. x∈A} ∈ Fin(E)

proof -
from A1 have {b(x). x∈A}×{c(x). x∈A} ∈ Fin(B×C)

using Finite1_L14 by simp
moreover have
{<b(x),c(x)>. x∈A} ⊆ {b(x). x∈A}×{c(x). x∈A}
by blast

ultimately have T0: {<b(x),c(x)>. x∈A} ∈ Fin(B×C)
by (rule Fin_subset_lemma)

with A2 have T1: f{<b(x),c(x)>. x∈A} ∈ Fin(E)
using Finite1_L6A by auto

from T0 have ∀ x∈A. <b(x),c(x)> ∈ B×C
using FinD by auto

with A2 have
f{<b(x),c(x)>. x∈A} = {f<b(x),c(x)>. x∈A}
using func1_1_L17 by simp

with T1 show thesis by simp
qed

Singletons are in the finite powerset.

lemma Finite1_L16: assumes x∈X shows {x} ∈ Fin(X)
using prems emptyI consI by simp

A special case of Finite1_L15 where the second set is a singleton. Group_ZF_3

theory this corresponds to the situation where we multiply by a constant.

lemma Finite1_L16AA: assumes A1: {b(x). x∈A} ∈ Fin(B)
and A2: c∈C and A3: f : B×C→E
shows {f<b(x),c>. x∈A} ∈ Fin(E)

proof -
from prems have
∀ y∈B. f〈y,c〉 ∈ E
{b(x). x∈A} ∈ Fin(B)
using apply_funtype by auto

then show thesis by (rule Finite1_L6C)
qed

In the IsarMathLib coding convention it is rather difficult to use results that
take =⇒ (that is, another lemma) as one of the assumptions. It is easier
to use a condition written with the first order implication (−→). The next
lemma is the induction step of the lemma about the first order induction.

lemma Finite1_L16A:
assumes ∀ A∈Fin(X).∀ x∈X. x/∈A ∧ P(A)−→P(A∪{x})
and x∈X and A∈Fin(X) and x/∈A and P(A)
shows P(cons(x,A))
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proof -
from prems have P(A∪{x}) by simp
moreover have cons(x,A) = A∪{x} by auto
ultimately show thesis by simp

qed

First order version of the induction for the finite powerset.

lemma Finite1_L16B: assumes A1: P(0) and A2: B∈Fin(X)
and A3: ∀ A∈Fin(X).∀ x∈X. x/∈A ∧ P(A)−→P(A∪{x})
shows P(B)

proof -
from A1 have P(0) .
with A2 show P(B) using Finite1_L16A by (rule Fin_induct)

qed

8.2 Finite range functions

In this section we define functions f : X → Y , with the property that
f(X) is a finite subset of Y . Such functions play a important role in the
construction of real numbers in the Real ZF x.thy series.

constdefs
FinRangeFunctions(X,Y) ≡ {f:X→Y. f(X) ∈ Fin(Y)}

Constant functions have finite range.

lemma Finite1_L17: assumes c∈Y and X 6=0
shows ConstantFunction(X,c) ∈ FinRangeFunctions(X,Y)
using prems func1_3_L1 func_imagedef func1_3_L2 Finite1_L16
FinRangeFunctions_def by simp

Finite range functions have finite range.

lemma Finite1_L18: assumes f ∈ FinRangeFunctions(X,Y)
shows {f(x). x∈X} ∈ Fin(Y)
using prems FinRangeFunctions_def func_imagedef by simp

An alternative form of the definition of finite range functions.

lemma Finite1_L19: assumes f:X→Y
and {f(x). x∈X} ∈ Fin(Y)
shows f ∈ FinRangeFunctions(X,Y)
using prems func_imagedef FinRangeFunctions_def by simp

A composition of a finite range function with another function is a finite
range function.

lemma Finite1_L20: assumes A1:f ∈ FinRangeFunctions(X,Y)
and A2:g : Y→Z
shows g O f ∈ FinRangeFunctions(X,Z)

proof -
from A1 A2 have g{f(x). x∈X} ∈ Fin(Z)
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using Finite1_L18 Finite1_L6A
by simp

with A1 A2 have {(g O f)(x). x∈X} ∈ Fin(Z)
using FinRangeFunctions_def apply_funtype
func1_1_L17 comp_fun_apply by auto

with A1 A2 show thesis using
FinRangeFunctions_def comp_fun Finite1_L19
by auto

qed

Image of any subset of the domain of a finite range function is finite.

lemma Finite1_L21:
assumes A1: f ∈ FinRangeFunctions(X,Y) and A2: A⊆X
shows f(A) ∈ Fin(Y)

proof -
from A1 A2 have f(X) ∈ Fin(Y) f(A) ⊆ f(X)

using FinRangeFunctions_def func1_1_L8
by auto

then show f(A) ∈ Fin(Y) using Fin_subset_lemma
by blast

qed

end
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9 Finite ZF.thy

theory Finite_ZF_1 imports Finite1 Order_ZF

begin

This theory file contains properties of finite sets related to order relations.

9.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have
maxima and minima.

Finite set has a maximum - induction step.

lemma Finite_ZF_1_1_L1:
assumes A1: r {is total on} X and A2: trans(r)
and A3: A∈Fin(X) and A4: x∈X and A5: A=0 ∨ HasAmaximum(r,A)
shows A∪{x} = 0 ∨ HasAmaximum(r,A∪{x})

proof (cases A=0)
assume A=0 then have T1: A∪{x} = {x} by simp
from A1 have refl(X,r) using total_is_refl by simp
with T1 A4 show A∪{x} = 0 ∨ HasAmaximum(r,A∪{x})

using Order_ZF_4_L8 by simp
next assume A 6=0

with A1 A2 A3 A4 A5 show A∪{x} = 0 ∨ HasAmaximum(r,A∪{x})
using FinD Order_ZF_4_L9 by simp

qed

For total and transitive relations finite set has a maximum.

theorem Finite_ZF_1_1_T1A:
assumes A1: r {is total on} X and A2: trans(r)
and A3: B∈Fin(X)
shows B=0 ∨ HasAmaximum(r,B)

proof -
have 0=0 ∨ HasAmaximum(r,0) by simp
moreover from A3 have B∈Fin(X) .
moreover from A1 A2 have ∀ A∈Fin(X). ∀ x∈X.
x/∈A ∧ (A=0 ∨ HasAmaximum(r,A)) −→ (A∪{x}=0 ∨ HasAmaximum(r,A∪{x}))
using Finite_ZF_1_1_L1 by simp

ultimately show B=0 ∨ HasAmaximum(r,B) by (rule Finite1_L16B)
qed

Finite set has a minimum - induction step.

lemma Finite_ZF_1_1_L2:
assumes A1: r {is total on} X and A2: trans(r)
and A3: A∈Fin(X) and A4: x∈X and A5: A=0 ∨ HasAminimum(r,A)
shows A∪{x} = 0 ∨ HasAminimum(r,A∪{x})

proof (cases A=0)
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assume A=0 then have T1: A∪{x} = {x} by simp
from A1 have refl(X,r) using total_is_refl by simp
with T1 A4 show A∪{x} = 0 ∨ HasAminimum(r,A∪{x})

using Order_ZF_4_L8 by simp
next assume A 6=0

with A1 A2 A3 A4 A5 show A∪{x} = 0 ∨ HasAminimum(r,A∪{x})
using FinD Order_ZF_4_L10 by simp

qed

For total and transitive relations finite set has a minimum.

theorem Finite_ZF_1_1_T1B:
assumes A1: r {is total on} X and A2: trans(r)
and A3: B ∈ Fin(X)
shows B=0 ∨ HasAminimum(r,B)

proof -
have 0=0 ∨ HasAminimum(r,0) by simp
moreover from A3 have B∈Fin(X) .
moreover from A1 A2 have ∀ A∈Fin(X). ∀ x∈X.
x/∈A ∧ (A=0 ∨ HasAminimum(r,A)) −→ (A∪{x}=0 ∨ HasAminimum(r,A∪{x}))
using Finite_ZF_1_1_L2 by simp

ultimately show B=0 ∨ HasAminimum(r,B) by (rule Finite1_L16B)
qed

For transitive and total relations finite sets are bounded.

theorem Finite_ZF_1_T1:
assumes A1: r {is total on} X and A2: trans(r)
and A3: B∈Fin(X)
shows IsBounded(B,r)

proof -
from A1 A2 A3 have B=0 ∨ HasAminimum(r,B) B=0 ∨ HasAmaximum(r,B)

using Finite_ZF_1_1_T1A Finite_ZF_1_1_T1B by auto
then have
B = 0 ∨ IsBoundedBelow(B,r) B = 0 ∨ IsBoundedAbove(B,r)
using Order_ZF_4_L7 Order_ZF_4_L8A by auto

then show IsBounded(B,r) using
IsBounded_def IsBoundedBelow_def IsBoundedAbove_def
by simp

qed

For linearly ordered finite sets maximum and minimum have desired prop-
erties. The reason we need linear order is that we need the order to be total
and transitive for the finite sets to have a maximum and minimum and then
we also need antisymmetry for the maximum and minimum to be unique.

theorem Finite_ZF_1_T2:
assumes A1: IsLinOrder(X,r) and A2: A ∈ Fin(X) and A3: A6=0
shows
Maximum(r,A) ∈ A
Minimum(r,A) ∈ A
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∀ x∈A. 〈x,Maximum(r,A)〉 ∈ r
∀ x∈A. 〈Minimum(r,A),x〉 ∈ r

proof -
from A1 have T1: r {is total on} X trans(r) antisym(r)

using IsLinOrder_def by auto
moreover from T1 A2 A3 have HasAmaximum(r,A)

using Finite_ZF_1_1_T1A by auto
moreover from T1 A2 A3 have HasAminimum(r,A)

using Finite_ZF_1_1_T1B by auto
ultimately show
Maximum(r,A) ∈ A
Minimum(r,A) ∈ A
∀ x∈A. 〈x,Maximum(r,A)〉 ∈ r ∀ x∈A. 〈Minimum(r,A),x〉 ∈ r
using Order_ZF_4_L3 Order_ZF_4_L4 by auto

qed

A special case of Finite_ZF_1_T2 when the set has three elements.
corollary Finite_ZF_1_L2A:

assumes A1: IsLinOrder(X,r) and A2: a∈X b∈X c∈X
shows
Maximum(r,{a,b,c}) ∈ {a,b,c}
Minimum(r,{a,b,c}) ∈ {a,b,c}
Maximum(r,{a,b,c}) ∈ X
Minimum(r,{a,b,c}) ∈ X
〈a,Maximum(r,{a,b,c})〉 ∈ r
〈b,Maximum(r,{a,b,c})〉 ∈ r
〈c,Maximum(r,{a,b,c})〉 ∈ r

proof -
from A2 have I: {a,b,c} ∈ Fin(X) {a,b,c} 6= 0

by auto
with A1 show II: Maximum(r,{a,b,c}) ∈ {a,b,c}

by (rule Finite_ZF_1_T2)
moreover from A1 I show III: Minimum(r,{a,b,c}) ∈ {a,b,c}

by (rule Finite_ZF_1_T2)
moreover from A2 have {a,b,c} ⊆ X

by auto
ultimately show
Maximum(r,{a,b,c}) ∈ X
Minimum(r,{a,b,c}) ∈ X
by auto

from A1 I have ∀ x∈{a,b,c}. 〈x,Maximum(r,{a,b,c})〉 ∈ r
by (rule Finite_ZF_1_T2)

then show
〈a,Maximum(r,{a,b,c})〉 ∈ r
〈b,Maximum(r,{a,b,c})〉 ∈ r
〈c,Maximum(r,{a,b,c})〉 ∈ r
by auto

qed

If for every element of X we can find one in A that is greater, then the A
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can not be finite. Works for relations that are total, transitive and antisym-
metric.

lemma Finite_ZF_1_1_L3:
assumes A1: r {is total on} X
and A2: trans(r) and A3: antisym(r)
and A4: r ⊆ X×X and A5: X6=0
and A6: ∀ x∈X. ∃ a∈A. x6=a ∧ 〈x,a〉 ∈ r
shows A /∈ Fin(X)

proof -
from prems have ¬IsBounded(A,r)

using Order_ZF_3_L14 IsBounded_def
by simp

with A1 A2 show A /∈ Fin(X)
using Finite_ZF_1_T1 by auto

qed

end

93



10 Topology ZF.thy

theory Topology_ZF imports Finite1 Fol1

begin

This theory file provides basic definitions and properties of topology, open
and closed sets, closure and boundary.

10.1 Basic definitions and properties

A typical textbook defines a topology on a set X as a collection T of subsets
of X such that X ∈ T , ∅ ∈ T and T is closed with respect to arbitrary
unions and intersection of two sets. One can notice here that since we always
have

⋃
T = X, the set on which the topology is defined (the ”carrier” of

the topology) can always be constructed from the topology itself and is
superfluous in the definition. Hence, we decided to define a topology as a
collection of sets that contains the empty set and is closed under arbitrary
unions and intersections of two sets, without any mention of the set on which
the topology is defined. Recall that Pow(T) is the powerset of T , so that if
M ∈Pow(T) then M is a subset of T . We define interior of a set A as the union
of all open sets contained in A. We use Interior(A,T) to denote the interior
of A. Closed set is one such that it is contained in the carrier of the topology
(i.e.

⋃
T ) and its complement is open (i.e. belongs to the topology). The

closure of a set is the intersection of all closed sets that contain it. To prove
varius properties of closure we will often use the collection of closed sets that
contain a given set A. Such collection does not have a name in romantic
math. We will call it ClosedCovers(A,T). The closure of a set A is defined
as the intersection of the collection of the closed sets D such that A ⊆ D.
We also define boundary of a set as the intersection of its closure with the
closure of the complement (with respect to the carrier). A set K is compact
if for every collection of open sets that covers K we can choose a finite one
that still covers the set. Recall that Fin(M) is the collection of finite subsets
of M (finite powerset of M), defined in the Finite theory of Isabelle/ZF.

constdefs
IsATopology (_ {is a topology} [90] 91)
T {is a topology} ≡ ( 0 ∈ T) ∧ ( ∀ M∈Pow(T).

⋃
M ∈ T ) ∧

( ∀ U∈T. ∀ V∈T. U∩V ∈ T)

Interior(A,T) ≡
⋃

{U∈T. U⊆A}

IsClosed (infixl {is closed in} 90)
D {is closed in} T ≡ (D ⊆

⋃
T ∧

⋃
T - D ∈ T)

ClosedCovers(A,T) ≡ {D ∈ Pow(
⋃
T). D {is closed in} T ∧ A⊆D}
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Closure(A,T) ≡
⋂

ClosedCovers(A,T)

Boundary(A,T) ≡ Closure(A,T) ∩ Closure(
⋃
T - A,T)

IsCompact (infixl {is compact in} 90)
K {is compact in} T ≡ (K ⊆

⋃
T ∧

(∀ M∈Pow(T). K ⊆
⋃
M −→ (∃ N∈Fin(M). K ⊆

⋃
N)))

A basic example of a topology: the powerset of any set is a topology.

lemma Top_1_L1: shows Pow(X) {is a topology}
proof -

have 0 ∈ Pow(X) by simp
moreover have ∀ A∈Pow(Pow(X)).

⋃
A ∈ Pow(X) by fast

moreover have ∀ U∈Pow(X). ∀ V∈Pow(X). U∩V ∈ Pow(X) by fast
ultimately show Pow(X) {is a topology} using IsATopology_def

by auto
qed

The intersection of any nonempty collection of topologies on a set X is a
topology.

lemma Top_1_L2: assumes A1: M 6= 0 and A2: ∀ T∈M. T {is a topology}
shows (

⋂
M) {is a topology}

proof -
from A1 A2 have 0 ∈

⋂
M using IsATopology_def

by auto
moreover
{ fix A assume A∈Pow(

⋂
M)

with A1 have ∀ T∈M. A∈Pow(T) by auto
with A1 A2 have

⋃
A ∈

⋂
M using IsATopology_def

by auto
} then have ∀ A. A∈Pow(

⋂
M) −→

⋃
A ∈

⋂
M by simp

hence ∀ A∈Pow(
⋂
M).

⋃
A ∈

⋂
M by auto

moreover
{ fix U V assume U ∈

⋂
M and V ∈

⋂
M

then have ∀ T∈M. U ∈ T ∧ V ∈ T by auto
with A1 A2 have ∀ T∈M. U∩V ∈ T using IsATopology_def

by simp
} then have ∀ U ∈

⋂
M. ∀ V ∈

⋂
M. U∩V ∈

⋂
M

by auto
ultimately show (

⋂
M) {is a topology}

using IsATopology_def by simp
qed

We will now introduce some notation. In Isar, this is done by definining
a ”locale”. Locale is kind of a context that holds some assumptions and
notation used in all theorems proven in it. In the locale (context) below
called topology0 we assume that T is a topolgy. The interior of the set A

95



(with respect to the topology in the context) is denoted int(A). The closure
of a set A ⊆

⋃
T is denoted cl(A) and the boundary is ∂A.

locale topology0 =
fixes T
assumes topSpaceAssum: T {is a topology}

fixes int
defines int_def [simp]: int(A) ≡ Interior(A,T)

fixes cl
defines cl_def [simp]: cl(A) ≡ Closure(A,T)

fixes boundary (∂_ [91] 92)
defines boundary_def [simp]: ∂A ≡ Boundary(A,T)

Intersection of a finite nonempty collection of open sets is open.

lemma (in topology0) Top_1_L3: assumes N6=0 N ∈ Fin(T)
shows

⋂
N ∈ T

using topSpaceAssum prems IsATopology_def Finite1_L5 by simp

Having a topology T and a set X we can define the induced topology as the
one consisting of the intersections of X with sets from T . The notion of a
collection restricted to a set is defined in Finite1.thy.

lemma (in topology0) Top_1_L4:
shows (T {restricted to} X) {is a topology}

proof -
let S = T {restricted to} X
from topSpaceAssum have 0 ∈ S

using IsATopology_def RestrictedTo_def by auto
moreover have ∀ A∈Pow(S).

⋃
A ∈ S

proof
fix A assume A1: A∈Pow(S)
from topSpaceAssum have ∀ V∈A.

⋃
{U ∈ T. V = U∩X} ∈ T

using IsATopology_def by auto
hence {

⋃
{U∈T. V = U∩X}.V∈ A} ⊆ T by auto

with topSpaceAssum have (
⋃
V∈A.

⋃
{U∈T. V = U∩X}) ∈ T

using IsATopology_def by auto
then have (

⋃
V∈A.

⋃
{U∈T. V = U∩X})∩ X ∈ S

using RestrictedTo_def by auto
moreover
from A1 have ∀ V∈A. ∃ U∈T. V = U∩X

using RestrictedTo_def by auto
hence (

⋃
V∈A.

⋃
{U∈T. V = U∩X})∩X =

⋃
A by fast

ultimately show
⋃
A ∈ S by simp

qed
moreover have ∀ U∈S. ∀ V∈S. U∩V ∈ S
proof -

{ fix U V assume U∈S V∈S
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then obtain U1 V1 where
U1 ∈ T ∧ U = U1∩X and V1 ∈ T ∧ V = V1∩X
using RestrictedTo_def by auto

with topSpaceAssum have U1∩V1 ∈ T and U∩V = (U1∩V1)∩X
using IsATopology_def by auto

then have U∩V ∈ S using RestrictedTo_def by auto
} then show ∀ U∈S. ∀ V∈S. U∩V ∈ S

by simp
qed
ultimately show S {is a topology} using IsATopology_def

by simp
qed

10.2 Interior of a set

In section we show basic properties of the interior of a set.

Interior of a set A is contained in A.

lemma (in topology0) Top_2_L1: shows int(A) ⊆ A
using Interior_def by auto

Interior is open.

lemma (in topology0) Top_2_L2: shows int(A) ∈ T
using topSpaceAssum IsATopology_def Interior_def
by auto

A set is open iff it is equal to its interior.

lemma (in topology0) Top_2_L3: U∈T ←→ int(U) = U
proof

assume U∈T then show int(U) = U
using Interior_def by auto

next assume A1: int(U) = U
have int(U) ∈ T using Top_2_L2 by simp
with A1 show U∈T by simp

qed

Interior of the interior is the interior.

lemma (in topology0) Top_2_L4: shows int(int(A)) = int(A)
proof -

let U = int(A)
from topSpaceAssum have U∈T using Top_2_L2 by simp
then show int(int(A)) = int(A) using Top_2_L3 by simp

qed

Interior of a bigger set is bigger.

lemma (in topology0) interior_mono:
assumes A1: A⊆B shows int(A) ⊆ int(B)

proof -
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from A1 have ∀ U∈T. (U⊆A −→ U⊆B) by auto
then show int(A) ⊆ int(B) using Interior_def by auto

qed

An open subset of any set is a subset of the interior of that set.

lemma (in topology0) Top_2_L5: assumes U⊆A and U∈T
shows U ⊆ int(A)
using prems Interior_def by auto

If a point of a set has an open neighboorhood contained in the set, then the
point belongs to the interior of the set.

lemma (in topology0) Top_2_L6: assumes ∃ U∈T. (x∈U ∧ U⊆A)
shows x ∈ int(A)
using prems Interior_def by auto

A set is open iff its every point has a an open neighbourhood contained in
the set. We will formulate this statement as two lemmas (implication one
way and the other way). The lemma below shows that if a set is open then
every point has a an open neighbourhood contained in the set.

lemma (in topology0) Top_2_L7:
assumes A1: V∈T
shows ∀ x∈V. ∃ U∈T. (x∈U ∧ U⊆V)

proof -
from A1 have ∀ x∈V. V∈T ∧ x ∈ V ∧ V ⊆ V by simp
then show thesis by auto

qed

If every point of a set has a an open neighbourhood contained in the set
then the set is open.

lemma (in topology0) Top_2_L8:
assumes A1: ∀ x∈V. ∃ U∈T. (x∈U ∧ U⊆V)
shows V∈T

proof -
from A1 have V = int(V) using Top_2_L1 Top_2_L6

by blast
then show V∈T using Top_2_L3 by simp

qed

10.3 Closed sets, closure, boundary.

This section is devoted to closed sets and properties of the closure and
boundary operators.

The carrier of the space is closed.

lemma (in topology0) Top_3_L1: shows (
⋃
T) {is closed in} T

proof -
have

⋃
T -

⋃
T = 0 by auto
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with topSpaceAssum have
⋃
T -

⋃
T ∈ T using IsATopology_def by auto

then show thesis using IsClosed_def by simp
qed

Empty set is closed.

lemma (in topology0) Top_3_L2: shows 0 {is closed in} T
using topSpaceAssum IsATopology_def IsClosed_def by simp

The collection of closed covers of a subset of the carrier of topology is never
empty. This is good to know, as we want to intersect this collection to get
the closure.

lemma (in topology0) Top_3_L3:
assumes A1: A ⊆

⋃
T shows ClosedCovers(A,T) 6= 0

proof -
from A1 have

⋃
T ∈ ClosedCovers(A,T) using ClosedCovers_def Top_3_L1

by auto
then show thesis by auto

qed

Intersection of a nonempty family of closed sets is closed.

lemma (in topology0) Top_3_L4: assumes A1: K6=0 and
A2: ∀ D∈K. D {is closed in} T
shows (

⋂
K) {is closed in} T

proof -
from A2 have I: ∀ D∈K. (D ⊆

⋃
T ∧ (

⋃
T - D)∈ T)

using IsClosed_def by simp
then have {

⋃
T - D. D∈ K} ⊆ T by auto

with topSpaceAssum have (
⋃

{
⋃
T - D. D∈ K}) ∈ T

using IsATopology_def by auto
moreover from A1 have

⋃
{
⋃
T - D. D∈ K} =

⋃
T -

⋂
K by fast

moreover from A1 I have
⋂
K ⊆

⋃
T by blast

ultimately show (
⋂
K) {is closed in} T using IsClosed_def

by simp
qed

The union and intersection of two closed sets are closed.

lemma (in topology0) Top_3_L5:
assumes A1: D1 {is closed in} T D2 {is closed in} T
shows
(D1∩D2) {is closed in} T
(D1∪D2) {is closed in} T

proof -
have {D1,D2} 6= 0 by simp
with A1 have (

⋂
{D1,D2}) {is closed in} T using Top_3_L4

by fast
thus (D1∩D2) {is closed in} T by simp
from topSpaceAssum A1 have (

⋃
T - D1) ∩ (

⋃
T - D2) ∈ T

using IsClosed_def IsATopology_def by simp
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moreover have (
⋃
T - D1) ∩ (

⋃
T - D2) =

⋃
T - (D1 ∪ D2)

by auto
moreover from A1 have D1 ∪ D2 ⊆

⋃
T using IsClosed_def

by auto
ultimately show (D1∪D2) {is closed in} T using IsClosed_def

by simp
qed

Finite union of closed sets is closed. To understand the proof recall that
D ∈Pow(

⋃
T) means that D is as subset of the carrier of the topology.

lemma (in topology0) Top_3_L6:
assumes A1: N ∈ Fin({D∈Pow(

⋃
T). D {is closed in} T})

shows (
⋃
N) {is closed in} T

proof -
let C = {D∈Pow(

⋃
T). D {is closed in} T}

have 0∈C using Top_3_L2 by simp
moreover have ∀ A B. ((A∈C ∧ B∈C) −→ A∪B ∈ C)

using Top_3_L5 by auto
ultimately have

⋃
N ∈ C by (rule Finite1_L3)

thus (
⋃
N) {is closed in} T by simp

qed

Closure of a set is closed.

lemma (in topology0) Top_3_L7: assumes A ⊆
⋃
T

shows cl(A) {is closed in} T
using prems Closure_def Top_3_L3 ClosedCovers_def Top_3_L4
by simp

Closure of a bigger sets is bigger.

lemma (in topology0) top_closure_mono:
assumes A1: A ⊆

⋃
T B ⊆

⋃
T and A2:A⊆B

shows cl(A) ⊆ cl(B)
proof -

from A2 have ClosedCovers(B,T)⊆ ClosedCovers(A,T)
using ClosedCovers_def by auto

with A1 show thesis using Top_3_L3 Closure_def by auto
qed

Boundary of a set is closed.

lemma (in topology0) boundary_closed:
assumes A1: A ⊆

⋃
T shows ∂A {is closed in} T

proof -
from A1 have

⋃
T - A ⊆

⋃
T by fast

with A1 show ∂A {is closed in} T
using Top_3_L7 Top_3_L5 Boundary_def by auto

qed

A set is closed iff it is equal to its closure.
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lemma (in topology0) Top_3_L8: assumes A1: A ⊆
⋃
T

shows A {is closed in} T ←→ cl(A) = A
proof

assume A {is closed in} T
with A1 show cl(A) = A

using Closure_def ClosedCovers_def by auto
next assume cl(A) = A

then have
⋃
T - A =

⋃
T - cl(A) by simp

with A1 show A {is closed in} T using Top_3_L7 IsClosed_def
by simp

qed

Complement of an open set is closed.

lemma (in topology0) Top_3_L9:
assumes A1: A∈T
shows (

⋃
T - A) {is closed in} T

proof -
from topSpaceAssum A1 have

⋃
T - (

⋃
T - A) = A and

⋃
T - A ⊆

⋃
T

using IsATopology_def by auto
with A1 show (

⋃
T - A) {is closed in} T using IsClosed_def by simp

qed

A set is contained in its closure.

lemma (in topology0) Top_3_L10: assumes A ⊆
⋃
T shows A ⊆ cl(A)

using prems Top_3_L1 ClosedCovers_def Top_3_L3 Closure_def by auto

Closure of a subset of the carrier is a subset of the carrier and closure of the
complement is the complement of the interior.

lemma (in topology0) Top_3_L11: assumes A1: A ⊆
⋃
T

shows
cl(A) ⊆

⋃
T

cl(
⋃
T - A) =

⋃
T - int(A)

proof -
from A1 show cl(A) ⊆

⋃
T using Top_3_L1 Closure_def ClosedCovers_def

by auto
from A1 have

⋃
T - A ⊆

⋃
T - int(A) using Top_2_L1

by auto
moreover have I:

⋃
T - int(A) ⊆

⋃
T

⋃
T - A ⊆

⋃
T by auto

ultimately have cl(
⋃
T - A) ⊆ cl(

⋃
T - int(A))

using top_closure_mono by simp
moreover
from I have (

⋃
T - int(A)) {is closed in} T

using Top_2_L2 Top_3_L9 by simp
with I have cl((

⋃
T) - int(A)) =

⋃
T - int(A)

using Top_3_L8 by simp
ultimately have cl(

⋃
T - A) ⊆

⋃
T - int(A) by simp

moreover
from I have

⋃
T - A ⊆ cl(

⋃
T - A) using Top_3_L10 by simp

hence
⋃
T - cl(

⋃
T - A) ⊆ A and

⋃
T - A ⊆

⋃
T by auto
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then have
⋃
T - cl(

⋃
T - A) ⊆ int(A)

using Top_3_L7 IsClosed_def Top_2_L5 by simp
hence

⋃
T - int(A) ⊆ cl(

⋃
T - A) by auto

ultimately show cl(
⋃
T - A) =

⋃
T - int(A) by auto

qed

Boundary of a set is the closure of the set minus the interior of the set.

lemma (in topology0) Top_3_L12: assumes A1: A ⊆
⋃
T

shows ∂A = cl(A) - int(A)
proof -

from A1 have ∂A = cl(A) ∩ (
⋃
T - int(A))

using Boundary_def Top_3_L11 by simp
moreover from A1 have
cl(A) ∩ (

⋃
T - int(A)) = cl(A) - int(A)

using Top_3_L11 by blast
ultimately show ∂A = cl(A) - int(A) by simp

qed

If a set A is contained in a closed set B, then the closure of A is contained
in B.

lemma (in topology0) Top_3_L13:
assumes A1: B {is closed in} T A⊆B
shows cl(A) ⊆ B

proof -
from A1 have B ⊆

⋃
T using IsClosed_def by simp

with A1 show cl(A) ⊆ B using ClosedCovers_def Closure_def by auto
qed

If two open sets are disjoint, then we can close one of them and they will
still be disjoint.

lemma (in topology0) Top_3_L14:
assumes A1: U∈T V∈T and A2: U∩V = 0
shows cl(U) ∩ V = 0

proof -
from topSpaceAssum A1 have I: U ⊆

⋃
T using IsATopology_def

by auto
with A2 have U ⊆

⋃
T - V by auto

moreover from A1 have (
⋃
T - V) {is closed in} T using Top_3_L9

by simp
ultimately have cl(U) - (

⋃
T - V) = 0

using Top_3_L13 by blast
moreover
from I have cl(U) ⊆

⋃
T using Top_3_L7 IsClosed_def by simp

then have cl(U) -(
⋃
T - V) = cl(U) ∩ V by auto

ultimately show cl(U) ∩ V = 0 by simp
qed

end
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11 Topology ZF 1.thy

theory Topology_ZF_1 imports Topology_ZF Fol1

begin

11.1 Separation axioms.

Topological spaces cas be classified according to certain properties called
”separation axioms”. This section defines what it means that a topological
space is T0, T1 or T2.

A topology on X is T0 if for every pair of distinct points of X there is an
open set that contains only one of them. A topology is T1 if for every such
pair there exist an open set that contains the first point but not the second.
A topology is T2 (Hausdorff) if for every pair of points there exist a pair of
disjoint open sets each containing one of the points.

constdefs

isT0 (_ {is T0} [90] 91)
T {is T0} ≡ ∀ x y. ((x ∈

⋃
T ∧ y ∈

⋃
T ∧ x6=y) −→

(∃ U∈T. (x∈U ∧ y/∈U) ∨ (y∈U ∧ x/∈U)))

isT1 (_ {is T1} [90] 91)
T {is T1} ≡ ∀ x y. ((x ∈

⋃
T ∧ y ∈

⋃
T ∧ x6=y) −→

(∃ U∈T. (x∈U ∧ y/∈U)))

isT2 (_ {is T2} [90] 91)
T {is T2} ≡ ∀ x y. ((x ∈

⋃
T ∧ y ∈

⋃
T ∧ x6=y) −→

(∃ U∈T. ∃ V∈T. x∈U ∧ y∈V ∧ U∩V=0))

If a topology is T1 then it is T0. We don’t really assume here that T is a
topology on X. Instead, we prove the relation between isT0 condition and
isT1.

lemma T1_is_T0: assumes A1: T {is T1} shows T {is T0}
proof -

from A1 have ∀ x y. x ∈
⋃
T ∧ y ∈

⋃
T ∧ x 6=y −→

(∃ U∈T. x∈U ∧ y/∈U)
using isT1_def by simp

then have ∀ x y. x ∈
⋃
T ∧ y ∈

⋃
T ∧ x 6=y −→

(∃ U∈T. x∈U ∧ y/∈U ∨ y∈U ∧ x/∈U)
by auto

then show T {is T0} using isT0_def by simp
qed

If a topology is T2 then it is T1.

lemma T2_is_T1: assumes A1: T {is T2} shows T {is T1}
proof -
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{ fix x y assume x ∈
⋃
T y ∈

⋃
T x6=y

with A1 have ∃ U∈T. ∃ V∈T. x∈U ∧ y∈V ∧ U∩V=0
using isT2_def by auto

then have ∃ U∈T. x∈U ∧ y/∈U by auto
} then have ∀ x y. x ∈

⋃
T ∧ y ∈

⋃
T ∧ x6=y −→

(∃ U∈T. x∈U ∧ y/∈U) by simp
then show T {is T1} using isT1_def by simp

qed

In a T0 space two points that can not be separated by an open set are equal.
Proof by contradiction.
lemma Top_1_1_L1: assumes A1: T {is T0} and A2: x ∈

⋃
T y ∈

⋃
T

and A3: ∀ U∈T. (x∈U ←→ y∈U)
shows x=y

proof -
{ assume x 6=y

with A1 A2 have ∃ U∈T. x∈U ∧ y/∈U ∨ y∈U ∧ x/∈U
using isT0_def by simp

with A3 have False by auto
} then show x=y by auto

qed

In a T2 space two points can be separated by an open set with its boundary.
lemma (in topology0) Top_1_1_L2:

assumes A1: T {is T2} and A2: x ∈
⋃
T y ∈

⋃
T x6=y

shows ∃ U∈T. (x∈U ∧ y /∈ cl(U))
proof -

from A1 A2 have ∃ U∈T. ∃ V∈T. x∈U ∧ y∈V ∧ U∩V=0
using isT2_def by simp

then obtain U V where U∈T V∈T x∈U y∈V U∩V=0
by auto

then have U∈T ∧ x∈U ∧ y∈ V ∧ cl(U) ∩ V = 0 using Top_3_L14
by simp

then show ∃ U∈T. (x∈U ∧ y /∈ cl(U)) by auto
qed

In a T2 space compact sets are closed. Doing a formal proof of this theo-
rem gave me an interesting insight into the role of the Axiom of Choice in
romantic proofs.
A typical romantic proof of this fact goes like this: we want to show that
the complement of K is open. To do this, choose an arbitrary point y ∈ Kc.
Since X is T2, for every point x ∈ K we can find an open set Ux such that
y /∈ Ux. Obviously {Ux}x∈K covers K, so select a finite subcollection that
covers K, and so on. I have never realized that such reasoning requires (an)
Axiom of Choice. Namely, suppose we have a lemma that states ”In T2

spaces, if x 6= y, then there is an open set U such that x ∈ U and y /∈ U”
(like our Top_1_1_L2 above). This only states that the set of such open sets
U is not empty. To get the collection {Ux}x∈K in the above proof we have
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to select one such set among many for every x ∈ K and this is where we use
(an) Axiom of Choice. Probably in 99/100 cases when a romatic calculus
proof states something like ∀ε∃δε · · · the proof uses Axiom of Choice. In the
proof below we avoid using Axiom of Choice (read it to find out how). It
is an interesting question which such calculus proofs can be reformulated so
that the usage of AC is avoided. I remember Sierpiński published a paper
in 1919 (or was it 1914? my memory is not that good any more) where he
showed that one needs an Axiom of Choice to show the equivalence of the
Heine and Cauchy definitions of limits.

theorem (in topology0) in_t2_compact_is_cl:
assumes A1: T {is T2} and A2: K {is compact in} T
shows K {is closed in} T

proof -
{ fix y assume A3: y ∈

⋃
T y/∈K

have ∃ U∈T. y∈U ∧ U ⊆
⋃
T - K

proof -
let B =

⋃
x∈K.{V∈T. x∈V ∧ y/∈ cl(V)}

have I: B ∈ Pow(T) Fin(B) ⊆ Pow(B)
using Fin.dom_subset by auto

from A2 A3 have ∀ x∈K. x ∈
⋃
T ∧ y ∈

⋃
T ∧ x 6=y

using IsCompact_def by auto
with A1 have ∀ x∈K. {V∈T. x∈V ∧ y /∈ cl(V)} 6= 0

using Top_1_1_L2 by auto
hence K ⊆

⋃
B by blast

with A2 I have ∃ N ∈ Fin(B). K ⊆
⋃
N using IsCompact_def

by auto
then obtain N where D1: N ∈ Fin(B) K ⊆

⋃
N

by auto
with I have N ⊆ B by auto
hence II: ∀ V∈N. V∈B by auto
let M = {cl(V). V∈N}
let C = {D∈Pow(

⋃
T). D {is closed in} T}

from topSpaceAssum have
∀ V∈B. (cl(V) {is closed in} T)
∀ V∈B. (cl(V) ∈ Pow(

⋃
T))

using IsATopology_def Top_3_L7 IsClosed_def
by auto

hence ∀ V∈B. cl(V) ∈ C by simp
moreover from D1 have N ∈ Fin(B) by simp
ultimately have M ∈ Fin(C) by (rule Finite1_L6)
then have

⋃
T -

⋃
M ∈ T using Top_3_L6 IsClosed_def

by simp
moreover from A3 II have y ∈

⋃
T -

⋃
M by simp

moreover have
⋃
T -

⋃
M ⊆

⋃
T - K

proof -
from II have

⋃
N ⊆

⋃
M using Top_3_L10 by auto

with D1 show
⋃
T -

⋃
M ⊆

⋃
T - K by auto

qed
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ultimately have ∃ U. U∈T ∧ y ∈ U ∧ U ⊆
⋃
T - K

by auto
then show ∃ U∈T. y∈U ∧ U ⊆

⋃
T - K by auto

qed
} then have ∀ y ∈

⋃
T - K. ∃ U∈T. y∈U ∧ U ⊆

⋃
T - K

by auto
with A2 show K {is closed in} T

using Top_2_L8 IsCompact_def IsClosed_def by auto
qed

11.2 Bases and subbases.

A base of topology is a collection of open sets such that every open set is
a union of the sets from the base. A subbase is a collection of open sets
such that finite intersection of those sets form a base. Below we formulate
a condition that we will prove to be necessary and sufficient for a collection
B of open sets to form a base. It says that for any two sets U, V from the
collection B we can find a point x ∈ U ∩ V with a neighboorhod from B
contained in U ∩ V .

constdefs

IsAbaseFor (infixl {is a base for} 65)
B {is a base for} T ≡ B⊆T ∧ T = {

⋃
A. A∈Pow(B)}

IsAsubBaseFor (infixl {is a subbase for} 65)
B {is a subbase for} T ≡
B ⊆ T ∧ {

⋂
A. A∈Fin(B)} {is a base for} T

SatisfiesBaseCondition (_ {satisfies the base condition} [50] 50)
B {satisfies the base condition} ≡
∀ U V. ((U∈B ∧ V∈B) −→ (∀ x ∈ U∩V. ∃ W∈B. x∈W ∧ W ⊆ U∩V))

Each open set is a union of some sets from the base.

lemma Top_1_2_L1: assumes B {is a base for} T and U∈T
shows ∃ A∈Pow(B). U =

⋃
A

using prems IsAbaseFor_def by simp

A necessary conditionfor a collection of sets to be a base for some topology
: every point in the intersection of two sets in the base has a neighboorhood
from the base contained in the intersection.

lemma Top_1_2_L2:
assumes A1:∃ T. T {is a topology} ∧ B {is a base for} T
and A2: V∈B W∈B
shows ∀ x ∈ V∩W. ∃ U∈B. x∈U ∧ U ⊆ V ∩ W

proof -
from A1 obtain T where
D1: T {is a topology} B {is a base for} T
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by auto
then have B ⊆ T using IsAbaseFor_def by auto
with A2 have V∈T and W∈T using IsAbaseFor_def by auto
with D1 have ∃ A∈Pow(B). V∩W =

⋃
A using IsATopology_def Top_1_2_L1

by auto
then obtain A where A ⊆ B and V ∩ W =

⋃
A by auto

then show ∀ x ∈ V∩W. ∃ U∈B. (x∈U ∧ U ⊆ V ∩ W) by auto
qed

We will construct a topology as the collection of unions of (would-be) base.
First we prove that if the collection of sets satisfies the condition we want
to show to be sufficient, the the intersection belongs to what we will define
as topology (am I clear here?). Having this fact ready simplifies the proof
of the next lemma. There is not much topology here, just some set theory.

lemma Top_1_2_L3:
assumes A1: ∀ x∈ V∩W . ∃ U∈B. x∈U ∧ U ⊆ V∩W
shows V∩W ∈ {

⋃
A. A∈Pow(B)}

proof
let A =

⋃
x∈V∩W. {U∈B. x∈U ∧ U ⊆ V∩W}

show A∈Pow(B) by auto
from A1 show V∩W =

⋃
A by blast

qed

The next lemma is needed when proving that the would-be topology is closed
with respect to taking intersections. We show here that intersection of two
sets from this (would-be) topology can be written as union of sets from the
topology.

lemma Top_1_2_L4:
assumes A1: U1 ∈ {

⋃
A. A∈Pow(B)} U2 ∈ {

⋃
A. A∈Pow(B)}

and A2: B {satisfies the base condition}
shows ∃ C. C ⊆ {

⋃
A. A∈Pow(B)} ∧ U1∩U2 =

⋃
C

proof -
from A1 A2 obtain A1 A2 where
D1: A1∈ Pow(B) U1 =

⋃
A1 A2 ∈ Pow(B) U2 =

⋃
A2

by auto
let C =

⋃
U∈A1.{U∩V. V∈A2}

from D1 have (∀ U∈A1. U∈B) ∧ (∀ V∈A2. V∈B) by auto
with A2 have C ⊆ {

⋃
A . A ∈ Pow(B)}

using Top_1_2_L3 SatisfiesBaseCondition_def by auto
moreover from D1 have U1 ∩ U2 =

⋃
C by auto

ultimately show thesis by auto
qed

If B satisfies the base condition, then the collection of unions of sets from
B is a topology and B is a base for this topology.

theorem Top_1_2_T1:
assumes A1: B {satisfies the base condition}
and A2: T = {

⋃
A. A∈Pow(B)}
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shows T {is a topology} and B {is a base for} T
proof -

show T {is a topology}
proof -

from A2 have 0∈T by auto
moreover have I: ∀ C∈Pow(T).

⋃
C ∈ T

proof -
{ fix C assume A3: C ∈ Pow(T)

let Q =
⋃

{
⋃
{A∈Pow(B). U =

⋃
A}. U∈C}

from A2 A3 have ∀ U∈C. ∃ A∈Pow(B). U =
⋃
A by auto

then have
⋃
Q =

⋃
C using Finite1_L8 by simp

moreover from A2 have
⋃
Q ∈ T by auto

ultimately have
⋃
C ∈ T by simp

} thus ∀ C∈Pow(T).
⋃
C ∈ T by auto

qed
moreover have ∀ U∈T. ∀ V∈T. U∩V ∈ T
proof -

{ fix U V assume U ∈ T V ∈ T
with A1 A2 have ∃ C.(C ⊆ T ∧ U∩V =

⋃
C)

using Top_1_2_L4 by simp
then obtain C where C ⊆ T and U∩V =

⋃
C

by auto
with I have U∩V ∈ T by simp

} then show ∀ U∈T. ∀ V∈T. U∩V ∈ T by simp
qed
ultimately show T {is a topology} using IsATopology_def

by simp
qed
from A2 have B⊆T by auto
with A2 show B {is a base for} T using IsAbaseFor_def

by simp
qed

The carrier of the base and topology are the same.

lemma Top_1_2_L5: assumes B {is a base for} T
shows

⋃
T =

⋃
B

using prems IsAbaseFor_def by auto

11.3 Product topology

In this section we consider a topology defined on a product of two sets.

Given two topological spaces we can define a topology on the product of the
carriers such that the cartesian products of the sets of the topologies are a
base for the product topology. Recall that for two collections S, T of sets
the product collection is defined (in ZF1.thy) as the collections of cartesian
products A×B, where A ∈ S, B ∈ T .

constdefs
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ProductTopology(T,S) ≡ {
⋃
W. W ∈ Pow(ProductCollection(T,S))}

The product collection satisfies the base condition.

lemma Top_1_4_L1:
assumes A1: T {is a topology} S {is a topology}
and A2: A ∈ ProductCollection(T,S) B ∈ ProductCollection(T,S)
shows ∀ x∈(A∩B). ∃ W∈ProductCollection(T,S). (x∈W ∧ W ⊆ A ∩ B)

proof
fix x assume A3: x ∈ A∩B
from A2 obtain U1 V1 U2 V2 where
D1: U1∈T V1∈S A=U1×V1 U2∈T V2∈S B=U2×V2

using ProductCollection_def by auto
let W = (U1∩U2) × (V1∩V2)
from A1 D1 have U1∩U2 ∈ T and V1∩V2 ∈ S

using IsATopology_def by auto
then have W ∈ ProductCollection(T,S) using ProductCollection_def

by auto
moreover from A3 D1 have x∈W and W ⊆ A∩B by auto
ultimately have ∃ W. (W ∈ ProductCollection(T,S) ∧ x∈W ∧ W ⊆ A∩B)

by auto
thus ∃ W∈ProductCollection(T,S). (x∈W ∧ W ⊆ A ∩ B) by auto

qed

The product topology is indeed a topology on the product.

theorem Top_1_4_T1: assumes A1: T {is a topology} S {is a topology}
shows
ProductTopology(T,S) {is a topology}
ProductCollection(T,S) {is a base for} ProductTopology(T,S)⋃

ProductTopology(T,S) =
⋃
T ×

⋃
S

proof -
from A1 show
ProductTopology(T,S) {is a topology}
ProductCollection(T,S) {is a base for} ProductTopology(T,S)
using Top_1_4_L1 ProductCollection_def
SatisfiesBaseCondition_def ProductTopology_def Top_1_2_T1

by auto
then show

⋃
ProductTopology(T,S) =

⋃
T ×

⋃
S

using Top_1_2_L5 ZF1_1_L6 by simp
qed

end

109



12 Topology ZF 2.thy

theory Topology_ZF_2 imports Topology_ZF_1 func1 Fol1

begin

12.1 Continuous functions.

In standard math we say that a function is contiuous with respect to two
topologies τ1, τ2 if the inverse image of sets from topology τ2 are in τ1. Here
we define a predicate that is supposed to reflect that definition, with a dif-
ference that we don’t require in the definition that τ1, τ2 are topologies. This
means for example that when we define measurable functions, the definition
will be the same.
Recall that in Isabelle/ZF f-(A) denotes the inverse image of (set) A with
respect to (function) f .

constdefs
IsContinuous(τ1,τ2,f) ≡ (∀ U∈τ2. f-(U) ∈ τ1)

We will work with a pair of topological spaces. The following locale sets up
our context that consists of two topologies τ1, τ2 and a function f : X1 → X2,
where Xi is defined as

⋃
τi for i = 1, 2. We also define notation cl1(A) and

cl2(A) for closure of a set A in topologies τ1 and τ2, respectively.

locale two_top_spaces0 =

fixes τ1

assumes tau1_is_top: τ1 {is a topology}

fixes τ2

assumes tau2_is_top: τ2 {is a topology}

fixes X1

defines X1_def [simp]: X1 ≡
⋃

τ1

fixes X2

defines X2_def [simp]: X2 ≡
⋃

τ2

fixes f
assumes fmapAssum: f: X1 → X2

fixes isContinuous (_ {is continuous} [50] 50)
defines isContinuous_def [simp]: g {is continuous} ≡ IsContinuous(τ1,τ2,g)

fixes cl1

defines cl1_def [simp]: cl1(A) ≡ Closure(A,τ1)
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fixes cl2

defines cl2_def [simp]: cl2(A) ≡ Closure(A,τ2)

First we show that theorems proven in locale topology0 are valid when
applied to topologies τ1 and τ2.

lemma (in two_top_spaces0) topol_cntxs_valid:
shows topology0(τ1) and topology0(τ2)
using tau1_is_top tau2_is_top topology0_def by auto

For continuous functions the inverse image of a closed set is closed.

lemma (in two_top_spaces0) TopZF_2_1_L1:
assumes A1: f {is continuous} and A2: D {is closed in} τ2

shows f-(D) {is closed in} τ1

proof -
from fmapAssum have f-(D) ⊆ X1 using func1_1_L3 by simp
moreover from fmapAssum have f-(X2 - D) = X1 - f-(D)

using Pi_iff function_vimage_Diff func1_1_L4 by auto
ultimately have X1 - f-(X2 - D) = f-(D) by auto
moreover from A1 A2 have (X1 - f-(X2 - D)) {is closed in} τ1

using IsClosed_def IsContinuous_def topol_cntxs_valid topology0.Top_3_L9
by simp

ultimately show f-(D) {is closed in} τ1 by simp
qed

If the inverse image of every closed set is closed, then the image of a closure
is contained in the closure of the image.

lemma (in two_top_spaces0) Top_ZF_2_1_L2:
assumes A1: ∀ D. ((D {is closed in} τ2) −→ f-(D) {is closed in} τ1)
and A2: A ⊆ X1

shows f(cl1(A)) ⊆ cl2(f(A))
proof -

from fmapAssum have f(A) ⊆ cl2(f(A))
using func1_1_L6 topol_cntxs_valid topology0.Top_3_L10
by simp

with fmapAssum have f-(f(A)) ⊆ f-(cl2(f(A)))
using func1_1_L7 by auto

moreover from fmapAssum A2 have A ⊆ f-(f(A))
using func1_1_L9 by simp

ultimately have A ⊆ f-(cl2(f(A))) by auto
with fmapAssum A1 have f(cl1(A)) ⊆ f(f-(cl2(f(A))))

using func1_1_L6 func1_1_L8 IsClosed_def
topol_cntxs_valid topology0.Top_3_L7 topology0.Top_3_L13

by simp
moreover from fmapAssum have f(f-(cl2(f(A)))) ⊆ cl2(f(A))

using fun_is_function function_image_vimage by simp
ultimately show f(cl1(A)) ⊆ cl2(f(A))

by auto
qed
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If f
(
A

)
⊆ f(A) (the image of the closure is contained in the closure of the

image), then f−1(B) ⊆ f−1
(
B

)
(the inverse image of the closure contains

the closure of the inverse image).

lemma (in two_top_spaces0) Top_ZF_2_1_L3:
assumes A1: ∀ A. ( A ⊆ X1 −→ f(cl1(A)) ⊆ cl2(f(A)))
shows ∀ B. ( B ⊆ X2 −→ cl1(f-(B)) ⊆ f-(cl2(B)) )

proof -
{ fix B assume A2: B ⊆ X2

from fmapAssum A1 have f(cl1(f-(B))) ⊆ cl2(f(f-(B)))
using func1_1_L3 by simp

moreover from fmapAssum A2 have cl2(f(f-(B))) ⊆ cl2(B)
using fun_is_function function_image_vimage func1_1_L6
topol_cntxs_valid topology0.top_closure_mono

by simp
ultimately have f-(f(cl1(f-(B)))) ⊆ f-(cl2(B))

using fmapAssum fun_is_function func1_1_L7 by auto
moreover from fmapAssum A2 have
cl1(f-(B)) ⊆ f-(f(cl1(f-(B))))
using func1_1_L3 func1_1_L9 IsClosed_def
topol_cntxs_valid topology0.Top_3_L7 by simp

ultimately have cl1(f-(B)) ⊆ f-(cl2(B)) by auto
} then show thesis by simp

qed

If f−1(B) ⊆ f−1
(
B

)
(the inverse image of a closure contains the closure

of the inverse image), then the function is continuous. This lemma closes a
series of implications showing equavalence of four definitions of continuity.

lemma (in two_top_spaces0) Top_ZF_2_1_L4:
assumes A1: ∀ B. ( B ⊆ X2 −→ cl1(f-(B)) ⊆ f-(cl2(B)) )
shows f {is continuous}

proof -
{ fix U assume A2: U ∈ τ2

from A2 have (X2 - U) {is closed in} τ2

using topol_cntxs_valid topology0.Top_3_L9 by simp
moreover have X2 - U ⊆

⋃
τ2 by auto

ultimately have cl2(X2 - U) = X2 - U
using topol_cntxs_valid topology0.Top_3_L8 by simp

moreover from A1 have cl1(f-(X2 - U)) ⊆ f-(cl2(X2 - U))
by auto

ultimately have cl1(f-(X2 - U)) ⊆ f-(X2 - U) by simp
moreover from fmapAssum have f-(X2 - U) ⊆ cl1(f-(X2 - U))

using func1_1_L3 topol_cntxs_valid topology0.Top_3_L10
by simp

ultimately have f-(X2 - U) {is closed in} τ1

using fmapAssum func1_1_L3 topol_cntxs_valid topology0.Top_3_L8
by auto

with fmapAssum have f-(U) ∈ τ1

using fun_is_function function_vimage_Diff func1_1_L4

112



func1_1_L3 IsClosed_def double_complement by simp
} then have ∀ U∈τ2. f-(U) ∈ τ1 by simp
then show thesis using IsContinuous_def by simp

qed

Another condition for continuity: it is sufficient to check if the inverse image
of every set in a base is open.
lemma (in two_top_spaces0) Top_ZF_2_1_L5:

assumes A1: B {is a base for} τ2 and A2: ∀ U∈B. f-(U) ∈ τ1

shows f {is continuous}
proof -

{ fix V assume A3: V ∈ τ2

with A1 obtain A where D1: A ⊆ B V =
⋃
A

using IsAbaseFor_def by auto
with A2 have {f-(U). U∈A} ⊆ τ1 by auto
with tau1_is_top have

⋃
{f-(U). U∈A} ∈ τ1

using IsATopology_def by simp
moreover from D1 have f-(V) =

⋃
{f-(U). U∈A} by auto

ultimately have f-(V) ∈ τ1 by simp
} then show f {is continuous} using IsContinuous_def

by simp
qed

We can strenghten the previous lemma: it is sufficient to check if the inverse
image of every set in a subbase is open. The proof is rather awkward, as
usual when we deal with general intersections. We have to keep track of the
case when the collection is empty.
lemma (in two_top_spaces0) Top_ZF_2_1_L6:

assumes A1: B {is a subbase for} τ2 and A2: ∀ U∈B. f-(U) ∈ τ1

shows f {is continuous}
proof -

let C = {
⋂
A. A ∈ Fin(B)}

from A1 have C {is a base for} τ2

using IsAsubBaseFor_def by simp
moreover have ∀ U∈C. f-(U) ∈ τ1

proof
fix U assume A3: U∈C
{ assume f-(U)=0

with tau1_is_top have f-(U) ∈ τ1

using IsATopology_def by simp}
moreover
{ assume A4: f-(U)6=0

then have U6=0 by (rule func1_1_L13)
moreover from A3 obtain A where
D1:A ∈ Fin(B) and D2: U =

⋂
A

by auto
ultimately have

⋂
A6=0 by simp

hence I: A6=0 by (rule Finite1_L9)
then have {f-(W). W∈A} 6= 0 by simp

113



moreover from A2 D1 have {f-(W). W∈A} ∈ Fin(τ1)
by (rule Finite1_L6)

ultimately have
⋂
{f-(W). W∈A} ∈ τ1

using topol_cntxs_valid topology0.Top_1_L3 by simp
moreover
from A1 D1 have A ⊆ τ2

using FinD IsAsubBaseFor_def by auto
with tau2_is_top have A ⊆ Pow(X2)

using IsATopology_def by auto
with fmapAssum I have f-(

⋂
A) =

⋂
{f-(W). W∈A}

using func1_1_L12 by simp
with D2 have f-(U) =

⋂
{f-(W). W∈A}

by simp
ultimately have f-(U) ∈ τ1 by simp }

ultimately show f-(U) ∈ τ1 by blast
qed
ultimately show f {is continuous}

using Top_ZF_2_1_L5 by simp
qed

end
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13 Group ZF.thy

theory Group_ZF imports func_ZF

begin

This theory file will cover basics of group theory.

13.1 Monoids.

Monoid is a set with an associative operation and a neutral element. The
operation is of course a function on G ×G with values in G, and therefore
it is a subset of (G × G) × G. Those who don’t like that can go to HOL.
Monoid is like a group except that we don’t require existence of the inverse.

constdefs
IsAmonoid(G,f) ≡
f {is associative on} G ∧
(∃ e∈G. (∀ g∈G. ( (f(<e,g>) = g) ∧ (f(<g,e>) = g))))

We use locales to define notation. This allows to separate notation and
notion definitions. We would like to use additive notation for monoid, but
unfortunately + is already taken.

locale monoid0 =
fixes G and f
assumes monoidAsssum:IsAmonoid(G,f)

fixes monoper (infixl ⊕ 70)
defines monoper_def [simp]: a ⊕ b ≡ f<a,b>

The result of the monoid operation is in the monoid (carrier).

lemma (in monoid0) group0_1_L1:
assumes a∈G b∈G shows a⊕b ∈ G
using prems monoidAsssum IsAmonoid_def IsAssociative_def apply_funtype
by auto

There is only one neutral element in monoid.

lemma (in monoid0) group0_1_L2:
∃ !e. e∈G ∧ (∀ g∈G. ( (e⊕g = g) ∧ g⊕e = g))

proof
fix e y
assume e ∈ G ∧ (∀ g∈G. e ⊕ g = g ∧ g ⊕ e = g)

and y ∈ G ∧ (∀ g∈G. y ⊕ g = g ∧ g ⊕ y = g)
then have y⊕e = y y⊕e = e by auto
thus e = y by simp

next from monoidAsssum show
∃ e. e∈ G ∧ (∀ g∈G. e⊕g = g ∧ g⊕e = g)
using IsAmonoid_def by auto
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qed

We could put the definition of neutral element anywhere, but it is only
usable in conjuction with the above lemma.

constdefs
TheNeutralElement(G,f) ≡
( THE e. e∈G ∧ (∀ g∈G. f<e,g> = g ∧ f<g,e> = g))

The neutral element is neutral.

lemma (in monoid0) group0_1_L3:
assumes A1: e = TheNeutralElement(G,f)
shows e ∈ G ∧ (∀ g∈G. e ⊕ g = g ∧ g ⊕ e = g)

proof -
let n = THE b. b∈ G ∧ (∀ g∈G. b⊕g = g ∧ g⊕b = g)
have ∃ !b. b∈ G ∧ (∀ g∈G. b⊕g = g ∧ g⊕b = g)

using group0_1_L2 by simp
hence n∈ G ∧ (∀ g∈G. n⊕g = g ∧ g⊕n = g)

by (rule theI)
with A1 show thesis

using TheNeutralElement_def by simp
qed

The monoid carrier is not empty.

lemma (in monoid0) group0_1_L3A: G6=0
proof -

have TheNeutralElement(G,f) ∈ G using group0_1_L3
by simp

thus thesis by auto
qed

The range of the monoid operation is the whole monoid carrier.

lemma (in monoid0) group0_1_L3B: range(f) = G
proof

from monoidAsssum have T1:f : G×G→G
using IsAmonoid_def IsAssociative_def by simp

then show range(f) ⊆ G
using func1_1_L5B by simp

show G ⊆ range(f)
proof

fix g assume A1:g∈G
let e = TheNeutralElement(G,f)
from A1 have <e,g> ∈ G×G g = f<e,g>

using group0_1_L3 by auto
with T1 show g ∈ range(f)

using func1_1_L5A by blast
qed

qed

In a monoid a neutral element is the neutral element.
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lemma (in monoid0) group0_1_L4:
assumes A1: e ∈ G ∧ (∀ g∈G. e ⊕ g = g ∧ g ⊕ e = g)
shows e = TheNeutralElement(G,f)

proof -
let n = THE b. b∈ G ∧ (∀ g∈G. b⊕g = g ∧ g⊕b = g)
have ∃ !b. b∈ G ∧ (∀ g∈G. b⊕g = g ∧ g⊕b = g)

using group0_1_L2 by simp
moreover from A1 have
e ∈ G ∧ (∀ g∈G. e ⊕ g = g ∧ g ⊕ e = g) .

ultimately have (n) = e by (rule the_equality2)
then show thesis using TheNeutralElement_def by simp

qed

The next lemma shows that if the if we restrict the monoid operation to a
subset of G that contains the neutral element, then the neutral element of
the monoid operation is also neutral with the restricted operation. This is
proven separately because it is used more than once.

lemma (in monoid0) group0_1_L5:
assumes A1: ∀ x∈H.∀ y∈H. x⊕y ∈ H
and A2: H⊆G
and A3: e = TheNeutralElement(G,f)
and A4: g = restrict(f,H×H)
and A5: e∈H
and A6: h∈H
shows g<e,h> = h ∧ g<h,e> = h

proof -
from A4 A6 A5 have
g<e,h> = e⊕h ∧ g<h,e> = h⊕e
using restrict_if by simp

with A3 A4 A6 A2 show
g<e,h> = h ∧ g<h,e> = h
using group0_1_L3 by auto

qed

The next theorem shows that if the monoid operation is closed on a subset
of G then this set is a (sub)monoid. (although we do not define this notion).
This will be useful when we study subgroups.

theorem (in monoid0) group0_1_T1:
assumes A1: H {is closed under} f
and A2: H⊆G
and A3: TheNeutralElement(G,f) ∈ H
shows IsAmonoid(H,restrict(f,H×H))

proof -
let g = restrict(f,H×H)
let e = TheNeutralElement(G,f)
from monoidAsssum have f ∈ G×G→G

using IsAmonoid_def IsAssociative_def by simp
moreover from A2 have H×H ⊆ G×G by auto
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moreover from A1 have ∀ p ∈ H×H. f(p) ∈ H
using IsOpClosed_def by auto

ultimately have g ∈ H×H→H
using func1_2_L4 by simp

moreover have ∀ x∈H.∀ y∈H.∀ z∈H.
g〈g<x,y>,z〉 = g〈x,g<y,z>〉

proof -
from A1 have ∀ x∈H.∀ y∈H.∀ z∈H.
g〈g<x,y>,z〉 = x⊕y⊕z
using IsOpClosed_def restrict_if by simp

moreover have ∀ x∈H.∀ y∈H.∀ z∈H. x⊕y⊕z = x⊕(y⊕z)
proof -

from monoidAsssum have
∀ x∈G.∀ y∈G.∀ z∈G. x⊕y⊕z = x⊕(y⊕z)
using IsAmonoid_def IsAssociative_def
by simp

with A2 show thesis by auto
qed
moreover from A1 have
∀ x∈H.∀ y∈H.∀ z∈H. x⊕(y⊕z) = g〈 x,g<y,z>〉
using IsOpClosed_def restrict_if by simp

ultimately show thesis by simp
qed
moreover have
∃ n∈H. (∀ h∈H. g<n,h> = h ∧ g<h,n> = h)

proof -
from A1 have ∀ x∈H.∀ y∈H. x⊕y ∈ H

using IsOpClosed_def by simp
with A2 A3 have
∀ h∈H. g<e,h> = h ∧ g<h,e> = h
using group0_1_L5 by blast

with A3 show thesis by auto
qed
ultimately show thesis using IsAmonoid_def IsAssociative_def

by simp
qed

Under the assumptions of group0_1_T1 the neutral element of a submonoid
is the same as that of the monoid.

lemma group0_1_L6:
assumes A1: IsAmonoid(G,f)
and A2: H {is closed under} f
and A3: H⊆G
and A4: TheNeutralElement(G,f) ∈ H
shows TheNeutralElement(H,restrict(f,H×H)) = TheNeutralElement(G,f)

proof -
def D1: e ≡ TheNeutralElement(G,f)
def D2: g ≡ restrict(f,H×H)
with A1 A2 A3 A4 have monoid0(H,g)
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using monoid0_def monoid0.group0_1_T1
by simp

moreover have
e ∈ H ∧ (∀ h∈H. g<e,h> = h ∧ g<h,e> = h)

proof -
from A1 A2 have monoid0(G,f) ∀ x∈H.∀ y∈H. f<x,y> ∈ H

using monoid0_def IsOpClosed_def by auto
with A3 D1 D2 A4 show thesis

using monoid0.group0_1_L5 by blast
qed
ultimately have e = TheNeutralElement(H,g)

using monoid0.group0_1_L4 by auto
with D1 D2 show thesis by simp

qed

13.2 Basic definitions and results for groups

To define a group we take a monoid and add a requirement that the right
inverse needs to exist for every element of the group. We also define the
group inverse as a relation on the group carrier. Later we will show that
this relation is a function. The GroupInv below is really the right inverse,
understood as a function, that is a subset of G×G.

constdefs
IsAgroup(G,f) ≡
(IsAmonoid(G,f) ∧ (∀ g∈G. ∃ b∈G. f<g,b> = TheNeutralElement(G,f)))

GroupInv(G,f) ≡ {<x,y> ∈ G×G. f<x,y> = TheNeutralElement(G,f)}

We will use the miltiplicative notation for groups.

locale group0 =
fixes G and f
assumes groupAssum: IsAgroup(G,f)

fixes neut (1)
defines neut_def[simp]: 1 ≡ TheNeutralElement(G,f)

fixes groper (infixl · 70)
defines groper_def [simp]: a · b ≡ f<a,b>

fixes inv (_−1 [90] 91)
defines inv_def[simp]: x−1 ≡ GroupInv(G,f)(x)

First we show a lemma that says that we can use theorems proven in the
monoid0 context (locale).

lemma (in group0) group0_2_L1: monoid0(G,f)
using groupAssum IsAgroup_def monoid0_def by simp
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In some strange cases Isabelle has difficulties with applying the definition of
a group. The next lemma defines a rule to be applied in such cases.

lemma definition_of_group: assumes IsAmonoid(G,f)
and ∀ g∈G. ∃ b∈G. f〈g,b〉 = TheNeutralElement(G,f)
shows IsAgroup(G,f)
using prems IsAgroup_def by simp

Technical lemma that allows to use 1 as the neutral element of the group
without referencing a list of lemmas and definitions.

lemma (in group0) group0_2_L2:
shows 1∈G ∧ (∀ g∈G.(1·g = g ∧ g·1 = g))
using group0_2_L1 monoid0.group0_1_L3 by simp

The group is closed under the group operation. Used all the time, useful to
have handy.

lemma (in group0) group_op_closed: assumes a∈G b∈G
shows a·b ∈ G using prems group0_2_L1 monoid0.group0_1_L1
by simp

The group operation is associative. This is another technical lemma that
allows to shorten the list of referenced lemmas in some proofs.

lemma (in group0) group_oper_assoc:
assumes a∈G b∈G c∈G shows a·(b·c) = a·b·c
using groupAssum prems IsAgroup_def IsAmonoid_def
IsAssociative_def group_op_closed by simp

The group operation maps G × G into G. It is conveniet to have this fact
easily accessible in the group0 context.

lemma (in group0) group_oper_assocA: shows f : G×G→G
using groupAssum IsAgroup_def IsAmonoid_def IsAssociative_def
by simp

The definition of group requires the existence of the right inverse. We show
that this is also the left inverse.

theorem (in group0) group0_2_T1:
assumes A1: g∈G and A2: b∈G and A3: g·b = 1
shows b·g = 1

proof -
from A2 groupAssum obtain c where I: c ∈ G ∧ b·c = 1

using IsAgroup_def by auto
then have T1: c∈G by simp
have T2: 1∈G using group0_2_L2 by simp
from A1 A2 T2 I have b·g = b·(g·(b·c))

using group_op_closed group0_2_L2 group_oper_assoc
by simp

also from A1 A2 T1 have b·(g·(b·c)) = b·(g·b·c)
using group_oper_assoc by simp
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also from A3 A2 I have b·(g·b·c)= 1 using group0_2_L2 by simp
finally show b·g = 1 by simp

qed

For every element of a group there is only one inverse.

lemma (in group0) group0_2_L4:
assumes A1:x∈G shows ∃ !y. y∈G ∧ x·y = 1

proof
from A1 groupAssum show ∃ y. y∈G ∧ x·y = 1

using IsAgroup_def by auto
fix y n
assume A2:y∈G ∧ x·y = 1 and A3:n∈G ∧ x·n = 1 show y=n
proof -

from A1 A2 have T1:y·x = 1
using group0_2_T1 by simp

from A2 A3 have y = y·(x·n)
using group0_2_L2 by simp

also from A1 A2 A3 have . . . = (y·x)·n
using group_oper_assoc by blast

also from T1 A3 have . . . = n
using group0_2_L2 by simp

finally show y=n by simp
qed

qed

The group inverse is a function that maps G into G.

theorem group0_2_T2:
assumes A1: IsAgroup(G,f) shows GroupInv(G,f) : G→G

proof -
have GroupInv(G,f) ⊆ G×G using GroupInv_def by auto
moreover from A1 have
∀ x∈G. ∃ !y. y∈ G ∧ <x,y> ∈ GroupInv(G,f)
using group0_def group0.group0_2_L4 GroupInv_def by simp

ultimately show thesis using func1_1_L11 by simp
qed

We can think about the group inverse (the function) as the inverse image of
the neutral element.

theorem (in group0) group0_2_T3: shows f-{1} = GroupInv(G,f)
proof -

from groupAssum have f : G×G → G
using IsAgroup_def IsAmonoid_def IsAssociative_def
by simp

then show f-{1} = GroupInv(G,f)
using func1_1_L14 GroupInv_def by auto

qed

The inverse is in the group.

lemma (in group0) inverse_in_group: assumes A1: x∈G shows x−1∈G
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proof -
from groupAssum have GroupInv(G,f) : G→G using group0_2_T2 by simp
with A1 show thesis using apply_type by simp

qed

The notation for the inverse means what it is supposed to mean.

lemma (in group0) group0_2_L6:
assumes A1: x∈G shows x·x−1 = 1 ∧ x−1·x = 1

proof
from groupAssum have GroupInv(G,f) : G→G

using group0_2_T2 by simp
with A1 have <x,x−1> ∈ GroupInv(G,f)

using apply_Pair by simp
then show x·x−1 = 1 using GroupInv_def by simp
with A1 show x−1·x = 1 using inverse_in_group group0_2_T1 by blast

qed

The next two lemmas state that unless we multiply by the neutral element,
the result is always different than any of the operands.

lemma (in group0) group0_2_L7:
assumes A1: a∈G and A2: b∈G and A3: a·b = a
shows b=1

proof -
from A3 have a−1 · (a·b) = a−1·a by simp
with A1 A2 show thesis using
inverse_in_group group_oper_assoc group0_2_L6 group0_2_L2
by simp

qed

lemma (in group0) group0_2_L8:
assumes A1: a∈G and A2: b∈G and A3:a·b = b
shows a=1

proof -
from A3 have (a·b)·b−1 = b·b−1 by simp
with A1 A2 have a·(b·b−1) = b·b−1 using
inverse_in_group group_oper_assoc by simp

with A1 A2 show thesis
using group0_2_L6 group0_2_L2 by simp

qed

The inverse of the neutral element is the neutral element.

lemma (in group0) group_inv_of_one: shows 1−1=1
using group0_2_L2 inverse_in_group group0_2_L6 group0_2_L7 by blast

if a−1 = 1, then a = 1.

lemma (in group0) group0_2_L8A:
assumes A1: a∈G and A2: a−1 = 1
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shows a = 1
proof -

from A1 have a·a−1 = 1 using group0_2_L6 by simp
with A1 A2 show a = 1 using group0_2_L2 by simp

qed

If a is not a unit, then its inverse is not either.

lemma (in group0) group0_2_L8B:
assumes a∈G and a 6= 1
shows a−1 6= 1 using prems group0_2_L8A by auto

If a−1 is not a unit, then a is not either.

lemma (in group0) group0_2_L8C:
assumes a∈G and a−1 6= 1
shows a6=1
using prems group0_2_L8A group_inv_of_one by auto

If a product of two elements of a group is equal to the neutral element then
they are inverses of each other.

lemma (in group0) group0_2_L9:
assumes A1: a∈G and A2: b∈G and A3: a·b = 1
shows a = b−1 b = a−1

proof -
from A3 have a·b·b−1 = 1·b−1 by simp
with A1 A2 have a·(b·b−1) = 1·b−1 using
inverse_in_group group_oper_assoc by simp

with A1 A2 show a = b−1 using
group0_2_L6 inverse_in_group group0_2_L2 by simp

from A3 have a−1·(a·b) = a−1·1 by simp
with A1 A2 show b = a−1 using
inverse_in_group group_oper_assoc group0_2_L6 group0_2_L2
by simp

qed

It happens quite often that we know what is (have a meta-function for) the
right inverse in a group. The next lemma shows that the value of the group
inverse (function) is equal to the right inverse (meta-function).

lemma (in group0) group0_2_L9A:
assumes A1: ∀ g∈G. b(g) ∈ G ∧ g·b(g) = 1
shows ∀ g∈G. b(g) = g−1

proof
fix g assume A2: g∈G
moreover from A2 A1 have b(g) ∈ G by simp
moreover from A1 A2 have g·b(g) = 1 by simp
ultimately show b(g) = g−1 by (rule group0_2_L9)

qed

What is the inverse of a product?
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lemma (in group0) group_inv_of_two:
assumes A1: a∈G and A2: b∈G
shows b−1·a−1 = (a·b)−1

proof -
from A1 A2 have
T1: b−1∈G and T2: a−1∈G and T3: a·b∈G and T4: b−1·a−1 ∈ G
using inverse_in_group group_op_closed
by auto

from A1 A2 T4 have a·b·(b−1·a−1) = a·(b·(b−1·a−1))
using group_oper_assoc by simp

moreover from A2 T1 T2 have b·(b−1·a−1) = b·b−1·a−1

using group_oper_assoc by simp
moreover from A2 T2 have b·b−1·a−1 = a−1

using group0_2_L6 group0_2_L2 by simp
ultimately have a·b·(b−1·a−1) = a·a−1

by simp
with A1 have a·b·(b−1·a−1) = 1

using group0_2_L6 by simp
with T3 T4 show b−1·a−1 = (a·b)−1

using group0_2_L9 by simp
qed

What is the inverse of a product of three elements?

lemma (in group0) group_inv_of_three:
assumes A1: a∈G b∈G c∈G
shows
(a·b·c)−1 = c−1·(a·b)−1

(a·b·c)−1 = c−1·(b−1·a−1)
(a·b·c)−1 = c−1·b−1·a−1

proof -
from A1 have T:
a·b ∈ G a−1 ∈ G b−1 ∈ G c−1 ∈ G
using group_op_closed inverse_in_group by auto

with A1 show
(a·b·c)−1 = c−1·(a·b)−1 and (a·b·c)−1 = c−1·(b−1·a−1)
using group_inv_of_two by auto

with T show (a·b·c)−1 = c−1·b−1·a−1 using group_oper_assoc
by simp

qed

The inverse of the inverse is the element.

lemma (in group0) group_inv_of_inv:
assumes a∈G shows a = (a−1)−1

using prems inverse_in_group group0_2_L6 group0_2_L9
by simp

If a−1 · b = 1, then a = b.

lemma (in group0) group0_2_L11:
assumes A1: a∈G b∈G and A2: a−1·b = 1
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shows a=b
proof -

from A1 A2 have a−1 ∈ G b∈G a−1·b = 1
using inverse_in_group by auto

then have b = (a−1)−1 by (rule group0_2_L9)
with A1 show a=b using group_inv_of_inv by simp

qed

If a · b−1 = 1, then a = b.

lemma (in group0) group0_2_L11A:
assumes A1: a∈G b∈G and A2: a·b−1 = 1
shows a=b

proof -
from A1 A2 have a ∈ G b−1∈G a·b−1 = 1

using inverse_in_group by auto
then have a = (b−1)−1 by (rule group0_2_L9)
with A1 show a=b using group_inv_of_inv by simp

qed

If if the inverse of b is different than a, then the inverse of a is different than
b.

lemma (in group0) group0_2_L11B:
assumes A1: a∈G and A2: b−1 6= a
shows a−1 6= b

proof -
{ assume a−1 = b

then have (a−1)−1 = b−1 by simp
with A1 A2 have False using group_inv_of_inv

by simp
} then show a−1 6= b by auto

qed

What is the inverse of ab−1 ?

lemma (in group0) group0_2_L12:
assumes A1: a∈G b∈G
shows
(a·b−1)−1 = b·a−1

(a−1·b)−1 = b−1·a
proof -

from A1 have
(a·b−1)−1 = (b−1)−1· a−1 (a−1·b)−1 = b−1·(a−1)−1

using inverse_in_group group_inv_of_two by auto
with A1 show (a·b−1)−1 = b·a−1 (a−1·b)−1 = b−1·a

using group_inv_of_inv by auto
qed

A couple useful rearrangements with three elements: we can insert a b · b−1

between two group elements (another version) and one about a product of
an element and inverse of a product, and two others.
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lemma (in group0) group0_2_L14A:
assumes A1: a∈G b∈G c∈G
shows
a·c−1= (a·b−1)·(b·c−1)
a−1·c = (a−1·b)·(b−1·c)
a·(b·c)−1 = a·c−1·b−1

a·(b·c−1) = a·b·c−1

(a·b−1·c−1)−1 = c·b·a−1

a·b·c−1·(c·b−1) = a
a·(b·c)·c−1 = a·b

proof -
from A1 have T:
a−1 ∈ G b−1∈G c−1∈G
a−1·b ∈ G a·b−1 ∈ G a·b ∈ G
c·b−1 ∈ G b·c ∈ G
using inverse_in_group group_op_closed
by auto

from A1 T have
a·c−1 = a·(b−1·b)·c−1

a−1·c = a−1·(b·b−1)·c
using group0_2_L2 group0_2_L6 by auto

with A1 T show
a·c−1= (a·b−1)·(b·c−1)
a−1·c = (a−1·b)·(b−1·c)
using group_oper_assoc by auto

from A1 have a·(b·c)−1 = a·(c−1·b−1)
using group_inv_of_two by simp

with A1 T show a·(b·c)−1 =a·c−1·b−1

using group_oper_assoc by simp
from A1 T show a·(b·c−1) = a·b·c−1

using group_oper_assoc by simp
from A1 T show (a·b−1·c−1)−1 = c·b·a−1

using group_inv_of_three group_inv_of_inv
by simp

from T have a·b·c−1·(c·b−1) = a·b·(c−1·(c·b−1))
using group_oper_assoc by simp

also from A1 T have . . . = a·b·b−1

using group_oper_assoc group0_2_L6 group0_2_L2
by simp

also from A1 T have . . . = a·(b·b−1)
using group_oper_assoc by simp

also from A1 have . . . = a
using group0_2_L6 group0_2_L2 by simp

finally show a·b·c−1·(c·b−1) = a by simp
from A1 T have a·(b·c)·c−1 = a·(b·(c·c−1))

using group_oper_assoc by simp
also from A1 T have . . . = a·b

using group0_2_L6 group0_2_L2 by simp
finally show a·(b·c)·c−1 = a·b
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by simp
qed

Another lemma about rearranging a product.

lemma (in group0) group0_2_L15:
assumes A1: a∈G b∈G c∈G d∈G
shows (a·b)·(c·d)−1 = a·(b·d−1)·a−1·(a·c−1)

proof -
from A1 have T1:
d−1∈G c−1∈G a·b∈G a·(b·d−1)∈G
using inverse_in_group group_op_closed
by auto

with A1 have (a·b)·(c·d)−1 = (a·b)·(d−1·c−1)
using group_inv_of_two by simp

also from A1 T1 have . . . = a·(b·d−1)·c−1

using group_oper_assoc by simp
also from A1 T1 have . . . = a·(b·d−1)·a−1·(a·c−1)

using group0_2_L14A by blast
finally show thesis by simp

qed

We can cancel an element with its inverse that is written next to it.

lemma (in group0) group0_2_L16:
assumes A1: a∈G b∈G
shows
a·b−1·b = a
a·b·b−1 = a
a−1·(a·b) = b
a·(a−1·b) = b

proof -
from A1 have
a·b−1·b = a·(b−1·b) a·b·b−1 = a·(b·b−1)
a−1·(a·b) = a−1·a·b a·(a−1·b) = a·a−1·b
using inverse_in_group group_oper_assoc by auto

with A1 show
a·b−1·b = a
a·b·b−1 = a
a−1·(a·b) = b
a·(a−1·b) = b
using group0_2_L6 group0_2_L2 by auto

qed

Another lemma about cancelling with two group elements.

lemma (in group0) group0_2_L16A:
assumes A1: a∈G b∈G
shows a·(b·a)−1 = b−1

proof -
from A1 have (b·a)−1 = a−1·b−1 b−1 ∈ G

using group_inv_of_two inverse_in_group by auto
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with A1 show a·(b·a)−1 = b−1 using group0_2_L16
by simp

qed

A hard to clasify fact: adding a neutral element to a set that is closed under
the group operation results in a set that is closed under the group operation.

lemma (in group0) group0_2_L17:
assumes A1: H⊆G
and A2: H {is closed under} f
shows (H ∪ {1}) {is closed under} f

proof -
{ fix a b assume A3: a ∈ H ∪ {1} b ∈ H ∪ {1}

have a·b ∈ H ∪ {1}
proof (cases a∈H)

assume A4: a∈H show a·b ∈ H ∪ {1}
proof (cases b∈H)

assume b∈H
with A2 A4 show a·b ∈ H ∪ {1} using IsOpClosed_def

by simp
next assume b/∈H

with A1 A3 A4 show a·b ∈ H ∪ {1}
using group0_2_L2 by auto

qed
next assume a/∈H

with A1 A3 show a·b ∈ H ∪ {1}
using group0_2_L2 by auto

qed
} then show (H ∪ {1}) {is closed under} f

using IsOpClosed_def by auto
qed

We can put an element on the other side of an equation.

lemma (in group0) group0_2_L18:
assumes A1: a∈G b∈G c∈G
and A2: c = a·b
shows c·b−1 = a a−1·c = b

proof-
from A2 A1 have c·b−1 = a·(b·b−1) a−1·c = (a−1·a)·b

using inverse_in_group group_oper_assoc by auto
moreover from A1 have a·(b·b−1) = a (a−1·a)·b = b

using group0_2_L6 group0_2_L2 by auto
ultimately show c·b−1 = a a−1·c = b

by auto
qed

Multiplying different group elements by the same factor results in different
group elements.

lemma (in group0) group0_2_L19:
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assumes A1: a∈G b∈G c∈G and A2: a6=b
shows
a·c 6= b·c
c·a 6= c·b

proof -
{ assume a·c = b·c ∨ c·a =c·b

then have a·c·c−1 = b·c·c−1 ∨ c−1·(c·a) = c−1·(c·b)
by auto

with A1 A2 have False using group0_2_L16 by simp
} then show a·c 6= b·c and c·a 6= c·b by auto

qed

13.3 Subgroups

There are two common ways to define subgroups. One requires that the
group operations are closed in the subgroup. The second one defines sub-
group as a subset of a group which is itself a group under the group opera-
tions. We use the second approach because it results in shorter definition.
We do not require H to be a subset of G as this can be inferred from our
definition. The rest of this section is devoted to proving the equivalence of
these two definitions of the notion of a subgroup.

constdefs
IsAsubgroup(H,f) ≡ IsAgroup(H, restrict(f,H×H))

Formally the group operation in a subgroup is different than in the group as
they have different domains. Of course we want to use the original operation
with the associated notation in the subgroup. The next couple of lemmas
will allow for that.

The neutral element of the subgroup is in the subgroup and it is both right
and left neutral there. The notation is very ugly because we don’t want to
introduce a separate notation for the subgroup operation.

lemma group0_3_L1:
assumes A1:IsAsubgroup(H,f)
and A2: n = TheNeutralElement(H,restrict(f,H×H))
shows n ∈ H
∀ h∈H. restrict(f,H×H)<n,h > = h
∀ h∈H. restrict(f,H×H)<h,n > = h

proof -
let b = restrict(f,H×H)
let e = TheNeutralElement(H,restrict(f,H×H))
from A1 have group0(H,b)

using IsAsubgroup_def group0_def by simp
then have T1:
e ∈ H ∧ (∀ h∈H. (b<e,h > = h ∧ b<h,e > = h))
by (rule group0.group0_2_L2)

with A2 show n ∈ H by simp
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from T1 A2 show ∀ h∈H. b<n,h > = h ∀ h∈H. b<h,n> = h
by auto

qed

Subgroup is contained in the group.

lemma (in group0) group0_3_L2:
assumes A1:IsAsubgroup(H,f)
shows H⊆G

proof
fix h assume A2:h∈H
let b = restrict(f,H×H)
let n = TheNeutralElement(H,restrict(f,H×H))
from A1 have b ∈ H×H→H
using IsAsubgroup_def IsAgroup_def
IsAmonoid_def IsAssociative_def by simp

moreover from A2 A1 have <n,h> ∈ H×H
using group0_3_L1 by simp

moreover from A1 A2 have h = b<n,h >
using group0_3_L1 by simp

ultimately have 〈<n,h>,h〉 ∈ b
using func1_1_L5A by blast

then have 〈<n,h>,h〉 ∈ f using restrict_subset by auto
moreover from groupAssum have f:G×G→G

using IsAgroup_def IsAmonoid_def IsAssociative_def
by simp

ultimately show h∈G using func1_1_L5
by blast

qed

The group neutral element (denoted 1 in the group0 context) is a neutral
element for the subgroup with respect to the froup action.

lemma (in group0) group0_3_L3:
assumes A1:IsAsubgroup(H,f)
shows ∀ h∈H. 1·h = h ∧ h·1 = h

proof
fix h assume h∈H
with groupAssum A1 show 1·h = h ∧ h·1 = h

using group0_3_L2 group0_2_L2 by auto
qed

The neutral element of a subgroup is the same as that of the group.

lemma (in group0) group0_3_L4: assumes A1:IsAsubgroup(H,f)
shows TheNeutralElement(H,restrict(f,H×H)) = 1

proof -
let n = TheNeutralElement(H,restrict(f,H×H))
from A1 have T1:n ∈ H using group0_3_L1 by simp
with groupAssum A1 have n∈G using group0_3_L2 by auto
with A1 T1 show thesis using

group0_3_L1 restrict_if group0_2_L7 by simp
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qed

The neutral element of the group (denoted 1 in the group0 context) belongs
to every subgroup.

lemma (in group0) group0_3_L5: assumes A1: IsAsubgroup(H,f)
shows 1∈H

proof -
from A1 show 1∈H using group0_3_L1 group0_3_L4

by fast
qed

Subgroups are closed with respect to the group operation.

lemma (in group0) group0_3_L6: assumes A1:IsAsubgroup(H,f)
and A2:a∈H b∈H
shows a·b ∈ H

proof -
let b = restrict(f,H×H)
from A1 have monoid0(H,b) using
IsAsubgroup_def IsAgroup_def monoid0_def by simp

with A2 have b (<a,b>) ∈ H using monoid0.group0_1_L1
by blast

with A2 show a·b ∈ H using restrict_if by simp
qed

A preliminary lemma that we need to show that taking the inverse in the
subgroup is the same as taking the inverse in the group.

lemma group0_3_L7A:
assumes A1:IsAgroup(G,f)
and A2:IsAsubgroup(H,f) and A3:g=restrict(f,H×H)
shows GroupInv(G,f) ∩ H×H = GroupInv(H,g)

proof -
def D1: e ≡ TheNeutralElement(G,f)
def D2: e1 ≡ TheNeutralElement(H,g)
from A1 have T1:group0(G,f) using group0_def by simp
from A2 A3 have T2:group0(H,g)

using IsAsubgroup_def group0_def by simp
from T1 A2 A3 D1 D2 have e1 = e

using group0.group0_3_L4 by simp
with T1 D1 have GroupInv(G,f) = f-{e1}

using group0.group0_2_T3 by simp
moreover have g-{e1} = f-{e1} ∩ H×H
proof -

from A1 have f ∈ G×G→G
using IsAgroup_def IsAmonoid_def IsAssociative_def
by simp

moreover from T1 A2 have H×H ⊆ G×G
using group0.group0_3_L2 by auto

ultimately show g-{e1} = f-{e1} ∩ H×H
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using A3 func1_2_L1 by simp
qed
moreover from T2 A3 D2 have GroupInv(H,g) = g-{e1}

using group0.group0_2_T3 by simp
ultimately show thesis by simp

qed

Using the lemma above we can show the actual statement: taking the inverse
in the subgroup is the same as taking the inverse in the group.

theorem (in group0) group0_3_T1:
assumes A1: IsAsubgroup(H,f)
and A2:g=restrict(f,H×H)
shows GroupInv(H,g) = restrict(GroupInv(G,f),H)

proof -
from groupAssum have GroupInv(G,f) : G→G

using group0_2_T2 by simp
moreover from A1 A2 have GroupInv(H,g) : H→H

using IsAsubgroup_def group0_2_T2 by simp
moreover from A1 have H⊆G

using group0_3_L2 by simp
moreover from groupAssum A1 A2 have
GroupInv(G,f) ∩ H×H = GroupInv(H,g)
using group0_3_L7A by simp

ultimately show thesis
using func1_2_L3 by simp

qed

A sligtly weaker, but more convenient in applications, reformulation of the
above theorem.

theorem (in group0) group0_3_T2:
assumes IsAsubgroup(H,f)
and g=restrict(f,H×H)
shows ∀ h∈H. GroupInv(H,g)(h) = h−1

using prems group0_3_T1 restrict_if by simp

Subgroups are closed with respect to taking the group inverse. Again, I was
unable to apply inverse_in_group directly to the group H. This problem
is worked around by repeating the (short) proof of inverse_in_group in the
proof below.

theorem (in group0) group0_3_T3A:
assumes A1:IsAsubgroup(H,f) and A2:h∈H
shows h−1∈ H

proof -
def D1: g ≡ restrict(f,H×H)
with A1 have GroupInv(H,g) ∈ H→H

using IsAsubgroup_def group0_2_T2 by simp
with A2 have GroupInv(H,g)(h) ∈ H

using apply_type by simp
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with A1 D1 A2 show h−1∈ H using group0_3_T2 by simp
qed

The next theorem states that a nonempty subset of of a group G that is
closed under the group operation and taking the inverse is a subgroup of the
group.

theorem (in group0) group0_3_T3:
assumes A1: H6=0
and A2: H⊆G
and A3: H {is closed under} f
and A4: ∀ x∈H. x−1 ∈ H
shows IsAsubgroup(H,f)

proof -
let g = restrict(f,H×H)
let n = TheNeutralElement(H,g)
from A3 have T0:∀ x∈H.∀ y∈H. x·y ∈ H

using IsOpClosed_def by simp
from A1 obtain x where x∈H by auto
with A4 T0 A2 have T1:1∈H

using group0_2_L6 by blast
with A3 A2 have T2:IsAmonoid(H,g)

using group0_2_L1 monoid0.group0_1_T1
by simp

moreover have ∀ h∈H.∃ b∈H. g<h,b> = n
proof

fix h assume A5:h∈H
with A4 A2 have h·h−1 = 1

using group0_2_L6 by auto
moreover from groupAssum A3 A2 T1 have 1 = n

using IsAgroup_def group0_1_L6 by auto
moreover from A5 A4 have g<h,h−1> = h·h−1

using restrict_if by simp
ultimately have g<h,h−1> = n by simp
with A5 A4 show ∃ b∈H. g<h,b> = n by auto

qed
ultimately show IsAsubgroup(H,f) using
IsAsubgroup_def IsAgroup_def by simp

qed

Intersection of subgroups is a subgroup of each factor.

lemma group0_3_L7:
assumes A1:IsAgroup(G,f)
and A2:IsAsubgroup(H1,f)
and A3:IsAsubgroup(H2,f)
shows IsAsubgroup(H1∩H2,restrict(f,H1×H1))

proof -
let e = TheNeutralElement(G,f)
let g = restrict(f,H1×H1)
from A1 have T1: group0(G,f)
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using group0_def by simp
from A2 have group0(H1,g)

using IsAsubgroup_def group0_def by simp
moreover have H1∩H2 6= 0
proof -

from A1 A2 A3 have e ∈ H1∩H2

using group0_def group0.group0_3_L5 by simp
thus thesis by auto

qed
moreover have T2:H1∩H2 ⊆ H1 by auto
moreover from T1 T2 A2 A3 have
H1∩H2 {is closed under} g
using group0.group0_3_L6 IsOpClosed_def
func_ZF_4_L7 func_ZF_4_L5 by simp

moreover from T1 A2 A3 have
∀ x ∈ H1∩H2. GroupInv(H1,g)(x) ∈ H1∩H2

using group0.group0_3_T2 group0.group0_3_T3A
by simp

ultimately show thesis
using group0.group0_3_T3 by simp

qed

13.4 Abelian groups

Here we will prove some facts specific to abelian groups.

Proving the facts about associative and commutative operations is quite
tedious in formalized mathematics. To a human the thing is simple: we can
arrange the elements in any order and put parantheses wherever we want,
it is all the same. However, formalizing this statement would be rather
difficult (I think). The next lemma attempts a quasi-algorithmic approach
to this type of problem. To prove that two expressions are equal, we first
strip one from parantheses, then rearrange the elements in proper order,
then put the parantheses where we want them to be. The algorithm for
rearrangement is easy to describe: we keep putting the first element (from
the right) that is in the wrong place at the left-most position until we get
the proper arrangement. For the parantheses simp does it very well.

lemma (in group0) group0_4_L2:
assumes A1:f {is commutative on} G
and A2:a∈G b∈G c∈G d∈G E∈G F∈G
shows (a·b)·(c·d)·(E·F) = (a·(d·F))·(b·(c·E))

proof -
from A2 have (a·b)·(c·d)·(E·F) = a·b·c·d·E·F

using group_op_closed group_oper_assoc
by simp

also have a·b·c·d·E·F = a·d·F·b·c·E
proof -

from A1 A2 have a·b·c·d·E·F = F·(a·b·c·d·E)

134



using IsCommutative_def group_op_closed
by simp

also from A2 have F·(a·b·c·d·E) = F·a·b·c·d·E
using group_op_closed group_oper_assoc
by simp

also from A1 A2 have F·a·b·c·d·E = d·(F·a·b·c)·E
using IsCommutative_def group_op_closed
by simp

also from A2 have d·(F·a·b·c)·E = d·F·a·b·c·E
using group_op_closed group_oper_assoc
by simp

also from A1 A2 have d·F·a·b·c·E = a·(d·F)·b·c·E
using IsCommutative_def group_op_closed
by simp

also from A2 have a·(d·F)·b·c·E = a·d·F·b·c·E
using group_op_closed group_oper_assoc
by simp

finally show thesis by simp
qed
also from A2 have a·d·F·b·c·E = (a·(d·F))·(b·(c·E))

using group_op_closed group_oper_assoc
by simp

finally show thesis by simp
qed

Another useful rearrangement.

lemma (in group0) group0_4_L3:
assumes A1:f {is commutative on} G
and A2: a∈G b∈G and A3: c∈G d∈G E∈G F∈G
shows a·b·((c·d)−1·(E·F)−1) = (a·(E·c)−1)·(b·(F·d)−1)

proof -
from A3 have T1:
c−1∈G d−1∈G E−1∈G F−1∈G (c·d)−1∈G (E·F)−1∈G
using inverse_in_group group_op_closed
by auto

from A2 T1 have
a·b·((c·d)−1·(E·F)−1) = a·b·(c·d)−1·(E·F)−1

using group_op_closed group_oper_assoc
by simp

also from A2 A3 have
a·b·(c·d)−1·(E·F)−1 = (a·b)·(d−1·c−1)·(F−1·E−1)
using group_inv_of_two by simp

also from A1 A2 T1 have
(a·b)·(d−1·c−1)·(F−1·E−1) = (a·(c−1·E−1))·(b·(d−1·F−1))
using group0_4_L2 by simp

also from A2 A3 have
(a·(c−1·E−1))·(b·(d−1·F−1)) = (a·(E·c)−1)·(b·(F·d)−1)
using group_inv_of_two by simp

finally show thesis by simp
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qed

Some useful rearrangements for two elements of a group.

lemma (in group0) group0_4_L4:
assumes A1:f {is commutative on} G
and A2: a∈G b∈G
shows
b−1·a−1 = a−1·b−1

(a·b)−1 = a−1·b−1

(a·b−1)−1 = a−1·b
proof -

from A2 have T1: b−1∈G a−1∈G using inverse_in_group by auto
with A1 show b−1·a−1 = a−1·b−1 using IsCommutative_def by simp
with A2 show (a·b)−1 = a−1·b−1 using group_inv_of_two by simp
from A2 T1 have (a·b−1)−1 = (b−1)−1·a−1 using group_inv_of_two by simp
with A1 A2 T1 show (a·b−1)−1 = a−1·b

using group_inv_of_inv IsCommutative_def by simp
qed

Another bunch of useful rearrangements with three elements.

lemma (in group0) group0_4_L4A:
assumes A1:f {is commutative on} G
and A2: a∈G b∈G c∈G
shows
a·b·c = c·a·b
a−1·(b−1·c−1)−1 = (a·(b·c)−1)−1

a·(b·c)−1 = a·b−1·c−1

a·(b·c−1)−1 = a·b−1·c
a·b−1·c−1 = a·c−1·b−1

proof -
from A1 A2 have a·b·c = c·(a·b)

using IsCommutative_def group_op_closed
by simp

with A2 show a·b·c = c·a·b using
group_op_closed group_oper_assoc

by simp
from A2 have T:
b−1∈G c−1∈G b−1·c−1 ∈ G a·b ∈ G
using inverse_in_group group_op_closed
by auto

with A1 A2 show a−1·(b−1·c−1)−1 = (a·(b·c)−1)−1

using group_inv_of_two IsCommutative_def
by simp

from A1 A2 T have a·(b·c)−1 = a·(b−1·c−1)
using group_inv_of_two IsCommutative_def by simp

with A2 T show a·(b·c)−1 = a·b−1·c−1

using group_oper_assoc by simp
from A1 A2 T have a·(b·c−1)−1 = a·(b−1·(c−1)−1)

using group_inv_of_two IsCommutative_def by simp
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with A2 T show a·(b·c−1)−1 = a·b−1·c
using group_oper_assoc group_inv_of_inv by simp

from A1 A2 T have a·b−1·c−1 = a·(c−1·b−1)
using group_oper_assoc IsCommutative_def by simp

with A2 T show a·b−1·c−1 = a·c−1·b−1

using group_oper_assoc by simp
qed

Another useful rearrangement.

lemma (in group0) group0_4_L4B:
assumes f {is commutative on} G
and a∈G b∈G c∈G
shows a·b−1·(b·c−1) = a·c−1

using prems inverse_in_group group_op_closed
group0_4_L4 group_oper_assoc group0_2_L16 by simp

A couple of permutations of order for three alements.

lemma (in group0) group0_4_L4C:
assumes A1: f {is commutative on} G
and A2: a∈G b∈G c∈G
shows
a·b·c = c·a·b
a·b·c = a·(c·b)
a·b·c = c·(a·b)
a·b·c = c·b·a

proof -
from A1 A2 show I: a·b·c = c·a·b

using group0_4_L4A by simp
also from A1 A2 have c·a·b = a·c·b

using IsCommutative_def by simp
also from A2 have a·c·b = a·(c·b)

using group_oper_assoc by simp
finally show a·b·c = a·(c·b) by simp
from A2 I show a·b·c = c·(a·b)

using group_oper_assoc by simp
also from A1 A2 have c·(a·b) = c·(b·a)

using IsCommutative_def by simp
also from A2 have c·(b·a) = c·b·a

using group_oper_assoc by simp
finally show a·b·c = c·b·a by simp

qed

Some rearangement with three elements and inverse.

lemma (in group0) group0_4_L4D:
assumes A1: f {is commutative on} G
and A2: a∈G b∈G c∈G
shows
a−1·b−1·c = c·a−1·b−1

b−1·a−1·c = c·a−1·b−1
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(a−1·b·c)−1 = a·b−1·c−1

proof -
from A2 have T:
a−1 ∈ G b−1 ∈ G c−1∈G
using inverse_in_group by auto

with A1 A2 show
a−1·b−1·c = c·a−1·b−1

b−1·a−1·c = c·a−1·b−1

using group0_4_L4A by auto
from A1 A2 T show (a−1·b·c)−1 = a·b−1·c−1

using group_inv_of_three group_inv_of_inv group0_4_L4C
by simp

qed

Another rearrangement lemma with three elements and equation.

lemma (in group0) group0_4_L5: assumes A1:f {is commutative on} G
and A2: a∈G b∈G c∈G
and A3: c = a·b−1

shows a = b·c
proof -

from A2 A3 have c·(b−1)−1 = a
using inverse_in_group group0_2_L18
by simp

with A1 A2 show thesis using
group_inv_of_inv IsCommutative_def by simp

qed

In abelian groups we can cancel an element with its inverse even if separated
by another element.

lemma (in group0) group0_4_L6A: assumes A1: f {is commutative on} G
and A2: a∈G b∈G
shows
a·b·a−1 = b
a−1·b·a = b
a−1·(b·a) = b
a·(b·a−1) = b

proof -
from A1 A2 have
a·b·a−1 = a−1·a·b
using inverse_in_group group0_4_L4A by blast

also from A2 have . . . = b
using group0_2_L6 group0_2_L2 by simp

finally show a·b·a−1 = b by simp
from A1 A2 have
a−1·b·a = a·a−1·b
using inverse_in_group group0_4_L4A by blast

also from A2 have . . . = b
using group0_2_L6 group0_2_L2 by simp

finally show a−1·b·a = b by simp
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moreover from A2 have a−1·b·a = a−1·(b·a)
using inverse_in_group group_oper_assoc by simp

ultimately show a−1·(b·a) = b by simp
from A1 A2 show a·(b·a−1) = b

using inverse_in_group IsCommutative_def group0_2_L16
by simp

qed

Another lemma about cancelling with two elements.

lemma (in group0) group0_4_L6AA:
assumes A1: f {is commutative on} G and A2: a∈G b∈G
shows
a·b−1·a−1 = b−1

using prems inverse_in_group group0_4_L6A
by auto

Another lemma about cancelling with two elements.

lemma (in group0) group0_4_L6AB:
assumes A1: f {is commutative on} G and A2: a∈G b∈G
shows
a·(a·b)−1 = b−1

a·(b·a−1) = b
proof -

from A2 have a·(a·b)−1 = a·(b−1·a−1)
using group_inv_of_two by simp

also from A2 have . . . = a·b−1·a−1

using inverse_in_group group_oper_assoc by simp
also from A1 A2 have . . . = b−1

using group0_4_L6AA by simp
finally show a·(a·b)−1 = b−1 by simp
from A1 A2 have a·(b·a−1) = a·(a−1·b)

using inverse_in_group IsCommutative_def by simp
also from A2 have . . . = b

using inverse_in_group group_oper_assoc group0_2_L6 group0_2_L2
by simp

finally show a·(b·a−1) = b by simp
qed

Another lemma about cancelling with two elements.

lemma (in group0) group0_4_L6AC:
assumes f {is commutative on} G and a∈G b∈G
shows a·(a·b−1)−1 = b
using prems inverse_in_group group0_4_L6AB group_inv_of_inv
by simp

In abelian groups we can cancel an element with its inverse even if separated
by two other elements.

lemma (in group0) group0_4_L6B: assumes A1: f {is commutative on} G
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and A2: a∈G b∈G c∈G
shows
a·b·c·a−1 = b·c
a−1·b·c·a = b·c

proof -
from A2 have
a·b·c·a−1 = a·(b·c)·a−1

a−1·b·c·a = a−1·(b·c)·a
using group_op_closed group_oper_assoc inverse_in_group
by auto

with A1 A2 show
a·b·c·a−1 = b·c
a−1·b·c·a = b·c
using group_op_closed group0_4_L6A
by auto

qed

In abelian groups we can cancel an element with its inverse even if separated
by three other elements.

lemma (in group0) group0_4_L6C: assumes A1: f {is commutative on} G
and A2: a∈G b∈G c∈G d∈G
shows a·b·c·d·a−1 = b·c·d

proof -
from A2 have a·b·c·d·a−1 = a·(b·c·d)·a−1

using group_op_closed group_oper_assoc
by simp

with A1 A2 show thesis
using group_op_closed group0_4_L6A
by simp

qed

Another couple of useful rearrangements of three elements and cancelling.

lemma (in group0) group0_4_L6D:
assumes A1: f {is commutative on} G
and A2: a∈G b∈G c∈G
shows
a·b−1·(a·c−1)−1 = c·b−1

(a·c)−1·(b·c) = a−1·b
a·(b·(c·a−1·b−1)) = c
a·b·c−1·(c·a−1) = b

proof -
from A2 have T:
a−1 ∈ G b−1 ∈ G c−1 ∈ G
a·b ∈ G a·b−1 ∈ G c−1·a−1 ∈ G c·a−1 ∈ G
using inverse_in_group group_op_closed by auto

with A1 A2 show a·b−1·(a·c−1)−1 = c·b−1

using group0_2_L12 group_oper_assoc group0_4_L6B
IsCommutative_def by simp

from A2 T have (a·c)−1·(b·c) = c−1·a−1·b·c
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using group_inv_of_two group_oper_assoc by simp
also from A1 A2 T have . . . = a−1·b

using group0_4_L6B by simp
finally show (a·c)−1·(b·c) = a−1·b

by simp
from A1 A2 T show a·(b·(c·a−1·b−1)) = c

using group_oper_assoc group0_4_L6B group0_4_L6A
by simp

from T have a·b·c−1·(c·a−1) = a·b·(c−1·(c·a−1))
using group_oper_assoc by simp

also from A1 A2 T have . . . = b
using group_oper_assoc group0_2_L6 group0_2_L2 group0_4_L6A
by simp

finally show a·b·c−1·(c·a−1) = b by simp
qed

Another useful rearrangement of three elements and cancelling.

lemma (in group0) group0_4_L6E:
assumes A1: f {is commutative on} G
and A2: a∈G b∈G c∈G
shows
a·b·(a·c)−1 = b·c−1

proof -
from A2 have T: b−1 ∈ G c−1 ∈ G

using inverse_in_group by auto
with A1 A2 have
a·(b−1)−1·(a·(c−1)−1)−1 = c−1·(b−1)−1

using group0_4_L6D by simp
with A1 A2 T show a·b·(a·c)−1 = b·c−1

using group_inv_of_inv IsCommutative_def
by simp

qed

A rearrangement with two elements and canceelling, special case of group0_4_L6D
when c = b−1.

lemma (in group0) group0_4_L6F:
assumes A1: f {is commutative on} G
and A2: a∈G b∈G
shows a·b−1·(a·b)−1 = b−1·b−1

proof -
from A2 have b−1 ∈ G

using inverse_in_group by simp
with A1 A2 have a·b−1·(a·(b−1)−1)−1 = b−1·b−1

using group0_4_L6D by simp
with A2 show a·b−1·(a·b)−1 = b−1·b−1

using group_inv_of_inv by simp
qed

Some other rearrangements with four elements. The algorithm for proof as
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in group0_4_L2 works very well here.

lemma (in group0) rearr_ab_gr_4_elemA:
assumes A1: f {is commutative on} G
and A2: a∈G b∈G c∈G d∈G
shows
a·b·c·d = a·d·b·c
a·b·c·d = a·c·(b·d)

proof -
from A1 A2 have a·b·c·d = d·(a·b·c)

using IsCommutative_def group_op_closed
by simp

also from A2 have . . . = d·a·b·c
using group_op_closed group_oper_assoc
by simp

also from A1 A2 have . . . = a·d·b·c
using IsCommutative_def group_op_closed
by simp

finally show a·b·c·d = a·d·b·c
by simp

from A1 A2 have a·b·c·d = c·(a·b)·d
using IsCommutative_def group_op_closed
by simp

also from A2 have . . . = c·a·b·d
using group_op_closed group_oper_assoc
by simp

also from A1 A2 have . . . = a·c·b·d
using IsCommutative_def group_op_closed
by simp

also from A2 have . . . = a·c·(b·d)
using group_op_closed group_oper_assoc
by simp

finally show a·b·c·d = a·c·(b·d)
by simp

qed

Some rearrangements with four elements and inverse that are applications
of rearr_ab_gr_4_elem

lemma (in group0) rearr_ab_gr_4_elemB:
assumes A1: f {is commutative on} G
and A2: a∈G b∈G c∈G d∈G
shows
a·b−1·c−1·d−1 = a·d−1·b−1·c−1

a·b·c·d−1 = a·d−1·b·c
a·b·c−1·d−1 = a·c−1·(b·d−1)

proof -
from A2 have T: b−1 ∈ G c−1 ∈ G d−1 ∈ G

using inverse_in_group by auto
with A1 A2 show
a·b−1·c−1·d−1 = a·d−1·b−1·c−1
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a·b·c·d−1 = a·d−1·b·c
a·b·c−1·d−1 = a·c−1·(b·d−1)
using rearr_ab_gr_4_elemA by auto

qed

Some rearrangement lemmas with four elements.

lemma (in group0) group0_4_L7:
assumes A1: f {is commutative on} G
and A2: a∈G b∈G c∈G d∈G
shows
a·b·c·d−1 = a·d−1· b·c
a·d·(b·d·(c·d))−1 = a·(b·c)−1·d−1

a·(b·c)·d = a·b·d·c
proof -

from A2 have T:
b·c ∈ G d−1 ∈ G b−1∈G c−1∈G
d−1·b ∈ G c−1·d ∈ G (b·c)−1 ∈ G
b·d ∈ G b·d·c ∈ G (b·d·c)−1 ∈ G
a·d ∈ G b·c ∈ G
using group_op_closed inverse_in_group
by auto

with A1 A2 have a·b·c·d−1 = a·(d−1·b·c)
using group_oper_assoc group0_4_L4A by simp

also from A2 T have a·(d−1·b·c) = a·d−1·b·c
using group_oper_assoc by simp

finally show a·b·c·d−1 = a·d−1· b·c by simp
from A2 T have a·d·(b·d·(c·d))−1 = a·d·(d−1·(b·d·c)−1)

using group_oper_assoc group_inv_of_two by simp
also from A2 T have . . . = a·(b·d·c)−1

using group_oper_assoc group0_2_L16 by simp
also from A1 A2 have . . . = a·(d·(b·c))−1

using IsCommutative_def group_oper_assoc by simp
also from A2 T have . . . = a·((b·c)−1·d−1)

using group_inv_of_two by simp
also from A2 T have . . . = a·(b·c)−1·d−1

using group_oper_assoc by simp
finally show a·d·(b·d·(c·d))−1 = a·(b·c)−1·d−1

by simp
from A2 have a·(b·c)·d = a·(b·(c·d))

using group_op_closed group_oper_assoc by simp
also from A1 A2 have . . . = a·(b·(d·c))

using IsCommutative_def group_op_closed by simp
also from A2 have . . . = a·b·d·c

using group_op_closed group_oper_assoc by simp
finally show a·(b·c)·d = a·b·d·c by simp

qed

Some other rearrangements with four elements.

lemma (in group0) group0_4_L8:
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assumes A1: f {is commutative on} G
and A2: a∈G b∈G c∈G d∈G
shows
a·(b·c)−1 = (a·d−1·c−1)·(d·b−1)
a·b·(c·d) = c·a·(b·d)
a·b·(c·d) = a·c·(b·d)
a·(b·c−1)·d = a·b·d·c−1

(a·b)·(c·d)−1·(b·d−1)−1 = a·c−1

proof -
from A2 have T:
b·c ∈ G a·b ∈ G d−1 ∈ G b−1∈G c−1∈G
d−1·b ∈ G c−1·d ∈ G (b·c)−1 ∈ G
a·b ∈ G (c·d)−1 ∈ G (b·d−1)−1 ∈ G d·b−1 ∈ G
using group_op_closed inverse_in_group
by auto

from A2 have a·(b·c)−1 = a·c−1·b−1 using group0_2_L14A by blast
moreover from A2 have a·c−1 = (a·d−1)·(d·c−1) using group0_2_L14A

by blast
ultimately have a·(b·c)−1 = (a·d−1)·(d·c−1)·b−1 by simp
with A1 A2 T have a·(b·c)−1= a·d−1·(c−1·d)·b−1

using IsCommutative_def by simp
with A2 T show a·(b·c)−1 = (a·d−1·c−1)·(d·b−1)

using group_op_closed group_oper_assoc by simp
from A2 T have a·b·(c·d) = a·b·c·d

using group_oper_assoc by simp
also have a·b·c·d = c·a·b·d
proof -

from A1 A2 have a·b·c·d = c·(a·b)·d
using IsCommutative_def group_op_closed
by simp

also from A2 have . . . = c·a·b·d
using group_op_closed group_oper_assoc
by simp

finally show thesis by simp
qed
also from A2 have c·a·b·d = c·a·(b·d)

using group_op_closed group_oper_assoc
by simp

finally show a·b·(c·d) = c·a·(b·d) by simp
with A1 A2 show a·b·(c·d) = a·c·(b·d)

using IsCommutative_def by simp
from A1 A2 T show a·(b·c−1)·d = a·b·d·c−1

using group0_4_L7 by simp
from T have (a·b)·(c·d)−1·(b·d−1)−1 = (a·b)·((c·d)−1·(b·d−1)−1)

using group_oper_assoc by simp
also from A1 A2 T have . . . = (a·b)·(c−1·d−1·(d·b−1))

using group_inv_of_two group0_2_L12 IsCommutative_def
by simp

also from T have . . . = (a·b)·(c−1·(d−1·(d·b−1)))
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using group_oper_assoc by simp
also from A1 A2 T have . . . = a·c−1

using group_oper_assoc group0_2_L6 group0_2_L2 IsCommutative_def
group0_2_L16 by simp

finally show (a·b)·(c·d)−1·(b·d−1)−1 = a·c−1

by simp
qed

Some other rearrangements with four elements.

lemma (in group0) group0_4_L8A:
assumes A1: f {is commutative on} G
and A2: a∈G b∈G c∈G d∈G
shows
a·b−1·(c·d−1) = a·c·(b−1·d−1)
a·b−1·(c·d−1) = a·c·b−1·d−1

proof -
from A2 have
T: a∈G b−1 ∈ G c∈G d−1 ∈ G
using inverse_in_group by auto

with A1 show a·b−1·(c·d−1) = a·c·(b−1·d−1)
by (rule group0_4_L8)

with A2 T show a·b−1·(c·d−1) = a·c·b−1·d−1

using group_op_closed group_oper_assoc
by simp

qed

Another rearrangement about equation.

lemma (in group0) group0_4_L9:
assumes A1: f {is commutative on} G
and A2: a∈G b∈G c∈G d∈G
and A3: a = b·c−1·d−1

shows
d = b·a−1·c−1

d = a−1·b·c−1

b = a·d·c
proof -

from A2 have T:
a−1 ∈ G c−1 ∈ G d−1 ∈ G b·c−1 ∈ G
using group_op_closed inverse_in_group
by auto

with A2 A3 have a·(d−1)−1 = b·c−1

using group0_2_L18 by simp
with A2 have b·c−1 = a·d

using group_inv_of_inv by simp
with A2 T have I: a−1·(b·c−1) = d

using group0_2_L18 by simp
with A1 A2 T show
d = b·a−1·c−1

d = a−1·b·c−1
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using group_oper_assoc IsCommutative_def by auto
from A3 have a·d·c = (b·c−1·d−1)·d·c by simp
also from A2 T have . . . = b·c−1·(d−1·d)·c

using group_oper_assoc by simp
also from A2 T have . . . = b·c−1·c

using group0_2_L6 group0_2_L2 by simp
also from A2 T have . . . = b·(c−1·c)

using group_oper_assoc by simp
also from A2 have . . . = b

using group0_2_L6 group0_2_L2 by simp
finally have a·d·c = b by simp
thus b = a·d·c by simp

qed

13.5 Translations

In this section we consider translations. Translations are maps T : G → G
of the form Tg(a) = g · a or Tg(a) = a · g. We also consider two-dimensional
translations Tg : G×G→ G×G, where Tg(a, b) = (a · g, b · g) orTg(a, b) =
(g · a, g · b).
constdefs
RightTranslation(G,P,g) ≡ {<a,b> ∈ G×G. P<a,g> = b}

LeftTranslation(G,P,g) ≡ {<a,b> ∈ G×G. P<g,a> = b}

RightTranslation2(G,P,g) ≡
{<x,y> ∈ (G×G)×(G×G). 〈P<fst(x),g>, P<snd(x),g>〉 = y}

LeftTranslation2(G,P,g) ≡
{<x,y> ∈ (G×G)×(G×G). 〈P<g,fst(x)>, P<g,snd(x)>〉 = y}

Translations map G into G. Two dimensional translations map G×G into
itself.

lemma (in group0) group0_5_L1: assumes A1: g∈G
shows RightTranslation(G,f,g) : G→G
LeftTranslation(G,f,g) : G→G
RightTranslation2(G,f,g) : (G×G)→(G×G)
LeftTranslation2(G,f,g) : (G×G)→(G×G)

proof -
from A1 have ∀ a∈G. a·g ∈ G ∀ a∈G. g·a ∈ G
∀ x ∈ G×G. <fst(x)·g, snd(x)·g> ∈ G×G
∀ x ∈ G×G. <g·fst(x),g·snd(x)> ∈ G×G
using group_oper_assocA apply_funtype by auto

then show RightTranslation(G,f,g) : G→G
LeftTranslation(G,f,g) : G→G
RightTranslation2(G,f,g) : (G×G)→(G×G)
LeftTranslation2(G,f,g) : (G×G)→(G×G)
using RightTranslation_def LeftTranslation_def
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RightTranslation2_def LeftTranslation2_def func1_1_L11A
by auto

qed

The values of the translations are what we expect.

lemma (in group0) group0_5_L2: assumes A1: g∈G a∈G
shows
RightTranslation(G,f,g)(a) = a·g
LeftTranslation(G,f,g)(a) = g·a
using prems group0_5_L1 RightTranslation_def LeftTranslation_def
func1_1_L11B by auto

The values of the two-dimensional translations are what we expect.

lemma (in group0) group0_5_L3: assumes A1: g∈G a∈G b∈G
shows RightTranslation2(G,f,g)<a,b> = <a·g,b·g>
LeftTranslation2(G,f,g)<a,b> = <g·a,g·b>
using prems RightTranslation2_def LeftTranslation2_def
group0_5_L1 func1_1_L11B by auto

Composition of left translations is a left translation by the product.

lemma (in group0) group0_5_L4: assumes A1:g∈G h∈G a∈G
and A2: Tg = LeftTranslation(G,f,g) Th = LeftTranslation(G,f,h)
shows Tg(Th(a)) = g·h·a
Tg(Th(a)) = LeftTranslation(G,f,g·h)(a)

proof -
from A1 have T1:h·a∈G g·h∈G

using group_oper_assocA apply_funtype by auto
with A1 A2 show Tg(Th(a)) = g·h·a

using group0_5_L2 group_oper_assoc by simp
with A1 A2 T1 show
Tg(Th(a)) = LeftTranslation(G,f,g·h)(a)
using group0_5_L2 group_oper_assoc by simp

qed

Composition of right translations is a right translation by the product.

lemma (in group0) group0_5_L5: assumes A1:g∈G h∈G a∈G
and A2: Tg = RightTranslation(G,f,g) Th = RightTranslation(G,f,h)
shows Tg(Th(a)) = a·h·g
Tg(Th(a)) = RightTranslation(G,f,h·g)(a)

proof -
from A1 have T1: a·h∈G h·g ∈G

using group_oper_assocA apply_funtype by auto
with A1 A2 show Tg(Th(a)) = a·h·g

using group0_5_L2 group_oper_assoc by simp
with A1 A2 T1 show
Tg(Th(a)) = RightTranslation(G,f,h·g)(a)
using group0_5_L2 group_oper_assoc by simp

qed
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The image of a set under a composition of translations is the same as the
image under translation by a product.

lemma (in group0) group0_5_L6: assumes A1: g∈G h∈G and A2: A⊆G
and A3: Tg = RightTranslation(G,f,g) Th = RightTranslation(G,f,h)
shows Tg(Th(A)) = {a·h·g. a∈A}

proof -
from A2 have T1:∀ a∈A. a∈G by auto
from A1 A3 have Tg : G→G Th : G→G

using group0_5_L1 by auto
with A1 A2 T1 A3 show Tg(Th(A)) = {a·h·g. a∈A}

using func1_1_L15C group0_5_L5 by simp
qed

13.6 Odd functions

This section is about odd functions.

Odd functions are those that commute with the group inverse: f(a−1) =
(f(a))−1.

constdefs

IsOdd(G,P,f) ≡ (∀ a∈G. f(GroupInv(G,P)(a)) = GroupInv(G,P)(f(a)) )

Let’s see the definition of an odd function in a more readable notation.

lemma (in group0) group0_6_L1:
shows IsOdd(G,f,p) ←→ (∀ a∈G. p(a−1) = (p(a))−1)
using IsOdd_def by simp

We can express the definition of an odd function in two ways.

lemma (in group0) group0_6_L2:
assumes A1: p : G→G shows
(∀ a∈G. p(a−1) = (p(a))−1) ←→ (∀ a∈G. (p(a−1))−1 = p(a))

proof
assume ∀ a∈G. p(a−1) = (p(a))−1

with A1 show ∀ a∈G. (p(a−1))−1 = p(a)
using apply_funtype group_inv_of_inv by simp

next assume A2: ∀ a∈G. (p(a−1))−1 = p(a)
{ fix a assume a∈G

with A1 A2 have p(a−1) ∈ G ((p(a−1))−1)−1 = (p(a))−1

using apply_funtype inverse_in_group by auto
then have p(a−1) = (p(a))−1

using group_inv_of_inv by simp
} then show ∀ a∈G. p(a−1) = (p(a))−1 by simp

qed

end
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14 Group ZF 1.thy

theory Group_ZF_1 imports Group_ZF

begin

In a typical textbook a group is defined as a set G with an associative
operation such that two conditions hold:

A: there is an element e ∈ G such that for all g ∈ G we have e · a = a and
a · e = a. We call this element a ”unit” or a ”neutral element” of the group.

B: for every a ∈ G there exists a b ∈ G such that a · b = e, where e is the
element of G whose existence is guaranteed by A.

The validity of this definition is rather dubious to me, as condition A does
not define any specific element e that can be referred to in condition B - it
merely states that a set of such neutral elements e is not empty. One way
around this is to first use condition A to define the notion of monoid, then
prove the uniqueness of e and then use the condition B to define groups.
However, there is an amusing way to define groups directly without any
reference to the neutral elements. Namely, we can define a group as a non-
empty set G with an assocative operation ”·” such that

C: for every a, b ∈ G the equations a ·x = b and y ·a = b can be solved in G.

This theory file aims at proving the equivalence of this alternative definition
with the usual definition of the group, as formulated in Group ZF.thy. The
romantic proofs come from an Aug. 14, 2005, 2006 post by buli on the
matematyka.org forum.

14.1 An alternative definition of group

We will use the multiplicative notation for the group. To do this, we define
a context (locale) similar to group0, that tells Isabelle to interpret a · b as
the value of function P on the pair 〈a, b〉.
locale group2 =

fixes P
fixes dot (infixl · 70)
defines dot_def [simp]: a · b ≡ P<a,b>

A set G with an associative operation that satisfies condition C is a group,
as defined in Group_ZF theory file.

theorem (in group2) Group_ZF_1_T1:
assumes A1: G6=0 and A2: P {is associative on} G
and A3: ∀ a∈G.∀ b∈G. ∃ x∈G. a·x = b
and A4: ∀ a∈G.∀ b∈G. ∃ y∈G. y·a = b
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shows IsAgroup(G,P)
proof -

from A1 obtain a where D1: a∈G by auto
with A3 obtain x where D2: x∈G and D3: a·x = a

by auto
from D1 A4 obtain y where D4: y∈G and D5: y·a = a

by auto
have T1: ∀ b∈G. b = b·x ∧ b = y·b
proof

fix b assume A5: b∈G
with D1 A4 obtain yb where D6: yb∈G
and D7: yb·a = b by auto

from A5 D1 A3 obtain xb where D8: xb∈G
and D9: a·xb = b by auto

from D7 D3 D9 D5 have
b = yb·(a·x) b = (y·a)·xb by auto

moreover from D1 D2 D4 D8 D6 A2 have
(y·a)·xb = y·(a·xb) yb·(a·x) = (yb·a)·x
using IsAssociative_def by auto

moreover from D7 D9 have
(yb·a)·x = b·x y·(a·xb) = y·b
by auto

ultimately show b = b·x ∧ b = y·b by simp
qed
moreover have x = y
proof -

from D2 T1 have x = y·x by simp
also from D4 T1 have y·x = y by simp
finally show thesis by simp

qed
ultimately have ∀ b∈G. b·x = b ∧ x·b = b by simp
with D2 A2 have IsAmonoid(G,P) using IsAmonoid_def by auto
with A3 show IsAgroup(G,P)

using monoid0_def monoid0.group0_1_L3 IsAgroup_def
by simp

qed

end
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15 Group ZF 2.thy

theory Group_ZF_2 imports Group_ZF func_ZF EquivClass1

begin

This theory continues Group ZF.thy and considers lifting the group struc-
ture to function spaces and projecting the group structure to quotient spaces,
in particular the quotient qroup.

15.1 Lifting groups to function spaces

If we have a monoid (group) G than we get a monoid (group) structure on
a space of functions valued in in G by defining (f · g)(x) := f(x) · g(x). We
call this process ”lifting the monoid (group) to function space. This section
formalizes this ”lifting”.

The lifted operation is an operation on the function space.

lemma (in monoid0) Group_ZF_2_1_L0A:
assumes A1: F = f {lifted to function space over} X
shows F : (X→G)×(X→G)→(X→G)

proof -
from monoidAsssum have f : G×G→G

using IsAmonoid_def IsAssociative_def by simp
with A1 show thesis

using func_ZF_1_L3 group0_1_L3B by auto
qed

The result of the lifted operation is in the function space.

lemma (in monoid0) Group_ZF_2_1_L0:
assumes A1:F = f {lifted to function space over} X
and A2:s:X→G r:X→G
shows F<s,r> : X→G

proof -
from A1 have F : (X→G)×(X→G)→(X→G)

using Group_ZF_2_1_L0A
by simp

with A2 show thesis using apply_funtype
by simp

qed

The lifted monoid operation has a neutral element, namely the constant
function with the neutral element as the value.

lemma (in monoid0) Group_ZF_2_1_L1:
assumes A1: F = f {lifted to function space over} X
and A2: E = ConstantFunction(X,TheNeutralElement(G,f))
shows E : X→G ∧ (∀ s∈X→G. F<E,s> = s ∧ F<s,E> = s)

proof
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from A2 show T1:E : X→G
using group0_1_L3 func1_3_L1 by simp

show ∀ s∈X→G. F<E,s> = s ∧ F<s,E> = s
proof

fix s assume A3:s:X→G
from monoidAsssum have T2:f : G×G→G

using IsAmonoid_def IsAssociative_def by simp
from A3 A1 T1 have
F<E,s> : X→G F<s,E> : X→G s : X→G
using Group_ZF_2_1_L0 by auto

moreover from T2 A1 T1 A2 A3 have
∀ x∈X. (F<E,s>)(x) = s(x)
∀ x∈X. (F<s,E>)(x) = s(x)
using func_ZF_1_L4 group0_1_L3B func1_3_L2
apply_type group0_1_L3 by auto

ultimately show
F<E,s> = s ∧ F<s,E> = s
using fun_extension_iff by auto

qed
qed

Monoids can be lifted to a function space.

lemma (in monoid0) Group_ZF_2_1_T1:
assumes A1:F = f {lifted to function space over} X
shows IsAmonoid(X→G,F)

proof -
from monoidAsssum A1 have
F {is associative on} (X→G)
using IsAmonoid_def func_ZF_2_L4 group0_1_L3B
by auto

moreover from A1 have
∃ E ∈ X→G. ∀ s ∈ X→G. F<E,s> = s ∧ F<s,E> = s
using Group_ZF_2_1_L1 by blast

ultimately show thesis using IsAmonoid_def
by simp

qed

The constant function with the neutral element as the value is the neutral
element of the lifted monoid.

lemma Group_ZF_2_1_L2:
assumes A1:IsAmonoid(G,f)
and A2:F = f {lifted to function space over} X
and A3:E = ConstantFunction(X,TheNeutralElement(G,f))
shows E = TheNeutralElement(X→G,F)

proof -
from A1 A2 have

T1:monoid0(G,f) and T2:monoid0(X→G,F)
using monoid0_def monoid0.Group_ZF_2_1_T1
by auto
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from T1 A2 A3 have
E : X→G ∧ (∀ s∈X→G. F<E,s> = s ∧ F<s,E> = s)
using monoid0.Group_ZF_2_1_L1 by simp

with T2 show thesis
using monoid0.group0_1_L4 by auto

qed

The lifted operation acts on the functions in a natural way defined by the
group operation.

lemma (in group0) Group_ZF_2_1_L3:
assumes A1:F = f {lifted to function space over} X
and A2:s:X→G r:X→G
and A3:x∈X
shows (F<s,r>)(x) = s(x)·r(x)

proof -
from groupAssum A1 A2 A3 show thesis

using IsAgroup_def IsAmonoid_def IsAssociative_def
group0_2_L1 monoid0.group0_1_L3B func_ZF_1_L4

by auto
qed

In the group0 context we can apply theorems proven in monoid0 context to
the lifted monoid.

lemma (in group0) Group_ZF_2_1_L4:
assumes A1:F = f {lifted to function space over} X
shows monoid0(X→G,F)

proof -
from A1 show thesis

using group0_2_L1 monoid0.Group_ZF_2_1_T1 monoid0_def
by simp

qed

The compostion of a function f : X → G with the group inverse is a right
inverse for the lifted group. Recall that in the group0 context e is the neutral
element of the group.

lemma (in group0) Group_ZF_2_1_L5:
assumes A1: F = f {lifted to function space over} X
and A2: s : X→G
and A3: i = GroupInv(G,f) O s
shows i: X→G F<s,i> = TheNeutralElement(X→G,F)

proof -
let E = ConstantFunction(X,1)
have E : X→G

using group0_2_L2 func1_3_L1 by simp
moreover from groupAssum A2 A3 A1 have
F<s,i> : X→G using group0_2_T2 comp_fun
Group_ZF_2_1_L4 monoid0.group0_1_L1

by simp
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moreover from groupAssum A2 A3 A1 have
∀ x∈X. (F<s,i>)(x) = E(x)
using group0_2_T2 comp_fun Group_ZF_2_1_L3
comp_fun_apply apply_funtype group0_2_L6 func1_3_L2

by simp
moreover from groupAssum A1 have
E = TheNeutralElement(X→G,F)
using IsAgroup_def Group_ZF_2_1_L2 by simp

ultimately show F<s,i> = TheNeutralElement(X→G,F)
using fun_extension_iff IsAgroup_def Group_ZF_2_1_L2
by simp

from groupAssum A2 A3 show i: X→G
using group0_2_T2 comp_fun by simp

qed

Groups can be lifted to the function space.

theorem (in group0) Group_ZF_2_1_T2:
assumes A1: F = f {lifted to function space over} X
shows IsAgroup(X→G,F)

proof -
from A1 have IsAmonoid(X→G,F)

using group0_2_L1 monoid0.Group_ZF_2_1_T1
by simp

moreover have
∀ s∈X→G. ∃ i∈X→G. F<s,i> = TheNeutralElement(X→G,F)

proof
fix s assume A2: s : X→G
let i = GroupInv(G,f) O s
from groupAssum A2 have i:X→G

using group0_2_T2 comp_fun by simp
moreover from A1 A2 have
F<s,i> = TheNeutralElement(X→G,F)
using Group_ZF_2_1_L5 by fast

ultimately show ∃ i∈X→G. F<s,i> = TheNeutralElement(X→G,F)
by auto

qed
ultimately show thesis using IsAgroup_def

by simp
qed

What is the group inverse for the lifted group?

lemma (in group0) Group_ZF_2_1_L6:
assumes A1: F = f {lifted to function space over} X
shows ∀ s∈(X→G). GroupInv(X→G,F)(s) = GroupInv(G,f) O s

proof -
from A1 have group0(X→G,F)

using group0_def Group_ZF_2_1_T2
by simp

moreover from A1 have ∀ s∈X→G. GroupInv(G,f) O s : X→G ∧
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F<s,GroupInv(G,f) O s> = TheNeutralElement(X→G,F)
using Group_ZF_2_1_L5 by simp

ultimately have
∀ s∈(X→G). GroupInv(G,f) O s = GroupInv(X→G,F)(s)
by (rule group0.group0_2_L9A)

thus thesis by simp
qed

What is the group inverse in a subgroup of the lifted group?

lemma (in group0) Group_ZF_2_1_L6A:
assumes A1: F = f {lifted to function space over} X
and A2: IsAsubgroup(H,F)
and A3: g = restrict(F,H×H)
and A4: s∈H
shows GroupInv(H,g)(s) = GroupInv(G,f) O s

proof -
from A1 have T1: group0(X→G,F)

using group0_def Group_ZF_2_1_T2
by simp

with A2 A3 A4 have GroupInv(H,g)(s) = GroupInv(X→G,F)(s)
using group0.group0_3_T1 restrict by simp

moreover from T1 A1 A2 A4 have
GroupInv(X→G,F)(s) = GroupInv(G,f) O s
using group0.group0_3_L2 Group_ZF_2_1_L6 by blast

ultimately show thesis by simp
qed

If a group is abelian, then its lift to a function space is also abelian.

lemma (in group0) Group_ZF_2_1_L7:
assumes A1: F = f {lifted to function space over} X
and A2: f {is commutative on} G
shows F {is commutative on} (X→G)

proof-
from A1 A2 have
F {is commutative on} (X→range(f))
using group_oper_assocA func_ZF_2_L2
by simp

moreover from groupAssum have range(f) = G
using group0_2_L1 monoid0.group0_1_L3B
by simp

ultimately show thesis by simp
qed

15.2 Equivalence relations on groups

The goal of this section is to establish that (under some conditions) given
an equivalence relation on a group or (monoid )we can project the group
(monoid) structure on the quotient and obtain another group.
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The neutral element class is neutral in the projection.

lemma (in monoid0) Group_ZF_2_2_L1:
assumes A1: equiv(G,r) and A2:Congruent2(r,f)
and A3: F = ProjFun2(G,r,f)
and A4: e = TheNeutralElement(G,f)
shows r{e} ∈ G//r ∧
(∀ c ∈ G//r. F<r{e},c> = c ∧ F<c,r{e}> = c)

proof
from A4 show T1:r{e} ∈ G//r

using group0_1_L3 quotientI
by simp

show
∀ c ∈ G//r. F<r{e},c> = c ∧ F<c,r{e}> = c

proof
fix c assume A5:c ∈ G//r
then obtain g where D1:g∈G c = r{g}

using quotient_def by auto
with A1 A2 A3 A4 D1 show
F<r{e},c> = c ∧ F<c,r{e}> = c
using group0_1_L3 EquivClass_1_L10 group0_1_L3
by simp

qed
qed

The projected structure is a monoid.

theorem (in monoid0) Group_ZF_2_2_T1:
assumes A1: equiv(G,r) and A2: Congruent2(r,f)
and A3: F = ProjFun2(G,r,f)
shows IsAmonoid(G//r,F)

proof -
let E = r{TheNeutralElement(G,f)}
from A1 A2 A3 have
E ∈ G//r ∧ (∀ c∈G//r. F<E,c> = c ∧ F<c,E> = c)
using Group_ZF_2_2_L1 by simp

hence
∃ E∈G//r. ∀ c∈G//r. F<E,c> = c ∧ F<c,E> = c
by auto

with monoidAsssum A1 A2 A3 show thesis
using IsAmonoid_def EquivClass_2_T2
by simp

qed

The class of the neutral element is the neutral element of the projected
monoid.

lemma Group_ZF_2_2_L1:
assumes A1: IsAmonoid(G,f)
and A2: equiv(G,r) and A3: Congruent2(r,f)
and A4: F = ProjFun2(G,r,f)
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and A5: e = TheNeutralElement(G,f)
shows r{e} = TheNeutralElement(G//r,F)

proof -
from A1 A2 A3 A4 have
T1:monoid0(G,f) and T2:monoid0(G//r,F)
using monoid0_def monoid0.Group_ZF_2_2_T1 by auto

from T1 A2 A3 A4 A5 have r{e} ∈ G//r ∧
(∀ c ∈ G//r. F<r{e},c> = c ∧ F<c,r{e}> = c)
using monoid0.Group_ZF_2_2_L1 by simp

with T2 show thesis using monoid0.group0_1_L4
by auto

qed

The projected operation can be defined in terms of the group operation on
representants in a natural way.

lemma (in group0) Group_ZF_2_2_L2:
assumes A1: equiv(G,r) and A2: Congruent2(r,f)
and A3: F = ProjFun2(G,r,f)
and A4: a∈G b∈G
shows F<r{a},r{b}> = r{a·b}

proof -
from A1 A2 A3 A4 show thesis

using EquivClass_1_L10 by simp
qed

The class of the inverse is a right inverse of the class.

lemma (in group0) Group_ZF_2_2_L3:
assumes A1: equiv(G,r) and A2: Congruent2(r,f)
and A3: F = ProjFun2(G,r,f)
and A4: a∈G
shows F〈r{a},r{a−1}〉 = TheNeutralElement(G//r,F)

proof -
from A1 A2 A3 A4 have
F〈r{a},r{a−1}〉 = r{1}
using inverse_in_group Group_ZF_2_2_L2 group0_2_L6
by simp

with groupAssum A1 A2 A3 show thesis
using IsAgroup_def Group_ZF_2_2_L1 by simp

qed

The group structure can be projected to the quotient space.

theorem (in group0) Group_ZF_3_T2:
assumes A1: equiv(G,r) and A2: Congruent2(r,f)
shows IsAgroup(G//r,ProjFun2(G,r,f))

proof -
let F = ProjFun2(G,r,f)
let E = TheNeutralElement(G//r,F)
from groupAssum A1 A2 have IsAmonoid(G//r,F)

using IsAgroup_def monoid0_def monoid0.Group_ZF_2_2_T1
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by simp
moreover have
∀ c∈G//r. ∃ b∈G//r. F<c,b> = E

proof
fix c assume A3: c ∈ G//r
then obtain g where D1: g∈G c = r{g}

using quotient_def by auto
let b = r{g−1}
from D1 have b ∈ G//r

using inverse_in_group quotientI
by simp

moreover from A1 A2 D1 have
F<c,b> = E
using Group_ZF_2_2_L3 by simp

ultimately show ∃ b∈G//r. F<c,b> = E
by auto

qed
ultimately show thesis

using IsAgroup_def by simp
qed

The group inverse (in the projected group) of a class is the class of the
inverse.

lemma (in group0) Group_ZF_2_2_L4:
assumes A1: equiv(G,r) and
A2: Congruent2(r,f) and
A3: F = ProjFun2(G,r,f) and
A4: a∈G
shows r{a−1} = GroupInv(G//r,F)(r{a})

proof -
from A1 A2 A3 have group0(G//r,F)

using Group_ZF_3_T2 group0_def by simp
moreover from A4 have
r{a} ∈ G//r r{a−1} ∈ G//r
using inverse_in_group quotientI by auto

moreover from A1 A2 A3 A4 have
F〈r{a},r{a−1}〉 = TheNeutralElement(G//r,F)

using Group_ZF_2_2_L3 by simp
ultimately show thesis

by (rule group0.group0_2_L9)
qed

15.3 Normal subgroups and quotient groups

A normal subgrup N of a group G is such that aba−1 belongs to N if a ∈
G, b ∈ N . Having a group and a normal subgroup N we can create another
group consisting of eqivalence classes of the relation a ∼ b ≡ a · b−1 ∈ N .
We will refer to this relation as the quotient group relation.
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constdefs
IsAnormalSubgroup(G,f,N) ≡ IsAsubgroup(N,f) ∧
(∀ n∈N.∀ g∈G. f< f< g,n >,GroupInv(G,f)(g) > ∈ N)

QuotientGroupRel(G,f,H) ≡
{<a,b> ∈ G×G. f<a, GroupInv(G,f)(b)> ∈ H}

QuotientGroupOp(G,f,H) ≡ ProjFun2(G,QuotientGroupRel(G,f,H ),f)

Definition of a normal subgroup in a more readable notation.

lemma (in group0) Group_ZF_2_4_L0:
assumes IsAnormalSubgroup(G,f,H)
and g∈G n∈H
shows g·n·g−1 ∈ H
using prems IsAnormalSubgroup_def by simp

The quotient group relation is reflexive.

lemma (in group0) Group_ZF_2_4_L1:
assumes IsAsubgroup(H,f)
shows refl(G,QuotientGroupRel(G,f,H))
using prems group0_2_L6 group0_3_L5
QuotientGroupRel_def refl_def by simp

The quotient group relation is symmetric.

lemma (in group0) Group_ZF_2_4_L2:
assumes A1:IsAsubgroup(H,f)
shows sym(QuotientGroupRel(G,f,H))

proof -
{

fix a b assume A2: <a,b> ∈ QuotientGroupRel(G,f,H)
with A1 have (a·b−1)−1 ∈ H

using QuotientGroupRel_def group0_3_T3A
by simp

moreover from A2 have (a·b−1)−1 = b·a−1

using QuotientGroupRel_def group0_2_L12
by simp

ultimately have b·a−1 ∈ H by simp
with A2 have <b,a> ∈ QuotientGroupRel(G,f,H)

using QuotientGroupRel_def by simp
}
then show thesis using symI by simp

qed

The quotient group relation is transistive.

lemma (in group0) Group_ZF_2_4_L3A:
assumes A1: IsAsubgroup(H,f) and
A2: <a,b> ∈ QuotientGroupRel(G,f,H) and
A3: <b,c> ∈ QuotientGroupRel(G,f,H)
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shows <a,c> ∈ QuotientGroupRel(G,f,H)
proof -

let r = QuotientGroupRel(G,f,H)
from A2 A3 have T1:a∈G b∈G c∈G

using QuotientGroupRel_def by auto
from A1 A2 A3 have (a·b−1)·(b·c−1) ∈ H

using QuotientGroupRel_def group0_3_L6
by simp

moreover from T1 have
a·c−1 = (a·b−1)·(b·c−1)
using group0_2_L14A by blast

ultimately have a·c−1 ∈ H
by simp

with T1 show thesis using QuotientGroupRel_def
by simp

qed

The quotient group relation is an equivalence relation. Note we do not need
the subgroup to be normal for this to be true.

lemma (in group0) Group_ZF_2_4_L3: assumes A1:IsAsubgroup(H,f)
shows equiv(G,QuotientGroupRel(G,f,H))

proof -
let r = QuotientGroupRel(G,f,H)
from A1 have
∀ a b c. (〈a, b〉 ∈ r ∧ 〈b, c〉 ∈ r −→ 〈a, c〉 ∈ r)

using Group_ZF_2_4_L3A by blast
then have trans(r)

using Fol1_L2 by blast
with A1 show thesis

using Group_ZF_2_4_L1 Group_ZF_2_4_L2
QuotientGroupRel_def equiv_def

by auto
qed

The next lemma states the essential condition for congruency of the group
operation with respect to the quotient group relation.

lemma (in group0) Group_ZF_2_4_L4:
assumes A1:IsAnormalSubgroup(G,f,H)
and A2:〈a1,a2〉 ∈ QuotientGroupRel(G,f,H)
and A3:〈b1,b2〉 ∈ QuotientGroupRel(G,f,H)
shows 〈a1·b1, a2·b2〉 ∈ QuotientGroupRel(G,f,H)

proof -
from A2 A3 have T1:
a1∈G a2∈G b1∈G b2∈G
a1·b1 ∈ G a2·b2 ∈ G
b1·b2−1 ∈ H a1·a2−1 ∈ H
using QuotientGroupRel_def group0_2_L1 monoid0.group0_1_L1
by auto

with A1 show thesis using
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IsAnormalSubgroup_def group0_3_L6 group0_2_L15
QuotientGroupRel_def by simp

qed

If the subgroup is normal, the group operation is congruent with respect to
the quotient group relation.

lemma Group_ZF_2_4_L5A:
assumes IsAgroup(G,f)
and IsAnormalSubgroup(G,f,H)
shows Congruent2(QuotientGroupRel(G,f,H),f)
using prems group0_def group0.Group_ZF_2_4_L4 Congruent2_def
by simp

The quotient group is indeed a group.

theorem Group_ZF_2_4_T1:
assumes IsAgroup(G,f) and IsAnormalSubgroup(G,f,H)
shows
IsAgroup(G//QuotientGroupRel(G,f,H),QuotientGroupOp(G,f,H))
using prems group0_def group0.Group_ZF_2_4_L3 IsAnormalSubgroup_def
Group_ZF_2_4_L5A group0.Group_ZF_3_T2 QuotientGroupOp_def

by simp

The class (coset)of the neutral element is the neutral element of the quotient
group.

lemma Group_ZF_2_4_L5B:
assumes IsAgroup(G,f) and IsAnormalSubgroup(G,f,H)
and r = QuotientGroupRel(G,f,H)
and e = TheNeutralElement(G,f)
shows r{e} = TheNeutralElement(G//r,QuotientGroupOp(G,f,H))
using prems IsAnormalSubgroup_def group0_def
IsAgroup_def group0.Group_ZF_2_4_L3 Group_ZF_2_4_L5A
QuotientGroupOp_def Group_ZF_2_2_L1

by simp

A group element is equivalent to the neutral element iff it is in the subgroup
we divide the group by.

lemma (in group0) Group_ZF_2_4_L5C: assumes a∈G
shows 〈a,1〉 ∈ QuotientGroupRel(G,f,H) ←→ a∈H
using prems QuotientGroupRel_def group_inv_of_one group0_2_L2
by auto

A group element is in H iff its class is the neutral element of G/H.

lemma (in group0) Group_ZF_2_4_L5D:
assumes A1: IsAnormalSubgroup(G,f,H) and
A2: a∈G and
A3: r = QuotientGroupRel(G,f,H) and
A4: TheNeutralElement(G//r,QuotientGroupOp(G,f,H)) = e
shows r{a} = e ←→ 〈a,1〉 ∈ r
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proof
assume r{a} = e
with groupAssum prems have
r{1} = r{a} and I: equiv(G,r)
using Group_ZF_2_4_L5B IsAnormalSubgroup_def Group_ZF_2_4_L3
by auto

with A2 have 〈1,a〉 ∈ r using eq_equiv_class
by simp

with I show 〈a,1〉 ∈ r by (rule equiv_is_sym)
next assume 〈a,1〉 ∈ r

moreover from A1 A3 have equiv(G,r)
using IsAnormalSubgroup_def Group_ZF_2_4_L3
by simp

ultimately have r{a} = r{1}
using equiv_class_eq by simp

with groupAssum A1 A3 A4 show r{a} = e
using Group_ZF_2_4_L5B by simp

qed

The class of a ∈ G is the neutral element of the quotient G/H iff a ∈ H.

lemma (in group0) Group_ZF_2_4_L5E:
assumes IsAnormalSubgroup(G,f,H) and
a∈G and r = QuotientGroupRel(G,f,H) and
TheNeutralElement(G//r,QuotientGroupOp(G,f,H)) = e
shows r{a} = e ←→ a∈H
using prems Group_ZF_2_4_L5C Group_ZF_2_4_L5D
by simp

Essential condition to show that every subgroup of an abelian group is nor-
mal.

lemma (in group0) Group_ZF_2_4_L5:
assumes A1:f {is commutative on} G
and A2:IsAsubgroup(H,f)
and A3:g∈G h∈H
shows g·h·g−1 ∈ H

proof -
from A2 A3 have T1:h∈G g−1 ∈ G

using group0_3_L2 inverse_in_group by auto
with A3 A1 have g·h·g−1 = g−1·g·h

using group0_4_L4A by simp
with A3 T1 show thesis using
group0_2_L6 group0_2_L2
by simp

qed

Every subgroup of an abelian group is normal. Moreover, the quotient group
is also abelian.

lemma Group_ZF_2_4_L6:
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assumes A1: IsAgroup(G,f)
and A2: f {is commutative on} G
and A3: IsAsubgroup(H,f)
shows IsAnormalSubgroup(G,f,H)
QuotientGroupOp(G,f,H) {is commutative on} (G//QuotientGroupRel(G,f,H))

proof -
from A1 A2 A3 show T1: IsAnormalSubgroup(G,f,H) using
group0_def IsAnormalSubgroup_def group0.Group_ZF_2_4_L5
by simp

let r = QuotientGroupRel(G,f,H)
from A1 A3 T1 have equiv(G,r) Congruent2(r,f)

using group0_def group0.Group_ZF_2_4_L3 Group_ZF_2_4_L5A
by auto

with A2 show
QuotientGroupOp(G,f,H) {is commutative on} (G//QuotientGroupRel(G,f,H))
using EquivClass_2_T1 QuotientGroupOp_def
by simp

qed

The group inverse (in the quotient group) of a class (coset) is the class of
the inverse.

lemma (in group0) Group_ZF_2_4_L7:
assumes IsAnormalSubgroup(G,f,H)
and a∈G and r = QuotientGroupRel(G,f,H)
and F = QuotientGroupOp(G,f,H)
shows r{a−1} = GroupInv(G//r,F)(r{a})
using groupAssum prems IsAnormalSubgroup_def Group_ZF_2_4_L3
Group_ZF_2_4_L5A QuotientGroupOp_def Group_ZF_2_2_L4

by simp

15.4 Function spaces as monoids

On every space of functions {f : X → X} we can define a natural monoid
structure with composition as the operation. This section explores this fact.

The next lemma states that composition has a neutral element, namely the
identity function on X (the one that maps x ∈ X into itself).

lemma Group_ZF_2_5_L1: assumes A1: F = Composition(X)
shows ∃ I∈(X→X). ∀ f∈(X→X). F<I,f> = f ∧ F<f,I> = f

proof-
let I = id(X)
from A1 have
I ∈ X→X ∧ (∀ f∈(X→X). F<I,f> = f ∧ F<f,I> = f)
using id_type func_ZF_6_L1A by simp

thus thesis by auto
qed

The space of functions that map a set X into itsef is a monoid with compo-
sition as operation and the identity function as the neutral element.
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lemma Group_ZF_2_5_L2: shows
IsAmonoid(X→X,Composition(X))
id(X) = TheNeutralElement(X→X,Composition(X))

proof -
let I = id(X)
let F = Composition(X)
show IsAmonoid(X→X,Composition(X))

using func_ZF_5_L5 Group_ZF_2_5_L1 IsAmonoid_def
by auto

then have monoid0(X→X,F)
using monoid0_def by simp

moreover have
I ∈ X→X ∧ (∀ f∈(X→X). F<I,f> = f ∧ F<f,I> = f)
using id_type func_ZF_6_L1A by simp

ultimately show I = TheNeutralElement(X→X,F)
using monoid0.group0_1_L4 by auto

qed

This concludes Group_ZF_2 theory.

end
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16 Group ZF 3.thy

theory Group_ZF_3 imports Group_ZF_2 Finite1

begin

In this theory we consider notions in group theory that are useful for the
construction of real numbers in the Real_ZF_x series of theories.

16.1 Group valued finite range functions

In this section show that the group valued functions f : X → G, with the
property that f(X) is a finite subset of G, is a group. Such functions play
an important role in the construction of real numbers in the Real ZF x.thy
series.

The following proves the essential condition to show that the set of finite
range functions is closed with respect to the lifted group operation.

lemma (in group0) Group_ZF_3_1_L1:
assumes A1: F = f {lifted to function space over} X
and
A2:s ∈ FinRangeFunctions(X,G) r ∈ FinRangeFunctions(X,G)
shows F<s,r> ∈ FinRangeFunctions(X,G)

proof -
let q = F<s,r>
from A2 have T1:s:X→G r:X→G

using FinRangeFunctions_def by auto
with A1 have T2:q : X→G

using group0_2_L1 monoid0.Group_ZF_2_1_L0
by simp

moreover have q(X) ∈ Fin(G)
proof -

from A2 have
{s(x). x∈X} ∈ Fin(G)
{r(x). x∈X} ∈ Fin(G)
using Finite1_L18 by auto

with A1 T1 T2 show thesis using
group_oper_assocA Finite1_L15 Group_ZF_2_1_L3 func_imagedef
by simp

qed
ultimately show thesis using FinRangeFunctions_def

by simp
qed

The set of group valued finite range functions is closed with respect to the
lifted group operation.

lemma (in group0) Group_ZF_3_1_L2:
assumes A1: F = f {lifted to function space over} X
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shows FinRangeFunctions(X,G) {is closed under} F
proof -

let A = FinRangeFunctions(X,G)
from A1 have ∀ x∈A. ∀ y∈A. F<x,y> ∈ A

using Group_ZF_3_1_L1 by simp
then show thesis using IsOpClosed_def by simp

qed

A composition of a finite range function with the group inverse is a finite
range function.

lemma (in group0) Group_ZF_3_1_L3:
assumes A1: s ∈ FinRangeFunctions(X,G)
shows GroupInv(G,f) O s ∈ FinRangeFunctions(X,G)
using groupAssum prems group0_2_T2 Finite1_L20 by simp

The set of finite range functions is s subgroup of the lifted group.

theorem Group_ZF_3_1_T1:
assumes A1:IsAgroup(G,f)
and A2:F = f {lifted to function space over} X
and A3:X6=0
shows IsAsubgroup(FinRangeFunctions(X,G),F)

proof -
let e = TheNeutralElement(G,f)
let S = FinRangeFunctions(X,G)
from A1 have T1:group0(G,f) using group0_def

by simp
with A1 A2 have T2:group0(X→G,F)

using group0.Group_ZF_2_1_T2 group0_def
by simp

moreover have S 6= 0
proof -

from T1 A3 have
ConstantFunction(X,e) ∈ S
using group0.group0_2_L1 monoid0.group0_1_L3
Finite1_L17 by simp

thus thesis by auto
qed
moreover have S ⊆ X→G

using FinRangeFunctions_def by auto
moreover from A2 T1 have
S {is closed under} F
using group0.Group_ZF_3_1_L2
by simp

moreover from A1 A2 T1 have
∀ s ∈ S. GroupInv(X→G,F)(s) ∈ S
using FinRangeFunctions_def group0.Group_ZF_2_1_L6
group0.Group_ZF_3_1_L3 by simp

ultimately show thesis
using group0.group0_3_T3 by simp
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qed

16.2 Almost homomorphisms

An almost homomorphism is a group valued function defined on a monoid
M with the property that the set {f(m + n)− f(m)− f(n)}m,n∈M is finite.
This term is used by R. D. Arthan in ”The Eudoxus Real Numbers”. We
use this term in the general group context and use the A‘Campo’s term
”slopes” (see his ”A natural construction for the real numbers”) to mean
an almost homomorphism mapping interegers into themselves. We consider
almost homomorphisms because we use slopes to define real numbers in the
Real_ZF_x series.

HomDiff is an acronym for ”homomorphism difference”. This is the expres-
sion s(mn)(s(m)s(n))−1, or s(m+n)−s(m)−s(n) in the additive notation.
It is equal to the neutral element of the group if s is a homomorphism. Al-
most homomorphisms are defined as those maps s : G → G such that the
homomorphism difference takes only finite number of values on G×G. Al-
though almost homomorphisms can be in principle defined on a monoid with
values in a group, we limit ourselves to the situation where the monoid and
the group are the same. The set of slopes related to a specific group is called
AlmostHoms(G, f). AlHomOp1(G, f) is the group operation on almost ho-
momorphisms defined in a natural way by (s · r)(n) = s(n) · r(n). In the
terminology defined in func1.thy this is the group operation f (on G) lifted
to the function space G → G and restricted to the set AlmostHoms(G, f).
We also define a composition (binary) operator on almost homomorphisms
in a natural way. We call that operator AlHomOp2 - the second operation
on almost homomorphisms. Composition of almost homomorphisms is used
to define multiplication of real numbers in Real ZF x.thy series.

constdefs
HomDiff(G,f,s,x) ≡
f〈s(f<fst(x),snd(x)>) ,
(GroupInv(G,f)(f<s(fst(x)),s(snd(x))>))〉

AlmostHoms(G,f) ≡
{s ∈ G→G.{HomDiff(G,f,s,x). x ∈ G×G } ∈ Fin(G)}

AlHomOp1(G,f) ≡
restrict(f {lifted to function space over} G,
AlmostHoms(G,f)×AlmostHoms(G,f))

AlHomOp2(G,f) ≡
restrict(Composition(G),AlmostHoms(G,f)×AlmostHoms(G,f))

This lemma provides more readable notation for the HomDiff definition.
Not really intended to be used in proofs, but just to see the definition in the
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notation defined in the group0 locale.

lemma (in group0) Group_ZF_3_2_L1:
shows HomDiff(G,f,s,<m,n>) = s(m·n)·(s(m)·s(n))−1

using HomDiff_def by simp

The next lemma shows the set from the definition of almost homomorphism
in a different form.

lemma (in group0) Group_ZF_3_2_L1A:
{HomDiff(G,f,s,x). x ∈ G×G } = {s(m·n)·(s(m)·s(n))−1. <m,n> ∈ G×G}

proof -
have ∀ m∈G.∀ n∈G. HomDiff(G,f,s,<m,n>) = s(m·n)·(s(m)·s(n))−1

using Group_ZF_3_2_L1 by simp
then show thesis by (rule ZF1_1_L4A)

qed

Let’s define some notation. We inherit the notation and assumptions from
the group0 context (locale) and add some. We will use AH to denote the
set of almost homomorphisms. ∼ is the inverse (negative if the group is
the group of integers) of almost homomorphisms, (∼ p)(n) = p(n)−1. δ will
denote the homomorphism difference specific for the group (HomDiff(G, f)).
The notation s ≈ r will mean that s, r are almost equal, that is they are in
the equivalence relation defined by the group of finite range functions (that
is a normal subgroup of almost homomorphisms, if the group is abelian).
We show that this is equivalent to the set {s(n) · r(n)−1 : n ∈ G} being
finite. We also add an assumption that the G is abelian as many needed
properties do not hold without that.

locale group1 = group0 +
assumes isAbelian: f {is commutative on} G

fixes AH
defines AH_def [simp]: AH ≡ AlmostHoms(G,f)

fixes Op1
defines Op1_def [simp]: Op1 ≡ AlHomOp1(G,f)

fixes Op2
defines Op2_def [simp]: Op2 ≡ AlHomOp2(G,f)

fixes FR
defines FR_def [simp]: FR ≡ FinRangeFunctions(G,G)

fixes neg :: i⇒i (∼_ [90] 91)
defines neg_def [simp]: ∼s ≡ GroupInv(G,f) O s

fixes δ
defines δ_def [simp]: δ(s,x) ≡ HomDiff(G,f,s,x)
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fixes AHprod (infix · 69)
defines AHprod_def [simp]: s · r ≡ AlHomOp1(G,f)<s,r>

fixes AHcomp (infix ◦ 70)
defines AHcomp_def [simp]: s ◦ r ≡ AlHomOp2(G,f)<s,r>

fixes AlEq (infix ≈ 68)
defines AlEq_def [simp]:
s ≈ r ≡ <s,r> ∈ QuotientGroupRel(AH,Op1,FR)

HomDiff is a homomorphism on the lifted group structure.

lemma (in group1) Group_ZF_3_2_L1:
assumes A1: s:G→G r:G→G
and A2: x ∈ G×G
and A3: F = f {lifted to function space over} G
shows δ(F<s,r>,x) = δ(s,x)·δ(r,x)

proof -
let p = F<s,r>
from A2 obtain m n where
D1: x = <m,n> m∈G n∈G
by auto

then have T1:m·n ∈ G
using group0_2_L1 monoid0.group0_1_L1 by simp

with A1 D1 have T2:
s(m)∈G s(n)∈G r(m)∈G
r(n)∈G s(m·n)∈G r(m·n)∈G
using apply_funtype by auto

from A3 A1 have T3:p : G→G
using group0_2_L1 monoid0.Group_ZF_2_1_L0
by simp

from D1 T3 have
δ(p,x) = p(m·n)·((p(n))−1·(p(m))−1)
using Group_ZF_3_2_L1 apply_funtype group_inv_of_two
by simp

also from A3 A1 D1 T1 isAbelian T2 have
. . . = δ(s,x)· δ(r,x)
using Group_ZF_2_1_L3 group0_4_L3 Group_ZF_3_2_L1
by simp

finally show thesis by simp
qed

The group operation lifted to the function space over G preserves almost
homomorphisms.

lemma (in group1) Group_ZF_3_2_L2: assumes A1: s ∈ AH r ∈ AH
and A2: F = f {lifted to function space over} G
shows F<s,r> ∈ AH

proof -
let p = F<s,r>
from A1 A2 have p : G→G
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using AlmostHoms_def group0_2_L1 monoid0.Group_ZF_2_1_L0
by simp

moreover have
{δ(p,x). x ∈ G×G} ∈ Fin(G)

proof -
from A1 have
{δ(s,x). x ∈ G×G } ∈ Fin(G)
{δ(r,x). x ∈ G×G } ∈ Fin(G)
using AlmostHoms_def by auto

with groupAssum A1 A2 show thesis
using IsAgroup_def IsAmonoid_def IsAssociative_def
Finite1_L15 AlmostHoms_def Group_ZF_3_2_L1
by auto

qed
ultimately show thesis using AlmostHoms_def

by simp
qed

The set of almost homomorphisms is closed under the lifted group operation.

lemma (in group1) Group_ZF_3_2_L3:
assumes F = f {lifted to function space over} G
shows AH {is closed under} F
using prems IsOpClosed_def Group_ZF_3_2_L2 by simp

The terms in the homomorphism difference for a function are in the group.

lemma (in group1) Group_ZF_3_2_L4:
assumes s:G→G and m∈G n∈G
shows
m·n ∈ G
s(m·n) ∈ G
s(m) ∈ G s(n) ∈ G
δ(s,<m,n>) ∈ G
s(m)·s(n) ∈ G
using prems group_op_closed inverse_in_group
apply_funtype HomDiff_def by auto

It is handy to have a version of Group_ZF_3_2_L4 specifically for almost ho-
momorphisms.

corollary (in group1) Group_ZF_3_2_L4A:
assumes s ∈ AH and m∈G n∈G
shows m·n ∈ G
s(m·n) ∈ G
s(m) ∈ G s(n) ∈ G
δ(s,<m,n>) ∈ G
s(m)·s(n) ∈ G
using prems AlmostHoms_def Group_ZF_3_2_L4
by auto

The terms in the homomorphism difference are in the group, a different
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form.

lemma (in group1) Group_ZF_3_2_L4B:
assumes A1:s ∈ AH and A2:x∈G×G
shows fst(x)·snd(x) ∈ G
s(fst(x)·snd(x)) ∈ G
s(fst(x)) ∈ G s(snd(x)) ∈ G
δ(s,x) ∈ G
s(fst(x))·s(snd(x)) ∈ G

proof -
let m = fst(x)
let n = snd(x)
from A1 A2 show
m·n ∈ G s(m·n) ∈ G
s(m) ∈ G s(n) ∈ G
s(m)·s(n) ∈ G
using Group_ZF_3_2_L4A
by auto

from A1 A2 have δ(s,<m,n>) ∈ G using Group_ZF_3_2_L4A
by simp

moreover from A2 have <m,n> = x by auto
ultimately show δ(s,x) ∈ G by simp

qed

What are the values of the inverse of an almost homomorphism?

lemma (in group1) Group_ZF_3_2_L5:
assumes s ∈ AH and n∈G
shows (∼s)(n) = (s(n))−1

using prems AlmostHoms_def comp_fun_apply by auto

Homomorphism difference commutes with the inverse for almost homomor-
phisms.

lemma (in group1) Group_ZF_3_2_L6:
assumes A1:s ∈ AH and A2:x∈G×G
shows δ(∼s,x) = (δ(s,x))−1

proof -
let m = fst(x)
let n = snd(x)
have δ(∼s,x) = (∼s)(m·n)·((∼s)(m)·(∼s)(n))−1

using HomDiff_def by simp
from A1 A2 isAbelian show thesis

using Group_ZF_3_2_L4B HomDiff_def
Group_ZF_3_2_L5 group0_4_L4A

by simp
qed

The inverse of an almost homomorphism maps the group into itself.

lemma (in group1) Group_ZF_3_2_L7:
assumes s ∈ AH
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shows ∼s : G→G
using groupAssum prems AlmostHoms_def group0_2_T2 comp_fun by auto

The inverse of an almost homomorphism is an almost homomorphism.

lemma (in group1) Group_ZF_3_2_L8:
assumes A1: F = f {lifted to function space over} G
and A2: s ∈ AH
shows GroupInv(G→G,F)(s) ∈ AH

proof -
from A2 have {δ(s,x). x ∈ G×G} ∈ Fin(G)

using AlmostHoms_def by simp
with groupAssum have
GroupInv(G,f){δ(s,x). x ∈ G×G} ∈ Fin(G)
using group0_2_T2 Finite1_L6A by blast

moreover have
GroupInv(G,f){δ(s,x). x ∈ G×G} =

{(δ(s,x))−1. x ∈ G×G}
proof -

from groupAssum have
GroupInv(G,f) : G→G
using group0_2_T2 by simp

moreover from A2 have
∀ x∈G×G. δ(s,x)∈G
using Group_ZF_3_2_L4B by simp

ultimately show thesis
using func1_1_L17 by simp

qed
ultimately have {(δ(s,x))−1. x ∈ G×G} ∈ Fin(G)

by simp
moreover from A2 have
{(δ(s,x))−1. x ∈ G×G} = {δ(∼s,x). x ∈ G×G}
using Group_ZF_3_2_L6 by simp

ultimately have {δ(∼s,x). x ∈ G×G} ∈ Fin(G)
by simp

with A2 groupAssum A1 show thesis
using Group_ZF_3_2_L7 AlmostHoms_def Group_ZF_2_1_L6
by simp

qed

The function that assigns the neutral element everywhere is an almost ho-
momorphism.

lemma (in group1) Group_ZF_3_2_L9:
ConstantFunction(G,1) ∈ AH
AH6=0

proof -
let z = ConstantFunction(G,1)
have G×G6=0 using group0_2_L1 monoid0.group0_1_L3A

by blast
moreover have ∀ x∈G×G. δ(z,x) = 1
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proof
fix x assume A1:x ∈ G × G
then obtain m n where x = <m,n> m∈G n∈G

by auto
then show δ(z,x) = 1

using group0_2_L1 monoid0.group0_1_L1
func1_3_L2 HomDiff_def group0_2_L2
group_inv_of_one by simp

qed
ultimately have {δ(z,x). x∈G×G} = {1} by (rule ZF1_1_L5)
then show z ∈ AH using group0_2_L2 Finite1_L16
func1_3_L1 group0_2_L2 AlmostHoms_def by simp

then show AH6=0 by auto
qed

If the group is abelian, then almost homomorphisms form a subgroup of the
lifted group.

lemma Group_ZF_3_2_L10:
assumes A1: IsAgroup(G,f)
and A2: f {is commutative on} G
and A3: F = f {lifted to function space over} G
shows IsAsubgroup(AlmostHoms(G,f),F)

proof -
let AH = AlmostHoms(G,f)
from A2 A1 have T1:group1(G,f)

using group1_axioms.intro group0_def group1_def
by simp

from A1 A3 have group0(G→G,F)
using group0_def group0.Group_ZF_2_1_T2 by simp

moreover from T1 have AH6=0
using group1.Group_ZF_3_2_L9 by simp

moreover have T2:AH ⊆ G→G
using AlmostHoms_def by auto

moreover from T1 A3 have
AH {is closed under} F
using group1.Group_ZF_3_2_L3 by simp

moreover from T1 A3 have
∀ s∈AH. GroupInv(G→G,F)(s) ∈ AH
using group1.Group_ZF_3_2_L8 by simp

ultimately show IsAsubgroup(AlmostHoms(G,f),F)
using group0.group0_3_T3 by simp

qed

If the group is abelian, then almost homomorphisms form a group with the
first operation, hence we can use theorems proven in group0 context aplied
to this group.

lemma (in group1) Group_ZF_3_2_L10A:
shows IsAgroup(AH,Op1) group0(AH,Op1)

using groupAssum isAbelian Group_ZF_3_2_L10 IsAsubgroup_def
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AlHomOp1_def group0_def by auto

The group of almost homomorphisms is abelian

lemma Group_ZF_3_2_L11: assumes A1: IsAgroup(G,f)
and A2: f {is commutative on} G
shows
IsAgroup(AlmostHoms(G,f),AlHomOp1(G,f))
AlHomOp1(G,f) {is commutative on} AlmostHoms(G,f)

proof-
let AH = AlmostHoms(G,f)
let F = f {lifted to function space over} G
from A1 A2 have IsAsubgroup(AH,F)

using Group_ZF_3_2_L10 by simp
then show IsAgroup(AH,AlHomOp1(G,f))

using IsAsubgroup_def AlHomOp1_def by simp
from A1 have F : (G→G)×(G→G)→(G→G)

using IsAgroup_def monoid0_def monoid0.Group_ZF_2_1_L0A
by simp

moreover have AH ⊆ G→G
using AlmostHoms_def by auto

moreover from A1 A2 have
F {is commutative on} (G→G)
using group0_def group0.Group_ZF_2_1_L7
by simp

ultimately show
AlHomOp1(G,f){is commutative on} AH
using func_ZF_4_L1 AlHomOp1_def by simp

qed

The first operation on homomorphisms acts in a natural way on its operands.

lemma (in group1) Group_ZF_3_2_L12:
assumes s∈AH r∈AH and n∈G
shows (s·r)(n) = s(n)·r(n)
using prems AlHomOp1_def restrict AlmostHoms_def Group_ZF_2_1_L3
by simp

What is the group inverse in the group of almost homomorphisms?

lemma (in group1) Group_ZF_3_2_L13:
assumes A1: s∈AH
shows
GroupInv(AH,Op1)(s) = GroupInv(G,f) O s
GroupInv(AH,Op1)(s) ∈ AH
GroupInv(G,f) O s ∈ AH

proof -
let F = f {lifted to function space over} G
from groupAssum isAbelian have IsAsubgroup(AH,F)

using Group_ZF_3_2_L10 by simp
with A1 show I: GroupInv(AH,Op1)(s) = GroupInv(G,f) O s

using AlHomOp1_def Group_ZF_2_1_L6A by simp
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from A1 show GroupInv(AH,Op1)(s) ∈ AH
using Group_ZF_3_2_L10A group0.inverse_in_group by simp

with I show GroupInv(G,f) O s ∈ AH by simp
qed

The group inverse in the group of almost homomorphisms acts in a natural
way on its operand.

lemma (in group1) Group_ZF_3_2_L14:
assumes s∈AH and n∈G
shows (GroupInv(AH,Op1)(s))(n) = (s(n))−1

using isAbelian prems Group_ZF_3_2_L13 AlmostHoms_def comp_fun_apply
by auto

The next lemma states that if s, r are almost homomorphisms, then s · r−1

is also an almost homomorphism.

lemma Group_ZF_3_2_L15: assumes IsAgroup(G,f)
and f {is commutative on} G
and AH = AlmostHoms(G,f) Op1 = AlHomOp1(G,f)
and s ∈ AH r ∈ AH
shows
Op1<s,r> ∈ AH
GroupInv(AH,Op1)(r) ∈ AH
Op1<s,GroupInv(AH,Op1)(r)> ∈ AH
using prems group0_def group1_axioms.intro group1_def

group1.Group_ZF_3_2_L10A group0.group0_2_L1
monoid0.group0_1_L1 group0.inverse_in_group by auto

A version of Group_ZF_3_2_L15 formulated in notation used in group1 con-
text. States that the product of almost homomorphisms is an almost homo-
morphism and the the product of an almost homomorphism with a (point-
wise) inverse of an almost homomorphism is an almost homomorphism.

corollary (in group1) Group_ZF_3_2_L16: assumes s ∈ AH r ∈ AH
shows s·r ∈ AH s·(∼r) ∈ AH
using prems isAbelian group0_def group1_axioms.intro group1_def
Group_ZF_3_2_L15 Group_ZF_3_2_L13 by auto

16.3 The classes of almost homomorphisms

In the Real ZF x series we define real numbers as a quotient of the group
of integer almost homomorphisms by the integer finite range functions. In
this section we setup the background for that in the general group context.

Finite range functions are almost homomorphisms.

lemma (in group1) Group_ZF_3_3_L1: FR ⊆ AH
proof

fix s assume A1:s ∈ FR
then have T1:{s(n). n ∈ G} ∈ Fin(G)
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{s(fst(x)). x∈G×G} ∈ Fin(G)
{s(snd(x)). x∈G×G} ∈ Fin(G)
using Finite1_L18 Finite1_L6B by auto

have {s(fst(x)·snd(x)). x ∈ G×G} ∈ Fin(G)
proof -

have ∀ x∈G×G. fst(x)·snd(x) ∈ G
using group0_2_L1 monoid0.group0_1_L1 by simp

moreover from T1 have {s(n). n ∈ G} ∈ Fin(G) by simp
ultimately show thesis by (rule Finite1_L6B)

qed
moreover have
{(s(fst(x))·s(snd(x)))−1. x∈G×G} ∈ Fin(G)

proof -
have ∀ g∈G. g−1 ∈ G using inverse_in_group

by simp
moreover from T1 have
{s(fst(x))·s(snd(x)). x∈G×G} ∈ Fin(G)
using group_oper_assocA Finite1_L15 by simp

ultimately show thesis
by (rule Finite1_L6C)

qed
ultimately have {δ(s,x). x∈G×G} ∈ Fin(G)

using HomDiff_def Finite1_L15 group_oper_assocA
by simp

with A1 show s ∈ AH
using FinRangeFunctions_def AlmostHoms_def
by simp

qed

Finite range functions valued in an abelian group form a normal subgroup
of almost homomorphisms.

lemma Group_ZF_3_3_L2: assumes A1:IsAgroup(G,f)
and A2:f {is commutative on} G
shows
IsAsubgroup(FinRangeFunctions(G,G),AlHomOp1(G,f))
IsAnormalSubgroup(AlmostHoms(G,f),AlHomOp1(G,f),
FinRangeFunctions(G,G))

proof -
let H1 = AlmostHoms(G,f)
let H2 = FinRangeFunctions(G,G)
let F = f {lifted to function space over} G
from A1 A2 have T1:group0(G,f)
monoid0(G,f) group1(G,f)
using group0_def group0.group0_2_L1
group1_axioms.intro group1_def

by auto
with A1 A2 have IsAgroup(G→G,F)
IsAsubgroup(H1,F) IsAsubgroup(H2,F)
using group0.Group_ZF_2_1_T2 Group_ZF_3_2_L10
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monoid0.group0_1_L3A Group_ZF_3_1_T1
by auto

then have
IsAsubgroup(H1∩H2,restrict(F,H1×H1))
using group0_3_L7 by simp

moreover from T1 have H1∩H2 = H2
using group1.Group_ZF_3_3_L1 by auto

ultimately show IsAsubgroup(H2,AlHomOp1(G,f))
using AlHomOp1_def by simp

with A1 A2 show IsAnormalSubgroup(AlmostHoms(G,f),AlHomOp1(G,f),
FinRangeFunctions(G,G))
using Group_ZF_3_2_L11 Group_ZF_2_4_L6
by simp

qed

The group of almost homomorphisms divided by the subgroup of finite range
functions is an abelian group.

theorem (in group1) Group_ZF_3_3_T1:
shows
IsAgroup(AH//QuotientGroupRel(AH,Op1,FR),QuotientGroupOp(AH,Op1,FR))
and
QuotientGroupOp(AH,Op1,FR) {is commutative on}
(AH//QuotientGroupRel(AH,Op1,FR))
using groupAssum isAbelian Group_ZF_3_3_L2 Group_ZF_3_2_L10A
Group_ZF_2_4_T1 Group_ZF_3_2_L10A Group_ZF_3_2_L11
Group_ZF_3_3_L2 IsAnormalSubgroup_def Group_ZF_2_4_L6 by auto

It is useful to have a direct statement that the quotient group relation is an
equivalence relation for the group of AH and subgroup FR.

lemma (in group1) Group_ZF_3_3_L3:
QuotientGroupRel(AH,Op1,FR) ⊆ AH × AH
equiv(AH,QuotientGroupRel(AH,Op1,FR))
using groupAssum isAbelian QuotientGroupRel_def
Group_ZF_3_3_L2 Group_ZF_3_2_L10A group0.Group_ZF_2_4_L3

by auto

The ”almost equal” relation is symmetric.

lemma (in group1) Group_ZF_3_3_L3A: assumes A1: s≈r
shows r≈s

proof -
let R = QuotientGroupRel(AH,Op1,FR)
from A1 have equiv(AH,R) and 〈s,r〉 ∈ R

using Group_ZF_3_3_L3 by auto
then have 〈r,s〉 ∈ R by (rule equiv_is_sym)
then show r≈s by simp

qed

Although we have bypassed this fact when proving that group of almost
homomorphisms divided by the subgroup of finite range functions is a group,
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it is still useful to know directly that the first group operation on AH is
congruent with respect to the quotient group relation.

lemma (in group1) Group_ZF_3_3_L4:
shows Congruent2(QuotientGroupRel(AH,Op1,FR),Op1)
using groupAssum isAbelian Group_ZF_3_2_L10A Group_ZF_3_3_L2
Group_ZF_2_4_L5A by simp

The class of an almost homomorphism s is the neutral element of the quo-
tient group of almost homomorphisms iff s is a finite range function.

lemma (in group1) Group_ZF_3_3_L5: assumes s ∈ AH and
r = QuotientGroupRel(AH,Op1,FR) and
TheNeutralElement(AH//r,QuotientGroupOp(AH,Op1,FR)) = e
shows r{s} = e ←→ s ∈ FR
using groupAssum isAbelian prems Group_ZF_3_2_L11
group0_def Group_ZF_3_3_L2 group0.Group_ZF_2_4_L5E

by simp

The group inverse of a class of an almost homomorphism f is the class of
the inverse of f .

lemma (in group1) Group_ZF_3_3_L6:
assumes A1: s ∈ AH and
r = QuotientGroupRel(AH,Op1,FR) and
F = ProjFun2(AH,r,Op1)
shows r{∼s} = GroupInv(AH//r,F)(r{s})

proof -
from groupAssum isAbelian prems have
r{GroupInv(AH, Op1)(s)} = GroupInv(AH//r,F)(r {s})
using Group_ZF_3_2_L10A Group_ZF_3_3_L2 QuotientGroupOp_def
group0.Group_ZF_2_4_L7 by simp

with A1 show thesis using Group_ZF_3_2_L13
by simp

qed

16.4 Compositions of almost homomorphisms

The goal of this section is to establish some facts about composition of almost
homomorphisms. needed for the real numbers construction in Real ZF x.thy
serias. In particular we show that the set of almost homomorphisms is closed
under composition and that composition is congruent with respect to the
equivalence relation defined by the group of finite range functions (a normal
subgroup of almost homomorphisms).

The next formula restates the definition of the homomorphism difference to
express the value an almost homomorphism on a product.

lemma (in group1) Group_ZF_3_4_L1:
assumes s∈AH and m∈G n∈G
shows s(m·n) = s(m)·s(n)·δ(s,<m,n>)
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using isAbelian prems Group_ZF_3_2_L4A HomDiff_def group0_4_L5
by simp

What is the value of a composition of almost homomorhisms?

lemma (in group1) Group_ZF_3_4_L2:
assumes s∈AH r∈AH and m∈G
shows (s◦r)(m) = s(r(m)) s(r(m)) ∈ G
using prems AlmostHoms_def func_ZF_5_L3 restrict AlHomOp2_def
apply_funtype by auto

What is the homomorphism difference of a composition?

lemma (in group1) Group_ZF_3_4_L3:
assumes A1: s∈AH r∈AH and A2: m∈G n∈G
shows δ(s◦r,<m,n>) =
δ(s,<r(m),r(n)>)·s(δ(r,<m,n>))·δ(s,<r(m)·r(n),δ(r,<m,n>)>)

proof -
from A1 A2 have T1:
s(r(m))· s(r(n)) ∈ G
δ(s,<r(m),r(n)>)∈ G s(δ(r,<m,n>)) ∈G
δ(s,<(r(m)·r(n)),δ(r,<m,n>)>) ∈ G
using Group_ZF_3_4_L2 AlmostHoms_def apply_funtype
Group_ZF_3_2_L4A group0_2_L1 monoid0.group0_1_L1

by auto
from A1 A2 have δ(s◦r,<m,n>) =
s(r(m)·r(n)·δ(r,<m,n>))·(s((r(m)))·s(r(n)))−1

using HomDiff_def group0_2_L1 monoid0.group0_1_L1 Group_ZF_3_4_L2
Group_ZF_3_4_L1 by simp

moreover from A1 A2 have
s(r(m)·r(n)·δ(r,<m,n>)) =
s(r(m)·r(n))·s(δ(r,<m,n>))·δ(s,<(r(m)·r(n)),δ(r,<m,n>)>)
s(r(m)·r(n)) = s(r(m))·s(r(n))·δ(s,<r(m),r(n)>)
using Group_ZF_3_2_L4A Group_ZF_3_4_L1 by auto

moreover from T1 isAbelian have
s(r(m))·s(r(n))·δ(s,<r(m),r(n)>)·
s(δ(r,<m,n>))·δ(s,<(r(m)·r(n)),δ(r,<m,n>)>)·
(s((r(m)))·s(r(n)))−1 =
δ(s,<r(m),r(n)>)·s(δ(r,<m,n>))·δ(s,<(r(m)·r(n)),δ(r,<m,n>)>)
using group0_4_L6C by simp

ultimately show thesis by simp
qed

What is the homomorphism difference of a composition (another form)?
Here we split the homomorphism difference of a composition into a product
of three factors. This will help us in proving that the range of homomorphism
difference for the composition is finite, as each factor has finite range.

lemma (in group1) Group_ZF_3_4_L4:
assumes A1: s∈AH r∈AH and A2: x ∈ G×G
and A3:
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A = δ(s,<r(fst(x)),r(snd(x))>)
B = s(δ(r,x))
C = δ(s,<(r(fst(x))·r(snd(x))),δ(r,x)>)
shows δ(s◦r,x) = A·B·C

proof -
let m = fst(x)
let n = snd(x)
from A1 have s∈AH r∈AH .
moreover from A2 have m∈G n∈G

by auto
ultimately have

δ(s◦r,<m,n>) =
δ(s,<r(m),r(n)>)·s(δ(r,<m,n>))·
δ(s,<(r(m)·r(n)),δ(r,<m,n>)>)
by (rule Group_ZF_3_4_L3)

with A1 A2 A3 show thesis
by auto

qed

The range of the homomorphism difference of a composition of two almost
homomorphisms is finite. This is the essential condition to show that a
composition of almost homomorphisms is an almost homomorphism.

lemma (in group1) Group_ZF_3_4_L5:
assumes A1: s∈AH r∈AH
shows {δ(Composition(G)<s,r>,x). x ∈ G×G} ∈ Fin(G)

proof -
from A1 have
∀ x∈G×G. <r(fst(x)),r(snd(x))> ∈ G×G
using Group_ZF_3_2_L4B by simp

moreover from A1 have
{δ(s,x). x∈G×G} ∈ Fin(G)
using AlmostHoms_def by simp

ultimately have
{δ(s,<r(fst(x)),r(snd(x))>). x∈G×G} ∈ Fin(G)
by (rule Finite1_L6B)

moreover have {s(δ(r,x)). x∈G×G} ∈ Fin(G)
proof -

from A1 have ∀ m∈G. s(m) ∈ G
using AlmostHoms_def apply_funtype by auto

moreover from A1 have {δ(r,x). x∈G×G} ∈ Fin(G)
using AlmostHoms_def by simp

ultimately show thesis
by (rule Finite1_L6C)

qed
ultimately have
{δ(s,<r(fst(x)),r(snd(x))>)·s(δ(r,x)). x∈G×G} ∈ Fin(G)
using group_oper_assocA Finite1_L15 by simp

moreover have
{δ(s,<(r(fst(x))·r(snd(x))),δ(r,x)>). x∈G×G} ∈ Fin(G)
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proof -
from A1 have
∀ x∈G×G. <(r(fst(x))·r(snd(x))),δ(r,x)> ∈ G×G

using Group_ZF_3_2_L4B by simp
moreover from A1 have
{δ(s,x). x∈G×G} ∈ Fin(G)
using AlmostHoms_def by simp

ultimately show thesis by (rule Finite1_L6B)
qed
ultimately have
{δ(s,<r(fst(x)),r(snd(x))>)·s(δ(r,x))·
δ(s,<(r(fst(x))·r(snd(x))),δ(r,x)>). x∈G×G} ∈ Fin(G)
using group_oper_assocA Finite1_L15 by simp

moreover from A1 have {δ(s◦r,x). x∈G×G} =
{δ(s,<r(fst(x)),r(snd(x))>)·s(δ(r,x))·
δ(s,<(r(fst(x))·r(snd(x))),δ(r,x)>). x∈G×G}
using Group_ZF_3_4_L4 by simp

ultimately have {δ(s◦r,x). x∈G×G} ∈ Fin(G) by simp
with A1 show thesis using restrict AlHomOp2_def

by simp
qed

Composition of almost homomorphisms is an almost homomorphism.

theorem (in group1) Group_ZF_3_4_T1:
assumes A1: s∈AH r∈AH
shows Composition(G)<s,r> ∈ AH s◦r ∈ AH

proof -
from A1 have <s,r> ∈ (G→G)×(G→G)

using AlmostHoms_def by simp
then have Composition(G)<s,r> : G→G

using func_ZF_5_L1 apply_funtype by blast
with A1 show Composition(G)<s,r> ∈ AH

using Group_ZF_3_4_L5 AlmostHoms_def
by simp

with A1 show s◦r ∈ AH using AlHomOp2_def restrict
by simp

qed

The set of almost homomorphisms is closed under composition. The second
operation on almost homomorphisms is associative.

lemma (in group1) Group_ZF_3_4_L6: shows
AH {is closed under} Composition(G)
AlHomOp2(G,f) {is associative on} AH

proof -
show AH {is closed under} Composition(G)

using Group_ZF_3_4_T1 IsOpClosed_def by simp
moreover have AH ⊆ G→G using AlmostHoms_def

by auto
moreover have
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Composition(G) {is associative on} (G→G)
using func_ZF_5_L5 by simp

ultimately show AlHomOp2(G,f) {is associative on} AH
using func_ZF_4_L3 AlHomOp2_def by simp

qed

Type information related to the situation of two almost homomorphisms.

lemma (in group1) Group_ZF_3_4_L7:
assumes A1: s∈AH r∈AH and A2: n∈G
shows
s(n) ∈ G (r(n))−1 ∈ G
s(n)·(r(n))−1 ∈ G s(r(n)) ∈ G

proof -
from A1 A2 show
s(n) ∈ G
(r(n))−1 ∈ G
s(r(n)) ∈ G
s(n)·(r(n))−1 ∈ G
using AlmostHoms_def apply_type
group0_2_L1 monoid0.group0_1_L1 inverse_in_group

by auto
qed

Type information related to the situation of three almost homomorphisms.

lemma (in group1) Group_ZF_3_4_L8:
assumes A1: s∈AH r∈AH q∈AH and A2: n∈G
shows
q(n)∈G
s(r(n)) ∈ G
r(n)·(q(n))−1 ∈ G
s(r(n)·(q(n))−1) ∈ G
δ(s,<q(n),r(n)·(q(n))−1>) ∈ G

proof -
from A1 A2 show
q(n)∈ G s(r(n)) ∈ G r(n)·(q(n))−1 ∈ G
using AlmostHoms_def apply_type
group0_2_L1 monoid0.group0_1_L1 inverse_in_group

by auto
with A1 A2 show s(r(n)·(q(n))−1) ∈ G

δ(s,<q(n),r(n)·(q(n))−1>) ∈ G
using AlmostHoms_def apply_type Group_ZF_3_2_L4A
by auto

qed

A formula useful in showing that the composition of almost homomorphisms
is congruent with respect to the quotient group relation.

lemma (in group1) Group_ZF_3_4_L9:
assumes A1: s1 ∈ AH r1 ∈ AH s2 ∈ AH r2 ∈ AH
and A2: n∈G
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shows (s1◦r1)(n)·((s2◦r2)(n))−1 =
s1(r2(n))· (s2(r2(n)))−1·s1(r1(n)·(r2(n))−1)·
δ(s1,<r2(n),r1(n)·(r2(n))−1>)

proof -
from A1 A2 isAbelian have
(s1◦r1)(n)·((s2◦r2)(n))−1 =
s1(r2(n)·(r1(n)·(r2(n))−1))·(s2(r2(n)))−1

using Group_ZF_3_4_L2 Group_ZF_3_4_L7 group0_4_L6A
group_oper_assoc by simp

with A1 A2 have (s1◦r1)(n)·((s2◦r2)(n))−1 = s1(r2(n))·
s1(r1(n)·(r2(n))−1)·δ(s1,<r2(n),r1(n)·(r2(n))−1>)·
(s2(r2(n)))−1

using Group_ZF_3_4_L8 Group_ZF_3_4_L1 by simp
with A1 A2 isAbelian show thesis using
Group_ZF_3_4_L8 group0_4_L7 by simp

qed

The next lemma shows a formula that translates an expression in terms of
the first group operation on almost homomorphisms and the group inverse
in the group of almost homomorphisms to an expression using only the
underlying group operations.

lemma (in group1) Group_ZF_3_4_L10: assumes A1: s ∈ AH r ∈ AH
and A2: n ∈ G
shows (s·(GroupInv(AH,Op1)(r)))(n) = s(n)·(r(n))−1

proof -
from isAbelian A1 A2 show thesis

using Group_ZF_3_2_L13 Group_ZF_3_2_L12 Group_ZF_3_2_L14
by simp

qed

A neccessary condition for two a. h. to be almost equal.

lemma (in group1) Group_ZF_3_4_L11:
assumes A1: s≈r
shows {s(n)·(r(n))−1. n∈G} ∈ Fin(G)

proof -
from A1 have s∈AH r∈AH

using QuotientGroupRel_def by auto
moreover from A1 have
{(s·(GroupInv(AH,Op1)(r)))(n). n∈G} ∈ Fin(G)
using QuotientGroupRel_def Finite1_L18 by simp

ultimately show thesis
using Group_ZF_3_4_L10 by simp

qed

A sufficient condition for two a. h. to be almost equal.

lemma (in group1) Group_ZF_3_4_L12: assumes A1: s∈AH r∈AH
and A2: {s(n)·(r(n))−1. n∈G} ∈ Fin(G)
shows s≈r
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proof -
from groupAssum isAbelian A1 A2 show thesis

using Group_ZF_3_2_L15 AlmostHoms_def
Group_ZF_3_4_L10 Finite1_L19 QuotientGroupRel_def
by simp

qed

Another sufficient consdition for two a.h. to be almost equal. It is actually
just an expansion of the definition of the quotient group relation.

lemma (in group1) Group_ZF_3_4_L12A: assumes s∈AH r∈AH
and s·(GroupInv(AH,Op1)(r)) ∈ FR
shows s≈r r≈s

proof -
from prems show s≈r using prems QuotientGroupRel_def

by simp
then show r≈s by (rule Group_ZF_3_3_L3A)

qed

Another necessary condition for two a.h. to be almost equal. It is actually
just an expansion of the definition of the quotient group relation.

lemma (in group1) Group_ZF_3_4_L12B: assumes s≈r
shows s·(GroupInv(AH,Op1)(r)) ∈ FR
using prems QuotientGroupRel_def by simp

The next lemma states the essential condition for the composition of a. h.
to be congruent with respect to the quotient group relation for the subgroup
of finite range functions.

lemma (in group1) Group_ZF_3_4_L13:
assumes A1: s1≈s2 r1≈r2
shows (s1◦r1) ≈ (s2◦r2)

proof -
have {s1(r2(n))· (s2(r2(n)))−1. n∈G} ∈ Fin(G)
proof -

from A1 have ∀ n∈G. r2(n) ∈ G
using QuotientGroupRel_def AlmostHoms_def apply_funtype
by auto

moreover from A1 have {s1(n)·(s2(n))−1. n∈G} ∈ Fin(G)
using Group_ZF_3_4_L11 by simp

ultimately show thesis by (rule Finite1_L6B)
qed
moreover have {s1(r1(n)·(r2(n))−1). n ∈ G} ∈ Fin(G)
proof -

from A1 have ∀ n∈G. s1(n)∈G
using QuotientGroupRel_def AlmostHoms_def apply_funtype
by auto

moreover from A1 have {r1(n)·(r2(n))−1. n∈G} ∈ Fin(G)
using Group_ZF_3_4_L11 by simp

ultimately show thesis by (rule Finite1_L6C)
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qed
ultimately have
{s1(r2(n))· (s2(r2(n)))−1·s1(r1(n)·(r2(n))−1).
n∈G} ∈ Fin(G)
using group_oper_assocA Finite1_L15 by simp

moreover have
{δ(s1,<r2(n),r1(n)·(r2(n))−1>). n∈G} ∈ Fin(G)

proof -
from A1 have ∀ n∈G. <r2(n),r1(n)·(r2(n))−1> ∈ G×G

using QuotientGroupRel_def Group_ZF_3_4_L7 by auto
moreover from A1 have {δ(s1,x). x ∈ G×G} ∈ Fin(G)

using QuotientGroupRel_def AlmostHoms_def by simp
ultimately show thesis by (rule Finite1_L6B)

qed
ultimately have
{s1(r2(n))· (s2(r2(n)))−1·s1(r1(n)·(r2(n))−1)·
δ(s1,<r2(n),r1(n)·(r2(n))−1>). n∈G} ∈ Fin(G)
using group_oper_assocA Finite1_L15 by simp

with A1 show thesis using
QuotientGroupRel_def Group_ZF_3_4_L9
Group_ZF_3_4_T1 Group_ZF_3_4_L12 by simp

qed

Composition of a. h. to is congruent with respect to the quotient group
relation for the subgroup of finite range functions. Recall that if an operation
say ”◦” on X is congruent with respect to an equivalence relation R then we
can define the operation on the quotient space X/R by [s]R ◦ [r]R := [s ◦ r]R
and this definition will be correct i.e. it will not depend on the choice of
representants for the classes [x] and [y]. This is why we want it here.

lemma (in group1) Group_ZF_3_4_L13A:
Congruent2(QuotientGroupRel(AH,Op1,FR),Op2)

proof -
show thesis using Group_ZF_3_4_L13 Congruent2_def

by simp
qed

The homomorphism difference for the identity function is equal to the neu-
tral element of the group (denoted e in the group1 context).

lemma (in group1) Group_ZF_3_4_L14: assumes A1: x ∈ G×G
shows δ(id(G),x) = 1

proof -
from A1 show thesis using
group0_2_L1 monoid0.group0_1_L1 HomDiff_def id_conv group0_2_L6
by simp

qed

The identity function (I(x) = x) on G is an almost homomorphism.

lemma (in group1) Group_ZF_3_4_L15: id(G) ∈ AH
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proof -
have G×G 6= 0 using group0_2_L1 monoid0.group0_1_L3A

by blast
then show thesis using Group_ZF_3_4_L14 group0_2_L2
id_type AlmostHoms_def by simp

qed

Almost homomorphisms form a monoid with composition. The identity
function on the group is the neutral element there.
lemma (in group1) Group_ZF_3_4_L16:

shows
IsAmonoid(AH,Op2)
monoid0(AH,Op2)
id(G) = TheNeutralElement(AH,Op2)

proof-
let i = TheNeutralElement(G→G,Composition(G))
have
IsAmonoid(G→G,Composition(G))
monoid0(G→G,Composition(G))
using monoid0_def Group_ZF_2_5_L2 by auto

moreover have AH {is closed under} Composition(G)
using Group_ZF_3_4_L6 by simp

moreover have AH ⊆ G→G
using AlmostHoms_def by auto

moreover have i ∈ AH
using Group_ZF_2_5_L2 Group_ZF_3_4_L15 by simp

moreover have id(G) = i
using Group_ZF_2_5_L2 by simp

ultimately show
IsAmonoid(AH,Op2)
monoid0(AH,Op2)
id(G) = TheNeutralElement(AH,Op2)
using monoid0.group0_1_T1 group0_1_L6 AlHomOp2_def monoid0_def
by auto

qed

We can project the monoid of almost homomorphisms with composition to
the group of almost homomorphisms divided by the subgroup of finite range
functions. The class of the identity function is the neutral element of the
quotient (monoid).
theorem (in group1) Group_ZF_3_4_T2:

assumes A1: R = QuotientGroupRel(AH,Op1,FR)
shows
IsAmonoid(AH//R,ProjFun2(AH,R,Op2))
R{id(G)} = TheNeutralElement(AH//R,ProjFun2(AH,R,Op2))

proof -
have group0(AH,Op1) using Group_ZF_3_2_L10A group0_def

by simp
with A1 groupAssum isAbelian show
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IsAmonoid(AH//R,ProjFun2(AH,R,Op2))
R{id(G)} = TheNeutralElement(AH//R,ProjFun2(AH,R,Op2))
using Group_ZF_3_3_L2 group0.Group_ZF_2_4_L3 Group_ZF_3_4_L13A
Group_ZF_3_4_L16 monoid0.Group_ZF_2_2_T1 Group_ZF_2_2_L1

by auto
qed

16.5 Shifting almost homomorphisms

In this this section we consider what happens if we multiply an almost
homomorphism by a group element. We show that the resulting function is
also an a. h., and almost equal to the original one. This is used only for
slopes (integer a.h.) in Int_ZF_2 where we need to correct a positive slopes
by adding a constant, so that it is at least 2 on positive integers.

If s is an almost homomorphism and c is some constant from the group,
then s · c is an almost homomorphism.

lemma (in group1) Group_ZF_3_5_L1:
assumes A1: s ∈ AH and A2: c∈G and
A3: r = {〈x,s(x)·c〉. x∈G}
shows
∀ x∈G. r(x) = s(x)·c
r ∈ AH
s ≈ r

proof -
from A1 A2 A3 have I: r:G→G

using AlmostHoms_def apply_funtype group_op_closed
ZF_fun_from_total by auto

with A3 show II: ∀ x∈G. r(x) = s(x)·c
using ZF_fun_from_tot_val by simp

with isAbelian A1 A2 have III:
∀ p ∈ G×G. δ(r,p) = δ(s,p)·c−1

using group_op_closed AlmostHoms_def apply_funtype
HomDiff_def group0_4_L7 by auto

have {δ(r,p). p ∈ G×G} ∈ Fin(G)
proof -

from A1 A2 have
{δ(s,p). p ∈ G×G} ∈ Fin(G) c−1∈G
using AlmostHoms_def inverse_in_group by auto

then have {δ(s,p)·c−1. p ∈ G×G} ∈ Fin(G)
using group_oper_assocA Finite1_L16AA
by simp

moreover from III have
{δ(r,p). p ∈ G×G} = {δ(s,p)·c−1. p ∈ G×G}
by (rule ZF1_1_L4B)

ultimately show thesis by simp
qed
with I show IV: r ∈ AH using AlmostHoms_def
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by simp
from isAbelian A1 A2 I II have
∀ n ∈ G. s(n)·(r(n))−1 = c−1

using AlmostHoms_def apply_funtype group0_4_L6AB
by auto

then have {s(n)·(r(n))−1. n∈G} = {c−1. n∈G}
by (rule ZF1_1_L4B)

with A1 A2 IV show s ≈ r
using group0_2_L1 monoid0.group0_1_L3A
inverse_in_group Group_ZF_3_4_L12 by simp

qed

end
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17 OrderedGroup ZF.thy

theory OrderedGroup_ZF imports Group_ZF Order_ZF Finite_ZF_1

begin

This theory file defines and shows the basic properties of (partially or lin-
early) ordered groups. We define the set of nonnegative elements and the
absolute value function. We show that in linearly ordered groups finite sets
are bounded and provide a sufficient condition for bounded sets to be finite.
This allows to show in Int_ZF.thy that subsets of integers are bounded iff
they are finite.

17.1 Ordered groups

This section defines ordered groups.

An ordered group is a group equipped with a partial order that is ”transla-
tion invariant”, that is if a ≤ b then a ·g ≤ b ·g and g ·a ≤ g ·b. We define the
set of nonnegative elements in the obvious way as G+ = {x ∈ G : 1 ≤ x}.
G+ is a similar set, but without the unit. We also define the absolute value
as a ZF-function that is the identity on G+ and the group inverse on the
rest of the group. We also define the maximum absolute value of a set, that
is the maximum of the set {|x|.x ∈ A}. The odd functions are defined as
those having property f(a−1) = (f(a))−1. Looks a bit strange in the multi-
plicative notation. For linearly oredered groups a function f defined on the
set of positive elements iniquely defines an odd function of the whole group.
This function is called an odd extension of f .

constdefs

IsAnOrdGroup(G,P,r) ≡
(IsAgroup(G,P) ∧ r⊆G×G ∧ IsPartOrder(G,r) ∧ (∀ g∈G. ∀ a b.
<a,b> ∈ r −→ <P<a,g>,P<b,g> > ∈ r ∧ <P<g,a>,P<g,b> > ∈ r ) )

Nonnegative(G,P,r) ≡ {x∈G. <TheNeutralElement(G,P),x> ∈ r}

PositiveSet(G,P,r) ≡
{x∈G. <TheNeutralElement(G,P),x> ∈ r ∧ TheNeutralElement(G,P)6= x}

AbsoluteValue(G,P,r) ≡ id(Nonnegative(G,P,r)) ∪
restrict(GroupInv(G,P),G - Nonnegative(G,P,r))

OddExtension(G,P,r,f) ≡
(f ∪ {〈a, GroupInv(G,P)(f(GroupInv(G,P)(a)))〉.
a ∈ GroupInv(G,P)(PositiveSet(G,P,r))} ∪
{〈TheNeutralElement(G,P),TheNeutralElement(G,P)〉})
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We will use a similar notation for ordered groups as for the generic groups.
G+ denotes the set of nonnegative elements (that satisfy 1 ≤ a and G+ is the
set of (strictly) positive elements. -A is the set inverses of elements from A.
I hope that using additive notation for this notion is not too shocking here.
The symbol f◦ denotes the odd extension of f . For a function defined on
G+ this is the unique odd function on G that is equal to f on G+.

locale group3 =

fixes G and P and r

assumes ordGroupAssum: IsAnOrdGroup(G,P,r)

fixes unit (1)
defines unit_def [simp]: 1 ≡ TheNeutralElement(G,P)

fixes groper (infixl · 70)
defines groper_def [simp]: a · b ≡ P<a,b>

fixes inv (_−1 [90] 91)
defines inv_def [simp]: x−1 ≡ GroupInv(G,P)(x)

fixes lesseq (infix ≤ 68)
defines lesseq_def [simp]: a ≤ b ≡ <a,b> ∈ r

fixes sless (infix < 68)
defines sless_def [simp]: a < b ≡ a≤b ∧ a6=b

fixes nonnegative (G+)
defines nonnegative_def [simp]: G+ ≡ Nonnegative(G,P,r)

fixes positive (G+)
defines nonnegative_def [simp]: G+ ≡ PositiveSet(G,P,r)

fixes setinv :: i⇒i (- _ 72)
defines setninv_def [simp]: -A ≡ GroupInv(G,P)(A)

fixes abs (| _ |)
defines abs_def [simp]: |a| ≡ AbsoluteValue(G,P,r)(a)

fixes oddext (_ ◦)
defines oddext_def [simp]: f◦ ≡ OddExtension(G,P,r,f)

In group3 context we can use the theorems proven in the group0 context.

lemma (in group3) OrderedGroup_ZF_1_L1: shows group0(G,P)
using ordGroupAssum IsAnOrdGroup_def group0_def by simp

Ordered group (carrier) is not empty. This is a property of monoids, but it
is good to have it handy in the group3 context.
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lemma (in group3) OrderedGroup_ZF_1_L1A: shows G6=0
using OrderedGroup_ZF_1_L1 group0.group0_2_L1 monoid0.group0_1_L3A
by blast

The next lemma is just to see the definition of the nonnegative set in our
notation.

lemma (in group3) OrderedGroup_ZF_1_L2:
shows g∈G+ ←→ 1≤g
using ordGroupAssum IsAnOrdGroup_def Nonnegative_def
by auto

The next lemma is just to see the definition of the positive set in our notation.

lemma (in group3) OrderedGroup_ZF_1_L2A:
shows g∈G+ ←→ (1≤g ∧ g 6=1)
using ordGroupAssum IsAnOrdGroup_def PositiveSet_def
by auto

For total order if g is not in G+, then it has to be less or equal the unit.

lemma (in group3) OrderedGroup_ZF_1_L2B:
assumes A1: r {is total on} G and A2: a∈G-G+

shows a≤1
proof -

from A2 have a∈G ¬(1≤a) using OrderedGroup_ZF_1_L2 by auto
with A1 show thesis

using IsTotal_def OrderedGroup_ZF_1_L1 group0.group0_2_L2 by auto
qed

The group order is reflexive.

lemma (in group3) OrderedGroup_ZF_1_L3: assumes g∈G
shows g≤g
using ordGroupAssum prems IsAnOrdGroup_def IsPartOrder_def refl_def
by simp

1 is nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L3A: shows 1∈G+

using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L3
OrderedGroup_ZF_1_L1 group0.group0_2_L2 by simp

In this context a ≤ b implies that both a and b belong to G.

lemma (in group3) OrderedGroup_ZF_1_L4:
assumes a≤b shows a∈G b∈G
using ordGroupAssum prems IsAnOrdGroup_def by auto

It is good to have transitivity handy.

lemma (in group3) Group_order_transitive:
assumes A1: a≤b b≤c shows a≤c

proof -
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from ordGroupAssum have trans(r)
using IsAnOrdGroup_def IsPartOrder_def
by simp

moreover from A1 have <a,b> ∈ r ∧ <b,c> ∈ r by simp
ultimately have <a,c> ∈ r by (rule Fol1_L3)
thus thesis by simp

qed

The order in an ordered group is antisymmetric.

lemma (in group3) group_order_antisym:
assumes A1: a≤b b≤a shows a=b

proof -
from ordGroupAssum A1 have
antisym(r) <a,b> ∈ r <b,a> ∈ r
using IsAnOrdGroup_def IsPartOrder_def by auto

then show a=b by (rule Fol1_L4)
qed

Transitivity for the strict order: if a < b and b ≤ c, then a < c.

lemma (in group3) OrderedGroup_ZF_1_L4A:
assumes A1: a<b and A2: b≤c
shows a<c

proof -
from A1 A2 have a≤b b≤c by auto
then have a≤c by (rule Group_order_transitive)
moreover from A1 A2 have a6=c using group_order_antisym by auto
ultimately show a<c by simp

qed

Another version of transitivity for the strict order: if a ≤ b and b < c, then
a < c.

lemma (in group3) group_strict_ord_transit:
assumes A1: a≤b and A2: b<c
shows a<c

proof -
from A1 A2 have a≤b b≤c by auto
then have a≤c by (rule Group_order_transitive)
moreover from A1 A2 have a6=c using group_order_antisym by auto
ultimately show a<c by simp

qed

Strict order is preserved by translations.

lemma (in group3) group_strict_ord_transl_inv:
assumes a<band c∈G
shows
a·c < b·c
c·a < c·b
using ordGroupAssum prems IsAnOrdGroup_def
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OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1 group0.group0_2_L19
by auto

If the group order is total, then the group is ordered linearly.

lemma (in group3) group_ord_total_is_lin:
assumes r {is total on} G
shows IsLinOrder(G,r)
using prems ordGroupAssum IsAnOrdGroup_def Order_ZF_1_L3
by simp

For linearly ordered groups elements in the nonnegative set are greater than
those in the complement.

lemma (in group3) OrderedGroup_ZF_1_L4B:
assumes r {is total on} G
and a∈G+ and b ∈ G-G+

shows b≤a
proof -

from prems have b≤1 1≤a
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L2B by auto

thus thesis by (rule Group_order_transitive)
qed

If a ≤ 1 and a 6= 1, then a ∈ G \G+.

lemma (in group3) OrderedGroup_ZF_1_L4C:
assumes A1: a≤1 and A2: a6=1
shows a ∈ G-G+

proof (rule ccontr)
assume a /∈ G-G+

with ordGroupAssum A1 A2 show False
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L2
OrderedGroup_ZF_1_L4 IsAnOrdGroup_def IsPartOrder_def antisym_def

by auto
qed

An element smaller than an element in G \G+ is in G \G+.

lemma (in group3) OrderedGroup_ZF_1_L4D:
assumes A1: a∈G-G+ and A2: b≤a
shows b∈G-G+

proof (rule ccontr)
assume b /∈ G - G+

with A2 have 1≤b b≤a
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L2 by auto

then have 1≤a by (rule Group_order_transitive)
with A1 show False using OrderedGroup_ZF_1_L2 by simp

qed

The nonnegative set is contained in the group.

lemma (in group3) OrderedGroup_ZF_1_L4E: shows G+ ⊆ G
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using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L4 by auto

Taking the inverse on both sides reverses the inequality.

lemma (in group3) OrderedGroup_ZF_1_L5:
assumes A1: a≤b shows b−1≤a−1

proof -
from A1 have T1: a∈G b∈G a−1∈G b−1∈G

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
group0.inverse_in_group by auto

with A1 ordGroupAssum have a·a−1≤b·a−1 using IsAnOrdGroup_def
by simp

with T1 ordGroupAssum have b−1·1≤b−1·(b·a−1)
using OrderedGroup_ZF_1_L1 group0.group0_2_L6 IsAnOrdGroup_def
by simp

with T1 show thesis using
OrderedGroup_ZF_1_L1 group0.group0_2_L2 group0.group_oper_assoc
group0.group0_2_L6 by simp

qed

If an element is smaller that the unit, then its inverse is greater.

lemma (in group3) OrderedGroup_ZF_1_L5A:
assumes A1: a≤1 shows 1≤a−1

proof -
from A1 have 1−1≤a−1 using OrderedGroup_ZF_1_L5

by simp
then show thesis using OrderedGroup_ZF_1_L1 group0.group_inv_of_one

by simp
qed

If an the inverse of an element is greater that the unit, then the element is
smaller.

lemma (in group3) OrderedGroup_ZF_1_L5AA:
assumes A1: a∈G and A2: 1≤a−1

shows a≤1
proof -

from A2 have (a−1)−1≤1−1 using OrderedGroup_ZF_1_L5
by simp

with A1 show a≤1
using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv group0.group_inv_of_one
by simp

qed

If an element is nonnegative, then the inverse is not greater that the unit.
Also shows that nonnegative elements cannot be negative

lemma (in group3) OrderedGroup_ZF_1_L5AB:
assumes A1: 1≤a shows a−1≤1 and ¬(a≤1 ∧ a 6=1)

proof -
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from A1 have a−1≤1−1

using OrderedGroup_ZF_1_L5 by simp
then show a−1≤1 using OrderedGroup_ZF_1_L1 group0.group_inv_of_one

by simp
{ assume a≤1 and a6=1

with A1 have False using group_order_antisym
by blast

} then show ¬(a≤1 ∧ a6=1) by auto
qed

If two elements are greater or equal than the unit, then the inverse of one
is not greater than the other.

lemma (in group3) OrderedGroup_ZF_1_L5AC:
assumes A1: 1≤a 1≤b
shows a−1 ≤ b

proof -
from A1 have a−1≤1 1≤b

using OrderedGroup_ZF_1_L5AB by auto
then show a−1 ≤ b by (rule Group_order_transitive)

qed

Taking negative on both sides reverses the inequality, case with an inverse
on one side.

lemma (in group3) OrderedGroup_ZF_1_L5AD:
assumes A1: b ∈ G and A2: a≤b−1

shows b ≤ a−1

proof -
from A2 have (b−1)−1 ≤ a−1

using OrderedGroup_ZF_1_L5 by simp
with A1 show b ≤ a−1

using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
by simp

qed

We can cancel the same element on both sides of an inequality.

lemma (in group3) OrderedGroup_ZF_1_L5AE:
assumes A1: a∈G b∈G c∈G and A2: a·b ≤ a·c
shows b≤c

proof -
from ordGroupAssum A1 A2 have a−1·(a·b) ≤ a−1·(a·c)

using OrderedGroup_ZF_1_L1 group0.inverse_in_group
IsAnOrdGroup_def by simp

with A1 show b≤c
using OrderedGroup_ZF_1_L1 group0.group0_2_L16
by simp

qed

We can cancel the same element on both sides of an inequality, a version
with an inverse on both sides.
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lemma (in group3) OrderedGroup_ZF_1_L5AF:
assumes A1: a∈G b∈G c∈G and A2: a·b−1 ≤ a·c−1

shows c≤b
proof -

from A1 A2 have (c−1)−1 ≤ (b−1)−1

using OrderedGroup_ZF_1_L1 group0.inverse_in_group
OrderedGroup_ZF_1_L5AE OrderedGroup_ZF_1_L5 by simp

with A1 show c≤b
using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv by simp

qed

Taking negative on both sides reverses the inequality, another case with an
inverse on one side.

lemma (in group3) OrderedGroup_ZF_1_L5AG:
assumes A1: a ∈ G and A2: a−1≤b
shows b−1 ≤ a

proof -
from A2 have b−1 ≤ (a−1)−1

using OrderedGroup_ZF_1_L5 by simp
with A1 show b−1 ≤ a

using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
by simp

qed

We can multiply the sides of two inequalities.

lemma (in group3) OrderedGroup_ZF_1_L5B:
assumes A1: a≤b and A2: c≤d
shows a·c ≤ b·d

proof -
from A1 A2 have c∈G b∈G using OrderedGroup_ZF_1_L4 by auto
with A1 A2 ordGroupAssum have a·c≤ b·c b·c≤b·d

using IsAnOrdGroup_def by auto
then show a·c ≤ b·d by (rule Group_order_transitive)

qed

We can replace first of the factors on one side of an inequality with a greater
one.

lemma (in group3) OrderedGroup_ZF_1_L5C:
assumes A1: c∈G and A2: a≤b·c and A3: b≤b1

shows a≤b1·c
proof -

from A1 A3 have b·c ≤ b1·c
using OrderedGroup_ZF_1_L3 OrderedGroup_ZF_1_L5B by simp

with A2 show a≤b1·c by (rule Group_order_transitive)
qed

We can replace second of the factors on one side of an inequality with a
greater one.
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lemma (in group3) OrderedGroup_ZF_1_L5D:
assumes A1: b∈G and A2: a ≤ b·c and A3: c≤b1

shows a ≤ b·b1

proof -
from A1 A3 have b·c ≤ b·b1

using OrderedGroup_ZF_1_L3 OrderedGroup_ZF_1_L5B by auto
with A2 show a≤b·b1 by (rule Group_order_transitive)

qed

We can replace factors on one side of an inequality with greater ones.

lemma (in group3) OrderedGroup_ZF_1_L5E:
assumes A1: a ≤ b·c and A2: b≤b1 c≤c1

shows a ≤ b1·c1

proof -
from A2 have b·c ≤ b1·c1 using OrderedGroup_ZF_1_L5B

by simp
with A1 show a≤b1·c1 by (rule Group_order_transitive)

qed

We don’t decrease an element of the group by multiplying by one that is
nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L5F:
assumes A1: 1≤a and A2: b∈G
shows b≤a·b b≤b·a

proof -
from ordGroupAssum A1 A2 have

1·b≤a·b b·1≤b·a
using IsAnOrdGroup_def by auto

with A2 show b≤a·b b≤b·a
using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by auto

qed

We can multiply the right hand side of an inequality by a nonnegative ele-
ment.

lemma (in group3) OrderedGroup_ZF_1_L5G: assumes A1: a≤b
and A2: 1≤c shows a≤b·c a≤c·b

proof -
from A1 A2 have I: b≤b·c and II: b≤c·b

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L5F by auto
from A1 I show a≤b·c by (rule Group_order_transitive)
from A1 II show a≤c·b by (rule Group_order_transitive)

qed

We can put two elements on the other side of inequality, changing their sign.

lemma (in group3) OrderedGroup_ZF_1_L5H:
assumes A1: a∈G b∈G and A2: a·b−1 ≤ c
shows
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a ≤ c·b
c−1·a ≤ b

proof -
from A2 have T: c∈G c−1 ∈ G

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
group0.inverse_in_group by auto

from ordGroupAssum A1 A2 have a·b−1·b ≤ c·b
using IsAnOrdGroup_def by simp

with A1 show a ≤ c·b
using OrderedGroup_ZF_1_L1 group0.group0_2_L16
by simp

with ordGroupAssum A2 T have c−1·a ≤ c−1·(c·b)
using IsAnOrdGroup_def by simp

with A1 T show c−1·a ≤ b
using OrderedGroup_ZF_1_L1 group0.group0_2_L16
by simp

qed

We can multiply the sides of one inequality by inverse of another.

lemma (in group3) OrderedGroup_ZF_1_L5I:
assumes a≤b and c≤d
shows a·d−1 ≤ b·c−1

using prems OrderedGroup_ZF_1_L5 OrderedGroup_ZF_1_L5B
by simp

We can put an element on the other side of an inequality changing its sign,
version with the inverse.

lemma (in group3) OrderedGroup_ZF_1_L5J:
assumes A1: a∈G b∈G and A2: c ≤ a·b−1

shows c·b ≤ a
proof -

from ordGroupAssum A1 A2 have c·b ≤ a·b−1·b
using IsAnOrdGroup_def by simp

with A1 show c·b ≤ a
using OrderedGroup_ZF_1_L1 group0.group0_2_L16
by simp

qed

We can put an element on the other side of an inequality changing its sign,
version with the inverse.

lemma (in group3) OrderedGroup_ZF_1_L5JA:
assumes A1: a∈G b∈G and A2: c ≤ a−1·b
shows a·c≤ b

proof -
from ordGroupAssum A1 A2 have a·c ≤ a·(a−1·b)

using IsAnOrdGroup_def by simp
with A1 show a·c≤ b

using OrderedGroup_ZF_1_L1 group0.group0_2_L16
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by simp
qed

A special case of OrderedGroup_ZF_1_L5J where c = 1.

corollary (in group3) OrderedGroup_ZF_1_L5K:
assumes A1: a∈G b∈G and A2: 1 ≤ a·b−1

shows b ≤ a
proof -

from A1 A2 have 1·b ≤ a
using OrderedGroup_ZF_1_L5J by simp

with A1 show b ≤ a
using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp

qed

A special case of OrderedGroup_ZF_1_L5JA where c = 1.

corollary (in group3) OrderedGroup_ZF_1_L5KA:
assumes A1: a∈G b∈G and A2: 1 ≤ a−1·b
shows a ≤ b

proof -
from A1 A2 have a·1 ≤ b

using OrderedGroup_ZF_1_L5JA by simp
with A1 show a ≤ b

using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp

qed

If the order is total, the elements that do not belong to the positive set are
negative. We also show here that the group inverse of an element that does
not belong to the nonnegative set does belong to the nonnegative set.

lemma (in group3) OrderedGroup_ZF_1_L6:
assumes A1: r {is total on} G and A2: a∈G-G+

shows a≤1 a−1 ∈ G+ restrict(GroupInv(G,P),G-G+)(a) ∈ G+

proof -
from A2 have T1: a∈G a/∈G+ 1∈G

using OrderedGroup_ZF_1_L1 group0.group0_2_L2 by auto
with A1 show a≤1 using OrderedGroup_ZF_1_L2 IsTotal_def

by auto
then show a−1 ∈ G+ using OrderedGroup_ZF_1_L5A OrderedGroup_ZF_1_L2

by simp
with A2 show restrict(GroupInv(G,P),G-G+)(a) ∈ G+

using restrict by simp
qed

If a property is invariant with respect to taking the inverse and it is true on
the nonnegative set, than it is true on the whole group.

lemma (in group3) OrderedGroup_ZF_1_L7:
assumes A1: r {is total on} G
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and A2: ∀ a∈G+.∀ b∈G+. Q(a,b)
and A3: ∀ a∈G.∀ b∈G. Q(a,b)−→Q(a−1,b)
and A4: ∀ a∈G.∀ b∈G. Q(a,b)−→Q(a,b−1)
and A5: a∈G b∈G
shows Q(a,b)

proof (cases a∈G+)
assume A6: a∈G+ show Q(a,b)
proof (cases b∈G+)

assume b∈G+

with A6 A2 show Q(a,b) by simp
next assume b/∈G+

with A1 A2 A4 A5 A6 have Q(a,(b−1)−1)
using OrderedGroup_ZF_1_L6 OrderedGroup_ZF_1_L1 group0.inverse_in_group
by simp

with A5 show Q(a,b) using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
by simp

qed
next assume a/∈G+

with A1 A5 have T1: a−1 ∈ G+ using OrderedGroup_ZF_1_L6 by simp
show Q(a,b)
proof (cases b∈G+)

assume b∈G+

with A2 A3 A5 T1 have Q((a−1)−1,b)
using OrderedGroup_ZF_1_L1 group0.inverse_in_group by simp

with A5 show Q(a,b) using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
by simp

next assume b/∈G+

with A1 A2 A3 A4 A5 T1 have Q((a−1)−1,(b−1)−1)
using OrderedGroup_ZF_1_L6 OrderedGroup_ZF_1_L1 group0.inverse_in_group
by simp

with A5 show Q(a,b) using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
by simp

qed
qed

A lemma about splitting the ordered group ”plane” into 6 subsets. Useful
for proofs by cases.

lemma (in group3) OrdGroup_6cases: assumes A1: r {is total on} G
and A2: a∈G b∈G
shows
1≤a ∧ 1≤b ∨ a≤1 ∧ b≤1 ∨
a≤1 ∧ 1≤b ∧ 1 ≤ a·b ∨ a≤1 ∧ 1≤b ∧ a·b ≤ 1 ∨
1≤a ∧ b≤1 ∧ 1 ≤ a·b ∨ 1≤a ∧ b≤1 ∧ a·b ≤ 1

proof -
from A1 A2 have

1≤a ∨ a≤1
1≤b ∨ b≤1
1 ≤ a·b ∨ a·b ≤ 1
using OrderedGroup_ZF_1_L1 group0.group_op_closed group0.group0_2_L2
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IsTotal_def by auto
then show thesis by auto

qed

The next lemma shows what happens when one element of a totally ordered
group is not greater or equal than another.

lemma (in group3) OrderedGroup_ZF_1_L8:
assumes A1: r {is total on} G
and A2: a∈G b∈G
and A3: ¬(a≤b)
shows b ≤ a a−1 ≤ b−1 a 6=b b<a

proof -
from A1 A2 A3 show I: b ≤ a using IsTotal_def

by auto
then show a−1 ≤ b−1 using OrderedGroup_ZF_1_L5 by simp
from A2 have a ≤ a using OrderedGroup_ZF_1_L3 by simp
with I A3 show a6=b b < a by auto

qed

If one element is greater or equal and not equal to another, then it is not
smaller or equal.

lemma (in group3) OrderedGroup_ZF_1_L8AA:
assumes A1: a≤b and A2: a6=b
shows ¬(b≤a)

proof -
{ note A1

moreover assume b≤a
ultimately have a=b by (rule group_order_antisym)
with A2 have False by simp

} thus ¬(b≤a) by auto
qed

A special case of OrderedGroup_ZF_1_L8 when one of the elements is the unit.

corollary (in group3) OrderedGroup_ZF_1_L8A:
assumes A1: r {is total on} G
and A2: a∈G and A3: ¬(1≤a)
shows 1 ≤ a−1 16=a a≤1

proof -
from A1 A2 A3 have I:
r {is total on} G
1∈G a∈G
¬(1≤a)

using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by auto

then have 1−1 ≤ a−1

by (rule OrderedGroup_ZF_1_L8)
then show 1 ≤ a−1
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using OrderedGroup_ZF_1_L1 group0.group_inv_of_one by simp
from I show 1 6=a by (rule OrderedGroup_ZF_1_L8)
from A1 I show a≤1 using IsTotal_def

by auto
qed

A negative element can not be nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L8B:
assumes A1: a≤1 and A2: a6=1 shows ¬(1≤a)

proof -
{ assume 1≤a

with A1 have a=1 using group_order_antisym
by auto

with A2 have False by simp
} thus thesis by auto

qed

An element is greater or equal than another iff the difference is nonpositive.

lemma (in group3) OrderedGroup_ZF_1_L9:
assumes A1: a∈G b∈G
shows a≤b ←→ a·b−1 ≤ 1

proof
assume a ≤ b
with ordGroupAssum A1 have a·b−1 ≤ b·b−1

using OrderedGroup_ZF_1_L1 group0.inverse_in_group
IsAnOrdGroup_def by simp

with A1 show a·b−1 ≤ 1
using OrderedGroup_ZF_1_L1 group0.group0_2_L6
by simp

next assume A2: a·b−1 ≤ 1
with ordGroupAssum A1 have a·b−1·b ≤ 1·b

using IsAnOrdGroup_def by simp
with A1 show a ≤ b

using OrderedGroup_ZF_1_L1
group0.group0_2_L16 group0.group0_2_L2

by simp
qed

We can move an element to the other side of an inequality.

lemma (in group3) OrderedGroup_ZF_1_L9A:
assumes A1: a∈G b∈G c∈G
shows a·b ≤ c ←→ a ≤ c·b−1

proof
assume a·b ≤ c
with ordGroupAssum A1 have a·b·b−1 ≤ c·b−1

using OrderedGroup_ZF_1_L1 group0.inverse_in_group IsAnOrdGroup_def
by simp

with A1 show a ≤ c·b−1

using OrderedGroup_ZF_1_L1 group0.group0_2_L16 by simp
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next assume a ≤ c·b−1

with ordGroupAssum A1 have a·b ≤ c·b−1·b
using OrderedGroup_ZF_1_L1 group0.inverse_in_group IsAnOrdGroup_def
by simp

with A1 show a·b ≤ c
using OrderedGroup_ZF_1_L1 group0.group0_2_L16 by simp

qed

A one side version of the previous lemma with weaker assuptions.

lemma (in group3) OrderedGroup_ZF_1_L9B:
assumes A1: a∈G b∈G and A2: a·b−1 ≤ c
shows a ≤ c·b

proof -
from A1 A2 have a∈G b−1∈G c∈G

using OrderedGroup_ZF_1_L1 group0.inverse_in_group
OrderedGroup_ZF_1_L4 by auto

with A1 A2 show a ≤ c·b
using OrderedGroup_ZF_1_L9A OrderedGroup_ZF_1_L1
group0.group_inv_of_inv by simp

qed

We can put en element on the other side of inequality, changing its sign.

lemma (in group3) OrderedGroup_ZF_1_L9C:
assumes A1: a∈G b∈G and A2: c≤a·b
shows
c·b−1 ≤ a
a−1·c ≤ b

proof -
from ordGroupAssum A1 A2 have
c·b−1 ≤ a·b·b−1

a−1·c ≤ a−1·(a·b)
using OrderedGroup_ZF_1_L1 group0.inverse_in_group IsAnOrdGroup_def
by auto

with A1 show
c·b−1 ≤ a
a−1·c ≤ b
using OrderedGroup_ZF_1_L1 group0.group0_2_L16
by auto

qed

If an element is greater or equal than another then the difference is nonneg-
ative.

lemma (in group3) OrderedGroup_ZF_1_L9D: assumes A1: a≤b
shows 1 ≤ b·a−1

proof -
from A1 have T: a∈G b∈G a−1 ∈ G

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
group0.inverse_in_group by auto

with ordGroupAssum A1 have a·a−1 ≤ b·a−1
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using IsAnOrdGroup_def by simp
with T show 1 ≤ b·a−1

using OrderedGroup_ZF_1_L1 group0.group0_2_L6
by simp

qed

If an element is greater than another then the difference is positive.

lemma (in group3) OrderedGroup_ZF_1_L9E:
assumes A1: a≤b a6=b
shows 1 ≤ b·a−1 1 6= b·a−1 b·a−1 ∈ G+

proof -
from A1 have T: a∈G b∈G using OrderedGroup_ZF_1_L4

by auto
from A1 show I: 1 ≤ b·a−1 using OrderedGroup_ZF_1_L9D

by simp
{ assume b·a−1 = 1

with T have a=b
using OrderedGroup_ZF_1_L1 group0.group0_2_L11A
by auto

with A1 have False by simp
} then show 1 6= b·a−1 by auto
then have b·a−1 6= 1 by auto
with I show b·a−1 ∈ G+ using OrderedGroup_ZF_1_L2A

by simp
qed

If the difference is nonnegative, then a ≤ b.

lemma (in group3) OrderedGroup_ZF_1_L9F:
assumes A1: a∈G b∈G and A2: 1 ≤ b·a−1

shows a≤b
proof -

from A1 A2 have 1·a ≤ b
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L9A
by simp

with A1 show a≤b
using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp

qed

If we increase the middle term in a product, the whole product increases.

lemma (in group3) OrderedGroup_ZF_1_L10:
assumes a∈G b∈G and c≤d
shows a·c·b ≤ a·d·b
using ordGroupAssum prems IsAnOrdGroup_def by simp

A product of (strictly) positive elements is not the unit.

lemma (in group3) OrderedGroup_ZF_1_L11:
assumes A1: 1≤a 1≤b
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and A2: 1 6= a 1 6= b
shows 1 6= a·b

proof -
from A1 have T1: a∈G b∈G

using OrderedGroup_ZF_1_L4 by auto
{ assume 1 = a·b

with A1 T1 have a≤1 1≤a
using OrderedGroup_ZF_1_L1 group0.group0_2_L9 OrderedGroup_ZF_1_L5AA

by auto
then have a = 1 by (rule group_order_antisym)
with A2 have False by simp

} then show 1 6= a·b by auto
qed

A product of nonnegative elements is nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L12:
assumes A1: 1 ≤ a 1 ≤ b
shows 1 ≤ a·b

proof -
from A1 have 1·1 ≤ a·b

using OrderedGroup_ZF_1_L5B by simp
then show 1 ≤ a·b

using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp

qed

If a is not greater than b, then 1 is not greater than b · a−1.

lemma (in group3) OrderedGroup_ZF_1_L12A:
assumes A1: a≤b shows 1 ≤ b·a−1

proof -
from A1 have T: 1 ∈ G a∈G b∈G

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1 group0.group0_2_L2
by auto

with A1 have 1·a ≤ b
using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp

with T show 1 ≤ b·a−1 using OrderedGroup_ZF_1_L9A
by simp

qed

We can move an element to the other side of a strict inequality.

lemma (in group3) OrderedGroup_ZF_1_L12B:
assumes A1: a∈G b∈G and A2: a·b−1 < c
shows a < c·b

proof -
from A1 A2 have a·b−1·b < c·b

using group_strict_ord_transl_inv by auto
moreover from A1 have a·b−1·b = a
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using OrderedGroup_ZF_1_L1 group0.group0_2_L16
by simp

ultimately show a < c·b
by auto

qed

We can multiply the sides of two inequalities, first of them strict and we get
a strict inequality.

lemma (in group3) OrderedGroup_ZF_1_L12C:
assumes A1: a<b and A2: c≤d
shows a·c < b·d

proof -
from A1 A2 have T: a∈G b∈G c∈G d∈G

using OrderedGroup_ZF_1_L4 by auto
with ordGroupAssum A2 have a·c ≤ a·d

using IsAnOrdGroup_def by simp
moreover from A1 T have a·d < b·d

using group_strict_ord_transl_inv by simp
ultimately show a·c < b·d

by (rule group_strict_ord_transit)
qed

We can multiply the sides of two inequalities, second of them strict and we
get a strict inequality.

lemma (in group3) OrderedGroup_ZF_1_L12D:
assumes A1: a≤b and A2: c<d
shows a·c < b·d

proof -
from A1 A2 have T: a∈G b∈G c∈G d∈G

using OrderedGroup_ZF_1_L4 by auto
with A2 have a·c < a·d

using group_strict_ord_transl_inv by simp
moreover from ordGroupAssum A1 T have a·d ≤ b·d

using IsAnOrdGroup_def by simp
ultimately show a·c < b·d

by (rule OrderedGroup_ZF_1_L4A)
qed

17.2 The set of positive elements

In this section we study G+ - the set of elements that are (strictly) greater
than the unit. The most important result is that every linearly ordered
group can decomposed into {1}, G+ and the set of those elements a ∈ G
such that a−1 ∈G+. Another property of linearly ordered groups that we
prove here is that if G+ 6= ∅, then it is infinite. This allows to show that
nontrivial linearly ordered groups are infinite.

The positive set is closed under the group operation.
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lemma (in group3) OrderedGroup_ZF_1_L13: G+ {is closed under} P
proof -

{ fix a b assume a∈G+ b∈G+

then have T1: 1 ≤ a·b and 1 6= a·b
using PositiveSet_def OrderedGroup_ZF_1_L11 OrderedGroup_ZF_1_L12
by auto

moreover from T1 have a·b ∈ G
using OrderedGroup_ZF_1_L4 by simp

ultimately have a·b ∈ G+ using PositiveSet_def by simp
} then show G+ {is closed under} P using IsOpClosed_def

by simp
qed

For totally ordered groups every nonunit element is positive or its inverse is
positive.

lemma (in group3) OrderedGroup_ZF_1_L14:
assumes A1: r {is total on} G and A2: a∈G
shows a=1 ∨ a∈G+ ∨ a−1∈G+

proof -
{ assume A3: a6=1

moreover from A1 A2 have a≤1 ∨ 1≤a
using IsTotal_def OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp

moreover from A3 A2 have T1: a−1 6= 1
using OrderedGroup_ZF_1_L1 group0.group0_2_L8B
by simp

ultimately have a−1∈G+ ∨ a∈G+

using OrderedGroup_ZF_1_L5A OrderedGroup_ZF_1_L2A
by auto

} thus a=1 ∨ a∈G+ ∨ a−1∈G+ by auto
qed

If an element belongs to the positive set, then it is not the unit and its
inverse does not belong to the positive set.

lemma (in group3) OrderedGroup_ZF_1_L15:
assumes A1: a∈G+ shows a6=1 a−1 /∈G+

proof -
from A1 show T1: a6=1 using PositiveSet_def by auto
{ assume a−1 ∈ G+

with A1 have a≤1 1≤a
using OrderedGroup_ZF_1_L5AA PositiveSet_def by auto

then have a=1 by (rule group_order_antisym)
with T1 have False by simp

} then show a−1 /∈G+ by auto
qed

If a−1 is positive, then a can not be positive or the unit.

lemma (in group3) OrderedGroup_ZF_1_L16:
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assumes A1: a∈G and A2: a−1∈G+ shows a6=1 a/∈G+

proof -
from A2 have a−1 6=1 (a−1)−1 /∈ G+

using OrderedGroup_ZF_1_L15 by auto
with A1 show a 6=1 a/∈G+

using OrderedGroup_ZF_1_L1 group0.group0_2_L8C group0.group_inv_of_inv

by auto
qed

For linearly ordered groups each element is either the unit, positive or its
inverse is positive.

lemma (in group3) OrdGroup_decomp:
assumes A1: r {is total on} G and A2: a∈G
shows Exactly_1_of_3_holds (a=1,a∈G+,a−1∈G+)

proof -
from A1 A2 have a=1 ∨ a∈G+ ∨ a−1∈G+

using OrderedGroup_ZF_1_L14 by simp
moreover from A2 have a=1 −→ (a/∈G+ ∧ a−1 /∈G+)

using OrderedGroup_ZF_1_L1 group0.group_inv_of_one
PositiveSet_def by simp

moreover from A2 have a∈G+ −→ (a6=1 ∧ a−1 /∈G+)
using OrderedGroup_ZF_1_L15 by simp

moreover from A2 have a−1∈G+ −→ (a6=1 ∧ a/∈G+)
using OrderedGroup_ZF_1_L16 by simp

ultimately show Exactly_1_of_3_holds (a=1,a∈G+,a−1∈G+)
by (rule Fol1_L5)

qed

A if a is a nonunit element that is not positive, then a−1 is is positive. This
is useful for some proofs by cases.

lemma (in group3) OrdGroup_cases:
assumes A1: r {is total on} G and A2: a∈G
and A3: a6=1 a/∈G+

shows a−1 ∈ G+

proof -
from A1 A2 have a=1 ∨ a∈G+ ∨ a−1∈G+

using OrderedGroup_ZF_1_L14 by simp
with A3 show a−1 ∈ G+ by auto

qed

Elements from G \G+ are not greater that the unit.

lemma (in group3) OrderedGroup_ZF_1_L17:
assumes A1: r {is total on} G and A2: a ∈ G-G+

shows a≤1
proof (cases a = 1)

assume a=1
with A2 show a≤1 using OrderedGroup_ZF_1_L3 by simp
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next assume a 6=1
with A1 A2 show a≤1

using PositiveSet_def OrderedGroup_ZF_1_L8A
by auto

qed

The next lemma allows to split proofs that something holds for all a ∈ G
into cases a = 1, a ∈ G+, −a ∈ G+.

lemma (in group3) OrderedGroup_ZF_1_L18:
assumes A1: r {is total on} G and A2: b∈G
and A3: Q(1) and A4: ∀ a∈G+. Q(a) and A5: ∀ a∈G+. Q(a−1)
shows Q(b)

proof -
from A1 A2 A3 A4 A5 have Q(b) ∨ Q((b−1)−1)

using OrderedGroup_ZF_1_L14 by auto
with A2 show Q(b) using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by simp
qed

All elements greater or equal than an element of G+ belong to G+.

lemma (in group3) OrderedGroup_ZF_1_L19:
assumes A1: a ∈ G+ and A2: a≤b
shows b ∈ G+

proof -
from A1 have I: 1≤a and II: a6=1

using OrderedGroup_ZF_1_L2A by auto
from I A2 have 1≤b by (rule Group_order_transitive)
moreover have b6=1
proof -

{ assume b=1
with I A2 have 1≤a a≤1

by auto
then have 1=a by (rule group_order_antisym)
with II have False by simp

} then show b6=1 by auto
qed
ultimately show b ∈ G+

using OrderedGroup_ZF_1_L2A by simp
qed

The inverse of an element of G+ cannot be in G+.

lemma (in group3) OrderedGroup_ZF_1_L20:
assumes A1: r {is total on} G and A2: a ∈ G+

shows a−1 /∈ G+

proof -
from A2 have a∈G using PositiveSet_def

by simp
with A1 have Exactly_1_of_3_holds (a=1,a∈G+,a−1∈G+)

using OrdGroup_decomp by simp
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with A2 show a−1 /∈ G+ by (rule Fol1_L7)
qed

The set of positive elements of a nontrivial linearly ordered group is not
empty.

lemma (in group3) OrderedGroup_ZF_1_L21:
assumes A1: r {is total on} G and A2: G 6= {1}
shows G+ 6= 0

proof -
have 1 ∈ G using OrderedGroup_ZF_1_L1 group0.group0_2_L2

by simp
with A2 obtain a where a∈G a6=1 by auto
with A1 have a∈G+ ∨ a−1∈G+

using OrderedGroup_ZF_1_L14 by auto
then show G+ 6= 0 by auto

qed

If b ∈G+, then a < a · b. Multiplying a by a positive elemnt increases a.

lemma (in group3) OrderedGroup_ZF_1_L22:
assumes A1: a∈G b∈G+

shows a≤a·b a 6= a·b a·b ∈ G
proof -

from ordGroupAssum A1 have a·1 ≤ a·b
using OrderedGroup_ZF_1_L2A IsAnOrdGroup_def
by simp

with A1 show a≤a·b
using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp

then show a·b ∈ G
using OrderedGroup_ZF_1_L4 by simp

{ from A1 have a∈G b∈G
using PositiveSet_def by auto

moreover assume a = a·b
ultimately have b = 1

using OrderedGroup_ZF_1_L1 group0.group0_2_L7
by simp

with A1 have False using PositiveSet_def
by simp

} then show a 6= a·b by auto
qed

If G is a nontrivial linearly ordered hroup, then for every element of G we
can find one in G+ that is greater or equal.

lemma (in group3) OrderedGroup_ZF_1_L23:
assumes A1: r {is total on} G and A2: G 6= {1}
and A3: a∈G
shows ∃ b∈G+. a≤b

proof (cases a∈G+)
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assume A4: a∈G+ then have a≤a
using PositiveSet_def OrderedGroup_ZF_1_L3
by simp

with A4 show ∃ b∈G+. a≤b by auto
next assume a/∈G+

with A1 A3 have I: a≤1 using OrderedGroup_ZF_1_L17
by simp

from A1 A2 obtain b where II: b∈G+

using OrderedGroup_ZF_1_L21 by auto
then have 1≤b using PositiveSet_def by simp
with I have a≤b by (rule Group_order_transitive)
with II show ∃ b∈G+. a≤b by auto

qed

The G+ is G+ plus the unit.

lemma (in group3) OrderedGroup_ZF_1_L24: shows G+ = G+∪{1}
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L2A OrderedGroup_ZF_1_L3A
by auto

What is −G+, really?

lemma (in group3) OrderedGroup_ZF_1_L25: shows
(-G+) = {a−1. a∈G+}
(-G+) ⊆ G

proof -
from ordGroupAssum have I: GroupInv(G,P) : G→G

using IsAnOrdGroup_def group0_2_T2 by simp
moreover have G+ ⊆ G using PositiveSet_def by auto
ultimately show
(-G+) = {a−1. a∈G+}
(-G+) ⊆ G
using func_imagedef func1_1_L6 by auto

qed

If the inverse of a is in G+, then a is in the inverse of G+.

lemma (in group3) OrderedGroup_ZF_1_L26:
assumes A1: a∈G and A2: a−1 ∈ G+

shows a ∈ (-G+)
proof -

from A1 have a−1 ∈ G a = (a−1)−1 using OrderedGroup_ZF_1_L1
group0.inverse_in_group group0.group_inv_of_inv
by auto

with A2 show a ∈ (-G+) using OrderedGroup_ZF_1_L25
by auto

qed

If a is in the inverse of G+, then its inverse is in G+.

lemma (in group3) OrderedGroup_ZF_1_L27:
assumes a ∈ (-G+)
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shows a−1 ∈ G+

using prems OrderedGroup_ZF_1_L25 PositiveSet_def
OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by auto

A linearly ordered group can be decomposed into G+, {1} and −G

lemma (in group3) OrdGroup_decomp2:
assumes A1: r {is total on} G
shows
G = G+ ∪ (-G+)∪ {1}
G+∩(-G+) = 0
1 /∈ G+∪(-G+)

proof -
{ fix a assume A2: a∈G

with A1 have a∈G+ ∨ a−1∈G+ ∨ a=1
using OrderedGroup_ZF_1_L14 by auto

with A2 have a∈G+ ∨ a∈(-G+) ∨ a=1
using OrderedGroup_ZF_1_L26 by auto

then have a ∈ (G+ ∪ (-G+)∪ {1})
by auto

} then have G ⊆ G+ ∪ (-G+)∪ {1}
by auto

moreover have G+ ∪ (-G+)∪ {1} ⊆ G
using OrderedGroup_ZF_1_L25 PositiveSet_def
OrderedGroup_ZF_1_L1 group0.group0_2_L2

by auto
ultimately show G = G+ ∪ (-G+)∪ {1} by auto
{ def DA: A ≡ G+∩(-G+)

assume G+∩(-G+) 6= 0
with DA have A 6=0 by simp
then obtain a where a∈A by auto
with DA have False using OrderedGroup_ZF_1_L15 OrderedGroup_ZF_1_L27

by auto
} then show G+∩(-G+) = 0 by auto
show 1 /∈ G+∪(-G+)

using OrderedGroup_ZF_1_L27
OrderedGroup_ZF_1_L1 group0.group_inv_of_one
OrderedGroup_ZF_1_L2A by auto

qed

If a · b−1 is nonnegative, then b ≤ a. This maybe used to recover the order
from the set of nonnegative elements and serve as a way to define order by
prescibing that set (see the ”Alternative definitions” section.

lemma (in group3) OrderedGroup_ZF_1_L28:
assumes A1: a∈G b∈G and A2: a·b−1 ∈ G+

shows b≤a
proof -

from A2 have 1 ≤ a·b−1 using OrderedGroup_ZF_1_L2
by simp
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with A1 show b≤a using OrderedGroup_ZF_1_L5K
by simp

qed

A special case of OrderedGroup_ZF_1_L28 when a · b−1 is positive.

corollary (in group3) OrderedGroup_ZF_1_L29:
assumes A1: a∈G b∈G and A2: a·b−1 ∈ G+

shows b≤a b6=a
proof -

from A2 have 1 ≤ a·b−1 and I: a·b−1 6= 1
using OrderedGroup_ZF_1_L2A by auto

with A1 show b≤a using OrderedGroup_ZF_1_L5K
by simp

from A1 I show b6=a
using OrderedGroup_ZF_1_L1 group0.group0_2_L6
by auto

qed

A bit stronger that OrderedGroup_ZF_1_L29, adds case when two elements
are equal.

lemma (in group3) OrderedGroup_ZF_1_L30:
assumes a∈G b∈G and a=b ∨ b·a−1 ∈ G+

shows a≤b
using prems OrderedGroup_ZF_1_L3 OrderedGroup_ZF_1_L29
by auto

A different take on decomposition: we can have a = b or a < b or b < a.

lemma (in group3) OrderedGroup_ZF_1_L31:
assumes A1: r {is total on} G and A2: a∈G b∈G
shows a=b ∨ (a≤b ∧ a 6=b) ∨ (b≤a ∧ b 6=a)

proof -
from A2 have a·b−1 ∈ G using OrderedGroup_ZF_1_L1
group0.inverse_in_group group0.group_op_closed
by simp

with A1 have a·b−1 = 1 ∨ a·b−1 ∈ G+ ∨ (a·b−1)−1 ∈ G+

using OrderedGroup_ZF_1_L14 by simp
moreover
{ assume a·b−1 = 1

then have a·b−1·b = 1·b by simp
with A2 have a=b ∨ (a≤b ∧ a6=b) ∨ (b≤a ∧ b 6=a)

using OrderedGroup_ZF_1_L1
group0.group0_2_L16 group0.group0_2_L2 by auto }

moreover
{ assume a·b−1 ∈ G+

with A2 have a=b ∨ (a≤b ∧ a6=b) ∨ (b≤a ∧ b 6=a)
using OrderedGroup_ZF_1_L29 by auto }

moreover
{ assume (a·b−1)−1 ∈ G+

with A2 have b·a−1 ∈ G+ using OrderedGroup_ZF_1_L1
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group0.group0_2_L12 by simp
with A2 have a=b ∨ (a≤b ∧ a 6=b) ∨ (b≤a ∧ b 6=a)

using OrderedGroup_ZF_1_L29 by auto }
ultimately show a=b ∨ (a≤b ∧ a 6=b) ∨ (b≤a ∧ b 6=a)

by auto
qed

17.3 Intervals and bounded sets

A bounded set can be translated to put it in G+ and then it is still bounded
above.

lemma (in group3) OrderedGroup_ZF_2_L1:
assumes A1: ∀ g∈A. L≤g ∧ g≤M
and A2: S = RightTranslation(G,P,L−1)
and A3: a ∈ S(A)
shows a ≤ M·L−1 1≤a

proof -
from A3 have A6=0 using func1_1_L13A by fast
then obtain g where g∈A by auto
with A1 have T1: L∈G M∈G L−1∈G

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
group0.inverse_in_group by auto

with A2 have S : G→G using OrderedGroup_ZF_1_L1 group0.group0_5_L1
by simp

moreover from A1 have T2: A⊆G using OrderedGroup_ZF_1_L4 by auto
ultimately have S(A) = {S(b). b∈A} using func_imagedef

by simp
with A3 obtain b where T3: b∈A a = S(b) by auto
with A1 ordGroupAssum T1 have b·L−1≤M·L−1 L·L−1≤b·L−1

using IsAnOrdGroup_def by auto
with T3 A2 T1 T2 show a≤M·L−1 1≤a

using OrderedGroup_ZF_1_L1 group0.group0_5_L2 group0.group0_2_L6
by auto

qed

Every bounded set is an image of a subset of an interval that starts at 1.

lemma (in group3) OrderedGroup_ZF_2_L2:
assumes A1: IsBounded(A,r)
shows ∃ B.∃ g∈G+.∃ T∈G→G. A = T(B) ∧ B ⊆ Interval(r,1,g)

proof (cases A=0)
assume A2: A=0
let B = 0
let g = 1
let T = ConstantFunction(G,1)
have g∈G+ using OrderedGroup_ZF_1_L3A by simp
moreover have T : G→G

using func1_3_L1 OrderedGroup_ZF_1_L1 group0.group0_2_L2 by simp
moreover from A2 have A = T(B) by simp
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moreover have B ⊆ Interval(r,1,g) by simp
ultimately show
∃ B.∃ g∈G+.∃ T∈G→G. A = T(B) ∧ B ⊆ Interval(r,1,g)
by auto

next assume A3: A6=0
with A1 obtain L U where D1: ∀ x∈A. L≤x ∧ x≤U

using IsBounded_def IsBoundedBelow_def IsBoundedAbove_def
by auto

with A3 have T1: A⊆G using OrderedGroup_ZF_1_L4 by auto
from A3 obtain a where a∈A by auto
with D1 have T2: L≤a a≤U by auto
then have T3: L∈G L−1∈ G U∈G

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
group0.inverse_in_group by auto

let T = RightTranslation(G,P,L)
let B = RightTranslation(G,P,L−1)(A)
let g = U·L−1

have g∈G+

proof -
from T2 have L≤U using Group_order_transitive by fast
with ordGroupAssum T3 have L·L−1≤g

using IsAnOrdGroup_def by simp
with T3 show thesis using OrderedGroup_ZF_1_L1 group0.group0_2_L6
OrderedGroup_ZF_1_L2 by simp

qed
moreover from T3 have T : G→G

using OrderedGroup_ZF_1_L1 group0.group0_5_L1
by simp

moreover have A = T(B)
proof -

from T3 T1 have T(B) = {a·L−1·L. a∈A}
using OrderedGroup_ZF_1_L1 group0.group0_5_L6
by simp

moreover from T3 T1 have ∀ a∈A. a·L−1·L = a·(L−1·L)
using OrderedGroup_ZF_1_L1 group0.group_oper_assoc by auto

ultimately have T(B) = {a·(L−1·L). a∈A} by simp
with T3 have T(B) = {a·1. a∈A}

using OrderedGroup_ZF_1_L1 group0.group0_2_L6 by simp
moreover from T1 have ∀ a∈A. a·1=a

using OrderedGroup_ZF_1_L1 group0.group0_2_L2 by auto
ultimately show thesis by simp

qed
moreover have B ⊆ Interval(r,1,g)
proof

fix y assume A4: y ∈ B
def D2: S ≡ RightTranslation(G,P,L−1)
from D1 have T4: ∀ x∈A. L≤x ∧ x≤U by simp
moreover from D2 have T5: S = RightTranslation(G,P,L−1)

by simp
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moreover from A4 D2 have T6: y ∈ S(A) by simp
ultimately have y≤U·L−1 using OrderedGroup_ZF_2_L1

by blast
moreover from T4 T5 T6 have 1≤y by (rule OrderedGroup_ZF_2_L1)
ultimately show y ∈ Interval(r,1,g) using Interval_def by auto

qed
ultimately show
∃ B.∃ g∈G+.∃ T∈G→G. A = T(B) ∧ B ⊆ Interval(r,1,g)
by auto

qed

If every interval starting at 1 is finite, then every bounded set is finite. I
find it interesting that this does not require the group to be linearly ordered
(the order to be total).

theorem (in group3) OrderedGroup_ZF_2_T1:
assumes A1: ∀ g∈G+. Interval(r,1,g) ∈ Fin(G)
and A2: IsBounded(A,r)
shows A ∈ Fin(G)

proof -
from A2 have
∃ B.∃ g∈G+.∃ T∈G→G. A = T(B) ∧ B ⊆ Interval(r,1,g)
using OrderedGroup_ZF_2_L2 by simp

then obtain B g T where D1: g∈G+ B ⊆ Interval(r,1,g)
and D2: T : G→G A = T(B) by auto

from D1 A1 have B∈Fin(G) using Fin_subset_lemma by blast
with D2 show thesis using Finite1_L6A by simp

qed

In linearly ordered groups finite sets are bounded.

theorem (in group3) ord_group_fin_bounded:
assumes r {is total on} G and B∈Fin(G)
shows IsBounded(B,r)
using ordGroupAssum prems IsAnOrdGroup_def IsPartOrder_def Finite_ZF_1_T1
by simp

For nontrivial linearly ordered groups if for every element G we can find one
in A that is greater or equal (not necessarily strictly greater), then A can
neither be finite nor bounded above.

lemma (in group3) OrderedGroup_ZF_2_L2A:
assumes A1: r {is total on} G and A2: G 6= {1}
and A3: ∀ a∈G. ∃ b∈A. a≤b
shows
∀ a∈G. ∃ b∈A. a6=b ∧ a≤b
¬IsBoundedAbove(A,r)
A /∈ Fin(G)

proof -
{ fix a

from A1 A2 obtain c where c ∈ G+

216



using OrderedGroup_ZF_1_L21 by auto
moreover assume a∈G
ultimately have
a·c ∈ G and I: a < a·c
using OrderedGroup_ZF_1_L22 by auto

with A3 obtain b where II: b∈A and III: a·c ≤ b
by auto

moreover from I III have a<b by (rule OrderedGroup_ZF_1_L4A)
ultimately have ∃ b∈A. a6=b ∧ a≤b by auto

} thus ∀ a∈G. ∃ b∈A. a6=b ∧ a≤b by simp
with ordGroupAssum A1 show
¬IsBoundedAbove(A,r)
A /∈ Fin(G)
using IsAnOrdGroup_def IsPartOrder_def
OrderedGroup_ZF_1_L1A Order_ZF_3_L14 Finite_ZF_1_1_L3
by auto

qed

Nontrivial linearly ordered groups are infinite. Recall that Fin(A) is the
collection of finite subsets of A. In this lemma we show that G /∈ Fin(G),
that is that G is not a finite subset of itself. This is a way of saying that
G is infinite. We also show that for nontrivial linearly ordered groups G+ is
infinite.

theorem (in group3) Linord_group_infinite:
assumes A1: r {is total on} G and A2: G 6= {1}
shows
G+ /∈ Fin(G)
G /∈ Fin(G)

proof -
from A1 A2 show I: G+ /∈ Fin(G)

using OrderedGroup_ZF_1_L23 OrderedGroup_ZF_2_L2A
by simp

{ assume G ∈ Fin(G)
moreover have G+ ⊆ G using PositiveSet_def by auto
ultimately have G+ ∈ Fin(G) using Fin_subset_lemma

by blast
with I have False by simp

} then show G /∈ Fin(G) by auto
qed

A property of nonempty subsets of linearly ordered groups that don’t have
a maximum: for any element in such subset we can find one that is strictly
greater.

lemma (in group3) OrderedGroup_ZF_2_L2B:
assumes A1: r {is total on} G and A2: A⊆G and
A3: ¬HasAmaximum(r,A) and A4: x∈A
shows ∃ y∈A. x<y

proof -
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from ordGroupAssum prems have
antisym(r)
r {is total on} G
A⊆G ¬HasAmaximum(r,A) x∈A
using IsAnOrdGroup_def IsPartOrder_def
by auto

then have ∃ y∈A. 〈x,y〉 ∈ r ∧ y 6=x
using Order_ZF_4_L16 by simp

then show ∃ y∈A. x<y by auto
qed

In linearly ordered groups G \G+ is bounded above.

lemma (in group3) OrderedGroup_ZF_2_L3:
assumes A1: r {is total on} G shows IsBoundedAbove(G-G+,r)

proof -
from A1 have ∀ a∈G-G+. a≤1

using OrderedGroup_ZF_1_L17 by simp
then show IsBoundedAbove(G-G+,r)

using IsBoundedAbove_def by auto
qed

In linearly ordered groups if A ∩G+ is finite, then A is bounded above.

lemma (in group3) OrderedGroup_ZF_2_L4:
assumes A1: r {is total on} G and A2: A⊆G
and A3: A ∩ G+ ∈ Fin(G)
shows IsBoundedAbove(A,r)

proof -
have A ∩ (G-G+) ⊆ G-G+ by auto
with A1 have IsBoundedAbove(A ∩ (G-G+),r)

using OrderedGroup_ZF_2_L3 Order_ZF_3_L13
by blast

moreover from A1 A3 have IsBoundedAbove(A ∩ G+,r)
using ord_group_fin_bounded IsBounded_def
by simp

moreover from A1 ordGroupAssum have
r {is total on} G trans(r) r⊆G×G
using IsAnOrdGroup_def IsPartOrder_def by auto

ultimately have IsBoundedAbove(A ∩ (G-G+) ∪ A ∩ G+,r)
using Order_ZF_3_L3 by simp

moreover from A2 have A = A ∩ (G-G+) ∪ A ∩ G+

by auto
ultimately show IsBoundedAbove(A,r) by simp

qed

If a set −A ⊆ G is bounded above, then A is bounded below.

lemma (in group3) OrderedGroup_ZF_2_L5:
assumes A1: A⊆G and A2: IsBoundedAbove(-A,r)
shows IsBoundedBelow(A,r)

proof (cases A = 0)
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assume A = 0 show IsBoundedBelow(A,r)
using IsBoundedBelow_def by auto

next assume A3: A6=0
from ordGroupAssum have I: GroupInv(G,P) : G→G

using IsAnOrdGroup_def group0_2_T2 by simp
with A1 A2 A3 obtain u where D: ∀ a∈(-A). a≤u

using func1_1_L15A IsBoundedAbove_def by auto
{ fix b assume b∈A

with A1 I D have b−1 ≤ u and T: b∈G
using func_imagedef by auto

then have u−1≤(b−1)−1 using OrderedGroup_ZF_1_L5
by simp

with T have u−1≤b
using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
by simp

} then have ∀ b∈A. 〈u−1,b〉 ∈ r by simp
then show IsBoundedBelow(A,r)

using Order_ZF_3_L9 by blast
qed

if a ≤ b, then the image of the interval a..b by any function is nonempty.

lemma (in group3) OrderedGroup_ZF_2_L6:
assumes a≤b and f:G→G
shows f(Interval(r,a,b)) 6= 0
using ordGroupAssum prems OrderedGroup_ZF_1_L4
Order_ZF_2_L6 Order_ZF_2_L2A
IsAnOrdGroup_def IsPartOrder_def func1_1_L15A

by auto

17.4 Absolute value and the triangle inequality

The goal of this section is to prove the triangle inequality for ordered groups.

Absolute value maps G into G.

lemma (in group3) OrderedGroup_ZF_3_L1:
AbsoluteValue(G,P,r) : G→G

proof -
let f = id(G+)
let g = restrict(GroupInv(G,P),G-G+)
have f : G+→G+ using id_type by simp
then have f : G+→G using OrderedGroup_ZF_1_L4E

by (rule fun_weaken_type)
moreover have g : G-G+→G
proof -

from ordGroupAssum have GroupInv(G,P) : G→G
using IsAnOrdGroup_def group0_2_T2 by simp

moreover have G-G+ ⊆ G by auto
ultimately show thesis using restrict_type2 by simp

qed
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moreover have G+∩(G-G+) = 0 by blast
ultimately have f ∪ g : G+∪(G-G+)→G∪G

by (rule fun_disjoint_Un)
moreover have G+∪(G-G+) = G using OrderedGroup_ZF_1_L4E

by auto
ultimately show AbsoluteValue(G,P,r) : G→G

using AbsoluteValue_def by simp
qed

If a ∈ G+, then |a| = a.

lemma (in group3) OrderedGroup_ZF_3_L2:
assumes A1: a∈G+ shows |a| = a

proof -
from ordGroupAssum have GroupInv(G,P) : G→G

using IsAnOrdGroup_def group0_2_T2 by simp
with A1 show thesis using
func1_1_L1 OrderedGroup_ZF_1_L4E fun_disjoint_apply1
AbsoluteValue_def id_conv by simp

qed

lemma (in group3) OrderedGroup_ZF_3_L2A:
shows |1| = 1 using OrderedGroup_ZF_1_L3A OrderedGroup_ZF_3_L2
by simp

If a is positive, then |a| = a.

lemma (in group3) OrderedGroup_ZF_3_L2B:
assumes a∈G+ shows |a| = a
using prems PositiveSet_def Nonnegative_def OrderedGroup_ZF_3_L2
by auto

If a ∈ G \G+, then |a| = a−1.

lemma (in group3) OrderedGroup_ZF_3_L3:
assumes A1: a ∈ G-G+ shows |a| = a−1

proof -
have domain(id(G+)) = G+

using id_type func1_1_L1 by auto
with A1 show thesis using fun_disjoint_apply2 AbsoluteValue_def
restrict by simp

qed

For elements that not greater than the unit, the absolute value is the inverse.

lemma (in group3) OrderedGroup_ZF_3_L3A:
assumes A1: a≤1
shows |a| = a−1

proof (cases a=1)
assume a=1 then show |a| = a−1

using OrderedGroup_ZF_3_L2A OrderedGroup_ZF_1_L1 group0.group_inv_of_one
by simp
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next assume a 6=1
with A1 show |a| = a−1 using OrderedGroup_ZF_1_L4C OrderedGroup_ZF_3_L3

by simp
qed

In linearly ordered groups the absolute value of any element is in G+.

lemma (in group3) OrderedGroup_ZF_3_L3B:
assumes A1: r {is total on} G and A2: a∈G
shows |a| ∈ G+

proof (cases a∈G+)
assume a ∈ G+ then show |a| ∈ G+

using OrderedGroup_ZF_3_L2 by simp
next assume a /∈ G+

with A1 A2 show |a| ∈ G+ using OrderedGroup_ZF_3_L3
OrderedGroup_ZF_1_L6 by simp

qed

For linearly ordered groups (where the order is total), the absolute value
maps the group into the positive set.

lemma (in group3) OrderedGroup_ZF_3_L3C:
assumes A1: r {is total on} G
shows AbsoluteValue(G,P,r) : G→G+

proof-
have AbsoluteValue(G,P,r) : G→G using OrderedGroup_ZF_3_L1

by simp
moreover from A1 have T2:
∀ g∈G. AbsoluteValue(G,P,r)(g) ∈ G+

using OrderedGroup_ZF_3_L3B by simp
ultimately show thesis by (rule func1_1_L1A)

qed

If the absolute value is the unit, then the elemnent is the unit.

lemma (in group3) OrderedGroup_ZF_3_L3D:
assumes A1: a∈G and A2: |a| = 1
shows a = 1

proof (cases a∈G+)
assume a ∈ G+

with A2 show a = 1 using OrderedGroup_ZF_3_L2 by simp
next assume a /∈ G+

with A1 A2 show a = 1 using
OrderedGroup_ZF_3_L3 OrderedGroup_ZF_1_L1 group0.group0_2_L8A
by auto

qed

In linearly ordered groups the unit is not greater than the absolute value of
any element.

lemma (in group3) OrderedGroup_ZF_3_L3E:
assumes r {is total on} G and a∈G
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shows 1 ≤ |a|
using prems OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L2 by simp

If b is greater than both a and a−1, then b is greater than |a|.
lemma (in group3) OrderedGroup_ZF_3_L4:

assumes A1: a≤b and A2: a−1≤ b
shows |a|≤ b

proof (cases a∈G+)
assume a∈G+

with A1 show |a|≤ b using OrderedGroup_ZF_3_L2 by simp
next assume a/∈G+

with A1 A2 show |a|≤ b
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_3_L3 by simp

qed

In linearly ordered groups a ≤ |a|.
lemma (in group3) OrderedGroup_ZF_3_L5:

assumes A1: r {is total on} G and A2: a∈G
shows a ≤ |a|

proof (cases a∈G+)
assume a ∈ G+

with A2 show a ≤ |a|
using OrderedGroup_ZF_3_L2 OrderedGroup_ZF_1_L3 by simp

next assume a /∈ G+

with A1 A2 show a ≤ |a|
using OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L4B by simp

qed

a−1 ≤ |a| (in additive notation it would be −a ≤ |a|.
lemma (in group3) OrderedGroup_ZF_3_L6:

assumes A1: a∈G shows a−1 ≤ |a|
proof (cases a∈G+)

assume a ∈ G+

then have T1: 1≤a and T2: |a| = a using OrderedGroup_ZF_1_L2
OrderedGroup_ZF_3_L2 by auto

then have a−1≤1−1 using OrderedGroup_ZF_1_L5 by simp
then have T3: a−1≤1

using OrderedGroup_ZF_1_L1 group0.group_inv_of_one by simp
from T3 T1 have a−1≤a by (rule Group_order_transitive)
with T2 show a−1 ≤ |a| by simp

next assume A2: a /∈ G+

from A1 have |a| ∈ G
using OrderedGroup_ZF_3_L1 apply_funtype by auto

with ordGroupAssum have |a| ≤ |a|
using IsAnOrdGroup_def IsPartOrder_def refl_def by simp

with A1 A2 show a−1 ≤ |a| using OrderedGroup_ZF_3_L3 by simp
qed

Some inequalities about the product of two elements of a linearly ordered
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group and its absolute value.

lemma (in group3) OrderedGroup_ZF_3_L6A:
assumes r {is total on} G and a∈G b∈G
shows
a·b ≤|a|·|b|
a·b−1 ≤|a|·|b|
a−1·b ≤|a|·|b|
a−1·b−1 ≤|a|·|b|
using prems OrderedGroup_ZF_3_L5 OrderedGroup_ZF_3_L6
OrderedGroup_ZF_1_L5B by auto

|a−1| ≤ |a|.
lemma (in group3) OrderedGroup_ZF_3_L7:

assumes r {is total on} G and a∈G
shows |a−1|≤|a|
using prems OrderedGroup_ZF_3_L5 OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
OrderedGroup_ZF_3_L6 OrderedGroup_ZF_3_L4 by simp

|a−1| = |a|.
lemma (in group3) OrderedGroup_ZF_3_L7A:

assumes A1: r {is total on} G and A2: a∈G
shows |a−1| = |a|

proof -
from A2 have a−1∈G using OrderedGroup_ZF_1_L1 group0.inverse_in_group

by simp
with A1 have |(a−1)−1| ≤ |a−1| using OrderedGroup_ZF_3_L7 by simp
with A1 A2 have |a−1| ≤ |a| |a| ≤ |a−1|

using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv OrderedGroup_ZF_3_L7
by auto

then show thesis by (rule group_order_antisym)
qed

|a · b−1| = |b · a−1|. It doesn’t look so strange in the additive notation:
|a− b| = |b− a|.
lemma (in group3) OrderedGroup_ZF_3_L7B:

assumes A1: r {is total on} G and A2: a∈G b∈G
shows |a·b−1| = |b·a−1|

proof -
from A1 A2 have |(a·b−1)−1| = |a·b−1| using
OrderedGroup_ZF_1_L1 group0.inverse_in_group group0.group0_2_L1
monoid0.group0_1_L1 OrderedGroup_ZF_3_L7A by simp

moreover from A2 have (a·b−1)−1 = b·a−1

using OrderedGroup_ZF_1_L1 group0.group0_2_L12 by simp
ultimately show thesis by simp

qed

Triangle inequality for linearly ordered abelian groups. It would be nice to
drop commutativity or give an example that shows we can’t do that.
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theorem (in group3) OrdGroup_triangle_ineq:
assumes A1: P {is commutative on} G
and A2: r {is total on} G and A3: a∈G b∈G
shows |a·b| ≤ |a|·|b|

proof -
from A1 A2 A3 have
a ≤ |a| b ≤ |b| a−1 ≤ |a| b−1 ≤ |b|
using OrderedGroup_ZF_3_L5 OrderedGroup_ZF_3_L6 by auto

then have a·b ≤ |a|·|b| a−1·b−1 ≤ |a|·|b|
using OrderedGroup_ZF_1_L5B by auto

with A1 A3 show |a·b| ≤ |a|·|b|
using OrderedGroup_ZF_1_L1 group0.group_inv_of_two IsCommutative_def

OrderedGroup_ZF_3_L4 by simp
qed

We can multiply the sides of an inequality with absolute value.

lemma (in group3) OrderedGroup_ZF_3_L7C:
assumes A1: P {is commutative on} G
and A2: r {is total on} G and A3: a∈G b∈G
and A4: |a| ≤ c |b| ≤ d
shows |a·b| ≤ c·d

proof -
from A1 A2 A3 A4 have |a·b| ≤ |a|·|b|

using OrderedGroup_ZF_1_L4 OrdGroup_triangle_ineq
by simp

moreover from A4 have |a|·|b| ≤ c·d
using OrderedGroup_ZF_1_L5B by simp

ultimately show thesis by (rule Group_order_transitive)
qed

A version of the OrderedGroup_ZF_3_L7C but with multiplying by the inverse.

lemma (in group3) OrderedGroup_ZF_3_L7CA:
assumes P {is commutative on} G
and r {is total on} G and a∈G b∈G
and |a| ≤ c |b| ≤ d
shows |a·b−1| ≤ c·d
using prems OrderedGroup_ZF_1_L1 group0.inverse_in_group
OrderedGroup_ZF_3_L7A OrderedGroup_ZF_3_L7C by simp

Triangle inequality with three integers.

lemma (in group3) OrdGroup_triangle_ineq3:
assumes A1: P {is commutative on} G
and A2: r {is total on} G and A3: a∈G b∈G c∈G
shows |a·b·c| ≤ |a|·|b|·|c|

proof -
from A3 have T: a·b ∈ G |c| ∈ G

using OrderedGroup_ZF_1_L1 group0.group_op_closed
OrderedGroup_ZF_3_L1 apply_funtype by auto
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with A1 A2 A3 have |a·b·c| ≤ |a·b|·|c|
using OrdGroup_triangle_ineq by simp

moreover from ordGroupAssum A1 A2 A3 T have
|a·b|·|c| ≤ |a|·|b|·|c|
using OrdGroup_triangle_ineq IsAnOrdGroup_def by simp

ultimately show |a·b·c| ≤ |a|·|b|·|c|
by (rule Group_order_transitive)

qed

Some variants of the triangle inequality.

lemma (in group3) OrderedGroup_ZF_3_L7D:
assumes A1: P {is commutative on} G
and A2: r {is total on} G and A3: a∈G b∈G
and A4: |a·b−1| ≤ c
shows
|a| ≤ c·|b|
|a| ≤ |b|·c
c−1·a ≤ b
a·c−1 ≤ b
a ≤ b·c

proof -
from A3 A4 have
T: a·b−1 ∈ G |b| ∈ G c∈G c−1 ∈ G
using OrderedGroup_ZF_1_L1
group0.inverse_in_group group0.group0_2_L1 monoid0.group0_1_L1
OrderedGroup_ZF_3_L1 apply_funtype OrderedGroup_ZF_1_L4

by auto
from A3 have |a| = |a·b−1·b|

using OrderedGroup_ZF_1_L1 group0.group0_2_L16
by simp

with A1 A2 A3 T have |a| ≤ |a·b−1|·|b|
using OrdGroup_triangle_ineq by simp

with T A4 show |a| ≤ c·|b| using OrderedGroup_ZF_1_L5C
by blast

with T A1 show |a| ≤ |b|·c
using IsCommutative_def by simp

from A2 T have a·b−1 ≤ |a·b−1|
using OrderedGroup_ZF_3_L5 by simp

moreover from A4 have |a·b−1| ≤ c .
ultimately have I: a·b−1 ≤ c

by (rule Group_order_transitive)
with A3 show c−1·a ≤ b

using OrderedGroup_ZF_1_L5H by simp
with A1 A3 T show a·c−1 ≤ b

using IsCommutative_def by simp
from A1 A3 T I show a ≤ b·c

using OrderedGroup_ZF_1_L5H IsCommutative_def
by auto

qed
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Some more variants of the triangle inequality.

lemma (in group3) OrderedGroup_ZF_3_L7E:
assumes A1: P {is commutative on} G
and A2: r {is total on} G and A3: a∈G b∈G
and A4: |a·b−1| ≤ c
shows b·c−1 ≤ a

proof -
from A3 have a·b−1 ∈ G

using OrderedGroup_ZF_1_L1
group0.inverse_in_group group0.group_op_closed

by auto
with A2 have |(a·b−1)−1| = |a·b−1|

using OrderedGroup_ZF_3_L7A by simp
moreover from A3 have (a·b−1)−1 = b·a−1

using OrderedGroup_ZF_1_L1 group0.group0_2_L12
by simp

ultimately have |b·a−1| = |a·b−1|
by simp

with A1 A2 A3 A4 show b·c−1 ≤ a
using OrderedGroup_ZF_3_L7D by simp

qed

An application of the triangle inequality with four group elements.

lemma (in group3) OrderedGroup_ZF_3_L7F:
assumes A1: P {is commutative on} G
and A2: r {is total on} G and
A3: a∈G b∈G c∈G d∈G
shows |a·c−1| ≤ |a·b|·|c·d|·|b·d−1|

proof -
from A3 have T:
a·c−1 ∈ G a·b ∈ G c·d ∈ G b·d−1 ∈ G
(c·d)−1 ∈ G (b·d−1)−1 ∈ G
using OrderedGroup_ZF_1_L1
group0.inverse_in_group group0.group_op_closed

by auto
with A1 A2 have |(a·b)·(c·d)−1·(b·d−1)−1| ≤ |a·b|·|(c·d)−1|·|(b·d−1)−1|

using OrdGroup_triangle_ineq3 by simp
moreover from A2 T have |(c·d)−1| =|c·d| and |(b·d−1)−1| = |b·d−1|

using OrderedGroup_ZF_3_L7A by auto
moreover from A1 A3 have (a·b)·(c·d)−1·(b·d−1)−1 = a·c−1

using OrderedGroup_ZF_1_L1 group0.group0_4_L8
by simp

ultimately show |a·c−1| ≤ |a·b|·|c·d|·|b·d−1|
by simp

qed

|a| ≤ L implies L−1 ≤ a (it would be −L ≤ a in the additive notation).

lemma (in group3) OrderedGroup_ZF_3_L8:
assumes A1: a∈G and A2: |a|≤L
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shows
L−1≤a

proof -
from A1 have I: a−1 ≤ |a| using OrderedGroup_ZF_3_L6 by simp
from I A2 have a−1 ≤ L by (rule Group_order_transitive)
then have L−1≤(a−1)−1 using OrderedGroup_ZF_1_L5 by simp
with A1 show L−1≤a using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by simp
qed

In linearly ordered groups |a| ≤ L implies a ≤ L (it would be a ≤ L in the
additive notation).

lemma (in group3) OrderedGroup_ZF_3_L8A:
assumes A1: r {is total on} G
and A2: a∈G and A3: |a|≤L
shows
a≤L
1≤L

proof -
from A1 A2 have I: a ≤ |a| using OrderedGroup_ZF_3_L5 by simp
from I A3 show a≤L by (rule Group_order_transitive)
from A1 A2 A3 have 1 ≤ |a| |a|≤L

using OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L2 by auto
then show 1≤L by (rule Group_order_transitive)

qed

A somewhat generalized version of the above lemma.

lemma (in group3) OrderedGroup_ZF_3_L8B:
assumes A1: a∈G and A2: |a|≤L and A3: 1≤c
shows (L·c)−1 ≤ a

proof -
from A1 A2 A3 have c−1·L−1 ≤ 1·a

using OrderedGroup_ZF_3_L8 OrderedGroup_ZF_1_L5AB
OrderedGroup_ZF_1_L5B by simp

with A1 A2 A3 show (L·c)−1 ≤ a
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
group0.group_inv_of_two group0.group0_2_L2

by simp
qed

If b is between a and a · c, then b · a−1 ≤ c.

lemma (in group3) OrderedGroup_ZF_3_L8C:
assumes A1: a≤b and A2: c∈G and A3: b≤c·a
shows |b·a−1| ≤ c

proof -
from A1 A2 A3 have b·a−1 ≤ c

using OrderedGroup_ZF_1_L9C OrderedGroup_ZF_1_L4
by simp

moreover have (b·a−1)−1 ≤ c
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proof -
from A1 have T: a∈G b∈G

using OrderedGroup_ZF_1_L4 by auto
with A1 have a·b−1 ≤ 1

using OrderedGroup_ZF_1_L9 by blast
moreover
from A1 A3 have a≤c·a

by (rule Group_order_transitive)
with ordGroupAssum T have a·a−1 ≤ c·a·a−1

using OrderedGroup_ZF_1_L1 group0.inverse_in_group
IsAnOrdGroup_def by simp

with T A2 have 1 ≤ c
using OrderedGroup_ZF_1_L1
group0.group0_2_L6 group0.group0_2_L16

by simp
ultimately have a·b−1 ≤ c

by (rule Group_order_transitive)
with T show (b·a−1)−1 ≤ c

using OrderedGroup_ZF_1_L1 group0.group0_2_L12
by simp

qed
ultimately show |b·a−1| ≤ c

using OrderedGroup_ZF_3_L4 by simp
qed

For linearly ordered groups if the absolute values of elements in a set are
bounded, then the set is bounded.

lemma (in group3) OrderedGroup_ZF_3_L9:
assumes A1: r {is total on} G
and A2: A⊆G and A3: ∀ a∈A. |a| ≤ L
shows IsBounded(A,r)

proof -
from A1 A2 A3 have
∀ a∈A. a≤L ∀ a∈A. L−1≤a
using OrderedGroup_ZF_3_L8 OrderedGroup_ZF_3_L8A by auto

then show IsBounded(A,r) using
IsBoundedAbove_def IsBoundedBelow_def IsBounded_def
by auto

qed

A slightly more general version of the previous lemma, stating the same fact
for a set defined by separation.

lemma (in group3) OrderedGroup_ZF_3_L9A:
assumes A1: r {is total on} G
and A2: ∀ x∈X. b(x)∈G ∧ |b(x)|≤L
shows IsBounded({b(x). x∈X},r)

proof -
from A2 have {b(x). x∈X} ⊆ G ∀ a∈{b(x). x∈X}. |a| ≤ L

by auto
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with A1 show thesis using OrderedGroup_ZF_3_L9 by blast
qed

A special form of the previous lemma stating a similar fact for an image of
a set by a function with values in a linearly ordered group.

lemma (in group3) OrderedGroup_ZF_3_L9B:
assumes A1: r {is total on} G
and A2: f:X→G and A3: A⊆X
and A4: ∀ x∈A. |f(x)| ≤ L
shows IsBounded(f(A),r)

proof -
from A2 A3 A4 have ∀ x∈A. f(x) ∈ G ∧ |f(x)| ≤ L

using apply_funtype by auto
with A1 have IsBounded({f(x). x∈A},r)

by (rule OrderedGroup_ZF_3_L9A)
with A2 A3 show IsBounded(f(A),r)

using func_imagedef by simp
qed

For linearly ordered groups if l ≤ a ≤ u then |a| is smaller than the greater
of |l|, |u|.
lemma (in group3) OrderedGroup_ZF_3_L10:

assumes A1: r {is total on} G
and A2: l≤a a≤u
shows
|a| ≤ GreaterOf(r,|l|,|u|)

proof (cases a∈G+)
from A2 have T1: |l| ∈ G |a| ∈ G |u| ∈ G

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_3_L1 apply_funtype
by auto

assume A3: a∈G+

with A2 have 1≤a a≤u
using OrderedGroup_ZF_1_L2 by auto

then have 1≤u by (rule Group_order_transitive)
with A2 A3 have |a|≤|u|

using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_3_L2 by simp
moreover from A1 T1 have |u| ≤ GreaterOf(r,|l|,|u|)

using Order_ZF_3_L2 by simp
ultimately show |a| ≤ GreaterOf(r,|l|,|u|)

by (rule Group_order_transitive)
next assume A4: a/∈G+

with A2 have T2:
l∈G |l| ∈ G |a| ∈ G |u| ∈ G a ∈ G-G+

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_3_L1 apply_funtype
by auto

with A2 have l ∈ G-G+ using OrderedGroup_ZF_1_L4D by fast
with T2 A2 have |a| ≤ |l|

using OrderedGroup_ZF_3_L3 OrderedGroup_ZF_1_L5
by simp
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moreover from A1 T2 have |l| ≤ GreaterOf(r,|l|,|u|)
using Order_ZF_3_L2 by simp

ultimately show |a| ≤ GreaterOf(r,|l|,|u|)
by (rule Group_order_transitive)

qed

For linearly ordered groups if a set is bounded then the absolute values are
bounded.

lemma (in group3) OrderedGroup_ZF_3_L10A:
assumes A1: r {is total on} G
and A2: IsBounded(A,r)
shows ∃ L. ∀ a∈A. |a| ≤ L

proof (cases A=0)
assume A = 0 then show thesis by auto

next assume A3: A6=0
with A2 obtain u l where ∀ g∈A. l≤g ∧ g≤u

using IsBounded_def IsBoundedAbove_def IsBoundedBelow_def
by auto

with A1 have ∀ a∈A. |a| ≤ GreaterOf(r,|l|,|u|)
using OrderedGroup_ZF_3_L10 by simp

then show thesis by auto
qed

A slightly more general version of the previous lemma, stating the same fact
for a set defined by separation.

lemma (in group3) OrderedGroup_ZF_3_L11:
assumes A1: r {is total on} G
and A2: IsBounded({b(x).x∈X},r)
shows ∃ L. ∀ x∈X. |b(x)| ≤ L

proof -
from A1 A2 show thesis using OrderedGroup_ZF_3_L10A

by blast
qed

Absolute values of elements of a finite image of a nonempty set are bounded
by an element of the group.

lemma (in group3) OrderedGroup_ZF_3_L11A:
assumes A1: r {is total on} G
and A2: X6=0 and A3: {b(x). x∈X} ∈ Fin(G)
shows ∃ L∈G. ∀ x∈X. |b(x)| ≤ L

proof -
from A1 A3 have ∃ L. ∀ x∈X. |b(x)| ≤ L

using ord_group_fin_bounded OrderedGroup_ZF_3_L11
by simp

then obtain L where I: ∀ x∈X. |b(x)| ≤ L
using OrderedGroup_ZF_3_L11 by auto

from A2 obtain x where x∈X by auto
with I show thesis using OrderedGroup_ZF_1_L4
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by blast
qed

In totally oredered groups the absolute value of a nonunit element is in G+.

lemma (in group3) OrderedGroup_ZF_3_L12:
assumes A1: r {is total on} G
and A2: a∈G and A3: a6=1
shows |a| ∈ G+

proof -
from A1 A2 have |a| ∈ G 1 ≤ |a|

using OrderedGroup_ZF_3_L1 apply_funtype
OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L2

by auto
moreover from A2 A3 have |a| 6= 1

using OrderedGroup_ZF_3_L3D by auto
ultimately show |a| ∈ G+

using PositiveSet_def by auto
qed

17.5 Maximum absolute value of a set

Quite often when considering inequalities we prefer to talk about the abso-
lute values instead of raw elements of a set. This section formalizes some
material that is useful for that.

If a set has a maximum and minimum, then the greater of the absolute
value of the maximum and minimum belongs to the image of the set by the
absolute value function.

lemma (in group3) OrderedGroup_ZF_4_L1:
assumes A ⊆ G
and HasAmaximum(r,A) HasAminimum(r,A)
and M = GreaterOf(r,|Minimum(r,A)|,|Maximum(r,A)|)
shows M ∈ AbsoluteValue(G,P,r)(A)
using ordGroupAssum prems IsAnOrdGroup_def IsPartOrder_def
Order_ZF_4_L3 Order_ZF_4_L4 OrderedGroup_ZF_3_L1
func_imagedef GreaterOf_def by auto

If a set has a maximum and minimum, then the greater of the absolute value
of the maximum and minimum bounds absolute values of all elements of the
set.

lemma (in group3) OrderedGroup_ZF_4_L2:
assumes A1: r {is total on} G
and A2: HasAmaximum(r,A) HasAminimum(r,A)
and A3: a∈A
shows |a|≤ GreaterOf(r,|Minimum(r,A)|,|Maximum(r,A)|)

proof -
from ordGroupAssum A2 A3 have
Minimum(r,A)≤ a a≤ Maximum(r,A)
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using IsAnOrdGroup_def IsPartOrder_def Order_ZF_4_L3 Order_ZF_4_L4
by auto

with A1 show thesis by (rule OrderedGroup_ZF_3_L10)
qed

If a set has a maximum and minimum, then the greater of the absolute value
of the maximum and minimum bounds absolute values of all elements of the
set. In this lemma the absolute values of ekements of a set are represented
as the elements of the image of the set by the absolute value function.

lemma (in group3) OrderedGroup_ZF_4_L3:
assumes r {is total on} G and A ⊆ G
and HasAmaximum(r,A) HasAminimum(r,A)
and b ∈ AbsoluteValue(G,P,r)(A)
shows b≤ GreaterOf(r,|Minimum(r,A)|,|Maximum(r,A)|)
using prems OrderedGroup_ZF_3_L1 func_imagedef OrderedGroup_ZF_4_L2
by auto

If a set has a maximum and minimum, then the set of absolute values also
has a maximum.

lemma (in group3) OrderedGroup_ZF_4_L4:
assumes A1: r {is total on} G and A2: A ⊆ G
and A3: HasAmaximum(r,A) HasAminimum(r,A)
shows HasAmaximum(r,AbsoluteValue(G,P,r)(A))

proof -
let M = GreaterOf(r,|Minimum(r,A)|,|Maximum(r,A)|)
from A2 A3 have M ∈ AbsoluteValue(G,P,r)(A)

using OrderedGroup_ZF_4_L1 by simp
moreover from A1 A2 A3 have
∀ b ∈ AbsoluteValue(G,P,r)(A). b ≤ M
using OrderedGroup_ZF_4_L3 by simp

ultimately show thesis using HasAmaximum_def by auto
qed

If a set has a maximum and a minimum, then all absolute values are bounded
by the maximum of the set of absolute values.

lemma (in group3) OrderedGroup_ZF_4_L5:
assumes A1: r {is total on} G and A2: A ⊆ G
and A3: HasAmaximum(r,A) HasAminimum(r,A)
and A4: a∈A
shows |a| ≤ Maximum(r,AbsoluteValue(G,P,r)(A))

proof -
from A2 A4 have |a| ∈ AbsoluteValue(G,P,r)(A)

using OrderedGroup_ZF_3_L1 func_imagedef by auto
with ordGroupAssum A1 A2 A3 show thesis using
IsAnOrdGroup_def IsPartOrder_def OrderedGroup_ZF_4_L4
Order_ZF_4_L3 by simp

qed
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17.6 Alternative definitions

Sometimes it is usful to define the order by prescibing the set of positive
or nonnegative elements. This section deals with two such definitions. One
takes a subset H of G that is closed under the group operation, 1 /∈ H and
for every a ∈ H we have either a ∈ H or a−1 ∈ H. Then the order is defined
as a ≤ b iff a = b or a−1b ∈ H. For abelian groups this makes a linearly
ordered group. We will refer to order defined this way in the comments
as the order defined by a positive set. The context used in this section is
the group0 context defined in Group_ZF theory. Recall that f in that context
denotes the group operation (unlike in the previous sections where the group
operation was denoted P.

The order defined by a positive set is the same as the order defined by a
nonnegative set.

lemma (in group0) OrderedGroup_ZF_5_L1:
assumes A1: r = {p ∈ G×G. fst(p) = snd(p) ∨ fst(p)−1·snd(p) ∈ H}
shows 〈a,b〉 ∈ r ←→ a∈G ∧ b∈G ∧ a−1·b ∈ H ∪ {1}

proof
assume 〈a,b〉 ∈ r
with A1 show a∈G ∧ b∈G ∧ a−1·b ∈ H ∪ {1}

using group0_2_L6 by auto
next assume a∈G ∧ b∈G ∧ a−1·b ∈ H ∪ {1}

then have a∈G ∧ b∈G ∧ b=(a−1)−1 ∨ a∈G ∧ b∈G ∧ a−1·b ∈ H
using inverse_in_group group0_2_L9 by auto

with A1 show 〈a,b〉 ∈ r using group_inv_of_inv
by auto

qed

The relation defined by a positive set is antisymmetric.

lemma (in group0) OrderedGroup_ZF_5_L2:
assumes A1: r = {p ∈ G×G. fst(p) = snd(p) ∨ fst(p)−1·snd(p) ∈ H}
and A2: ∀ a∈G. a6=1 −→ (a∈H) Xor (a−1∈H)
shows antisym(r)

proof -
{ fix a b assume A3: 〈a,b〉 ∈ r 〈b,a〉 ∈ r

with A1 have T: a∈G b∈G by auto
{ assume A4: a6=b

with A1 A3 have a−1·b ∈ G a−1·b ∈ H (a−1·b)−1 ∈ H
using inverse_in_group group0_2_L1 monoid0.group0_1_L1 group0_2_L12
by auto

with A2 have a−1·b = 1 using Xor_def by auto
with T A4 have False using group0_2_L11 by auto

} then have a=b by auto
} then show antisym(r) by (rule antisymI)

qed

The relation defined by a positive set is transitive.
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lemma (in group0) OrderedGroup_ZF_5_L3:
assumes A1: r = {p ∈ G×G. fst(p) = snd(p) ∨ fst(p)−1·snd(p) ∈ H}
and A2: H⊆G H {is closed under} f
shows trans(r)

proof -
{ fix a b c assume 〈a,b〉 ∈ r 〈b,c〉 ∈ r

with A1 have
a∈G ∧ b∈G ∧ a−1·b ∈ H ∪ {1}
b∈G ∧ c∈G ∧ b−1·c ∈ H ∪ {1}
using OrderedGroup_ZF_5_L1 by auto

with A2 have
I: a∈G b∈G c∈G
and (a−1·b)·(b−1·c) ∈ H ∪ {1}
using inverse_in_group group0_2_L17 IsOpClosed_def
by auto

moreover from I have a−1·c = (a−1·b)·(b−1·c)
by (rule group0_2_L14A)

ultimately have 〈a,c〉 ∈ G×G a−1·c ∈ H ∪ {1}
by auto

with A1 have 〈a,c〉 ∈ r using OrderedGroup_ZF_5_L1
by auto

} then have ∀ a b c. 〈a, b〉 ∈ r ∧ 〈b, c〉 ∈ r −→ 〈a, c〉 ∈ r
by blast

then show trans(r) by (rule Fol1_L2)
qed

The relation defined by a positive set is translation invariant. With our
definition this step requires the group to be abelian.

lemma (in group0) OrderedGroup_ZF_5_L4:
assumes A1: r = {p ∈ G×G. fst(p) = snd(p) ∨ fst(p)−1·snd(p) ∈ H}
and A2: f {is commutative on} G
and A3: 〈a,b〉 ∈ r and A4: c∈G
shows 〈a·c,b·c〉 ∈ r ∧ 〈c·a,c·b〉 ∈ r

proof
from A1 A3 A4 have
I: a∈G b∈G a·c ∈ G b·c ∈ G
and II: a−1·b ∈ H ∪ {1}
using OrderedGroup_ZF_5_L1 group_op_closed
by auto

with A2 A4 have (a·c)−1·(b·c) ∈ H ∪ {1}
using group0_4_L6D by simp

with A1 I show 〈a·c,b·c〉 ∈ r using OrderedGroup_ZF_5_L1
by auto

with A2 A4 I show 〈c·a,c·b〉 ∈ r
using IsCommutative_def by simp

qed

If H ⊆ G is closed under the group operation 1 /∈ H and for every a ∈ H
we have either a ∈ H or a−1 ∈ H, then the relation ”≤” defined by a ≤ b⇔
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a−1b ∈ H orders the group G. In such order H may be the set of positive
or nonnegative elements.
lemma (in group0) OrderedGroup_ZF_5_L5:

assumes A1: f {is commutative on} G
and A2: H⊆G H {is closed under} f
and A3: ∀ a∈G. a6=1 −→ (a∈H) Xor (a−1∈H)
and A4: r = {p ∈ G×G. fst(p) = snd(p) ∨ fst(p)−1·snd(p) ∈ H}
shows
IsAnOrdGroup(G,f,r)
r {is total on} G
Nonnegative(G,f,r) = PositiveSet(G,f,r) ∪ {1}

proof -
from groupAssum A2 A3 A4 have
IsAgroup(G,f) r⊆G×G IsPartOrder(G,r)
using refl_def OrderedGroup_ZF_5_L2 OrderedGroup_ZF_5_L3
IsPartOrder_def by auto

moreover from A1 A4 have
∀ g∈G. ∀ a b. <a,b> ∈ r −→ 〈a·g,b·g〉 ∈ r ∧ 〈g·a,g·b〉 ∈ r
using OrderedGroup_ZF_5_L4 by blast

ultimately show IsAnOrdGroup(G,f,r)
using IsAnOrdGroup_def by simp

then show Nonnegative(G,f,r) = PositiveSet(G,f,r) ∪ {1}
using group3_def group3.OrderedGroup_ZF_1_L24
by simp

{ fix a b
assume T: a∈G b∈G
then have T1: a−1·b ∈ G

using inverse_in_group group_op_closed by simp
{ assume <a,b> /∈ r

with A4 T have I: a6=b and II: a−1·b /∈ H
by auto

from A3 T T1 I have (a−1·b ∈ H) Xor ((a−1·b)−1 ∈ H)
using group0_2_L11 by auto

with A4 T II have <b,a> ∈ r
using Xor_def group0_2_L12 by simp

} then have <a,b> ∈ r ∨ <b,a> ∈ r by auto
} then show r {is total on} G using IsTotal_def

by simp
qed

If the set defined as in OrderedGroup_ZF_5_L4 does not contain the neutral
element, then it is the positive set for the resulting order.
lemma (in group0) OrderedGroup_ZF_5_L6:

assumes f {is commutative on} G
and H⊆G and 1 /∈ H
and r = {p ∈ G×G. fst(p) = snd(p) ∨ fst(p)−1·snd(p) ∈ H}
shows PositiveSet(G,f,r) = H
using prems group_inv_of_one group0_2_L2 PositiveSet_def
by auto
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The next definition describes how we construct an order relation from the
prescribed set of positive elements.

constdefs
OrderFromPosSet(G,P,H) ≡
{p ∈ G×G. fst(p) = snd(p) ∨ P〈GroupInv(G,P)(fst(p)),snd(p)〉 ∈ H }

The next theorem rephrases lemmas OrderedGroup_ZF_5_L5 and OrderedGroup_ZF_5_L6

using the definition of the order from the positive set OrderFromPosSet. To
simmarize, this is what it says: Suppose that H ⊆ G is a set closed under
that group operation such that 1 /∈ H and for every nonunit group element a
either a ∈ H or a−1 ∈ H. Define the order as a ≤ b iff a = b or a−1 · b ∈ H.
Then this order makes G into a linearly ordered group such H is the set
of positive elements (and then of course H ∪ {1} is the set of nonnegative
elements).

theorem (in group0) Group_ord_by_positive_set:
assumes f {is commutative on} G
and H⊆G H {is closed under} f 1 /∈ H
and ∀ a∈G. a6=1 −→ (a∈H) Xor (a−1∈H)
shows
IsAnOrdGroup(G,f,OrderFromPosSet(G,f,H))
OrderFromPosSet(G,f,H) {is total on} G
PositiveSet(G,f,OrderFromPosSet(G,f,H)) = H
Nonnegative(G,f,OrderFromPosSet(G,f,H)) = H ∪ {1}
using prems OrderFromPosSet_def OrderedGroup_ZF_5_L5 OrderedGroup_ZF_5_L6
by auto

17.7 Odd Extensions

In this section we verify properties of odd extensions of functions defined on
G+. An odd extension of a function f : G+ → G is a function f◦ : G → G
defined by f◦(x) = f(x) if x ∈ G+, f(1) = 1 and f◦(x) = (f(x−1))−1 for
x < 1. Such function is the unique odd function that is equal to f when
restricted to G+.

The next lemma is just to see the definition of the odd extension in the
notation used in the group1 context.

lemma (in group3) OrderedGroup_ZF_6_L1:
shows f◦ = f ∪ {〈a, (f(a−1))−1〉. a ∈ -G+} ∪ {〈1,1〉}
using OddExtension_def by simp

A technical lemma that states that from a function defined on G+ with values
in G we have (f(a−1))−1 ∈ G.

lemma (in group3) OrderedGroup_ZF_6_L2:
assumes f: G+→G and a∈-G+

shows
f(a−1) ∈ G
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(f(a−1))−1 ∈ G
using prems OrderedGroup_ZF_1_L27 apply_funtype
OrderedGroup_ZF_1_L1 group0.inverse_in_group

by auto

The main theorem about odd extensions. It basically says that the odd
extension of a function is what we want to to be.

lemma (in group3) odd_ext_props:
assumes A1: r {is total on} G and A2: f: G+→G
shows
f◦ : G → G
∀ a∈G+. (f◦)(a) = f(a)
∀ a∈(-G+). (f◦)(a) = (f(a−1))−1

(f◦)(1) = 1
proof -

from A1 A2 have I:
f: G+→G
∀ a∈-G+. (f(a−1))−1 ∈ G
G+∩(-G+) = 0
1 /∈ G+∪(-G+)
f◦ = f ∪ {〈a, (f(a−1))−1〉. a ∈ -G+} ∪ {〈1,1〉}
using OrderedGroup_ZF_6_L2 OrdGroup_decomp2 OrderedGroup_ZF_6_L1
by auto

then have f◦: G+ ∪ (-G+) ∪ {1} →G∪G∪{1}
by (rule func1_1_L11E)

moreover from A1 have
G+ ∪ (-G+) ∪ {1} = G
G∪G∪{1} = G
using OrdGroup_decomp2 OrderedGroup_ZF_1_L1 group0.group0_2_L2
by auto

ultimately show f◦ : G → G by simp
from I show ∀ a∈G+. (f◦)(a) = f(a)

by (rule func1_1_L11E)
from I show ∀ a∈(-G+). (f◦)(a) = (f(a−1))−1

by (rule func1_1_L11E)
from I show (f◦)(1) = 1

by (rule func1_1_L11E)
qed

Odd extensions are odd, of course.

lemma (in group3) oddext_is_odd:
assumes A1: r {is total on} G and A2: f: G+→G
and A3: a∈G
shows (f◦)(a−1) = ((f◦)(a))−1

proof -
from A1 A3 have a∈G+ ∨ a ∈ (-G+) ∨ a=1

using OrdGroup_decomp2 by blast
moreover
{ assume a∈G+
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with A1 A2 have a−1 ∈ -G+ and (f◦)(a) = f(a)
using OrderedGroup_ZF_1_L25 odd_ext_props by auto

with A1 A2 have
(f◦)(a−1) = (f((a−1)−1))−1 and (f(a))−1 = ((f◦)(a))−1

using odd_ext_props by auto
with A3 have (f◦)(a−1) = ((f◦)(a))−1

using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
by simp }

moreover
{ assume A4: a ∈ -G+

with A1 A2 have a−1 ∈ G+ and (f◦)(a) = (f(a−1))−1

using OrderedGroup_ZF_1_L27 odd_ext_props
by auto

with A1 A2 A4 have (f◦)(a−1) = ((f◦)(a))−1

using odd_ext_props OrderedGroup_ZF_6_L2
OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by simp }
moreover
{ assume a = 1

with A1 A2 have (f◦)(a−1) = ((f◦)(a))−1

using OrderedGroup_ZF_1_L1 group0.group_inv_of_one
odd_ext_props by simp

}
ultimately show (f◦)(a−1) = ((f◦)(a))−1

by auto
qed

Another way of saying that odd extensions are odd.
lemma (in group3) oddext_is_odd_alt:

assumes A1: r {is total on} G and A2: f: G+→G
and A3: a∈G
shows ((f◦)(a−1))−1 = (f◦)(a)

proof -
from A1 A2 have
f◦ : G → G
∀ a∈G. (f◦)(a−1) = ((f◦)(a))−1

using odd_ext_props oddext_is_odd by auto
then have ∀ a∈G. ((f◦)(a−1))−1 = (f◦)(a)

using OrderedGroup_ZF_1_L1 group0.group0_6_L2 by simp
with A3 show ((f◦)(a−1))−1 = (f◦)(a) by simp

qed

17.8 Functions with infinite limits

In this section we consider functions f : G → G with the property that for
f(x) is arbitrarily large for large enough x. More precisely, for every a ∈ G
there exist b ∈ G+ such that for every x ≥ b we have f(x) ≥ a. In a sense
this means that limx→∞ f(x) = ∞, hence the title of this section. We also
prove dual statements for functions such that limx→−∞ f(x) = −∞.
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If an image of a set by a function with infinite positive limit is bounded
above, then the set itself is bounded above.
lemma (in group3) OrderedGroup_ZF_7_L1:

assumes A1: r {is total on} G and A2: G 6= {1} and
A3: f:G→G and
A4: ∀ a∈G.∃ b∈G+.∀ x. b≤x −→ a ≤ f(x) and
A5: A⊆G and
A6: IsBoundedAbove(f(A),r)
shows IsBoundedAbove(A,r)

proof -
{ assume ¬IsBoundedAbove(A,r)

then have I: ∀ u. ∃ x∈A. ¬(x≤u)
using IsBoundedAbove_def by auto

have ∀ a∈G. ∃ y∈f(A). a≤y
proof -

{ fix a assume a∈G
with A4 obtain b where
II: b∈G+ and III: ∀ x. b≤x −→ a ≤ f(x)
by auto

from I obtain x where IV: x∈A and ¬(x≤b)
by auto

with A1 A5 II have
r {is total on} G
x∈G b∈G ¬(x≤b)
using PositiveSet_def by auto

with III have a ≤ f(x)
using OrderedGroup_ZF_1_L8 by blast

with A3 A5 IV have ∃ y∈f(A). a≤y
using func_imagedef by auto

} thus thesis by simp
qed
with A1 A2 A6 have False using OrderedGroup_ZF_2_L2A

by simp
} thus thesis by auto

qed

If an image of a set defined by separation by a function with infinite positive
limit is bounded above, then the set itself is bounded above.
lemma (in group3) OrderedGroup_ZF_7_L2:

assumes A1: r {is total on} G and A2: G 6= {1} and
A3: X6=0 and A4: f:G→G and
A5: ∀ a∈G.∃ b∈G+.∀ y. b≤y −→ a ≤ f(y) and
A6: ∀ x∈X. b(x) ∈ G ∧ f(b(x)) ≤ U
shows ∃ u.∀ x∈X. b(x) ≤ u

proof -
let A = {b(x). x∈X}
from A6 have I: A⊆G by auto
moreover note prems
moreover have IsBoundedAbove(f(A),r)
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proof -
from A4 A6 I have ∀ z∈f(A). 〈z,U〉 ∈ r

using func_imagedef by simp
then show IsBoundedAbove(f(A),r)

by (rule Order_ZF_3_L10)
qed
ultimately have IsBoundedAbove(A,r) using OrderedGroup_ZF_7_L1

by simp
with A3 have ∃ u.∀ y∈A. y ≤ u

using IsBoundedAbove_def by simp
then show ∃ u.∀ x∈X. b(x) ≤ u by auto

qed

If the image of a set defined by separation by a function with infinite negative
limit is bounded below, then the set itself is bounded above. This is dual to
OrderedGroup_ZF_7_L2.

lemma (in group3) OrderedGroup_ZF_7_L3:
assumes A1: r {is total on} G and A2: G 6= {1} and
A3: X6=0 and A4: f:G→G and
A5: ∀ a∈G.∃ b∈G+.∀ y. b≤y −→ f(y−1) ≤ a and
A6: ∀ x∈X. b(x) ∈ G ∧ L ≤ f(b(x))
shows ∃ l.∀ x∈X. l ≤ b(x)

proof -
let g = GroupInv(G,P) O f O GroupInv(G,P)
from ordGroupAssum have I: GroupInv(G,P) : G→G

using IsAnOrdGroup_def group0_2_T2 by simp
with A4 have II: ∀ x∈G. g(x) = (f(x−1))−1

using func1_1_L18 by simp
note A1 A2 A3
moreover from A4 I have g : G→G

using comp_fun by blast
moreover have ∀ a∈G.∃ b∈G+.∀ y. b≤y −→ a ≤ g(y)
proof -
{ fix a assume A7: a∈G

then have a−1 ∈ G
using OrderedGroup_ZF_1_L1 group0.inverse_in_group
by simp

with A5 obtain b where
III: b∈G+ and ∀ y. b≤y −→ f(y−1) ≤ a−1

by auto
with II A7 have ∀ y. b≤y −→ a ≤ g(y)

using OrderedGroup_ZF_1_L5AD OrderedGroup_ZF_1_L4
by simp

with III have ∃ b∈G+.∀ y. b≤y −→ a ≤ g(y)
by auto

} then show ∀ a∈G.∃ b∈G+.∀ y. b≤y −→ a ≤ g(y)
by simp

qed
moreover have ∀ x∈X. b(x)−1 ∈ G ∧ g(b(x)−1) ≤ L−1
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proof-
{ fix x assume x∈X

with A6 have
T: b(x) ∈ G b(x)−1 ∈ G and L ≤ f(b(x))
using OrderedGroup_ZF_1_L1 group0.inverse_in_group
by auto

then have (f(b(x)))−1 ≤ L−1

using OrderedGroup_ZF_1_L5 by simp
moreover from II T have (f(b(x)))−1 = g(b(x)−1)

using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
by simp

ultimately have g(b(x)−1) ≤ L−1 by simp
with T have b(x)−1 ∈ G ∧ g(b(x)−1) ≤ L−1

by simp
} then show ∀ x∈X. b(x)−1 ∈ G ∧ g(b(x)−1) ≤ L−1

by simp
qed
ultimately have ∃ u.∀ x∈X. (b(x))−1 ≤ u

by (rule OrderedGroup_ZF_7_L2)
then have ∃ u.∀ x∈X. u−1 ≤ (b(x)−1)−1

using OrderedGroup_ZF_1_L5 by auto
with A6 show ∃ l.∀ x∈X. l ≤ b(x)

using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
by auto

qed

The next lemma combines OrderedGroup_ZF_7_L2 and OrderedGroup_ZF_7_L3

to show that if an image of a set defined by separation by a function with
infinite limits is bounded, then the set itself i bounded.

lemma (in group3) OrderedGroup_ZF_7_L4:
assumes A1: r {is total on} G and A2: G 6= {1} and
A3: X6=0 and A4: f:G→G and
A5: ∀ a∈G.∃ b∈G+.∀ y. b≤y −→ a ≤ f(y) and
A6: ∀ a∈G.∃ b∈G+.∀ y. b≤y −→ f(y−1) ≤ a and
A7: ∀ x∈X. b(x) ∈ G ∧ L ≤ f(b(x)) ∧ f(b(x)) ≤ U

shows ∃ M.∀ x∈X. |b(x)| ≤ M
proof -

from A7 have
I: ∀ x∈X. b(x) ∈ G ∧ f(b(x)) ≤ U and
II: ∀ x∈X. b(x) ∈ G ∧ L ≤ f(b(x))
by auto

from A1 A2 A3 A4 A5 I have ∃ u.∀ x∈X. b(x) ≤ u
by (rule OrderedGroup_ZF_7_L2)

moreover from A1 A2 A3 A4 A6 II have ∃ l.∀ x∈X. l ≤ b(x)
by (rule OrderedGroup_ZF_7_L3)

ultimately have ∃ u l. ∀ x∈X. l≤b(x) ∧ b(x) ≤ u
by auto

with A1 have ∃ u l.∀ x∈X. |b(x)| ≤ GreaterOf(r,|l|,|u|)
using OrderedGroup_ZF_3_L10 by blast
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then show ∃ M.∀ x∈X. |b(x)| ≤ M
by auto

qed

end
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18 Ring ZF.thy

theory Ring_ZF imports Group_ZF

begin

This theory file covers basic facts about rings.

18.1 Definition and basic properties

In this section we define what is a ring and list the basic properties of rings.

We say that three sets (R,A, M) form a ring if (R,A) is an abelian group,
(R,M) is a monoid and A is distributive with respect to M on R. A rep-
resents the additive operation on R. As such it is a subset of (R × R) × R
(recall that in ZF set theory functions are sets). Similarly M represents the
multiplicative operation on R and is also a subset of (R×R)×R. We don’t
require the multiplicative operation to be commutative in the definition of
a ring. We also define the notion of having no zero divisors.

constdefs
IsAring(R,A,M) ≡ IsAgroup(R,A) ∧ (A {is commutative on} R) ∧
IsAmonoid(R,M) ∧ IsDistributive(R,A,M)

HasNoZeroDivs(R,A,M) ≡ (∀ a∈R. ∀ b∈R.
M<a,b> = TheNeutralElement(R,A) −→
a = TheNeutralElement(R,A) ∨ b = TheNeutralElement(R,A))

Next we define a locale that will be used when considering rings.

locale ring0 =

fixes R and A and M

assumes ringAssum: IsAring(R,A,M)

fixes ringa (infixl + 90)
defines ringa_def [simp]: a+b ≡ A<a,b>

fixes ringminus (- _ 89)
defines ringminus_def [simp]: (-a) ≡ GroupInv(R,A)(a)

fixes ringsub (infixl - 90)
defines ringsub_def [simp]: a-b ≡ a+(-b)

fixes ringm (infixl · 95)
defines ringm_def [simp]: a·b ≡ M<a,b>

fixes ringzero (0)
defines ringzero_def [simp]: 0 ≡ TheNeutralElement(R,A)
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fixes ringone (1)
defines ringone_def [simp]: 1 ≡ TheNeutralElement(R,M)

fixes ringtwo (2)
defines ringtwo_def [simp]: 2 ≡ 1+1

fixes ringsq (_2 [96] 97)
defines ringsq_def [simp]: a2 ≡ a·a

In the ring0 context we can use theorems proven in some other contexts.

lemma (in ring0) Ring_ZF_1_L1: shows
monoid0(R,M)
group0(R,A)
A {is commutative on} R
using ringAssum IsAring_def group0_def monoid0_def by auto

The additive operation in a ring is distributive with respect to the multi-
plicative operation.

lemma (in ring0) ring_oper_distr: assumes A1: a∈R b∈R c∈R
shows
a·(b+c) = a·b + a·c
(b+c)·a = b·a + c·a
using ringAssum prems IsAring_def IsDistributive_def by auto

Zero and one of the ring are elements of the ring. The negative of zero is
zero.

lemma (in ring0) Ring_ZF_1_L2:
shows 0∈R 1∈R (-0) = 0
using Ring_ZF_1_L1 group0.group0_2_L2 monoid0.group0_1_L3
group0.group_inv_of_one by auto

The next lemma lists some properties of a ring that require one element of
a ring.

lemma (in ring0) Ring_ZF_1_L3: assumes a∈R
shows
(-a) ∈ R
(-(-a)) = a
a+0 = a
0+a = a
a·1 = a
1·a = a
a-a = 0
a-0 = a
2·a = a+a
(-a)+a = 0
using prems Ring_ZF_1_L1 group0.inverse_in_group group0.group_inv_of_inv
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group0.group0_2_L6 group0.group0_2_L2 monoid0.group0_1_L3
Ring_ZF_1_L2 ring_oper_distr

by auto

Properties that require two elements of a ring.

lemma (in ring0) Ring_ZF_1_L4: assumes A1: a∈R b∈R
shows
a+b ∈ R
a-b ∈ R
a·b ∈ R
a+b = b+a
using ringAssum prems Ring_ZF_1_L1 Ring_ZF_1_L3
group0.group0_2_L1 monoid0.group0_1_L1
IsAring_def IsCommutative_def

by auto

Any element of a ring multiplied by zero is zero.

lemma (in ring0) Ring_ZF_1_L6:
assumes A1: x∈R shows 0·x = 0 x·0 = 0

proof -
def D1: a ≡ x·1
def D2: b ≡ x·0
def D3: c ≡ 1·x
def D4: d ≡ 0·x
from A1 D1 D2 D3 D4 have
a + b = x·(1 + 0) c + d = (1 + 0)·x
using Ring_ZF_1_L2 ring_oper_distr by auto

moreover from D1 D3 have x·(1 + 0) = a (1 + 0)·x = c
using Ring_ZF_1_L2 Ring_ZF_1_L3 by auto

ultimately have a + b = a and T1: c + d = c by auto
moreover from A1 D1 D2 D3 D4 have
a ∈ R b ∈ R and T2: c ∈ R d ∈ R
using Ring_ZF_1_L2 Ring_ZF_1_L4 by auto

ultimately have b = 0 using
Ring_ZF_1_L1 group0.group0_2_L7 by simp

moreover from T2 T1 have d = 0 using
Ring_ZF_1_L1 group0.group0_2_L7 by simp

moreover from D2 D4 have b = x·0 d = 0·x by auto
ultimately show x·0 = 0 0·x = 0 by auto

qed

Negative can be pulled out of a product.

lemma (in ring0) Ring_ZF_1_L7:
assumes A1: a∈R b∈R
shows
(-a)·b = -(a·b)
a·(-b) = -(a·b)
(-a)·b = a·(-b)

proof -
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from A1 have I:
a·b ∈ R (-a) ∈ R ((-a)·b) ∈ R
(-b) ∈ R a·(-b) ∈ R
using Ring_ZF_1_L3 Ring_ZF_1_L4 by auto

moreover have (-a)·b + a·b = 0
and II: a·(-b) + a·b = 0

proof -
from A1 I have
(-a)·b + a·b = ((-a)+ a)·b
a·(-b) + a·b= a·((-b)+b)
using ring_oper_distr by auto

moreover from A1 have
((-a)+ a)·b = 0
a·((-b)+b) = 0
using Ring_ZF_1_L1 group0.group0_2_L6 Ring_ZF_1_L6
by auto

ultimately show
(-a)·b + a·b = 0
a·(-b) + a·b = 0
by auto

qed
ultimately show (-a)·b = -(a·b)

using Ring_ZF_1_L1 group0.group0_2_L9 by simp
moreover from I II show a·(-b) = -(a·b)

using Ring_ZF_1_L1 group0.group0_2_L9 by simp
ultimately show (-a)·b = a·(-b) by simp

qed

Minus times minus is plus.

lemma (in ring0) Ring_ZF_1_L7A: assumes a∈R b∈R
shows (-a)·(-b) = a·b
using prems Ring_ZF_1_L3 Ring_ZF_1_L7 Ring_ZF_1_L4
by simp

Subtraction is distributive with respect to multiplication.

lemma (in ring0) Ring_ZF_1_L8: assumes a∈R b∈R c∈R
shows
a·(b-c) = a·b - a·c
(b-c)·a = b·a - c·a
using prems Ring_ZF_1_L3 ring_oper_distr Ring_ZF_1_L7 Ring_ZF_1_L4
by auto

Other basic properties involving two elements of a ring.

lemma (in ring0) Ring_ZF_1_L9: assumes a∈R b∈R
shows
(-b)-a = (-a)-b
(-(a+b)) = (-a)-b
(-(a-b)) = ((-a)+b)
a-(-b) = a+b
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using prems ringAssum IsAring_def
Ring_ZF_1_L1 group0.group0_4_L4 group0.group_inv_of_inv

by auto

If the difference of two element is zero, then those elements are equal.

lemma (in ring0) Ring_ZF_1_L9A:
assumes A1: a∈R b∈R and A2: a-b = 0
shows a=b

proof -
from A1 A2 have
group0(R,A)
a∈R b∈R
A〈a,GroupInv(R,A)(b)〉 = TheNeutralElement(R,A)
using Ring_ZF_1_L1 by auto

then show a=b by (rule group0.group0_2_L11A)
qed

Other basic properties involving three elements of a ring.

lemma (in ring0) Ring_ZF_1_L10:
assumes a∈R b∈R c∈R
shows
a+(b+c) = a+b+c

a-(b+c) = a-b-c
a-(b-c) = a-b+c
using prems ringAssum Ring_ZF_1_L1 group0.group_oper_assoc
IsAring_def group0.group0_4_L4A by auto

Another property with three elements.

lemma (in ring0) Ring_ZF_1_L10A:
assumes A1: a∈R b∈R c∈R
shows a+(b-c) = a+b-c
using prems Ring_ZF_1_L3 Ring_ZF_1_L10 by simp

Associativity of addition and multiplication.

lemma (in ring0) Ring_ZF_1_L11:
assumes a∈R b∈R c∈R
shows
a+b+c = a+(b+c)
a·b·c = a·(b·c)
using prems ringAssum Ring_ZF_1_L1 group0.group_oper_assoc
IsAring_def IsAmonoid_def IsAssociative_def

by auto

An interpretation of what it means that a ring has no zero divisors.

lemma (in ring0) Ring_ZF_1_L12:
assumes HasNoZeroDivs(R,A,M)
and a∈R a6=0 b∈R b6=0
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shows a·b 6=0
using prems HasNoZeroDivs_def by auto

In rings with no zero divisors we can cancel nonzero factors.

lemma (in ring0) Ring_ZF_1_L12A:
assumes A1: HasNoZeroDivs(R,A,M) and A2: a∈R b∈R c∈R
and A3: a·c = b·c and A4: c6=0
shows a=b

proof -
from A2 have T: a·c ∈ R a-b ∈ R

using Ring_ZF_1_L4 by auto
with A1 A2 A3 have a-b = 0 ∨ c=0

using Ring_ZF_1_L3 Ring_ZF_1_L8 HasNoZeroDivs_def
by simp

with A2 A4 have a∈R b∈R a-b = 0
by auto

then show a=b by (rule Ring_ZF_1_L9A)
qed

In rings with no zero divisors if two elements are different, then after mul-
tiplying by a nonzero element they are still different.

lemma (in ring0) Ring_ZF_1_L12B:
assumes A1: HasNoZeroDivs(R,A,M)
a∈R b∈R c∈R a6=b c6=0
shows a·c 6= b·c
using A1 Ring_ZF_1_L12A by auto

In rings with no zero divisors multiplying a nonzero element by a nonone
element changes the value.

lemma (in ring0) Ring_ZF_1_L12C:
assumes A1: HasNoZeroDivs(R,A,M) and
A2: a∈R b∈R and A3: 06=a 16=b
shows a 6= a·b

proof -
{ assume a = a·b

with A1 A2 have a = 0 ∨ b-1 = 0
using Ring_ZF_1_L3 Ring_ZF_1_L2 Ring_ZF_1_L8
Ring_ZF_1_L3 Ring_ZF_1_L2 Ring_ZF_1_L4 HasNoZeroDivs_def

by simp
with A2 A3 have False

using Ring_ZF_1_L2 Ring_ZF_1_L9A by auto
} then show a 6= a·b by auto

qed

If a square is nonzero, then the element is nonzero.

lemma (in ring0) Ring_ZF_1_L13:
assumes a∈R and a2 6= 0
shows a6=0
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using prems Ring_ZF_1_L2 Ring_ZF_1_L6 by auto

Square of an element and its opposite are the same.

lemma (in ring0) Ring_ZF_1_L14:
assumes a∈R shows (-a)2 = ((a)2)
using prems Ring_ZF_1_L7A by simp

Adding zero to a set that is closed under addition results in a set that is
also closed under addition. This is a property of groups.

lemma (in ring0) Ring_ZF_1_L15:
assumes H ⊆ R and H {is closed under} A
shows (H ∪ {0}) {is closed under} A
using prems Ring_ZF_1_L1 group0.group0_2_L17 by simp

Adding zero to a set that is closed under multiplication results in a set that
is also closed under multiplication.

lemma (in ring0) Ring_ZF_1_L16:
assumes A1: H ⊆ R and A2: H {is closed under} M
shows (H ∪ {0}) {is closed under} M
using prems Ring_ZF_1_L2 Ring_ZF_1_L6 IsOpClosed_def
by auto

The ring is trivial iff 0 = 1.

lemma (in ring0) Ring_ZF_1_L17: shows R = {0} ←→ 0=1
proof

assume R = {0}
then show 0=1 using Ring_ZF_1_L2

by blast
next assume A1: 0 = 1

then have R ⊆ {0}
using Ring_ZF_1_L3 Ring_ZF_1_L6 by auto

moreover have {0} ⊆ R using Ring_ZF_1_L2 by auto
ultimately show R = {0} by auto

qed

The sets {m · x.x ∈ R} and {−m · x.x ∈ R} are the same.

lemma (in ring0) Ring_ZF_1_L18: assumes A1: m∈R
shows {m·x. x∈R} = {(-m)·x. x∈R}

proof
{ fix a assume a ∈ {m·x. x∈R}

then obtain x where x∈R and a = m·x
by auto

with A1 have (-x) ∈ R and a = (-m)·(-x)
using Ring_ZF_1_L3 Ring_ZF_1_L7A by auto

then have a ∈ {(-m)·x. x∈R}
by auto

} then show {m·x. x∈R} ⊆ {(-m)·x. x∈R}
by auto
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next
{ fix a assume a ∈ {(-m)·x. x∈R}

then obtain x where x∈R and a = (-m)·x
by auto

with A1 have (-x) ∈ R and a = m·(-x)
using Ring_ZF_1_L3 Ring_ZF_1_L7 by auto

then have a ∈ {m·x. x∈R} by auto
} then show {(-m)·x. x∈R} ⊆ {m·x. x∈R}

by auto
qed

18.2 Rearrangement lemmas

In happens quite often that we want to show a fact like (a + b)c + d =
(ac+d− e)+ (bc+ e)in rings. This is trivial in romantic math and probably
there is a way to make it trivial in formalized math. However, I don’t know
any other way than to tediously prove each such rearrangement when it is
needed. This section collects facts of this type.

Rearrangements with two elements of a ring.

lemma (in ring0) Ring_ZF_2_L1: assumes a∈R b∈R
shows a+b·a = (b+1)·a
using prems Ring_ZF_1_L2 ring_oper_distr Ring_ZF_1_L3 Ring_ZF_1_L4
by simp

Raearrangements with two elements and cancelling.

lemma (in ring0) Ring_ZF_2_L1A: assumes a∈R b∈R
shows
a-b+b = a
a+b-a = b
(-a)+b+a = b
(-a)+(b+a) = b
a+(b-a) = b
using prems Ring_ZF_1_L1 group0.group0_2_L16 group0.group0_4_L6A
by auto

In commutative rings a−(b+1)c = (a−d−c)+(d−bc). For unknown reasons
we have to use the raw set notation in the proof, otherwise all methods fail.

lemma (in ring0) Ring_ZF_2_L2:
assumes A1: a∈R b∈R c∈R d∈R
shows a-(b+1)·c = (a-d-c)+(d-b·c)

proof -
def D1: B == b·c
from ringAssum have A {is commutative on} R

using IsAring_def by simp
moreover from A1 D1 have a∈R B ∈ R c∈R d∈R

using Ring_ZF_1_L4 by auto
ultimately have A〈a, GroupInv(R,A)(A〈B, c〉)〉 =
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A〈A〈A〈a, GroupInv(R, A)(d)〉,GroupInv(R, A)(c)〉,
A〈d,GroupInv(R, A)(B)〉〉
using Ring_ZF_1_L1 group0.group0_4_L8 by blast

with D1 A1 show thesis
using Ring_ZF_1_L2 ring_oper_distr Ring_ZF_1_L3 by simp

qed

Rerrangement about adding linear functions.

lemma (in ring0) Ring_ZF_2_L3:
assumes A1: a∈R b∈R c∈R d∈R x∈R
shows (a·x + b) + (c·x + d) = (a+c)·x + (b+d)

proof -
from A1 have
group0(R,A)
A {is commutative on} R
a·x ∈ R b∈R c·x ∈ R d∈R
using Ring_ZF_1_L1 Ring_ZF_1_L4 by auto

then have A〈A<a·x,b>,A<c·x,d>〉 = A〈A<a·x,c·x>,A<b,d>〉
by (rule group0.group0_4_L8)

with A1 show
(a·x + b) + (c·x + d) = (a+c)·x + (b+d)
using ring_oper_distr by simp

qed

Rearrangement with three elements

lemma (in ring0) Ring_ZF_2_L4:
assumes M {is commutative on} R
and a∈R b∈R c∈R
shows a·(b·c) = a·c·b
using prems IsCommutative_def Ring_ZF_1_L11
by simp

Some other rearrangements with three elements.

lemma (in ring0) ring_rearr_3_elemA:
assumes A1: M {is commutative on} R and
A2: a∈R b∈R c∈R
shows
a·(a·c) - b·(-b·c) = (a·a + b·b)·c
a·(-b·c) + b·(a·c) = 0

proof -
from A2 have T:
b·c ∈ R a·a ∈ R b·b ∈ R
b·(b·c) ∈ R a·(b·c) ∈ R
using Ring_ZF_1_L4 by auto

with A2 show
a·(a·c) - b·(-b·c) = (a·a + b·b)·c
using Ring_ZF_1_L7 Ring_ZF_1_L3 Ring_ZF_1_L11
ring_oper_distr by simp

from A2 T have
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a·(-b·c) + b·(a·c) = (-a·(b·c)) + b·a·c
using Ring_ZF_1_L7 Ring_ZF_1_L11 by simp

also from A1 A2 T have . . . = 0
using IsCommutative_def Ring_ZF_1_L11 Ring_ZF_1_L3
by simp

finally show a·(-b·c) + b·(a·c) = 0
by simp

qed

Some rearrangements with four elements. Properties of abelian groups.

lemma (in ring0) Ring_ZF_2_L5:
assumes a∈R b∈R c∈R d∈R
shows
a - b - c - d = a - d - b - c
a + b + c - d = a - d + b + c
a + b - c - d = a - c + (b - d)
a + b + c + d = a + c + (b + d)
using prems Ring_ZF_1_L1 group0.rearr_ab_gr_4_elemB
group0.rearr_ab_gr_4_elemA by auto

Two big rearranegements with six elements, useful for proving properties of
complex addition and multiplication.

lemma (in ring0) Ring_ZF_2_L6:
assumes A1: a∈R b∈R c∈R d∈R e∈R f∈R
shows
a·(c·e - d·f) - b·(c·f + d·e) =
(a·c - b·d)·e - (a·d + b·c)·f
a·(c·f + d·e) + b·(c·e - d·f) =
(a·c - b·d)·f + (a·d + b·c)·e
a·(c+e) - b·(d+f) = a·c - b·d + (a·e - b·f)
a·(d+f) + b·(c+e) = a·d + b·c + (a·f + b·e)

proof -
from A1 have T:
c·e ∈ R d·f ∈ R c·f ∈ R d·e ∈ R
a·c ∈ R b·d ∈ R a·d ∈ R b·c ∈ R
b·f ∈ R a·e ∈ R b·e ∈ R a·f ∈ R
a·c·e ∈ R a·d·f ∈ R
b·c·f ∈ R b·d·e ∈ R
b·c·e ∈ R b·d·f ∈ R
a·c·f ∈ R a·d·e ∈ R
a·c·e - a·d·f ∈ R
a·c·e - b·d·e ∈ R
a·c·f + a·d·e ∈ R
a·c·f - b·d·f ∈ R
a·c + a·e ∈ R
a·d + a·f ∈ R
using Ring_ZF_1_L4 by auto

with A1 show a·(c·e - d·f) - b·(c·f + d·e) =
(a·c - b·d)·e - (a·d + b·c)·f
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using Ring_ZF_1_L8 ring_oper_distr Ring_ZF_1_L11
Ring_ZF_1_L10 Ring_ZF_2_L5 by simp

from A1 T show
a·(c·f + d·e) + b·(c·e - d·f) =
(a·c - b·d)·f + (a·d + b·c)·e
using Ring_ZF_1_L8 ring_oper_distr Ring_ZF_1_L11
Ring_ZF_1_L10A Ring_ZF_2_L5 Ring_ZF_1_L10
by simp

from A1 T show
a·(c+e) - b·(d+f) = a·c - b·d + (a·e - b·f)
a·(d+f) + b·(c+e) = a·d + b·c + (a·f + b·e)
using ring_oper_distr Ring_ZF_1_L10 Ring_ZF_2_L5
by auto

qed

end
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19 Ring ZF 1.thy

theory Ring_ZF_1 imports Ring_ZF Group_ZF_3

begin

This theory is devoted to the part of ring theory specific the construction of
real numbers in the Real_ZF_x series of theories. The goal is to show that
classes of almost homomorphisms form a ring.

19.1 The ring of classes of almost homomorphisms

Almost homomorphisms do not form a ring as the regular homomorphisms
do because the lifted group operation is not distributive with respect to
composition – we have s ◦ (r · q) 6= s ◦ r · s ◦ q in general. However, we do
have s ◦ (r · q) ≈ s ◦ r · s ◦ q in the sense of the equivalence relation defined
by the group of finite range functions (that is a normal subgroup of almost
homomorphisms, if the group is abelian). This allows to define a natural
ring structure on the classes of almost homomorphisms.

The next lemma provides a formula useful for proving that two sides of the
distributive law equation for almost homomorphisms are almost equal.

lemma (in group1) Ring_ZF_1_1_L1:
assumes A1: s∈AH r∈AH q∈AH and A2: n∈G
shows
((s◦(r·q))(n))·(((s◦r)·(s◦q))(n))−1= δ(s,<r(n),q(n)>)
((r·q)◦s)(n) = ((r◦s)·(q◦s))(n)

proof -
from groupAssum isAbelian A1 have T1:
r·q ∈ AH s◦r ∈ AH s◦q ∈ AH (s◦r)·(s◦q) ∈ AH
r◦s ∈ AH q◦s ∈ AH (r◦s)·(q◦s) ∈ AH
using Group_ZF_3_2_L15 Group_ZF_3_4_T1 by auto

from A1 A2 have T2: r(n) ∈ G q(n) ∈ G s(n) ∈ G
s(r(n)) ∈ G s(q(n)) ∈ G δ(s,<r(n),q(n)>) ∈ G
s(r(n))·s(q(n)) ∈ G r(s(n)) ∈ G q(s(n)) ∈ G
r(s(n))·q(s(n)) ∈ G
using AlmostHoms_def apply_funtype Group_ZF_3_2_L4B
group0_2_L1 monoid0.group0_1_L1 by auto

with T1 A1 A2 isAbelian show
((s◦(r·q))(n))·(((s◦r)·(s◦q))(n))−1= δ(s,<r(n),q(n)>)
((r·q)◦s)(n) = ((r◦s)·(q◦s))(n)
using Group_ZF_3_2_L12 Group_ZF_3_4_L2 Group_ZF_3_4_L1 group0_4_L6A
by auto

qed

The sides of the distributive law equations for almost homomorphisms are
almost equal.

lemma (in group1) Ring_ZF_1_1_L2:
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assumes A1: s∈AH r∈AH q∈AH
shows
s◦(r·q) ≈ (s◦r)·(s◦q)
(r·q)◦s = (r◦s)·(q◦s)

proof -
from A1 have ∀ n∈G. <r(n),q(n)> ∈ G×G

using AlmostHoms_def apply_funtype by auto
moreover from A1 have {δ(s,x). x ∈ G×G} ∈ Fin(G)

using AlmostHoms_def by simp
ultimately have {δ(s,<r(n),q(n)>). n∈G} ∈ Fin(G)

by (rule Finite1_L6B)
with A1 have
{((s◦(r·q))(n))·(((s◦r)·(s◦q))(n))−1. n ∈ G} ∈ Fin(G)
using Ring_ZF_1_1_L1 by simp

moreover from groupAssum isAbelian A1 A1 have
s◦(r·q) ∈ AH (s◦r)·(s◦q) ∈ AH
using Group_ZF_3_2_L15 Group_ZF_3_4_T1 by auto

ultimately show s◦(r·q) ≈ (s◦r)·(s◦q)
using Group_ZF_3_4_L12 by simp

from groupAssum isAbelian A1 have
(r·q)◦s : G→G (r◦s)·(q◦s) : G→G
using Group_ZF_3_2_L15 Group_ZF_3_4_T1 AlmostHoms_def
by auto

moreover from A1 have
∀ n∈G. ((r·q)◦s)(n) = ((r◦s)·(q◦s))(n)
using Ring_ZF_1_1_L1 by simp

ultimately show (r·q)◦s = (r◦s)·(q◦s)
using fun_extension_iff by simp

qed

The essential condition to show the distributivity for the operations defined
on classes of almost homomorphisms.

lemma (in group1) Ring_ZF_1_1_L3:
assumes A1: R = QuotientGroupRel(AH,Op1,FR)
and A2: a ∈ AH//R b ∈ AH//R c ∈ AH//R
and A3: A = ProjFun2(AH,R,Op1) M = ProjFun2(AH,R,Op2)
shows M〈a,A<b,c>〉 = A〈M<a,b>,M<a,c>〉 ∧
M〈A<b,c>,a〉 = A〈M<b,a>,M<c,a>〉

proof
from A2 obtain s q r where D1: s∈AH r∈AH q∈AH
a = R{s} b = R{q} c = R{r}
using quotient_def by auto

from A1 have T1:equiv(AH,R)
using Group_ZF_3_3_L3 by simp

with A1 A3 D1 groupAssum isAbelian have
M< a,A<b,c> > = R{s◦(q·r)}
using Group_ZF_3_3_L4 EquivClass_1_L10
Group_ZF_3_2_L15 Group_ZF_3_4_L13A by simp

also have R{s◦(q·r)} = R{(s◦q)·(s◦r)}
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proof -
from T1 D1 have equiv(AH,R) s◦(q·r)≈(s◦q)·(s◦r)

using Ring_ZF_1_1_L2 by auto
with A1 show thesis using equiv_class_eq by simp

qed
also from A1 T1 D1 A3 have
R{(s◦q)·(s◦r)} = A〈M<a,b>,M<a,c>〉
using Group_ZF_3_3_L4 Group_ZF_3_4_T1 EquivClass_1_L10
Group_ZF_3_3_L3 Group_ZF_3_4_L13A EquivClass_1_L10 Group_ZF_3_4_T1
by simp

finally show M〈a,A<b,c>〉 = A〈M<a,b>,M<a,c>〉 by simp
from A1 A3 T1 D1 groupAssum isAbelian show
M〈A<b,c>,a〉 = A〈M<b,a>,M<c,a>〉
using Group_ZF_3_3_L4 EquivClass_1_L10 Group_ZF_3_4_L13A
Group_ZF_3_2_L15 Ring_ZF_1_1_L2 Group_ZF_3_4_T1 by simp

qed

The projection of the first group operation on almost homomorphisms is
distributive with respect to the second group operation.

lemma (in group1) Ring_ZF_1_1_L4:
assumes A1: R = QuotientGroupRel(AH,Op1,FR)
and A2: A = ProjFun2(AH,R,Op1) M = ProjFun2(AH,R,Op2)
shows IsDistributive(AH//R,A,M)

proof -
from A1 A2 have ∀ a∈(AH//R).∀ b∈(AH//R).∀ c∈(AH//R).
M〈a,A<b,c>〉 = A〈M<a,b>, M<a,c>〉 ∧
M〈A<b,c>, a〉 = A〈M<b,a>,M<c,a>〉

using Ring_ZF_1_1_L3 by simp
then show thesis using IsDistributive_def by simp

qed

The classes of almost homomorphisms form a ring.

theorem (in group1) Ring_ZF_1_1_T1:
assumes R = QuotientGroupRel(AH,Op1,FR)
and A = ProjFun2(AH,R,Op1) M = ProjFun2(AH,R,Op2)
shows IsAring(AH//R,A,M)
using prems QuotientGroupOp_def Group_ZF_3_3_T1 Group_ZF_3_4_T2
Ring_ZF_1_1_L4 IsAring_def by simp

end
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20 OrderedRing ZF.thy

theory OrderedRing_ZF imports Ring_ZF OrderedGroup_ZF

begin

In this theory file we consider ordered rings.

20.1 Definition and notation

This section defines ordered rings and sets up appriopriate notation.

We define ordered ring as a commutative ring with linear order that is
preserved by translations and such that the set of nonnegative elements is
closed under multiplication. Note that this definition does not guarantee
that there are no zero divisors in the ring.

constdefs

IsAnOrdRing(R,A,M,r) ≡
( IsAring(R,A,M) ∧ (M {is commutative on} R) ∧
r⊆R×R ∧ IsLinOrder(R,r) ∧
(∀ a b. ∀ c∈R. <a,b> ∈ r −→ 〈A<a,c>,A<b,c>〉 ∈ r) ∧
(Nonnegative(R,A,r) {is closed under} M))

The next context (locale) defines notation used for ordered rings. We do
that by extending the notation defined in the ring0 locale and adding some
assumptions to make sure we are talking about ordered rings in this context.

locale ring1 = ring0 +

assumes mult_commut: M {is commutative on} R

fixes r

assumes ordincl: r ⊆ R×R

assumes linord: IsLinOrder(R,r)

fixes lesseq (infix ≤ 68)
defines lesseq_def [simp]: a ≤ b ≡ <a,b> ∈ r

fixes sless (infix < 68)
defines sless_def [simp]: a < b ≡ a≤b ∧ a6=b

assumes ordgroup: ∀ a b. ∀ c∈R. a≤b −→ a+c ≤ b+c

assumes pos_mult_closed: Nonnegative(R,A,r) {is closed under} M

fixes abs (| _ |)
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defines abs_def [simp]: |a| ≡ AbsoluteValue(R,A,r)(a)

fixes positiveset (R+)
defines positiveset_def [simp]: R+ ≡ PositiveSet(R,A,r)

The next lemma assures us that we are talking about ordered rings in the
ring1 context.

lemma (in ring1) OrdRing_ZF_1_L1: shows IsAnOrdRing(R,A,M,r)
using ring0_def ringAssum mult_commut ordincl linord ordgroup
pos_mult_closed IsAnOrdRing_def by simp

We can use theorems proven in the ring1 context whenever we talk about
an ordered ring.

lemma OrdRing_ZF_1_L2: assumes IsAnOrdRing(R,A,M,r)
shows ring1(R,A,M,r)
using prems IsAnOrdRing_def ring1_axioms.intro ring0_def ring1_def
by simp

In the ring1 context a ≤ b implies that a, b are elements of the ring.

lemma (in ring1) OrdRing_ZF_1_L3: assumes a≤b
shows a∈R b∈R
using prems ordincl by auto

Ordered ring is an ordered group, hence we can use theorems proven in the
group3 context.

lemma (in ring1) OrdRing_ZF_1_L4: shows
IsAnOrdGroup(R,A,r)
r {is total on} R
A {is commutative on} R
group3(R,A,r)

proof -
{ fix a b g assume A1: g∈R and A2: a≤b

with ordgroup have a+g ≤ b+g
by simp

moreover from ringAssum A1 A2 have
a+g = g+a b+g = g+b
using OrdRing_ZF_1_L3 IsAring_def IsCommutative_def by auto

ultimately have
a+g ≤ b+g g+a ≤ g+b
by auto

} hence
∀ g∈R. ∀ a b. a≤b −→ a+g ≤ b+g ∧ g+a ≤ g+b
by simp

with ringAssum ordincl linord show
IsAnOrdGroup(R,A,r)
group3(R,A,r)
r {is total on} R
A {is commutative on} R
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using IsAring_def Order_ZF_1_L2 IsAnOrdGroup_def group3_def IsLinOrder_def
by auto

qed

The order relation in rings is transitive.

lemma (in ring1) ring_ord_transitive: assumes A1: a≤b b≤c
shows a≤c

proof -
from A1 have
group3(R,A,r) 〈a,b〉 ∈ r 〈b,c〉 ∈ r
using OrdRing_ZF_1_L4 by auto

then have 〈a,c〉 ∈ r by (rule group3.Group_order_transitive)
then show a≤c by simp

qed

Transitivity for the strict order: if a < b and b ≤ c, then a < c. Property of
ordered groups.

lemma (in ring1) ring_strict_ord_trans:
assumes A1: a<b and A2: b≤c
shows a<c

proof -
from A1 A2 have
group3(R,A,r)
〈a,b〉 ∈ r ∧ a 6=b 〈b,c〉 ∈ r
using OrdRing_ZF_1_L4 by auto
then have 〈a,c〉 ∈ r ∧ a6=c by (rule group3.OrderedGroup_ZF_1_L4A)
then show a<c by simp

qed

Another version of transitivity for the strict order: if a ≤ b and b < c, then
a < c. Property of ordered groups.

lemma (in ring1) ring_strict_ord_transit:
assumes A1: a≤b and A2: b<c
shows a<c

proof -
from A1 A2 have
group3(R,A,r)
〈a,b〉 ∈ r 〈b,c〉 ∈ r ∧ b 6=c
using OrdRing_ZF_1_L4 by auto

then have 〈a,c〉 ∈ r ∧ a6=c by (rule group3.group_strict_ord_transit)
then show a<c by simp

qed

The next lemma shows what happens when one element of an ordered ring
is not greater or equal than another.

lemma (in ring1) OrdRing_ZF_1_L4A: assumes A1: a∈R b∈R
and A2: ¬(a≤b)
shows b ≤ a (-a) ≤ (-b) a6=b
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proof -
from A1 A2 have I:
group3(R,A,r)
r {is total on} R
a ∈ R b ∈ R 〈a, b〉 /∈ r
using OrdRing_ZF_1_L4 by auto

then have 〈b,a〉 ∈ r by (rule group3.OrderedGroup_ZF_1_L8)
then show b ≤ a by simp
from I have 〈GroupInv(R,A)(a),GroupInv(R,A)(b)〉 ∈ r

by (rule group3.OrderedGroup_ZF_1_L8)
then show (-a) ≤ (-b) by simp
from I show a6=b by (rule group3.OrderedGroup_ZF_1_L8)

qed

A special case of OrdRing_ZF_1_L4A when one of the constants is 0. This is
useful for many proofs by cases.

corollary (in ring1) ord_ring_split2: assumes A1: a∈R
shows a≤0 ∨ (0≤a ∧ a6=0)

proof -
{ from A1 have I: a∈R 0∈R

using Ring_ZF_1_L2 by auto
moreover assume A2: ¬(a≤0)
ultimately have 0≤a by (rule OrdRing_ZF_1_L4A)
moreover from I A2 have a 6=0 by (rule OrdRing_ZF_1_L4A)
ultimately have 0≤a ∧ a 6=0 by simp}

then show thesis by auto
qed

Taking minus on both sides reverses an inequality.

lemma (in ring1) OrdRing_ZF_1_L4B: assumes a≤b
shows (-b) ≤ (-a)
using prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5
by simp

The next lemma just expands the condition that requires the set of non-
negative elements to be closed with respect to multiplication. These are
properties of totally ordered groups.

lemma (in ring1) OrdRing_ZF_1_L5:
assumes 0≤a 0≤b
shows 0 ≤ a·b
using pos_mult_closed prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L2
IsOpClosed_def by simp

Double nonnegative is nonnegative.

lemma (in ring1) OrdRing_ZF_1_L5A: assumes A1: 0≤a
shows 0≤2·a
using prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5G
OrdRing_ZF_1_L3 Ring_ZF_1_L3 by simp
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A sufficient (somewhat redundant) condition for a structure to be an ordered
ring. It says that a commutative ring that is a totally ordered group with
respect to the additive operation such that set of nonnegative elements is
closed under multiplication, is an ordered ring.

lemma OrdRing_ZF_1_L6:
assumes
IsAring(R,A,M)
M {is commutative on} R
Nonnegative(R,A,r) {is closed under} M
IsAnOrdGroup(R,A,r)
r {is total on} R
shows IsAnOrdRing(R,A,M,r)
using prems IsAnOrdGroup_def Order_ZF_1_L3 IsAnOrdRing_def
by simp

a ≤ b iff a− b ≤ 0. This is a fact from OrderedGroup.thy, where it is stated
in multiplicative notation.

lemma (in ring1) OrdRing_ZF_1_L7:
assumes a∈R b∈R
shows a≤b ←→ a-b ≤ 0
using prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L9
by simp

Negative times positive is negative.

lemma (in ring1) OrdRing_ZF_1_L8:
assumes A1: a≤0 and A2: 0≤b
shows a·b ≤ 0

proof -
from A1 A2 have T1: a∈R b∈R a·b ∈ R

using OrdRing_ZF_1_L3 Ring_ZF_1_L4 by auto
from A1 A2 have 0≤(-a)·b

using OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5A OrdRing_ZF_1_L5
by simp

with T1 show a·b ≤ 0
using Ring_ZF_1_L7 OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5AA
by simp

qed

We can multiply both sides of an inequality by a nonnegative ring element.
This property is sometimes (not here) used to define ordered rings.

lemma (in ring1) OrdRing_ZF_1_L9:
assumes A1: a≤b and A2: 0≤c
shows
a·c ≤ b·c
c·a ≤ c·b

proof -
from A1 A2 have T1:
a∈R b∈R c∈R a·c ∈ R b·c ∈ R
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using OrdRing_ZF_1_L3 Ring_ZF_1_L4 by auto
with A1 A2 have (a-b)·c ≤ 0

using OrdRing_ZF_1_L7 OrdRing_ZF_1_L8 by simp
with T1 show a·c ≤ b·c

using Ring_ZF_1_L8 OrdRing_ZF_1_L7 by simp
with mult_commut T1 show c·a ≤ c·b

using IsCommutative_def by simp
qed

A special case of OrdRing_ZF_1_L9: we can multiply an inequality by a pos-
itive ring element.

lemma (in ring1) OrdRing_ZF_1_L9A:
assumes A1: a≤b and A2: c∈R+

shows
a·c ≤ b·c
c·a ≤ c·b

proof -
from A2 have 0 ≤ c using PositiveSet_def

by simp
with A1 show a·c ≤ b·c c·a ≤ c·b

using OrdRing_ZF_1_L9 by auto
qed

A square is nonnegative.

lemma (in ring1) OrdRing_ZF_1_L10:
assumes A1: a∈R shows 0≤(a2)

proof (cases 0≤a)
assume 0≤a
then show 0≤(a2) using OrdRing_ZF_1_L5

by simp
next assume ¬(0≤a)

with A1 have 0≤((-a)2)
using OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L8A
OrdRing_ZF_1_L5 by simp

with A1 show 0≤(a2) using Ring_ZF_1_L14
by simp

qed

1 is nonnegative.

corollary (in ring1) ordring_one_is_nonneg: shows 0 ≤ 1
proof -

have 0 ≤ (12) using Ring_ZF_1_L2 OrdRing_ZF_1_L10
by simp

then show 0 ≤ 1 using Ring_ZF_1_L2 Ring_ZF_1_L3
by simp

qed

In nontrivial rings one is positive.

lemma (in ring1) ordring_one_is_pos: assumes 0 6=1
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shows 1 ∈ R+

using prems Ring_ZF_1_L2 ordring_one_is_nonneg PositiveSet_def
by auto

Nonnegative is not negative. Property of ordered groups.

lemma (in ring1) OrdRing_ZF_1_L11: assumes 0≤a
shows ¬(a≤0 ∧ a 6=0)
using prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5AB
by simp

A negative element cannot be a square.

lemma (in ring1) OrdRing_ZF_1_L12:
assumes A1: a≤0 a 6=0
shows ¬(∃ b∈R. a = (b2))

proof -
{ assume ∃ b∈R. a = (b2)

with A1 have False using OrdRing_ZF_1_L10 OrdRing_ZF_1_L11
by auto

} then show thesis by auto
qed

If a ≤ b, then 0 ≤ b− a.

lemma (in ring1) OrdRing_ZF_1_L13: assumes a≤b
shows 0 ≤ b-a
using prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L9D
by simp

If a < b, then 0 < b− a.

lemma (in ring1) OrdRing_ZF_1_L14: assumes a≤b a6=b
shows
0 ≤ b-a 0 6= b-a
b-a ∈ R+

using prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L9E
by auto

If the difference is nonnegative, then a ≤ b.

lemma (in ring1) OrdRing_ZF_1_L15:
assumes a∈R b∈R and 0 ≤ b-a
shows a≤b
using prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L9F
by simp

A nonnegative number is does not decrease when multiplied by a number
greater or equal 1.

lemma (in ring1) OrdRing_ZF_1_L16:
assumes A1: 0≤a and A2: 1≤b
shows a≤a·b

proof -
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from A1 A2 have T: a∈R b∈R a·b ∈ R
using OrdRing_ZF_1_L3 Ring_ZF_1_L4 by auto

from A1 A2 have 0 ≤ a·(b-1)
using OrdRing_ZF_1_L13 OrdRing_ZF_1_L5 by simp

with T show a≤a·b
using Ring_ZF_1_L8 Ring_ZF_1_L2 Ring_ZF_1_L3 OrdRing_ZF_1_L15
by simp

qed

We can multiply the right hand side of an inequality between nonnegative
ring elements by an element greater or equal 1.

lemma (in ring1) OrdRing_ZF_1_L17:
assumes A1: 0≤a and A2: a≤b and A3: 1≤c
shows a≤b·c

proof -
from A1 A2 have 0≤b by (rule ring_ord_transitive)
with A3 have b≤b·c using OrdRing_ZF_1_L16

by simp
with A2 show a≤b·c by (rule ring_ord_transitive)

qed

Strict order is preserved by translations.

lemma (in ring1) ring_strict_ord_trans_inv:
assumes a<b and c∈R
shows
a+c < b+c
c+a < c+b
using prems OrdRing_ZF_1_L4 group3.group_strict_ord_transl_inv
by auto

We can put an element on the other side of a strict inequality, changing its
sign.

lemma (in ring1) OrdRing_ZF_1_L18:
assumes a∈R b∈R and a-b < c
shows a < c+b
using prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L12B
by simp

We can add the sides of two inequalities, the first of them strict, and we get
a strict inequality. Property of ordered groups.

lemma (in ring1) OrdRing_ZF_1_L19:
assumes a<b and c≤d
shows a+c < b+d
using prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L12C
by simp

We can add the sides of two inequalities, the second of them strict and we
get a strict inequality. Property of ordered groups.
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lemma (in ring1) OrdRing_ZF_1_L20:
assumes a≤b and c<d
shows a+c < b+d
using prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L12D
by simp

20.2 Absolute value for ordered rings

Absolute value is defined for ordered groups as a function that is the identity
on the nonnegative set and the negative of the element (the inverse in the
multiplicative notation) on the rest. In this section we consider properties
of absolute value related to multiplication in ordered rings.

Absolute value of a product is the product of absolute values: the case when
both elements of the ring are nonnegative.

lemma (in ring1) OrdRing_ZF_2_L1:
assumes 0≤a 0≤b
shows |a·b| = |a|·|b|
using prems OrdRing_ZF_1_L5 OrdRing_ZF_1_L4
group3.OrderedGroup_ZF_1_L2 group3.OrderedGroup_ZF_3_L2

by simp

The absolue value of an element and its negative are the same.

lemma (in ring1) OrdRing_ZF_2_L2: assumes a∈R
shows |-a| = |a|
using prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_3_L7A by simp

The next lemma states that |a · (−b)| = |(−a) · b| = |(−a) · (−b)| = |a · b|.
lemma (in ring1) OrdRing_ZF_2_L3:

assumes a∈R b∈R
shows
|(-a)·b| = |a·b|
|a·(-b)| = |a·b|
|(-a)·(-b)| = |a·b|
using prems Ring_ZF_1_L4 Ring_ZF_1_L7 Ring_ZF_1_L7A
OrdRing_ZF_2_L2 by auto

This lemma allows to prove theorems for the case of positive and negative
elements of the ring separately.

lemma (in ring1) OrdRing_ZF_2_L4: assumes a∈R and ¬(0≤a)
shows 0 ≤ (-a) 06=a
using prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L8A
by auto

Absolute value of a product is the product of absolute values.

lemma (in ring1) OrdRing_ZF_2_L5:
assumes A1: a∈R b∈R
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shows |a·b| = |a|·|b|
proof (cases 0≤a)

assume A2: 0≤a show |a·b| = |a|·|b|
proof (cases 0≤b)

assume 0≤b
with A2 show |a·b| = |a|·|b|

using OrdRing_ZF_2_L1 by simp
next assume ¬(0≤b)

with A1 A2 have |a·(-b)| = |a|·|-b|
using OrdRing_ZF_2_L4 OrdRing_ZF_2_L1 by simp

with A1 show |a·b| = |a|·|b|
using OrdRing_ZF_2_L2 OrdRing_ZF_2_L3 by simp

qed
next assume ¬(0≤a)

with A1 have A3: 0 ≤ (-a)
using OrdRing_ZF_2_L4 by simp

show |a·b| = |a|·|b|
proof (cases 0≤b)

assume 0≤b
with A3 have |(-a)·b| = |-a|·|b|

using OrdRing_ZF_2_L1 by simp
with A1 show |a·b| = |a|·|b|

using OrdRing_ZF_2_L2 OrdRing_ZF_2_L3 by simp
next assume ¬(0≤b)

with A1 A3 have |(-a)·(-b)| = |-a|·|-b|
using OrdRing_ZF_2_L4 OrdRing_ZF_2_L1 by simp

with A1 show |a·b| = |a|·|b|
using OrdRing_ZF_2_L2 OrdRing_ZF_2_L3 by simp

qed
qed

Triangle inequality. Property of linearly ordered abelian groups.

lemma (in ring1) ord_ring_triangle_ineq: assumes a∈R b∈R
shows |a+b| ≤ |a|+|b|
using prems OrdRing_ZF_1_L4 group3.OrdGroup_triangle_ineq
by simp

If a ≤ c and b ≤ c, then a + b ≤ 2 · c.
lemma (in ring1) OrdRing_ZF_2_L6:

assumes a≤c b≤c shows a+b ≤ 2·c
using prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5B
OrdRing_ZF_1_L3 Ring_ZF_1_L3 by simp

20.3 Positivity in ordered rings

This section is about properties of the set of positive elements R+.

The set of positive elements is closed under ring addition. This is a property
of ordered groups, we just reference a theorem from OrderedGroup_ZF theory
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in the proof.

lemma (in ring1) OrdRing_ZF_3_L1: shows R+ {is closed under} A
using OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L13
by simp

Every element of a ring can be either in the postitive set, equal to zero or
its opposite (the additive inverse) is in the positive set. This is a property of
ordered groups, we just reference a theorem from OrderedGroup_ZF theory.

lemma (in ring1) OrdRing_ZF_3_L2: assumes a∈R
shows Exactly_1_of_3_holds (a=0, a∈R+, (-a) ∈ R+)
using prems OrdRing_ZF_1_L4 group3.OrdGroup_decomp
by simp

If a ring element a 6= 0, and it is not positive, then −a is positive.

lemma (in ring1) OrdRing_ZF_3_L2A: assumes a∈R a6=0 a /∈ R+

shows (-a) ∈ R+

using prems OrdRing_ZF_1_L4 group3.OrdGroup_cases
by simp

R+ is closed under multiplication iff the ring has no zero divisors.

lemma (in ring1) OrdRing_ZF_3_L3:
shows (R+ {is closed under} M)←→ HasNoZeroDivs(R,A,M)

proof
assume A1: HasNoZeroDivs(R,A,M)
{ fix a b assume a∈R+ b∈R+

then have 0≤a a6=0 0≤b b6=0
using PositiveSet_def by auto

with A1 have a·b ∈ R+

using OrdRing_ZF_1_L5 Ring_ZF_1_L2 OrdRing_ZF_1_L3 Ring_ZF_1_L12
OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L2A

by simp
} then show R+ {is closed under} M using IsOpClosed_def

by simp
next assume A2: R+ {is closed under} M

{ fix a b assume A3: a∈R b∈R and a6=0 b6=0
with A2 have |a·b| ∈ R+

using OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_3_L12 IsOpClosed_def
OrdRing_ZF_2_L5 by simp

with A3 have a·b 6= 0
using PositiveSet_def Ring_ZF_1_L4
OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_3_L2A

by auto
} then show HasNoZeroDivs(R,A,M) using HasNoZeroDivs_def

by auto
qed

Another (in addition to OrdRing_ZF_1_L6 sufficient condition that defines
order in an ordered ring starting from the positive set.
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theorem (in ring0) ring_ord_by_positive_set:
assumes
A1: M {is commutative on} R and
A2: P⊆R P {is closed under} A 0 /∈ P and
A3: ∀ a∈R. a6=0 −→ (a∈P) Xor ((-a) ∈ P) and
A4: P {is closed under} M and
A5: r = OrderFromPosSet(R,A,P)
shows
IsAnOrdGroup(R,A,r)
IsAnOrdRing(R,A,M,r)
r {is total on} R
PositiveSet(R,A,r) = P
Nonnegative(R,A,r) = P ∪ {0}
HasNoZeroDivs(R,A,M)

proof -
from A2 A3 A5 show
I: IsAnOrdGroup(R,A,r) r {is total on} R and
II: PositiveSet(R,A,r) = P and
III: Nonnegative(R,A,r) = P ∪ {0}
using Ring_ZF_1_L1 group0.Group_ord_by_positive_set
by auto

from A2 A4 III have Nonnegative(R,A,r) {is closed under} M
using Ring_ZF_1_L16 by simp

with ringAssum A1 I show IsAnOrdRing(R,A,M,r)
using OrdRing_ZF_1_L6 by simp

with A4 II show HasNoZeroDivs(R,A,M)
using OrdRing_ZF_1_L2 ring1.OrdRing_ZF_3_L3
by auto

qed

Nontrivial ordered rings are infinite. More precisely we assume that the
neutral element of the additive operation is not equal to the multiplicative
neutral element and show that the the set of positive elements of the ring is
not a finite subset of the ring and the ring is not a finite subset of itself.

theorem (in ring1) ord_ring_infinite: assumes 0 6=1
shows
R+ /∈ Fin(R)
R /∈ Fin(R)
using prems Ring_ZF_1_L17 OrdRing_ZF_1_L4 group3.Linord_group_infinite
by auto

lemma (in ring1) OrdRing_ZF_3_L4:
assumes 0 6=1 and ∀ a∈R. ∃ b∈B. a≤b
shows
¬IsBoundedAbove(B,r)
B /∈ Fin(R)
using prems Ring_ZF_1_L17 OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_2_L2A
by auto
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If m is greater or equal the multiplicative unit, then the set {m · n : n ∈ R}
is infinite (unless the ring is trivial).
lemma (in ring1) OrdRing_ZF_3_L5: assumes A1: 06=1 and A2: 1≤m

shows
{m·x. x∈R+} /∈ Fin(R)
{m·x. x∈R} /∈ Fin(R)
{(-m)·x. x∈R} /∈ Fin(R)

proof -
from A2 have T: m∈R using OrdRing_ZF_1_L3 by simp
from A2 have 0≤1 1≤m

using ordring_one_is_nonneg by auto
then have I: 0≤m by (rule ring_ord_transitive)
let B = {m·x. x∈R+}
{ fix a assume A3: a∈R

then have a≤0 ∨ (0≤a ∧ a6=0)
using ord_ring_split2 by simp

moreover
{ assume A4: a≤0

from A1 have m·1 ∈ B using ordring_one_is_pos
by auto

with T have m∈B using Ring_ZF_1_L3 by simp
moreover from A4 I have a≤m by (rule ring_ord_transitive)
ultimately have ∃ b∈B. a≤b by blast }

moreover
{ assume A4: 0≤a ∧ a 6=0

with A3 have m·a ∈ B using PositiveSet_def
by auto

moreover
from A2 A4 have 1·a ≤ m·a using OrdRing_ZF_1_L9

by simp
with A3 have a ≤ m·a using Ring_ZF_1_L3

by simp
ultimately have ∃ b∈B. a≤b by auto }

ultimately have ∃ b∈B. a≤b by auto
} then have ∀ a∈R. ∃ b∈B. a≤b

by simp
with A1 show B /∈ Fin(R) using OrdRing_ZF_3_L4

by simp
moreover have B ⊆ {m·x. x∈R}

using PositiveSet_def by auto
ultimately show {m·x. x∈R} /∈ Fin(R) using Fin_subset

by auto
with T show {(-m)·x. x∈R} /∈ Fin(R) using Ring_ZF_1_L18

by simp
qed

If m is less or equal than the negative of multiplicative unit, then the set
{m · n : n ∈ R} is infinite (unless the ring is trivial).
lemma (in ring1) OrdRing_ZF_3_L6: assumes A1: 06=1 and A2: m ≤ -1
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shows {m·x. x∈R} /∈ Fin(R)
proof -

from A2 have (-(-1)) ≤ -m
using OrdRing_ZF_1_L4B by simp

with A1 have {(-m)·x. x∈R} /∈ Fin(R)
using Ring_ZF_1_L2 Ring_ZF_1_L3 OrdRing_ZF_3_L5
by simp

with A2 show {m·x. x∈R} /∈ Fin(R)
using OrdRing_ZF_1_L3 Ring_ZF_1_L18 by simp

qed

All elements greater or equal than an element of R+ belong to R+. Property
of ordered groups.

lemma (in ring1) OrdRing_ZF_3_L7: assumes A1: a ∈ R+ and A2: a≤b
shows b ∈ R+

proof -
from A1 A2 have
group3(R,A,r)
a ∈ PositiveSet(R,A,r)
〈a,b〉 ∈ r
using OrdRing_ZF_1_L4 by auto

then have b ∈ PositiveSet(R,A,r)
by (rule group3.OrderedGroup_ZF_1_L19)

then show b ∈ R+ by simp
qed

A special case of OrdRing_ZF_3_L7: a ring element greater or equal than 1 is
positive.

corollary (in ring1) OrdRing_ZF_3_L8: assumes A1: 06=1 and A2: 1≤a
shows a ∈ R+

proof -
from A1 A2 have 1 ∈ R+ 1≤a

using ordring_one_is_pos by auto
then show a ∈ R+ by (rule OrdRing_ZF_3_L7)

qed

Adding a positive element to a strictly increases a. Property of ordered
groups.

lemma (in ring1) OrdRing_ZF_3_L9: assumes A1: a∈R b∈R+

shows a ≤ a+b a 6= a+b
using prems OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L22
by auto

A special case of OrdRing_ZF_3_L9: in nontrivial rings adding one to a in-
creases a.

corollary (in ring1) OrdRing_ZF_3_L10: assumes A1: 06=1 and A2: a∈R
shows a ≤ a+1 a 6= a+1
using prems ordring_one_is_pos OrdRing_ZF_3_L9
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by auto

If a is not greater than b, then it is strictly less than b + 1.

lemma (in ring1) OrdRing_ZF_3_L11: assumes A1: 06=1 and A2: a≤b
shows a< b+1

proof -
from A1 A2 have I: b < b+1

using OrdRing_ZF_1_L3 OrdRing_ZF_3_L10 by auto
with A2 show a< b+1 by (rule ring_strict_ord_transit)

qed

For any ring element a the greater of a and 1 is a positive element that is
greater or equal than m. If we add 1 to it we get a positive element that is
strictly greater than m. This holds in nontrivial rings.

lemma (in ring1) OrdRing_ZF_3_L12: assumes A1: 06=1 and A2: a∈R
shows
a ≤ GreaterOf(r,1,a)
GreaterOf(r,1,a) ∈ R+

GreaterOf(r,1,a) + 1 ∈ R+

a ≤ GreaterOf(r,1,a) + 1 a 6= GreaterOf(r,1,a) + 1
proof -

from linord have r {is total on} R using IsLinOrder_def
by simp

moreover from A2 have 1 ∈ R a∈R
using Ring_ZF_1_L2 by auto

ultimately have
1 ≤ GreaterOf(r,1,a) and
I: a ≤ GreaterOf(r,1,a)
using Order_ZF_3_L2 by auto

with A1 show
a ≤ GreaterOf(r,1,a) and
GreaterOf(r,1,a) ∈ R+

using OrdRing_ZF_3_L8 by auto
with A1 show GreaterOf(r,1,a) + 1 ∈ R+

using ordring_one_is_pos OrdRing_ZF_3_L1 IsOpClosed_def
by simp

from A1 I show
a ≤ GreaterOf(r,1,a) + 1 a 6= GreaterOf(r,1,a) + 1
using OrdRing_ZF_3_L11 by auto

qed

We can multiply strict inequality by a positive element.

lemma (in ring1) OrdRing_ZF_3_L13:
assumes A1: HasNoZeroDivs(R,A,M) and
A2: a<b and A3: c∈R+

shows
a·c < b·c
c·a < c·b
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proof -
from A2 A3 have T: a∈R b∈R c∈R c6=0

using OrdRing_ZF_1_L3 PositiveSet_def by auto
from A2 A3 have a·c ≤ b·c using OrdRing_ZF_1_L9A

by simp
moreover from A1 A2 T have a·c 6= b·c

using Ring_ZF_1_L12A by auto
ultimately show a·c < b·c by simp
moreover from mult_commut T have a·c = c·a and b·c = c·b

using IsCommutative_def by auto
ultimately show c·a < c·b by simp

qed

A sufficient condition for an element to be in the set of positive ring elements.

lemma (in ring1) OrdRing_ZF_3_L14: assumes 0≤a and a 6=0
shows a ∈ R+

using prems OrdRing_ZF_1_L3 PositiveSet_def
by auto

If a ring has no zero divisors, the square of a nonzero element is positive.

lemma (in ring1) OrdRing_ZF_3_L15:
assumes HasNoZeroDivs(R,A,M) and a∈R a6=0
shows 0 ≤ a2 a2 6= 0 a2 ∈ R+

using prems OrdRing_ZF_1_L10 Ring_ZF_1_L12 OrdRing_ZF_3_L14
by auto

In rings with no zero divisors we can (strictly) increase a positive element
by multiplying it by an element that is greater than 1.

lemma (in ring1) OrdRing_ZF_3_L16:
assumes HasNoZeroDivs(R,A,M) and a ∈ R+ and 1≤b 16=b
shows a≤a·b a 6= a·b
using prems PositiveSet_def OrdRing_ZF_1_L16 OrdRing_ZF_1_L3
Ring_ZF_1_L12C by auto

If the right hand side of an inequality is positive we can multiply it by a
number that is greater than one.

lemma (in ring1) OrdRing_ZF_3_L17:
assumes A1: HasNoZeroDivs(R,A,M) and A2: b∈R+ and

A3: a≤b and A4: 1<c
shows a<b·c

proof -
from A1 A2 A4 have b < b·c

using OrdRing_ZF_3_L16 by auto
with A3 show a<b·c by (rule ring_strict_ord_transit)

qed

We can multiply a right hand side of an inequality between positive numbers
by a number that is greater than one.
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lemma (in ring1) OrdRing_ZF_3_L18:
assumes A1: HasNoZeroDivs(R,A,M) and A2: a ∈ R+ and
A3: a≤b and A4: 1<c
shows a<b·c

proof -
from A2 A3 have b ∈ R+ using OrdRing_ZF_3_L7

by blast
with A1 A3 A4 show a<b·c

using OrdRing_ZF_3_L17 by simp
qed

In ordered rings with no zero divisors if at least one of a, b is not zero, then
a2 + b2 > 0, in particular a2 + b2 6= 0.

lemma (in ring1) OrdRing_ZF_3_L19:
assumes A1: HasNoZeroDivs(R,A,M) and A2: a∈R b∈R and
A3: a 6= 0 ∨ b 6= 0
shows 0 < a2 + b2

proof -
{ assume a 6= 0

with A1 A2 have 0 ≤ a2 a2 6= 0
using OrdRing_ZF_3_L15 by auto

then have 0 < a2 by auto
moreover from A2 have 0 ≤ b2

using OrdRing_ZF_1_L10 by simp
ultimately have 0 + 0 < a2 + b2

using OrdRing_ZF_1_L19 by simp
hence 0 < a2 + b2

using Ring_ZF_1_L2 Ring_ZF_1_L3 by simp }
moreover
{ assume A4: a = 0

then have a2 + b2 = 0 + b2

using Ring_ZF_1_L2 Ring_ZF_1_L6 by simp
also from A2 have . . . = b2

using Ring_ZF_1_L4 Ring_ZF_1_L3 by simp
finally have a2 + b2 = b2 by simp
moreover
from A3 A4 have b 6= 0 by simp
with A1 A2 have 0 ≤ b2 and b2 6= 0

using OrdRing_ZF_3_L15 by auto
hence 0 < b2 by auto
ultimately have 0 < a2 + b2 by simp }

ultimately show 0 < a2 + b2

by auto
qed

end
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21 Field ZF.thy

theory Field_ZF imports Ring_ZF

begin

This theory covers basic facts about fields.

21.1 Definition and basic properties

In this section we define what is a field and list the basic properties of fields.

Field is a notrivial commutative ring such that all non-zero elements have an
inverse. We define the notion of being a field as a statement about three sets.
The first set, denoted K is the carrier of the field. The second set, denoted A

represents the additive operation on K (recall that in ZF set theory functions
are sets). The third set M represents the multiplicative operation on K.

constdefs
IsAfield(K,A,M) ≡
(IsAring(K,A,M) ∧ (M {is commutative on} K) ∧
TheNeutralElement(K,A) 6= TheNeutralElement(K,M) ∧
(∀ a∈K. a6=TheNeutralElement(K,A)−→
(∃ b∈K. M〈a,b〉 = TheNeutralElement(K,M))))

The field0 context extends the ring0 context adding field-related assump-
tions and notation related to the multiplicative inverse.

locale field0 = ring0 K +
assumes mult_commute: M {is commutative on} K

assumes not_triv: 0 6= 1

assumes inv_exists: ∀ a∈K. a6=0 −→ (∃ b∈K. a·b = 1)

fixes non_zero (K0)
defines non_zero_def[simp]: K0 ≡ K-{0}

fixes inv (_−1 [96] 97)
defines inv_def[simp]: a−1 ≡ GroupInv(K0,restrict(M,K0×K0))(a)

The next lemma assures us that we are talking fields in the field0 context.

lemma (in field0) Field_ZF_1_L1: shows IsAfield(K,A,M)
using ringAssum mult_commute not_triv inv_exists IsAfield_def
by simp

We can use theorems proven in the field0 context whenever we talk about
a field.

lemma Field_ZF_1_L2: assumes IsAfield(K,A,M)
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shows field0(K,A,M)
using prems IsAfield_def field0_axioms.intro ring0_def field0_def
by simp

Let’s have an explicit statement that the multiplication in fields is commu-
tative.

lemma (in field0) field_mult_comm: assumes a∈K b∈K
shows a·b = b·a
using mult_commute prems IsCommutative_def by simp

Fields do not have zero divisors.

lemma (in field0) field_has_no_zero_divs: shows HasNoZeroDivs(K,A,M)
proof -

{ fix a b assume A1: a∈K b∈K and A2: a·b = 0 and A3: b6=0
from inv_exists A1 A3 obtain c where I: c∈K and II: b·c = 1

by auto
from A2 have a·b·c = 0·c by simp
with A1 I have a·(b·c) = 0

using Ring_ZF_1_L11 Ring_ZF_1_L6 by simp
with A1 II have a=0 using Ring_ZF_1_L3 by simp }

then have ∀ a∈K.∀ b∈K. a·b = 0 −→ a=0 ∨ b=0 by auto
then show thesis using HasNoZeroDivs_def by auto

qed

K0 (the set of nonzero field elements is closed with respect to multiplication.

lemma (in field0) Field_ZF_1_L2: K0 {is closed under} M
using Ring_ZF_1_L4 field_has_no_zero_divs Ring_ZF_1_L12
IsOpClosed_def by auto

Any nonzero element has a right inverse that is nonzero.

lemma (in field0) Field_ZF_1_L3: assumes A1: a∈K0

shows ∃ b∈K0. a·b = 1
proof -

from inv_exists A1 obtain b where b∈K and a·b = 1
by auto

with not_triv A1 show ∃ b∈K0. a·b = 1
using Ring_ZF_1_L6 by auto

qed

If we remove zero, the field with multiplication becomes a group and we can
use all theorems proven in group0 context.

theorem (in field0) Field_ZF_1_L4: shows
IsAgroup(K0,restrict(M,K0×K0))
group0(K0,restrict(M,K0×K0))
1 = TheNeutralElement(K0,restrict(M,K0×K0))

proof-
let f = restrict(M,K0×K0)
have
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M {is associative on} K
K0 ⊆ K K0 {is closed under} M
using Field_ZF_1_L1 IsAfield_def IsAring_def IsAgroup_def
IsAmonoid_def Field_ZF_1_L2 by auto

then have f {is associative on} K0

using func_ZF_4_L3 by simp
moreover
from not_triv have
I: 1∈K0 ∧ (∀ a∈K0. f〈1,a〉 = a ∧ f〈a,1〉 = a)
using Ring_ZF_1_L2 Ring_ZF_1_L3 by auto

then have ∃ n∈K0. ∀ a∈K0. f〈n,a〉 = a ∧ f〈a,n〉 = a
by blast

ultimately have II: IsAmonoid(K0,f) using IsAmonoid_def
by simp

then have monoid0(K0,f) using monoid0_def by simp
moreover note I
ultimately show 1 = TheNeutralElement(K0,f)

by (rule monoid0.group0_1_L4)
then have ∀ a∈K0.∃ b∈K0. f〈a,b〉 = TheNeutralElement(K0,f)

using Field_ZF_1_L3 by auto
with II show IsAgroup(K0,f) by (rule definition_of_group)
then show group0(K0,f) using group0_def by simp

qed

The inverse of a nonzero field element is nonzero.

lemma (in field0) Field_ZF_1_L5: assumes A1: a∈K a6=0
shows a−1 ∈ K0 (a−1)2 ∈ K0 a−1 ∈ K a−1 6= 0

proof -
from A1 have a ∈ K0 by simp
then show a−1 ∈ K0 using Field_ZF_1_L4 group0.inverse_in_group

by auto
then show (a−1)2 ∈ K0 a−1 ∈ K a−1 6= 0

using Field_ZF_1_L2 IsOpClosed_def by auto
qed

The inverse is really the inverse.

lemma (in field0) Field_ZF_1_L6: assumes A1: a∈K a6=0
shows a·a−1 = 1 a−1·a = 1

proof -
let f = restrict(M,K0×K0)
from A1 have
group0(K0,f)
a ∈ K0

using Field_ZF_1_L4 by auto
then have
f〈a,GroupInv(K0, f)(a)〉 = TheNeutralElement(K0,f) ∧
f〈GroupInv(K0,f)(a),a〉 = TheNeutralElement(K0, f)
by (rule group0.group0_2_L6)

with A1 show a·a−1 = 1 a−1·a = 1
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using Field_ZF_1_L5 Field_ZF_1_L4 by auto
qed

A lemma with two field elements and cancelling.

lemma (in field0) Field_ZF_1_L7: assumes a∈K b∈K b6=0
shows
a·b·b−1 = a
a·b−1·b = a
using prems Field_ZF_1_L5 Ring_ZF_1_L11 Field_ZF_1_L6 Ring_ZF_1_L3
by auto

21.2 Equations and identities

This section deals with more specialized identities that are true in fields.

a/(a2) = a.

lemma (in field0) Field_ZF_2_L1: assumes A1: a∈K a6=0
shows a·(a−1)2 = a−1

proof -
have a·(a−1)2 = a·(a−1·a−1) by simp
also from A1 have . . . = (a·a−1)·a−1

using Field_ZF_1_L5 Ring_ZF_1_L11
by simp

also from A1 have . . . = a−1

using Field_ZF_1_L6 Field_ZF_1_L5 Ring_ZF_1_L3
by simp

finally show a·(a−1)2 = a−1 by simp
qed

If we multiply two different numbers by a nonzero number, the results will
be different.

lemma (in field0) Field_ZF_2_L2:
assumes a∈K b∈K c∈K a6=b c6=0
shows a·c−1 6= b·c−1

using prems field_has_no_zero_divs Field_ZF_1_L5 Ring_ZF_1_L12B
by simp

We can put a nonzero factor on the other side of non-identity (is this the
best way to call it?) changing it to the inverse.

lemma (in field0) Field_ZF_2_L3:
assumes A1: a∈K b∈K b6=0 c∈K and A2: a·b 6= c
shows a 6= c·b−1

proof -
from A1 A2 have a·b·b−1 6= c·b−1

using Ring_ZF_1_L4 Field_ZF_2_L2 by simp
with A1 show a 6= c·b−1 using Field_ZF_1_L7

by simp
qed
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If if the inverse of b is different than a, then the inverse of a is different than
b.

lemma (in field0) Field_ZF_2_L4:
assumes a∈K a6=0 and b−1 6= a
shows a−1 6= b
using prems Field_ZF_1_L4 group0.group0_2_L11B
by simp

An identity with two field elements, one and an inverse.

lemma (in field0) Field_ZF_2_L5:
assumes a∈K b∈K b6=0
shows (1 + a·b)·b−1 = a + b−1

using prems Ring_ZF_1_L4 Field_ZF_1_L5 Ring_ZF_1_L2 ring_oper_distr

Field_ZF_1_L7 Ring_ZF_1_L3 by simp

An identity with three field elements, inverse and cancelling.

lemma (in field0) Field_ZF_2_L6: assumes A1: a∈K b∈K b6=0 c∈K
shows a·b·(c·b−1) = a·c

proof -
from A1 have T: a·b ∈ K b−1 ∈ K

using Ring_ZF_1_L4 Field_ZF_1_L5 by auto
with mult_commute A1 have a·b·(c·b−1) = a·b·(b−1·c)

using IsCommutative_def by simp
moreover
from A1 T have a·b ∈ K b−1 ∈ K c∈K

by auto
then have a·b·b−1·c = a·b·(b−1·c)

by (rule Ring_ZF_1_L11)
ultimately have a·b·(c·b−1) = a·b·b−1·c by simp
with A1 show a·b·(c·b−1) = a·c

using Field_ZF_1_L7 by simp
qed

end
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22 OrderedField ZF.thy

theory OrderedField_ZF imports OrderedRing_ZF Field_ZF

begin

This theory covers basic facts about ordered fiels.

22.1 Definition and basic properties

Ordered field is a notrivial ordered ring such that all non-zero elements have
an inverse. We define the notion of being a ordered field as a statement about
four sets. The first set, denoted K is the carrier of the field. The second set,
denoted A represents the additive operation on K (recall that in ZF set theory
functions are sets). The third set M represents the multiplicative operation
on K. The fourth set r is the order relation on K.

constdefs
IsAnOrdField(K,A,M,r) ≡ (IsAnOrdRing(K,A,M,r) ∧
(M {is commutative on} K) ∧
TheNeutralElement(K,A) 6= TheNeutralElement(K,M) ∧
(∀ a∈K. a6=TheNeutralElement(K,A)−→
(∃ b∈K. M〈a,b〉 = TheNeutralElement(K,M))))

The next context (locale) defines notation used for ordered fields. We do
that by extending the notation defined in the ring1 context that is used for
oredered rings and adding some assumptions to make sure we are talking
about ordered fields in this context. We should rename the carrier from R
used in the ring1 context to K, more appriopriate for fields. Theoretically
the Isar locale facility supports such renaming, but we experienced diffculties
using some lemmas from ring1 locale after renaming.

locale field1 = ring1 +

assumes mult_commute: M {is commutative on} R

assumes not_triv: 0 6= 1

assumes inv_exists: ∀ a∈R. a6=0 −→ (∃ b∈R. a·b = 1)

fixes non_zero (R0)
defines non_zero_def[simp]: R0 ≡ R-{0}

fixes inv (_−1 [96] 97)
defines inv_def[simp]: a−1 ≡ GroupInv(R0,restrict(M,R0×R0))(a)

The next lemma assures us that we are talking fields in the field1 context.

lemma (in field1) OrdField_ZF_1_L1: shows IsAnOrdField(R,A,M,r)
using OrdRing_ZF_1_L1 mult_commute not_triv inv_exists IsAnOrdField_def
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by simp

Ordered field is a field, of course.

lemma OrdField_ZF_1_L1A: assumes IsAnOrdField(K,A,M,r)
shows IsAfield(K,A,M)
using prems IsAnOrdField_def IsAnOrdRing_def IsAfield_def
by simp

Theorems proven in field0 (about fields) context are valid in the field1

context (about ordered fields).

lemma (in field1) OrdField_ZF_1_L1B: shows field0(R,A,M)
using OrdField_ZF_1_L1 OrdField_ZF_1_L1A Field_ZF_1_L2
by simp

We can use theorems proven in the field1 context whenever we talk about
an ordered field.

lemma OrdField_ZF_1_L2: assumes IsAnOrdField(K,A,M,r)
shows field1(K,A,M,r)
using prems IsAnOrdField_def OrdRing_ZF_1_L2 ring1_def
IsAnOrdField_def field1_axioms_def field1_def

by auto

In ordered rings the existence of a right inverse for all positive elements
implies the existence of an inverse for all non zero elements.

lemma (in ring1) OrdField_ZF_1_L3:
assumes A1: ∀ a∈R+. ∃ b∈R. a·b = 1 and A2: c∈R c6=0
shows ∃ b∈R. c·b = 1

proof (cases c∈R+)
assume c∈R+

with A1 show ∃ b∈R. c·b = 1 by simp
next assume c/∈R+

with A2 have (-c) ∈ R+

using OrdRing_ZF_3_L2A by simp
with A1 obtain b where b∈R and (-c)·b = 1

by auto
with A2 have (-b) ∈ R c·(-b) = 1

using Ring_ZF_1_L3 Ring_ZF_1_L7 by auto
then show ∃ b∈R. c·b = 1 by auto

qed

Ordered fields are easier to deal with, because it is sufficient to show the
existence of an inverse for the set of positive elements.

lemma (in ring1) OrdField_ZF_1_L4:
assumes 0 6= 1 and M {is commutative on} R
and ∀ a∈R+. ∃ b∈R. a·b = 1
shows IsAnOrdField(R,A,M,r)
using prems OrdRing_ZF_1_L1 OrdField_ZF_1_L3 IsAnOrdField_def
by simp
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The set of positive field elements is closed under multiplication.

lemma (in field1) OrdField_ZF_1_L5: shows R+ {is closed under} M
using OrdField_ZF_1_L1B field0.field_has_no_zero_divs OrdRing_ZF_3_L3
by simp

The set of positive field elements is closed under multiplication: the explicit
version.

lemma (in field1) pos_mul_closed:
assumes A1: 0 < a 0 < b
shows 0 < a·b

proof -
from A1 have a ∈ R+ and b ∈ R+

using OrdRing_ZF_3_L14 by auto
then show 0 < a·b

using OrdField_ZF_1_L5 IsOpClosed_def PositiveSet_def
by simp

qed

In fields square of a nonzero element is positive.

lemma (in field1) OrdField_ZF_1_L6: assumes a∈R a6=0
shows a2 ∈ R+

using prems OrdField_ZF_1_L1B field0.field_has_no_zero_divs
OrdRing_ZF_3_L15 by simp

The next lemma restates the fact Field_ZF that out notation for the field
inverse means what it is supposed to mean.

lemma (in field1) OrdField_ZF_1_L7: assumes a∈R a6=0
shows a·(a−1) = 1 (a−1)·a = 1
using prems OrdField_ZF_1_L1B field0.Field_ZF_1_L6
by auto

A simple lemma about multiplication and cancelling of a positive field ele-
ment.

lemma (in field1) OrdField_ZF_1_L7A:
assumes A1: a∈R b ∈ R+

shows
a·b·b−1 = a
a·b−1·b = a

proof -
from A1 have b∈R b6=0 using PositiveSet_def

by auto
with A1 show a·b·b−1 = a and a·b−1·b = a

using OrdField_ZF_1_L1B field0.Field_ZF_1_L7
by auto

qed

Some properties of the inverse of a positive element.
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lemma (in field1) OrdField_ZF_1_L8: assumes A1: a ∈ R+

shows a−1 ∈ R+ a·(a−1) = 1 (a−1)·a = 1
proof -

from A1 have I: a∈R a6=0 using PositiveSet_def
by auto

with A1 have a·(a−1)2 ∈ R+

using OrdField_ZF_1_L1B field0.Field_ZF_1_L5 OrdField_ZF_1_L6
OrdField_ZF_1_L5 IsOpClosed_def by simp

with I show a−1 ∈ R+

using OrdField_ZF_1_L1B field0.Field_ZF_2_L1
by simp

from I show a·(a−1) = 1 (a−1)·a = 1
using OrdField_ZF_1_L7 by auto

qed

If a < b, then (b− a)−1 is positive.

lemma (in field1) OrdField_ZF_1_L9: assumes a<b
shows (b-a)−1 ∈ R+

using prems OrdRing_ZF_1_L14 OrdField_ZF_1_L8
by simp

In ordered fields if at least one of a, b is not zero, then a2 + b2 > 0, in
particular a2 + b2 6= 0 and exists the (multiplicative) inverse of a2 + b2.

lemma (in field1) OrdField_ZF_1_L10:
assumes A1: a∈R b∈R and A2: a 6= 0 ∨ b 6= 0
shows 0 < a2 + b2 and ∃ c∈R. (a2 + b2)·c = 1

proof -
from A1 A2 show 0 < a2 + b2

using OrdField_ZF_1_L1B field0.field_has_no_zero_divs
OrdRing_ZF_3_L19 by simp

then have
(a2 + b2)−1 ∈ R and (a2 + b2)·(a2 + b2)−1 = 1
using OrdRing_ZF_1_L3 PositiveSet_def OrdField_ZF_1_L8
by auto

then show ∃ c∈R. (a2 + b2)·c = 1 by auto
qed

22.2 Inequalities

In this section we develop tools to deal inequalities in fields.

We can multiply strict inequality by a positive element.

lemma (in field1) OrdField_ZF_2_L1:
assumes a<b and c∈R+

shows a·c < b·c
using prems OrdField_ZF_1_L1B field0.field_has_no_zero_divs
OrdRing_ZF_3_L13

by simp
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A special case of OrdField_ZF_2_L1 when we multiply an inverse by an ele-
ment.

lemma (in field1) OrdField_ZF_2_L2:
assumes A1: a∈R+ and A2: a−1 < b
shows 1 < b·a

proof -
from A1 A2 have (a−1)·a < b·a

using OrdField_ZF_2_L1 by simp
with A1 show 1 < b·a

using OrdField_ZF_1_L8 by simp
qed

We can multiply an inequality by the inverse of a positive element.

lemma (in field1) OrdField_ZF_2_L3:
assumes a≤b and c∈R+ shows a·(c−1) ≤ b·(c−1)
using prems OrdField_ZF_1_L8 OrdRing_ZF_1_L9A
by simp

We can multiply a strict inequality by a positive element or its inverse.

lemma (in field1) OrdField_ZF_2_L4:
assumes a<b and c∈R+

shows
a·c < b·c
c·a < c·b
a·c−1 < b·c−1

using prems OrdField_ZF_1_L1B field0.field_has_no_zero_divs
OrdField_ZF_1_L8 OrdRing_ZF_3_L13 by auto

We can put a positive factor on the other side of an inequality, changing it
to its inverse.

lemma (in field1) OrdField_ZF_2_L5:
assumes A1: a∈R b∈R+ and A2: a·b ≤ c
shows a ≤ c·b−1

proof -
from A1 A2 have a·b·b−1 ≤ c·b−1

using OrdField_ZF_2_L3 by simp
with A1 show a ≤ c·b−1 using OrdField_ZF_1_L7A

by simp
qed

We can put a positive factor on the other side of an inequality, changing it
to its inverse, version with a product initially on the right hand side.

lemma (in field1) OrdField_ZF_2_L5A:
assumes A1: b∈R c∈R+ and A2: a ≤ b·c
shows a·c−1 ≤ b

proof -
from A1 A2 have a·c−1 ≤ b·c·c−1

using OrdField_ZF_2_L3 by simp
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with A1 show a·c−1 ≤ b using OrdField_ZF_1_L7A
by simp

qed

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse, version with a product initially on the left hand side.

lemma (in field1) OrdField_ZF_2_L6:
assumes A1: a∈R b∈R+ and A2: a·b < c
shows a < c·b−1

proof -
from A1 A2 have a·b·b−1 < c·b−1

using OrdField_ZF_2_L4 by simp
with A1 show a < c·b−1 using OrdField_ZF_1_L7A

by simp
qed

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse, version with a product initially on the right hand side.

lemma (in field1) OrdField_ZF_2_L6A:
assumes A1: b∈R c∈R+ and A2: a < b·c
shows a·c−1 < b

proof -
from A1 A2 have a·c−1 < b·c·c−1

using OrdField_ZF_2_L4 by simp
with A1 show a·c−1 < b using OrdField_ZF_1_L7A

by simp
qed

Sometimes we can reverse an inequality by taking inverse on both sides.

lemma (in field1) OrdField_ZF_2_L7:
assumes A1: a∈R+ and A2: a−1 ≤ b
shows b−1 ≤ a

proof -
from A1 have a−1 ∈ R+ using OrdField_ZF_1_L8

by simp
with A2 have b ∈ R+ using OrdRing_ZF_3_L7

by blast
then have T: b ∈ R+ b−1 ∈ R+ using OrdField_ZF_1_L8

by auto
with A1 A2 have b−1·a−1·a ≤ b−1·b·a

using OrdRing_ZF_1_L9A by simp
moreover
from A1 A2 T have
b−1 ∈ R a∈R a 6=0 b∈R b6=0
using PositiveSet_def OrdRing_ZF_1_L3 by auto

then have b−1·a−1·a = b−1 and b−1·b·a = a
using OrdField_ZF_1_L1B field0.Field_ZF_1_L7
field0.Field_ZF_1_L6 Ring_ZF_1_L3
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by auto
ultimately show b−1 ≤ a by simp

qed

Sometimes we can reverse a strict inequality by taking inverse on both sides.

lemma (in field1) OrdField_ZF_2_L8:
assumes A1: a∈R+ and A2: a−1 < b
shows b−1 < a

proof -
from A1 A2 have a−1 ∈ R+ a−1 ≤b

using OrdField_ZF_1_L8 by auto
then have b ∈ R+ using OrdRing_ZF_3_L7

by blast
then have b∈R b6=0 using PositiveSet_def by auto
with A2 have b−1 6= a

using OrdField_ZF_1_L1B field0.Field_ZF_2_L4
by simp

with A1 A2 show b−1 < a
using OrdField_ZF_2_L7 by simp

qed

A technical lemma about solving a strict inequality with three field elements
and inverse of a difference.

lemma (in field1) OrdField_ZF_2_L9:
assumes A1: a<b and A2: (b-a)−1 < c
shows 1 + a·c < b·c

proof -
from A1 A2 have (b-a)−1 ∈ R+ (b-a)−1 ≤ c

using OrdField_ZF_1_L9 by auto
then have T1: c ∈ R+ using OrdRing_ZF_3_L7 by blast
with A1 A2 have T2:
a∈R b∈R c∈R c6=0 c−1 ∈ R
using OrdRing_ZF_1_L3 OrdField_ZF_1_L8 PositiveSet_def
by auto

with A1 A2 have c−1 + a < b-a + a
using OrdRing_ZF_1_L14 OrdField_ZF_2_L8 ring_strict_ord_trans_inv
by simp

with T1 T2 have (c−1 + a)·c < b·c
using Ring_ZF_2_L1A OrdField_ZF_2_L1 by simp

with T1 T2 show 1 + a·c < b·c
using ring_oper_distr OrdField_ZF_1_L8
by simp

qed

22.3 Definition of real numbers

The only purpose of this section is to define what does it mean to be a model
of real numbers.
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We define model of real numbers as any quadruple (?) of sets (K, A,M, r)
such that (K, A,M, r) is an ordered field and the order relation r is complete,
that is every set that is nonempty and bounded above in this relation has a
supremum.

constdefs
IsAmodelOfReals(K,A,M,r) ≡ IsAnOrdField(K,A,M,r) ∧ (r {is complete})

end
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23 Int ZF.thy

theory Int_ZF imports OrderedGroup_ZF Finite_ZF_1 Int Nat_ZF

begin

This theory file is an interface between the old-style Isabelle (ZF logic)
material on integers and the IsarMathLib project. Here we redefine the
meta-level operations on integers (addition and multiplication) to convert
them to ZF-functions and show that integers form a commutative group with
respect to addition and commutative monoid with respect to multiplication.
Similarly, we redefine the order on integers as a relation, that is a subset of
Z × Z. We show that a subset of intergers is bounded iff it is finite.

23.1 Addition and multiplication as ZF-functions.

In this section we provide definitions of addition and multiplication as sub-
sets of (Z × Z) × Z. We use the $ ≤ (higher order) relation defined in the
standard Int theory to define a subset of Z×Z that constitutes the ZF order
relation corresponding to it. We define positive integers using the notion of
positive set from the OrderedGroup theory.
constdefs

IntegerAddition ≡ { <x,c> ∈ (int×int)×int. fst(x) $+ snd(x) = c}

IntegerMultiplication ≡
{ <x,c> ∈ (int×int)×int. fst(x) $× snd(x) = c}

IntegerOrder ≡ {p ∈ int×int. fst(p) $≤ snd(p)}

PositiveIntegers ≡ PositiveSet(int,IntegerAddition,IntegerOrder)

IntegerAddition and IntegerMultiplication are functions on int×int.
lemma Int_ZF_1_L1:
IntegerAddition : int×int → int
IntegerMultiplication : int×int → int

proof -
have
{<x,c> ∈ (int×int)×int. fst(x) $+ snd(x) = c} ∈ int×int→int
{<x,c> ∈ (int×int)×int. fst(x) $× snd(x) = c} ∈ int×int→int
using func1_1_L11A by auto

then show IntegerAddition : int×int → int
IntegerMultiplication : int×int → int
using IntegerAddition_def IntegerMultiplication_def by auto

qed

The next context (locale) defines notation used for integers. We define 0 to
denote the neutral element of addition, 1 as the unit of the multiplicative
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monoid. We introduce notation m≤n for integers and write m..n to denote
the integer interval with endpoints in m and n. abs(m) means the absolute
value of m. This is a function defined in OrderedGroup that assigns x to
itself if x is positive and assigns the opposite of x if x ≤ 0. Unforunately we
cannot use the |·| notation as in the OrderedGroup theory as this notation has
been hogged by the standard Isabelle’s Int theory. The notation -A where A
is a subset of integers means the set {−m : m ∈ A}. The symbol maxf(f,M)
denotes tha maximum of function f over the set A. We also introduce a
similar notation for the minimum.

locale int0 =

fixes ints (ZZ)
defines ints_def [simp]: ZZ ≡ int

fixes ia (infixl + 69)
defines ia_def [simp]: a+b ≡ IntegerAddition<a,b>

fixes iminus :: i⇒i (- _ 72)
defines rminus_def [simp]: -a ≡ GroupInv(ZZ,IntegerAddition)(a)

fixes isub (infixl - 69)
defines isub_def [simp]: a-b ≡ a+ (- b)

fixes imult (infixl · 70)
defines imult_def [simp]: a·b ≡ IntegerMultiplication<a,b>

fixes setneg :: i⇒i (- _ 72)
defines setneg_def [simp]: -A ≡ GroupInv(ZZ,IntegerAddition)(A)

fixes izero (0)
defines izero_def [simp]: 0 ≡ TheNeutralElement(ZZ,IntegerAddition)

fixes ione (1)
defines ione_def [simp]: 1 ≡ TheNeutralElement(ZZ,IntegerMultiplication)

fixes itwo (2)
defines itwo_def [simp]: 2 ≡ 1+1

fixes ithree (3)
defines itwo_def [simp]: 3 ≡ 2+1

fixes nonnegative (ZZ+)
defines nonnegative_def [simp]:
ZZ+ ≡ Nonnegative(ZZ,IntegerAddition,IntegerOrder)

fixes positive (ZZ+)
defines positive_def [simp]:
ZZ+ ≡ PositiveSet(ZZ,IntegerAddition,IntegerOrder)
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fixes abs
defines abs_def [simp]:
abs(m) ≡ AbsoluteValue(ZZ,IntegerAddition,IntegerOrder)(m)

fixes lesseq (infix ≤ 60)
defines lesseq_def [simp]: m ≤ n ≡ 〈m,n〉 ∈ IntegerOrder

fixes interval (infix .. 70)
defines interval_def [simp]: m..n ≡ Interval(IntegerOrder,m,n)

fixes maxf
defines maxf_def [simp]: maxf(f,A) ≡ Maximum(IntegerOrder,f(A))

fixes minf
defines minf_def [simp]: minf(f,A) ≡ Minimum(IntegerOrder,f(A))

IntegerAddition adds integers and IntegerMultiplication multiplies integers.
This states that the ZF functions IntegerAddition and IntegerMultiplication

give the same results as the higher-order $+ and $× defined in the standard
Int theory.

lemma (in int0) Int_ZF_1_L2: assumes A1: a ∈ ZZ b ∈ ZZ
shows
a+b = a $+ b
a·b = a $× b

proof -
let x = <a,b>
let c = a $+ b
let d = a $× b
from A1 have
<x,c> ∈ {<x,c> ∈ (ZZ×ZZ)×ZZ. fst(x) $+ snd(x) = c}
<x,d> ∈ {<x,d> ∈ (ZZ×ZZ)×ZZ. fst(x) $× snd(x) = d}
by auto

then show a+b = a $+ b a·b = a $× b
using IntegerAddition_def IntegerMultiplication_def
Int_ZF_1_L1 apply_iff by auto

qed

Integer addition and multiplication are associative.

lemma (in int0) Int_ZF_1_L3:
assumes x∈ZZ y∈ZZ z∈ZZ
shows x+y+z = x+(y+z) x·y·z = x·(y·z)
using prems Int_ZF_1_L2 zadd_assoc zmult_assoc by auto

Integer addition and multiplication are commutative.

lemma (in int0) Int_ZF_1_L4:
assumes x∈ZZ y∈ZZ
shows x+y = y+x x·y = y·x
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using prems Int_ZF_1_L2 zadd_commute zmult_commute
by auto

Zero is neutral for addition and one for multiplication.

lemma (in int0) Int_ZF_1_L5: assumes A1:x∈ZZ
shows ($# 0) + x = x ∧ x + ($# 0) = x
($# 1)·x = x ∧ x·($# 1) = x

proof -
from A1 show ($# 0) + x = x ∧ x + ($# 0) = x

using Int_ZF_1_L2 zadd_int0 Int_ZF_1_L4 by simp
from A1 have ($# 1)·x = x

using Int_ZF_1_L2 zmult_int1 by simp
with A1 show ($# 1)·x = x ∧ x·($# 1) = x

using Int_ZF_1_L4 by simp
qed

Zero is neutral for addition and one for multiplication.

lemma (in int0) Int_ZF_1_L6: shows ($# 0)∈ZZ ∧
(∀ x∈ZZ. ($# 0)+x = x ∧ x+($# 0) = x)
($# 1)∈ZZ ∧
(∀ x∈ZZ. ($# 1)·x = x ∧ x·($# 1) = x)
using Int_ZF_1_L5 by auto

Integers with addition and integers with multiplication form monoids.

theorem (in int0) Int_ZF_1_T1: shows
IsAmonoid(ZZ,IntegerAddition)
IsAmonoid(ZZ,IntegerMultiplication)

proof -
have
∃ e∈ZZ. ∀ x∈ZZ. e+x = x ∧ x+e = x
∃ e∈ZZ. ∀ x∈ZZ. e·x = x ∧ x·e = x
using int0.Int_ZF_1_L6 by auto

then show IsAmonoid(ZZ,IntegerAddition)
IsAmonoid(ZZ,IntegerMultiplication) using
IsAmonoid_def IsAssociative_def Int_ZF_1_L1 Int_ZF_1_L3
by auto

qed

Zero is the neutral element of the integers with addition and one is the
neutral element of the integers with multiplication.

lemma (in int0) Int_ZF_1_L8: ($# 0) = 0 ($# 1) = 1
proof -

have monoid0(ZZ,IntegerAddition)
using Int_ZF_1_T1 monoid0_def by simp

moreover have
($# 0)∈ZZ ∧
(∀ x∈ZZ. IntegerAddition〈$# 0,x〉 = x ∧
IntegerAddition〈x ,$# 0〉 = x)

290



using Int_ZF_1_L6 by auto
ultimately have ($# 0) = TheNeutralElement(ZZ,IntegerAddition)

by (rule monoid0.group0_1_L4)
then show ($# 0) = 0 by simp
have monoid0(int,IntegerMultiplication)

using Int_ZF_1_T1 monoid0_def by simp
moreover have ($# 1) ∈ int ∧
(∀ x∈int. IntegerMultiplication〈$# 1, x〉 = x ∧
IntegerMultiplication〈x ,$# 1〉 = x)
using Int_ZF_1_L6 by auto

ultimately have
($# 1) = TheNeutralElement(int,IntegerMultiplication)
by (rule monoid0.group0_1_L4)

then show ($# 1) = 1 by simp
qed

0 and 1, as defined in int0 context, are integers.

lemma (in int0) Int_ZF_1_L8A: shows 0 ∈ ZZ 1 ∈ ZZ
proof -

have ($# 0) ∈ ZZ ($# 1) ∈ ZZ by auto
then show 0 ∈ ZZ 1 ∈ ZZ using Int_ZF_1_L8 by auto

qed

Zero is not one.

lemma (in int0) int_zero_not_one: shows 0 6= 1
proof -

have ($# 0) 6= ($# 1) by simp
then show 0 6= 1 using Int_ZF_1_L8 by simp

qed

The set of integers is not empty, of course.

lemma (in int0) int_not_empty: shows ZZ 6= 0
using Int_ZF_1_L8A by auto

The set of integers has more than just zero in it.

lemma (in int0) int_not_trivial: shows ZZ 6= {0}
using Int_ZF_1_L8A int_zero_not_one by blast

Each integer has an inverse (in the addition sense).

lemma (in int0) Int_ZF_1_L9: assumes A1: g ∈ ZZ
shows ∃ b∈ZZ. g+b = 0

proof -
from A1 have g+ $-g = 0

using Int_ZF_1_L2 Int_ZF_1_L8 by simp
thus thesis by auto

qed

Integers with addition form an abelian group. This also shows that we can
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apply all theorems proven in the proof contexts (locales) that require the
assumpion that some pair of sets form a group like locale group0.

theorem Int_ZF_1_T2: shows
IsAgroup(int,IntegerAddition)
IntegerAddition {is commutative on} int
group0(int,IntegerAddition)
using int0.Int_ZF_1_T1 int0.Int_ZF_1_L9 IsAgroup_def
group0_def int0.Int_ZF_1_L4 IsCommutative_def by auto

What is the additive group inverse in the group of integers?

lemma (in int0) Int_ZF_1_L9A: assumes A1: m∈ZZ
shows $-m = -m

proof -
from A1 have m∈int $-m ∈ int IntegerAddition<m,$-m> =
TheNeutralElement(int,IntegerAddition)

using zminus_type Int_ZF_1_L2 Int_ZF_1_L8 by auto
then have $-m = GroupInv(int,IntegerAddition)(m)

using Int_ZF_1_T2 group0.group0_2_L9 by blast
then show thesis by simp

qed

Subtracting integers corresponds to adding the negative.

lemma (in int0) Int_ZF_1_L10: assumes A1: m∈ZZ n∈ZZ
shows m-n = m $+ $-n
using prems Int_ZF_1_T2 group0.inverse_in_group Int_ZF_1_L9A Int_ZF_1_L2
by simp

Negative of zero is zero.

lemma (in int0) Int_ZF_1_L11: shows (-0) = 0
using Int_ZF_1_T2 group0.group_inv_of_one by simp

A trivial calculation lemma that allows to subtract and add one.

lemma Int_ZF_1_L12:
assumes m∈int shows m $- $#1 $+ $#1 = m
using prems eq_zdiff_iff by auto

A trivial calculation lemma that allows to subtract and add one, version
with ZF-operation.

lemma (in int0) Int_ZF_1_L13: assumes m∈ZZ
shows (m $- $#1) + 1 = m
using prems Int_ZF_1_L8A Int_ZF_1_L2 Int_ZF_1_L8 Int_ZF_1_L12
by simp

Adding or subtracing one changes integers.

lemma (in int0) Int_ZF_1_L14: assumes A1: m∈ZZ
shows
m+1 6= m
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m-1 6= m
proof -

{ assume m+1 = m
with A1 have
group0(ZZ,IntegerAddition)
m∈ZZ 1∈ZZ
IntegerAddition〈m,1〉 = m
using Int_ZF_1_T2 Int_ZF_1_L8A by auto

then have 1 = TheNeutralElement(ZZ,IntegerAddition)
by (rule group0.group0_2_L7)

then have False using int_zero_not_one by simp
} then show I: m+1 6= m by auto
{ from A1 have m - 1 + 1 = m

using Int_ZF_1_L8A Int_ZF_1_T2 group0.group0_2_L16
by simp

moreover assume m-1 = m
ultimately have m + 1 = m by simp
with I have False by simp

} then show m-1 6= m by auto
qed

If the difference is zero, the integers are equal.

lemma (in int0) Int_ZF_1_L15:
assumes A1: m∈ZZ n∈ZZ and A2: m-n = 0
shows m=n

proof -
let G = ZZ
let f = IntegerAddition
from A1 A2 have
group0(G, f)
m ∈ G n ∈ G
f〈m, GroupInv(G, f)(n)〉 = TheNeutralElement(G, f)
using Int_ZF_1_T2 by auto

then show m=n by (rule group0.group0_2_L11A)
qed

23.2 Integers as an ordered group

In this section we define order on integers as a relation, that is a subset of
Z × Z and show that integers form an ordered group.

The next lemma interprets the order definition one way.

lemma (in int0) Int_ZF_2_L1:
assumes A1: m∈ZZ n∈ZZ and A2: m $≤ n
shows m ≤ n

proof -
from A1 A2 have <m,n> ∈ {x∈ZZ×ZZ. fst(x) $≤ snd(x)}

by simp
then show thesis using IntegerOrder_def by simp
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qed

The next lemma interprets the definition the other way.

lemma (in int0) Int_ZF_2_L1A: assumes A1: m ≤ n
shows m $≤ n m∈ZZ n∈ZZ

proof -
from A1 have <m,n> ∈ {p∈ZZ×ZZ. fst(p) $≤ snd(p)}

using IntegerOrder_def by simp
thus m $≤ n m∈ZZ n∈ZZ by auto

qed

Integer order is a relation on integers.

lemma Int_ZF_2_L1B: IntegerOrder ⊆ int×int
proof

fix x assume x∈IntegerOrder
then have x ∈ {p∈int×int. fst(p) $≤ snd(p)}

using IntegerOrder_def by simp
then show x∈int×int by simp

qed

The way we define the notion of being bounded below, its sufficient for the
relation to be on integers for all bounded below sets to be subsets of integers.

lemma (in int0) Int_ZF_2_L1C:
assumes A1: IsBoundedBelow(A,IntegerOrder)
shows A⊆ZZ

proof -
from A1 have
IntegerOrder ⊆ ZZ×ZZ
IsBoundedBelow(A,IntegerOrder)
using Int_ZF_2_L1B by auto

then show A⊆ZZ by (rule Order_ZF_3_L1B)
qed

The order on integers is reflexive.

lemma (in int0) int_ord_is_refl: shows refl(ZZ,IntegerOrder)
using Int_ZF_2_L1 zle_refl refl_def by auto

The essential condition to show antisymmetry of the order on integers.

lemma (in int0) Int_ZF_2_L3:
assumes A1: m ≤ n n ≤ m
shows m=n

proof -
from A1 have m $≤ n n $≤ m m∈ZZ n∈ZZ

using Int_ZF_2_L1A by auto
then show m=n using zle_anti_sym by auto

qed

The order on integers is antisymmetric.
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lemma (in int0) Int_ZF_2_L4: antisym(IntegerOrder)
proof -

have ∀ m n. m ≤ n ∧ n ≤ m −→ m=n
using Int_ZF_2_L3 by auto

then show thesis using imp_conj antisym_def by simp
qed

The essential condition to show that the order on integers is transitive.

lemma Int_ZF_2_L5:
assumes A1: 〈m,n〉 ∈ IntegerOrder 〈n,k〉 ∈ IntegerOrder
shows 〈m,k〉 ∈ IntegerOrder

proof -
from A1 have T1: m $≤ n n $≤ k and T2: m∈int k∈int

using int0.Int_ZF_2_L1A by auto
from T1 have m $≤ k by (rule zle_trans)
with T2 show thesis using int0.Int_ZF_2_L1 by simp

qed

The order on integers is transitive. This version is stated in the int0 context
using notation for integers.

lemma (in int0) Int_order_transitive:
assumes A1: m≤n n≤k
shows m≤k

proof -
from A1 have <m,n> ∈ IntegerOrder <n,k> ∈ IntegerOrder

by auto
then have <m,k> ∈ IntegerOrder by (rule Int_ZF_2_L5)
then show m≤k by simp

qed

The order on integers is transitive.

lemma Int_ZF_2_L6: trans(IntegerOrder)
proof -

have ∀ m n k.
〈m, n〉 ∈ IntegerOrder ∧ 〈n, k〉 ∈ IntegerOrder −→
〈m, k〉 ∈ IntegerOrder
using Int_ZF_2_L5 by blast

then show thesis by (rule Fol1_L2)
qed

The order on integers is a partial order.

lemma Int_ZF_2_L7: shows IsPartOrder(int,IntegerOrder)
using int0.int_ord_is_refl int0.Int_ZF_2_L4
Int_ZF_2_L6 IsPartOrder_def by simp

The essential condition to show that the order on integers is preserved by
translations.

lemma (in int0) int_ord_transl_inv:
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assumes A1: k ∈ ZZ and A2: m ≤ n
shows m+k ≤ n+k k+m≤ k+n

proof -
from A2 have m $≤ n and m∈ZZ n∈ZZ

using Int_ZF_2_L1A by auto
with A1 show m+k ≤ n+k k+m≤ k+n

using zadd_right_cancel_zle zadd_left_cancel_zle
Int_ZF_1_L2 Int_ZF_1_L1 apply_funtype
Int_ZF_1_L2 Int_ZF_2_L1 Int_ZF_1_L2 by auto

qed

Integers form a linearly ordered group. We can apply all theorems proven
in group3 context to integers.

theorem (in int0) Int_ZF_2_T1: shows
IsAnOrdGroup(ZZ,IntegerAddition,IntegerOrder)
IntegerOrder {is total on} ZZ
group3(ZZ,IntegerAddition,IntegerOrder)
IsLinOrder(ZZ,IntegerOrder)

proof -
have ∀ k∈ZZ. ∀ m n. m ≤ n −→
m+k ≤ n+k ∧ k+m≤ k+n
using int_ord_transl_inv by simp

then show T1: IsAnOrdGroup(ZZ,IntegerAddition,IntegerOrder) using
Int_ZF_1_T2 Int_ZF_2_L1B Int_ZF_2_L7 IsAnOrdGroup_def
by simp

then show group3(ZZ,IntegerAddition,IntegerOrder)
using group3_def by simp

show IntegerOrder {is total on} ZZ
using IsTotal_def zle_linear Int_ZF_2_L1 by auto

with T1 show IsLinOrder(ZZ,IntegerOrder)
using IsAnOrdGroup_def IsPartOrder_def IsLinOrder_def by simp

qed

If a pair (i,m) belongs to the order relation on integers and i 6= m, then
i < m in the sense of defined in the standard Isabelle’s Int.thy.

lemma (in int0) Int_ZF_2_L9: assumes A1: i ≤ m and A2: i6=m
shows i $< m

proof -
from A1 have i $≤ m i∈ZZ m∈ZZ

using Int_ZF_2_L1A by auto
with A2 show i $< m using zle_def by simp

qed

This shows how Isabelle’s $< operator translates to IsarMathLib notation.

lemma (in int0) Int_ZF_2_L9AA: assumes A1: m∈ZZ n∈ZZ
and A2: m $< n
shows m≤n m 6= n
using prems zle_def Int_ZF_2_L1 by auto
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A small technical lemma about putting one on the other side of an inequality.

lemma (in int0) Int_ZF_2_L9A:
assumes A1: k∈ZZ and A2: m ≤ k $- ($# 1)
shows m+1 ≤ k

proof -
from A2 have m+1 ≤ (k $- ($# 1)) + 1

using Int_ZF_1_L8A int_ord_transl_inv by simp
with A1 show m+1 ≤ k

using Int_ZF_1_L13 by simp
qed

We can put any integer on the other side of an inequality reversing its sign.

lemma (in int0) Int_ZF_2_L9B: assumes i∈ZZ m∈ZZ k∈ZZ
shows i+m ≤ k ←→ i ≤ k-m
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L9A
by simp

A special case of Int_ZF_2_L9B with weaker assumptions.

lemma (in int0) Int_ZF_2_L9C:
assumes i∈ZZ m∈ZZ and i-m ≤ k
shows i ≤ k+m
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L9B
by simp

Taking (higher order) minus on both sides of inequality reverses it.

lemma (in int0) Int_ZF_2_L10: assumes k ≤ i
shows
(-i) ≤ (-k)
$-i ≤ $-k
using prems Int_ZF_2_L1A Int_ZF_1_L9A Int_ZF_2_T1
group3.OrderedGroup_ZF_1_L5 by auto

Taking minus on both sides of inequality reverses it, version with a negative
on one side.

lemma (in int0) Int_ZF_2_L10AA: assumes n∈ZZ m≤(-n)
shows n≤(-m)
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5AD
by simp

We can cancel the same element on on both sides of an inequality, a version
with minus on both sides.

lemma (in int0) Int_ZF_2_L10AB:
assumes m∈ZZ n∈ZZ k∈ZZ and m-n ≤ m-k
shows k≤n
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5AF
by simp

If an integer is nonpositive, then its opposite is nonnegative.
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lemma (in int0) Int_ZF_2_L10A: assumes k ≤ 0
shows 0≤(-k)
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5A by simp

If the opposite of an integers is nonnegative, then the integer is nonpositive.

lemma (in int0) Int_ZF_2_L10B:
assumes k∈ZZ and 0≤(-k)
shows k≤0
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5AA by simp

Adding one to an integer corresponds to taking a successor for a natural
number.

lemma (in int0) Int_ZF_2_L11: i $+ $# n $+ ($# 1) = i $+ $# succ(n)
proof -

have $# succ(n) = $#1 $+ $# n using int_succ_int_1 by blast
then have i $+ $# succ(n) = i $+ ($# n $+ $#1)

using zadd_commute by simp
then show thesis using zadd_assoc by simp

qed

Adding a natural number increases integers.

lemma (in int0) Int_ZF_2_L12: assumes A1: i∈ZZ and A2: n∈nat
shows i ≤ i $+ $#n

proof (cases n = 0)
assume n = 0
with A1 show i ≤ i $+ $#n using zadd_int0 int_ord_is_refl refl_def

by simp
next

assume n 6=0
with A2 obtain k where k∈nat n = succ(k)

using Nat_ZF_1_L3 by auto
with A1 show i ≤ i $+ $#n

using zless_succ_zadd zless_imp_zle Int_ZF_2_L1 by simp
qed

Adding one increases integers.

lemma (in int0) Int_ZF_2_L12A: assumes A1: j≤k
shows j ≤ k $+ $#1 j ≤ k+1

proof -
from A1 have T1:j∈ZZ k∈ZZ j $≤ k

using Int_ZF_2_L1A by auto
moreover from T1 have k $≤ k $+ $#1 using Int_ZF_2_L12 Int_ZF_2_L1A

by simp
ultimately have j $≤ k $+ $#1 using zle_trans by fast
with T1 show j ≤ k $+ $#1 using Int_ZF_2_L1 by simp
with T1 have j≤ k+$#1

using Int_ZF_1_L2 by simp
then show j ≤ k+1 using Int_ZF_1_L8 by simp
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qed

Adding one increases integers, yet one more version.

lemma (in int0) Int_ZF_2_L12B: assumes A1: m∈ZZ shows m ≤ m+1
using prems int_ord_is_refl refl_def Int_ZF_2_L12A by simp

If k + 1 = m + n, where n is a non-zero natural number, then m ≤ k.

lemma (in int0) Int_ZF_2_L13:
assumes A1: k∈ZZ m∈ZZ and A2: n∈nat
and A3: k $+ ($# 1) = m $+ $# succ(n)
shows m ≤ k

proof -
from A1 have k∈ZZ m $+ $# n ∈ ZZ by auto
moreover from A2 have k $+ $# 1 = m $+ $# n $+ $#1

using Int_ZF_2_L11 by simp
ultimately have k = m $+ $# n using zadd_right_cancel by simp
with A1 A2 show thesis using Int_ZF_2_L12 by simp

qed

The absolute value of an integer is an integer.

lemma (in int0) Int_ZF_2_L14: assumes A1: m∈ZZ
shows abs(m) ∈ ZZ

proof -
have AbsoluteValue(ZZ,IntegerAddition,IntegerOrder) : ZZ→ZZ

using Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L1 by simp
with A1 show thesis using apply_funtype by simp

qed

If two integers are nonnegative, then the opposite of one is less or equal than
the other and the sum is also nonnegative.

lemma (in int0) Int_ZF_2_L14A:
assumes 0≤m 0≤n
shows
(-m) ≤ n
0 ≤ m + n
using prems Int_ZF_2_T1
group3.OrderedGroup_ZF_1_L5AC group3.OrderedGroup_ZF_1_L12

by auto

We can increase components in an estimate.

lemma (in int0) Int_ZF_2_L15:
assumes b≤b1 c≤c1 and a≤b+c
shows a≤b1+c1

proof -
from prems have group3(ZZ,IntegerAddition,IntegerOrder)
〈a,IntegerAddition<b,c>〉 ∈ IntegerOrder
〈b,b1〉 ∈ IntegerOrder 〈c,c1〉 ∈ IntegerOrder
using Int_ZF_2_T1 by auto
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then have 〈a,IntegerAddition<b1,c1>〉 ∈ IntegerOrder
by (rule group3.OrderedGroup_ZF_1_L5E)

thus thesis by simp
qed

We can add or subtract the sides of two inequalities.

lemma (in int0) int_ineq_add_sides:
assumes a≤b and c≤d
shows
a+c ≤ b+d
a-d ≤ b-c
using prems Int_ZF_2_T1
group3.OrderedGroup_ZF_1_L5B group3.OrderedGroup_ZF_1_L5I

by auto

We can increase the second component in an estimate.

lemma (in int0) Int_ZF_2_L15A:
assumes b∈ZZ and a≤b+c and A3: c≤c1

shows a≤b+c1

proof -
from prems have
group3(ZZ,IntegerAddition,IntegerOrder)
b ∈ ZZ
〈a,IntegerAddition<b,c>〉 ∈ IntegerOrder
〈c,c1〉 ∈ IntegerOrder
using Int_ZF_2_T1 by auto

then have 〈a,IntegerAddition<b,c1>〉 ∈ IntegerOrder
by (rule group3.OrderedGroup_ZF_1_L5D)

thus thesis by simp
qed

If we increase the second component in a sum of three integers, the whole
sum inceases.

lemma (in int0) Int_ZF_2_L15C:
assumes A1: m∈ZZ n∈ZZ and A2: k ≤ L
shows m+k+n ≤ m+L+n

proof -
let P = IntegerAddition
from prems have
group3(int,P,IntegerOrder)
m ∈ int n ∈ int
〈k,L〉 ∈ IntegerOrder
using Int_ZF_2_T1 by auto

then have 〈P〈P<m,k>,n〉, P〈P<m,L>,n〉 〉 ∈ IntegerOrder
by (rule group3.OrderedGroup_ZF_1_L10)

then show m+k+n ≤ m+L+n by simp
qed

We don’t decrease an integer by adding a nonnegative one.
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lemma (in int0) Int_ZF_2_L15D:
assumes 0≤n m∈ZZ
shows m ≤ n+m
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5F
by simp

Some inequalities about the sum of two integers and its absolute value.

lemma (in int0) Int_ZF_2_L15E:
assumes m∈ZZ n∈ZZ
shows
m+n ≤ abs(m)+abs(n)
m-n ≤ abs(m)+abs(n)
(-m)+n ≤ abs(m)+abs(n)
(-m)-n ≤ abs(m)+abs(n)
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L6A
by auto

We can add a nonnegative integer to the right hand side of an inequality.

lemma (in int0) Int_ZF_2_L15F: assumes m≤k and 0≤n
shows m ≤ k+n m ≤ n+k
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5G
by auto

Triangle inequality for integers.

lemma (in int0) Int_triangle_ineq:
assumes m∈ZZ n∈ZZ
shows abs(m+n)≤abs(m)+abs(n)
using prems Int_ZF_1_T2 Int_ZF_2_T1 group3.OrdGroup_triangle_ineq
by simp

Taking absolute value does not change nonnegative integers.

lemma (in int0) Int_ZF_2_L16:
assumes 0≤m shows m∈ZZ+ and abs(m) = m
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L2
group3.OrderedGroup_ZF_3_L2 by auto

0 ≤ 1, so |1| = 1.

lemma (in int0) Int_ZF_2_L16A: shows 0≤1 and abs(1) = 1
proof -

have ($# 0) ∈ ZZ ($# 1)∈ ZZ by auto
then have 0≤0 and T1: 1∈ZZ

using Int_ZF_1_L8 int_ord_is_refl refl_def by auto
then have 0≤0+1 using Int_ZF_2_L12A by simp
with T1 show 0≤1 using Int_ZF_1_T2 group0.group0_2_L2

by simp
then show abs(1) = 1 using Int_ZF_2_L16 by simp

qed

1 ≤ 2.
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lemma (in int0) Int_ZF_2_L16B: shows 1≤2
proof -

have ($# 1)∈ ZZ by simp
then show 1≤2

using Int_ZF_1_L8 int_ord_is_refl refl_def Int_ZF_2_L12A
by simp

qed

Integers greater or equal one are greater or equal zero.

lemma (in int0) Int_ZF_2_L16C:
assumes A1: 1≤a shows
0≤a a6=0
2 ≤ a+1
1 ≤ a+1
0 ≤ a+1

proof -
from A1 have 0≤1 and 1≤a

using Int_ZF_2_L16A by auto
then show 0≤a by (rule Int_order_transitive)
have I: 0≤1 using Int_ZF_2_L16A by simp
have 1≤2 using Int_ZF_2_L16B by simp
moreover from A1 show 2 ≤ a+1

using Int_ZF_1_L8A int_ord_transl_inv by simp
ultimately show 1 ≤ a+1 by (rule Int_order_transitive)
with I show 0 ≤ a+1 by (rule Int_order_transitive)
from A1 show a6=0 using
Int_ZF_2_L16A Int_ZF_2_L3 int_zero_not_one by auto

qed

Absolute value is the same for an integer and its opposite.

lemma (in int0) Int_ZF_2_L17:
assumes m∈ZZ shows abs(-m) = abs(m)
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L7A by simp

The absolute value of zero is zero.

lemma (in int0) Int_ZF_2_L18: shows abs(0) = 0
using Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L2A by simp

A different version of the triangle inequality.

lemma (in int0) Int_triangle_ineq1:
assumes A1: m∈ZZ n∈ZZ
shows
abs(m-n) ≤ abs(n)+abs(m)
abs(m-n) ≤ abs(m)+abs(n)

proof -
have $-n ∈ ZZ by simp
with A1 have abs(m-n) ≤ abs(m)+abs(-n)

using Int_ZF_1_L9A Int_triangle_ineq by simp

302



with A1 show
abs(m-n) ≤ abs(n)+abs(m)
abs(m-n) ≤ abs(m)+abs(n)
using Int_ZF_2_L17 Int_ZF_2_L14 Int_ZF_1_T2 IsCommutative_def
by auto

qed

Another version of the triangle inequality.

lemma (in int0) Int_triangle_ineq2:
assumes m∈ZZ n∈ZZ
and abs(m-n) ≤ k
shows
abs(m) ≤ abs(n)+k
m-k ≤ n
m ≤ n+k
n-k ≤ m
using prems Int_ZF_1_T2 Int_ZF_2_T1
group3.OrderedGroup_ZF_3_L7D group3.OrderedGroup_ZF_3_L7E

by auto

Triangle inequality with three integers. We could use OrdGroup_triangle_ineq3,
but since simp cannot translate the notation directly, it is simpler to reprove
it for integers.

lemma (in int0) Int_triangle_ineq3:
assumes A1: m∈ZZ n∈ZZ k∈ZZ
shows abs(m+n+k) ≤ abs(m)+abs(n)+abs(k)

proof -
from A1 have T: m+n ∈ ZZ abs(k) ∈ ZZ

using Int_ZF_1_T2 group0.group_op_closed Int_ZF_2_L14
by auto

with A1 have abs(m+n+k) ≤ abs(m+n) + abs(k)
using Int_triangle_ineq by simp

moreover from A1 T have
abs(m+n) + abs(k) ≤ abs(m) + abs(n) + abs(k)
using Int_triangle_ineq int_ord_transl_inv by simp

ultimately show thesis by (rule Int_order_transitive)
qed

The next lemma shows what happens when one integers is not greater or
equal than another.

lemma (in int0) Int_ZF_2_L19:
assumes A1: m∈ZZ n∈ZZ and A2: ¬(n≤m)
shows m≤n (-n) ≤ (-m) m6=n

proof -
from A1 A2 show m≤n using Int_ZF_2_T1 IsTotal_def

by auto
then show (-n) ≤ (-m) using Int_ZF_2_L10

by simp
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from A1 have n ≤ n using int_ord_is_refl refl_def
by simp

with A2 show m 6=n by auto
qed

If one integer is greater or equal and not equal to another, then it is not
smaller or equal.

lemma (in int0) Int_ZF_2_L19AA: assumes A1: m≤n and A2: m6=n
shows ¬(n≤m)

proof -
from A1 A2 have
group3(ZZ, IntegerAddition, IntegerOrder)
〈m,n〉 ∈ IntegerOrder
m6=n
using Int_ZF_2_T1 by auto

then have 〈n,m〉 /∈ IntegerOrder
by (rule group3.OrderedGroup_ZF_1_L8AA)

thus ¬(n≤m) by simp
qed

The next lemma allows to prove theorems for the case of positive and neg-
ative integers separately.

lemma (in int0) Int_ZF_2_L19A: assumes A1: m∈ZZ and A2: ¬(0≤m)
shows m≤0 0 ≤ (-m) m6=0

proof -
from A1 have T1: 0 ∈ ZZ

using Int_ZF_1_T2 group0.group0_2_L2 by auto
with A1 show m≤0 by (rule Int_ZF_2_L19)
from A1 T1 show m6=0 by (rule Int_ZF_2_L19)
from A1 T1 have (-0)≤(-m) by (rule Int_ZF_2_L19)
then show 0 ≤ (-m)

using Int_ZF_1_T2 group0.group_inv_of_one by simp
qed

We can prove a theorem about integers by proving that it holds for m = 0,
m ∈ZZ+ and −m ∈ZZ+.

lemma (in int0) Int_ZF_2_L19B:
assumes m∈ZZ and Q(0) and ∀ n∈ZZ+. Q(n) and ∀ n∈ZZ+. Q(-n)
shows Q(m)

proof -
let G = ZZ
let P = IntegerAddition
let r = IntegerOrder
let b = m
from prems have
group3(G, P, r)
r {is total on} G
b ∈ G
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Q(TheNeutralElement(G, P))
∀ a∈PositiveSet(G, P, r). Q(a)
∀ a∈PositiveSet(G, P, r). Q(GroupInv(G, P)(a))
using Int_ZF_2_T1 by auto

then show Q(b) by (rule group3.OrderedGroup_ZF_1_L18)
qed

An integer is not greater than its absolute value.

lemma (in int0) Int_ZF_2_L19C: assumes A1: m∈ZZ
shows
m ≤ abs(m)
(-m) ≤ abs(m)
using prems Int_ZF_2_T1
group3.OrderedGroup_ZF_3_L5 group3.OrderedGroup_ZF_3_L6

by auto

|m− n| = |n−m|.
lemma (in int0) Int_ZF_2_L20: assumes m∈ZZ n∈ZZ

shows abs(m-n) = abs(n-m)
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L7B by simp

We can add the sides of inequalities with absolute values.

lemma (in int0) Int_ZF_2_L21:
assumes A1: m∈ZZ n∈ZZ
and A2: abs(m) ≤ k abs(n) ≤ l
shows
abs(m+n) ≤ k + l
abs(m-n) ≤ k + l
using prems Int_ZF_1_T2 Int_ZF_2_T1
group3.OrderedGroup_ZF_3_L7C group3.OrderedGroup_ZF_3_L7CA

by auto

Absolute value is nonnegative.

lemma (in int0) int_abs_nonneg: assumes A1: m∈ZZ
shows abs(m) ∈ ZZ+ 0 ≤ abs(m)

proof -
have AbsoluteValue(ZZ,IntegerAddition,IntegerOrder) : ZZ→ZZ+

using Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L3C by simp
with A1 show abs(m) ∈ ZZ+ using apply_funtype

by simp
then show 0 ≤ abs(m)

using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L2 by simp
qed

If an nonnegative integer is less or equal than another, then so is its absolute
value.

lemma (in int0) Int_ZF_2_L23:
assumes 0≤m m≤k
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shows abs(m) ≤ k
using prems Int_ZF_2_L16 by simp

23.3 Induction on integers.

In this section we show some induction lemmas for integers. The basic tools
are the induction on natural numbers and the fact that integers can be
written as a sum of a smaller integer and a natural number.

An integer can be written a a sum of a smaller integer and a natural number.

lemma (in int0) Int_ZF_3_L2: assumes A1: i ≤ m
shows ∃ n∈nat. m = i $+ $# n

proof (cases i=m)
let n = 0
assume A2: i=m
from A1 A2 have n ∈ nat m = i $+ $# n

using Int_ZF_2_L1A zadd_int0_right by auto
thus ∃ n∈nat. m = i $+ $# n by blast

next
assume A3: i6=m
with A1 have i $< m i∈ZZ m∈ZZ

using Int_ZF_2_L9 Int_ZF_2_L1A by auto
then obtain k where D1: k∈nat m = i $+ $# succ(k)

using zless_imp_succ_zadd_lemma by auto
let n = succ(k)
from D1 have n∈nat m = i $+ $# n by auto
thus ∃ n∈nat. m = i $+ $# n by simp

qed

Induction for integers, the induction step.

lemma (in int0) Int_ZF_3_L6: assumes A1: i∈ZZ
and A2: ∀ m. i≤m ∧ Q(m) −→ Q(m $+ ($# 1))
shows ∀ k∈nat. Q(i $+ ($# k)) −→ Q(i $+ ($# succ(k)))

proof
fix k assume A3: k∈nat show Q(i $+ $# k) −→ Q(i $+ $# succ(k))
proof

assume A4: Q(i $+ $# k)
from A1 A3 have i≤ i $+ ($# k) using Int_ZF_2_L12

by simp
with A4 A2 have Q(i $+ ($# k) $+ ($# 1)) by simp
then show Q(i $+ ($# succ(k))) using Int_ZF_2_L11 by simp

qed
qed

Induction on integers, version with higher-order increment function.

lemma (in int0) Int_ZF_3_L7:
assumes A1: i≤k and A2: Q(i)
and A3: ∀ m. i≤m ∧ Q(m) −→ Q(m $+ ($# 1))
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shows Q(k)
proof -

from A1 obtain n where D1: n∈nat and D2: k = i $+ $# n
using Int_ZF_3_L2 by auto

from A1 have T1: i∈ZZ using Int_ZF_2_L1A by simp
from D1 have n∈nat .
moreover from A1 have Q(i $+ $#0)

using Int_ZF_2_L1A zadd_int0 by simp
moreover from T1 A3 have
∀ k∈nat. Q(i $+ ($# k)) −→ Q(i $+ ($# succ(k)))
by (rule Int_ZF_3_L6)

ultimately have Q(i $+ ($# n)) by (rule Nat_ZF_1_L2)
with D2 show Q(k) by simp

qed

Induction on integer, implication between two forms of the induction step.

lemma (in int0) Int_ZF_3_L7A: assumes
A1: ∀ m. i≤m ∧ Q(m) −→ Q(m+1)
shows ∀ m. i≤m ∧ Q(m) −→ Q(m $+ ($# 1))

proof -
{ fix m assume i≤m ∧ Q(m)

with A1 have T1: m∈ZZ Q(m+1) using Int_ZF_2_L1A by auto
then have m+1 = m+($# 1) using Int_ZF_1_L8 by simp
with T1 have Q(m $+ ($# 1)) using Int_ZF_1_L2

by simp
} then show thesis by simp

qed

Induction on integers, version with ZF increment function.

theorem (in int0) Induction_on_int:
assumes A1: i≤k and A2: Q(i)
and A3: ∀ m. i≤m ∧ Q(m) −→ Q(m+1)
shows Q(k)

proof -
from A3 have ∀ m. i≤m ∧ Q(m) −→ Q(m $+ ($# 1))

by (rule Int_ZF_3_L7A)
with A1 A2 show thesis by (rule Int_ZF_3_L7)

qed

Another form of induction on integers. This rewrites the basic theorem
Int_ZF_3_L7 substituting P (−k) for Q(k).

lemma (in int0) Int_ZF_3_L7B: assumes A1: i≤k and A2: P($-i)
and A3: ∀ m. i≤m ∧ P($-m) −→ P($-(m $+ ($# 1)))
shows P($-k)

proof -
from A1 A2 A3 show P($-k) by (rule Int_ZF_3_L7)

qed

Another induction on integers. This rewrites Int ZF 3 L7 substituting −k
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for k and −i for i.

lemma (in int0) Int_ZF_3_L8: assumes A1: k≤i and A2: P(i)
and A3: ∀ m. $-i≤m ∧ P($-m) −→ P($-(m $+ ($# 1)))
shows P(k)

proof -
from A1 have T1: $-i≤$-k using Int_ZF_2_L10 by simp
from A1 A2 have T2: P($- $- i) using Int_ZF_2_L1A zminus_zminus

by simp
from T1 T2 A3 have P($-($-k)) by (rule Int_ZF_3_L7)
with A1 show P(k) using Int_ZF_2_L1A zminus_zminus by simp

qed

An implication between two forms of induction steps.

lemma (in int0) Int_ZF_3_L9: assumes A1: i∈ZZ
and A2: ∀ n. n≤i ∧ P(n) −→ P(n $+ $-($#1))
shows ∀ m. $-i≤m ∧ P($-m) −→ P($-(m $+ ($# 1)))

proof
fix m show $-i≤m ∧ P($-m) −→ P($-(m $+ ($# 1)))
proof

assume A3: $- i ≤ m ∧ P($- m)
then have $- i ≤ m by simp
then have $-m ≤ $- ($- i) by (rule Int_ZF_2_L10)
with A1 A2 A3 show P($-(m $+ ($# 1)))

using zminus_zminus zminus_zadd_distrib by simp
qed

qed

Backwards induction on integers, version with higher-order decrement func-
tion.

lemma (in int0) Int_ZF_3_L9A: assumes A1: k≤i and A2: P(i)
and A3: ∀ n. n≤i ∧ P(n) −→P(n $+ $-($#1))
shows P(k)

proof -
from A1 have T1: i∈ZZ using Int_ZF_2_L1A by simp
from T1 A3 have T2: ∀ m. $-i≤m ∧ P($-m) −→ P($-(m $+ ($# 1)))

by (rule Int_ZF_3_L9)
from A1 A2 T2 show P(k) by (rule Int_ZF_3_L8)

qed

Induction on integers, implication between two forms of the induction step.

lemma (in int0) Int_ZF_3_L10: assumes
A1: ∀ n. n≤i ∧ P(n) −→ P(n-1)
shows ∀ n. n≤i ∧ P(n) −→ P(n $+ $-($#1))

proof -
{ fix n assume n≤i ∧ P(n)

with A1 have T1: n∈ZZ P(n-1) using Int_ZF_2_L1A by auto
then have n-1 = n-($# 1) using Int_ZF_1_L8 by simp
with T1 have P(n $+ $-($#1)) using Int_ZF_1_L10 by simp

308



} then show thesis by simp
qed

Backwards induction on integers.

theorem (in int0) Back_induct_on_int:
assumes A1: k≤i and A2: P(i)
and A3: ∀ n. n≤i ∧ P(n) −→ P(n-1)
shows P(k)

proof -
from A3 have ∀ n. n≤i ∧ P(n) −→ P(n $+ $-($#1))

by (rule Int_ZF_3_L10)
with A1 A2 show P(k) by (rule Int_ZF_3_L9A)

qed

23.4 Bounded vs. finite subsets of integers

The goal of this section is to establish that a subset of integers is bounded
is and only is it is finite. The fact that all finite sets are bounded is already
shown for all linearly ordered groups in OrderedGroups_ZF.thy. To show the
other implication we show that all intervals starting at 0 are finite and then
use a result from OrderedGroups_ZF.thy.

There are no integers between k and k + 1.

lemma (in int0) Int_ZF_4_L1:
assumes A1: k∈ZZ m∈ZZ n∈nat and A2: k $+ $#1 = m $+ $#n
shows m = k $+ $#1 ∨ m ≤ k

proof (cases n=0)
assume n=0
with A1 A2 show m = k $+ $#1 ∨ m ≤ k

using zadd_int0 by simp
next assume n6=0

with A1 obtain j where D1: j∈nat n = succ(j)
using Nat_ZF_1_L3 by auto

with A1 A2 D1 show m = k $+ $#1 ∨ m ≤ k
using Int_ZF_2_L13 by simp

qed

A trivial calculation lemma that allows to subtract and add one.

lemma Int_ZF_4_L1A:
assumes m∈int shows m $- $#1 $+ $#1 = m
using prems eq_zdiff_iff by auto

There are no integers between k and k + 1, another formulation.

lemma (in int0) Int_ZF_4_L1B: assumes A1: m ≤ L
shows
m = L ∨ m+1 ≤ L
m = L ∨ m ≤ L-1

proof -
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let k = L $- $#1
from A1 have T1: m∈ZZ L∈ZZ L = k $+ $#1

using Int_ZF_2_L1A Int_ZF_4_L1A by auto
moreover from A1 obtain n where D1: n∈nat L = m $+ $# n

using Int_ZF_3_L2 by auto
ultimately have m = L ∨ m ≤ k

using Int_ZF_4_L1 by simp
with T1 show m = L ∨ m+1 ≤ L

using Int_ZF_2_L9A by auto
with T1 show m = L ∨ m ≤ L-1

using Int_ZF_1_L8A Int_ZF_2_L9B by simp
qed

If j ∈ m..k + 1, then j ∈ m..n or j = k + 1.

lemma (in int0) Int_ZF_4_L2: assumes A1: k∈ZZ
and A2: j ∈ m..(k $+ $#1)
shows j ∈ m..k ∨ j ∈ {k $+ $#1}

proof -
from A2 have T1: m≤j j≤(k $+ $#1) using Order_ZF_2_L1A

by auto
then have T2: m∈ZZ j∈ZZ using Int_ZF_2_L1A by auto
from T1 obtain n where n∈nat k $+ $#1 = j $+ $# n

using Int_ZF_3_L2 by auto
with A1 T1 T2 have (m≤j ∧ j ≤ k) ∨ j ∈ {k $+ $#1}

using Int_ZF_4_L1 by auto
then show thesis using Order_ZF_2_L1B by auto

qed

Extending an integer interval by one is the same as adding the new endpoint.

lemma (in int0) Int_ZF_4_L3: assumes A1: m≤ k
shows m..(k $+ $#1) = m..k ∪ {k $+ $#1}

proof
from A1 have T1: m∈ZZ k∈ZZ using Int_ZF_2_L1A by auto
then show m .. (k $+ $# 1) ⊆ m .. k ∪ {k $+ $# 1}

using Int_ZF_4_L2 by auto
from T1 have m≤ m using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L3

by simp
with T1 A1 have m .. k ⊆ m .. (k $+ $# 1)

using Int_ZF_2_L12 Int_ZF_2_L6 Order_ZF_2_L3 by simp
with T1 A1 show m..k ∪ {k $+ $#1} ⊆ m..(k $+ $#1)

using Int_ZF_2_L12A int_ord_is_refl Order_ZF_2_L2 by auto
qed

Integer intervals are finite - induction step.

lemma (in int0) Int_ZF_4_L4:
assumes A1: i≤m and A2: i..m ∈ Fin(ZZ)
shows i..(m $+ $#1) ∈ Fin(ZZ)
using prems Int_ZF_4_L3 by simp
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Integer intervals are finite.

lemma (in int0) Int_ZF_4_L5: assumes A1: i∈ZZ k∈ZZ
shows i..k ∈ Fin(ZZ)

proof (cases i≤ k)
assume A2: i≤k
moreover from A1 have i..i ∈ Fin(ZZ)

using int_ord_is_refl Int_ZF_2_L4 Order_ZF_2_L4 by simp
moreover from A2 have
∀ m. i≤m ∧ i..m ∈ Fin(ZZ) −→ i..(m $+ $#1) ∈ Fin(ZZ)
using Int_ZF_4_L4 by simp

ultimately show i..k ∈ Fin(ZZ) by (rule Int_ZF_3_L7)
next assume ¬ i ≤ k

then show i..k ∈ Fin(ZZ) using Int_ZF_2_L6 Order_ZF_2_L5
by simp

qed

Bounded integer sets are finite.

lemma (in int0) Int_ZF_4_L6: assumes A1: IsBounded(A,IntegerOrder)
shows A ∈ Fin(ZZ)

proof -
have T1: ∀ m ∈ Nonnegative(ZZ,IntegerAddition,IntegerOrder).
$#0..m ∈ Fin(ZZ)

proof
fix m assume m ∈ Nonnegative(ZZ,IntegerAddition,IntegerOrder)
then have m∈ZZ using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L4E

by auto
then show $#0..m ∈ Fin(ZZ) using Int_ZF_4_L5 by simp

qed
have group3(ZZ,IntegerAddition,IntegerOrder)

using Int_ZF_2_T1 by simp
moreover from T1 have ∀ m ∈ Nonnegative(ZZ,IntegerAddition,IntegerOrder).
Interval(IntegerOrder,TheNeutralElement(ZZ,IntegerAddition),m)
∈ Fin(ZZ) using Int_ZF_1_L8 by simp

moreover from A1 have IsBounded(A,IntegerOrder) .
ultimately show A ∈ Fin(ZZ) by (rule group3.OrderedGroup_ZF_2_T1)

qed

A subset of integers is bounded iff it is finite.

theorem (in int0) Int_bounded_iff_fin:
shows IsBounded(A,IntegerOrder)←→ A∈Fin(ZZ)
using Int_ZF_4_L6 Int_ZF_2_T1 group3.ord_group_fin_bounded
by blast

The image of an interval by any integer function is finite, hence bounded.

lemma (in int0) Int_ZF_4_L8:
assumes A1: i∈ZZ k∈ZZ and A2: f:ZZ→ZZ
shows
f(i..k) ∈ Fin(ZZ)
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IsBounded(f(i..k),IntegerOrder)
using prems Int_ZF_4_L5 Finite1_L6A Int_bounded_iff_fin
by auto

If for every integer we can find one in A that is greater or equal, then A is
is not bounded above, hence infinite.

lemma (in int0) Int_ZF_4_L9: assumes A1: ∀ m∈ZZ. ∃ k∈A. m≤k
shows
¬IsBoundedAbove(A,IntegerOrder)
A /∈ Fin(ZZ)

proof -
have ZZ 6= {0}

using Int_ZF_1_L8A int_zero_not_one by blast
with A1 show
¬IsBoundedAbove(A,IntegerOrder)
A /∈ Fin(ZZ)
using Int_ZF_2_T1 group3.OrderedGroup_ZF_2_L2A
by auto

qed

end
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24 Int ZF 1.thy

theory Int_ZF_1 imports Int_ZF OrderedRing_ZF

begin

This theory file considers the set of integers as an ordered ring.

24.1 Integers as a ring

In this section we show that integers form a commutative ring.

The next lemma provides the condition to show that addition is distributive
with respect to multiplication.

lemma (in int0) Int_ZF_1_1_L1: assumes A1: a∈ZZ b∈ZZ c∈ZZ
shows
a·(b+c) = a·b + a·c
(b+c)·a = b·a + c·a
using prems Int_ZF_1_L2 zadd_zmult_distrib zadd_zmult_distrib2
by auto

Integers form a commutative ring, hence we can use theorems proven in
ring0 context (locale).

lemma (in int0) Int_ZF_1_1_L2: shows
IsAring(ZZ,IntegerAddition,IntegerMultiplication)
IntegerMultiplication {is commutative on} ZZ
ring0(ZZ,IntegerAddition,IntegerMultiplication)

proof -
have ∀ a∈ZZ.∀ b∈ZZ.∀ c∈ZZ.
a·(b+c) = a·b + a·c ∧ (b+c)·a = b·a + c·a
using Int_ZF_1_1_L1 by simp

then have IsDistributive(ZZ,IntegerAddition,IntegerMultiplication)
using IsDistributive_def by simp

then show IsAring(ZZ,IntegerAddition,IntegerMultiplication)
ring0(ZZ,IntegerAddition,IntegerMultiplication)
using Int_ZF_1_T1 Int_ZF_1_T2 IsAring_def ring0_def
by auto

have ∀ a∈ZZ.∀ b∈ZZ. a·b = b·a using Int_ZF_1_L4 by simp
then show IntegerMultiplication {is commutative on} ZZ

using IsCommutative_def by simp
qed

Zero and one are integers.

lemma (in int0) int_zero_one_are_int: shows 0∈ZZ 1∈ZZ
using Int_ZF_1_1_L2 ring0.Ring_ZF_1_L2 by auto

Negative of zero is zero.

lemma (in int0) int_zero_one_are_intA: shows (-0) = 0
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using Int_ZF_1_T2 group0.group_inv_of_one by simp

Properties with one integer.

lemma (in int0) Int_ZF_1_1_L4: assumes A1: a ∈ ZZ
shows
a+0 = a
0+a = a
a·1 = a 1·a = a
0·a = 0 a·0 = 0
(-a) ∈ ZZ (-(-a)) = a
a-a = 0 a-0 = a 2·a = a+a

proof -
from A1 show
a+0 = a 0+a = a a·1 = a
1·a = a a-a = 0 a-0 = a
(-a) ∈ ZZ 2·a = a+a (-(-a)) = a
using Int_ZF_1_1_L2 ring0.Ring_ZF_1_L3 by auto

from A1 show 0·a = 0 a·0 = 0
using Int_ZF_1_1_L2 ring0.Ring_ZF_1_L6 by auto

qed

Properties that require two integers.

lemma (in int0) Int_ZF_1_1_L5: assumes A1: a∈ZZ b∈ZZ
shows
a+b ∈ ZZ
a-b ∈ ZZ
a·b ∈ ZZ
a+b = b+a
a·b = b·a
(-b)-a = (-a)-b
(-(a+b)) = (-a)-b
(-(a-b)) = ((-a)+b)
(-a)·b = -(a·b)
a·(-b) = -(a·b)
(-a)·(-b) = a·b
using prems Int_ZF_1_1_L2 ring0.Ring_ZF_1_L4 ring0.Ring_ZF_1_L9
ring0.Ring_ZF_1_L7 ring0.Ring_ZF_1_L7A Int_ZF_1_L4 by auto

2 and 3 are integers.

lemma (in int0) int_two_three_are_int: shows 2 ∈ ZZ 3 ∈ ZZ
using int_zero_one_are_int Int_ZF_1_1_L5 by auto

Another property with two integers.

lemma (in int0) Int_ZF_1_1_L5B:
assumes A1: a∈ZZ b∈ZZ
shows a-(-b) = a+b
using prems Int_ZF_1_1_L2 ring0.Ring_ZF_1_L9
by simp
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Properties that require three integers.

lemma (in int0) Int_ZF_1_1_L6: assumes A1: a∈ZZ b∈ZZ c∈ZZ
shows
a-(b+c) = a-b-c
a-(b-c) = a-b+c
a·(b-c) = a·b - a·c
(b-c)·a = b·a - c·a
using prems Int_ZF_1_1_L2 ring0.Ring_ZF_1_L10 ring0.Ring_ZF_1_L8
by auto

One more property with three integers.

lemma (in int0) Int_ZF_1_1_L6A: assumes A1: a∈ZZ b∈ZZ c∈ZZ
shows a+(b-c) = a+b-c
using prems Int_ZF_1_1_L2 ring0.Ring_ZF_1_L10A by simp

Associativity of addition and multiplication.

lemma (in int0) Int_ZF_1_1_L7: assumes A1: a∈ZZ b∈ZZ c∈ZZ
shows
a+b+c = a+(b+c)
a·b·c = a·(b·c)
using prems Int_ZF_1_1_L2 ring0.Ring_ZF_1_L11 by auto

24.2 Rearrangement lemmas

In this section we collect lemmas about identities related to rearranging the
terms in expresssions

A formula with a positive integer.

lemma (in int0) Int_ZF_1_2_L1: assumes 0≤a
shows abs(a)+1 = abs(a+1)
using prems Int_ZF_2_L16 Int_ZF_2_L12A by simp

A formula with two integers, one positive.

lemma (in int0) Int_ZF_1_2_L2: assumes A1: a∈ZZ and A2: 0≤b
shows a+(abs(b)+1)·a = (abs(b+1)+1)·a

proof -
from A2 have T1: abs(b+1) ∈ ZZ

using Int_ZF_2_L12A Int_ZF_2_L1A Int_ZF_2_L14 by blast
with A1 A2 show thesis

using Int_ZF_1_2_L1 Int_ZF_1_1_L2 ring0.Ring_ZF_2_L1
by simp

qed

A couple of formulae about canceling opposite integers.

lemma (in int0) Int_ZF_1_2_L3: assumes A1: a∈ZZ b∈ZZ
shows
a+b-a = b
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a+(b-a) = b
a+b-b = a
a-b+b = a
(-a)+(a+b) = b
a+(b-a) = b
(-b)+(a+b) = a
a-(b+a) = -b
a-(a+b) = -b
a-(a-b) = b
a-b-a = -b
a-b - (a+b) = (-b)-b
using prems Int_ZF_1_T2 group0.group0_4_L6A group0.group0_2_L16
group0.group0_2_L16A group0.group0_4_L6AA group0.group0_4_L6AB
group0.group0_4_L6F group0.group0_4_L6AC by auto

Subtracting one does not increase integers. This may be moved to a theory
about ordered rings one day.

lemma (in int0) Int_ZF_1_2_L3A: assumes A1: a≤b
shows a-1 ≤ b

proof -
from A1 have b+1-1 = b

using Int_ZF_2_L1A int_zero_one_are_int Int_ZF_1_2_L3 by simp
moreover from A1 have a-1 ≤ b+1-1

using Int_ZF_2_L12A int_zero_one_are_int Int_ZF_1_1_L4 int_ord_transl_inv
by simp

ultimately show a-1 ≤ b by simp
qed

Subtracting one does not increase integers, special case.

lemma (in int0) Int_ZF_1_2_L3AA:
assumes A1: a∈ZZ shows
a-1 ≤a
a-1 6= a
¬(a≤a-1)
¬(a+1 ≤a)
¬(1+a ≤a)

proof -
from A1 have a≤a using int_ord_is_refl refl_def

by simp
then show a-1 ≤a using Int_ZF_1_2_L3A

by simp
moreover from A1 show a-1 6= a using Int_ZF_1_L14 by simp
ultimately show I: ¬(a≤a-1) using Int_ZF_2_L19AA

by blast
with A1 show ¬(a+1 ≤a)

using int_zero_one_are_int Int_ZF_2_L9B by simp
with A1 show ¬(1+a ≤a)

using int_zero_one_are_int Int_ZF_1_1_L5 by simp
qed
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A formula with a nonpositive integer.

lemma (in int0) Int_ZF_1_2_L4: assumes a≤0
shows abs(a)+1 = abs(a-1)
using prems int_zero_one_are_int Int_ZF_1_2_L3A Int_ZF_2_T1

group3.OrderedGroup_ZF_3_L3A Int_ZF_2_L1A
int_zero_one_are_int Int_ZF_1_1_L5 by simp

A formula with two integers, one negative.

lemma (in int0) Int_ZF_1_2_L5: assumes A1: a∈ZZ and A2: b≤0
shows a+(abs(b)+1)·a = (abs(b-1)+1)·a

proof -
from A2 have abs(b-1) ∈ ZZ

using int_zero_one_are_int Int_ZF_1_2_L3A Int_ZF_2_L1A Int_ZF_2_L14

by blast
with A1 A2 show thesis

using Int_ZF_1_2_L4 Int_ZF_1_1_L2 ring0.Ring_ZF_2_L1
by simp

qed

A rearrangement with four integers.

lemma (in int0) Int_ZF_1_2_L6:
assumes A1: a∈ZZ b∈ZZ c∈ZZ d∈ZZ
shows
a-(b-1)·c = (d-b·c)-(d-a-c)

proof -
from A1 have T1:
(d-b·c) ∈ ZZ d-a ∈ ZZ (-(b·c)) ∈ ZZ
using Int_ZF_1_1_L5 Int_ZF_1_1_L4 by auto

with A1 have
(d-b·c)-(d-a-c) = (-(b·c))+a+c
using Int_ZF_1_1_L6 Int_ZF_1_2_L3 by simp

also from A1 T1 have (-(b·c))+a+c = a-(b-1)·c
using int_zero_one_are_int Int_ZF_1_1_L6 Int_ZF_1_1_L4 Int_ZF_1_1_L5
by simp

finally show thesis by simp
qed

Some other rearrangements with two integers.

lemma (in int0) Int_ZF_1_2_L7: assumes a∈ZZ b∈ZZ
shows
a·b = (a-1)·b+b
a·(b+1) = a·b+a
(b+1)·a = b·a+a
(b+1)·a = a+b·a
using prems Int_ZF_1_1_L1 Int_ZF_1_1_L5 int_zero_one_are_int
Int_ZF_1_1_L6 Int_ZF_1_1_L4 Int_ZF_1_T2 group0.group0_2_L16

by auto
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Another rearrangement with two integers.

lemma (in int0) Int_ZF_1_2_L8:
assumes A1: a∈ZZ b∈ZZ
shows a+1+(b+1) = b+a+2
using prems int_zero_one_are_int Int_ZF_1_T2 group0.group0_4_L8
by simp

A couple of rearrangement with three integers.

lemma (in int0) Int_ZF_1_2_L9:
assumes a∈ZZ b∈ZZ c∈ZZ
shows
(a-b)+(b-c) = a-c
(a-b)-(a-c) = c-b
a+(b+(c-a-b)) = c
(-a)-b+c = c-a-b
(-b)-a+c = c-a-b
(-((-a)+b+c)) = a-b-c
a+b+c-a = b+c
a+b-(a+c) = b-c
using prems Int_ZF_1_T2
group0.group0_4_L4B group0.group0_4_L6D group0.group0_4_L4D
group0.group0_4_L6B group0.group0_4_L6E

by auto

Another couple of rearrangements with three integers.

lemma (in int0) Int_ZF_1_2_L9A:
assumes A1: a∈ZZ b∈ZZ c∈ZZ
shows (-(a-b-c)) = c+b-a

proof -
from A1 have T:
a-b ∈ ZZ (-(a-b)) ∈ ZZ (-b) ∈ ZZ using
Int_ZF_1_1_L4 Int_ZF_1_1_L5 by auto

with A1 have (-(a-b-c)) = c - ((-b)+a)
using Int_ZF_1_1_L5 by simp

also from A1 T have . . . = c+b-a
using Int_ZF_1_1_L6 Int_ZF_1_1_L5B
by simp

finally show (-(a-b-c)) = c+b-a
by simp

qed

Another rearrangement with three integers.

lemma (in int0) Int_ZF_1_2_L10:
assumes A1: a∈ZZ b∈ZZ c∈ZZ
shows (a+1)·b + (c+1)·b = (c+a+2)·b

proof -
from A1 have a+1 ∈ ZZ c+1 ∈ ZZ

using int_zero_one_are_int Int_ZF_1_1_L5 by auto
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with A1 have
(a+1)·b + (c+1)·b = (a+1+(c+1))·b
using Int_ZF_1_1_L1 by simp

also from A1 have . . . = (c+a+2)·b
using Int_ZF_1_2_L8 by simp

finally show thesis by simp
qed

A technical rearrangement involing inequalities with absolute value.

lemma (in int0) Int_ZF_1_2_L10A:
assumes A1: a∈ZZ b∈ZZ c∈ZZ e∈ZZ
and A2: abs(a·b-c) ≤ d abs(b·a-e) ≤ f
shows abs(c-e) ≤ f+d

proof -
from A1 A2 have T1:
d∈ZZ f∈ZZ a·b ∈ ZZ a·b-c ∈ ZZ b·a-e ∈ ZZ
using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto

with A2 have
abs((b·a-e)-(a·b-c)) ≤ f +d
using Int_ZF_2_L21 by simp

with A1 T1 show abs(c-e) ≤ f+d
using Int_ZF_1_1_L5 Int_ZF_1_2_L9 by simp

qed

Some arithmetics.

lemma (in int0) Int_ZF_1_2_L11: assumes A1: a∈ZZ
shows
a+1+2 = a+3
a = 2·a - a

proof -
from A1 show a+1+2 = a+3

using int_zero_one_are_int int_two_three_are_int Int_ZF_1_T2 group0.group0_4_L4C
by simp

from A1 show a = 2·a - a
using int_zero_one_are_int Int_ZF_1_1_L1 Int_ZF_1_1_L4 Int_ZF_1_T2

group0.group0_2_L16
by simp

qed

A simple rearrangement with three integers.

lemma (in int0) Int_ZF_1_2_L12:
assumes a∈ZZ b∈ZZ c∈ZZ
shows
(b-c)·a = a·b - a·c
using prems Int_ZF_1_1_L6 Int_ZF_1_1_L5 by simp

A big rearrangement with five integers.

lemma (in int0) Int_ZF_1_2_L13:
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assumes A1: a∈ZZ b∈ZZ c∈ZZ d∈ZZ x∈ZZ
shows (x+(a·x+b)+c)·d = d·(a+1)·x + (b·d+c·d)

proof -
from A1 have T1:
a·x ∈ ZZ (a+1)·x ∈ ZZ
(a+1)·x + b ∈ ZZ
using Int_ZF_1_1_L5 int_zero_one_are_int by auto

with A1 have (x+(a·x+b)+c)·d = ((a+1)·x + b)·d + c·d
using Int_ZF_1_1_L7 Int_ZF_1_2_L7 Int_ZF_1_1_L1
by simp

also from A1 T1 have . . . = (a+1)·x·d + b · d + c·d
using Int_ZF_1_1_L1 by simp

finally have (x+(a·x+b)+c)·d = (a+1)·x·d + b·d + c·d
by simp

moreover from A1 T1 have (a+1)·x·d = d·(a+1)·x
using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_1_1_L7 by simp

ultimately have (x+(a·x+b)+c)·d = d·(a+1)·x + b·d + c·d
by simp

moreover from A1 T1 have
d·(a+1)·x ∈ ZZ b·d ∈ ZZ c·d ∈ ZZ
using int_zero_one_are_int Int_ZF_1_1_L5 by auto

ultimately show thesis using Int_ZF_1_1_L7 by simp
qed

Rerrangement about adding linear functions.

lemma (in int0) Int_ZF_1_2_L14:
assumes a∈ZZ b∈ZZ c∈ZZ d∈ZZ x∈ZZ
shows (a·x + b) + (c·x + d) = (a+c)·x + (b+d)
using prems Int_ZF_1_1_L2 ring0.Ring_ZF_2_L3 by simp

A rearrangement with four integers. Again we have to use the generic set
notation to use a theorem proven in different context.

lemma (in int0) Int_ZF_1_2_L15: assumes A1: a∈ZZ b∈ZZ c∈ZZ d∈ZZ
and A2: a = b-c-d
shows
d = b-a-c
d = (-a)+b-c
b = a+d+c

proof -
let G = int
let f = IntegerAddition
from A1 A2 have I:
group0(G, f) f {is commutative on} G
a ∈ G b ∈ G c ∈ G d ∈ G
a = f〈f〈b,GroupInv(G, f)(c)〉,GroupInv(G, f)(d)〉
using Int_ZF_1_T2 by auto

then have
d = f〈f〈b,GroupInv(G, f)(a)〉,GroupInv(G,f)(c)〉
by (rule group0.group0_4_L9)
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then show d = b-a-c by simp
from I have d = f〈f〈GroupInv(G, f)(a),b〉, GroupInv(G, f)(c)〉

by (rule group0.group0_4_L9)
thus d = (-a)+b-c

by simp
from I have b = f〈f〈a, d〉,c〉

by (rule group0.group0_4_L9)
thus b = a+d+c by simp

qed

A rearrangement with four integers. Property of groups.

lemma (in int0) Int_ZF_1_2_L16:
assumes a∈ZZ b∈ZZ c∈ZZ d∈ZZ
shows a+(b-c)+d = a+b+d-c
using prems Int_ZF_1_T2 group0.group0_4_L8 by simp

Some rearrangements with three integers. Properties of groups.

lemma (in int0) Int_ZF_1_2_L17:
assumes A1: a∈ZZ b∈ZZ c∈ZZ
shows
a+b-c+(c-b) = a
a+(b+c)-c = a+b

proof -
let G = int
let f = IntegerAddition
from A1 have I:
group0(G, f)
a ∈ G b ∈ G c ∈ G
using Int_ZF_1_T2 by auto

then have
f〈f〈f〈a,b〉,GroupInv(G, f)(c)〉,f〈c,GroupInv(G, f)(b)〉〉 = a
by (rule group0.group0_2_L14A)

thus a+b-c+(c-b) = a by simp
from I have
f〈f〈a,f〈b,c〉〉,GroupInv(G, f)(c)〉 = f〈a,b〉
by (rule group0.group0_2_L14A)

thus a+(b+c)-c = a+b by simp
qed

Another rearrangement with three integers. Property of abelian groups.

lemma (in int0) Int_ZF_1_2_L18:
assumes A1: a∈ZZ b∈ZZ c∈ZZ
shows a+b-c+(c-a) = b

proof -
let G = int
let f = IntegerAddition
from A1 have
group0(G, f) f {is commutative on} G
a ∈ G b ∈ G c ∈ G
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using Int_ZF_1_T2 by auto
then have
f〈f〈f〈a,b〉,GroupInv(G, f)(c)〉,f〈c,GroupInv(G, f)(a)〉〉 = b
by (rule group0.group0_4_L6D)

thus a+b-c+(c-a) = b by simp
qed

24.3 Integers as an ordered ring

We already know from Int_ZF that integers with addition form a linearly
ordered group. To show that integers form an ordered ring we need the fact
that the set of nonnegative integers is closed under multiplication. Since we
don’t have the theory of oredered rings we temporarily put some facts about
integers as an ordered ring in this section.

We start with the property that a product of nonnegative integers is non-
negative. The proof is by induction and the next lemma is the induction
step.

lemma (in int0) Int_ZF_1_3_L1: assumes A1: 0≤a 0≤b
and A3: 0 ≤ a·b
shows 0 ≤ a·(b+1)

proof -
from A1 A3 have 0+0 ≤ a·b+a

using int_ineq_add_sides by simp
with A1 show 0 ≤ a·(b+1)

using int_zero_one_are_int Int_ZF_1_1_L4 Int_ZF_2_L1A Int_ZF_1_2_L7

by simp
qed

Product of nonnegative integers is nonnegative.

lemma (in int0) Int_ZF_1_3_L2: assumes A1: 0≤a 0≤b
shows 0≤a·b

proof -
from A1 have 0≤b by simp
moreover from A1 have 0 ≤ a·0 using
Int_ZF_2_L1A Int_ZF_1_1_L4 int_zero_one_are_int int_ord_is_refl refl_def
by simp

moreover from A1 have
∀ m. 0≤m ∧ 0≤a·m −→ 0 ≤ a·(m+1)
using Int_ZF_1_3_L1 by simp

ultimately show 0≤a·b by (rule Induction_on_int)
qed

The set of nonnegative integers is closed under multiplication.

lemma (in int0) Int_ZF_1_3_L2A: shows
ZZ+ {is closed under} IntegerMultiplication

proof -

322



{ fix a b assume a∈ZZ+ b∈ZZ+

then have a·b ∈ZZ+

using Int_ZF_1_3_L2 Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L2
by simp

} then have ∀ a∈ZZ+.∀ b∈ZZ+.a·b ∈ZZ+ by simp
then show thesis using IsOpClosed_def by simp

qed

Integers form an ordered ring. All theorems proven in the ring1 context are
valid in int0 context.

theorem (in int0) Int_ZF_1_3_T1: shows
IsAnOrdRing(ZZ,IntegerAddition,IntegerMultiplication,IntegerOrder)
ring1(ZZ,IntegerAddition,IntegerMultiplication,IntegerOrder)
using Int_ZF_1_1_L2 Int_ZF_2_L1B Int_ZF_1_3_L2A Int_ZF_2_T1
OrdRing_ZF_1_L6 OrdRing_ZF_1_L2 by auto

Product of integers that are greater that one is greater than one. The proof
is by induction and the next step is the induction step.

lemma (in int0) Int_ZF_1_3_L3_indstep:
assumes A1: 1≤a 1≤b
and A2: 1 ≤ a·b
shows 1 ≤ a·(b+1)

proof -
from A1 A2 have 1≤2 and 2 ≤ a·(b+1)
using Int_ZF_2_L1A int_ineq_add_sides Int_ZF_2_L16B Int_ZF_1_2_L7

by auto
then show 1 ≤ a·(b+1) by (rule Int_order_transitive)

qed

Product of integers that are greater that one is greater than one.

lemma (in int0) Int_ZF_1_3_L3:
assumes A1: 1≤a 1≤b
shows 1 ≤ a·b

proof -
from A1 have 1≤b 1≤a·1

using Int_ZF_2_L1A Int_ZF_1_1_L4 by auto
moreover from A1 have
∀ m. 1≤m ∧ 1 ≤ a·m −→ 1 ≤ a·(m+1)
using Int_ZF_1_3_L3_indstep by simp

ultimately show 1 ≤ a·b by (rule Induction_on_int)
qed

|a · (−b)| = |(−a) · b| = |(−a) · (−b)| = |a · b| This is a property of ordered
rings..

lemma (in int0) Int_ZF_1_3_L4: assumes a∈ZZ b∈ZZ
shows
abs((-a)·b) = abs(a·b)
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abs(a·(-b)) = abs(a·b)
abs((-a)·(-b)) = abs(a·b)
using prems Int_ZF_1_1_L5 Int_ZF_2_L17 by auto

Absolute value of a product is the product of absolute values. Property of
ordered rings.

lemma (in int0) Int_ZF_1_3_L5:
assumes A1: a∈ZZ b∈ZZ
shows abs(a·b) = abs(a)·abs(b)
using prems Int_ZF_1_3_T1 ring1.OrdRing_ZF_2_L5 by simp

Double nonnegative is nonnegative. Property of ordered rings.

lemma (in int0) Int_ZF_1_3_L5A: assumes 0≤a
shows 0≤2·a
using prems Int_ZF_1_3_T1 ring1.OrdRing_ZF_1_L5A by simp

The next lemma shows what happens when one integer is not greater or
equal than another.

lemma (in int0) Int_ZF_1_3_L6:
assumes A1: a∈ZZ b∈ZZ
shows ¬(b≤a) ←→ a+1 ≤ b

proof
assume A3: ¬(b≤a)
with A1 have a≤b by (rule Int_ZF_2_L19)
then have a = b ∨ a+1 ≤ b

using Int_ZF_4_L1B by simp
moreover from A1 A3 have a6=b by (rule Int_ZF_2_L19)
ultimately show a+1 ≤ b by simp

next assume A4: a+1 ≤ b
{ assume b≤a

with A4 have a+1 ≤ a by (rule Int_order_transitive)
moreover from A1 have a ≤ a+1

using Int_ZF_2_L12B by simp
ultimately have a+1 = a

by (rule Int_ZF_2_L3)
with A1 have False using Int_ZF_1_L14 by simp

} then show ¬(b≤a) by auto
qed

Another form of stating that there are no integers between integers m and
m + 1.

corollary (in int0) no_int_between: assumes A1: a∈ZZ b∈ZZ
shows b≤a ∨ a+1 ≤ b
using A1 Int_ZF_1_3_L6 by auto

Another way of saying what it means that one integer is not greater or equal
than another.

corollary (in int0) Int_ZF_1_3_L6A:

324



assumes A1: a∈ZZ b∈ZZ and A2: ¬(b≤a)
shows a ≤ b-1

proof -
from A1 A2 have a+1 - 1 ≤ b - 1

using Int_ZF_1_3_L6 int_zero_one_are_int Int_ZF_1_1_L4
int_ord_transl_inv by simp

with A1 show a ≤ b-1
using int_zero_one_are_int Int_ZF_1_2_L3
by simp

qed

Yet another form of stating that there are nointegers between m and m+1.

lemma (in int0) no_int_between1:
assumes A1: a≤b and A2: a6=b
shows
a+1 ≤ b
a ≤ b-1

proof -
from A1 have T: a∈ZZ b∈ZZ using Int_ZF_2_L1A

by auto
{ assume b≤a

with A1 have a=b by (rule Int_ZF_2_L3)
with A2 have False by simp }

then have ¬(b≤a) by auto
with T show
a+1 ≤ b
a ≤ b-1
using no_int_between Int_ZF_1_3_L6A by auto

qed

We can decompose proofs into three cases: a = b, a ≤ b− 1b or a ≥ b + 1b.

lemma (in int0) Int_ZF_1_3_L6B: assumes A1: a∈ZZ b∈ZZ
shows a=b ∨ (a ≤ b-1) ∨ (b+1 ≤a)

proof -
from A1 have a=b ∨ (a≤b ∧ a6=b) ∨ (b≤a ∧ b 6=a)

using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L31
by simp

then show thesis using no_int_between1
by auto

qed

A special case of Int_ZF_1_3_L6B when b = 0. This allows to split the proofs
in cases a ≤ −1, a = 0 and a ≥ 1.

corollary (in int0) Int_ZF_1_3_L6C: assumes A1: a∈ZZ
shows a=0 ∨ (a ≤ -1) ∨ (1≤a)

proof -
from A1 have a=0 ∨ (a ≤ 0 -1) ∨ (0 +1 ≤a)

using int_zero_one_are_int Int_ZF_1_3_L6B by simp
then show thesis using Int_ZF_1_1_L4 int_zero_one_are_int
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by simp
qed

An integer is not less or equal zero iff it is greater or equal one.

lemma (in int0) Int_ZF_1_3_L7: assumes a∈ZZ
shows ¬(a≤0) ←→ 1 ≤ a
using prems int_zero_one_are_int Int_ZF_1_3_L6 Int_ZF_1_1_L4
by simp

Product of positive integers is positive.

lemma (in int0) Int_ZF_1_3_L8:
assumes a∈ZZ b∈ZZ
and ¬(a≤0) ¬(b≤0)
shows ¬((a·b) ≤ 0)
using prems Int_ZF_1_3_L7 Int_ZF_1_3_L3 Int_ZF_1_1_L5 Int_ZF_1_3_L7
by simp

If a · b is nonnegative and b is positive, then a is nonnegative. Proof by
contradiction.

lemma (in int0) Int_ZF_1_3_L9:
assumes A1: a∈ZZ b∈ZZ
and A2: ¬(b≤0) and A3: a·b ≤ 0
shows a≤0

proof -
{ assume ¬(a≤0)

with A1 A2 have ¬((a·b) ≤ 0) using Int_ZF_1_3_L8
by simp

} with A3 show a≤0 by auto
qed

One integer is less or equal another iff the difference is nonpositive.

lemma (in int0) Int_ZF_1_3_L10:
assumes a∈ZZ b∈ZZ
shows a≤b ←→ a-b ≤ 0
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L9
by simp

Some conclusions from the fact that one integer is less or equal than another.

lemma (in int0) Int_ZF_1_3_L10A: assumes a≤b
shows 0 ≤ b-a
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L12A
by simp

We can simplify out a positive element on both sides of an inequality.

lemma (in int0) Int_ineq_simpl_positive:
assumes A1: a∈ZZ b∈ZZ c∈ZZ
and A2: a·c ≤ b·c and A4: ¬(c≤0)
shows a ≤ b
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proof -
from A1 A4 have a-b ∈ ZZ c∈ZZ ¬(c≤0)

using Int_ZF_1_1_L5 by auto
moreover from A1 A2 have (a-b)·c ≤ 0

using Int_ZF_1_1_L5 Int_ZF_1_3_L10 Int_ZF_1_1_L6
by simp

ultimately have a-b ≤ 0 by (rule Int_ZF_1_3_L9)
with A1 show a ≤ b using Int_ZF_1_3_L10 by simp

qed

A technical lemma about conclusion from an inequality between absolute
values. This is a property of ordered rings.

lemma (in int0) Int_ZF_1_3_L11:
assumes A1: a∈ZZ b∈ZZ
and A2: ¬(abs(a) ≤ abs(b))
shows ¬(abs(a) ≤ 0)

proof -
{ assume abs(a) ≤ 0

moreover from A1 have 0 ≤ abs(a) using int_abs_nonneg
by simp

ultimately have abs(a) = 0 by (rule Int_ZF_2_L3)
with A1 A2 have False using int_abs_nonneg by simp

} then show ¬(abs(a) ≤ 0) by auto
qed

Negative times positive is negative. This a property of ordered rings.

lemma (in int0) Int_ZF_1_3_L12:
assumes a≤0 and 0≤b
shows a·b ≤ 0
using prems Int_ZF_1_3_T1 ring1.OrdRing_ZF_1_L8
by simp

We can multiply an inequality by a nonnegative number. This is a property
of ordered rings.

lemma (in int0) Int_ZF_1_3_L13:
assumes A1: a≤b and A2: 0≤c
shows
a·c ≤ b·c
c·a ≤ c·b
using prems Int_ZF_1_3_T1 ring1.OrdRing_ZF_1_L9 by auto

A technical lemma about decreasing a factor in an inequality.

lemma (in int0) Int_ZF_1_3_L13A:
assumes 1≤a and b≤c and (a+1)·c ≤ d
shows (a+1)·b ≤ d

proof -
from prems have
(a+1)·b ≤ (a+1)·c
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(a+1)·c ≤ d
using Int_ZF_2_L16C Int_ZF_1_3_L13 by auto

then show (a+1)·b ≤ d by (rule Int_order_transitive)
qed

We can multiply an inequality by a positive number. This is a property of
ordered rings.

lemma (in int0) Int_ZF_1_3_L13B:
assumes A1: a≤b and A2: c∈ZZ+

shows
a·c ≤ b·c
c·a ≤ c·b

proof -
let R = ZZ
let A = IntegerAddition
let M = IntegerMultiplication
let r = IntegerOrder
from A1 A2 have
ring1(R, A, M, r)
〈a,b〉 ∈ r
c ∈ PositiveSet(R, A, r)
using Int_ZF_1_3_T1 by auto

then show
a·c ≤ b·c
c·a ≤ c·b
using ring1.OrdRing_ZF_1_L9A by auto

qed

A rearrangement with four integers and absolute value.

lemma (in int0) Int_ZF_1_3_L14:
assumes A1: a∈ZZ b∈ZZ c∈ZZ d∈ZZ
shows abs(a·b)+(abs(a)+c)·d = (d+abs(b))·abs(a)+c·d

proof -
from A1 have T1:
abs(a) ∈ ZZ abs(b) ∈ ZZ
abs(a)·abs(b) ∈ ZZ
abs(a)·d ∈ ZZ
c·d ∈ ZZ
abs(b)+d ∈ ZZ
using Int_ZF_2_L14 Int_ZF_1_1_L5 by auto

with A1 have abs(a·b)+(abs(a)+c)·d = abs(a)·(abs(b)+d)+c·d
using Int_ZF_1_3_L5 Int_ZF_1_1_L1 Int_ZF_1_1_L7 by simp

with A1 T1 show thesis using Int_ZF_1_1_L5 by simp
qed

A technical lemma about what happens when one absolute value is not
greater or equal than another.

lemma (in int0) Int_ZF_1_3_L15: assumes A1: m∈ZZ n∈ZZ
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and A2: ¬(abs(m) ≤ abs(n))
shows n ≤ abs(m) m6=0

proof -
from A1 have T1: n ≤ abs(n)

using Int_ZF_2_L19C by simp
from A1 have abs(n) ∈ ZZ abs(m) ∈ ZZ

using Int_ZF_2_L14 by auto
moreover from A2 have ¬(abs(m) ≤ abs(n)) .
ultimately have abs(n) ≤ abs(m)

by (rule Int_ZF_2_L19)
with T1 show n ≤ abs(m) by (rule Int_order_transitive)
from A1 A2 show m6=0 using Int_ZF_2_L18 int_abs_nonneg by auto

qed

Negative of a nonnegative is nonpositive.

lemma (in int0) Int_ZF_1_3_L16: assumes A1: 0 ≤ m
shows (-m) ≤ 0

proof -
from A1 have (-m) ≤ (-0)

using Int_ZF_2_L10 by simp
then show (-m) ≤ 0 using Int_ZF_1_L11

by simp
qed

Some statements about intervals centered at 0.

lemma (in int0) Int_ZF_1_3_L17: assumes A1: m∈ZZ
shows
(-abs(m)) ≤ abs(m)
(-abs(m))..abs(m) 6= 0

proof -
from A1 have (-abs(m)) ≤ 0 0 ≤ abs(m)

using int_abs_nonneg Int_ZF_1_3_L16 by auto
then show (-abs(m)) ≤ abs(m) by (rule Int_order_transitive)
then have abs(m) ∈ (-abs(m))..abs(m)

using int_ord_is_refl Int_ZF_2_L1A Order_ZF_2_L2 by simp
thus (-abs(m))..abs(m) 6= 0 by auto

qed

The greater of two integers is indeed greater than both, and the smaller one
is smaller that both.

lemma (in int0) Int_ZF_1_3_L18: assumes A1: m∈ZZ n∈ZZ
shows
m ≤ GreaterOf(IntegerOrder,m,n)
n ≤ GreaterOf(IntegerOrder,m,n)
SmallerOf(IntegerOrder,m,n) ≤ m
SmallerOf(IntegerOrder,m,n) ≤ n
using prems Int_ZF_2_T1 Order_ZF_3_L2 by auto

If |m| ≤ n, then m ∈ −n..n.
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lemma (in int0) Int_ZF_1_3_L19:
assumes A1: m∈ZZ and A2: abs(m) ≤ n
shows
(-n) ≤ m m ≤ n
m ∈ (-n)..n
0 ≤ n
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L8
group3.OrderedGroup_ZF_3_L8A Order_ZF_2_L1

by auto

A slight generalization of the above lemma.

lemma (in int0) Int_ZF_1_3_L19A:
assumes A1: m∈ZZ and A2: abs(m) ≤ n and A3: 0≤k
shows (-(n+k)) ≤ m
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L8B
by simp

Sets of integers that have absolute value bounded are bounded.

lemma (in int0) Int_ZF_1_3_L20:
assumes A1: ∀ x∈X. b(x) ∈ ZZ ∧ abs(b(x)) ≤ L
shows IsBounded({b(x). x∈X},IntegerOrder)

proof -
let G = ZZ
let P = IntegerAddition
let r = IntegerOrder
from A1 have
group3(G, P, r)
r {is total on} G
∀ x∈X. b(x) ∈ G ∧ 〈AbsoluteValue(G, P, r) b(x), L〉 ∈ r
using Int_ZF_2_T1 by auto

then show IsBounded({b(x). x∈X},IntegerOrder)
by (rule group3.OrderedGroup_ZF_3_L9A)

qed

If a set is bounded, then the absolute values of the elements of that set are
bounded.

lemma (in int0) Int_ZF_1_3_L20A: assumes IsBounded(A,IntegerOrder)
shows ∃ L. ∀ a∈A. abs(a) ≤ L
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L10A
by simp

Absolute vaues of integers from a finite image of integers are bounded by an
integer.

lemma (in int0) Int_ZF_1_3_L20AA:
assumes A1: {b(x). x∈ZZ} ∈ Fin(ZZ)
shows ∃ L∈ZZ. ∀ x∈ZZ. abs(b(x)) ≤ L
using prems int_not_empty Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L11A
by simp
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If absolute values of values of some integer function are bounded, then the
image a set from the domain is a bounded set.

lemma (in int0) Int_ZF_1_3_L20B:
assumes f:X→ZZ and A⊆X and ∀ x∈A. abs(f(x)) ≤ L
shows IsBounded(f(A),IntegerOrder)

proof -
let G = ZZ
let P = IntegerAddition
let r = IntegerOrder
from prems have
group3(G, P, r)
r {is total on} G
f:X→G
A⊆X
∀ x∈A. 〈AbsoluteValue(G, P, r)(f(x)), L〉 ∈ r
using Int_ZF_2_T1 by auto

then show IsBounded(f(A), r)
by (rule group3.OrderedGroup_ZF_3_L9B)

qed

A special case of the previous lemma for a function from integers to integers.

corollary (in int0) Int_ZF_1_3_L20C:
assumes f:ZZ→ZZ and ∀ m∈ZZ. abs(f(m)) ≤ L
shows f(ZZ) ∈ Fin(ZZ)

proof -
from prems have f:ZZ→ZZ ZZ ⊆ ZZ ∀ m∈ZZ. abs(f(m)) ≤ L

by auto
then have IsBounded(f(ZZ),IntegerOrder)

by (rule Int_ZF_1_3_L20B)
then show f(ZZ) ∈ Fin(ZZ) using Int_bounded_iff_fin

by simp
qed

A triangle inequality with three integers. Property of linearly ordered abelian
groups.

lemma (in int0) int_triangle_ineq3:
assumes A1: a∈ZZ b∈ZZ c∈ZZ
shows abs(a-b-c) ≤ abs(a) + abs(b) + abs(c)

proof -
from A1 have T: a-b ∈ ZZ abs(c) ∈ ZZ

using Int_ZF_1_1_L5 Int_ZF_2_L14 by auto
with A1 have abs(a-b-c) ≤ abs(a-b) + abs(c)

using Int_triangle_ineq1 by simp
moreover from A1 T have
abs(a-b) + abs(c) ≤ abs(a) + abs(b) + abs(c)
using Int_triangle_ineq1 int_ord_transl_inv by simp

ultimately show thesis by (rule Int_order_transitive)
qed
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If a ≤ c and b ≤ c, then a + b ≤ 2 · c. Property of ordered rings.

lemma (in int0) Int_ZF_1_3_L21:
assumes A1: a≤c b≤c shows a+b ≤ 2·c
using prems Int_ZF_1_3_T1 ring1.OrdRing_ZF_2_L6 by simp

If an integer a is between b and b + c, then |b− a| ≤ c. Property of ordered
groups.

lemma (in int0) Int_ZF_1_3_L22:
assumes a≤b and c∈ZZ and b≤ c+a
shows abs(b-a) ≤ c
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L8C
by simp

An application of the triangle inequality with four integers. Property of
linearly ordered abelian groups.

lemma (in int0) Int_ZF_1_3_L22A:
assumes a∈ZZ b∈ZZ c∈ZZ d∈ZZ
shows abs(a-c) ≤ abs(a+b) + abs(c+d) + abs(b-d)
using prems Int_ZF_1_T2 Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L7F
by simp

If an integer a is between b and b + c, then |b− a| ≤ c. Property of ordered
groups. A version of Int_ZF_1_3_L22 with sligtly different assumptions.

lemma (in int0) Int_ZF_1_3_L23:
assumes A1: a≤b and A2: c∈ZZ and A3: b≤ a+c
shows abs(b-a) ≤ c

proof -
from A1 have a ∈ ZZ

using Int_ZF_2_L1A by simp
with A2 A3 have b≤ c+a

using Int_ZF_1_1_L5 by simp
with A1 A2 show abs(b-a) ≤ c

using Int_ZF_1_3_L22 by simp
qed

24.4 Maximum and minimum of a set of integers

In this section we provide some sufficient conditions for integer subsets to
have extrema (maxima and minima).

Finite nonempty subsets of integers attain maxima and minima.

theorem (in int0) Int_fin_have_max_min:
assumes A1: A ∈ Fin(ZZ) and A2: A6=0
shows
HasAmaximum(IntegerOrder,A)
HasAminimum(IntegerOrder,A)
Maximum(IntegerOrder,A) ∈ A
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Minimum(IntegerOrder,A) ∈ A
∀ x∈A. x ≤ Maximum(IntegerOrder,A)
∀ x∈A. Minimum(IntegerOrder,A) ≤ x
Maximum(IntegerOrder,A) ∈ ZZ
Minimum(IntegerOrder,A) ∈ ZZ

proof -
from A1 have
A=0 ∨ HasAmaximum(IntegerOrder,A) and
A=0 ∨ HasAminimum(IntegerOrder,A)
using Int_ZF_2_T1 Int_ZF_2_L6 Finite_ZF_1_1_T1A Finite_ZF_1_1_T1B
by auto

with A2 show
HasAmaximum(IntegerOrder,A)
HasAminimum(IntegerOrder,A)
by auto

from A1 A2 show
Maximum(IntegerOrder,A) ∈ A
Minimum(IntegerOrder,A) ∈ A
∀ x∈A. x ≤ Maximum(IntegerOrder,A)
∀ x∈A. Minimum(IntegerOrder,A) ≤ x
using Int_ZF_2_T1 Finite_ZF_1_T2 by auto

moreover from A1 have A⊆ZZ using FinD by simp
ultimately show
Maximum(IntegerOrder,A) ∈ ZZ
Minimum(IntegerOrder,A) ∈ ZZ
by auto

qed

Bounded nonempty integer subsets attain maximum and minimum.

theorem (in int0) Int_bounded_have_max_min:
assumes IsBounded(A,IntegerOrder) and A 6=0
shows
HasAmaximum(IntegerOrder,A)
HasAminimum(IntegerOrder,A)
Maximum(IntegerOrder,A) ∈ A
Minimum(IntegerOrder,A) ∈ A
∀ x∈A. x ≤ Maximum(IntegerOrder,A)
∀ x∈A. Minimum(IntegerOrder,A) ≤ x
Maximum(IntegerOrder,A) ∈ ZZ
Minimum(IntegerOrder,A) ∈ ZZ
using prems Int_fin_have_max_min Int_bounded_iff_fin
by auto

Nonempty set of integers that is bounded below attains its minimum.

theorem (in int0) int_bounded_below_has_min:
assumes A1: IsBoundedBelow(A,IntegerOrder) and A2: A6=0
shows
HasAminimum(IntegerOrder,A)
Minimum(IntegerOrder,A) ∈ A
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∀ x∈A. Minimum(IntegerOrder,A) ≤ x
proof -

from A1 A2 have
IntegerOrder {is total on} ZZ
trans(IntegerOrder)
IntegerOrder ⊆ ZZ×ZZ
∀ A. IsBounded(A,IntegerOrder) ∧ A6=0 −→ HasAminimum(IntegerOrder,A)
A6=0 IsBoundedBelow(A,IntegerOrder)
using Int_ZF_2_T1 Int_ZF_2_L6 Int_ZF_2_L1B Int_bounded_have_max_min
by auto

then show HasAminimum(IntegerOrder,A)
by (rule Order_ZF_4_L11)

then show
Minimum(IntegerOrder,A) ∈ A
∀ x∈A. Minimum(IntegerOrder,A) ≤ x
using Int_ZF_2_L4 Order_ZF_4_L4 by auto

qed

Nonempty set of integers that is bounded above attains its maximum.

theorem (in int0) int_bounded_above_has_max:
assumes A1: IsBoundedAbove(A,IntegerOrder) and A2: A6=0
shows
HasAmaximum(IntegerOrder,A)
Maximum(IntegerOrder,A) ∈ A
Maximum(IntegerOrder,A) ∈ ZZ
∀ x∈A. x ≤ Maximum(IntegerOrder,A)

proof -
from A1 A2 have
IntegerOrder {is total on} ZZ
trans(IntegerOrder) and
I: IntegerOrder ⊆ ZZ×ZZ and
∀ A. IsBounded(A,IntegerOrder) ∧ A6=0 −→ HasAmaximum(IntegerOrder,A)
A6=0 IsBoundedAbove(A,IntegerOrder)
using Int_ZF_2_T1 Int_ZF_2_L6 Int_ZF_2_L1B Int_bounded_have_max_min
by auto

then show HasAmaximum(IntegerOrder,A)
by (rule Order_ZF_4_L11A)

then show
II: Maximum(IntegerOrder,A) ∈ A and
∀ x∈A. x ≤ Maximum(IntegerOrder,A)
using Int_ZF_2_L4 Order_ZF_4_L3 by auto

from I A1 have A ⊆ ZZ by (rule Order_ZF_3_L1A)
with II show Maximum(IntegerOrder,A) ∈ ZZ by auto

qed

A set defined by separation over a bounded set attains its maximum and
minimum.

lemma (in int0) Int_ZF_1_4_L1:
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assumes A1: IsBounded(A,IntegerOrder) and A2: A6=0
and A3: ∀ q∈ZZ. F(q) ∈ ZZ
and A4: K = {F(q). q ∈ A}
shows
HasAmaximum(IntegerOrder,K)
HasAminimum(IntegerOrder,K)
Maximum(IntegerOrder,K) ∈ K
Minimum(IntegerOrder,K) ∈ K
Maximum(IntegerOrder,K) ∈ ZZ
Minimum(IntegerOrder,K) ∈ ZZ
∀ q∈A. F(q) ≤ Maximum(IntegerOrder,K)
∀ q∈A. Minimum(IntegerOrder,K) ≤ F(q)
IsBounded(K,IntegerOrder)

proof -
from A1 have A ∈ Fin(ZZ) using Int_bounded_iff_fin

by simp
with A3 have {F(q). q ∈ A} ∈ Fin(ZZ)

by (rule Finite1_L6)
with A2 A4 have T1: K ∈ Fin(ZZ) K6=0 by auto
then show T2:
HasAmaximum(IntegerOrder,K)
HasAminimum(IntegerOrder,K)
and Maximum(IntegerOrder,K) ∈ K
Minimum(IntegerOrder,K) ∈ K
Maximum(IntegerOrder,K) ∈ ZZ
Minimum(IntegerOrder,K) ∈ ZZ
using Int_fin_have_max_min by auto

{ fix q assume q∈A
with A4 have F(q) ∈ K by auto
with T1 have
F(q) ≤ Maximum(IntegerOrder,K)
Minimum(IntegerOrder,K) ≤ F(q)
using Int_fin_have_max_min by auto

} then show
∀ q∈A. F(q) ≤ Maximum(IntegerOrder,K)
∀ q∈A. Minimum(IntegerOrder,K) ≤ F(q)

by auto
from T2 show IsBounded(K,IntegerOrder)

using Order_ZF_4_L7 Order_ZF_4_L8A IsBounded_def
by simp

qed

A three element set has a maximume and minimum.

lemma (in int0) Int_ZF_1_4_L1A: assumes A1: a∈ZZ b∈ZZ c∈ZZ
shows
Maximum(IntegerOrder,{a,b,c}) ∈ ZZ
a ≤ Maximum(IntegerOrder,{a,b,c})
b ≤ Maximum(IntegerOrder,{a,b,c})
c ≤ Maximum(IntegerOrder,{a,b,c})
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using prems Int_ZF_2_T1 Finite_ZF_1_L2A by auto

Integer functions attain maxima and minima over intervals.

lemma (in int0) Int_ZF_1_4_L2:
assumes A1: f:ZZ→ZZ and A2: a≤b
shows
maxf(f,a..b) ∈ ZZ
∀ c ∈ a..b. f(c) ≤ maxf(f,a..b)
∃ c ∈ a..b. f(c) = maxf(f,a..b)
minf(f,a..b) ∈ ZZ
∀ c ∈ a..b. minf(f,a..b) ≤ f(c)
∃ c ∈ a..b. f(c) = minf(f,a..b)

proof -
from A2 have T: a∈ZZ b∈ZZ a..b ⊆ ZZ

using Int_ZF_2_L1A Int_ZF_2_L1B Order_ZF_2_L6
by auto

with A1 A2 have
Maximum(IntegerOrder,f(a..b)) ∈ f(a..b)
∀ x∈f(a..b). x ≤ Maximum(IntegerOrder,f(a..b))
Maximum(IntegerOrder,f(a..b)) ∈ ZZ
Minimum(IntegerOrder,f(a..b)) ∈ f(a..b)
∀ x∈f(a..b). Minimum(IntegerOrder,f(a..b)) ≤ x
Minimum(IntegerOrder,f(a..b)) ∈ ZZ
using Int_ZF_4_L8 Int_ZF_2_T1 group3.OrderedGroup_ZF_2_L6
Int_fin_have_max_min by auto

with A1 T show
maxf(f,a..b) ∈ ZZ
∀ c ∈ a..b. f(c) ≤ maxf(f,a..b)
∃ c ∈ a..b. f(c) = maxf(f,a..b)
minf(f,a..b) ∈ ZZ
∀ c ∈ a..b. minf(f,a..b) ≤ f(c)
∃ c ∈ a..b. f(c) = minf(f,a..b)
using func_imagedef by auto

qed

24.5 The set of nonnegative integers

The set of nonnegative integers looks like the set of natural numbers. We
explore that in this section. We also rephrasse some lemmas about the set
of positive integers known from the theory of oredered grups.

The set of positive integers is closed under addition.

lemma (in int0) pos_int_closed_add:
shows ZZ+ {is closed under} IntegerAddition
using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L13 by simp

Text expended version of the fact that the set of positive integers is closed
under addition
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lemma (in int0) pos_int_closed_add_unfolded:
assumes a∈ZZ+ b∈ZZ+ shows a+b ∈ ZZ+

using prems pos_int_closed_add IsOpClosed_def
by simp

ZZ+ is bounded below.

lemma (in int0) Int_ZF_1_5_L1: shows
IsBoundedBelow(ZZ+,IntegerOrder)
IsBoundedBelow(ZZ+,IntegerOrder)
using Nonnegative_def PositiveSet_def IsBoundedBelow_def by auto

Subsets of ZZ+ are bounded below.

lemma (in int0) Int_ZF_1_5_L1A: assumes A1: A ⊆ ZZ+

shows IsBoundedBelow(A,IntegerOrder)
using A1 Int_ZF_1_5_L1 Order_ZF_3_L12 by blast

Subsets of ZZ+ are bounded below.

lemma (in int0) Int_ZF_1_5_L1B: assumes A1: A ⊆ ZZ+

shows IsBoundedBelow(A,IntegerOrder)
using A1 Int_ZF_1_5_L1 Order_ZF_3_L12 by blast

Every nonempty subset of positive integers has a mimimum.

lemma (in int0) Int_ZF_1_5_L1C: assumes A ⊆ ZZ+ and A 6= 0
shows
HasAminimum(IntegerOrder,A)
Minimum(IntegerOrder,A) ∈ A
∀ x∈A. Minimum(IntegerOrder,A) ≤ x
using prems Int_ZF_1_5_L1B int_bounded_below_has_min by auto

Infinite subsets of Z+ do not have a maximum - If A ⊆ Z+ then for every
integer we can find one in the set that is not smaller.

lemma (in int0) Int_ZF_1_5_L2:
assumes A1: A ⊆ ZZ+ and A2: A /∈ Fin(ZZ) and A3: D∈ZZ
shows ∃ n∈A. D≤n

proof -
{ assume ∀ n∈A. ¬(D≤n)

moreover from A1 A3 have D∈ZZ ∀ n∈A. n∈ZZ
using Nonnegative_def by auto

ultimately have ∀ n∈A. n≤D
using Int_ZF_2_L19 by blast

hence ∀ n∈A. 〈n,D〉 ∈ IntegerOrder by simp
then have IsBoundedAbove(A,IntegerOrder)

by (rule Order_ZF_3_L10)
with A1 A2 have False using Int_ZF_1_5_L1A IsBounded_def
Int_bounded_iff_fin by auto

} thus thesis by auto
qed
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Infinite subsets of Z+ do not have a maximum - If A ⊆ Z+ then for every
integer we can find one in the set that is not smaller. This is very similar to
Int_ZF_1_5_L2, except we have ZZ+ instead of ZZ+ here.

lemma (in int0) Int_ZF_1_5_L2A:
assumes A1: A ⊆ ZZ+ and A2: A /∈ Fin(ZZ) and A3: D∈ZZ
shows ∃ n∈A. D≤n

proof -
{ assume ∀ n∈A. ¬(D≤n)

moreover from A1 A3 have D∈ZZ ∀ n∈A. n∈ZZ
using PositiveSet_def by auto

ultimately have ∀ n∈A. n≤D
using Int_ZF_2_L19 by blast

hence ∀ n∈A. 〈n,D〉 ∈ IntegerOrder by simp
then have IsBoundedAbove(A,IntegerOrder)

by (rule Order_ZF_3_L10)
with A1 A2 have False using Int_ZF_1_5_L1B IsBounded_def
Int_bounded_iff_fin by auto

} thus thesis by auto
qed

An integer is either positive, zero, or its opposite is postitive.

lemma (in int0) Int_decomp: assumes m∈ZZ
shows Exactly_1_of_3_holds (m=0,m∈ZZ+,(-m)∈ZZ+)
using prems Int_ZF_2_T1 group3.OrdGroup_decomp
by simp

An integer is zero, positive, or it’s inverse is positive.

lemma (in int0) int_decomp_cases: assumes m∈ZZ
shows m=0 ∨ m∈ZZ+ ∨ (-m) ∈ ZZ+

using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L14
by simp

An integer is in the positive set iff it is greater or equal one.

lemma (in int0) Int_ZF_1_5_L3: shows m∈ZZ+ ←→ 1≤m
proof

assume m∈ZZ+ then have 0≤m m6=0
using PositiveSet_def by auto

then have 0+1 ≤ m
using Int_ZF_4_L1B by auto

then show 1≤m
using int_zero_one_are_int Int_ZF_1_T2 group0.group0_2_L2
by simp

next assume 1≤m
then have m∈ZZ 0≤m m6=0

using Int_ZF_2_L1A Int_ZF_2_L16C by auto
then show m∈ZZ+ using PositiveSet_def by auto

qed

338



The set of positive integers is closed under multiplication. The unfolded
form.

lemma (in int0) pos_int_closed_mul_unfold:
assumes a∈ZZ+ b∈ZZ+

shows a·b ∈ ZZ+

using prems Int_ZF_1_5_L3 Int_ZF_1_3_L3 by simp

The set of positive integers is closed under multiplication.

lemma (in int0) pos_int_closed_mul: shows
ZZ+ {is closed under} IntegerMultiplication
using pos_int_closed_mul_unfold IsOpClosed_def
by simp

It is an overkill to prove that the ring of integers has no zero divisors this
way, but why not?

lemma (in int0) int_has_no_zero_divs:
shows HasNoZeroDivs(ZZ,IntegerAddition,IntegerMultiplication)
using pos_int_closed_mul Int_ZF_1_3_T1 ring1.OrdRing_ZF_3_L3
by simp

Nonnegative integers are positive ones plus zero.

lemma (in int0) Int_ZF_1_5_L3A: shows ZZ+ = ZZ+ ∪ {0}
using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L24 by simp

We can make a function smaller than any constant on a given interval of
positive integers by adding another constant.

lemma (in int0) Int_ZF_1_5_L4:
assumes A1: f:ZZ→ZZ and A2: K∈ZZ N∈ZZ
shows ∃ C∈ZZ. ∀ n∈ZZ+. K ≤ f(n) + C −→ N≤n

proof -
from A2 have N≤1 ∨ 2≤N

using int_zero_one_are_int no_int_between
by simp

moreover
{ assume A3: N≤1

let C = 0
have C ∈ ZZ using int_zero_one_are_int

by simp
moreover
{ fix n assume n∈ZZ+

then have 1 ≤ n using Int_ZF_1_5_L3
by simp

with A3 have N≤n by (rule Int_order_transitive)
} then have ∀ n∈ZZ+. K ≤ f(n) + C −→ N≤n

by auto
ultimately have ∃ C∈ZZ. ∀ n∈ZZ+. K ≤ f(n) + C −→ N≤n

by auto }
moreover
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{ let C = K - 1 - maxf(f,1..(N-1))
assume 2≤N
then have 2-1 ≤ N-1

using int_zero_one_are_int Int_ZF_1_1_L4 int_ord_transl_inv
by simp

then have I: 1 ≤ N-1
using int_zero_one_are_int Int_ZF_1_2_L3 by simp

with A1 A2 have T:
maxf(f,1..(N-1)) ∈ ZZ K-1 ∈ ZZ C ∈ ZZ
using Int_ZF_1_4_L2 Int_ZF_1_1_L5 int_zero_one_are_int
by auto

moreover
{ fix n assume A4: n∈ZZ+

{ assume A5: K ≤ f(n) + C and ¬(N≤n)
with A2 A4 have n ≤ N-1

using PositiveSet_def Int_ZF_1_3_L6A by simp
with A4 have n ∈ 1..(N-1)

using Int_ZF_1_5_L3 Interval_def by auto
with A1 I T have f(n)+C ≤ maxf(f,1..(N-1)) + C

using Int_ZF_1_4_L2 int_ord_transl_inv by simp
with T have f(n)+C ≤ K-1

using Int_ZF_1_2_L3 by simp
with A5 have K ≤ K-1

by (rule Int_order_transitive)
with A2 have False using Int_ZF_1_2_L3AA by simp

} then have K ≤ f(n) + C −→ N≤n
by auto

} then have ∀ n∈ZZ+. K ≤ f(n) + C −→ N≤n
by simp

ultimately have ∃ C∈ZZ. ∀ n∈ZZ+. K ≤ f(n) + C −→ N≤n
by auto }

ultimately show thesis by auto
qed

Absolute value is identity on positive integers.

lemma (in int0) Int_ZF_1_5_L4A:
assumes a∈ZZ+ shows abs(a) = a
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L2B
by simp

One and two are in ZZ+.

lemma (in int0) int_one_two_are_pos: shows 1 ∈ ZZ+ 2 ∈ ZZ+

using int_zero_one_are_int int_ord_is_refl refl_def Int_ZF_1_5_L3
Int_ZF_2_L16B by auto

The image of ZZ+ by a function defined on integers is not empty.

lemma (in int0) Int_ZF_1_5_L5: assumes A1: f : ZZ→X
shows f(ZZ+) 6= 0

proof -
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have ZZ+ ⊆ ZZ using PositiveSet_def by auto
with A1 show f(ZZ+) 6= 0

using int_one_two_are_pos func_imagedef by auto
qed

If n is positive, then n− 1 is nonnegative.

lemma (in int0) Int_ZF_1_5_L6: assumes A1: n ∈ ZZ+

shows
0 ≤ n-1
0 ∈ 0..(n-1)
0..(n-1) ⊆ ZZ

proof -
from A1 have 1 ≤ n (-1) ∈ ZZ

using Int_ZF_1_5_L3 int_zero_one_are_int Int_ZF_1_1_L4
by auto

then have 1-1 ≤ n-1
using int_ord_transl_inv by simp

then show 0 ≤ n-1
using int_zero_one_are_int Int_ZF_1_1_L4 by simp

then show 0 ∈ 0..(n-1)
using int_zero_one_are_int int_ord_is_refl refl_def Order_ZF_2_L1B
by simp

show 0..(n-1) ⊆ ZZ
using Int_ZF_2_L1B Order_ZF_2_L6 by simp

qed

Intgers greater than one in ZZ+ belong to ZZ+. This is a property of ordered
groups and follows from OrderedGroup_ZF_1_L19, but Isabelle’s simplifier has
problems using that result directly, so we reprove it specifically for integers.

lemma (in int0) Int_ZF_1_5_L7: assumes a ∈ ZZ+ and a≤b
shows b ∈ ZZ+

proof-
from prems have 1≤a a≤b

using Int_ZF_1_5_L3 by auto
then have 1≤b by (rule Int_order_transitive)
then show b ∈ ZZ+ using Int_ZF_1_5_L3 by simp

qed

Adding a positive integer increases integers.

lemma (in int0) Int_ZF_1_5_L7A: assumes a∈ZZ b ∈ ZZ+

shows a ≤ a+b a 6= a+b a+b ∈ ZZ
using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L22
by auto

For any integer m the greater of m and 1 is a positive integer that is greater
or equal than m. If we add 1 to it we get a positive integer that is strictly
greater than m.

lemma (in int0) Int_ZF_1_5_L7B: assumes a∈ZZ
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shows
a ≤ GreaterOf(IntegerOrder,1,a)
GreaterOf(IntegerOrder,1,a) ∈ ZZ+

GreaterOf(IntegerOrder,1,a) + 1 ∈ ZZ+

a ≤ GreaterOf(IntegerOrder,1,a) + 1
a 6= GreaterOf(IntegerOrder,1,a) + 1
using prems int_zero_not_one Int_ZF_1_3_T1 ring1.OrdRing_ZF_3_L12
by auto

The opposite of an element of ZZ+ cannot belong to ZZ+.

lemma (in int0) Int_ZF_1_5_L8: assumes a ∈ ZZ+

shows (-a) /∈ ZZ+

using prems Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L20
by simp

For every integer there is one in ZZ+ that is greater or equal.

lemma (in int0) Int_ZF_1_5_L9: assumes a∈ZZ
shows ∃ b∈ZZ+. a≤b
using prems int_not_trivial Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L23
by simp

A theorem about odd extensions. Recall from OrdereGroup_ZF.thy that the
odd extension of an integer function f defined on ZZ+ is the odd function on
ZZ equal to f on ZZ+. First we show that the odd extension is defined on ZZ.

lemma (in int0) Int_ZF_1_5_L10: assumes f : ZZ+→ZZ
shows OddExtension(ZZ,IntegerAddition,IntegerOrder,f) : ZZ→ZZ
using prems Int_ZF_2_T1 group3.odd_ext_props by simp

On ZZ+, the odd extension of f is the same as f .

lemma (in int0) Int_ZF_1_5_L11: assumes f : ZZ+→ZZ and a ∈ ZZ+ and
g = OddExtension(ZZ,IntegerAddition,IntegerOrder,f)
shows g(a) = f(a)
using prems Int_ZF_2_T1 group3.odd_ext_props by simp

On -ZZ+, the value of the odd extension of f is the negative of f(−a).

lemma (in int0) Int_ZF_1_5_L12:
assumes f : ZZ+→ZZ and a ∈ (-ZZ+) and
g = OddExtension(ZZ,IntegerAddition,IntegerOrder,f)
shows g(a) = -(f(-a))
using prems Int_ZF_2_T1 group3.odd_ext_props by simp

Odd extensions are odd on ZZ.

lemma (in int0) int_oddext_is_odd:
assumes f : ZZ+→ZZ and a∈ZZ and
g = OddExtension(ZZ,IntegerAddition,IntegerOrder,f)
shows g(-a) = -(g(a))
using prems Int_ZF_2_T1 group3.oddext_is_odd by simp
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Alternative definition of an odd function.

lemma (in int0) Int_ZF_1_5_L13: assumes A1: f: ZZ→ZZ shows
(∀ a∈ZZ. f(-a) = (-f(a))) ←→ (∀ a∈ZZ. (-(f(-a))) = f(a))
using prems Int_ZF_1_T2 group0.group0_6_L2 by simp

Another way of expressing the fact that odd extensions are odd.

lemma (in int0) int_oddext_is_odd_alt:
assumes f : ZZ+→ZZ and a∈ZZ and
g = OddExtension(ZZ,IntegerAddition,IntegerOrder,f)
shows (-g(-a)) = g(a)
using prems Int_ZF_2_T1 group3.oddext_is_odd_alt by simp

24.6 Functions with infinite limits

In this section we consider functions (integer sequences) that have infinite
limits. An integer function has infinite positive limit if it is arbitrarily large
for large enough arguments. Similarly, a function has infinite negative limit
if it is arbitrarily small for small enough arguments. The material in this
come mostly from the section in OrderedGroup_ZF.thy with he same title.
Here we rewrite the theorems from that section in the notation we use for
integers and add some results specific for the ordered group of integers.

If an image of a set by a function with infinite positive limit is bounded
above, then the set itself is bounded above.

lemma (in int0) Int_ZF_1_6_L1: assumes f: ZZ→ZZ and
∀ a∈ZZ.∃ b∈ZZ+.∀ x. b≤x −→ a ≤ f(x) and A ⊆ ZZ and
IsBoundedAbove(f(A),IntegerOrder)
shows IsBoundedAbove(A,IntegerOrder)
using prems int_not_trivial Int_ZF_2_T1 group3.OrderedGroup_ZF_7_L1
by simp

If an image of a set defined by separation by a function with infinite positive
limit is bounded above, then the set itself is bounded above.

lemma (in int0) Int_ZF_1_6_L2: assumes A1: X6=0 and A2: f: ZZ→ZZ and

A3: ∀ a∈ZZ.∃ b∈ZZ+.∀ x. b≤x −→ a ≤ f(x) and
A4: ∀ x∈X. b(x) ∈ ZZ ∧ f(b(x)) ≤ U
shows ∃ u.∀ x∈X. b(x) ≤ u

proof -
let G = ZZ
let P = IntegerAddition
let r = IntegerOrder
from A1 A2 A3 A4 have
group3(G, P, r)
r {is total on} G
G 6= {TheNeutralElement(G, P)}
X 6=0 f: G→G
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∀ a∈G. ∃ b∈PositiveSet(G, P, r). ∀ y. 〈b, y〉 ∈ r −→ 〈a, f(y)〉 ∈ r
∀ x∈X. b(x) ∈ G ∧ 〈f(b(x)), U〉 ∈ r
using int_not_trivial Int_ZF_2_T1 by auto

then have ∃ u. ∀ x∈X. 〈b(x), u〉 ∈ r by (rule group3.OrderedGroup_ZF_7_L2)
thus thesis by simp

qed

If an image of a set defined by separation by a integer function with infinite
negative limit is bounded below, then the set itself is bounded above. This
is dual to Int_ZF_1_6_L2.

lemma (in int0) Int_ZF_1_6_L3: assumes A1: X6=0 and A2: f: ZZ→ZZ and

A3: ∀ a∈ZZ.∃ b∈ZZ+.∀ y. b≤y −→ f(-y) ≤ a and
A4: ∀ x∈X. b(x) ∈ ZZ ∧ L ≤ f(b(x))
shows ∃ l.∀ x∈X. l ≤ b(x)

proof -
let G = ZZ
let P = IntegerAddition
let r = IntegerOrder
from A1 A2 A3 A4 have
group3(G, P, r)
r {is total on} G
G 6= {TheNeutralElement(G, P)}
X6=0 f: G→G
∀ a∈G. ∃ b∈PositiveSet(G, P, r). ∀ y.
〈b, y〉 ∈ r −→ 〈f(GroupInv(G, P)(y)),a〉 ∈ r
∀ x∈X. b(x) ∈ G ∧ 〈L,f(b(x))〉 ∈ r
using int_not_trivial Int_ZF_2_T1 by auto

then have ∃ l. ∀ x∈X. 〈l, b(x)〉 ∈ r by (rule group3.OrderedGroup_ZF_7_L3)
thus thesis by simp

qed

The next lemma combines Int_ZF_1_6_L2 and Int_ZF_1_6_L3 to show that
if the image of a set defined by separation by a function with infinite limits
is bounded, then the set itself is bounded. The proof again uses directly a
fact from OrderedGroup_ZF.thy.

lemma (in int0) Int_ZF_1_6_L4:
assumes A1: X6=0 and A2: f: ZZ→ZZ and
A3: ∀ a∈ZZ.∃ b∈ZZ+.∀ x. b≤x −→ a ≤ f(x) and
A4: ∀ a∈ZZ.∃ b∈ZZ+.∀ y. b≤y −→ f(-y) ≤ a and
A5: ∀ x∈X. b(x) ∈ ZZ ∧ f(b(x)) ≤ U ∧ L ≤ f(b(x))
shows ∃ M.∀ x∈X. abs(b(x)) ≤ M

proof -
let G = ZZ
let P = IntegerAddition
let r = IntegerOrder
from A1 A2 A3 A4 A5 have
group3(G, P, r)
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r {is total on} G
G 6= {TheNeutralElement(G, P)}
X6=0 f: G→G
∀ a∈G. ∃ b∈PositiveSet(G, P, r). ∀ y. 〈b, y〉 ∈ r −→ 〈a, f(y)〉 ∈ r
∀ a∈G. ∃ b∈PositiveSet(G, P, r). ∀ y.
〈b, y〉 ∈ r −→ 〈f(GroupInv(G, P)(y)),a〉 ∈ r
∀ x∈X. b(x) ∈ G ∧ 〈L,f(b(x))〉 ∈ r ∧ 〈f(b(x)), U〉 ∈ r
using int_not_trivial Int_ZF_2_T1 by auto

then have ∃ M. ∀ x∈X. 〈AbsoluteValue(G, P, r) b(x), M〉 ∈ r
by (rule group3.OrderedGroup_ZF_7_L4)

thus thesis by simp
qed

If a function is larger than some constant for arguments large enough, then
the image of a set that is bounded below is bounded below. This is not true
for ordered groups in general, but only for those for which bounded sets are
finite. This does not require the function to have infinite limit, but such
functions do have this property.

lemma (in int0) Int_ZF_1_6_L5:
assumes A1: f: ZZ→ZZ and A2: N∈ZZ and
A3: ∀ m. N≤m −→ L ≤ f(m) and
A4: IsBoundedBelow(A,IntegerOrder)
shows IsBoundedBelow(f(A),IntegerOrder)

proof -
from A2 A4 have A = {x∈A. x≤N} ∪ {x∈A. N≤x}

using Int_ZF_2_T1 Int_ZF_2_L1C Order_ZF_1_L5
by simp

moreover have
f({x∈A. x≤N} ∪ {x∈A. N≤x}) =
f{x∈A. x≤N} ∪ f{x∈A. N≤x}
by (rule image_Un)

ultimately have f(A) = f{x∈A. x≤N} ∪ f{x∈A. N≤x}
by simp

moreover have IsBoundedBelow(f{x∈A. x≤N},IntegerOrder)
proof -

let B = {x∈A. x≤N}
from A4 have B ∈ Fin(ZZ)

using Order_ZF_3_L16 Int_bounded_iff_fin by auto
with A1 have IsBounded(f(B),IntegerOrder)

using Finite1_L6A Int_bounded_iff_fin by simp
then show IsBoundedBelow(f(B),IntegerOrder)

using IsBounded_def by simp
qed
moreover have IsBoundedBelow(f{x∈A. N≤x},IntegerOrder)
proof -

let C = {x∈A. N≤x}
from A4 have C ⊆ ZZ using Int_ZF_2_L1C by auto
with A1 A3 have ∀ y ∈ f(C). 〈L,y〉 ∈ IntegerOrder

using func_imagedef by simp
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then show IsBoundedBelow(f(C),IntegerOrder)
by (rule Order_ZF_3_L9)

qed
ultimately show IsBoundedBelow(f(A),IntegerOrder)

using Int_ZF_2_T1 Int_ZF_2_L6 Int_ZF_2_L1B Order_ZF_3_L6
by simp

qed

A function that has an infinite limit can be made arbitrarily large on positive
integers by adding a constant. This does not actually require the function
to have infinite limit, just to be larger than a constant for arguments large
enough.

lemma (in int0) Int_ZF_1_6_L6: assumes A1: N∈ZZ and
A2: ∀ m. N≤m −→ L ≤ f(m) and
A3: f: ZZ→ZZ and A4: K∈ZZ
shows ∃ c∈ZZ. ∀ n∈ZZ+. K ≤ f(n)+c

proof -
have IsBoundedBelow(ZZ+,IntegerOrder)

using Int_ZF_1_5_L1 by simp
with A3 A1 A2 have IsBoundedBelow(f(ZZ+),IntegerOrder)

by (rule Int_ZF_1_6_L5)
with A1 obtain l where I: ∀ y∈f(ZZ+). l ≤ y

using Int_ZF_1_5_L5 IsBoundedBelow_def by auto
let c = K-l
from A3 have f(ZZ+) 6= 0 using Int_ZF_1_5_L5

by simp
then have ∃ y. y ∈ f(ZZ+) by (rule nonempty_has_element)
then obtain y where y ∈ f(ZZ+) by auto
with A4 I have T: l ∈ ZZ c ∈ ZZ

using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto
{ fix n assume A5: n∈ZZ+

have ZZ+ ⊆ ZZ using PositiveSet_def by auto
with A3 I T A5 have l + c ≤ f(n) + c

using func_imagedef int_ord_transl_inv by auto
with I T have l + c ≤ f(n) + c
using int_ord_transl_inv by simp

with A4 T have K ≤ f(n) + c
using Int_ZF_1_2_L3 by simp

} then have ∀ n∈ZZ+. K ≤ f(n) + c by simp
with T show thesis by auto

qed

If a function has infinite limit, then we can add such constant such that
minimum of those arguments for which the function (plus the constant) is
larger than another given constant is greater than a third constant. It is not
as complicated as it sounds.

lemma (in int0) Int_ZF_1_6_L7:
assumes A1: f: ZZ→ZZ and A2: K∈ZZ N∈ZZ and
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A3: ∀ a∈ZZ.∃ b∈ZZ+.∀ x. b≤x −→ a ≤ f(x)
shows ∃ C∈ZZ. N ≤ Minimum(IntegerOrder,{n∈ZZ+. K ≤ f(n)+C})

proof -
from A1 A2 have ∃ C∈ZZ. ∀ n∈ZZ+. K ≤ f(n) + C −→ N≤n

using Int_ZF_1_5_L4 by simp
then obtain C where I: C∈ZZ and
II: ∀ n∈ZZ+. K ≤ f(n) + C −→ N≤n
by auto

have antisym(IntegerOrder) using Int_ZF_2_L4 by simp
moreover have HasAminimum(IntegerOrder,{n∈ZZ+. K ≤ f(n)+C})
proof -

from A2 A3 I have ∃ n∈ZZ+.∀ x. n≤x −→ K-C ≤ f(x)
using Int_ZF_1_1_L5 by simp

then obtain n where
n∈ZZ+ and ∀ x. n≤x −→ K-C ≤ f(x)
by auto

with A2 I have
{n∈ZZ+. K ≤ f(n)+C} 6= 0
{n∈ZZ+. K ≤ f(n)+C} ⊆ ZZ+

using int_ord_is_refl refl_def PositiveSet_def Int_ZF_2_L9C
by auto

then show HasAminimum(IntegerOrder,{n∈ZZ+. K ≤ f(n)+C})
using Int_ZF_1_5_L1C by simp

qed
moreover from II have
∀ n ∈ {n∈ZZ+. K ≤ f(n)+C}. 〈N,n〉 ∈ IntegerOrder
by auto

ultimately have
〈N,Minimum(IntegerOrder,{n∈ZZ+. K ≤ f(n)+C})〉 ∈ IntegerOrder
by (rule Order_ZF_4_L12)

with I show thesis by auto
qed

For any integer m the function k 7→ m · k has an infinite limit (or negative
of that). This is why we put some properties of these functions here, even
though they properly belong to a (yet nonexistent) section on homomor-
phisms. The next lemma shows that the set {a · x : x ∈ Z} can finite only
if a = 0.

lemma (in int0) Int_ZF_1_6_L8:
assumes A1: a∈ZZ and A2: {a·x. x∈ZZ} ∈ Fin(ZZ)
shows a = 0

proof -
from A1 have a=0 ∨ (a ≤ -1) ∨ (1≤a)

using Int_ZF_1_3_L6C by simp
moreover
{ assume a ≤ -1

then have {a·x. x∈ZZ} /∈ Fin(ZZ)
using int_zero_not_one Int_ZF_1_3_T1 ring1.OrdRing_ZF_3_L6
by simp
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with A2 have False by simp }
moreover
{ assume 1≤a

then have {a·x. x∈ZZ} /∈ Fin(ZZ)
using int_zero_not_one Int_ZF_1_3_T1 ring1.OrdRing_ZF_3_L5

by simp
with A2 have False by simp }
ultimately show a = 0 by auto

qed

24.7 Miscelaneous

In this section we put some technical lemmas needed in various other places
that are hard to classify.

Suppose we have an integer expression (a meta-function)F such that F (p)|p|
is bounded by a linear function of |p|, that is for some integers A,B we have
F (p)|p| ≤ A|p|+B. We show that F is then bounded. The proof is easy, we
just divide both sides by |p| and take the limit (just kidding).
lemma (in int0) Int_ZF_1_7_L1:

assumes A1: ∀ q∈ZZ. F(q) ∈ ZZ and
A2: ∀ q∈ZZ. F(q)·abs(q) ≤ A·abs(q) + B and
A3: A∈ZZ B∈ZZ
shows ∃ L. ∀ p∈ZZ. F(p) ≤ L

proof -
let I = (-abs(B))..abs(B)
def DefK: K == {F(q). q ∈ I}
let M = Maximum(IntegerOrder,K)
let L = GreaterOf(IntegerOrder,M,A+1)
from A3 A1 DefK have C1:
IsBounded(I,IntegerOrder)
I 6= 0
∀ q∈ZZ. F(q) ∈ ZZ
K = {F(q). q ∈ I}
using Order_ZF_3_L11 Int_ZF_1_3_L17 by auto

then have M ∈ ZZ by (rule Int_ZF_1_4_L1)
with A3 have T1: M ≤ L A+1 ≤ L

using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_1_3_L18
by auto

from C1 have T2: ∀ q∈I. F(q) ≤ M
by (rule Int_ZF_1_4_L1)

{ fix p assume A4: p∈ZZ have F(p) ≤ L
proof (cases abs(p) ≤ abs(B))

assume abs(p) ≤ abs(B)
with A4 T1 T2 have F(p) ≤ M M ≤ L

using Int_ZF_1_3_L19 by auto
then show F(p) ≤ L by (rule Int_order_transitive)

next assume A5: ¬(abs(p) ≤ abs(B))
from A3 A2 A4 have
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A·abs(p) ∈ ZZ F(p)·abs(p) ≤ A·abs(p) + B
using Int_ZF_2_L14 Int_ZF_1_1_L5 by auto

moreover from A3 A4 A5 have B ≤ abs(p)
using Int_ZF_1_3_L15 by simp

ultimately have
F(p)·abs(p) ≤ A·abs(p) + abs(p)
using Int_ZF_2_L15A by blast

with A3 A4 have F(p)·abs(p) ≤ (A+1)·abs(p)
using Int_ZF_2_L14 Int_ZF_1_2_L7 by simp

moreover from A3 A1 A4 A5 have
F(p) ∈ ZZ A+1 ∈ ZZ abs(p) ∈ ZZ
¬(abs(p) ≤ 0)

using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_2_L14 Int_ZF_1_3_L11
by auto

ultimately have F(p) ≤ A+1
using Int_ineq_simpl_positive by simp

moreover from T1 have A+1 ≤ L by simp
ultimately show F(p) ≤ L by (rule Int_order_transitive)

qed
} then have ∀ p∈ZZ. F(p) ≤ L by simp
thus thesis by auto

qed

A lemma about splitting (not really, there is some overlap) the ZZ×ZZ into
six subsets (cases). The subsets are as follows: first and third qaudrant, and
second and fourth quadrant farther split by the b = −a line.

lemma (in int0) int_plane_split_in6: assumes a∈ZZ b∈ZZ
shows
0≤a ∧ 0≤b ∨ a≤0 ∧ b≤0 ∨
a≤0 ∧ 0≤b ∧ 0 ≤ a+b ∨ a≤0 ∧ 0≤b ∧ a+b ≤ 0 ∨
0≤a ∧ b≤0 ∧ 0 ≤ a+b ∨ 0≤a ∧ b≤0 ∧ a+b ≤ 0
using prems Int_ZF_2_T1 group3.OrdGroup_6cases by simp

end
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25 IntDiv ZF.thy

theory IntDiv_ZF imports Int_ZF_1 IntDiv

begin

This theory translates some results form the Isabelle’s IntDiv.thy theory to
the notation used by IsarMathLib.

25.1 Quotient and reminder

For any integers m,n , n > 0 there are unique integers q, p such that 0 ≤
p < n and m = n · q + p. Number p in this decompsition is usually called m
mod n. Standard Isabelle denotes numbers q, p as m zdiv n and m zmod n,
resp., and we will use the same notation.

The next lemma is sometimes called the ”quotient-reminder theorem”.

lemma (in int0) IntDiv_ZF_1_L1: assumes m∈ZZ n∈ZZ
shows m = n·(m zdiv n) + (m zmod n)
using prems Int_ZF_1_L2 raw_zmod_zdiv_equality
by simp

If n > 0 then m zmod n is between 0 and n− 1.

lemma (in int0) IntDiv_ZF_1_L2:
assumes A1: m∈ZZ and A2: 0≤n n6=0
shows
0 ≤ m zmod n
m zmod n ≤ n m zmod n 6= n
m zmod n ≤ n-1

proof -
from A2 have T: n ∈ ZZ

using Int_ZF_2_L1A by simp
from A2 have #0 $< n using Int_ZF_2_L9 Int_ZF_1_L8

by auto
with T show

0 ≤ m zmod n
m zmod n ≤ n
m zmod n 6= n
using pos_mod Int_ZF_1_L8 Int_ZF_1_L8A zmod_type
Int_ZF_2_L1 Int_ZF_2_L9AA

by auto
then show m zmod n ≤ n-1

using Int_ZF_4_L1B by auto
qed

(m · k) div k = m.

lemma (in int0) IntDiv_ZF_1_L3:
assumes m∈ZZ k∈ZZ and k6=0
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shows
(m·k) zdiv k = m
(k·m) zdiv k = m
using prems zdiv_zmult_self1 zdiv_zmult_self2
Int_ZF_1_L8 Int_ZF_1_L2 by auto

The next lemma essentially translates zdiv_mono1 from standard Isabelle to
our notation.

lemma (in int0) IntDiv_ZF_1_L4:
assumes A1: m ≤ k and A2: 0≤n n6=0
shows m zdiv n ≤ k zdiv n

proof -
from A2 have #0 ≤ n #0 6= n

using Int_ZF_1_L8 by auto
with A1 have
m zdiv n $≤ k zdiv n
m zdiv n ∈ ZZ m zdiv k ∈ ZZ
using Int_ZF_2_L1A Int_ZF_2_L9 zdiv_mono1
by auto

then show (m zdiv n) ≤ (k zdiv n)
using Int_ZF_2_L1 by simp

qed

A quotient-reminder theorem about integers greater than a given product.

lemma (in int0) IntDiv_ZF_1_L5:
assumes A1: n ∈ ZZ+ and A2: n ≤ k and A3: k·n ≤ m
shows
m = n·(m zdiv n) + (m zmod n)
m = (m zdiv n)·n + (m zmod n)
(m zmod n) ∈ 0..(n-1)
k ≤ (m zdiv n)
m zdiv n ∈ ZZ+

proof -
from A2 A3 have T:
m∈ZZ n∈ZZ k∈ZZ m zdiv n ∈ ZZ
using Int_ZF_2_L1A by auto

then show m = n·(m zdiv n) + (m zmod n)
using IntDiv_ZF_1_L1 by simp

with T show m = (m zdiv n)·n + (m zmod n)
using Int_ZF_1_L4 by simp

from A1 have I: 0≤n n6=0
using PositiveSet_def by auto

with T show (m zmod n) ∈ 0..(n-1)
using IntDiv_ZF_1_L2 Order_ZF_2_L1
by simp

from A3 I have (k·n zdiv n) ≤ (m zdiv n)
using IntDiv_ZF_1_L4 by simp

with I T show k ≤ (m zdiv n)
using IntDiv_ZF_1_L3 by simp
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with A1 A2 show m zdiv n ∈ ZZ+

using Int_ZF_1_5_L7 by blast
qed

end
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26 Int ZF 2.thy

theory Int_ZF_2 imports Int_ZF_1 IntDiv_ZF Group_ZF_3

begin

In this theory file we consider the properties of integers that are needed for
the real numbers construction in Real_ZF_x.thy series.

26.1 Slopes

In this section we study basic properties of slopes - the integer almost homo-
morphisms. The general definition of an almost homomorphism f on a group
G written in additive notation requires the set {f(m + n) − f(m) − f(n) :
m,n ∈ G} to be finite. In this section we establish a definition that is equiva-
lent for integers: that for all integer m,n we have |f(m+n)−f(m)−f(n)| ≤
L for some L.

First we extend the standard notation for integers with notation related to
slopes. We define slopes as almost homomorphisms on the additive group
of integers. The set of slopes is denoted S. We also define ”positive” slopes
as those that take infinite number of positive values on positive integers.
We write δ(s,m,n) to denote the homomorphism difference of s at m,n (i.e
the expression s(m + n)− s(m)− s(n)). We denote maxδ(s) the maximum
absolute value of homomorphism difference of s as m,n range over integers.
If s is a slope, then the set of homomorphism differences is finite and this
maximum exists. In Group_ZF_3.thy we define the equivalence relation on
almost homomorphisms using the notion of a quotient group relation and use
”≈” to denote it. As here this symbol seems to be hogged by the standard
Isabelle, we will use ”∼” instead ”≈”. We show in this section that s ∼ r iff
for some L we have |s(m) − r(m)| ≤ L for all integer m. The ”+” denotes
the first operation on almost homomorphisms. For slopes this is addition of
functions defined in the natural way. The ”◦” symbol denotes the second
operation on almost homomorphisms (see Group_ZF_3.thy for definition),
defined for the group of integers. In short ”◦” is the composition of slopes.
The ”−1” symbol acts as an infix operator that assigns the value min{n ∈
Z+ : p ≤ f(n)} to a pair (of sets) f and p. In application f represents a
function defined on Z+ and p is a positive integer. We choose this notation
because we use it to construct the right inverse in the ring of classes of
slopes and show that this ring is in fact a field. To study the homomorphism
difference of the function defined by p 7→ f−1(p) we introduce the symbol
ε defined as ε(f, 〈m,n〉) = f−1(m + n) − f−1(m) − f−1(n). Of course the
intention is to use the fact that ε(f, 〈m,n〉) is the homomorphism difference
of the function g defined as g(m) = f−1(m). We also define γ(s,m, n) as
the expression δ(f,m,−n)+ s(0)− δ(f, n,−n). This is useful because of the
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identity f(m−n) = γ(m,n) + f(m)− f(n) that allows to obtain bounds on
the value of a slope at the difference of of two integers. For every integer m
we introduce notation mS defined by mE(n) = m · n. The mapping q 7→ qS

embeds integers into S preserving the order, (that is, maps positive integers
into S+).

locale int1 = int0 +

fixes slopes (S )
defines slopes_def [simp]: S ≡ AlmostHoms(ZZ,IntegerAddition)

fixes posslopes (S+)
defines posslopes_def [simp]: S+ ≡ {s∈S. s(ZZ+) ∩ ZZ+ /∈ Fin(ZZ)}

fixes δ
defines δ_def [simp] : δ(s,m,n) ≡ s(m+n)-s(m)-s(n)

fixes maxhomdiff (maxδ )
defines maxhomdiff_def [simp]:
maxδ(s) ≡ Maximum(IntegerOrder,{abs(δ(s,m,n)). <m,n> ∈ ZZ×ZZ})

fixes AlEqRel
defines AlEqRel_def [simp]:
AlEqRel ≡ QuotientGroupRel(S,AlHomOp1(ZZ,IntegerAddition),FinRangeFunctions(ZZ,ZZ))

fixes AlEq :: [i,i]⇒o (infix ∼ 68)
defines AlEq_def [simp]: s ∼ r ≡ <s,r> ∈ AlEqRel

fixes slope_add (infix + 70)
defines slope_add_def [simp]: s + r ≡ AlHomOp1(ZZ,IntegerAddition)<s,r>

fixes slope_comp (infix ◦ 70)
defines slope_comp_def [simp]: s ◦ r ≡ AlHomOp2(ZZ,IntegerAddition)<s,r>

fixes neg :: i⇒i (-_ [90] 91)
defines neg_def [simp]: -s ≡ GroupInv(ZZ,IntegerAddition) O s

fixes slope_inv (infix −1 71)
defines slope_inv_def [simp]:
f−1(p) ≡ Minimum(IntegerOrder,{n∈ZZ+. p ≤ f(n)})
fixes ε
defines ε_def [simp]:
ε(f,p) ≡ f−1(fst(p)+snd(p)) - f−1(fst(p)) - f−1(snd(p))

fixes γ
defines γ_def [simp]:
γ(s,m,n) ≡ δ(s,m,-n) - δ(s,n,-n) + s(0)

fixes intembed (_S)
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defines intembed_def [simp]: mS ≡ {〈n,m·n〉. n∈ZZ}

We can use theorems proven in the group1 context.
lemma (in int1) Int_ZF_2_1_L1: shows group1(ZZ,IntegerAddition)

using Int_ZF_1_T2 group1_axioms.intro group1_def by simp

Type information related to the homomorphism difference expression.
lemma (in int1) Int_ZF_2_1_L2: assumes f∈S and n∈ZZ m∈ZZ

shows
m+n ∈ ZZ
f(m+n) ∈ ZZ
f(m) ∈ ZZ f(n) ∈ ZZ
f(m) + f(n) ∈ ZZ
HomDiff(ZZ,IntegerAddition,f,<m,n>) ∈ ZZ
using prems Int_ZF_2_1_L1 group1.Group_ZF_3_2_L4A
by auto

Type information related to the homomorphism difference expression.
lemma (in int1) Int_ZF_2_1_L2A:

assumes f:ZZ→ZZ and n∈ZZ m∈ZZ
shows
m+n ∈ ZZ
f(m+n) ∈ ZZ f(m) ∈ ZZ f(n) ∈ ZZ
f(m) + f(n) ∈ ZZ
HomDiff(ZZ,IntegerAddition,f,<m,n>) ∈ ZZ
using prems Int_ZF_2_1_L1 group1.Group_ZF_3_2_L4
by auto

Slopes map integers into integers.
lemma (in int1) Int_ZF_2_1_L2B:

assumes A1: f∈S and A2: m∈ZZ
shows f(m) ∈ ZZ

proof -
from A1 have f:ZZ→ZZ using AlmostHoms_def by simp
with A2 show f(m) ∈ ZZ using apply_funtype by simp

qed

The homomorphism difference in multiplicative notation is defined as the
expression s(m · n) · (s(m) · s(n))−1. The next lemma shows that in the
additive notation used for integers the homomorphism difference is f(m +
n)− f(m)− f(n) which we denote as δ(f,m,n).
lemma (in int1) Int_ZF_2_1_L3:

assumes f:ZZ→ZZ and m∈ZZ n∈ZZ
shows HomDiff(ZZ,IntegerAddition,f,<m,n>) = δ(f,m,n)
using prems Int_ZF_2_1_L2A Int_ZF_1_T2 group0.group0_4_L4A
HomDiff_def by auto

The next formula restates the definition of the homomorphism difference to
express the value an almost homomorphism on a sum.
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lemma (in int1) Int_ZF_2_1_L3A:
assumes A1: f∈S and A2: m∈ZZ n∈ZZ
shows
f(m+n) = f(m)+(f(n)+δ(f,m,n))

proof -
from A1 A2 have
T: f(m)∈ ZZ f(n) ∈ ZZ δ(f,m,n) ∈ ZZ and
HomDiff(ZZ,IntegerAddition,f,<m,n>) = δ(f,m,n)
using Int_ZF_2_1_L2 AlmostHoms_def Int_ZF_2_1_L3 by auto

with A1 A2 show f(m+n) = f(m)+(f(n)+δ(f,m,n))
using Int_ZF_2_1_L3 Int_ZF_1_L3
Int_ZF_2_1_L1 group1.Group_ZF_3_4_L1

by simp
qed

The homomorphism difference of any integer function is integer.

lemma (in int1) Int_ZF_2_1_L3B:
assumes f:ZZ→ZZ and m∈ZZ n∈ZZ
shows δ(f,m,n) ∈ ZZ
using prems Int_ZF_2_1_L2A Int_ZF_2_1_L3 by simp

The value of an integer function at a sum expressed in terms of δ.

lemma (in int1) Int_ZF_2_1_L3C: assumes A1: f:ZZ→ZZ and A2: m∈ZZ n∈ZZ
shows f(m+n) = δ(f,m,n) + f(n) + f(m)

proof -
from A1 A2 have T:

δ(f,m,n) ∈ ZZ f(m+n) ∈ ZZ f(m) ∈ ZZ f(n) ∈ ZZ
using Int_ZF_1_1_L5 apply_funtype by auto

then show f(m+n) = δ(f,m,n) + f(n) + f(m)
using Int_ZF_1_2_L15 by simp

qed

The next lemma presents two ways the set of homomorphism differences can
be written.

lemma (in int1) Int_ZF_2_1_L4: assumes A1: f:ZZ→ZZ
shows {abs(HomDiff(ZZ,IntegerAddition,f,x)). x ∈ ZZ×ZZ} =
{abs(δ(f,m,n)). <m,n> ∈ ZZ×ZZ}

proof -
from A1 have ∀ m∈ZZ. ∀ n∈ZZ.
abs(HomDiff(ZZ,IntegerAddition,f,<m,n>)) = abs(δ(f,m,n))
using Int_ZF_2_1_L3 by simp

then show thesis by (rule ZF1_1_L4A)
qed

If f maps integers into integers and for all m,n ∈ Z we have |f(m + n) −
f(m)− f(n)| ≤ L for some L, then f is a slope.

lemma (in int1) Int_ZF_2_1_L5: assumes A1: f:ZZ→ZZ
and A2: ∀ m∈ZZ.∀ n∈ZZ. abs(δ(f,m,n)) ≤ L
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shows f∈S
proof -

let Abs = AbsoluteValue(ZZ,IntegerAddition,IntegerOrder)
have group3(ZZ,IntegerAddition,IntegerOrder)
IntegerOrder {is total on} ZZ
using Int_ZF_2_T1 by auto

moreover from A1 A2 have
∀ x∈ZZ×ZZ. HomDiff(ZZ,IntegerAddition,f,x) ∈ ZZ ∧
〈Abs(HomDiff(ZZ,IntegerAddition,f,x)),L 〉 ∈ IntegerOrder
using Int_ZF_2_1_L2A Int_ZF_2_1_L3 by auto

ultimately have
IsBounded({HomDiff(ZZ,IntegerAddition,f,x). x∈ZZ×ZZ},IntegerOrder)
by (rule group3.OrderedGroup_ZF_3_L9A)

with A1 show f ∈ S using Int_bounded_iff_fin AlmostHoms_def
by simp

qed

The absolute value of homomorphism difference of a slope s does not exceed
maxδ(s).

lemma (in int1) Int_ZF_2_1_L7:
assumes A1: s∈S and A2: n∈ZZ m∈ZZ
shows
abs(δ(s,m,n)) ≤ maxδ(s)
δ(s,m,n) ∈ ZZ maxδ(s) ∈ ZZ
(-maxδ(s)) ≤ δ(s,m,n)

proof -
from A1 A2 show T: δ(s,m,n) ∈ ZZ

using Int_ZF_2_1_L2 Int_ZF_1_1_L5 by simp
let A = {abs(HomDiff(ZZ,IntegerAddition,s,x)). x∈ZZ×ZZ}
let B = {abs(δ(s,m,n)). <m,n> ∈ ZZ×ZZ}
let d = abs(δ(s,m,n))
have IsLinOrder(ZZ,IntegerOrder) using Int_ZF_2_T1

by simp
moreover have A ∈ Fin(ZZ)
proof -

have ∀ k∈ZZ. abs(k) ∈ ZZ using Int_ZF_2_L14 by simp
moreover from A1 have
{HomDiff(ZZ,IntegerAddition,s,x). x ∈ ZZ×ZZ} ∈ Fin(ZZ)
using AlmostHoms_def by simp

ultimately show A ∈ Fin(ZZ) by (rule Finite1_L6C)
qed
moreover have A 6=0 by auto
ultimately have ∀ k∈A. 〈k,Maximum(IntegerOrder,A)〉 ∈ IntegerOrder

by (rule Finite_ZF_1_T2)
moreover from A1 A2 have d∈A using AlmostHoms_def Int_ZF_2_1_L4

by auto
ultimately have d ≤ Maximum(IntegerOrder,A) by auto
with A1 show d ≤ maxδ(s) maxδ(s) ∈ ZZ

using AlmostHoms_def Int_ZF_2_1_L4 Int_ZF_2_L1A
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by auto
with T show (-maxδ(s)) ≤ δ(s,m,n)

using Int_ZF_1_3_L19 by simp
qed

A useful estimate for the value of a slope at 0, plus some type information
for slopes.

lemma (in int1) Int_ZF_2_1_L8: assumes A1: s∈S
shows
abs(s(0)) ≤ maxδ(s)
0 ≤ maxδ(s)
abs(s(0)) ∈ ZZ maxδ(s) ∈ ZZ
abs(s(0)) + maxδ(s) ∈ ZZ

proof -
from A1 have s(0) ∈ ZZ

using int_zero_one_are_int Int_ZF_2_1_L2B by simp
then have I: 0 ≤ abs(s(0))

and abs(δ(s,0,0)) = abs(s(0))
using int_abs_nonneg int_zero_one_are_int Int_ZF_1_1_L4
Int_ZF_2_L17 by auto

moreover from A1 have abs(δ(s,0,0)) ≤ maxδ(s)
using int_zero_one_are_int Int_ZF_2_1_L7 by simp

ultimately show II: abs(s(0)) ≤ maxδ(s)
by simp

with I show 0≤maxδ(s) by (rule Int_order_transitive)
with II show
maxδ(s) ∈ ZZ abs(s(0)) ∈ ZZ
abs(s(0)) + maxδ(s) ∈ ZZ
using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto

qed

Int Group_ZF_3.thy we show that finite range functions valued in an abelian
group form a normal subgroup of almost homomorphisms. This allows to
define the equivalence relation between almost homomorphisms as the re-
lation resulting from dividing by that normal subgroup. Then we show in
Group_ZF_3_4_L12 that if the difference of f and g has finite range (actually
f(n) · g(n)−1 as we use multiplicative notation in Group_ZF_3.thy), then f
and g are equivalent. The next lemma translates that fact into the notation
used in int1 context.

lemma (in int1) Int_ZF_2_1_L9: assumes A1: s∈S r∈S
and A2: ∀ m∈ZZ. abs(s(m)-r(m)) ≤ L
shows s ∼ r

proof -
from A1 A2 have
∀ m∈ZZ. s(m)-r(m) ∈ ZZ ∧ abs(s(m)-r(m)) ≤ L
using Int_ZF_2_1_L2B Int_ZF_1_1_L5 by simp

then have
IsBounded({s(n)-r(n). n∈ZZ}, IntegerOrder)
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by (rule Int_ZF_1_3_L20)
with A1 show s ∼ r using Int_bounded_iff_fin
Int_ZF_2_1_L1 group1.Group_ZF_3_4_L12 by simp

qed

A neccessary condition for two slopes to be almost equal. For slopes the
definition postulates the set {f(m) − g(m) : m ∈ Z} to be finite. This
lemma shows that this imples that |f(m) − g(m)| is bounded (by some
integer) as m varies over integers. We also mention here that in this context
s ∼ r implies that both s and r are slopes.

lemma (in int1) Int_ZF_2_1_L9A: assumes s ∼ r
shows
∃ L∈ZZ. ∀ m∈ZZ. abs(s(m)-r(m)) ≤ L
s∈S r∈S
using prems Int_ZF_2_1_L1 group1.Group_ZF_3_4_L11
Int_ZF_1_3_L20AA QuotientGroupRel_def by auto

Let’s recall that the relation of almost equality is an equivalence relation on
the set of slopes.

lemma (in int1) Int_ZF_2_1_L9B: shows
AlEqRel ⊆ S×S
equiv(S,AlEqRel)
using Int_ZF_2_1_L1 group1.Group_ZF_3_3_L3 by auto

Another version of sufficient condition for two slopes to be almost equal: if
the difference of two slopes is a finite range function, then they are almost
equal.

lemma (in int1) Int_ZF_2_1_L9C: assumes s∈S r∈S and
s + (-r) ∈ FinRangeFunctions(ZZ,ZZ)
shows
s ∼ r
r ∼ s
using prems Int_ZF_2_1_L1
group1.Group_ZF_3_2_L13 group1.Group_ZF_3_4_L12A

by auto

If two slopes are almost equal, then the difference has finite range. This is
the inverse of Int_ZF_2_1_L9C.

lemma (in int1) Int_ZF_2_1_L9D: assumes A1: s ∼ r
shows s + (-r) ∈ FinRangeFunctions(ZZ,ZZ)

proof -
let G = ZZ
let f = IntegerAddition
from A1 have AlHomOp1(G, f)〈s,GroupInv(AlmostHoms(G, f),AlHomOp1(G,

f))(r)〉
∈ FinRangeFunctions(G, G)
using Int_ZF_2_1_L1 group1.Group_ZF_3_4_L12B by auto
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with A1 show s + (-r) ∈ FinRangeFunctions(ZZ,ZZ)
using Int_ZF_2_1_L9A Int_ZF_2_1_L1 group1.Group_ZF_3_2_L13
by simp

qed

What is the value of a composition of slopes?

lemma (in int1) Int_ZF_2_1_L10:
assumes s∈S r∈S and m∈ZZ
shows (s◦r)(m) = s(r(m)) s(r(m)) ∈ ZZ
using prems Int_ZF_2_1_L1 group1.Group_ZF_3_4_L2 by auto

Composition of slopes is a slope.

lemma (in int1) Int_ZF_2_1_L11:
assumes s∈S r∈S
shows s◦r ∈ S
using prems Int_ZF_2_1_L1 group1.Group_ZF_3_4_T1 by simp

Negative of a slope is a slope.

lemma (in int1) Int_ZF_2_1_L12: assumes s∈S shows -s ∈ S
using prems Int_ZF_1_T2 Int_ZF_2_1_L1 group1.Group_ZF_3_2_L13
by simp

What is the value of a negative of a slope?

lemma (in int1) Int_ZF_2_1_L12A:
assumes s∈S and m∈ZZ shows (-s)(m) = -(s(m))
using prems Int_ZF_2_1_L1 group1.Group_ZF_3_2_L5
by simp

What are the values of a sum of slopes?

lemma (in int1) Int_ZF_2_1_L12B: assumes s∈S r∈S and m∈ZZ
shows (s+r)(m) = s(m) + r(m)
using prems Int_ZF_2_1_L1 group1.Group_ZF_3_2_L12
by simp

Sum of slopes is a slope.

lemma (in int1) Int_ZF_2_1_L12C: assumes s∈S r∈S
shows s+r ∈ S
using prems Int_ZF_2_1_L1 group1.Group_ZF_3_2_L16
by simp

A simple but useful identity.

lemma (in int1) Int_ZF_2_1_L13:
assumes s∈S and n∈ZZ m∈ZZ
shows s(n·m) + (s(m) + δ(s,n·m,m)) = s((n+1)·m)
using prems Int_ZF_1_1_L5 Int_ZF_2_1_L2B Int_ZF_1_2_L9 Int_ZF_1_2_L7
by simp

Some estimates for the absolute value of a slope at the opposite integer.
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lemma (in int1) Int_ZF_2_1_L14: assumes A1: s∈S and A2: m∈ZZ
shows
s(-m) = s(0) - δ(s,m,-m) - s(m)
abs(s(m)+s(-m)) ≤ 2·maxδ(s)
abs(s(-m)) ≤ 2·maxδ(s) + abs(s(m))
s(-m) ≤ abs(s(0)) + maxδ(s) - s(m)

proof -
from A1 A2 have T:
(-m) ∈ ZZ abs(s(m)) ∈ ZZ s(0) ∈ ZZ abs(s(0)) ∈ ZZ
δ(s,m,-m) ∈ ZZ s(m) ∈ ZZ s(-m) ∈ ZZ
(-(s(m))) ∈ ZZ s(0) - δ(s,m,-m) ∈ ZZ
using Int_ZF_1_1_L4 Int_ZF_2_1_L2B Int_ZF_2_L14 Int_ZF_2_1_L2
Int_ZF_1_1_L5 int_zero_one_are_int by auto

with A2 show I: s(-m) = s(0) - δ(s,m,-m) - s(m)
using Int_ZF_1_1_L4 Int_ZF_1_2_L15 by simp

from T have abs(s(0) - δ(s,m,-m)) ≤ abs(s(0)) + abs(δ(s,m,-m))
using Int_triangle_ineq1 by simp

moreover from A1 A2 T have abs(s(0)) + abs(δ(s,m,-m)) ≤ 2·maxδ(s)
using Int_ZF_2_1_L7 Int_ZF_2_1_L8 Int_ZF_1_3_L21 by simp

ultimately have abs(s(0) - δ(s,m,-m)) ≤ 2·maxδ(s)
by (rule Int_order_transitive)

moreover
from I have s(m) + s(-m) = s(m) + (s(0) - δ(s,m,-m) - s(m))

by simp
with T have abs(s(m) + s(-m)) = abs(s(0) - δ(s,m,-m))

using Int_ZF_1_2_L3 by simp
ultimately show abs(s(m)+s(-m)) ≤ 2·maxδ(s)

by simp
from I have abs(s(-m)) = abs(s(0) - δ(s,m,-m) - s(m))

by simp
with T have
abs(s(-m)) ≤ abs(s(0)) + abs(δ(s,m,-m)) + abs(s(m))
using int_triangle_ineq3 by simp

moreover from A1 A2 T have
abs(s(0)) + abs(δ(s,m,-m)) + abs(s(m)) ≤ 2·maxδ(s) + abs(s(m))
using Int_ZF_2_1_L7 Int_ZF_2_1_L8 Int_ZF_1_3_L21 int_ord_transl_inv

by simp
ultimately show abs(s(-m)) ≤ 2·maxδ(s) + abs(s(m))

by (rule Int_order_transitive)
from T have s(0) - δ(s,m,-m) ≤ abs(s(0)) + abs(δ(s,m,-m))

using Int_ZF_2_L15E by simp
moreover from A1 A2 T have
abs(s(0)) + abs(δ(s,m,-m)) ≤ abs(s(0)) + maxδ(s)
using Int_ZF_2_1_L7 int_ord_transl_inv by simp

ultimately have s(0) - δ(s,m,-m) ≤ abs(s(0)) + maxδ(s)
by (rule Int_order_transitive)

with T have
s(0) - δ(s,m,-m) - s(m) ≤ abs(s(0)) + maxδ(s) - s(m)
using int_ord_transl_inv by simp
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with I show s(-m) ≤ abs(s(0)) + maxδ(s) - s(m)
by simp

qed

An identity that expresses the value of an integer function at the opposite
integer in terms of the value of that function at the integer, zero, and the
homomorphism difference. We have a similar identity in Int_ZF_2_1_L14,
but over there we assume that f is a slope.

lemma (in int1) Int_ZF_2_1_L14A: assumes A1: f:ZZ→ZZ and A2: m∈ZZ
shows f(-m) = (-δ(f,m,-m)) + f(0) - f(m)

proof -
from A1 A2 have T:
f(-m) ∈ ZZ δ(f,m,-m) ∈ ZZ f(0) ∈ ZZ f(m) ∈ ZZ
using Int_ZF_1_1_L4 Int_ZF_1_1_L5 int_zero_one_are_int apply_funtype

by auto
with A2 show f(-m) = (-δ(f,m,-m)) + f(0) - f(m)

using Int_ZF_1_1_L4 Int_ZF_1_2_L15 by simp
qed

The next lemma allows to use the expression maxf(f,0..M-1). Recall that
maxf(f,A) is the maximum of (function) f on (the set) A.

lemma (in int1) Int_ZF_2_1_L15:
assumes s∈S and M ∈ ZZ+

shows
maxf(s,0..(M-1)) ∈ ZZ
∀ n ∈ 0..(M-1). s(n) ≤ maxf(s,0..(M-1))
minf(s,0..(M-1)) ∈ ZZ
∀ n ∈ 0..(M-1). minf(s,0..(M-1)) ≤ s(n)
using prems AlmostHoms_def Int_ZF_1_5_L6 Int_ZF_1_4_L2
by auto

A lower estimate for the value of a slope at nM + k.

lemma (in int1) Int_ZF_2_1_L16:
assumes A1: s∈S and A2: m∈ZZ and A3: M ∈ ZZ+ and A4: k ∈ 0..(M-1)
shows s(m·M) + (minf(s,0..(M-1))- maxδ(s)) ≤ s(m·M+k)

proof -
from A3 have 0..(M-1) ⊆ ZZ

using Int_ZF_1_5_L6 by simp
with A1 A2 A3 A4 have T: m·M ∈ ZZ k ∈ ZZ s(m·M) ∈ ZZ

using PositiveSet_def Int_ZF_1_1_L5 Int_ZF_2_1_L2B
by auto

with A1 A3 A4 have
s(m·M) + (minf(s,0..(M-1)) - maxδ(s)) ≤ s(m·M) + (s(k) + δ(s,m·M,k))
using Int_ZF_2_1_L15 Int_ZF_2_1_L7 int_ineq_add_sides int_ord_transl_inv
by simp

with A1 T show thesis using Int_ZF_2_1_L3A by simp
qed
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Identity is a slope.

lemma (in int1) Int_ZF_2_1_L17: shows id(ZZ) ∈ S
using Int_ZF_2_1_L1 group1.Group_ZF_3_4_L15 by simp

Simple identities about (absolute value of) homomorphism differences.

lemma (in int1) Int_ZF_2_1_L18:
assumes A1: f:ZZ→ZZ and A2: m∈ZZ n∈ZZ
shows
abs(f(n) + f(m) - f(m+n)) = abs(δ(f,m,n))
abs(f(m) + f(n) - f(m+n)) = abs(δ(f,m,n))
(-(f(m))) - f(n) + f(m+n) = δ(f,m,n)
(-(f(n))) - f(m) + f(m+n) = δ(f,m,n)
abs((-f(m+n)) + f(m) + f(n)) = abs(δ(f,m,n))

proof -
from A1 A2 have T:
f(m+n) ∈ ZZ f(m) ∈ ZZ f(n) ∈ ZZ
f(m+n) - f(m) - f(n) ∈ ZZ
(-(f(m))) ∈ ZZ
(-f(m+n)) + f(m) + f(n) ∈ ZZ
using apply_funtype Int_ZF_1_1_L4 Int_ZF_1_1_L5 by auto

then have
abs(-(f(m+n) - f(m) - f(n))) = abs(f(m+n) - f(m) - f(n))
using Int_ZF_2_L17 by simp

moreover from T have
(-(f(m+n) - f(m) - f(n))) = f(n) + f(m) - f(m+n)
using Int_ZF_1_2_L9A by simp

ultimately show abs(f(n) + f(m) - f(m+n)) = abs(δ(f,m,n))
by simp

moreover from T have f(n) + f(m) = f(m) + f(n)
using Int_ZF_1_1_L5 by simp

ultimately show abs(f(m) + f(n) - f(m+n)) = abs(δ(f,m,n))
by simp

from T show
(-(f(m))) - f(n) + f(m+n) = δ(f,m,n)
(-(f(n))) - f(m) + f(m+n) = δ(f,m,n)
using Int_ZF_1_2_L9 by auto

from T have
abs((-f(m+n)) + f(m) + f(n)) =
abs(-((-f(m+n)) + f(m) + f(n)))
using Int_ZF_2_L17 by simp

also from T have
abs(-((-f(m+n)) + f(m) + f(n))) = abs(δ(f,m,n))
using Int_ZF_1_2_L9 by simp

finally show abs((-f(m+n)) + f(m) + f(n)) = abs(δ(f,m,n))
by simp

qed

Some identities about the homomorphism difference of odd functions.

lemma (in int1) Int_ZF_2_1_L19:
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assumes A1: f:ZZ→ZZ and A2: ∀ x∈ZZ. (-f(-x)) = f(x)
and A3: m∈ZZ n∈ZZ
shows
abs(δ(f,-m,m+n)) = abs(δ(f,m,n))
abs(δ(f,-n,m+n)) = abs(δ(f,m,n))
δ(f,n,-(m+n)) = δ(f,m,n)
δ(f,m,-(m+n)) = δ(f,m,n)
abs(δ(f,-m,-n)) = abs(δ(f,m,n))

proof -
from A1 A2 A3 show
abs(δ(f,-m,m+n)) = abs(δ(f,m,n))
abs(δ(f,-n,m+n)) = abs(δ(f,m,n))
using Int_ZF_1_2_L3 Int_ZF_2_1_L18 by auto

from A3 have T: m+n ∈ ZZ using Int_ZF_1_1_L5 by simp
from A1 A2 have I: ∀ x∈ZZ. f(-x) = (-f(x))

using Int_ZF_1_5_L13 by simp
with A1 A2 A3 T show

δ(f,n,-(m+n)) = δ(f,m,n)
δ(f,m,-(m+n)) = δ(f,m,n)
using Int_ZF_1_2_L3 Int_ZF_2_1_L18 by auto

from A3 have
abs(δ(f,-m,-n)) = abs(f(-(m+n)) - f(-m) - f(-n))
using Int_ZF_1_1_L5 by simp

also from A1 A2 A3 T I have . . . = abs(δ(f,m,n))
using Int_ZF_2_1_L18 by simp

finally show abs(δ(f,-m,-n)) = abs(δ(f,m,n)) by simp
qed

Recall that f is a slope iff f(m+n)−f(m)−f(n) is bounded as m,n ranges
over integers. The next lemma is the first step in showing that we only need
to check this condition as m,n ranges over positive intergers. Namely we
show that if the condition holds for positive integers, then it holds if one
integer is positive and the second one is nonnegative.

lemma (in int1) Int_ZF_2_1_L20: assumes A1: f:ZZ→ZZ and
A2: ∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(f,a,b)) ≤ L and
A3: m∈ZZ+ n∈ZZ+

shows
0 ≤ L
abs(δ(f,m,n)) ≤ L + abs(f(0))

proof -
from A1 A2 have

δ(f,1,1) ∈ ZZ and abs(δ(f,1,1)) ≤ L
using int_one_two_are_pos PositiveSet_def Int_ZF_2_1_L3B
by auto

then show I: 0 ≤ L using Int_ZF_1_3_L19 by simp
from A1 A3 have T:
n ∈ ZZ f(n) ∈ ZZ f(0) ∈ ZZ
δ(f,m,n) ∈ ZZ abs(δ(f,m,n)) ∈ ZZ
using PositiveSet_def int_zero_one_are_int apply_funtype
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Nonnegative_def Int_ZF_2_1_L3B Int_ZF_2_L14 by auto
from A3 have m=0 ∨ m∈ZZ+ using Int_ZF_1_5_L3A by auto
moreover
{ assume m = 0

with T I have abs(δ(f,m,n)) ≤ L + abs(f(0))
using Int_ZF_1_1_L4 Int_ZF_1_2_L3 Int_ZF_2_L17
int_ord_is_refl refl_def Int_ZF_2_L15F by simp }

moreover
{ assume m∈ZZ+

with A2 A3 T have abs(δ(f,m,n)) ≤ L + abs(f(0))
using int_abs_nonneg Int_ZF_2_L15F by simp }

ultimately show abs(δ(f,m,n)) ≤ L + abs(f(0))
by auto

qed

If the slope condition holds for all pairs of integers such that one integer is
positive and the second one is nonnegative, then it holds when both integers
are nonnegative.

lemma (in int1) Int_ZF_2_1_L21: assumes A1: f:ZZ→ZZ and
A2: ∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(f,a,b)) ≤ L and
A3: n∈ZZ+ m∈ZZ+

shows abs(δ(f,m,n)) ≤ L + abs(f(0))
proof -

from A1 A2 have
δ(f,1,1) ∈ ZZ and abs(δ(f,1,1)) ≤ L
using int_one_two_are_pos PositiveSet_def Nonnegative_def Int_ZF_2_1_L3B
by auto

then have I: 0 ≤ L using Int_ZF_1_3_L19 by simp
from A1 A3 have T:
m ∈ ZZ f(m) ∈ ZZ f(0) ∈ ZZ (-f(0)) ∈ ZZ
δ(f,m,n) ∈ ZZ abs(δ(f,m,n)) ∈ ZZ
using int_zero_one_are_int apply_funtype Nonnegative_def
Int_ZF_2_1_L3B Int_ZF_2_L14 Int_ZF_1_1_L4 by auto

from A3 have n=0 ∨ n∈ZZ+ using Int_ZF_1_5_L3A by auto
moreover
{ assume n=0

with T have δ(f,m,n) = -f(0)
using Int_ZF_1_1_L4 by simp

with T have abs(δ(f,m,n)) = abs(f(0))
using Int_ZF_2_L17 by simp

with T have abs(δ(f,m,n)) ≤ abs(f(0))
using int_ord_is_refl refl_def by simp

with T I have abs(δ(f,m,n)) ≤ L + abs(f(0))
using Int_ZF_2_L15F by simp }

moreover
{ assume n∈ZZ+

with A2 A3 T have abs(δ(f,m,n)) ≤ L + abs(f(0))
using int_abs_nonneg Int_ZF_2_L15F by simp }

ultimately show abs(δ(f,m,n)) ≤ L + abs(f(0))
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by auto
qed

If the homomorphism difference is bounded on ZZ+×ZZ+, then it is bounded
on ZZ+×ZZ+.

lemma (in int1) Int_ZF_2_1_L22: assumes A1: f:ZZ→ZZ and
A2: ∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(f,a,b)) ≤ L
shows ∃ M. ∀ m∈ZZ+. ∀ n∈ZZ+. abs(δ(f,m,n)) ≤ M

proof -
from A1 A2 have
∀ m∈ZZ+. ∀ n∈ZZ+. abs(δ(f,m,n)) ≤ L + abs(f(0)) + abs(f(0))
using Int_ZF_2_1_L20 Int_ZF_2_1_L21 by simp

then show thesis by auto
qed

For odd functions we can do better than in Int_ZF_2_1_L22: if the homomor-
phism difference of f is bounded on ZZ+×ZZ+, then it is bounded on ZZ×ZZ,
hence f is a slope. Loong prof by splitting the ZZ×ZZ into six subsets.

lemma (in int1) Int_ZF_2_1_L23: assumes A1: f:ZZ→ZZ and
A2: ∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(f,a,b)) ≤ L
and A3: ∀ x∈ZZ. (-f(-x)) = f(x)
shows f∈S

proof -
from A1 A2 have
∃ M.∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(f,a,b)) ≤ M
by (rule Int_ZF_2_1_L22)

then obtain M where I: ∀ m∈ZZ+. ∀ n∈ZZ+. abs(δ(f,m,n)) ≤ M
by auto

{ fix a b assume A4: a∈ZZ b∈ZZ
then have

0≤a ∧ 0≤b ∨ a≤0 ∧ b≤0 ∨
a≤0 ∧ 0≤b ∧ 0 ≤ a+b ∨ a≤0 ∧ 0≤b ∧ a+b ≤ 0 ∨
0≤a ∧ b≤0 ∧ 0 ≤ a+b ∨ 0≤a ∧ b≤0 ∧ a+b ≤ 0
using int_plane_split_in6 by simp

moreover
{ assume 0≤a ∧ 0≤b

then have a∈ZZ+ b∈ZZ+

using Int_ZF_2_L16 by auto
with I have abs(δ(f,a,b)) ≤ M by simp }

moreover
{ assume a≤0 ∧ b≤0

with I have abs(δ(f,-a,-b)) ≤ M
using Int_ZF_2_L10A Int_ZF_2_L16 by simp

with A1 A3 A4 have abs(δ(f,a,b)) ≤ M
using Int_ZF_2_1_L19 by simp }

moreover
{ assume a≤0 ∧ 0≤b ∧ 0 ≤ a+b

with I have abs(δ(f,-a,a+b)) ≤ M
using Int_ZF_2_L10A Int_ZF_2_L16 by simp
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with A1 A3 A4 have abs(δ(f,a,b)) ≤ M
using Int_ZF_2_1_L19 by simp }

moreover
{ assume a≤0 ∧ 0≤b ∧ a+b ≤ 0

with I have abs(δ(f,b,-(a+b))) ≤ M
using Int_ZF_2_L10A Int_ZF_2_L16 by simp

with A1 A3 A4 have abs(δ(f,a,b)) ≤ M
using Int_ZF_2_1_L19 by simp }

moreover
{ assume 0≤a ∧ b≤0 ∧ 0 ≤ a+b

with I have abs(δ(f,-b,a+b)) ≤ M
using Int_ZF_2_L10A Int_ZF_2_L16 by simp

with A1 A3 A4 have abs(δ(f,a,b)) ≤ M
using Int_ZF_2_1_L19 by simp }

moreover
{ assume 0≤a ∧ b≤0 ∧ a+b ≤ 0

with I have abs(δ(f,a,-(a+b))) ≤ M
using Int_ZF_2_L10A Int_ZF_2_L16 by simp

with A1 A3 A4 have abs(δ(f,a,b)) ≤ M
using Int_ZF_2_1_L19 by simp }

ultimately have abs(δ(f,a,b)) ≤ M by auto }
then have ∀ m∈ZZ. ∀ n∈ZZ. abs(δ(f,m,n)) ≤ M by simp
with A1 show f∈S by (rule Int_ZF_2_1_L5)

qed

If the homomorphism difference of a function defined on positive integers is
bounded, then the odd extension of this function is a slope.

lemma (in int1) Int_ZF_2_1_L24:
assumes A1: f:ZZ+→ZZ and A2: ∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(f,a,b)) ≤ L
shows OddExtension(ZZ,IntegerAddition,IntegerOrder,f) ∈ S

proof -
let g = OddExtension(ZZ,IntegerAddition,IntegerOrder,f)
from A1 have g : ZZ→ZZ

using Int_ZF_1_5_L10 by simp
moreover have ∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(g,a,b)) ≤ L
proof -

{ fix a b assume A3: a∈ZZ+ b∈ZZ+

with A1 have abs(δ(f,a,b)) = abs(δ(g,a,b))
using pos_int_closed_add_unfolded Int_ZF_1_5_L11
by simp

moreover from A2 A3 have abs(δ(f,a,b)) ≤ L by simp
ultimately have abs(δ(g,a,b)) ≤ L by simp

} then show thesis by simp
qed
moreover from A1 have ∀ x∈ZZ. (-g(-x)) = g(x)

using int_oddext_is_odd_alt by simp
ultimately show g ∈ S by (rule Int_ZF_2_1_L23)

qed
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Type information related to γ.

lemma (in int1) Int_ZF_2_1_L25:
assumes A1: f:ZZ→ZZ and A2: m∈ZZ n∈ZZ
shows
δ(f,m,-n) ∈ ZZ
δ(f,n,-n) ∈ ZZ
(-δ(f,n,-n)) ∈ ZZ
f(0) ∈ ZZ
γ(f,m,n) ∈ ZZ

proof -
from A1 A2 show T1:

δ(f,m,-n) ∈ ZZ f(0) ∈ ZZ
using Int_ZF_1_1_L4 Int_ZF_2_1_L3B int_zero_one_are_int apply_funtype
by auto

from A2 have (-n) ∈ ZZ
using Int_ZF_1_1_L4 by simp

with A1 A2 show δ(f,n,-n) ∈ ZZ
using Int_ZF_2_1_L3B by simp

then show (-δ(f,n,-n)) ∈ ZZ
using Int_ZF_1_1_L4 by simp

with T1 show γ(f,m,n) ∈ ZZ
using Int_ZF_1_1_L5 by simp

qed

A couple of formulae involving f(m− n) and γ(f,m, n).

lemma (in int1) Int_ZF_2_1_L26:
assumes A1: f:ZZ→ZZ and A2: m∈ZZ n∈ZZ
shows
f(m-n) = γ(f,m,n) + f(m) - f(n)
f(m-n) = γ(f,m,n) + (f(m) - f(n))
f(m-n) + (f(n) - γ(f,m,n)) = f(m)

proof -
from A1 A2 have T:
(-n) ∈ ZZ δ(f,m,-n) ∈ ZZ
f(0) ∈ ZZ f(m) ∈ ZZ f(n) ∈ ZZ (-f(n)) ∈ ZZ
(-δ(f,n,-n)) ∈ ZZ
(-δ(f,n,-n)) + f(0) ∈ ZZ
γ(f,m,n) ∈ ZZ
using Int_ZF_1_1_L4 Int_ZF_2_1_L25 apply_funtype Int_ZF_1_1_L5
by auto

with A1 A2 have f(m-n) =
δ(f,m,-n) + ((-δ(f,n,-n)) + f(0) - f(n)) + f(m)
using Int_ZF_2_1_L3C Int_ZF_2_1_L14A by simp

with T have f(m-n) =
δ(f,m,-n) + ((-δ(f,n,-n)) + f(0)) + f(m) - f(n)
using Int_ZF_1_2_L16 by simp

moreover from T have
δ(f,m,-n) + ((-δ(f,n,-n)) + f(0)) = γ(f,m,n)
using Int_ZF_1_1_L7 by simp
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ultimately show I: f(m-n) = γ(f,m,n) + f(m) - f(n)
by simp

then have f(m-n) + (f(n) - γ(f,m,n)) =
(γ(f,m,n) + f(m) - f(n)) + (f(n) - γ(f,m,n))
by simp

moreover from T have . . . = f(m) using Int_ZF_1_2_L18
by simp

ultimately show f(m-n) + (f(n) - γ(f,m,n)) = f(m)
by simp

from T have γ(f,m,n) ∈ ZZ f(m) ∈ ZZ (-f(n)) ∈ ZZ
by auto

then have
γ(f,m,n) + f(m) + (-f(n)) = γ(f,m,n) + (f(m) + (-f(n)))
by (rule Int_ZF_1_1_L7)

with I show f(m-n) = γ(f,m,n) + (f(m) - f(n)) by simp
qed

A formula expressing the difference between f(m−n−k) and f(m)−f(n)−
f(k) in terms of γ.

lemma (in int1) Int_ZF_2_1_L26A:
assumes A1: f:ZZ→ZZ and A2: m∈ZZ n∈ZZ k∈ZZ
shows
f(m-n-k) - (f(m)- f(n) - f(k)) = γ(f,m-n,k) + γ(f,m,n)

proof -
from A1 A2 have
T: m-n ∈ ZZ γ(f,m-n,k) ∈ ZZ f(m) - f(n) - f(k) ∈ ZZ and
T1: γ(f,m,n) ∈ ZZ f(m) - f(n) ∈ ZZ (-f(k)) ∈ ZZ
using Int_ZF_1_1_L4 Int_ZF_1_1_L5 Int_ZF_2_1_L25 apply_funtype
by auto

from A1 A2 have
f(m-n) - f(k) = γ(f,m,n) + (f(m) - f(n)) + (-f(k))
using Int_ZF_2_1_L26 by simp

also from T1 have . . . = γ(f,m,n) + (f(m) - f(n) + (-f(k)))
by (rule Int_ZF_1_1_L7)

finally have
f(m-n) - f(k) = γ(f,m,n) + (f(m) - f(n) - f(k))
by simp

moreover from A1 A2 T have
f(m-n-k) = γ(f,m-n,k) + (f(m-n)-f(k))
using Int_ZF_2_1_L26 by simp

ultimately have
f(m-n-k) - (f(m)- f(n) - f(k)) =
γ(f,m-n,k) + ( γ(f,m,n) + (f(m) - f(n) - f(k)))
- (f(m)- f(n) - f(k))
by simp

with T T1 show thesis
using Int_ZF_1_2_L17 by simp

qed
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If s is a slope, then γ(s,m, n) is uniformly bounded.

lemma (in int1) Int_ZF_2_1_L27: assumes A1: s∈S
shows ∃ L∈ZZ. ∀ m∈ZZ.∀ n∈ZZ. abs(γ(s,m,n)) ≤ L

proof -
let L = maxδ(s) + maxδ(s) + abs(s(0))
from A1 have T:
maxδ(s) ∈ ZZ abs(s(0)) ∈ ZZ L ∈ ZZ
using Int_ZF_2_1_L8 int_zero_one_are_int Int_ZF_2_1_L2B
Int_ZF_2_L14 Int_ZF_1_1_L5 by auto

moreover
{ fix m

fix n
assume A2: m∈ZZ n∈ZZ
with A1 have T:
(-n) ∈ ZZ
δ(s,m,-n) ∈ ZZ
δ(s,n,-n) ∈ ZZ
(-δ(s,n,-n)) ∈ ZZ
s(0) ∈ ZZ abs(s(0)) ∈ ZZ
using Int_ZF_1_1_L4 AlmostHoms_def Int_ZF_2_1_L25 Int_ZF_2_L14
by auto

with T have
abs(δ(s,m,-n) - δ(s,n,-n) + s(0)) ≤
abs(δ(s,m,-n)) + abs(-δ(s,n,-n)) + abs(s(0))
using Int_triangle_ineq3 by simp

moreover from A1 A2 T have
abs(δ(s,m,-n)) + abs(-δ(s,n,-n)) + abs(s(0)) ≤ L
using Int_ZF_2_1_L7 int_ineq_add_sides int_ord_transl_inv Int_ZF_2_L17
by simp

ultimately have abs(δ(s,m,-n) - δ(s,n,-n) + s(0)) ≤ L
by (rule Int_order_transitive)

then have abs(γ(s,m,n)) ≤ L by simp }
ultimately show ∃ L∈ZZ. ∀ m∈ZZ.∀ n∈ZZ. abs(γ(s,m,n)) ≤ L

by auto
qed

If s is a slope, then s(m) ≤ s(m− 1) + M , where L does not depend on m.

lemma (in int1) Int_ZF_2_1_L28: assumes A1: s∈S
shows ∃ M∈ZZ. ∀ m∈ZZ. s(m) ≤ s(m-1) + M

proof -
from A1 have
∃ L∈ZZ. ∀ m∈ZZ.∀ n∈ZZ.abs(γ(s,m,n)) ≤ L
using Int_ZF_2_1_L27 by simp

then obtain L where T: L∈ZZ and ∀ m∈ZZ.∀ n∈ZZ.abs(γ(s,m,n)) ≤ L
using Int_ZF_2_1_L27 by auto

then have I: ∀ m∈ZZ.abs(γ(s,m,1)) ≤ L
using int_zero_one_are_int by simp

let M = s(1) + L
from A1 T have M ∈ ZZ
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using int_zero_one_are_int Int_ZF_2_1_L2B Int_ZF_1_1_L5
by simp

moreover
{ fix m assume A2: m∈ZZ

with A1 have
T1: s:ZZ→ZZ m∈ZZ 1∈ZZ and
T2: γ(s,m,1) ∈ ZZ s(1) ∈ ZZ
using int_zero_one_are_int AlmostHoms_def
Int_ZF_2_1_L25 by auto

from A2 T1 have T3: s(m-1) ∈ ZZ
using Int_ZF_1_1_L5 apply_funtype by simp

from I A2 T2 have
(-γ(s,m,1)) ≤ abs(γ(s,m,1))
abs(γ(s,m,1)) ≤ L
using Int_ZF_2_L19C by auto

then have (-γ(s,m,1)) ≤ L
by (rule Int_order_transitive)

with T2 T3 have
s(m-1) + (s(1) - γ(s,m,1)) ≤ s(m-1) + M
using int_ord_transl_inv by simp

moreover from T1 have
s(m-1) + (s(1) - γ(s,m,1)) = s(m)
by (rule Int_ZF_2_1_L26)

ultimately have s(m) ≤ s(m-1) + M by simp }
ultimately show ∃ M∈ZZ. ∀ m∈ZZ. s(m) ≤ s(m-1) + M

by auto
qed

If s is a slope, then the difference between s(m−n−k) and s(m)−s(n)−s(k)
is uniformly bounded.

lemma (in int1) Int_ZF_2_1_L29: assumes A1: s∈S
shows
∃ M∈ZZ. ∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. abs(s(m-n-k) - (s(m)-s(n)-s(k))) ≤M

proof -
from A1 have ∃ L∈ZZ. ∀ m∈ZZ.∀ n∈ZZ. abs(γ(s,m,n)) ≤ L

using Int_ZF_2_1_L27 by simp
then obtain L where I: L∈ZZ and
II: ∀ m∈ZZ.∀ n∈ZZ. abs(γ(s,m,n)) ≤ L
by auto

from I have L+L ∈ ZZ
using Int_ZF_1_1_L5 by simp

moreover
{ fix m n k assume A2: m∈ZZ n∈ZZ k∈ZZ

with A1 have T:
m-n ∈ ZZ γ(s,m-n,k) ∈ ZZ γ(s,m,n) ∈ ZZ
using Int_ZF_1_1_L5 AlmostHoms_def Int_ZF_2_1_L25
by auto

then have
I: abs(γ(s,m-n,k) + γ(s,m,n)) ≤ abs(γ(s,m-n,k)) + abs(γ(s,m,n))
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using Int_triangle_ineq by simp
from II A2 T have
abs(γ(s,m-n,k)) ≤ L
abs(γ(s,m,n)) ≤ L
by auto

then have abs(γ(s,m-n,k)) + abs(γ(s,m,n)) ≤ L+L
using int_ineq_add_sides by simp

with I have abs(γ(s,m-n,k) + γ(s,m,n)) ≤ L+L
by (rule Int_order_transitive)

moreover from A1 A2 have
s(m-n-k) - (s(m)- s(n) - s(k)) = γ(s,m-n,k) + γ(s,m,n)
using AlmostHoms_def Int_ZF_2_1_L26A by simp

ultimately have
abs(s(m-n-k) - (s(m)- s(n) - s(k))) ≤ L+L
by simp }

ultimately show thesis by auto
qed

If s is a slope, then we can find integers M,K such that s(m − n − k) ≤
s(m)− s(n)− s(k) + M and s(m)− s(n)− s(k) + K ≤ s(m− n− k), for all
integer m,n, k.

lemma (in int1) Int_ZF_2_1_L30: assumes A1: s∈S
shows
∃ M∈ZZ. ∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. s(m-n-k) ≤ s(m)-s(n)-s(k)+M
∃ K∈ZZ. ∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. s(m)-s(n)-s(k)+K ≤ s(m-n-k)

proof -
from A1 have
∃ M∈ZZ. ∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. abs(s(m-n-k) - (s(m)-s(n)-s(k))) ≤M
using Int_ZF_2_1_L29 by simp

then obtain M where I: M∈ZZ and II:
∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. abs(s(m-n-k) - (s(m)-s(n)-s(k))) ≤M
by auto

from I have III: (-M) ∈ ZZ using Int_ZF_1_1_L4 by simp
{ fix m n k assume A2: m∈ZZ n∈ZZ k∈ZZ

with A1 have s(m-n-k) ∈ ZZ and s(m)-s(n)-s(k) ∈ ZZ
using Int_ZF_1_1_L5 Int_ZF_2_1_L2B by auto

moreover from II A2 have
abs(s(m-n-k) - (s(m)-s(n)-s(k))) ≤M
by simp

ultimately have
s(m-n-k) ≤ s(m)-s(n)-s(k)+M ∧
s(m)-s(n)-s(k) - M ≤ s(m-n-k)
using Int_triangle_ineq2 by simp

} then have
∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. s(m-n-k) ≤ s(m)-s(n)-s(k)+M
∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. s(m)-s(n)-s(k) - M ≤ s(m-n-k)

by auto
with I III show
∃ M∈ZZ. ∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. s(m-n-k) ≤ s(m)-s(n)-s(k)+M
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∃ K∈ZZ. ∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. s(m)-s(n)-s(k)+K ≤ s(m-n-k)
by auto

qed

By definition functions f, g are almost equal if f − g* is bounded. In the
next lemma we show it is sufficient to check the boundedness on positive
integers.

lemma (in int1) Int_ZF_2_1_L31: assumes A1: s∈S r∈S
and A2: ∀ m∈ZZ+. abs(s(m)-r(m)) ≤ L
shows s ∼ r

proof -
let a = abs(s(0) - r(0))
let c = 2·maxδ(s) + 2·maxδ(r) + L
let M = Maximum(IntegerOrder,{a,L,c})
from A2 have abs(s(1)-r(1)) ≤ L

using int_one_two_are_pos by simp
then have T: L∈ZZ using Int_ZF_2_L1A by simp
moreover from A1 have a ∈ ZZ

using int_zero_one_are_int Int_ZF_2_1_L2B
Int_ZF_1_1_L5 Int_ZF_2_L14 by simp

moreover from A1 T have c ∈ ZZ
using Int_ZF_2_1_L8 int_two_three_are_int Int_ZF_1_1_L5
by simp

ultimately have
I: a ≤ M and
II: L ≤ M and
III: c ≤ M
using Int_ZF_1_4_L1A by auto

{ fix m assume A5: m∈ZZ
with A1 have T:
s(m) ∈ ZZ r(m) ∈ ZZ s(m) - r(m) ∈ ZZ
s(-m) ∈ ZZ r(-m) ∈ ZZ
using Int_ZF_2_1_L2B Int_ZF_1_1_L4 Int_ZF_1_1_L5
by auto

from A5 have m=0 ∨ m∈ZZ+ ∨ (-m) ∈ ZZ+

using int_decomp_cases by simp
moreover
{ assume m=0

with I have abs(s(m) - r(m)) ≤ M
by simp }

moreover
{ assume m∈ZZ+

with A2 II have
abs(s(m)-r(m)) ≤ L and L≤M
by auto

then have abs(s(m)-r(m)) ≤ M
by (rule Int_order_transitive) }

moreover
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{ assume A6: (-m) ∈ ZZ+

from T have abs(s(m)-r(m)) ≤
abs(s(m)+s(-m)) + abs(r(m)+r(-m)) + abs(s(-m)-r(-m))
using Int_ZF_1_3_L22A by simp

moreover
from A1 A2 III A5 A6 have
abs(s(m)+s(-m)) + abs(r(m)+r(-m)) + abs(s(-m)-r(-m)) ≤ c
c ≤ M
using Int_ZF_2_1_L14 int_ineq_add_sides by auto

then have
abs(s(m)+s(-m)) + abs(r(m)+r(-m)) + abs(s(-m)-r(-m)) ≤ M
by (rule Int_order_transitive)

ultimately have abs(s(m)-r(m)) ≤ M
by (rule Int_order_transitive) }

ultimately have abs(s(m) - r(m)) ≤ M
by auto

} then have ∀ m∈ZZ. abs(s(m)-r(m)) ≤ M
by simp

with A1 show s ∼ r by (rule Int_ZF_2_1_L9)
qed

A sufficient condition for an odd slope to be almost equal to identity: If for
all positive integers the value of the slope at m is between m and m plus
some constant independent of m, then the slope is almost identity.

lemma (in int1) Int_ZF_2_1_L32: assumes A1: s∈S M∈ZZ
and A2: ∀ m∈ZZ+. m ≤ s(m) ∧ s(m) ≤ m+M
shows s ∼ id(ZZ)

proof -
let r = id(ZZ)
from A1 have s∈S r ∈ S

using Int_ZF_2_1_L17 by auto
moreover from A1 A2 have ∀ m∈ZZ+. abs(s(m)-r(m)) ≤ M

using Int_ZF_1_3_L23 PositiveSet_def id_conv by simp
ultimately show s ∼ id(ZZ) by (rule Int_ZF_2_1_L31)

qed

A lemma about adding a constant to slopes. This is actually proven in
Group_ZF_3_5_L1, in Group_ZF_3.thy here we just refer to that lemma to
show it in notation used for integers. Unfortunately we have to use raw set
notation in the proof.

lemma (in int1) Int_ZF_2_1_L33:
assumes A1: s∈S and A2: c∈ZZ and
A3: r = {〈m,s(m)+c〉. m∈ZZ}
shows
∀ m∈ZZ. r(m) = s(m)+c
r∈S
s ∼ r

proof -
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let G = ZZ
let f = IntegerAddition
let AH = AlmostHoms(G, f)
from prems have I:
group1(G, f)
s ∈ AlmostHoms(G, f)
c ∈ G
r = {〈x, f〈s(x), c〉〉 . x ∈ G}
using Int_ZF_2_1_L1 by auto

then have ∀ x∈G. r(x) = f〈s(x),c〉
by (rule group1.Group_ZF_3_5_L1)

moreover from I have r ∈ AlmostHoms(G, f)
by (rule group1.Group_ZF_3_5_L1)

moreover from I have
〈s, r〉 ∈ QuotientGroupRel(AlmostHoms(G, f), AlHomOp1(G, f), FinRangeFunctions(G,

G))
by (rule group1.Group_ZF_3_5_L1)

ultimately show
∀ m∈ZZ. r(m) = s(m)+c
r∈S
s ∼ r
by auto

qed

26.2 Composing slopes

Composition of slopes is not commutative. However, as we show in this
section if f and g are slopes then the range of f ◦ g− g ◦ f is bounded. This
allows to show that the multiplication of real numbers is commutative.

Two useful estimates.

lemma (in int1) Int_ZF_2_2_L1:
assumes A1: f:ZZ→ZZ and A2: p∈ZZ q∈ZZ
shows
abs(f((p+1)·q)-(p+1)·f(q)) ≤ abs(δ(f,p·q,q))+abs(f(p·q)-p·f(q))
abs(f((p-1)·q)-(p-1)·f(q)) ≤ abs(δ(f,(p-1)·q,q))+abs(f(p·q)-p·f(q))

proof -
let R = ZZ
let A = IntegerAddition
let M = IntegerMultiplication
let I = GroupInv(R, A)
let a = f((p+1)·q)
let b = p
let c = f(q)
let d = f(p·q)
from A1 A2 have T1:
ring0(R, A, M) a ∈ R b ∈ R c ∈ R d ∈ R
using Int_ZF_1_1_L2 int_zero_one_are_int Int_ZF_1_1_L5 apply_funtype
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by auto
then have
A〈a,I(M〈A〈b, TheNeutralElement(R, M)〉,c〉)〉 =
A〈A〈A〈a,I(d)〉,I(c)〉,A〈d, I(M〈b, c〉)〉〉
by (rule ring0.Ring_ZF_2_L2)

with A2 have
f((p+1)·q)-(p+1)·f(q) = δ(f,p·q,q)+(f(p·q)-p·f(q))
using int_zero_one_are_int Int_ZF_1_1_L1 Int_ZF_1_1_L4 by simp

moreover from A1 A2 T1 have δ(f,p·q,q) ∈ ZZ f(p·q)-p·f(q) ∈ ZZ
using Int_ZF_1_1_L5 apply_funtype by auto

ultimately show
abs(f((p+1)·q)-(p+1)·f(q)) ≤ abs(δ(f,p·q,q))+abs(f(p·q)-p·f(q))
using Int_triangle_ineq by simp

from A1 A2 have T1:
f((p-1)·q) ∈ ZZ p∈ZZ f(q) ∈ ZZ f(p·q) ∈ ZZ
using int_zero_one_are_int Int_ZF_1_1_L5 apply_funtype by auto

then have
f((p-1)·q)-(p-1)·f(q) = (f(p·q)-p·f(q))-(f(p·q)-f((p-1)·q)-f(q))
by (rule Int_ZF_1_2_L6)

with A2 have f((p-1)·q)-(p-1)·f(q) = (f(p·q)-p·f(q))-δ(f,(p-1)·q,q)
using Int_ZF_1_2_L7 by simp

moreover from A1 A2 have
f(p·q)-p·f(q) ∈ ZZ δ(f,(p-1)·q,q) ∈ ZZ
using Int_ZF_1_1_L5 int_zero_one_are_int apply_funtype by auto

ultimately show
abs(f((p-1)·q)-(p-1)·f(q)) ≤ abs(δ(f,(p-1)·q,q))+abs(f(p·q)-p·f(q))
using Int_triangle_ineq1 by simp

qed

If f is a slope, then |f(p · q)− p · f(q)| ≤ (|p|+ 1)·maxδ(f). The proof is by
induction on p and the next lemma is the induction step for the case when
0 ≤ p.

lemma (in int1) Int_ZF_2_2_L2:
assumes A1: f∈S and A2: 0≤p q∈ZZ
and A3: abs(f(p·q)-p·f(q)) ≤ (abs(p)+1)·maxδ(f)
shows
abs(f((p+1)·q)-(p+1)·f(q)) ≤ (abs(p+1)+ 1)·maxδ(f)

proof -
from A2 have q∈ZZ p·q ∈ ZZ

using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto
with A1 have I: abs(δ(f,p·q,q)) ≤ maxδ(f) by (rule Int_ZF_2_1_L7)
moreover from A3 have abs(f(p·q)-p·f(q)) ≤ (abs(p)+1)·maxδ(f) .
moreover from A1 A2 have
abs(f((p+1)·q)-(p+1)·f(q)) ≤ abs(δ(f,p·q,q))+abs(f(p·q)-p·f(q))
using AlmostHoms_def Int_ZF_2_L1A Int_ZF_2_2_L1 by simp

ultimately have
abs(f((p+1)·q)-(p+1)·f(q)) ≤ maxδ(f)+(abs(p)+1)·maxδ(f)
by (rule Int_ZF_2_L15)

moreover from I A2 have
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maxδ(f)+(abs(p)+1)·maxδ(f) = (abs(p+1)+ 1)·maxδ(f)
using Int_ZF_2_L1A Int_ZF_1_2_L2 by simp

ultimately show
abs(f((p+1)·q)-(p+1)·f(q)) ≤ (abs(p+1)+ 1)·maxδ(f)
by simp

qed

If f is a slope, then |f(p · q) − p · f(q)| ≤ (|p| + 1)·maxδ. The proof is by
induction on p and the next lemma is the induction step for the case when
p ≤ 0.

lemma (in int1) Int_ZF_2_2_L3:
assumes A1: f∈S and A2: p≤0 q∈ZZ
and A3: abs(f(p·q)-p·f(q)) ≤ (abs(p)+1)·maxδ(f)
shows abs(f((p-1)·q)-(p-1)·f(q)) ≤ (abs(p-1)+ 1)·maxδ(f)

proof -
from A2 have q∈ZZ (p-1)·q ∈ ZZ

using Int_ZF_2_L1A int_zero_one_are_int Int_ZF_1_1_L5 by auto
with A1 have I: abs(δ(f,(p-1)·q,q)) ≤ maxδ(f) by (rule Int_ZF_2_1_L7)
moreover from A3 have abs(f(p·q)-p·f(q)) ≤ (abs(p)+1)·maxδ(f) .
moreover from A1 A2 have
abs(f((p-1)·q)-(p-1)·f(q)) ≤ abs(δ(f,(p-1)·q,q))+abs(f(p·q)-p·f(q))
using AlmostHoms_def Int_ZF_2_L1A Int_ZF_2_2_L1 by simp

ultimately have
abs(f((p-1)·q)-(p-1)·f(q)) ≤ maxδ(f)+(abs(p)+1)·maxδ(f)
by (rule Int_ZF_2_L15)

with I A2 show thesis using Int_ZF_2_L1A Int_ZF_1_2_L5 by simp
qed

If f is a slope, then |f(p · q)− p · f(q)| ≤ (|p|+ 1)·maxδ(f).

lemma (in int1) Int_ZF_2_2_L4:
assumes A1: f∈S and A2: p∈ZZ q∈ZZ
shows abs(f(p·q)-p·f(q)) ≤ (abs(p)+1)·maxδ(f)

proof (cases 0≤p)
assume 0≤p
moreover from A1 A2 have abs(f(0·q)-0·f(q)) ≤ (abs(0)+1)·maxδ(f)

using int_zero_one_are_int Int_ZF_2_1_L2B Int_ZF_1_1_L4
Int_ZF_2_1_L8 Int_ZF_2_L18 by simp

moreover from A1 A2 have
∀ p. 0≤p ∧ abs(f(p·q)-p·f(q)) ≤ (abs(p)+1)·maxδ(f) −→
abs(f((p+1)·q)-(p+1)·f(q)) ≤ (abs(p+1)+ 1)·maxδ(f)
using Int_ZF_2_2_L2 by simp

ultimately show abs(f(p·q)-p·f(q)) ≤ (abs(p)+1)·maxδ(f)
by (rule Induction_on_int)

next assume ¬(0≤p)
with A2 have p≤0 using Int_ZF_2_L19A by simp
moreover from A1 A2 have abs(f(0·q)-0·f(q)) ≤ (abs(0)+1)·maxδ(f)

using int_zero_one_are_int Int_ZF_2_1_L2B Int_ZF_1_1_L4
Int_ZF_2_1_L8 Int_ZF_2_L18 by simp

moreover from A1 A2 have
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∀ p. p≤0 ∧ abs(f(p·q)-p·f(q)) ≤ (abs(p)+1)·maxδ(f) −→
abs(f((p-1)·q)-(p-1)·f(q)) ≤ (abs(p-1)+ 1)·maxδ(f)
using Int_ZF_2_2_L3 by simp

ultimately show abs(f(p·q)-p·f(q)) ≤ (abs(p)+1)·maxδ(f)
by (rule Back_induct_on_int)

qed

The next elegant result is Lemma 7 in the Arthan’s paper [2] .

lemma (in int1) Arthan_Lem_7:
assumes A1: f∈S and A2: p∈ZZ q∈ZZ
shows abs(q·f(p)-p·f(q)) ≤ (abs(p)+abs(q)+2)·maxδ(f)

proof -
from A1 A2 have T:
q·f(p)-f(p·q) ∈ ZZ
f(p·q)-p·f(q) ∈ ZZ
f(q·p) ∈ ZZ f(p·q) ∈ ZZ
q·f(p) ∈ ZZ p·f(q) ∈ ZZ
maxδ(f) ∈ ZZ
abs(q) ∈ ZZ abs(p) ∈ ZZ
using Int_ZF_1_1_L5 Int_ZF_2_1_L2B Int_ZF_2_1_L7 Int_ZF_2_L14 by auto

moreover have abs(q·f(p)-f(p·q)) ≤ (abs(q)+1)·maxδ(f)
proof -

from A1 A2 have abs(f(q·p)-q·f(p)) ≤ (abs(q)+1)·maxδ(f)
using Int_ZF_2_2_L4 by simp

with T A2 show thesis
using Int_ZF_2_L20 Int_ZF_1_1_L5 by simp

qed
moreover from A1 A2 have abs(f(p·q)-p·f(q)) ≤ (abs(p)+1)·maxδ(f)

using Int_ZF_2_2_L4 by simp
ultimately have
abs(q·f(p)-f(p·q)+(f(p·q)-p·f(q))) ≤ (abs(q)+1)·maxδ(f)+(abs(p)+1)·maxδ(f)
using Int_ZF_2_L21 by simp

with T show thesis using Int_ZF_1_2_L9 int_zero_one_are_int Int_ZF_1_2_L10
by simp

qed

This is Lemma 8 in the Arthan’s paper.

lemma (in int1) Arthan_Lem_8: assumes A1: f∈S
shows ∃ A B. A∈ZZ ∧ B∈ZZ ∧ (∀ p∈ZZ. abs(f(p)) ≤ A·abs(p)+B)

proof -
let A = maxδ(f) + abs(f(1))
let B = 3·maxδ(f)
from A1 have A∈ZZ B∈ZZ

using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_2_1_L2B
Int_ZF_2_1_L7 Int_ZF_2_L14 by auto

moreover have ∀ p∈ZZ. abs(f(p)) ≤ A·abs(p)+B
proof

fix p assume A2: p∈ZZ
with A1 have T:
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f(p) ∈ ZZ abs(p) ∈ ZZ f(1) ∈ ZZ
p·f(1) ∈ ZZ 3∈ZZ maxδ(f) ∈ ZZ
using Int_ZF_2_1_L2B Int_ZF_2_L14 int_zero_one_are_int
Int_ZF_1_1_L5 Int_ZF_2_1_L7 by auto

from A1 A2 have
abs(1·f(p)-p·f(1)) ≤ (abs(p)+abs(1)+2)·maxδ(f)
using int_zero_one_are_int Arthan_Lem_7 by simp

with T have abs(f(p)) ≤ abs(p·f(1))+(abs(p)+3)·maxδ(f)
using Int_ZF_2_L16A Int_ZF_1_1_L4 Int_ZF_1_2_L11
Int_triangle_ineq2 by simp

with A2 T show abs(f(p)) ≤ A·abs(p)+B
using Int_ZF_1_3_L14 by simp

qed
ultimately show thesis by auto

qed

If f and g are slopes, then f ◦ g is equivalent (almost equal) to g ◦ f . This
is Theorem 9 in Arthan’s paper [2] .

theorem (in int1) Arthan_Th_9: assumes A1: f∈S g∈S
shows f◦g ∼ g◦f

proof -
from A1 have
∃ A B. A∈ZZ ∧ B∈ZZ ∧ (∀ p∈ZZ. abs(f(p)) ≤ A·abs(p)+B)
∃ C D. C∈ZZ ∧ D∈ZZ ∧ (∀ p∈ZZ. abs(g(p)) ≤ C·abs(p)+D)
using Arthan_Lem_8 by auto

then obtain A B C D where D1: A∈ZZ B∈ZZ C∈ZZ D∈ZZ and D2:
∀ p∈ZZ. abs(f(p)) ≤ A·abs(p)+B
∀ p∈ZZ. abs(g(p)) ≤ C·abs(p)+D
by auto

let E = maxδ(g)·(A+1) + maxδ(f)·(C+1)
let F = (B·maxδ(g) + 2·maxδ(g)) + (D·maxδ(f) + 2·maxδ(f))

{ fix p assume A2: p∈ZZ
with A1 have T1:
g(p) ∈ ZZ f(p) ∈ ZZ abs(p) ∈ ZZ 2 ∈ ZZ
f(g(p)) ∈ ZZ g(f(p)) ∈ ZZ f(g(p)) - g(f(p)) ∈ ZZ
p·f(g(p)) ∈ ZZ p·g(f(p)) ∈ ZZ
abs(f(g(p))-g(f(p))) ∈ ZZ
using Int_ZF_2_1_L2B Int_ZF_2_1_L10 Int_ZF_1_1_L5 Int_ZF_2_L14 int_two_three_are_int
by auto

with A1 A2 have
abs((f(g(p))-g(f(p)))·p) ≤
(abs(p)+abs(f(p))+2)·maxδ(g) + (abs(p)+abs(g(p))+2)·maxδ(f)
using Arthan_Lem_7 Int_ZF_1_2_L10A Int_ZF_1_2_L12 by simp

moreover have
(abs(p)+abs(f(p))+2)·maxδ(g) + (abs(p)+abs(g(p))+2)·maxδ(f) ≤
((maxδ(g)·(A+1) + maxδ(f)·(C+1)))·abs(p) +
((B·maxδ(g) + 2·maxδ(g)) + (D·maxδ(f) + 2·maxδ(f)))

proof -
from D2 A2 T1 have
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abs(p)+abs(f(p))+2 ≤ abs(p)+(A·abs(p)+B)+2
abs(p)+abs(g(p))+2 ≤ abs(p)+(C·abs(p)+D)+2
using Int_ZF_2_L15C by auto

with A1 have
(abs(p)+abs(f(p))+2)·maxδ(g) ≤ (abs(p)+(A·abs(p)+B)+2)·maxδ(g)
(abs(p)+abs(g(p))+2)·maxδ(f) ≤ (abs(p)+(C·abs(p)+D)+2)·maxδ(f)
using Int_ZF_2_1_L8 Int_ZF_1_3_L13 by auto

moreover from A1 D1 T1 have
(abs(p)+(A·abs(p)+B)+2)·maxδ(g) =
maxδ(g)·(A+1)·abs(p) + (B·maxδ(g) + 2·maxδ(g))
(abs(p)+(C·abs(p)+D)+2)·maxδ(f) =
maxδ(f)·(C+1)·abs(p) + (D·maxδ(f) + 2·maxδ(f))
using Int_ZF_2_1_L8 Int_ZF_1_2_L13 by auto

ultimately have
(abs(p)+abs(f(p))+2)·maxδ(g) + (abs(p)+abs(g(p))+2)·maxδ(f) ≤
(maxδ(g)·(A+1)·abs(p) + (B·maxδ(g) + 2·maxδ(g))) +
(maxδ(f)·(C+1)·abs(p) + (D·maxδ(f) + 2·maxδ(f)))
using int_ineq_add_sides by simp

moreover from A1 A2 D1 have abs(p) ∈ ZZ
maxδ(g)·(A+1) ∈ ZZ B·maxδ(g) + 2·maxδ(g) ∈ ZZ
maxδ(f)·(C+1) ∈ ZZ D·maxδ(f) + 2·maxδ(f) ∈ ZZ
using Int_ZF_2_L14 Int_ZF_2_1_L8 int_zero_one_are_int
Int_ZF_1_1_L5 int_two_three_are_int by auto

ultimately show thesis using Int_ZF_1_2_L14 by simp
qed
ultimately have
abs((f(g(p))-g(f(p)))·p) ≤ E·abs(p) + F
by (rule Int_order_transitive)

with A2 T1 have
abs(f(g(p))-g(f(p)))·abs(p) ≤ E·abs(p) + F
abs(f(g(p))-g(f(p))) ∈ ZZ
using Int_ZF_1_3_L5 by auto

} then have
∀ p∈ZZ. abs(f(g(p))-g(f(p))) ∈ ZZ
∀ p∈ZZ. abs(f(g(p))-g(f(p)))·abs(p) ≤ E·abs(p) + F

by auto
moreover from A1 D1 have E ∈ ZZ F ∈ ZZ

using int_zero_one_are_int int_two_three_are_int Int_ZF_2_1_L8 Int_ZF_1_1_L5
by auto

ultimately have
∃ L. ∀ p∈ZZ. abs(f(g(p))-g(f(p))) ≤ L
by (rule Int_ZF_1_7_L1)

with A1 obtain L where ∀ p∈ZZ. abs((f◦g)(p)-(g◦f)(p)) ≤ L
using Int_ZF_2_1_L10 by auto

moreover from A1 have f◦g ∈ S g◦f ∈ S
using Int_ZF_2_1_L11 by auto

ultimately show f◦g ∼ g◦f using Int_ZF_2_1_L9 by auto
qed
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26.3 Positive slopes

This section provides background material for defining the order relation on
real numbers.

Positive slopes are functions (of course.)

lemma (in int1) Int_ZF_2_3_L1: assumes A1: f∈S+ shows f:ZZ→ZZ
using prems AlmostHoms_def PositiveSet_def by simp

A small technical lemma to simplify the proof of the next theorem.

lemma (in int1) Int_ZF_2_3_L1A:
assumes A1: f∈S+ and A2: ∃ n ∈ f(ZZ+) ∩ ZZ+. a≤n
shows ∃ M∈ZZ+. a ≤ f(M)

proof -
from A1 have f:ZZ→ZZ ZZ+ ⊆ ZZ

using AlmostHoms_def PositiveSet_def by auto
with A2 show thesis using func_imagedef by auto

qed

The next lemma is Lemma 3 in the Arthan’s paper.

lemma (in int1) Arthan_Lem_3:
assumes A1: f∈S+ and A2: D ∈ ZZ+

shows ∃ M∈ZZ+. ∀ m∈ZZ+. (m+1)·D ≤ f(m·M)
proof -

let E = maxδ(f) + D
let A = f(ZZ+) ∩ ZZ+

from A1 A2 have I: D≤E
using Int_ZF_1_5_L3 Int_ZF_2_1_L8 Int_ZF_2_L1A Int_ZF_2_L15D
by simp

from A1 A2 have A ⊆ ZZ+ A /∈ Fin(ZZ) 2·E ∈ ZZ
using int_two_three_are_int Int_ZF_2_1_L8 PositiveSet_def Int_ZF_1_1_L5
by auto

with A1 have ∃ M∈ZZ+. 2·E ≤ f(M)
using Int_ZF_1_5_L2A Int_ZF_2_3_L1A by simp

then obtain M where II: M∈ZZ+ and III: 2·E ≤ f(M)
by auto

{ fix m assume m∈ZZ+ then have A4: 1≤m
using Int_ZF_1_5_L3 by simp

moreover from II III have (1+1) ·E ≤ f(1·M)
using PositiveSet_def Int_ZF_1_1_L4 by simp

moreover have ∀ k.
1≤k ∧ (k+1)·E ≤ f(k·M) −→ (k+1+1)·E ≤ f((k+1)·M)

proof -
{ fix k assume A5: 1≤k and A6: (k+1)·E ≤ f(k·M)

with A1 A2 II have T:
k∈ZZ M∈ZZ k+1 ∈ ZZ E∈ZZ (k+1)·E ∈ ZZ 2·E ∈ ZZ
using Int_ZF_2_L1A PositiveSet_def int_zero_one_are_int
Int_ZF_1_1_L5 Int_ZF_2_1_L8 by auto

from A1 A2 A5 II have
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δ(f,k·M,M) ∈ ZZ abs(δ(f,k·M,M)) ≤ maxδ(f) 0≤D
using Int_ZF_2_L1A PositiveSet_def Int_ZF_1_1_L5
Int_ZF_2_1_L7 Int_ZF_2_L16C by auto

with III A6 have
(k+1)·E + (2·E - E) ≤ f(k·M) + (f(M) + δ(f,k·M,M))
using Int_ZF_1_3_L19A int_ineq_add_sides by simp

with A1 T have (k+1+1)·E ≤ f((k+1)·M)
using Int_ZF_1_1_L1 int_zero_one_are_int Int_ZF_1_1_L4
Int_ZF_1_2_L11 Int_ZF_2_1_L13 by simp

} then show thesis by simp
qed
ultimately have (m+1)·E ≤ f(m·M) by (rule Induction_on_int)
with A4 I have (m+1)·D ≤ f(m·M) using Int_ZF_1_3_L13A

by simp
} then have ∀ m∈ZZ+.(m+1)·D ≤ f(m·M) by simp
with II show thesis by auto

qed

A special case of Arthan_Lem_3 when D = 1.

corollary (in int1) Arthan_L_3_spec: assumes A1: f ∈ S+

shows ∃ M∈ZZ+.∀ n∈ZZ+. n+1 ≤ f(n·M)
proof -

have ∀ n∈ZZ+. n+1 ∈ ZZ
using PositiveSet_def int_zero_one_are_int Int_ZF_1_1_L5
by simp

then have ∀ n∈ZZ+. (n+1)·1 = n+1
using Int_ZF_1_1_L4 by simp

moreover from A1 have ∃ M∈ZZ+. ∀ n∈ZZ+. (n+1)·1 ≤ f(n·M)
using int_one_two_are_pos Arthan_Lem_3 by simp

ultimately show thesis by simp
qed

We know from Group_ZF_3.thy that finite range functions are almost homo-
morphisms. Besides reminding that fact for slopes the next lemma shows
that finite range functions do not belong to S+. This is important, because
the projection of the set of finite range functions defines zero in the real
number construction in Real_ZF_x.thy series, while the projection of S+ be-
comes the set of (strictly) positive reals. We don’t want zero to be positive,
do we? The next lemma is a part of Lemma 5 in the Arthan’s paper [2].

lemma (in int1) Int_ZF_2_3_L1B:
assumes A1: f ∈ FinRangeFunctions(ZZ,ZZ)
shows f∈S f /∈ S+

proof -
from A1 show f∈S using Int_ZF_2_1_L1 group1.Group_ZF_3_3_L1

by auto
have ZZ+ ⊆ ZZ using PositiveSet_def by auto
with A1 have f(ZZ+) ∈ Fin(ZZ)

using Finite1_L21 by simp
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then have f(ZZ+) ∩ ZZ+ ∈ Fin(ZZ)
using Fin_subset_lemma by blast

thus f /∈ S+ by auto
qed

We want to show that if f is a slope and neither f nor −f are in S+, then
f is bounded. The next lemma is the first step towards that goal and shows
that if slope is not in S+ then f(ZZ+) is bounded above.

lemma (in int1) Int_ZF_2_3_L2: assumes A1: f∈S and A2: f /∈ S+

shows IsBoundedAbove(f(ZZ+), IntegerOrder)
proof -

from A1 have f:ZZ→ZZ using AlmostHoms_def by simp
then have f(ZZ+) ⊆ ZZ using func1_1_L6 by simp
moreover from A1 A2 have f(ZZ+) ∩ ZZ+ ∈ Fin(ZZ) by auto
ultimately show thesis using Int_ZF_2_T1 group3.OrderedGroup_ZF_2_L4

by simp
qed

If f is a slope and −f /∈ S+, then f(ZZ+) is bounded below.

lemma (in int1) Int_ZF_2_3_L3: assumes A1: f∈S and A2: -f /∈ S+

shows IsBoundedBelow(f(ZZ+), IntegerOrder)
proof -

from A1 have T: f:ZZ→ZZ using AlmostHoms_def by simp
then have (-(f(ZZ+))) = (-f)(ZZ+)

using Int_ZF_1_T2 group0_2_T2 PositiveSet_def func1_1_L15C
by auto

with A1 A2 T show IsBoundedBelow(f(ZZ+), IntegerOrder)
using Int_ZF_2_1_L12 Int_ZF_2_3_L2 PositiveSet_def func1_1_L6
Int_ZF_2_T1 group3.OrderedGroup_ZF_2_L5 by simp

qed

A slope that is bounded on ZZ+ is bounded everywhere.

lemma (in int1) Int_ZF_2_3_L4:
assumes A1: f∈S and A2: m∈ZZ
and A3: ∀ n∈ZZ+. abs(f(n)) ≤ L
shows abs(f(m)) ≤ 2·maxδ(f) + L

proof -
from A1 A3 have

0 ≤ abs(f(1)) abs(f(1)) ≤ L
using int_zero_one_are_int Int_ZF_2_1_L2B int_abs_nonneg int_one_two_are_pos
by auto

then have II: 0≤L by (rule Int_order_transitive)
from A2 have m∈ZZ .
moreover have abs(f(0)) ≤ 2·maxδ(f) + L
proof -

from A1 have
abs(f(0)) ≤ maxδ(f) 0 ≤ maxδ(f)
and T: maxδ(f) ∈ ZZ
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using Int_ZF_2_1_L8 by auto
with II have abs(f(0)) ≤ maxδ(f) + maxδ(f) + L

using Int_ZF_2_L15F by simp
with T show thesis using Int_ZF_1_1_L4 by simp

qed
moreover from A1 A3 II have
∀ n∈ZZ+. abs(f(n)) ≤ 2·maxδ(f) + L
using Int_ZF_2_1_L8 Int_ZF_1_3_L5A Int_ZF_2_L15F
by simp

moreover have ∀ n∈ZZ+. abs(f(-n)) ≤ 2·maxδ(f) + L
proof

fix n assume n∈ZZ+

with A1 A3 have
2·maxδ(f) ∈ ZZ
abs(f(-n)) ≤ 2·maxδ(f) + abs(f(n))
abs(f(n)) ≤ L
using int_two_three_are_int Int_ZF_2_1_L8 Int_ZF_1_1_L5
PositiveSet_def Int_ZF_2_1_L14 by auto

then show abs(f(-n)) ≤ 2·maxδ(f) + L
using Int_ZF_2_L15A by blast

qed
ultimately show thesis by (rule Int_ZF_2_L19B)

qed

A slope whose image of the set of positive integers is bounded is a finite
range function.

lemma (in int1) Int_ZF_2_3_L4A:
assumes A1: f∈S and A2: IsBounded(f(ZZ+), IntegerOrder)
shows f ∈ FinRangeFunctions(ZZ,ZZ)

proof -
have T1: ZZ+ ⊆ ZZ using PositiveSet_def by auto
from A1 have T2: f:ZZ→ZZ using AlmostHoms_def by simp
from A2 obtain L where ∀ a∈f(ZZ+). abs(a) ≤ L

using Int_ZF_1_3_L20A by auto
with T2 T1 have ∀ n∈ZZ+. abs(f(n)) ≤ L

by (rule func1_1_L15B)
with A1 have ∀ m∈ZZ. abs(f(m)) ≤ 2·maxδ(f) + L

using Int_ZF_2_3_L4 by simp
with T2 have f(ZZ) ∈ Fin(ZZ)

by (rule Int_ZF_1_3_L20C)
with T2 show f ∈ FinRangeFunctions(ZZ,ZZ)

using FinRangeFunctions_def by simp
qed

A slope whose image of the set of positive integers is bounded below is a
finite range function or a positive slope.

lemma (in int1) Int_ZF_2_3_L4B:
assumes f∈S and IsBoundedBelow(f(ZZ+), IntegerOrder)
shows f ∈ FinRangeFunctions(ZZ,ZZ) ∨ f∈S+
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using prems Int_ZF_2_3_L2 IsBounded_def Int_ZF_2_3_L4A
by auto

If one slope is not greater then another on positive integers, then they are
almost equal or the difference is a positive slope.

lemma (in int1) Int_ZF_2_3_L4C: assumes A1: f∈S g∈S and
A2: ∀ n∈ZZ+. f(n) ≤ g(n)
shows f∼g ∨ g + (-f) ∈ S+

proof -
let h = g + (-f)
from A1 have (-f) ∈ S using Int_ZF_2_1_L12

by simp
with A1 have I: h ∈ S using Int_ZF_2_1_L12C

by simp
moreover have IsBoundedBelow(h(ZZ+), IntegerOrder)
proof -

from I have
h:ZZ→ZZ and ZZ+⊆ZZ using AlmostHoms_def PositiveSet_def
by auto

moreover from A1 A2 have ∀ n∈ZZ+. 〈0, h(n)〉 ∈ IntegerOrder
using Int_ZF_2_1_L2B PositiveSet_def Int_ZF_1_3_L10A
Int_ZF_2_1_L12 Int_ZF_2_1_L12B Int_ZF_2_1_L12A

by simp
ultimately show IsBoundedBelow(h(ZZ+), IntegerOrder)

by (rule func_ZF_8_L1)
qed
ultimately have h ∈ FinRangeFunctions(ZZ,ZZ) ∨ h∈S+

using Int_ZF_2_3_L4B by simp
with A1 show f∼g ∨ g + (-f) ∈ S+

using Int_ZF_2_1_L9C by auto
qed

Positive slopes are arbitrarily large for large enough arguments.

lemma (in int1) Int_ZF_2_3_L5:
assumes A1: f∈S+ and A2: K∈ZZ
shows ∃ N∈ZZ+. ∀ m. N≤m −→ K ≤ f(m)

proof -
from A1 obtain M where I: M∈ZZ+ and II: ∀ n∈ZZ+. n+1 ≤ f(n·M)

using Arthan_L_3_spec by auto
let j = GreaterOf(IntegerOrder,M,K - (minf(f,0..(M-1)) - maxδ(f)) -

1)
from A1 I have T1:
minf(f,0..(M-1)) - maxδ(f) ∈ ZZ M∈ZZ
using Int_ZF_2_1_L15 Int_ZF_2_1_L8 Int_ZF_1_1_L5 PositiveSet_def
by auto

with A2 I have T2:
K - (minf(f,0..(M-1)) - maxδ(f)) ∈ ZZ
K - (minf(f,0..(M-1)) - maxδ(f)) - 1 ∈ ZZ
using Int_ZF_1_1_L5 int_zero_one_are_int by auto
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with T1 have III: M ≤ j and
K - (minf(f,0..(M-1)) - maxδ(f)) - 1 ≤ j
using Int_ZF_1_3_L18 by auto

with A2 T1 T2 have
IV: K ≤ j+1 + (minf(f,0..(M-1)) - maxδ(f))
using int_zero_one_are_int Int_ZF_2_L9C by simp

let N = GreaterOf(IntegerOrder,1,j·M)
from T1 III have T3: j ∈ ZZ j·M ∈ ZZ

using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto
then have V: N ∈ ZZ+ and VI: j·M ≤ N

using int_zero_one_are_int Int_ZF_1_5_L3 Int_ZF_1_3_L18
by auto

{ fix m
let n = m zdiv M
let k = m zmod M
assume N≤m
with VI have j·M ≤ m by (rule Int_order_transitive)
with I III have
VII: m = n·M+k
j ≤ n and
VIII: n ∈ ZZ+ k ∈ 0..(M-1)
using IntDiv_ZF_1_L5 by auto

with II have
j + 1 ≤ n + 1 n+1 ≤ f(n·M)
using int_zero_one_are_int int_ord_transl_inv by auto

then have j + 1 ≤ f(n·M)
by (rule Int_order_transitive)

with T1 have
j+1 + (minf(f,0..(M-1)) - maxδ(f)) ≤
f(n·M) + (minf(f,0..(M-1)) - maxδ(f))
using int_ord_transl_inv by simp

with IV have K ≤ f(n·M) + (minf(f,0..(M-1)) - maxδ(f))
by (rule Int_order_transitive)

moreover from A1 I VIII have
f(n·M) + (minf(f,0..(M-1))- maxδ(f)) ≤ f(n·M+k)
using PositiveSet_def Int_ZF_2_1_L16 by simp

ultimately have K ≤ f(n·M+k)
by (rule Int_order_transitive)

with VII have K ≤ f(m) by simp
} then have ∀ m. N≤m −→ K ≤ f(m)

by simp
with V show thesis by auto

qed

Positive slopes are arbitrarily small for small enough arguments. Kind of
dual to Int_ZF_2_3_L5.

lemma (in int1) Int_ZF_2_3_L5A: assumes A1: f∈S+ and A2: K∈ZZ
shows ∃ N∈ZZ+. ∀ m. N≤m −→ f(-m) ≤ K

proof -
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from A1 have T1: abs(f(0)) + maxδ(f) ∈ ZZ
using Int_ZF_2_1_L8 by auto

with A2 have abs(f(0)) + maxδ(f) - K ∈ ZZ
using Int_ZF_1_1_L5 by simp

with A1 have
∃ N∈ZZ+. ∀ m. N≤m −→ abs(f(0)) + maxδ(f) - K ≤ f(m)
using Int_ZF_2_3_L5 by simp

then obtain N where I: N∈ZZ+ and II:
∀ m. N≤m −→ abs(f(0)) + maxδ(f) - K ≤ f(m)
by auto

{ fix m assume A3: N≤m
with A1 have
f(-m) ≤ abs(f(0)) + maxδ(f) - f(m)
using Int_ZF_2_L1A Int_ZF_2_1_L14 by simp

moreover
from II T1 A3 have abs(f(0)) + maxδ(f) - f(m) ≤
(abs(f(0)) + maxδ(f)) -(abs(f(0)) + maxδ(f) - K)
using Int_ZF_2_L10 int_ord_transl_inv by simp

with A2 T1 have abs(f(0)) + maxδ(f) - f(m) ≤ K
using Int_ZF_1_2_L3 by simp

ultimately have f(-m) ≤ K
by (rule Int_order_transitive)

} then have ∀ m. N≤m −→ f(-m) ≤ K
by simp

with I show thesis by auto
qed

A special case of Int_ZF_2_3_L5 where K = 1.

corollary (in int1) Int_ZF_2_3_L6: assumes f∈S+

shows ∃ N∈ZZ+. ∀ m. N≤m −→ f(m) ∈ ZZ+

using prems int_zero_one_are_int Int_ZF_2_3_L5 Int_ZF_1_5_L3
by simp

A special case of Int_ZF_2_3_L5 where m = N .

corollary (in int1) Int_ZF_2_3_L6A: assumes f∈S+ and K∈ZZ
shows ∃ N∈ZZ+. K ≤ f(N)

proof -
from prems have ∃ N∈ZZ+. ∀ m. N≤m −→ K ≤ f(m)

using Int_ZF_2_3_L5 by simp
then obtain N where I: N ∈ ZZ+ and II: ∀ m. N≤m −→ K ≤ f(m)

by auto
then show thesis using PositiveSet_def int_ord_is_refl refl_def

by auto
qed

If values of a slope are not bounded above, then the slope is positive.

lemma (in int1) Int_ZF_2_3_L7: assumes A1: f∈S
and A2: ∀ K∈ZZ. ∃ n∈ZZ+. K ≤ f(n)
shows f ∈ S+
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proof -
{ fix K assume K∈ZZ

with A2 obtain n where n∈ZZ+ K ≤ f(n)
by auto

moreover from A1 have ZZ+ ⊆ ZZ f:ZZ→ZZ
using PositiveSet_def AlmostHoms_def by auto

ultimately have ∃ m ∈ f(ZZ+). K ≤ m
using func1_1_L15D by auto

} then have ∀ K∈ZZ. ∃ m ∈ f(ZZ+). K ≤ m by simp
with A1 show f ∈ S+ using Int_ZF_4_L9 Int_ZF_2_3_L2

by auto
qed

For unbounded slope f either f ∈S+ of −f ∈S+.

theorem (in int1) Int_ZF_2_3_L8:
assumes A1: f∈S and A2: f /∈ FinRangeFunctions(ZZ,ZZ)
shows (f ∈ S+) Xor ((-f) ∈ S+)

proof -
have T1: ZZ+ ⊆ ZZ using PositiveSet_def by auto
from A1 have T2: f:ZZ→ZZ using AlmostHoms_def by simp
then have I: f(ZZ+) ⊆ ZZ using func1_1_L6 by auto
from A1 A2 have f ∈ S+ ∨ (-f) ∈ S+

using Int_ZF_2_3_L2 Int_ZF_2_3_L3 IsBounded_def Int_ZF_2_3_L4A
by auto

moreover have ¬(f ∈ S+ ∧ (-f) ∈ S+)
proof -

{ assume A3: f ∈ S+ and A4: (-f) ∈ S+

from A3 obtain N1 where
I: N1∈ZZ+ and II: ∀ m. N1≤m −→ f(m) ∈ ZZ+

using Int_ZF_2_3_L6 by auto
from A4 obtain N2 where
III: N2∈ZZ+ and IV: ∀ m. N2≤m −→ (-f)(m) ∈ ZZ+

using Int_ZF_2_3_L6 by auto
let N = GreaterOf(IntegerOrder,N1,N2)
from I III have N1 ≤ N N2 ≤ N

using PositiveSet_def Int_ZF_1_3_L18 by auto
with A1 II IV have
f(N) ∈ ZZ+ (-f)(N) ∈ ZZ+ (-f)(N) = -(f(N))
using Int_ZF_2_L1A PositiveSet_def Int_ZF_2_1_L12A
by auto

then have False using Int_ZF_1_5_L8 by simp
} thus thesis by auto

qed
ultimately show (f ∈ S+) Xor ((-f) ∈ S+)

using Xor_def by simp
qed

The sum of positive slopes is a positive slope.

theorem (in int1) sum_of_pos_sls_is_pos_sl:
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assumes A1: f ∈ S+ g ∈ S+

shows f+g ∈ S+

proof -
{ fix K assume K∈ZZ

with A1 have ∃ N∈ZZ+. ∀ m. N≤m −→ K ≤ f(m)
using Int_ZF_2_3_L5 by simp

then obtain N where I: N∈ZZ+ and II: ∀ m. N≤m −→ K ≤ f(m)
by auto

from A1 have ∃ M∈ZZ+. ∀ m. M≤m −→ 0 ≤ g(m)
using int_zero_one_are_int Int_ZF_2_3_L5 by simp

then obtain M where III: M∈ZZ+ and IV: ∀ m. M≤m −→ 0 ≤ g(m)
by auto

let L = GreaterOf(IntegerOrder,N,M)
from I III have V: L ∈ ZZ+ ZZ+ ⊆ ZZ

using GreaterOf_def PositiveSet_def by auto
moreover from A1 V have (f+g)(L) = f(L) + g(L)

using Int_ZF_2_1_L12B by auto
moreover from I II III IV have K ≤ f(L) + g(L)

using PositiveSet_def Int_ZF_1_3_L18 Int_ZF_2_L15F
by simp

ultimately have L ∈ ZZ+ K ≤ (f+g)(L)
by auto

then have ∃ n ∈ZZ+. K ≤ (f+g)(n)
by auto

} with A1 show f+g ∈ S+

using Int_ZF_2_1_L12C Int_ZF_2_3_L7 by simp
qed

The composition of positive slopes is a positive slope.

theorem (in int1) comp_of_pos_sls_is_pos_sl:
assumes A1: f ∈ S+ g ∈ S+

shows f◦g ∈ S+

proof -
{ fix K assume K∈ZZ

with A1 have ∃ N∈ZZ+. ∀ m. N≤m −→ K ≤ f(m)
using Int_ZF_2_3_L5 by simp

then obtain N where N∈ZZ+ and I: ∀ m. N≤m −→ K ≤ f(m)
by auto

with A1 have ∃ M∈ZZ+. N ≤ g(M)
using PositiveSet_def Int_ZF_2_3_L6A by simp

then obtain M where M∈ZZ+ N ≤ g(M)
by auto

with A1 I have ∃ M∈ZZ+. K ≤ (f◦g)(M)
using PositiveSet_def Int_ZF_2_1_L10
by auto

} with A1 show f◦g ∈ S+

using Int_ZF_2_1_L11 Int_ZF_2_3_L7
by simp

qed
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A slope equivalent to a positive one is positive.

lemma (in int1) Int_ZF_2_3_L9:
assumes A1: f ∈ S+ and A2: 〈f,g〉 ∈ AlEqRel shows g ∈ S+

proof -
from A2 have T: g∈S and ∃ L∈ZZ. ∀ m∈ZZ. abs(f(m)-g(m)) ≤ L

using Int_ZF_2_1_L9A by auto
then obtain L where
I: L∈ZZ and II: ∀ m∈ZZ. abs(f(m)-g(m)) ≤ L
by auto

{ fix K assume A3: K∈ZZ
with I have K+L ∈ ZZ

using Int_ZF_1_1_L5 by simp
with A1 obtain M where III: M∈ZZ+ and IV: K+L ≤ f(M)

using Int_ZF_2_3_L6A by auto
with A1 A3 I have K ≤ f(M)-L

using PositiveSet_def Int_ZF_2_1_L2B Int_ZF_2_L9B
by simp

moreover from A1 T II III have
f(M)-L ≤ g(M)
using PositiveSet_def Int_ZF_2_1_L2B Int_triangle_ineq2
by simp

ultimately have K ≤ g(M)
by (rule Int_order_transitive)

with III have ∃ n∈ZZ+. K ≤ g(n)
by auto

} with T show g ∈ S+

using Int_ZF_2_3_L7 by simp
qed

The set of positive slopes is saturated with respect to the relation of equiv-
alence of slopes.

lemma (in int1) pos_slopes_saturated: shows IsSaturated(AlEqRel,S+)
proof -

have
equiv(S,AlEqRel)
AlEqRel ⊆ S × S
using Int_ZF_2_1_L9B by auto

moreover have S+ ⊆ S by auto
moreover have ∀ f∈S+. ∀ g∈S. 〈f,g〉 ∈ AlEqRel −→ g ∈ S+

using Int_ZF_2_3_L9 by blast
ultimately show IsSaturated(AlEqRel,S+)

by (rule EquivClass_3_L3)
qed

A technical lemma involving a projection of the set of positive slopes and a
logical epression with exclusive or.

lemma (in int1) Int_ZF_2_3_L10:
assumes A1: f∈S g∈S
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and A2: R = {AlEqRel{s}. s∈S+}
and A3: (f∈S+) Xor (g∈S+)
shows (AlEqRel{f} ∈ R) Xor (AlEqRel{g} ∈ R)

proof -
from A1 A2 A3 have
equiv(S,AlEqRel)
IsSaturated(AlEqRel,S+)
S+ ⊆ S
f∈S g∈S
R = {AlEqRel{s}. s∈S+}
(f∈S+) Xor (g∈S+)
using pos_slopes_saturated Int_ZF_2_1_L9B by auto

then show thesis by (rule EquivClass_3_L7)
qed

Identity function is a positive slope.

lemma (in int1) Int_ZF_2_3_L11: shows id(ZZ) ∈ S+

proof -
let f = id(ZZ)
{ fix K assume K∈ZZ

then obtain n where T: n∈ZZ+ and K≤n
using Int_ZF_1_5_L9 by auto

moreover from T have f(n) = n
using PositiveSet_def by simp

ultimately have n∈ZZ+ and K≤f(n)
by auto

then have ∃ n∈ZZ+. K≤f(n) by auto
} then show f ∈ S+

using Int_ZF_2_1_L17 Int_ZF_2_3_L7 by simp
qed

The identity function is not almost equal to any bounded function.

lemma (in int1) Int_ZF_2_3_L12: assumes A1: f ∈ FinRangeFunctions(ZZ,ZZ)
shows ¬(id(ZZ) ∼ f)

proof -
{ from A1 have id(ZZ) ∈ S+

using Int_ZF_2_3_L11 by simp
moreover assume 〈id(ZZ),f〉 ∈ AlEqRel
ultimately have f ∈ S+

by (rule Int_ZF_2_3_L9)
with A1 have False using Int_ZF_2_3_L1B

by simp
} then show ¬(id(ZZ) ∼ f) by auto

qed

26.4 Inverting slopes

Not every slope is a 1:1 function. However, we can still invert slopes in the
sense that if f is a slope, then we can find a slope g such that f ◦ g is almost
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equal to the identity function. The goal of this this section is to establish
this fact for positive slopes.

If f is a positive slope, then for every positive integer p the set {n ∈ Z+ :
p ≤ f(n)} is a nonempty subset of positive integers. Recall that f−1(p) is
the notation for the smallest element of this set.

lemma (in int1) Int_ZF_2_4_L1:
assumes A1: f ∈ S+ and A2: p∈ZZ+ and A3: A = {n∈ZZ+. p ≤ f(n)}
shows
A ⊆ ZZ+

A 6= 0
f−1(p) ∈ A
∀ m∈A. f−1(p) ≤ m

proof -
from A3 show I: A ⊆ ZZ+ by auto
from A1 A2 have ∃ n∈ZZ+. p ≤ f(n)

using PositiveSet_def Int_ZF_2_3_L6A by simp
with A3 show II: A 6= 0 by auto
from A3 I II show
f−1(p) ∈ A
∀ m∈A. f−1(p) ≤ m
using Int_ZF_1_5_L1C by auto

qed

If f is a positive slope and p is a positive integer p, then f−1(p) (defined as
the minimum of the set {n ∈ Z+ : p ≤ f(n)} ) is a (well defined) positive
integer.

lemma (in int1) Int_ZF_2_4_L2:
assumes f ∈ S+ and p∈ZZ+

shows
f−1(p) ∈ ZZ+

p ≤ f(f−1(p))
using prems Int_ZF_2_4_L1 by auto

If f is a positive slope and p is a positive integer such that n ≤ f(p), then
f−1(n) ≤ p.

lemma (in int1) Int_ZF_2_4_L3:
assumes f ∈ S+ and m∈ZZ+ p∈ZZ+ and m ≤ f(p)
shows f−1(m) ≤ p
using prems Int_ZF_2_4_L1 by simp

An upper bound f(f−1(m)− 1) for positive slopes.

lemma (in int1) Int_ZF_2_4_L4:
assumes A1: f ∈ S+ and A2: m∈ZZ+ and A3: f−1(m)-1 ∈ ZZ+

shows f(f−1(m)-1) ≤ m f(f−1(m)-1) 6= m
proof -

from A1 A2 have T: f−1(m) ∈ ZZ using Int_ZF_2_4_L2 PositiveSet_def
by simp
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from A1 A3 have f:ZZ→ZZ and f−1(m)-1 ∈ ZZ
using Int_ZF_2_3_L1 PositiveSet_def by auto

with A1 A2 have T1: f(f−1(m)-1) ∈ ZZ m∈ZZ
using apply_funtype PositiveSet_def by auto

{ assume m ≤ f(f−1(m)-1)
with A1 A2 A3 have f−1(m) ≤ f−1(m)-1

by (rule Int_ZF_2_4_L3)
with T have False using Int_ZF_1_2_L3AA

by simp
} then have I: ¬(m ≤ f(f−1(m)-1)) by auto
with T1 show f(f−1(m)-1) ≤ m

by (rule Int_ZF_2_L19)
from T1 I show f(f−1(m)-1) 6= m

by (rule Int_ZF_2_L19)
qed

The (candidate for) the inverse of a positive slope is nondecreasing.

lemma (in int1) Int_ZF_2_4_L5:
assumes A1: f ∈ S+ and A2: m∈ZZ+ and A3: m≤n
shows f−1(m) ≤ f−1(n)

proof -
from A2 A3 have T: n ∈ ZZ+ using Int_ZF_1_5_L7 by blast
with A1 have n ≤ f(f−1(n)) using Int_ZF_2_4_L2

by simp
with A3 have m ≤ f(f−1(n)) by (rule Int_order_transitive)
with A1 A2 T show f−1(m) ≤ f−1(n)

using Int_ZF_2_4_L2 Int_ZF_2_4_L3 by simp
qed

If f−1(m) is positive and n is a positive integer, then, then f−1(m + n)− 1
is positive.

lemma (in int1) Int_ZF_2_4_L6:
assumes A1: f ∈ S+ and A2: m∈ZZ+ n∈ZZ+ and
A3: f−1(m)-1 ∈ ZZ+

shows f−1(m+n)-1 ∈ ZZ+

proof -
from A1 A2 have f−1(m)-1 ≤ f−1(m+n) - 1

using PositiveSet_def Int_ZF_1_5_L7A Int_ZF_2_4_L2
Int_ZF_2_4_L5 int_zero_one_are_int Int_ZF_1_1_L4
int_ord_transl_inv by simp

with A3 show f−1(m+n)-1 ∈ ZZ+ using Int_ZF_1_5_L7
by blast

qed

If f is a slope, then f(f−1(m+n)−f−1(m)−f−1(n)) is uniformly bounded
above and below. Will it be the messiest IsarMathLib proof ever? Only
time will tell.

lemma (in int1) Int_ZF_2_4_L7: assumes A1: f ∈ S+ and
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A2: ∀ m∈ZZ+. f−1(m)-1 ∈ ZZ+

shows
∃ U∈ZZ. ∀ m∈ZZ+. ∀ n∈ZZ+. f(f−1(m+n)-f−1(m)-f−1(n)) ≤ U
∃ N∈ZZ. ∀ m∈ZZ+. ∀ n∈ZZ+. N ≤ f(f−1(m+n)-f−1(m)-f−1(n))

proof -
from A1 have ∃ L∈ZZ. ∀ r∈ZZ. f(r) ≤ f(r-1) + L

using Int_ZF_2_1_L28 by simp
then obtain L where
I: L∈ZZ and II: ∀ r∈ZZ. f(r) ≤ f(r-1) + L
by auto

from A1 have
∃ M∈ZZ. ∀ r∈ZZ.∀ p∈ZZ.∀ q∈ZZ. f(r-p-q) ≤ f(r)-f(p)-f(q)+M
∃ K∈ZZ. ∀ r∈ZZ.∀ p∈ZZ.∀ q∈ZZ. f(r)-f(p)-f(q)+K ≤ f(r-p-q)
using Int_ZF_2_1_L30 by auto

then obtain M K where III: M∈ZZ and
IV: ∀ r∈ZZ.∀ p∈ZZ.∀ q∈ZZ. f(r-p-q) ≤ f(r)-f(p)-f(q)+M
and
V: K∈ZZ and VI: ∀ r∈ZZ.∀ p∈ZZ.∀ q∈ZZ. f(r)-f(p)-f(q)+K ≤ f(r-p-q)
by auto

from I III V have
L+M ∈ ZZ (-L) - L + K ∈ ZZ
using Int_ZF_1_1_L4 Int_ZF_1_1_L5 by auto

moreover
{ fix m n

assume A3: m∈ZZ+ n∈ZZ+

have f(f−1(m+n)-f−1(m)-f−1(n)) ≤ L+M ∧
(-L)-L+K ≤ f(f−1(m+n)-f−1(m)-f−1(n))

proof -
let r = f−1(m+n)
let p = f−1(m)
let q = f−1(n)
from A1 A3 have T1:
p ∈ ZZ+ q ∈ ZZ+ r ∈ ZZ+

using Int_ZF_2_4_L2 pos_int_closed_add_unfolded by auto
with A3 have T2:
m ∈ ZZ n ∈ ZZ p ∈ ZZ q ∈ ZZ r ∈ ZZ
using PositiveSet_def by auto

from A2 A3 have T3:
r-1 ∈ ZZ+ p-1 ∈ ZZ+ q-1 ∈ ZZ+

using pos_int_closed_add_unfolded by auto
from A1 A3 have VII:
m+n ≤ f(r)
m ≤ f(p)
n ≤ f(q)
using Int_ZF_2_4_L2 pos_int_closed_add_unfolded by auto

from A1 A3 T3 have VIII:
f(r-1) ≤ m+n
f(p-1) ≤ m
f(q-1) ≤ n
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using pos_int_closed_add_unfolded Int_ZF_2_4_L4 by auto
have f(r-p-q) ≤ L+M
proof -

from IV T2 have f(r-p-q) ≤ f(r)-f(p)-f(q)+M
by simp

moreover
from I II T2 VIII have
f(r) ≤ f(r-1) + L
f(r-1) + L ≤ m+n+L
using int_ord_transl_inv by auto

then have f(r) ≤ m+n+L
by (rule Int_order_transitive)

with VII have f(r) - f(p) ≤ m+n+L-m
using int_ineq_add_sides by simp

with I T2 VII have f(r) - f(p) - f(q) ≤ n+L-n
using Int_ZF_1_2_L9 int_ineq_add_sides by simp

with I III T2 have f(r) - f(p) - f(q) + M ≤ L+M
using Int_ZF_1_2_L3 int_ord_transl_inv by simp

ultimately show f(r-p-q) ≤ L+M
by (rule Int_order_transitive)

qed
moreover have (-L)-L +K ≤ f(r-p-q)
proof -

from I II T2 VIII have
f(p) ≤ f(p-1) + L
f(p-1) + L ≤ m +L
using int_ord_transl_inv by auto

then have f(p) ≤ m +L
by (rule Int_order_transitive)

with VII have m+n -(m+L) ≤ f(r) - f(p)
using int_ineq_add_sides by simp

with I T2 have n - L ≤ f(r) - f(p)
using Int_ZF_1_2_L9 by simp

moreover
from I II T2 VIII have
f(q) ≤ f(q-1) + L
f(q-1) + L ≤ n +L
using int_ord_transl_inv by auto

then have f(q) ≤ n +L
by (rule Int_order_transitive)

ultimately have
n - L - (n+L) ≤ f(r) - f(p) - f(q)
using int_ineq_add_sides by simp

with I V T2 have
(-L)-L +K ≤ f(r) - f(p) - f(q) + K
using Int_ZF_1_2_L3 int_ord_transl_inv by simp

moreover from VI T2 have
f(r) - f(p) - f(q) + K ≤ f(r-p-q)
by simp
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ultimately show (-L)-L +K ≤ f(r-p-q)
by (rule Int_order_transitive)

qed
ultimately show
f(r-p-q) ≤ L+M ∧
(-L)-L+K ≤ f(f−1(m+n)-f−1(m)-f−1(n))
by simp

qed
}

ultimately show
∃ U∈ZZ. ∀ m∈ZZ+. ∀ n∈ZZ+. f(f−1(m+n)-f−1(m)-f−1(n)) ≤ U
∃ N∈ZZ. ∀ m∈ZZ+. ∀ n∈ZZ+. N ≤ f(f−1(m+n)-f−1(m)-f−1(n))
by auto

qed

The expression f−1(m + n)− f−1(m)− f−1(n) is uniformly bounded for all
pairs 〈m,n〉 ∈ ZZ+×ZZ+. Recall that in the int1 context ε(f,x) is defined so
that ε(f, 〈m,n〉) = f−1(m + n)− f−1(m)− f−1(n).

lemma (in int1) Int_ZF_2_4_L8: assumes A1: f ∈ S+ and
A2: ∀ m∈ZZ+. f−1(m)-1 ∈ ZZ+

shows ∃ M. ∀ x∈ZZ+×ZZ+. abs(ε(f,x)) ≤ M
proof -

from A1 A2 have
∃ U∈ZZ. ∀ m∈ZZ+. ∀ n∈ZZ+. f(f−1(m+n)-f−1(m)-f−1(n)) ≤ U
∃ N∈ZZ. ∀ m∈ZZ+. ∀ n∈ZZ+. N ≤ f(f−1(m+n)-f−1(m)-f−1(n))
using Int_ZF_2_4_L7 by auto

then obtain U N where I:
∀ m∈ZZ+. ∀ n∈ZZ+. f(f−1(m+n)-f−1(m)-f−1(n)) ≤ U
∀ m∈ZZ+. ∀ n∈ZZ+. N ≤ f(f−1(m+n)-f−1(m)-f−1(n))
by auto

have ZZ+×ZZ+ 6= 0 using int_one_two_are_pos by auto
moreover from A1 have f: ZZ→ZZ

using AlmostHoms_def by simp
moreover from A1 have
∀ a∈ZZ.∃ b∈ZZ+.∀ x. b≤x −→ a ≤ f(x)
using Int_ZF_2_3_L5 by simp

moreover from A1 have
∀ a∈ZZ.∃ b∈ZZ+.∀ y. b≤y −→ f(-y) ≤ a
using Int_ZF_2_3_L5A by simp

moreover have
∀ x∈ZZ+×ZZ+. ε(f,x) ∈ ZZ ∧ f(ε(f,x)) ≤ U ∧ N ≤ f(ε(f,x))

proof -
{ fix x assume A3: x ∈ ZZ+×ZZ+

let m = fst(x)
let n = snd(x)
from A3 have T: m ∈ ZZ+ n ∈ ZZ+ m+n ∈ ZZ+

using pos_int_closed_add_unfolded by auto
with A1 have
f−1(m+n) ∈ ZZ f−1(m) ∈ ZZ f−1(n) ∈ ZZ
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using Int_ZF_2_4_L2 PositiveSet_def by auto
with I T have

ε(f,x) ∈ ZZ ∧ f(ε(f,x)) ≤ U ∧ N ≤ f(ε(f,x))
using Int_ZF_1_1_L5 by auto

} thus thesis by simp
qed

ultimately show ∃ M.∀ x∈ZZ+×ZZ+. abs(ε(f,x)) ≤ M
by (rule Int_ZF_1_6_L4)

qed

The (candidate for) inverse of a positive slope is a (well defined) function
on ZZ+.

lemma (in int1) Int_ZF_2_4_L9:
assumes A1: f ∈ S+ and A2: g = {〈p,f−1(p)〉. p∈ZZ+}
shows
g : ZZ+→ZZ+

g : ZZ+→ZZ
proof -

from A1 have
∀ p∈ZZ+. f−1(p) ∈ ZZ+

∀ p∈ZZ+. f−1(p) ∈ ZZ
using Int_ZF_2_4_L2 PositiveSet_def by auto

with A2 show
g : ZZ+→ZZ+ and g : ZZ+→ZZ
using ZF_fun_from_total by auto

qed

What are the values of the (candidate for) the inverse of a positive slope?

lemma (in int1) Int_ZF_2_4_L10:
assumes A1: f ∈ S+ and A2: g = {〈p,f−1(p)〉. p∈ZZ+} and A3: p∈ZZ+

shows g(p) = f−1(p)
proof -

from A1 A2 have g : ZZ+→ZZ+ using Int_ZF_2_4_L9 by simp
with A2 A3 show g(p) = f−1(p) using ZF_fun_from_tot_val by simp

qed

The (candidate for) the inverse of a positive slope is a slope.

lemma (in int1) Int_ZF_2_4_L11: assumes A1: f ∈ S+ and
A2: ∀ m∈ZZ+. f−1(m)-1 ∈ ZZ+ and
A3: g = {〈p,f−1(p)〉. p∈ZZ+}
shows OddExtension(ZZ,IntegerAddition,IntegerOrder,g) ∈ S

proof -
from A1 A2 have ∃ L. ∀ x∈ZZ+×ZZ+. abs(ε(f,x)) ≤ L

using Int_ZF_2_4_L8 by simp
then obtain L where I: ∀ x∈ZZ+×ZZ+. abs(ε(f,x)) ≤ L

by auto
from A1 A3 have g : ZZ+→ZZ using Int_ZF_2_4_L9

by simp
moreover have ∀ m∈ZZ+. ∀ n∈ZZ+. abs(δ(g,m,n)) ≤ L
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proof-
{ fix m n

assume A4: m∈ZZ+ n∈ZZ+

then have 〈m,n〉 ∈ ZZ+×ZZ+ by simp
with I have abs(ε(f,〈m,n〉)) ≤ L by simp
moreover have ε(f,〈m,n〉) = f−1(m+n) - f−1(m) - f−1(n)

by simp
moreover from A1 A3 A4 have
f−1(m+n) = g(m+n) f−1(m) = g(m) f−1(n) = g(n)
using pos_int_closed_add_unfolded Int_ZF_2_4_L10 by auto

ultimately have abs(δ(g,m,n)) ≤ L by simp
} thus ∀ m∈ZZ+. ∀ n∈ZZ+. abs(δ(g,m,n)) ≤ L by simp

qed
ultimately show thesis by (rule Int_ZF_2_1_L24)

qed

Every positive slope that is at least 2 on positive integers almost has an
inverse.

lemma (in int1) Int_ZF_2_4_L12: assumes A1: f ∈ S+ and
A2: ∀ m∈ZZ+. f−1(m)-1 ∈ ZZ+

shows ∃ h∈S. f◦h ∼ id(ZZ)
proof -

let g = {〈p,f−1(p)〉. p∈ZZ+}
let h = OddExtension(ZZ,IntegerAddition,IntegerOrder,g)
from A1 have
∃ M∈ZZ. ∀ n∈ZZ. f(n) ≤ f(n-1) + M
using Int_ZF_2_1_L28 by simp

then obtain M where
I: M∈ZZ and II: ∀ n∈ZZ. f(n) ≤ f(n-1) + M
by auto

from A1 A2 have T: h ∈ S
using Int_ZF_2_4_L11 by simp

moreover have f◦h ∼ id(ZZ)
proof -

from A1 T have f◦h ∈ S using Int_ZF_2_1_L11
by simp

moreover note I
moreover
{ fix m assume A3: m∈ZZ+

with A1 have f−1(m) ∈ ZZ
using Int_ZF_2_4_L2 PositiveSet_def by simp

with II have f(f−1(m)) ≤ f(f−1(m)-1) + M
by simp

moreover from A1 A2 I A3 have f(f−1(m)-1) + M ≤ m+M
using Int_ZF_2_4_L4 int_ord_transl_inv by simp

ultimately have f(f−1(m)) ≤ m+M
by (rule Int_order_transitive)

moreover from A1 A3 have m ≤ f(f−1(m))
using Int_ZF_2_4_L2 by simp
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moreover from A1 A2 T A3 have f(f−1(m)) = (f◦h)(m)
using Int_ZF_2_4_L9 Int_ZF_1_5_L11
Int_ZF_2_4_L10 PositiveSet_def Int_ZF_2_1_L10

by simp
ultimately have m ≤ (f◦h)(m) ∧ (f◦h)(m) ≤ m+M

by simp }
ultimately show f◦h ∼ id(ZZ) using Int_ZF_2_1_L32

by simp
qed
ultimately show ∃ h∈S. f◦h ∼ id(ZZ)

by auto
qed

Int_ZF_2_4_L12 is almost what we need, except that it has an assumption
that the values of the slope that we get the inverse for are not smaller than 2
on positive integers. The Arthan’s proof of Theorem 11 has a mistake where
he says ”note that for all but finitely many m,n ∈ N p = g(m) and q = g(n)
are both positive”. Of course there may be infinitely many pairs 〈m,n〉 such
that p, q are not both positive. This is however easy to workaround: we just
modify the slope by adding a constant so that the slope is large enough on
positive integers and then look for the inverse.

theorem (in int1) pos_slope_has_inv: assumes A1: f ∈ S+

shows ∃ g∈S. f∼g ∧ (∃ h∈S. g◦h ∼ id(ZZ))
proof -

from A1 have f: ZZ→ZZ 1∈ZZ 2 ∈ ZZ
using AlmostHoms_def int_zero_one_are_int int_two_three_are_int
by auto

moreover from A1 have
∀ a∈ZZ.∃ b∈ZZ+.∀ x. b≤x −→ a ≤ f(x)

using Int_ZF_2_3_L5 by simp
ultimately have
∃ c∈ZZ. 2 ≤ Minimum(IntegerOrder,{n∈ZZ+. 1 ≤ f(n)+c})
by (rule Int_ZF_1_6_L7)

then obtain c where I: c∈ZZ and
II: 2 ≤ Minimum(IntegerOrder,{n∈ZZ+. 1 ≤ f(n)+c})
by auto

let g = {〈m,f(m)+c〉. m∈ZZ}
from A1 I have III: g∈S and IV: f∼g using Int_ZF_2_1_L33

by auto
from IV have 〈f,g〉 ∈ AlEqRel by simp
with A1 have T: g ∈ S+ by (rule Int_ZF_2_3_L9)
moreover have ∀ m∈ZZ+. g−1(m)-1 ∈ ZZ+

proof
fix m assume A2: m∈ZZ+

from A1 I II have V: 2 ≤ g−1(1)
using Int_ZF_2_1_L33 PositiveSet_def by simp

moreover from A2 T have g−1(1) ≤ g−1(m)
using Int_ZF_1_5_L3 int_one_two_are_pos Int_ZF_2_4_L5
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by simp
ultimately have 2 ≤ g−1(m)

by (rule Int_order_transitive)
then have 2-1 ≤ g−1(m)-1

using int_zero_one_are_int Int_ZF_1_1_L4 int_ord_transl_inv
by simp

then show g−1(m)-1 ∈ ZZ+

using int_zero_one_are_int Int_ZF_1_2_L3 Int_ZF_1_5_L3
by simp

qed
ultimately have ∃ h∈S. g◦h ∼ id(ZZ)

by (rule Int_ZF_2_4_L12)
with III IV show thesis by auto

qed

26.5 Completeness

In this section we consider properties of slopes that are needed for the proof
of completeness of real numbers constructred in Real_ZF_1.thy. In particular
we consider properties of embedding of integers into the set of slopes by the
mapping m 7→ mS , where mS is defined by mS(n) = m · n.

If m is an integer, then mS is a slope whose value is m · n for every integer.

lemma (in int1) Int_ZF_2_5_L1: assumes A1: m ∈ ZZ
shows
∀ n ∈ ZZ. (mS)(n) = m·n
mS ∈ S

proof -
from A1 have I: mS:ZZ→ZZ

using Int_ZF_1_1_L5 ZF_fun_from_total by simp
then show II: ∀ n ∈ ZZ. (mS)(n) = m·n using ZF_fun_from_tot_val

by simp
{ fix n k

assume A2: n∈ZZ k∈ZZ
with A1 have T: m·n ∈ ZZ m·k ∈ ZZ

using Int_ZF_1_1_L5 by auto
from A1 A2 II T have δ(mS,n,k) = m·k - m·k

using Int_ZF_1_1_L5 Int_ZF_1_1_L1 Int_ZF_1_2_L3
by simp

also from T have . . . = 0 using Int_ZF_1_1_L4
by simp

finally have δ(mS,n,k) = 0 by simp
then have abs(δ(mS,n,k)) ≤ 0

using Int_ZF_2_L18 int_zero_one_are_int int_ord_is_refl refl_def
by simp

} then have ∀ n∈ZZ.∀ k∈ZZ. abs(δ(mS,n,k)) ≤ 0
by simp

with I show mS ∈ S by (rule Int_ZF_2_1_L5)
qed
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For any slope f there is an integer m such that there is some slope g that
is almost equal to mS and dominates f in the sense that f ≤ g on positive
integers (which implies that either g is almost equal to f or g−f is a positive
slope. This will be used in Real_ZF_1.thy to show that for any real number
there is an integer that (whose real embedding) is greater or equal.

lemma (in int1) Int_ZF_2_5_L2: assumes A1: f ∈ S
shows ∃ m∈ZZ. ∃ g∈S. (mS∼g ∧ (f∼g ∨ g+(-f) ∈ S+))

proof -
from A1 have
∃ m k. m∈ZZ ∧ k∈ZZ ∧ (∀ p∈ZZ. abs(f(p)) ≤ m·abs(p)+k)
using Arthan_Lem_8 by simp

then obtain m k where I: m∈ZZ and II: k∈ZZ and
III: ∀ p∈ZZ. abs(f(p)) ≤ m·abs(p)+k
by auto

let g = {〈n,mS(n) +k〉. n∈ZZ}
from I have IV: mS ∈ S using Int_ZF_2_5_L1 by simp
with II have V: g∈S and VI: mS∼g using Int_ZF_2_1_L33

by auto
{ fix n assume A2: n∈ZZ+

with A1 have f(n) ∈ ZZ
using Int_ZF_2_1_L2B PositiveSet_def by simp

then have f(n) ≤ abs(f(n)) using Int_ZF_2_L19C
by simp

moreover
from III A2 have abs(f(n)) ≤ m·abs(n) + k

using PositiveSet_def by simp
with A2 have abs(f(n)) ≤ m·n+k

using Int_ZF_1_5_L4A by simp
ultimately have f(n) ≤ m·n+k

by (rule Int_order_transitive)
moreover
from II IV A2 have g(n) = (mS)(n)+k

using Int_ZF_2_1_L33 PositiveSet_def by simp
with I A2 have g(n) = m·n+k

using Int_ZF_2_5_L1 PositiveSet_def by simp
ultimately have f(n) ≤ g(n)

by simp
} then have ∀ n∈ZZ+. f(n) ≤ g(n)

by simp
with A1 V have f∼g ∨ g + (-f) ∈ S+

using Int_ZF_2_3_L4C by simp
with I V VI show thesis by auto

qed

The negative of an integer embeds in slopes as a negative of the orgiginal
embedding.

lemma (in int1) Int_ZF_2_5_L3: assumes A1: m ∈ ZZ
shows (-m)S = -(mS)
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proof -
from A1 have (-m)S: ZZ→ZZ and (-(mS)): ZZ→ZZ

using Int_ZF_1_1_L4 Int_ZF_2_5_L1 AlmostHoms_def Int_ZF_2_1_L12
by auto

moreover have ∀ n∈ZZ. ((-m)S)(n) = (-(mS))(n)
proof

fix n assume A2: n∈ZZ
with A1 have
((-m)S)(n) = (-m)·n
(-(mS))(n) = -(m·n)
using Int_ZF_1_1_L4 Int_ZF_2_5_L1 Int_ZF_2_1_L12A
by auto

with A1 A2 show ((-m)S)(n) = (-(mS))(n)
using Int_ZF_1_1_L5 by simp

qed
ultimately show (-m)S = -(mS) using fun_extension_iff

by simp
qed

The sum of embeddings is the embeding of the sum.
lemma (in int1) Int_ZF_2_5_L3A: assumes A1: m∈ZZ k∈ZZ

shows (mS) + (kS) = ((m+k)S)
proof -

from A1 have T1: m+k ∈ ZZ using Int_ZF_1_1_L5
by simp

with A1 have T2:
(mS) ∈ S (kS) ∈ S
(m+k)S ∈ S
(mS) + (kS) ∈ S
using Int_ZF_2_5_L1 Int_ZF_2_1_L12C by auto

then have
(mS) + (kS) : ZZ→ZZ
(m+k)S : ZZ→ZZ
using AlmostHoms_def by auto

moreover have ∀ n∈ZZ. ((mS) + (kS))(n) = ((m+k)S)(n)
proof

fix n assume A2: n∈ZZ
with A1 T1 T2 have ((mS) + (kS))(n) = (m+k)·n

using Int_ZF_2_1_L12B Int_ZF_2_5_L1 Int_ZF_1_1_L1
by simp

also from T1 A2 have . . . = ((m+k)S)(n)
using Int_ZF_2_5_L1 by simp

finally show ((mS) + (kS))(n) = ((m+k)S)(n)
by simp

qed
ultimately show (mS) + (kS) = ((m+k)S)

using fun_extension_iff by simp
qed

The composition of embeddings is the embeding of the product.
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lemma (in int1) Int_ZF_2_5_L3B: assumes A1: m∈ZZ k∈ZZ
shows (mS) ◦ (kS) = ((m·k)S)

proof -
from A1 have T1: m·k ∈ ZZ using Int_ZF_1_1_L5

by simp
with A1 have T2:
(mS) ∈ S (kS) ∈ S
(m·k)S ∈ S
(mS) ◦ (kS) ∈ S
using Int_ZF_2_5_L1 Int_ZF_2_1_L11 by auto

then have
(mS) ◦ (kS) : ZZ→ZZ
(m·k)S : ZZ→ZZ
using AlmostHoms_def by auto

moreover have ∀ n∈ZZ. ((mS) ◦ (kS))(n) = ((m·k)S)(n)
proof

fix n assume A2: n∈ZZ
with A1 T2 have
((mS) ◦ (kS))(n) = (mS)(k·n)
using Int_ZF_2_1_L10 Int_ZF_2_5_L1 by simp

moreover
from A1 A2 have k·n ∈ ZZ using Int_ZF_1_1_L5

by simp
with A1 A2 have (mS)(k·n) = m·k·n

using Int_ZF_2_5_L1 Int_ZF_1_1_L7 by simp
ultimately have ((mS) ◦ (kS))(n) = m·k·n

by simp
also from T1 A2 have m·k·n = ((m·k)S)(n)

using Int_ZF_2_5_L1 by simp
finally show ((mS) ◦ (kS))(n) = ((m·k)S)(n)

by simp
qed
ultimately show (mS) ◦ (kS) = ((m·k)S)

using fun_extension_iff by simp
qed

Embedding integers in slopes preserves order.
lemma (in int1) Int_ZF_2_5_L4: assumes A1: m≤n

shows (mS) ∼ (nS) ∨ (nS)+(-(mS)) ∈ S+

proof -
from A1 have mS ∈ S and nS ∈ S

using Int_ZF_2_L1A Int_ZF_2_5_L1 by auto
moreover from A1 have ∀ k∈ZZ+. (mS)(k) ≤ (nS)(k)

using Int_ZF_1_3_L13B Int_ZF_2_L1A PositiveSet_def Int_ZF_2_5_L1
by simp

ultimately show thesis using Int_ZF_2_3_L4C
by simp

qed

We aim at showing that m 7→ mS is an injection modulo the relation of
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almost equality. To do that we first show that if mS has finite range, then
m = 0.

lemma (in int1) Int_ZF_2_5_L5:
assumes m∈ZZ and mS ∈ FinRangeFunctions(ZZ,ZZ)
shows m=0
using prems FinRangeFunctions_def Int_ZF_2_5_L1 AlmostHoms_def
func_imagedef Int_ZF_1_6_L8 by simp

Embeddings of two integers are almost equal only if the integers are equal.

lemma (in int1) Int_ZF_2_5_L6:
assumes A1: m∈ZZ k∈ZZ and A2: (mS) ∼ (kS)
shows m=k

proof -
from A1 have T: m-k ∈ ZZ using Int_ZF_1_1_L5 by simp
from A1 have (-(kS)) = ((-k)S)

using Int_ZF_2_5_L3 by simp
then have mS + (-(kS)) = (mS) + ((-k)S)

by simp
with A1 have mS + (-(kS)) = ((m-k)S)

using Int_ZF_1_1_L4 Int_ZF_2_5_L3A by simp
moreover from A1 A2 have mS + (-(kS)) ∈ FinRangeFunctions(ZZ,ZZ)

using Int_ZF_2_5_L1 Int_ZF_2_1_L9D by simp
ultimately have (m-k)S ∈ FinRangeFunctions(ZZ,ZZ)

by simp
with T have m-k = 0 using Int_ZF_2_5_L5

by simp
with A1 show m=k by (rule Int_ZF_1_L15)

qed

Embedding of 1 is the identity slope and embedding of zero is a finite range
function.

lemma (in int1) Int_ZF_2_5_L7: shows
1S = id(ZZ)
0S ∈ FinRangeFunctions(ZZ,ZZ)

proof -
have id(ZZ) = {〈x,x〉. x∈ZZ}

using id_def by blast
then show 1S = id(ZZ) using Int_ZF_1_1_L4 by simp
have {0S(n). n∈ZZ} = {0·n. n∈ZZ}

using int_zero_one_are_int Int_ZF_2_5_L1 by simp
also have . . . = {0} using Int_ZF_1_1_L4 int_not_empty

by simp
finally have {0S(n). n∈ZZ} = {0} by simp
then have {0S(n). n∈ZZ} ∈ Fin(ZZ)

using int_zero_one_are_int Finite1_L16 by simp
moreover have 0S: ZZ→ZZ

using int_zero_one_are_int Int_ZF_2_5_L1 AlmostHoms_def
by simp
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ultimately show 0S ∈ FinRangeFunctions(ZZ,ZZ)
using Finite1_L19 by simp

qed

A somewhat technical condition for a embedding of an integer to be ”less or
equal” (in the sense apriopriate for slopes) than the composition of a slope
and another integer (embedding).

lemma (in int1) Int_ZF_2_5_L8:
assumes A1: f ∈ S and A2: N ∈ ZZ M ∈ ZZ and
A3: ∀ n∈ZZ+. M·n ≤ f(N·n)
shows MS ∼ f◦(NS) ∨ (f◦(NS)) + (-(MS)) ∈ S+

proof -
from A1 A2 have MS ∈ S f◦(NS) ∈ S

using Int_ZF_2_5_L1 Int_ZF_2_1_L11 by auto
moreover from A1 A2 A3 have ∀ n∈ZZ+. (MS)(n) ≤ (f◦(NS))(n)

using Int_ZF_2_5_L1 PositiveSet_def Int_ZF_2_1_L10
by simp

ultimately show thesis using Int_ZF_2_3_L4C
by simp

qed

Another technical condition for the composition of a slope and an integer
(embedding) to be ”less or equal” (in the sense apriopriate for slopes) than
embedding of another integer.

lemma (in int1) Int_ZF_2_5_L9:
assumes A1: f ∈ S and A2: N ∈ ZZ M ∈ ZZ and
A3: ∀ n∈ZZ+. f(N·n) ≤ M·n
shows f◦(NS) ∼ (MS) ∨ (MS) + (-(f◦(NS))) ∈ S+

proof -
from A1 A2 have f◦(NS) ∈ S MS ∈ S

using Int_ZF_2_5_L1 Int_ZF_2_1_L11 by auto
moreover from A1 A2 A3 have ∀ n∈ZZ+. (f◦(NS))(n) ≤ (MS)(n)

using Int_ZF_2_5_L1 PositiveSet_def Int_ZF_2_1_L10
by simp

ultimately show thesis using Int_ZF_2_3_L4C
by simp

qed

end
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27 Real ZF.thy

theory Real_ZF imports Int_ZF Ring_ZF_1

begin

The goal of the Real_ZF series of theory files is to provide a contruction of
the set of real numbers. There are several ways to construct real numbers.
Most common start from the rational numbers and use Dedekind cuts or
Cauchy sequences. Real_ZF_x.thy series formalizes an alternative approach
that constructs real numbers directly from the group of integers. Our for-
malization is mostly based on [2]. Different variants of this contruction are
also described in [1] and [3]. I recommend to read these papers, but for the
impatient here is a short description: we take a set of maps s : Z → Z such
that the set {s(m + n)− s(m)− s(n)}n,m∈Z is finite (Z means the integers
here). We call these maps slopes. Slopes form a group with the natural
addition (s + r)(n) = s(n) + r(n). The maps such that the set s(Z) is finite
(finite range functions) form a subgroup of slopes. The additive group of
real numbers is defined as the quotient group of slopes by the (sub)group of
finite range functions. The multiplication is defined as the projection of the
composition of slopes into the resulting quotient (coset) space.

27.1 The definition of real numbers

First we define slopes and real numbers as the set of their classes. The
definition of slopes references the notion of almost homomorphisms defined
in Group_ZF_2.thy: slopes are defined as almost homomorphisms on integers
with integer addition as the operation. Similarly the notions of the first and
second operation on slopes (which is really the addition and composition
of slopes) is derived as a special case of the first and second operation on
almost homomorphisms.

constdefs

Slopes ≡ AlmostHoms(int,IntegerAddition)

SlopeOp1 ≡ AlHomOp1(int,IntegerAddition)

SlopeOp2 ≡ AlHomOp2(int,IntegerAddition)

BoundedIntMaps ≡ FinRangeFunctions(int,int)

SlopeEquivalenceRel ≡ QuotientGroupRel(Slopes,SlopeOp1,BoundedIntMaps)

RealNumbers ≡ Slopes//SlopeEquivalenceRel

RealAddition ≡ ProjFun2(Slopes,SlopeEquivalenceRel,SlopeOp1)
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RealMultiplication ≡ ProjFun2(Slopes,SlopeEquivalenceRel,SlopeOp2)

We first show that we can use theorems proven in some proof contexts (lo-
cales). The locale group1 requires assumption that we deal with an abelian
group. The next lemma allows to use all theorems proven in the context
called group1.
lemma Real_ZF_1_L1: shows group1(int,IntegerAddition)

using group1_axioms.intro group1_def Int_ZF_1_T2 by simp

Real numbers form a ring. This is a special case of the theorem proven in
Ring_ZF_1.thy, where we show the same in general for almost homomor-
phisms rather than slopes.
theorem Real_ZF_1_T1: IsAring(RealNumbers,RealAddition,RealMultiplication)
proof -

let AH = AlmostHoms(int,IntegerAddition)
let Op1 = AlHomOp1(int,IntegerAddition)
let FR = FinRangeFunctions(int,int)
let Op2 = AlHomOp2(int,IntegerAddition)
let R = QuotientGroupRel(AH,Op1,FR)
let A = ProjFun2(AH,R,Op1)
let M = ProjFun2(AH,R,Op2)
have IsAring(AH//R,A,M) using Real_ZF_1_L1 group1.Ring_ZF_1_1_T1

by simp
then show thesis using Slopes_def SlopeOp2_def SlopeOp1_def
BoundedIntMaps_def SlopeEquivalenceRel_def RealNumbers_def
RealAddition_def RealMultiplication_def by simp

qed

We can use theorems proven in group0 and group1 contexts applied to the
group of real numbers.
lemma Real_ZF_1_L2:
group0(RealNumbers,RealAddition)
RealAddition {is commutative on} RealNumbers
group1(RealNumbers,RealAddition)

proof -
have
IsAgroup(RealNumbers,RealAddition)
RealAddition {is commutative on} RealNumbers
using Real_ZF_1_T1 IsAring_def by auto

then show
group0(RealNumbers,RealAddition)
RealAddition {is commutative on} RealNumbers
group1(RealNumbers,RealAddition)
using group1_axioms.intro group0_def group1_def
by auto

qed

Let’s define some notation.
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locale real0 =

fixes real (IR)
defines real_def [simp]: IR ≡ RealNumbers

fixes ra (infixl + 69)
defines ra_def [simp]: a+ b ≡ RealAddition〈a,b〉

fixes rminus :: i⇒i (- _ 72)
defines rminus_def [simp]:-a ≡ GroupInv(IR,RealAddition)(a)

fixes rsub (infixl - 69)
defines rsub_def [simp]: a-b ≡ a+(-b)

fixes rm (infixl · 70)
defines rm_def [simp]: a·b ≡ RealMultiplication〈a,b〉

fixes rzero (0)
defines rzero_def [simp]:
0 ≡ TheNeutralElement(RealNumbers,RealAddition)

fixes rone (1)
defines rone_def [simp]:
1 ≡ TheNeutralElement(RealNumbers,RealMultiplication)

fixes rtwo (2)
defines rtwo_def [simp]: 2 ≡ 1+1

fixes non_zero (IR0)
defines non_zero_def[simp]: IR0 ≡ IR-{0}

fixes inv (_−1 [90] 91)
defines inv_def[simp]:
a−1 ≡ GroupInv(IR0,restrict(RealMultiplication,IR0×IR0))(a)

In real0 context all theorems proven in the ring0, context are valid.

lemma (in real0) Real_ZF_1_L3: shows
ring0(IR,RealAddition,RealMultiplication)
using Real_ZF_1_T1 ring0_def ring0.Ring_ZF_1_L1
by auto

Lets try out our notation to see that zero and one are real numbers.

lemma (in real0) Real_ZF_1_L4: shows 0∈IR 1∈IR
using Real_ZF_1_L3 ring0.Ring_ZF_1_L2 by auto

The lemma below lists some properties that require one real number to state.

lemma (in real0) Real_ZF_1_L5: assumes A1: a∈IR
shows
(-a) ∈ IR
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(-(-a)) = a
a+0 = a
0+a = a
a·1 = a
1·a = a
a-a = 0
a-0 = a
using prems Real_ZF_1_L3 ring0.Ring_ZF_1_L3 by auto

The lemma below lists some properties that require two real numbers to
state.

lemma (in real0) Real_ZF_1_L6: assumes a∈IR b∈IR
shows
a+b ∈ IR
a-b ∈ IR
a·b ∈ IR
a+b = b+a
(-a)·b = -(a·b)
a·(-b) = -(a·b)
using prems Real_ZF_1_L3 ring0.Ring_ZF_1_L4 ring0.Ring_ZF_1_L7
by auto

Multiplication of reals is associative.

lemma (in real0) Real_ZF_1_L6A: assumes a∈IR b∈IR c∈IR
shows a·(b·c) = (a·b)·c
using prems Real_ZF_1_L3 ring0.Ring_ZF_1_L11
by simp

Addition is distributive with respect to multiplication.

lemma (in real0) Real_ZF_1_L7: assumes a∈IR b∈IR c∈IR
shows
a·(b+c) = a·b + a·c
(b+c)·a = b·a + c·a
a·(b-c) = a·b - a·c
(b-c)·a = b·a - c·a
using prems Real_ZF_1_L3 ring0.ring_oper_distr ring0.Ring_ZF_1_L8
by auto

A simple rearrangement with four real numbers.

lemma (in real0) Real_ZF_1_L7A:
assumes a∈IR b∈IR c∈IR d∈IR
shows a-b + (c-d) = a+c-b-d
using prems Real_ZF_1_L2 group0.group0_4_L8A by simp

RealAddition is defined as the projection of the first operation on slopes
(that is, slope addition) on the quotient (slopes divided by the ”almost
equal” relation. The next lemma plays with definitions to show that this
is the same as the operation induced on the appriopriate quotient group.
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The names AH, Op1 and FR are used in group1 context to denote almost
homomorphisms, the first operation on AH and finite range functions resp.

lemma Real_ZF_1_L8: assumes
AH = AlmostHoms(int,IntegerAddition) and
Op1 = AlHomOp1(int,IntegerAddition) and
FR = FinRangeFunctions(int,int)
shows RealAddition = QuotientGroupOp(AH,Op1,FR)
using prems RealAddition_def SlopeEquivalenceRel_def
QuotientGroupOp_def Slopes_def SlopeOp1_def BoundedIntMaps_def

by simp

The symbol 0 in the real0 context is defined as the neutral element of real
addition. The next lemma shows that this is the same as the neutral element
of the appriopriate quotient group.

lemma (in real0) Real_ZF_1_L9: assumes
AH = AlmostHoms(int,IntegerAddition) and
Op1 = AlHomOp1(int,IntegerAddition) and
FR = FinRangeFunctions(int,int) and
r = QuotientGroupRel(AH,Op1,FR)
shows
TheNeutralElement(AH//r,QuotientGroupOp(AH,Op1,FR)) = 0
SlopeEquivalenceRel = r
using prems Slopes_def Real_ZF_1_L8 RealNumbers_def
SlopeEquivalenceRel_def SlopeOp1_def BoundedIntMaps_def

by auto

Zero is the class of any finite range function.

lemma (in real0) Real_ZF_1_L10:
assumes A1: s ∈ Slopes
shows SlopeEquivalenceRel{s} = 0 ←→ s ∈ BoundedIntMaps

proof -
let AH = AlmostHoms(int,IntegerAddition)
let Op1 = AlHomOp1(int,IntegerAddition)
let FR = FinRangeFunctions(int,int)
let r = QuotientGroupRel(AH,Op1,FR)
let e = TheNeutralElement(AH//r,QuotientGroupOp(AH,Op1,FR))
from A1 have
group1(int,IntegerAddition)
s∈AH
using Real_ZF_1_L1 Slopes_def
by auto

then have r{s} = e ←→ s ∈ FR
using group1.Group_ZF_3_3_L5 by simp

moreover have
r = SlopeEquivalenceRel
e = 0
FR = BoundedIntMaps
using SlopeEquivalenceRel_def Slopes_def SlopeOp1_def
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BoundedIntMaps_def Real_ZF_1_L9 by auto
ultimately show thesis by simp

qed

We will need a couple of results from Group_ZF_3.thy The first two that
state that the definition of addition and multiplication of real numbers
are consistent, that is the result does not depend on the choice of the
slopes representing the numbers. The second one implies that what we call
SlopeEquivalenceRel is actually an equivalence relation on the set of slopes.
We also show that the neutral element of the multiplicative operation on
reals (in short number 1) is the class of the identity function on integers.

lemma Real_ZF_1_L11: shows
Congruent2(SlopeEquivalenceRel,SlopeOp1)
Congruent2(SlopeEquivalenceRel,SlopeOp2)
SlopeEquivalenceRel ⊆ Slopes × Slopes
equiv(Slopes, SlopeEquivalenceRel)
SlopeEquivalenceRel{id(int)} =
TheNeutralElement(RealNumbers,RealMultiplication)
BoundedIntMaps ⊆ Slopes

proof -
let G = int
let f = IntegerAddition
let AH = AlmostHoms(int,IntegerAddition)
let Op1 = AlHomOp1(int,IntegerAddition)
let Op2 = AlHomOp2(int,IntegerAddition)
let FR = FinRangeFunctions(int,int)
let R = QuotientGroupRel(AH,Op1,FR)
have
Congruent2(R,Op1)
Congruent2(R,Op2)

using Real_ZF_1_L1 group1.Group_ZF_3_4_L13A group1.Group_ZF_3_3_L4
by auto

then show
Congruent2(SlopeEquivalenceRel,SlopeOp1)
Congruent2(SlopeEquivalenceRel,SlopeOp2)
using SlopeEquivalenceRel_def SlopeOp1_def Slopes_def
BoundedIntMaps_def SlopeOp2_def by auto

have equiv(AH,R)
using Real_ZF_1_L1 group1.Group_ZF_3_3_L3 by simp

then show equiv(Slopes,SlopeEquivalenceRel)
using BoundedIntMaps_def SlopeEquivalenceRel_def SlopeOp1_def Slopes_def
by simp

then show SlopeEquivalenceRel ⊆ Slopes × Slopes
using equiv_type by simp

have R{id(int)} = TheNeutralElement(AH//R,ProjFun2(AH,R,Op2))
using Real_ZF_1_L1 group1.Group_ZF_3_4_T2 by simp

then show SlopeEquivalenceRel{id(int)} =
TheNeutralElement(RealNumbers,RealMultiplication)
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using Slopes_def RealNumbers_def
SlopeEquivalenceRel_def SlopeOp1_def BoundedIntMaps_def
RealMultiplication_def SlopeOp2_def
by simp

have FR ⊆ AH using Real_ZF_1_L1 group1.Group_ZF_3_3_L1
by simp

then show BoundedIntMaps ⊆ Slopes
using BoundedIntMaps_def Slopes_def by simp

qed

A one-side implication of the equivalence from Real_ZF_1_L10: the class of
a bounded integer map is the real zero.

lemma (in real0) Real_ZF_1_L11A: assumes s ∈ BoundedIntMaps
shows SlopeEquivalenceRel{s} = 0
using prems Real_ZF_1_L11 Real_ZF_1_L10 by auto

The next lemma is rephrases the result from Group_ZF_3.thy that says that
the negative (the group inverse with respect to real addition) of the class of
a slope is the class of that slope composed with the integer additive group
inverse. The result and proof is not very readable as we use mostly generic
set theory notation with long names here. Real_ZF_1.thy contains the same
statement written in a more readable notation: [−s] = −[s].

lemma (in real0) Real_ZF_1_L12: assumes A1: s ∈ Slopes and
Dr: r = QuotientGroupRel(Slopes,SlopeOp1,BoundedIntMaps)
shows r{GroupInv(int,IntegerAddition) O s} = -(r{s})

proof -
let G = int
let f = IntegerAddition
let AH = AlmostHoms(int,IntegerAddition)
let Op1 = AlHomOp1(int,IntegerAddition)
let FR = FinRangeFunctions(int,int)
let F = ProjFun2(Slopes,r,SlopeOp1)
from A1 Dr have
group1(G, f)
s ∈ AlmostHoms(G, f)
r = QuotientGroupRel(
AlmostHoms(G, f), AlHomOp1(G, f), FinRangeFunctions(G, G))
and F = ProjFun2(AlmostHoms(G, f), r, AlHomOp1(G, f))
using Real_ZF_1_L1 Slopes_def SlopeOp1_def BoundedIntMaps_def
by auto

then have
r{GroupInv(G, f) O s} =
GroupInv(AlmostHoms(G, f) // r, F)(r {s})
using group1.Group_ZF_3_3_L6 by simp

with Dr show thesis
using RealNumbers_def Slopes_def SlopeEquivalenceRel_def RealAddition_def
by simp

qed
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Two classes are equal iff the slopes that represent them are almost equal.

lemma Real_ZF_1_L13: assumes s ∈ Slopes p ∈ Slopes
and r = SlopeEquivalenceRel
shows r{s} = r{p} ←→ 〈s,p〉 ∈ r
using prems Real_ZF_1_L11 eq_equiv_class equiv_class_eq
by blast

Identity function on integers is a slope.

lemma Real_ZF_1_L14: shows id(int) ∈ Slopes
proof -

have id(int) ∈ AlmostHoms(int,IntegerAddition)
using Real_ZF_1_L1 group1.Group_ZF_3_4_L15
by simp

then show thesis using Slopes_def by simp
qed

This concludes the easy part of the construction that follows from the fact
that slope equivalence classes form a ring. It is easy to see that multipli-
cation of classes of almost homomorphisms is not commutative in general.
The remaining properties of real numbers, like commutativity of multipli-
cation and the existence of multiplicative inverses have to be proven using
properties of the group of integers, rather that in general setting of abelian
groups.

end
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28 Real ZF 1.thy

theory Real_ZF_1 imports Real_ZF Int_ZF_2 OrderedField_ZF

begin

In this theory file we continue the construction of real numbers started
in Real_ZF.thy to a succesful conclusion. We put here those parts of the
construction that can not be done in the general settings of abelian groups
and require integers.

28.1 Definitions and notation

In this section we define notions and notation needed for the rest of the
construction.

The order on the set of real numbers is constructed by specifying the set of
positive reals. This is defined as the projection of the set of positive slopes.
A slope is positive if it takes an infinite number of posititive values on the
positive integers (see Int_ZF_2.thy for properties of positive slopes). The
order relation on real numbers is defined by prescribing the set of positive
numbers (see section ”Alternative definitions” in OrderedGroup_ZF.thy.).

constdefs

PositiveSlopes ≡ {s ∈ Slopes.
s(PositiveIntegers) ∩ PositiveIntegers /∈ Fin(int)}

PositiveReals ≡ {SlopeEquivalenceRel{s}. s ∈ PositiveSlopes}

OrderOnReals ≡ OrderFromPosSet(RealNumbers,RealAddition,PositiveReals)

The next locale extends the locale real0 to define notation specific to the
construction of real numbers. The notation follows the one defined in
Int_ZF_2.thy. If m is an integer, then the real number which is the class
of the slope n 7→ m · n is denoted mR. For a real number a notation bac
means the largest integer m such that the real version of it (that is, mR) is
not greater than a. For an integer m and a subset of reals S the expression
Γ(S, m) is defined as max{bpR ·xc : x ∈ S}. This is plays a role in the proof
of completeness of real numbers. We also reuse some notation defined in the
int0 context, like ZZ+ (the set of positive integers) and abs(m) ( the absolute
value of an integer, and some defined in the int1 context, like the addition
( +) and composition (◦ of slopes.

locale real1 = real0 +

fixes AlEq (infix ∼ 68)
defines AlEq_def [simp]: s ∼ r ≡ 〈s,r〉 ∈ SlopeEquivalenceRel
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fixes slope_add (infix + 70)
defines slope_add_def [simp]:
s + r ≡ SlopeOp1〈s,r〉

fixes slope_comp (infix ◦ 71)
defines slope_comp_def [simp]: s ◦ r ≡ SlopeOp2〈s,r〉

fixes slopes (S)
defines slopes_def [simp]: S ≡ AlmostHoms(int,IntegerAddition)

fixes posslopes (S+)
defines posslopes_def [simp]: S+ ≡ PositiveSlopes

fixes slope_class ([ _ ])
defines slope_class_def [simp]: [f] ≡ SlopeEquivalenceRel{f}

fixes slope_neg :: i⇒i (-_ [90] 91)
defines slope_neg_def [simp]: -s ≡ GroupInv(int,IntegerAddition) O s

fixes lesseqr (infix ≤ 60)
defines lesseqr_def [simp]: a ≤ b ≡ 〈a,b〉 ∈ OrderOnReals

fixes sless (infix < 60)
defines sless_def [simp]: a < b ≡ a≤b ∧ a6=b

fixes positivereals (IR+)
defines positivereals_def [simp]: IR+ ≡ PositiveSet(IR,RealAddition,OrderOnReals)

fixes intembed (_R [90] 91)
defines intembed_def [simp]:
mR ≡ [{〈n,IntegerMultiplication〈m,n〉 〉. n ∈ int}]

fixes floor (b _ c)
defines floor_def [simp]:
bac ≡ Maximum(IntegerOrder,{m ∈ int. mR ≤ a})

fixes Γ
defines Γ_def [simp]: Γ(S,p) ≡ Maximum(IntegerOrder,{bpR·xc. x∈S})

fixes ia (infixl + 69)
defines ia_def [simp]: a+b ≡ IntegerAddition<a,b>

fixes iminus :: i⇒i (- _ 72)
defines rminus_def [simp]: -a ≡ GroupInv(int,IntegerAddition)(a)

fixes isub (infixl - 69)
defines isub_def [simp]: a-b ≡ a+ (- b)
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fixes intpositives (ZZ+)
defines intpositives_def [simp]:
ZZ+ ≡ PositiveSet(int,IntegerAddition,IntegerOrder)

fixes zlesseq (infix ≤ 60)
defines lesseq_def [simp]: m ≤ n ≡ 〈m,n〉 ∈ IntegerOrder

fixes imult (infixl · 70)
defines imult_def [simp]: a·b ≡ IntegerMultiplication<a,b>

fixes izero (0Z)
defines izero_def [simp]: 0Z ≡ TheNeutralElement(int,IntegerAddition)

fixes ione (1Z)
defines ione_def [simp]: 1Z ≡ TheNeutralElement(int,IntegerMultiplication)

fixes itwo (2Z)
defines itwo_def [simp]: 2Z ≡ 1Z+1Z

fixes abs
defines abs_def [simp]:
abs(m) ≡ AbsoluteValue(int,IntegerAddition,IntegerOrder)(m)

fixes δ
defines δ_def [simp] : δ(s,m,n) ≡ s(m+n)-s(m)-s(n)

28.2 Multiplication of real numbers

Multiplication of real numbers is defined as a projection of composition of
slopes onto the space of equivalence classes of slopes. Thus, the product of
the real numbers given as classes of slopes s and r is defined as the class of
s◦r. The goal of this section is to show that multiplication defined this way
is commutative.

Let’s recall a theorem from Int_ZF_2.thy that states that if f, g are slopes,
then f ◦ g is equivalent to g ◦ f . Here we conclude from that that the classes
of f ◦ g and g ◦ f are the same.
lemma (in real1) Real_ZF_1_1_L2: assumes A1: f ∈ S g ∈ S

shows [f◦g] = [g◦f]
proof -

from A1 have f◦g ∼ g◦f
using Slopes_def int1.Arthan_Th_9 SlopeOp1_def BoundedIntMaps_def
SlopeEquivalenceRel_def SlopeOp2_def by simp

then show thesis using Real_ZF_1_L11 equiv_class_eq
by simp

qed

Classes of slopes are real numbers.
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lemma (in real1) Real_ZF_1_1_L3: assumes A1: f ∈ S
shows [f] ∈ IR

proof -
from A1 have [f] ∈ Slopes//SlopeEquivalenceRel

using Slopes_def quotientI by simp
then show [f] ∈ IR using RealNumbers_def by simp

qed

Each real number is a class of a slope.

lemma (in real1) Real_ZF_1_1_L3A: assumes A1: a∈IR
shows ∃ f∈S . a = [f]

proof -
from A1 have a ∈ S//SlopeEquivalenceRel

using RealNumbers_def Slopes_def by simp
then show thesis using quotient_def

by simp
qed

It is useful to have the definition of addition and multiplication in the real1

context notation.

lemma (in real1) Real_ZF_1_1_L4:
assumes A1: f ∈ S g ∈ S
shows
[f] + [g] = [f+g]
[f] · [g] = [f◦g]

proof -
let r = SlopeEquivalenceRel
have [f]·[g] = ProjFun2(S,r,SlopeOp2)〈[f],[g]〉

using RealMultiplication_def Slopes_def by simp
also from A1 have . . . = [f◦g]

using Real_ZF_1_L11 EquivClass_1_L10 Slopes_def
by simp

finally show [f] · [g] = [f◦g] by simp
have [f] + [g] = ProjFun2(S,r,SlopeOp1)〈[f],[g]〉

using RealAddition_def Slopes_def by simp
also from A1 have . . . = [f+g]

using Real_ZF_1_L11 EquivClass_1_L10 Slopes_def
by simp

finally show [f] + [g] = [f+g] by simp
qed

The next lemma is essentially the same as Real_ZF_1_L12, but written in the
notation defined in the real1 context. It states that if f is a slope, then
−[f ] = [−f ].

lemma (in real1) Real_ZF_1_1_L4A: assumes f ∈ S
shows [-f] = -[f]
using prems Slopes_def SlopeEquivalenceRel_def Real_ZF_1_L12
by simp
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Subtracting real numbers correspods to adding the opposite slope.

lemma (in real1) Real_ZF_1_1_L4B: assumes A1: f ∈ S g ∈ S
shows [f] - [g] = [f+(-g)]

proof -
from A1 have [f+(-g)] = [f] + [-g]

using Slopes_def BoundedIntMaps_def int1.Int_ZF_2_1_L12
Real_ZF_1_1_L4 by simp

with A1 show [f] - [g] = [f+(-g)]
using Real_ZF_1_1_L4A by simp

qed

Multiplication of real numbers is commutative.

theorem (in real1) real_mult_commute: assumes A1: a∈IR b∈IR
shows a·b = b·a

proof -
from A1 have
∃ f∈S . a = [f]
∃ g∈S . b = [g]
using Real_ZF_1_1_L3A by auto

then obtain f g where
f ∈ S g ∈ S and a = [f] b = [g]
by auto

then show a·b = b·a
using Real_ZF_1_1_L4 Real_ZF_1_1_L2 by simp

qed

Multiplication is commutative on reals.

lemma real_mult_commutative: shows
RealMultiplication {is commutative on} RealNumbers
using real1.real_mult_commute IsCommutative_def
by simp

The neutral element of multiplication of reals (denoted as 1 in the real1

context) is the class of identity function on integers. This is really shown
in Real_ZF_1_L11, here we only rewrite it in the notation used in the real1

context.

lemma (in real1) real_one_cl_identity: shows [id(int)] = 1
using Real_ZF_1_L11 by simp

If f is bounded, then its class is the neutral element of additive operation
on reals (denoted as 0 in the real1 context).

lemma (in real1) real_zero_cl_bounded_map:
assumes f ∈ BoundedIntMaps shows [f] = 0
using prems Real_ZF_1_L11A by simp

Two real numbers are equal iff the slopes that represent them are almost
equal. This is proven in Real_ZF_1_L13, here we just rewrite it in the notation
used in the real1 context.
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lemma (in real1) Real_ZF_1_1_L5:
assumes f ∈ S g ∈ S
shows [f] = [g] ←→ f ∼ g
using prems Slopes_def Real_ZF_1_L13 by simp

If the pair of function belongs to the slope equivalence relation, then their
classes are equal. This is convenient, because we don’t need to assume that
f, g are slopes (follows from the fact that f ∼ g).

lemma (in real1) Real_ZF_1_1_L5A: assumes f ∼ g
shows [f] = [g]
using prems Real_ZF_1_L11 Slopes_def Real_ZF_1_1_L5
by auto

Identity function on integers is a slope. This is proven in Real_ZF_1_L13,
here we just rewrite it in the notation used in the real1 context.

lemma (in real1) id_on_int_is_slope: shows id(int) ∈ S
using Real_ZF_1_L14 Slopes_def by simp

A result from Int_ZF_2.thy: the identity function on integers is not almost
equal to any bounded function.

lemma (in real1) Real_ZF_1_1_L7:
assumes A1: f ∈ BoundedIntMaps
shows ¬(id(int) ∼ f)
using prems Slopes_def SlopeOp1_def BoundedIntMaps_def
SlopeEquivalenceRel_def BoundedIntMaps_def int1.Int_ZF_2_3_L12

by simp

Zero is not one.

lemma (in real1) real_zero_not_one: shows 16=0
proof -

{ assume A1: 1=0
have ∃ f ∈ S. 0 = [f]

using Real_ZF_1_L4 Real_ZF_1_1_L3A by simp
with A1 have
∃ f ∈ S. [id(int)] = [f] ∧ [f] = 0
using real_one_cl_identity by auto

then have False using Real_ZF_1_1_L5 Slopes_def
Real_ZF_1_L10 Real_ZF_1_1_L7 id_on_int_is_slope
by auto

} then show 1 6=0 by auto
qed

Negative of a real number is a real number. Property of groups.

lemma (in real1) Real_ZF_1_1_L8: assumes a∈IR shows (-a) ∈ IR
using prems Real_ZF_1_L2 group0.inverse_in_group
by simp

An identity with three real numbers.
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lemma (in real1) Real_ZF_1_1_L9: assumes a∈IR b∈IR c∈IR
shows a·(b·c) = a·c·b
using prems real_mult_commutative Real_ZF_1_L3 ring0.Ring_ZF_2_L4
by simp

28.3 The order on reals

In this section we show that the order relation defined by prescribing the
set of positive reals as the projection of the set of positive slopes makes the
ring of real numbers into an ordered ring. We also collect the facts about
ordered groups and rings that we use in the construction.

Positive slopes are slopes and positive reals are real.

lemma Real_ZF_1_2_L1: shows
PositiveSlopes ⊆ Slopes
PositiveReals ⊆ RealNumbers

proof -
have PositiveSlopes =
{s ∈ Slopes. s(PositiveIntegers) ∩ PositiveIntegers /∈ Fin(int)}
using PositiveSlopes_def by simp

then show PositiveSlopes ⊆ Slopes by (rule subset_with_property)
then have
{SlopeEquivalenceRel{s}. s ∈ PositiveSlopes } ⊆
Slopes//SlopeEquivalenceRel
using EquivClass_1_L1A by simp

then show PositiveReals ⊆ RealNumbers
using PositiveReals_def RealNumbers_def by simp

qed

Positive reals are the same as classes of a positive slopes.

lemma (in real1) Real_ZF_1_2_L2:
shows a ∈ PositiveReals ←→ (∃ f∈S+. a = [f])

proof
assume a ∈ PositiveReals
then have a ∈ {([s]). s ∈ S+} using PositiveReals_def

by simp
then show ∃ f∈S+. a = [f] by auto

next assume ∃ f∈S+. a = [f]
then have a ∈ {([s]). s ∈ S+} by auto
then show a ∈ PositiveReals using PositiveReals_def

by simp
qed

Let’s recall from Int_ZF_2.thy that the sum and composition of positive
slopes is a positive slope.

lemma (in real1) Real_ZF_1_2_L3:
assumes f∈S+ g∈S+

shows
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f+g ∈ S+

f◦g ∈ S+

using prems Slopes_def PositiveSlopes_def PositiveIntegers_def
SlopeOp1_def int1.sum_of_pos_sls_is_pos_sl
SlopeOp2_def int1.comp_of_pos_sls_is_pos_sl

by auto

Bounded integer maps are not positive slopes.

lemma (in real1) Real_ZF_1_2_L5:
assumes f ∈ BoundedIntMaps
shows f /∈ S+

using prems BoundedIntMaps_def Slopes_def PositiveSlopes_def
PositiveIntegers_def int1.Int_ZF_2_3_L1B by simp

The set of positive reals is closed under addition and multiplication. Zero
(the neutral element of addition) is not a positive number.

lemma (in real1) Real_ZF_1_2_L6: shows
PositiveReals {is closed under} RealAddition
PositiveReals {is closed under} RealMultiplication
0 /∈ PositiveReals

proof -
{ fix a fix b

assume a ∈ PositiveReals and b ∈ PositiveReals
then obtain f g where
I: f ∈ S+ g ∈ S+ and
II: a = [f] b = [g]
using Real_ZF_1_2_L2 by auto

then have f ∈ S g ∈ S using Real_ZF_1_2_L1 Slopes_def
by auto

with I II have
a+b ∈ PositiveReals ∧ a·b ∈ PositiveReals
using Real_ZF_1_1_L4 Real_ZF_1_2_L3 Real_ZF_1_2_L2
by auto

} then show
PositiveReals {is closed under} RealAddition
PositiveReals {is closed under} RealMultiplication

using IsOpClosed_def
by auto

{ assume 0 ∈ PositiveReals
then obtain f where f ∈ S+ and 0 = [f]

using Real_ZF_1_2_L2 by auto
then have False

using Real_ZF_1_2_L1 Slopes_def Real_ZF_1_L10 Real_ZF_1_2_L5
by auto

} then show 0 /∈ PositiveReals by auto
qed

If a class of a slope f is not zero, then either f is a positive slope or −f is
a positive slope. The real proof is in Int_ZF_2.thy.
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lemma (in real1) Real_ZF_1_2_L7:
assumes A1: f ∈ S and A2: [f] 6= 0
shows (f ∈ S+) Xor ((-f) ∈ S+)
using prems Slopes_def SlopeEquivalenceRel_def BoundedIntMaps_def
PositiveSlopes_def PositiveIntegers_def
Real_ZF_1_L10 int1.Int_ZF_2_3_L8 by simp

The next lemma rephrases Int_ZF_2_3_L10 in the notation used in real1

context.

lemma (in real1) Real_ZF_1_2_L8:
assumes A1: f ∈ S g ∈ S
and A2: (f ∈ S+) Xor (g ∈ S+)
shows ([f] ∈ PositiveReals) Xor ([g] ∈ PositiveReals)
using prems PositiveReals_def SlopeEquivalenceRel_def Slopes_def
SlopeOp1_def BoundedIntMaps_def PositiveSlopes_def PositiveIntegers_def
int1.Int_ZF_2_3_L10 by simp

The trichotomy law for the (potential) order on reals: if a 6= 0, then either
a is positive or −a is potitive.

lemma (in real1) Real_ZF_1_2_L9:
assumes A1: a∈IR and A2: a6=0
shows (a ∈ PositiveReals) Xor ((-a) ∈ PositiveReals)

proof -
from A1 obtain f where I: f ∈ S a = [f]

using Real_ZF_1_1_L3A by auto
with A2 have ([f] ∈ PositiveReals) Xor ([-f] ∈ PositiveReals)

using Slopes_def BoundedIntMaps_def int1.Int_ZF_2_1_L12
Real_ZF_1_2_L7 Real_ZF_1_2_L8 by simp

with I show (a ∈ PositiveReals) Xor ((-a) ∈ PositiveReals)
using Real_ZF_1_1_L4A by simp

qed

Finally we are ready to prove that real numbers form an ordered ring. with
no zero divisors.

theorem reals_are_ord_ring: shows
IsAnOrdRing(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)
OrderOnReals {is total on} RealNumbers
PositiveSet(RealNumbers,RealAddition,OrderOnReals) = PositiveReals
HasNoZeroDivs(RealNumbers,RealAddition,RealMultiplication)

proof -
let R = RealNumbers
let A = RealAddition
let M = RealMultiplication
let P = PositiveReals
let r = OrderOnReals
let z = TheNeutralElement(R, A)
have I:
ring0(R, A, M)
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M {is commutative on} R
P ⊆ R
P {is closed under} A
TheNeutralElement(R, A) /∈ P
∀ a∈R. a 6= z −→ (a ∈ P) Xor (GroupInv(R, A)(a) ∈ P)
P {is closed under} M
r = OrderFromPosSet(R, A, P)
using real0.Real_ZF_1_L3 real_mult_commutative Real_ZF_1_2_L1
real1.Real_ZF_1_2_L6 real1.Real_ZF_1_2_L9 OrderOnReals_def

by auto
then show IsAnOrdRing(R, A, M, r)

by (rule ring0.ring_ord_by_positive_set)
from I show r {is total on} R

by (rule ring0.ring_ord_by_positive_set)
from I show PositiveSet(R,A,r) = P

by (rule ring0.ring_ord_by_positive_set)
from I show HasNoZeroDivs(R,A,M)

by (rule ring0.ring_ord_by_positive_set)
qed

All theorems proven in the ring1 (about ordered rings), group3 (about or-
dered groups) and group1 (about groups) contexts are valid as applied to
ordered real numbers with addition and (real) order.

lemma Real_ZF_1_2_L10: shows
ring1(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)
IsAnOrdGroup(RealNumbers,RealAddition,OrderOnReals)
group3(RealNumbers,RealAddition,OrderOnReals)
OrderOnReals {is total on} RealNumbers

proof -
show ring1(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)

using reals_are_ord_ring OrdRing_ZF_1_L2 by simp
then show
IsAnOrdGroup(RealNumbers,RealAddition,OrderOnReals)
group3(RealNumbers,RealAddition,OrderOnReals)
OrderOnReals {is total on} RealNumbers
using ring1.OrdRing_ZF_1_L4 by auto

qed

If a = b or b− a is positive, then a is less or equal b.

lemma (in real1) Real_ZF_1_2_L11: assumes A1: a∈IR b∈IR and
A3: a=b ∨ b-a ∈ PositiveReals
shows a≤b
using prems reals_are_ord_ring Real_ZF_1_2_L10
group3.OrderedGroup_ZF_1_L30 by simp

A sufficient condition for two classes to be in the real order.

lemma (in real1) Real_ZF_1_2_L12: assumes A1: f ∈ S g ∈ S and
A2: f∼g ∨ (g + (-f)) ∈ S+
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shows [f] ≤ [g]
proof -

from A1 A2 have [f] = [g] ∨ [g]-[f] ∈ PositiveReals
using Real_ZF_1_1_L5A Real_ZF_1_2_L2 Real_ZF_1_1_L4B
by auto

with A1 show [f] ≤ [g] using Real_ZF_1_1_L3 Real_ZF_1_2_L11
by simp

qed

Taking negative on both sides reverses the inequality, a case with an inverse
on one side. Property of ordered groups.

lemma (in real1) Real_ZF_1_2_L13:
assumes A1: a∈IR and A2: (-a) ≤ b
shows (-b) ≤ a
using prems Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L5AG
by simp

Real order is antisymmetric.

lemma (in real1) real_ord_antisym:
assumes A1: a≤b b≤a shows a=b

proof -
from A1 have
group3(RealNumbers,RealAddition,OrderOnReals)
〈a,b〉 ∈ OrderOnReals 〈b,a〉 ∈ OrderOnReals
using Real_ZF_1_2_L10 by auto

then show a=b by (rule group3.group_order_antisym)
qed

Real order is transitive.

lemma (in real1) real_ord_transitive: assumes A1: a≤b b≤c
shows a≤c

proof -
from A1 have
group3(RealNumbers,RealAddition,OrderOnReals)
〈a,b〉 ∈ OrderOnReals 〈b,c〉 ∈ OrderOnReals
using Real_ZF_1_2_L10 by auto

then have 〈a,c〉 ∈ OrderOnReals
by (rule group3.Group_order_transitive)

then show a≤c by simp
qed

We can multiply both sides of an inequality by a nonnegative real number.

lemma (in real1) Real_ZF_1_2_L14:
assumes a≤b and 0≤c
shows
a·c ≤ b·c
c·a ≤ c·b
using prems Real_ZF_1_2_L10 ring1.OrdRing_ZF_1_L9
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by auto

A special case of Real_ZF_1_2_L14: we can multiply an inequality by a real
number.

lemma (in real1) Real_ZF_1_2_L14A:
assumes A1: a≤b and A2: c∈IR+

shows c·a ≤ c·b
using prems Real_ZF_1_2_L10 ring1.OrdRing_ZF_1_L9A
by simp

In the real1 context notation a ≤ b implies that a and b are real numbers.

lemma (in real1) Real_ZF_1_2_L15: assumes a≤b shows a∈IR b∈IR
using prems Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L4
by auto

a ≤ b implies that 0 ≤ b− a.

lemma (in real1) Real_ZF_1_2_L16: assumes a≤b
shows 0 ≤ b-a
using prems Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L12A
by simp

A sum of nonnegative elements is nonnegative.

lemma (in real1) Real_ZF_1_2_L17: assumes 0≤a 0≤b
shows 0 ≤ a+b
using prems Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L12
by simp

We can add sides of two inequalities

lemma (in real1) Real_ZF_1_2_L18: assumes a≤b c≤d
shows a+c ≤ b+d
using prems Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L5B
by simp

The order on real is reflexive.

lemma (in real1) real_ord_refl: assumes a∈IR shows a≤a
using prems Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L3
by simp

We can add a real number to both sides of an inequality.

lemma (in real1) add_num_to_ineq: assumes a≤b and c∈IR
shows a+c ≤ b+c
using prems Real_ZF_1_2_L10 IsAnOrdGroup_def by simp

We can put a number on the other side of an inequality, changing its sign.

lemma (in real1) Real_ZF_1_2_L19:
assumes a∈IR b∈IR and c ≤ a+b
shows c-b ≤ a
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using prems Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L9C
by simp

What happens when one real number is not greater or equal than another?

lemma (in real1) Real_ZF_1_2_L20: assumes a∈IR b∈IR and ¬(a≤b)
shows b < a

proof -
from prems have I:
group3(IR,RealAddition,OrderOnReals)
OrderOnReals {is total on} IR
a∈IR b∈IR ¬(〈a,b〉 ∈ OrderOnReals)
using Real_ZF_1_2_L10 by auto

then have 〈b,a〉 ∈ OrderOnReals
by (rule group3.OrderedGroup_ZF_1_L8)

then have b ≤ a by simp
moreover from I have a 6=b by (rule group3.OrderedGroup_ZF_1_L8)
ultimately show b < a by auto

qed

We can put a number on the other side of an inequality, changing its sign,
version with a minus.

lemma (in real1) Real_ZF_1_2_L21:
assumes a∈IR b∈IR and c ≤ a-b
shows c+b ≤ a
using prems Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L5J
by simp

The order on reals is a relation on reals.

lemma (in real1) Real_ZF_1_2_L22: shows OrderOnReals ⊆ IR×IR
using Real_ZF_1_2_L10 IsAnOrdGroup_def
by simp

A set that is bounded above in the sense defined by order on reals is a subset
of real numbers.

lemma (in real1) Real_ZF_1_2_L23:
assumes A1: IsBoundedAbove(A,OrderOnReals)
shows A ⊆ IR
using A1 Real_ZF_1_2_L22 Order_ZF_3_L1A
by blast

Properties of the maximum of three real numbers.

lemma (in real1) Real_ZF_1_2_L24:
assumes A1: a∈IR b∈IR c∈IR
shows
Maximum(OrderOnReals,{a,b,c}) ∈ {a,b,c}
Maximum(OrderOnReals,{a,b,c}) ∈ IR
a ≤ Maximum(OrderOnReals,{a,b,c})
b ≤ Maximum(OrderOnReals,{a,b,c})
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c ≤ Maximum(OrderOnReals,{a,b,c})
proof -

have IsLinOrder(IR,OrderOnReals)
using Real_ZF_1_2_L10 group3.group_ord_total_is_lin
by simp

with A1 show
Maximum(OrderOnReals,{a,b,c}) ∈ {a,b,c}
Maximum(OrderOnReals,{a,b,c}) ∈ IR
a ≤ Maximum(OrderOnReals,{a,b,c})
b ≤ Maximum(OrderOnReals,{a,b,c})
c ≤ Maximum(OrderOnReals,{a,b,c})
using Finite_ZF_1_L2A by auto

qed

lemma (in real1) real_strict_ord_transit:
assumes A1: a≤b and A2: b<c
shows a<c

proof -
from A1 A2 have I:
group3(IR,RealAddition,OrderOnReals)
〈a,b〉 ∈ OrderOnReals 〈b,c〉 ∈ OrderOnReals ∧ b6=c
using Real_ZF_1_2_L10 by auto

then have 〈a,c〉 ∈ OrderOnReals ∧ a6=c by (rule group3.group_strict_ord_transit)
then show a<c by simp

qed

We can multiply a right hand side of an inequality between positive real
numbers by a number that is greater than one.

lemma (in real1) Real_ZF_1_2_L25:
assumes b ∈ IR+ and a≤b and 1<c
shows a<b·c
using prems reals_are_ord_ring Real_ZF_1_2_L10 ring1.OrdRing_ZF_3_L17
by simp

We can move a real number to the other side of a strict inequality, changing
its sign.

lemma (in real1) Real_ZF_1_2_L26:
assumes a∈IR b∈IR and a-b < c
shows a < c+b
using prems Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L12B
by simp

Real order is translation invariant.

lemma (in real1) real_ord_transl_inv:
assumes a≤b and c∈IR
shows c+a ≤ c+b
using prems Real_ZF_1_2_L10 IsAnOrdGroup_def
by simp
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It is convenient to have the transitivity of the order on integers in the nota-
tion specific to real1 context. This may be confusing for the presentation
readers: even though ≤ and ≤ are printed in the same way, they are different
symbols in the source. In the real1 context the former denotes inequality
between integers, and the latter denotes inequality between real numbers
(classes of slopes). The next lemma is about transitivity of the order rela-
tion on integers.

lemma (in real1) int_order_transitive:
assumes A1: a≤b b≤c
shows a≤c

proof -
from A1 have
〈a,b〉 ∈ IntegerOrder and 〈b,c〉 ∈ IntegerOrder
by auto

then have 〈a,c〉 ∈ IntegerOrder
by (rule Int_ZF_2_L5)

then show a≤c by simp
qed

A property of nonempty subsets of real numbers that don’t have a maximum:
for any element we can find one that is (strictly) greater.

lemma (in real1) Real_ZF_1_2_L27:
assumes A⊆IR and ¬HasAmaximum(OrderOnReals,A) and x∈A
shows ∃ y∈A. x<y
using prems Real_ZF_1_2_L10 group3.OrderedGroup_ZF_2_L2B
by simp

The next lemma shows what happens when one real number is not greater
or equal than another.

lemma (in real1) Real_ZF_1_2_L28:
assumes a∈IR b∈IR and ¬(a≤b)
shows b<a

proof -
from prems have
group3(IR,RealAddition,OrderOnReals)
OrderOnReals {is total on} IR
a∈IR b∈IR 〈a,b〉 /∈ OrderOnReals
using Real_ZF_1_2_L10 by auto

then have 〈b,a〉 ∈ OrderOnReals ∧ b6=a
by (rule group3.OrderedGroup_ZF_1_L8)

then show b<a by simp
qed

If a real number is less than another, then the secon one can not be less or
equal that the first.

lemma (in real1) Real_ZF_1_2_L29:
assumes a<b shows ¬(b≤a)
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proof -
from prems have
group3(IR,RealAddition,OrderOnReals)
〈a,b〉 ∈ OrderOnReals a6=b
using Real_ZF_1_2_L10 by auto

then have 〈b,a〉 /∈ OrderOnReals
by (rule group3.OrderedGroup_ZF_1_L8AA)

then show ¬(b≤a) by simp
qed

28.4 Inverting reals

In this section we tackle the issue of existence of (multiplicative) inverses
of real numbers and show that real numbers form an ordered field. We
also restate here some facts specific to ordered fields that we need for the
construction. The actual proofs of most of these facts can be found in
Field_ZF.thy and OrderedField_ZF.thy

We rewrite the theorem from Int_ZF_2.thy that shows that for every positive
slope we can find one that is almost equal and has an inverse.

lemma (in real1) pos_slopes_have_inv: assumes f ∈ S+

shows ∃ g∈S. f∼g ∧ (∃ h∈S. g◦h ∼ id(int))
using prems PositiveSlopes_def Slopes_def PositiveIntegers_def
int1.pos_slope_has_inv SlopeOp1_def SlopeOp2_def
BoundedIntMaps_def SlopeEquivalenceRel_def

by simp

The set of real numbers we are constructing is an ordered field.

theorem (in real1) reals_are_ord_field: shows
IsAnOrdField(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)

proof -
let R = RealNumbers
let A = RealAddition
let M = RealMultiplication
let r = OrderOnReals
have ring1(R,A,M,r) and 0 6= 1

using reals_are_ord_ring OrdRing_ZF_1_L2 real_zero_not_one
by auto

moreover have M {is commutative on} R
using real_mult_commutative by simp

moreover have
∀ a∈PositiveSet(R,A,r). ∃ b∈R. a·b = 1

proof
fix a assume a ∈ PositiveSet(R,A,r)
then obtain f where I: f∈S+ and II: a = [f]

using reals_are_ord_ring Real_ZF_1_2_L2
by auto

then have ∃ g∈S. f∼g ∧ (∃ h∈S. g◦h ∼ id(int))
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using pos_slopes_have_inv by simp
then obtain g where
III: g∈S and IV: f∼g and V: ∃ h∈S. g◦h ∼ id(int)
by auto

from V obtain h where VII: h∈S and VIII: g◦h ∼ id(int)
by auto

from I III IV have [f] = [g]
using Real_ZF_1_2_L1 Slopes_def Real_ZF_1_1_L5
by auto

with II III VII VIII have a·[h] = 1
using Real_ZF_1_1_L4 Real_ZF_1_1_L5A real_one_cl_identity
by simp

with VII show ∃ b∈R. a·b = 1 using Real_ZF_1_1_L3
by auto

qed
ultimately show thesis using ring1.OrdField_ZF_1_L4

by simp
qed

Reals form a field.

lemma reals_are_field:
shows IsAfield(RealNumbers,RealAddition,RealMultiplication)
using real1.reals_are_ord_field OrdField_ZF_1_L1A
by simp

Theorem proven in field0 and field1 contexts are valid as applied to real
numbers.

lemma field_cntxts_ok: shows
field0(RealNumbers,RealAddition,RealMultiplication)
field1(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)
using reals_are_field real1.reals_are_ord_field
Field_ZF_1_L2 OrdField_ZF_1_L2 by auto

If a is positive, then a−1 is also positive.

lemma (in real1) Real_ZF_1_3_L1: assumes a ∈ IR+

shows a−1 ∈ IR+ a−1 ∈ IR
using prems field_cntxts_ok field1.OrdField_ZF_1_L8 PositiveSet_def
by auto

A technical fact about multiplying strict inequality by the inverse of one of
the sides.

lemma (in real1) Real_ZF_1_3_L2:
assumes a ∈ IR+ and a−1 < b
shows 1 < b·a
using prems field_cntxts_ok field1.OrdField_ZF_2_L2
by simp

If a < b, then (b− a)−1 is positive.
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lemma (in real1) Real_ZF_1_3_L3: assumes a<b
shows (b-a)−1 ∈ IR+

using prems field_cntxts_ok field1.OrdField_ZF_1_L9
by simp

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse.

lemma (in real1) Real_ZF_1_3_L4:
assumes A1: a∈IR b∈IR+ and A2: a·b < c
shows a < c·b−1

using prems field_cntxts_ok field1.OrdField_ZF_2_L6
by simp

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse, version with the product initially on the right hand side.

lemma (in real1) Real_ZF_1_3_L4A:
assumes A1: b∈IR c∈IR+ and A2: a < b·c
shows a·c−1 < b
using prems field_cntxts_ok field1.OrdField_ZF_2_L6A
by simp

We can put a positive factor on the other side of an inequality, changing it
to its inverse, version with the product initially on the right hand side.

lemma (in real1) Real_ZF_1_3_L4B:
assumes A1: b∈IR c∈IR+ and A2: a ≤ b·c
shows a·c−1 ≤ b
using prems field_cntxts_ok field1.OrdField_ZF_2_L5A
by simp

We can put a positive factor on the other side of an inequality, changing it
to its inverse, version with the product initially on the left hand side.

lemma (in real1) Real_ZF_1_3_L4C:
assumes A1: a∈IR b∈IR+ and A2: a·b ≤ c
shows a ≤ c·b−1

using prems field_cntxts_ok field1.OrdField_ZF_2_L5
by simp

A technical lemma about solving a strict inequality with three real numbers
and inverse of a difference.

lemma (in real1) Real_ZF_1_3_L5:
assumes a<b and (b-a)−1 < c
shows 1 + a·c < b·c
using prems field_cntxts_ok field1.OrdField_ZF_2_L9
by simp

We can multiply an inequality by the inverse of a positive number.

lemma (in real1) Real_ZF_1_3_L6:
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assumes a≤b and c∈IR+ shows a·c−1 ≤ b·c−1

using prems field_cntxts_ok field1.OrdField_ZF_2_L3
by simp

We can multiply a strict inequality by a positive number or its inverse.

lemma (in real1) Real_ZF_1_3_L7:
assumes a<b and c∈IR+ shows
a·c < b·c
c·a < c·b
a·c−1 < b·c−1

using prems field_cntxts_ok field1.OrdField_ZF_2_L4
by auto

An identity with three real numbers, inverse and cancelling.

lemma (in real1) Real_ZF_1_3_L8: assumesa∈IR b∈IR b6=0 c∈IR
shows a·b·(c·b−1) = a·c
using prems field_cntxts_ok field0.Field_ZF_2_L6
by simp

28.5 Completeness

This goal of this section is to show that the order on real numbers is com-
plete, that is every subset of reals that is bounded above has a smallest
upper bound.

If m is an integer, then mR is a real number. Recall that in real1 context mR

denotes the class of the slope n 7→ m · n.

lemma (in real1) real_int_is_real: assumes m ∈ int
shows mR ∈ IR
using prems int1.Int_ZF_2_5_L1 Real_ZF_1_1_L3 by simp

The negative of the real embedding of an integer is the embedding of the
negative of the integer.

lemma (in real1) Real_ZF_1_4_L1: assumes m ∈ int
shows (-m)R = -(mR)
using prems int1.Int_ZF_2_5_L3 int1.Int_ZF_2_5_L1 Real_ZF_1_1_L4A
by simp

The embedding of sum of integers is the sum of embeddings.

lemma (in real1) Real_ZF_1_4_L1A: assumes m ∈ int k ∈ int
shows mR + kR = ((m+k)R)
using prems int1.Int_ZF_2_5_L1 SlopeOp1_def int1.Int_ZF_2_5_L3A
Real_ZF_1_1_L4 by simp

The embedding of a difference of integers is the difference of embeddings.

lemma (in real1) Real_ZF_1_4_L1B: assumes A1: m ∈ int k ∈ int
shows mR - kR = (m-k)R
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proof -
from A1 have (-k) ∈ int using int0.Int_ZF_1_1_L4

by simp
with A1 have (m-k)R = mR + (-k)R

using Real_ZF_1_4_L1A by simp
with A1 show mR - kR = (m-k)R

using Real_ZF_1_4_L1 by simp
qed

The embedding of the product of integers is the product of embeddings.

lemma (in real1) Real_ZF_1_4_L1C: assumes m ∈ int k ∈ int
shows mR · kR = (m·k)R

using prems int1.Int_ZF_2_5_L1 SlopeOp2_def int1.Int_ZF_2_5_L3B
Real_ZF_1_1_L4 by simp

For any real numbers there is an integer whose real version is greater or
equal.

lemma (in real1) Real_ZF_1_4_L2: assumes A1: a∈IR
shows ∃ m∈int. a ≤ mR

proof -
from A1 obtain f where I: f∈S and II: a = [f]

using Real_ZF_1_1_L3A by auto
then have ∃ m∈int. ∃ g∈S.
{〈n,m·n〉 . n ∈ int} ∼ g ∧ (f∼g ∨ (g + (-f)) ∈ S+)
using int1.Int_ZF_2_5_L2 Slopes_def SlopeOp1_def
BoundedIntMaps_def SlopeEquivalenceRel_def
PositiveIntegers_def PositiveSlopes_def

by simp
then obtain m g where III: m∈int and IV: g∈S and
{〈n,m·n〉 . n ∈ int} ∼ g ∧ (f∼g ∨ (g + (-f)) ∈ S+)
by auto

then have mR = [g] and f ∼ g ∨ (g + (-f)) ∈ S+

using Real_ZF_1_1_L5A by auto
with I II IV have a ≤ mR using Real_ZF_1_2_L12

by simp
with III show ∃ m∈int. a ≤ mR by auto

qed

For any real numbers there is an integer whose real version (embedding) is
less or equal.

lemma (in real1) Real_ZF_1_4_L3: assumes A1: a∈IR
shows {m ∈ int. mR ≤ a} 6= 0

proof -
from A1 have (-a) ∈ IR using Real_ZF_1_1_L8

by simp
then obtain m where I: m∈int and II: (-a) ≤ mR

using Real_ZF_1_4_L2 by auto
let k = GroupInv(int,IntegerAddition)(m)
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from A1 I II have k ∈ int and kR ≤ a
using Real_ZF_1_2_L13 Real_ZF_1_4_L1 int0.Int_ZF_1_1_L4
by auto

then show thesis by auto
qed

Embeddings of two integers are equal only if the integers are equal.

lemma (in real1) Real_ZF_1_4_L4:
assumes A1: m ∈ int k ∈ int and A2: mR = kR

shows m=k
proof -

let r = {〈n, IntegerMultiplication 〈m, n〉〉 . n ∈ int}
let s = {〈n, IntegerMultiplication 〈k, n〉〉 . n ∈ int}
from A1 A2 have r ∼ s

using int1.Int_ZF_2_5_L1 AlmostHoms_def Real_ZF_1_1_L5
by simp

with A1 have
m ∈ int k ∈ int
〈r,s〉 ∈ QuotientGroupRel(AlmostHoms(int, IntegerAddition),
AlHomOp1(int, IntegerAddition),FinRangeFunctions(int, int))
using SlopeEquivalenceRel_def Slopes_def SlopeOp1_def
BoundedIntMaps_def by auto

then show m=k by (rule int1.Int_ZF_2_5_L6)
qed

The embedding of integers preserves the order.

lemma (in real1) Real_ZF_1_4_L5: assumes A1: m≤k
shows mR ≤ kR

proof -
let r = {〈n, m·n〉 . n ∈ int}
let s = {〈n, k·n〉 . n ∈ int}
from A1 have r ∈ S s ∈ S

using int0.Int_ZF_2_L1A int1.Int_ZF_2_5_L1 by auto
moreover from A1 have r ∼ s ∨ s + (-r) ∈ S+

using Slopes_def SlopeOp1_def BoundedIntMaps_def SlopeEquivalenceRel_def
PositiveIntegers_def PositiveSlopes_def
int1.Int_ZF_2_5_L4 by simp

ultimately show mR ≤ kR using Real_ZF_1_2_L12
by simp

qed

The embedding of integers preserves the strict order.

lemma (in real1) Real_ZF_1_4_L5A: assumes A1: m≤k m6=k
shows mR < kR

proof -
from A1 have mR ≤ kR using Real_ZF_1_4_L5

by simp
moreover
from A1 have T: m ∈ int k ∈ int
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using int0.Int_ZF_2_L1A by auto
with A1 have mR 6= kR using Real_ZF_1_4_L4

by auto
ultimately show mR < kR by simp

qed

For any real number there is a positive integer whose real version is (strictly)
greater. This is Lemma 14 i) in [2].

lemma (in real1) Arthan_Lemma14i: assumes A1: a∈IR
shows ∃ n∈ZZ+. a < nR

proof -
from A1 obtain m where I: m∈int and II: a ≤ mR

using Real_ZF_1_4_L2 by auto
let n = GreaterOf(IntegerOrder,1Z,m) + 1Z

from I have T: n ∈ZZ+ and m ≤ n m6=n
using int0.Int_ZF_1_5_L7B by auto

then have III: mR < nR

using Real_ZF_1_4_L5A by simp
with II have a < nR by (rule real_strict_ord_transit)
with T show thesis by auto

qed

If one embedding is less or equal than another, then the integers are also
less or equal.

lemma (in real1) Real_ZF_1_4_L6:
assumes A1: k ∈ int m ∈ int and A2: mR ≤ kR

shows m≤k
proof -

{ assume A3: 〈m,k〉 /∈ IntegerOrder
with A1 have 〈k,m〉 ∈ IntegerOrder

by (rule int0.Int_ZF_2_L19)
then have kR ≤ mR using Real_ZF_1_4_L5

by simp
with A2 have mR = kR by (rule real_ord_antisym)
with A1 have k = m using Real_ZF_1_4_L4

by auto
moreover from A1 A3 have k6=m by (rule int0.Int_ZF_2_L19)
ultimately have False by simp

} then show m≤k by auto
qed

The floor function is well defined and has expected properties.

lemma (in real1) Real_ZF_1_4_L7: assumes A1: a∈IR
shows
IsBoundedAbove({m ∈ int. mR ≤ a},IntegerOrder)
{m ∈ int. mR ≤ a} 6= 0
bac ∈ int
bacR ≤ a

435



proof -
let A = {m ∈ int. mR ≤ a}
from A1 obtain K where I: K∈int and II: a ≤ (KR)

using Real_ZF_1_4_L2 by auto
{ fix n assume n ∈ A

then have III: n ∈ int and IV: nR ≤ a
by auto

from IV II have (nR) ≤ (KR)
by (rule real_ord_transitive)

with I III have n≤K using Real_ZF_1_4_L6
by simp

} then have ∀ n∈A. 〈n,K〉 ∈ IntegerOrder
by simp

then show IsBoundedAbove(A,IntegerOrder)
by (rule Order_ZF_3_L10)

moreover from A1 show A 6= 0 using Real_ZF_1_4_L3
by simp

ultimately have Maximum(IntegerOrder,A) ∈ A
by (rule int0.int_bounded_above_has_max)

then show bac ∈ int bacR ≤ a by auto
qed

Every integer whose embedding is less or equal a real number a is less or
equal than the floor of a.

lemma (in real1) Real_ZF_1_4_L8:
assumes A1: m ∈ int and A2: mR ≤ a
shows m ≤ bac

proof -
let A = {m ∈ int. mR ≤ a}
from A2 have IsBoundedAbove(A,IntegerOrder) and A 6=0

using Real_ZF_1_2_L15 Real_ZF_1_4_L7 by auto
then have ∀ x∈A. 〈x,Maximum(IntegerOrder,A)〉 ∈ IntegerOrder

by (rule int0.int_bounded_above_has_max)
with A1 A2 show m ≤ bac by simp

qed

Integer zero and one embed as real zero and one.

lemma (in real1) int_0_1_are_real_zero_one:
shows 0Z

R = 0 1Z
R = 1

using int1.Int_ZF_2_5_L7 BoundedIntMaps_def
real_one_cl_identity real_zero_cl_bounded_map

by auto

Integer two embeds as the real two.

lemma (in real1) int_two_is_real_two: shows 2Z
R = 2

proof -
have 2Z

R = 1Z
R + 1Z

R

using int0.int_zero_one_are_int Real_ZF_1_4_L1A
by simp
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also have . . . = 2 using int_0_1_are_real_zero_one
by simp

finally show 2Z
R = 2 by simp

qed

A positive integer embeds as a positive (hence nonnegative) real.

lemma (in real1) int_pos_is_real_pos: assumes A1: p∈ZZ+

shows
pR ∈ IR
0 ≤ pR

pR ∈ IR+

proof -
from A1 have I: p ∈ int 0Z ≤ p 0Z 6= p

using PositiveSet_def by auto
then have pR ∈ IR 0Z

R ≤ pR

using real_int_is_real Real_ZF_1_4_L5 by auto
then show pR ∈ IR 0 ≤ pR

using int_0_1_are_real_zero_one by auto
moreover have 0 6= pR

proof -
{ assume 0 = pR

with I have False using int_0_1_are_real_zero_one
int0.int_zero_one_are_int Real_ZF_1_4_L4 by auto

} then show 0 6= pR by auto
qed
ultimately show pR ∈ IR+ using PositiveSet_def

by simp
qed

The ordered field of reals we are constructing is archimedean, i.e., if x, y are
its elements with y positive, then there is a positive integer M such that
x < MRy. This is Lemma 14 ii) in [2].

lemma (in real1) Arthan_Lemma14ii: assumes A1: x∈IR y ∈ IR+

shows ∃ M∈ZZ+. x < MR·y
proof -

from A1 have
∃ C∈ZZ+. x < CR and ∃ D∈ZZ+. y−1 < DR

using Real_ZF_1_3_L1 Arthan_Lemma14i by auto
then obtain C D where
I: C∈ZZ+ and II: x < CR and
III: D∈ZZ+ and IV: y−1 < DR

by auto
let M = C·D
from I III have
T: M ∈ ZZ+ CR ∈ IR DR ∈ IR
using int0.pos_int_closed_mul_unfold PositiveSet_def real_int_is_real
by auto

with A1 I III have CR·(DR·y) = MR·y
using PositiveSet_def Real_ZF_1_L6A Real_ZF_1_4_L1C
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by simp
moreover from A1 I II IV have
x < CR·(DR·y)
using int_pos_is_real_pos Real_ZF_1_3_L2 Real_ZF_1_2_L25
by auto

ultimately have x < MR·y
by auto

with T show thesis by auto
qed

Taking the floor function preserves the order.

lemma (in real1) Real_ZF_1_4_L9: assumes A1: a≤b
shows bac ≤ bbc

proof -
from A1 have T: a∈IR using Real_ZF_1_2_L15

by simp
with A1 have bacR ≤ a and a≤b

using Real_ZF_1_4_L7 by auto
then have bacR ≤ b by (rule real_ord_transitive)
moreover from T have bac ∈ int using Real_ZF_1_4_L7

by simp
ultimately show bac ≤ bbc using Real_ZF_1_4_L8

by simp
qed

If S is bounded above and p is a positive intereger, then Γ(S, p) is well
defined.

lemma (in real1) Real_ZF_1_4_L10:
assumes A1: IsBoundedAbove(S,OrderOnReals) S6=0 and A2: p∈ZZ+

shows
IsBoundedAbove({bpR·xc. x∈S},IntegerOrder)
Γ(S,p) ∈ {bpR·xc. x∈S}
Γ(S,p) ∈ int

proof -
let A = {bpR·xc. x∈S}
from A1 obtain X where I: ∀ x∈S. x≤X

using IsBoundedAbove_def by auto
{ fix m assume m ∈ A

then obtain x where x∈S and II: m = bpR·xc
by auto

with I have x≤X by simp
moreover from A2 have 0 ≤ pR using int_pos_is_real_pos

by simp
ultimately have pR·x ≤ pR·X using Real_ZF_1_2_L14

by simp
with II have m ≤ bpR·Xc using Real_ZF_1_4_L9

by simp
} then have ∀ m∈A. 〈m,bpR·Xc〉 ∈ IntegerOrder

by auto
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then show II: IsBoundedAbove(A,IntegerOrder)
by (rule Order_ZF_3_L10)

moreover from A1 have III: A 6= 0 by simp
ultimately have Maximum(IntegerOrder,A) ∈ A

by (rule int0.int_bounded_above_has_max)
moreover from II III have Maximum(IntegerOrder,A) ∈ int

by (rule int0.int_bounded_above_has_max)
ultimately show Γ(S,p) ∈ {bpR·xc. x∈S} and Γ(S,p) ∈ int

by auto
qed

If p is a positive integer, then for all s ∈ S the floor of p · x is not greater
that Γ(S, p).

lemma (in real1) Real_ZF_1_4_L11:
assumes A1: IsBoundedAbove(S,OrderOnReals) and A2: x∈S and A3: p∈ZZ+

shows bpR·xc ≤ Γ(S,p)
proof -

let A = {bpR·xc. x∈S}
from A2 have S 6=0 by auto
with A1 A3 have IsBoundedAbove(A,IntegerOrder) A 6= 0

using Real_ZF_1_4_L10 by auto
then have ∀ x∈A. 〈x,Maximum(IntegerOrder,A)〉 ∈ IntegerOrder

by (rule int0.int_bounded_above_has_max)
with A2 show bpR·xc ≤ Γ(S,p) by simp

qed

The candidate for supremum is an integer mapping with values given by Γ.

lemma (in real1) Real_ZF_1_4_L12:
assumes A1: IsBoundedAbove(S,OrderOnReals) S6=0 and
A2: g = {〈p,Γ(S,p)〉. p∈ZZ+}
shows
g : ZZ+→int
∀ n∈ZZ+. g(n) = Γ(S,n)

proof -
from A1 have ∀ n∈ZZ+. Γ(S,n) ∈ int using Real_ZF_1_4_L10

by simp
with A2 show I: g : ZZ+→int using ZF_fun_from_total by simp
{ fix n assume n∈ZZ+

with A2 I have g(n) = Γ(S,n) using ZF_fun_from_tot_val
by simp

} then show ∀ n∈ZZ+. g(n) = Γ(S,n) by simp
qed

Every integer is equal to the floor of its embedding.

lemma (in real1) Real_ZF_1_4_L14: assumes A1: m ∈ int
shows bmRc = m

proof -
let A = {n ∈ int. nR ≤ mR }
have antisym(IntegerOrder) using int0.Int_ZF_2_L4
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by simp
moreover from A1 have m ∈ A

using real_int_is_real real_ord_refl by auto
moreover from A1 have ∀ n ∈ A. 〈n,m〉 ∈ IntegerOrder

using Real_ZF_1_4_L6 by auto
ultimately show bmRc = m using Order_ZF_4_L14

by auto
qed

Floor of (real) zero is (integer) zero.

lemma (in real1) floor_01_is_zero_one: shows
b0c = 0Z b1c = 1Z

proof -
have b(0Z)Rc = 0Z and b(1Z)Rc = 1Z

using int0.int_zero_one_are_int Real_ZF_1_4_L14
by auto

then show b0c = 0Z and b1c = 1Z

using int_0_1_are_real_zero_one
by auto

qed

Floor of (real) two is (integer) two.

lemma (in real1) floor_2_is_two: shows b2c = 2Z

proof -
have b(2Z)Rc = 2Z

using int0.int_two_three_are_int Real_ZF_1_4_L14
by simp

then show b2c = 2Z using int_two_is_real_two
by simp

qed

Floor of a product of embeddings of integers is equal to the product of
integers.

lemma (in real1) Real_ZF_1_4_L14A: assumes A1: m ∈ int k ∈ int
shows bmR·kRc = m·k

proof -
from A1 have T: m·k ∈ int

using int0.Int_ZF_1_1_L5 by simp
from A1 have bmR·kRc = b(m·k)Rc using Real_ZF_1_4_L1C

by simp
with T show bmR·kRc = m·k using Real_ZF_1_4_L14

by simp
qed

Floor of the sum of a number and the embedding of an integer is the floor
of the number plus the integer.

lemma (in real1) Real_ZF_1_4_L15: assumes A1: x∈IR and A2: p ∈ int
shows bx + pRc = bxc + p
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proof -
let A = {n ∈ int. nR ≤ x + pR}
have antisym(IntegerOrder) using int0.Int_ZF_2_L4

by simp
moreover have bxc + p ∈ A
proof -

from A1 A2 have bxcR ≤ x and pR ∈ IR
using Real_ZF_1_4_L7 real_int_is_real by auto

then have bxcR + pR ≤ x + pR

using add_num_to_ineq by simp
moreover from A1 A2 have (bxc + p)R = bxcR + pR

using Real_ZF_1_4_L7 Real_ZF_1_4_L1A by simp
ultimately have (bxc + p)R ≤ x + pR

by simp
moreover from A1 A2 have bxc + p ∈ int

using Real_ZF_1_4_L7 int0.Int_ZF_1_1_L5 by simp
ultimately show bxc + p ∈ A by auto

qed
moreover have ∀ n∈A. n ≤ bxc + p
proof

fix n assume n∈A
then have I: n ∈ int and nR ≤ x + pR

by auto
with A1 A2 have nR - pR ≤ x

using real_int_is_real Real_ZF_1_2_L19
by simp

with A2 I have b(n-p)Rc ≤ bxc
using Real_ZF_1_4_L1B Real_ZF_1_4_L9
by simp

moreover
from A2 I have n-p ∈ int

using int0.Int_ZF_1_1_L5 by simp
then have b(n-p)Rc = n-p

using Real_ZF_1_4_L14 by simp
ultimately have n-p ≤ bxc

by simp
with A2 I show n ≤ bxc + p

using int0.Int_ZF_2_L9C by simp
qed
ultimately show bx + pRc = bxc + p

using Order_ZF_4_L14 by auto
qed

Floor of the difference of a number and the embedding of an integer is the
floor of the number minus the integer.

lemma (in real1) Real_ZF_1_4_L16: assumes A1: x∈IR and A2: p ∈ int
shows bx - pRc = bxc - p

proof -
from A2 have bx - pRc = bx + (-p)Rc
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using Real_ZF_1_4_L1 by simp
with A1 A2 show bx - pRc = bxc - p

using int0.Int_ZF_1_1_L4 Real_ZF_1_4_L15 by simp
qed

The floor of sum of embeddings is the sum of the integers.

lemma (in real1) Real_ZF_1_4_L17: assumes m ∈ int n ∈ int
shows b(mR) + nRc = m + n
using prems real_int_is_real Real_ZF_1_4_L15 Real_ZF_1_4_L14
by simp

A lemma about adding one to floor.

lemma (in real1) Real_ZF_1_4_L17A: assumes A1: a∈IR
shows 1 + bacR = (1Z + bac)R

proof -
have 1 + bacR = 1Z

R + bacR
using int_0_1_are_real_zero_one by simp

with A1 show 1 + bacR = (1Z + bac)R

using int0.int_zero_one_are_int Real_ZF_1_4_L7 Real_ZF_1_4_L1A
by simp

qed

The difference between the a number and the embedding of its floor is
(strictly) less than one.

lemma (in real1) Real_ZF_1_4_L17B: assumes A1: a∈IR
shows
a - bacR < 1
a < (1Z + bac)R

proof -
from A1 have T1: bac ∈ int bacR ∈ IR and
T2: 1 ∈ IR a - bacR ∈ IR
using Real_ZF_1_4_L7 real_int_is_real Real_ZF_1_L6 Real_ZF_1_L4
by auto

{ assume 1 ≤ a - bacR
with A1 T1 have b1Z

R + bacRc ≤ bac
using Real_ZF_1_2_L21 Real_ZF_1_4_L9 int_0_1_are_real_zero_one
by simp

with T1 have False
using int0.int_zero_one_are_int Real_ZF_1_4_L17
int0.Int_ZF_1_2_L3AA by simp

} then have I: ¬(1 ≤ a - bacR) by auto
with T2 show II: a - bacR < 1

by (rule Real_ZF_1_2_L20)
with A1 T1 I II have
a < 1 + bacR
using Real_ZF_1_2_L26 by simp

with A1 show a < (1Z + bac)R

using Real_ZF_1_4_L17A by simp
qed
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The next lemma corresponds to Lemma 14 iii) in [2]. It says that we can
find a rational number between any two different real numbers.

lemma (in real1) Arthan_Lemma14iii: assumes A1: x<y
shows ∃ M∈int. ∃ N∈ZZ+. x·NR < MR ∧ MR < y·NR

proof -
from A1 have (y-x)−1 ∈ IR+ using Real_ZF_1_3_L3

by simp
then have
∃ N∈ZZ+. (y-x)−1 < NR

using Arthan_Lemma14i PositiveSet_def by simp
then obtain N where I: N∈ZZ+ and II: (y-x)−1 < NR

by auto
let M = 1Z + bx·NRc
from A1 I have
T1: x∈IR NR ∈ IR NR ∈ IR+ x·NR ∈ IR
using Real_ZF_1_2_L15 PositiveSet_def real_int_is_real
Real_ZF_1_L6 int_pos_is_real_pos by auto

then have T2: M ∈ int using
int0.int_zero_one_are_int Real_ZF_1_4_L7 int0.Int_ZF_1_1_L5
by simp

from T1 have III: x·NR < MR

using Real_ZF_1_4_L17B by simp
from T1 have (1 + bx·NRcR) ≤ (1 + x·NR)

using Real_ZF_1_4_L7 Real_ZF_1_L4 real_ord_transl_inv
by simp

with T1 have MR ≤ (1 + x·NR)
using Real_ZF_1_4_L17A by simp

moreover from A1 II have (1 + x·NR) < y·NR

using Real_ZF_1_3_L5 by simp
ultimately have MR < y·NR

by (rule real_strict_ord_transit)
with I T2 III show thesis by auto

qed

Some estimates for the homomorphism difference of the floor function.

lemma (in real1) Real_ZF_1_4_L18: assumes A1: x∈IR y∈IR
shows
abs(bx+yc - bxc - byc) ≤ 2Z

proof -
from A1 have T:
bxcR ∈ IR bycR ∈ IR
x+y - (bxcR) ∈ IR
using Real_ZF_1_4_L7 real_int_is_real Real_ZF_1_L6
by auto

from A1 have
0 ≤ x - (bxcR) + (y - (bycR))
x - (bxcR) + (y - (bycR)) ≤ 2
using Real_ZF_1_4_L7 Real_ZF_1_2_L16 Real_ZF_1_2_L17
Real_ZF_1_4_L17B Real_ZF_1_2_L18 by auto
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moreover from A1 T have
x - (bxcR) + (y - (bycR)) = x+y - (bxcR) - (bycR)
using Real_ZF_1_L7A by simp

ultimately have
0 ≤ x+y - (bxcR) - (bycR)
x+y - (bxcR) - (bycR) ≤ 2
by auto

then have
b0c ≤ bx+y - (bxcR) - (bycR)c
bx+y - (bxcR) - (bycR)c ≤ b2c
using Real_ZF_1_4_L9 by auto

then have
0Z ≤ bx+y - (bxcR) - (bycR)c
bx+y - (bxcR) - (bycR)c ≤ 2Z

using floor_01_is_zero_one floor_2_is_two by auto
moreover from A1 have
bx+y - (bxcR) - (bycR)c = bx+yc - bxc - byc
using Real_ZF_1_L6 Real_ZF_1_4_L7 real_int_is_real Real_ZF_1_4_L16
by simp

ultimately have
0Z ≤ bx+yc - bxc - byc
bx+yc - bxc - byc ≤ 2Z

by auto
then show abs(bx+yc - bxc - byc) ≤ 2Z

using int0.Int_ZF_2_L16 by simp
qed

Suppose S 6= ∅ is bounded above and Γ(S, m) = bmR · xc for some positive
integer m and x ∈ S. Then if y ∈ S, x ≤ y we also have Γ(S, m) = bmR · yc.
lemma (in real1) Real_ZF_1_4_L20:

assumes A1: IsBoundedAbove(S,OrderOnReals) S6=0 and
A2: n∈ZZ+ x∈S and
A3: Γ(S,n) = bnR·xc and
A4: y∈S x≤y
shows Γ(S,n) = bnR·yc

proof -
from A2 A4 have bnR·xc ≤ b(nR)·yc

using int_pos_is_real_pos Real_ZF_1_2_L14 Real_ZF_1_4_L9
by simp

with A3 have 〈Γ(S,n),b(nR)·yc〉 ∈ IntegerOrder
by simp

moreover from A1 A2 A4 have 〈bnR·yc,Γ(S,n)〉 ∈ IntegerOrder
using Real_ZF_1_4_L11 by simp

ultimately show Γ(S,n) = bnR·yc
by (rule int0.Int_ZF_2_L3)

qed

The homomorphism difference of n 7→ Γ(S, n) is bounded by 2 on positive
integers.
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lemma (in real1) Real_ZF_1_4_L21:
assumes A1: IsBoundedAbove(S,OrderOnReals) S6=0 and
A2: m∈ZZ+ n∈ZZ+

shows abs(Γ(S,m+n) - Γ(S,m) - Γ(S,n)) ≤ 2Z

proof -
from A2 have T: m+n ∈ ZZ+ using int0.pos_int_closed_add_unfolded

by simp
with A1 A2 have

Γ(S,m) ∈ {bmR·xc. x∈S} and
Γ(S,n) ∈ {bnR·xc. x∈S} and
Γ(S,m+n) ∈ {b(m+n)R·xc. x∈S}
using Real_ZF_1_4_L10 by auto

then obtain a b c where I: a∈S b∈S c∈S
and II:
Γ(S,m) = bmR·ac
Γ(S,n) = bnR·bc
Γ(S,m+n) = b(m+n)R·cc
by auto

let d = Maximum(OrderOnReals,{a,b,c})
from A1 I have a∈IR b∈IR c∈IR

using Real_ZF_1_2_L23 by auto
then have IV:
d ∈ {a,b,c}
d ∈ IR
a ≤ d
b ≤ d
c ≤ d
using Real_ZF_1_2_L24 by auto

with I have V: d ∈ S by auto
from A1 T I II IV V have Γ(S,m+n) = b(m+n)R·dc

using Real_ZF_1_4_L20 by blast
also from A2 have . . . = b((mR)+(nR))·dc

using Real_ZF_1_4_L1A PositiveSet_def by simp
also from A2 IV have . . . = b(mR)·d + (nR)·dc

using PositiveSet_def real_int_is_real Real_ZF_1_L7
by simp

finally have Γ(S,m+n) = b(mR)·d + (nR)·dc
by simp

moreover from A1 A2 I II IV V have Γ(S,m) = bmR·dc
using Real_ZF_1_4_L20 by blast

moreover from A1 A2 I II IV V have Γ(S,n) = bnR·dc
using Real_ZF_1_4_L20 by blast

moreover from A1 T I II IV V have Γ(S,m+n) = b(m+n)R·dc
using Real_ZF_1_4_L20 by blast

ultimately have abs(Γ(S,m+n) - Γ(S,m) - Γ(S,n)) =
abs(b(mR)·d + (nR)·dc - bmR·dc - bnR·dc)
by simp

with A2 IV show
abs(Γ(S,m+n) - Γ(S,m) - Γ(S,n)) ≤ 2Z
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using PositiveSet_def real_int_is_real Real_ZF_1_L6
Real_ZF_1_4_L18 by simp

qed

The next lemma provides sufficient condition for an odd function to be an
almost homomorphism. It says for odd functions we only need to check that
the homomorphism difference (denoted δ in the real1 context is bounded
on positive integers. This is really proven in Int_ZF_2.thy, but we restate
it here for convenience. Recall from Group_ZF_3.thy that OddExtension of a
function defined on the set of positive elements (of an ordered group) is the
only odd function that is equal to the given one when restricted to positive
elements.

lemma (in real1) Real_ZF_1_4_L21A:
assumes A1: f:ZZ+→int ∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(f,a,b)) ≤ L
shows OddExtension(int,IntegerAddition,IntegerOrder,f) ∈ S
using A1 int1.Int_ZF_2_1_L24 by auto

The candidate for (a representant of) the supremum of a nonempty bounded
above set is a slope.

lemma (in real1) Real_ZF_1_4_L22:
assumes A1: IsBoundedAbove(S,OrderOnReals) S6=0 and
A2: g = {〈p,Γ(S,p)〉. p∈ZZ+}
shows OddExtension(int,IntegerAddition,IntegerOrder,g) ∈ S

proof -
from A1 A2 have g: ZZ+→int by (rule Real_ZF_1_4_L12)
moreover have ∀ m∈ZZ+. ∀ n∈ZZ+. abs(δ(g,m,n)) ≤ 2Z

proof -
{ fix m n assume A3: m∈ZZ+ n∈ZZ+

then have m+n ∈ ZZ+ m∈ZZ+ n∈ZZ+

using int0.pos_int_closed_add_unfolded
by auto

moreover from A1 A2 have ∀ n∈ZZ+. g(n) = Γ(S,n)
by (rule Real_ZF_1_4_L12)

ultimately have δ(g,m,n) = Γ(S,m+n) - Γ(S,m) - Γ(S,n)
by simp

moreover from A1 A3 have
abs(Γ(S,m+n) - Γ(S,m) - Γ(S,n)) ≤ 2Z

by (rule Real_ZF_1_4_L21)
ultimately have abs(δ(g,m,n)) ≤ 2Z

by simp
} then show ∀ m∈ZZ+. ∀ n∈ZZ+. abs(δ(g,m,n)) ≤ 2Z

by simp
qed
ultimately show thesis by (rule Real_ZF_1_4_L21A)

qed

A technical lemma used in the proof that all elements of S are less or equal
than the candidate for supremum of S.
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lemma (in real1) Real_ZF_1_4_L23:
assumes A1: f ∈ S and A2: N ∈ int M ∈ int and
A3: ∀ n∈ZZ+. M·n ≤ f(N·n)
shows MR ≤ [f]·(NR)

proof -
let MS = {〈n, M·n〉 . n ∈ int}
let NS = {〈n, N·n〉 . n ∈ int}
from A1 A2 have T: MS ∈ S NS ∈ S f◦NS ∈ S

using int1.Int_ZF_2_5_L1 int1.Int_ZF_2_1_L11 SlopeOp2_def
by auto

moreover from A1 A2 A3 have MS ∼ f◦NS ∨ f◦NS + (-MS) ∈ S+

using int1.Int_ZF_2_5_L8 SlopeOp2_def SlopeOp1_def Slopes_def
BoundedIntMaps_def SlopeEquivalenceRel_def PositiveIntegers_def
PositiveSlopes_def by simp

ultimately have [MS] ≤ [f◦NS] using Real_ZF_1_2_L12
by simp

with A1 T show MR ≤ [f]·(NR) using Real_ZF_1_1_L4
by simp

qed

A technical lemma aimed used in the proof the candidate for supremum of
S is less or equal than any upper bound for S.

lemma (in real1) Real_ZF_1_4_L23A:
assumes A1: f ∈ S and A2: N ∈ int M ∈ int and
A3: ∀ n∈ZZ+. f(N·n) ≤ M·n
shows [f]·(NR) ≤ MR

proof -
let MS = {〈n, M·n〉 . n ∈ int}
let NS = {〈n, N·n〉 . n ∈ int}
from A1 A2 have T: MS ∈ S NS ∈ S f◦NS ∈ S

using int1.Int_ZF_2_5_L1 int1.Int_ZF_2_1_L11 SlopeOp2_def
by auto

moreover from A1 A2 A3 have
f◦NS ∼ MS ∨ MS + (-(f◦NS)) ∈ S+

using int1.Int_ZF_2_5_L9 SlopeOp2_def SlopeOp1_def Slopes_def
BoundedIntMaps_def SlopeEquivalenceRel_def PositiveIntegers_def
PositiveSlopes_def by simp

ultimately have [f◦NS] ≤ [MS] using Real_ZF_1_2_L12
by simp

with A1 T show [f]·(NR)≤ MR using Real_ZF_1_1_L4
by simp

qed

The essential condition to claim that the candidate for supremum of S is
greater or equal than all elements of S.

lemma (in real1) Real_ZF_1_4_L24:
assumes A1: IsBoundedAbove(S,OrderOnReals) and
A2: x<y y∈S and
A4: N ∈ ZZ+ M ∈ int and
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A5: MR < y·NR and A6: p ∈ ZZ+

shows p·M ≤ Γ(S,p·N)
proof -

from A2 A4 A6 have T1:
NR ∈ IR+ y∈IR pR ∈ IR+

p·N ∈ ZZ+ (p·N)R ∈ IR+

using int_pos_is_real_pos Real_ZF_1_2_L15
int0.pos_int_closed_mul_unfold by auto

with A4 A6 have T2:
p ∈ int pR ∈ IR NR ∈ IR NR 6= 0 MR ∈ IR
using real_int_is_real PositiveSet_def by auto

from T1 A5 have b(p·N)R·(MR·(NR)−1)c ≤ b(p·N)R·yc
using Real_ZF_1_3_L4A Real_ZF_1_3_L7 Real_ZF_1_4_L9
by simp

moreover from A1 A2 T1 have b(p·N)R·yc ≤ Γ(S,p·N)
using Real_ZF_1_4_L11 by simp

ultimately have I: b(p·N)R·(MR·(NR)−1)c ≤ Γ(S,p·N)
by (rule int_order_transitive)

from A4 A6 have (p·N)R·(MR·(NR)−1) = pR·NR·(MR·(NR)−1)
using PositiveSet_def Real_ZF_1_4_L1C by simp

with A4 T2 have b(p·N)R·(MR·(NR)−1)c = p·M
using Real_ZF_1_3_L8 Real_ZF_1_4_L14A by simp

with I show p·M ≤ Γ(S,p·N) by simp
qed

An obvious fact about odd extension of a function p 7→ Γ(s, p) that is used
a couple of times in proofs.

lemma (in real1) Real_ZF_1_4_L24A:
assumes A1: IsBoundedAbove(S,OrderOnReals) S6=0 and A2: p ∈ ZZ+

and A3:
h = OddExtension(int,IntegerAddition,IntegerOrder,{〈p,Γ(S,p)〉. p∈ZZ+})
shows h(p) = Γ(S,p)

proof -
let g = {〈p,Γ(S,p)〉. p∈ZZ+}
from A1 have I: g : ZZ+→int using Real_ZF_1_4_L12

by blast
with A2 A3 show h(p) = Γ(S,p)

using int0.Int_ZF_1_5_L11 ZF_fun_from_tot_val
by simp

qed

The candidate for the supremum of S is not smaller than any element of S.

lemma (in real1) Real_ZF_1_4_L25:
assumes A1: IsBoundedAbove(S,OrderOnReals) and
A2: ¬HasAmaximum(OrderOnReals,S) and
A3: x∈S and A4:
h = OddExtension(int,IntegerAddition,IntegerOrder,{〈p,Γ(S,p)〉. p∈ZZ+})
shows x ≤ [h]

proof -

448



from A1 A2 A3 have
S ⊆ IR ¬HasAmaximum(OrderOnReals,S) x∈S
using Real_ZF_1_2_L23 by auto

then have ∃ y∈S. x<y by (rule Real_ZF_1_2_L27)
then obtain y where I: y∈S and II: x<y

by auto
from II have
∃ M∈int. ∃ N∈ZZ+. x·NR < MR ∧ MR < y·NR

using Arthan_Lemma14iii by simp
then obtain M N where III: M ∈ int N∈ZZ+ and
IV: x·NR < MR MR < y·NR

by auto
from II III IV have V: x ≤ MR·(NR)−1

using int_pos_is_real_pos Real_ZF_1_2_L15 Real_ZF_1_3_L4
by auto

from A3 have VI: S6=0 by auto
with A1 A4 have T1: h ∈ S using Real_ZF_1_4_L22

by simp
moreover from III have N ∈ int M ∈ int

using PositiveSet_def by auto
moreover have ∀ n∈ZZ+. M·n ≤ h(N·n)
proof

let g = {〈p,Γ(S,p)〉. p∈ZZ+}
fix n assume A5: n∈ZZ+

with III have T2: N·n ∈ ZZ+

using int0.pos_int_closed_mul_unfold by simp
from III A5 have
N·n = n·N and n·M = M·n
using PositiveSet_def int0.Int_ZF_1_1_L5 by auto

moreover
from A1 I II III IV A5 have
IsBoundedAbove(S,OrderOnReals)
x<y y∈S
N ∈ ZZ+ M ∈ int
MR < y·NR n ∈ ZZ+

by auto
then have n·M ≤ Γ(S,n·N) by (rule Real_ZF_1_4_L24)
moreover from A1 A4 VI T2 have h(N·n) = Γ(S,N·n)

using Real_ZF_1_4_L24A by simp
ultimately show M·n ≤ h(N·n) by auto

qed
ultimately have MR ≤ [h]·NR using Real_ZF_1_4_L23

by simp
with III T1 have MR·(NR)−1 ≤ [h]

using int_pos_is_real_pos Real_ZF_1_1_L3 Real_ZF_1_3_L4B
by simp

with V show x ≤ [h] by (rule real_ord_transitive)
qed

The essential condition to claim that the candidate for supremum of S is
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less or equal than any upper bound of S.
lemma (in real1) Real_ZF_1_4_L26:

assumes A1: IsBoundedAbove(S,OrderOnReals) and
A2: x≤y x∈S and
A4: N ∈ ZZ+ M ∈ int and
A5: y·NR < MR and A6: p ∈ ZZ+

shows b(N·p)R·xc ≤ M·p
proof -

from A2 A4 A6 have T:
p·N ∈ ZZ+ p ∈ int N ∈ int
pR ∈ IR+ pR ∈ IR NR ∈ IR x ∈ IR y ∈ IR
using int0.pos_int_closed_mul_unfold PositiveSet_def
real_int_is_real Real_ZF_1_2_L15 int_pos_is_real_pos

by auto
with A2 have (p·N)R·x ≤ (p·N)R·y

using int_pos_is_real_pos Real_ZF_1_2_L14A
by simp

moreover from A4 T have I:
(p·N)R = pR·NR

(p·M)R = pR·MR

using Real_ZF_1_4_L1C by auto
ultimately have (p·N)R·x ≤ pR·NR·y

by simp
moreover
from A5 T I have pR·(y·NR) < (p·M)R

using Real_ZF_1_3_L7 by simp
with T have pR·NR·y < (p·M)R using Real_ZF_1_1_L9

by simp
ultimately have (p·N)R·x < (p·M)R

by (rule real_strict_ord_transit)
then have b(p·N)R·xc ≤ b(p·M)Rc

using Real_ZF_1_4_L9 by simp
moreover
from A4 T have p·M ∈ int using int0.Int_ZF_1_1_L5

by simp
then have b(p·M)Rc = p·M using Real_ZF_1_4_L14

by simp
moreover from A4 A6 have p·N = N·p and p·M = M·p
using PositiveSet_def int0.Int_ZF_1_1_L5 by auto

ultimately show b(N·p)R·xc ≤ M·p by simp
qed

A piece of the proof of the fact that the candidate for the supremum of S
is not greater than any upper bound of S, done separately for clarity (of
mind).
lemma (in real1) Real_ZF_1_4_L27:

assumes IsBoundedAbove(S,OrderOnReals) S6=0 and
h = OddExtension(int,IntegerAddition,IntegerOrder,{〈p,Γ(S,p)〉. p∈ZZ+})
and p ∈ ZZ+
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shows ∃ x∈S. h(p) = bpR·xc
using prems Real_ZF_1_4_L10 Real_ZF_1_4_L24A by auto

The candidate for the supremum of S is not greater than any upper bound
of S.

lemma (in real1) Real_ZF_1_4_L28:
assumes A1: IsBoundedAbove(S,OrderOnReals) S6=0
and A2: ∀ x∈S. x≤y and A3:
h = OddExtension(int,IntegerAddition,IntegerOrder,{〈p,Γ(S,p)〉. p∈ZZ+})
shows [h] ≤ y

proof -
from A1 obtain a where a∈S by auto
with A1 A2 A3 have T: y∈IR h ∈ S [h] ∈ IR

using Real_ZF_1_2_L15 Real_ZF_1_4_L22 Real_ZF_1_1_L3
by auto

{ assume ¬([h] ≤ y)
with T have y < [h] using Real_ZF_1_2_L28

by blast
then have ∃ M∈int. ∃ N∈ZZ+. y·NR < MR ∧ MR < [h]·NR

using Arthan_Lemma14iii by simp
then obtain M N where I: M∈int N∈ZZ+ and
II: y·NR < MR MR < [h]·NR

by auto
from I have III: NR ∈ IR+ using int_pos_is_real_pos

by simp
have ∀ p∈ZZ+. h(N·p) ≤ M·p
proof

fix p assume A4: p∈ZZ+

with A1 A3 I have ∃ x∈S. h(N·p) = b(N·p)R·xc
using int0.pos_int_closed_mul_unfold Real_ZF_1_4_L27
by simp

with A1 A2 I II A4 show h(N·p) ≤ M·p
using Real_ZF_1_4_L26 by auto

qed
with T I have [h]·NR ≤ MR

using PositiveSet_def Real_ZF_1_4_L23A
by simp

with T III have [h] ≤ MR·(NR)−1

using Real_ZF_1_3_L4C by simp
moreover from T II III have MR·(NR)−1 < [h]

using Real_ZF_1_3_L4A by simp
ultimately have False using Real_ZF_1_2_L29 by blast

} then show [h] ≤ y by auto
qed

Now we can prove that every nonempty subset of reals that is bounded above
has a supremum.

lemma (in real1) real_order_complete:
assumes A1: IsBoundedAbove(S,OrderOnReals) S6=0
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shows HasAminimum(OrderOnReals,
⋂
a∈S. OrderOnReals{a})

proof (cases HasAmaximum(OrderOnReals,S))
assume HasAmaximum(OrderOnReals,S)
with A1 show HasAminimum(OrderOnReals,

⋂
a∈S. OrderOnReals{a})

using Real_ZF_1_2_L10 IsAnOrdGroup_def IsPartOrder_def
Order_ZF_5_L6 by simp

next assume A2: ¬HasAmaximum(OrderOnReals,S)
let h = OddExtension(int,IntegerAddition,IntegerOrder,{〈p,Γ(S,p)〉. p∈ZZ+})
let r = OrderOnReals
from A1 have antisym(OrderOnReals) S6=0

using Real_ZF_1_2_L10 IsAnOrdGroup_def IsPartOrder_def by simp
moreover from A1 A2 have ∀ x∈S. 〈x,[h]〉 ∈ r

using Real_ZF_1_4_L25 by simp
moreover from A1 have ∀ y. (∀ x∈S. 〈x,y〉 ∈ r) −→ 〈[h],y〉 ∈ r

using Real_ZF_1_4_L28 by simp
ultimately show HasAminimum(OrderOnReals,

⋂
a∈S. OrderOnReals{a})

by (rule Order_ZF_5_L5)
qed

Finally, we are ready to formulate the main result: that the construction
of real numbers from the additive group of integers results in a complete
ordered field.

theorem eudoxus_reals_are_reals: shows
IsAmodelOfReals(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)
using real1.reals_are_ord_field real1.real_order_complete
IsComplete_def IsAmodelOfReals_def by simp

This completes the construction. It was fun.

end
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29 Complex ZF.thy

theory Complex_ZF imports OrderedField_ZF

begin

The goal of this theory is to define complex numbers and prove that the
Metamath complex numbers axioms hold.

29.1 From complete ordered fields to complex numbers

This section consists mostly of definitions and a proof context for talking
about complex numbers.

Suppose we have a set R with binary operations A and M and a relation
r such that the quadruple (R,A, M, r) forms a complete ordered field. The
next definitions take (R,A, M, r) and construct the sets that represent the
structure of complex numbers: the carrier (C = R × R), binary oparations
of addition and multiplication of complex numbers and the order raletion
on R = R × 0. The ImCxAdd, ReCxAdd, ImCxMul, ReCxMul are helper meta-
functions representing the imaginary part of a sum of complex numbers,
the real part of a sum of real numbers, the imaginary part of a product of
complex numbers and the real part of a product of real numbers, respectively.
The actual operations (subsets of (R × R) × R are named CplxAdd and
CplxMul.
When R is an ordered field, it comes with an order relation. This induces
a natural strict order relation on {〈x, 0〉 : x ∈ R} ⊆ R × R. We call
the set {〈x, 0〉 : x ∈ R} ComplexReals(R,A) and the strict order relation
CplxROrder(R,A,r). The order on the real axis of complex numbers is de-
fined as the relation induced on it by the canonical projection on the first
coordinate and the order we have on the real numbers. OK, lets repeat this
slower. We start with the order relation r on a (model of) real numbers. We
want to define an order relation on a subset of complex numbers, namely on
R× {0}. To do that we use the notion of a relation induced by a mapping.
The mapping here is f : R× {0} → R, f〈x, 0〉 = x which is defined under a
name of SliceProjection in func_ZF.thy. This defines a relation r1 (called
InducedRelation(f,r), see func_ZF) on R× {0} such that 〈〈x, 0〉, 〈y, 0〉 ∈ r1

iff 〈x, y〉 ∈ r. This way we get what we call CplxROrder(R,A,r). However,
this is not the end of the story, because Metamath uses strict inequalities,
rather than weak ones like IsarMathLib (mostly). So we need to take the
strict version of this order relation. This is done in the syntax definition of
<R in the definition of complex0 context.

constdefs
ReCxAdd(R,A,a,b) ≡ A〈fst(a),fst(b)〉
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ImCxAdd(R,A,a,b) ≡ A〈snd(a),snd(b)〉

CplxAdd(R,A) ≡
{〈p, 〈 ReCxAdd(R,A,fst(p),snd(p)),ImCxAdd(R,A,fst(p),snd(p)) 〉 〉.
p∈(R×R)×(R×R)}

ImCxMul(R,A,M,a,b) ≡ A〈M〈fst(a),snd(b)〉, M〈snd(a),fst(b)〉 〉

ReCxMul(R,A,M,a,b) ≡
A〈M〈fst(a),fst(b)〉,GroupInv(R,A)(M〈snd(a),snd(b)〉)〉

CplxMul(R,A,M) ≡
{ 〈p, 〈ReCxMul(R,A,M,fst(p),snd(p)),ImCxMul(R,A,M,fst(p),snd(p))〉 〉.

p ∈ (R×R)×(R×R)}

ComplexReals(R,A) ≡ R×{TheNeutralElement(R,A)}

CplxROrder(R,A,r) ≡
InducedRelation(SliceProjection(ComplexReals(R,A)),r)

The next locale defines proof context and notation that will be used for
complex numbers.

locale complex0 =
fixes R and A and M and r
assumes R_are_reals: IsAmodelOfReals(R,A,M,r)

fixes complex (C)
defines complex_def[simp]: C ≡ R×R

fixes rone (1R)
defines rone_def[simp]: 1R ≡ TheNeutralElement(R,M)

fixes rzero (0R)
defines rzero_def[simp]: 0R ≡ TheNeutralElement(R,A)

fixes one (1)
defines one_def[simp]: 1 ≡ 〈1R, 0R〉

fixes zero (0)
defines zero_def[simp]: 0 ≡ 〈0R, 0R〉

fixes iunit (i)
defines iunit_def[simp]: i ≡ 〈0R,1R〉

fixes creal (IR)
defines creal_def[simp]: IR ≡ {〈r,0R〉. r∈R}

fixes ca (infixl + 69)
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defines ca_def[simp]: a + b ≡ CplxAdd(R,A)〈a,b〉

fixes cm (infixl · 71)
defines cm_def[simp]: a · b ≡ CplxMul(R,A,M)〈a,b〉

fixes rmul (infixl · 71)
defines rmul_def[simp]: a · b ≡ M〈a,b〉

fixes radd (infixl + 69)
defines radd_def[simp]: a + b ≡ A〈a,b〉

fixes rneg :: i⇒i (- _ 70)
defines rneg_def[simp]: - a ≡ GroupInv(R,A)(a)

fixes lessr (infix <R 68)
defines lessr_def[simp]:
a <R b ≡ 〈a,b〉 ∈ StrictVersion(CplxROrder(R,A,r))

fixes cpnf (+∞)
defines cpnf_def[simp]: +∞ ≡ C

fixes cmnf (−∞)
defines cmnf_def[simp]: −∞ ≡ {C}

fixes cxr (IR∗)
defines cxr_def[simp]: IR∗ ≡ IR ∪ {+∞,−∞}

fixes cltrrset (<)
defines cltrrset_def[simp]:
< ≡ StrictVersion(CplxROrder(R,A,r)) ∪
{〈−∞,+∞〉} ∪ (IR×{+∞}) ∪ ({−∞}×IR )

29.2 Axioms of complex numbers

In this section we will prove that all Metamath’s axioms of complex numbers
hold in the complex0 context.

The next lemma lists some contexts that are valid in the complex0 context

lemma (in complex0) valid_cntxts: shows
field1(R,A,M,r)
field0(R,A,M)
ring1(R,A,M,r)
group3(R,A,r)
ring0(R,A,M)
M {is commutative on} R
group0(R,A)

proof -
from R_are_reals have I: IsAnOrdField(R,A,M,r)

using IsAmodelOfReals_def by simp
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then show field1(R,A,M,r) using OrdField_ZF_1_L2 by simp
then show ring1(R,A,M,r) and I: field0(R,A,M)

using field1.axioms ring1_def field1.OrdField_ZF_1_L1B
by auto

then show group3(R,A,r) using ring1.OrdRing_ZF_1_L4
by simp

from I have IsAfield(R,A,M) using field0.Field_ZF_1_L1
by simp

then have IsAring(R,A,M) and M {is commutative on} R
using IsAfield_def by auto

then show ring0(R,A,M) and M {is commutative on} R
using ring0_def by auto

then show group0(R,A) using ring0.Ring_ZF_1_L1
by simp

qed

The next lemma shows the definition of real and imaginary part of complex
sum and product in a more readable form using notation defined in complex0

locale.

lemma (in complex0) cplx_mul_add_defs: shows
ReCxAdd(R,A,〈a,b〉,〈c,d〉) = a + c
ImCxAdd(R,A,〈a,b〉,〈c,d〉) = b + d
ImCxMul(R,A,M,〈a,b〉,〈c,d〉) = a·d + b·c
ReCxMul(R,A,M,〈a,b〉,〈c,d〉) = a·c + (-b·d)

proof -
let z1 = 〈a,b〉
let z2 = 〈c,d〉
have ReCxAdd(R,A,z1,z2) ≡ A〈fst(z1),fst(z2)〉
by (rule ReCxAdd_def)

moreover have ImCxAdd(R,A,z1,z2) ≡ A〈snd(z1),snd(z2)〉
by (rule ImCxAdd_def)

moreover have
ImCxMul(R,A,M,z1,z2) ≡ A〈M<fst(z1),snd(z2)>,M<snd(z1),fst(z2)>〉
by (rule ImCxMul_def)

moreover have
ReCxMul(R,A,M,z1,z2) ≡
A〈M<fst(z1),fst(z2)>,GroupInv(R,A)(M〈snd(z1),snd(z2)〉)〉
by (rule ReCxMul_def)

ultimately show
ReCxAdd(R,A,z1,z2) = a + c
ImCxAdd(R,A,〈a,b〉,〈c,d〉) = b + d
ImCxMul(R,A,M,〈a,b〉,〈c,d〉) = a·d + b·c
ReCxMul(R,A,M,〈a,b〉,〈c,d〉) = a·c + (-b·d)
by auto

qed

Real and imaginary parts of sums and products of complex numbers are
real.

lemma (in complex0) cplx_mul_add_types:
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assumes A1: z1 ∈ C z2 ∈ C
shows
ReCxAdd(R,A,z1,z2) ∈ R
ImCxAdd(R,A,z1,z2) ∈ R
ImCxMul(R,A,M,z1,z2) ∈ R
ReCxMul(R,A,M,z1,z2) ∈ R

proof -
let a = fst(z1)
let b = snd(z1)
let c = fst(z2)
let d = snd(z2)
from A1 have a ∈ R b ∈ R c ∈ R d ∈ R

by auto
then have
a + c ∈ R
b + d ∈ R
a·d + b·c ∈ R
a·c + (- b·d) ∈ R
using valid_cntxts ring0.Ring_ZF_1_L4 by auto

with A1 show
ReCxAdd(R,A,z1,z2) ∈ R
ImCxAdd(R,A,z1,z2) ∈ R
ImCxMul(R,A,M,z1,z2) ∈ R
ReCxMul(R,A,M,z1,z2) ∈ R
using cplx_mul_add_defs by auto

qed

Complex reals are complex. Recall the definition of IR in the complex0 locale.

lemma (in complex0) axresscn: shows IR ⊆ C
using valid_cntxts group0.group0_2_L2 by auto

Complex 1 is not complex 0.

lemma (in complex0) ax1ne0: shows 1 6= 0
proof -

have IsAfield(R,A,M) using valid_cntxts field0.Field_ZF_1_L1
by simp

then show 1 6= 0 using IsAfield_def by auto
qed

Complex addition is a complex valued binary operation on complex numbers.

lemma (in complex0) axaddopr: shows CplxAdd(R,A): C × C → C
proof -

have ∀ p ∈ C×C. 〈ReCxAdd(R,A,fst(p),snd(p)),ImCxAdd(R,A,fst(p),snd(p))〉
∈ C

using cplx_mul_add_types by simp
then have
{〈p,<ReCxAdd(R,A,fst(p),snd(p)),ImCxAdd(R,A,fst(p),snd(p))> 〉. p ∈

C×C}: C×C → C
by (rule ZF_fun_from_total)
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then show CplxAdd(R,A): C × C → C using CplxAdd_def by simp
qed

Complex multiplication is a complex valued binary operation on complex
numbers.

lemma (in complex0) axmulopr: shows CplxMul(R,A,M): C × C → C
proof -

have ∀ p ∈ C×C.
〈ReCxMul(R,A,M,fst(p),snd(p)),ImCxMul(R,A,M,fst(p),snd(p))〉 ∈ C
using cplx_mul_add_types by simp

then have
{〈p,〈ReCxMul(R,A,M,fst(p),snd(p)),ImCxMul(R,A,M,fst(p),snd(p))〉〉.
p ∈ C×C}: C×C → C by (rule ZF_fun_from_total)

then show CplxMul(R,A,M): C × C → C using CplxMul_def by simp
qed

What are the values of omplex addition and multiplication in terms of their
real and imaginary parts?

lemma (in complex0) cplx_mul_add_vals:
assumes A1: a∈R b∈R c∈R d∈R
shows
〈a,b〉 + 〈c,d〉 = 〈a + c, b + d〉
〈a,b〉 · 〈c,d〉 = 〈a·c + (-b·d), a·d + b·c〉

proof -
let S = CplxAdd(R,A)
let P = CplxMul(R,A,M)
let p = 〈 〈a,b〉, 〈c,d〉 〉
have S : C × C → C p ∈ C × C using axaddopr by auto
moreover have
S = {〈p, <ReCxAdd(R,A,fst(p),snd(p)),ImCxAdd(R,A,fst(p),snd(p))>〉.

p ∈ C × C}
using CplxAdd_def by simp

ultimately have S(p) = 〈ReCxAdd(R,A,fst(p),snd(p)),ImCxAdd(R,A,fst(p),snd(p))〉
by (rule ZF_fun_from_tot_val)

then show 〈a,b〉 + 〈c,d〉 = 〈a + c, b + d〉
using cplx_mul_add_defs by simp

have P : C × C → C p ∈ C × C using axmulopr by auto
moreover have
P = {〈p, 〈ReCxMul(R,A,M,fst(p),snd(p)),ImCxMul(R,A,M,fst(p),snd(p))〉

〉.
p ∈ C × C}
using CplxMul_def by simp

ultimately have
P(p) = 〈ReCxMul(R,A,M,fst(p),snd(p)),ImCxMul(R,A,M,fst(p),snd(p))〉
by (rule ZF_fun_from_tot_val)

then show 〈a,b〉 · 〈c,d〉 = 〈a·c + (-b·d), a·d + b·c〉
using cplx_mul_add_defs by simp

qed
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Complex multiplication is commutative.

lemma (in complex0) axmulcom: assumes A1: a ∈ C b ∈ C
shows a·b = b·a
using prems cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L4

field0.field_mult_comm by auto

A sum of complex numbers is complex.

lemma (in complex0) axaddcl: assumes a ∈ C b ∈ C
shows a+b ∈ C
using prems axaddopr apply_funtype by simp

A product of complex numbers is complex.

lemma (in complex0) axmulcl: assumes a ∈ C b ∈ C
shows a·b ∈ C
using prems axmulopr apply_funtype by simp

Multiplication is distributive with respect to addition.

lemma (in complex0) axdistr:
assumes A1: a ∈ C b ∈ C c ∈ C
shows a·(b + c) = a·b + a·c

proof -
let ar = fst(a)
let ai = snd(a)
let br = fst(b)
let bi = snd(b)
let cr = fst(c)
let ci = snd(c)
from A1 have T:
ar ∈ R ai ∈ R br ∈ R bi ∈ R cr ∈ R ci ∈ R
br+cr ∈ R bi+ci ∈ R
ar·br + (-ai·bi) ∈ R
ar·cr + (-ai·ci) ∈ R
ar·bi + ai·br ∈ R
ar·ci + ai·cr ∈ R
using valid_cntxts ring0.Ring_ZF_1_L4 by auto

with A1 have a·(b + c) =
〈ar·(br+cr) + (-ai·(bi+ci)),ar·(bi+ci) + ai·(br+cr)〉
using cplx_mul_add_vals by auto

moreover from T have
ar·(br+cr) + (-ai·(bi+ci)) =
ar·br + (-ai·bi) + (ar·cr + (-ai·ci))
and
ar·(bi+ci) + ai·(br+cr) =
ar·bi + ai·br + (ar·ci + ai·cr)
using valid_cntxts ring0.Ring_ZF_2_L6 by auto

moreover from A1 T have
〈ar·br + (-ai·bi) + (ar·cr + (-ai·ci)),
ar·bi + ai·br + (ar·ci + ai·cr)〉 =
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a·b + a·c
using cplx_mul_add_vals by auto

ultimately show a·(b + c) = a·b + a·c
by simp

qed

Complex addition is commutative.

lemma (in complex0) axaddcom: assumes a ∈ C b ∈ C
shows a+b = b+a
using prems cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L4
by auto

Complex addition is associative.

lemma (in complex0) axaddass: assumes A1: a ∈ C b ∈ C c ∈ C
shows a + b + c = a + (b + c)

proof -
let ar = fst(a)
let ai = snd(a)
let br = fst(b)
let bi = snd(b)
let cr = fst(c)
let ci = snd(c)
from A1 have T:
ar ∈ R ai ∈ R br ∈ R bi ∈ R cr ∈ R ci ∈ R
ar+br ∈ R ai+bi ∈ R
br+cr ∈ R bi+ci ∈ R
using valid_cntxts ring0.Ring_ZF_1_L4 by auto

with A1 have a + b + c = 〈ar+br+cr,ai+bi+ci〉
using cplx_mul_add_vals by auto

also from A1 T have . . . = a + (b + c)
using valid_cntxts ring0.Ring_ZF_1_L11 cplx_mul_add_vals
by auto

finally show a + b + c = a + (b + c)
by simp

qed

Complex multiplication is associative.

lemma (in complex0) axmulass: assumes A1: a ∈ C b ∈ C c ∈ C
shows a · b · c = a · (b · c)

proof -
let ar = fst(a)
let ai = snd(a)
let br = fst(b)
let bi = snd(b)
let cr = fst(c)
let ci = snd(c)
from A1 have T:
ar ∈ R ai ∈ R br ∈ R bi ∈ R cr ∈ R ci ∈ R
ar·br + (-ai·bi) ∈ R
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ar·bi + ai·br ∈ R
br·cr + (-bi·ci) ∈ R
br·ci + bi·cr ∈ R
using valid_cntxts ring0.Ring_ZF_1_L4 by auto

with A1 have a · b · c =
〈(ar·br + (-ai·bi))·cr + (-(ar·bi + ai·br)·ci),
(ar·br + (-ai·bi))·ci + (ar·bi + ai·br)·cr〉
using cplx_mul_add_vals by auto

moreover from A1 T have
〈ar·(br·cr + (-bi·ci)) + (-ai·(br·ci + bi·cr)),
ar·(br·ci + bi·cr) + ai·(br·cr + (-bi·ci))〉 =
a · (b · c)
using cplx_mul_add_vals by auto

moreover from T have
ar·(br·cr + (-bi·ci)) + (-ai·(br·ci + bi·cr)) =
(ar·br + (-ai·bi))·cr + (-(ar·bi + ai·br)·ci)
and
ar·(br·ci + bi·cr) + ai·(br·cr + (-bi·ci)) =
(ar·br + (-ai·bi))·ci + (ar·bi + ai·br)·cr

using valid_cntxts ring0.Ring_ZF_2_L6 by auto
ultimately show a · b · c = a · (b · c)

by auto
qed

Complex 1 is real. This really means that the pair 〈1, 0〉 is on the real axis.

lemma (in complex0) ax1re: shows 1 ∈ IR
using valid_cntxts ring0.Ring_ZF_1_L2 by simp

The imaginary unit is a ”square root” of −1 (that is, i2 + 1 = 0).

lemma (in complex0) axi2m1: shows i·i + 1 = 0
using valid_cntxts ring0.Ring_ZF_1_L2 ring0.Ring_ZF_1_L3
cplx_mul_add_vals ring0.Ring_ZF_1_L6 group0.group0_2_L6
by simp

0 is the neutral element of complex addition.

lemma (in complex0) ax0id: assumes a ∈ C
shows a + 0 = a
using prems cplx_mul_add_vals valid_cntxts
ring0.Ring_ZF_1_L2 ring0.Ring_ZF_1_L3

by auto

The imaginary unit is a complex number.

lemma (in complex0) axicn: shows i ∈ C
using valid_cntxts ring0.Ring_ZF_1_L2 by auto

All complex numbers have additive inverses.

lemma (in complex0) axnegex: assumes A1: a ∈ C
shows ∃ x∈C. a + x = 0
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proof -
let ar = fst(a)
let ai = snd(a)
let x = 〈-ar, -ai〉
from A1 have T:
ar ∈ R ai ∈ R (-ar) ∈ R (-ar) ∈ R
using valid_cntxts ring0.Ring_ZF_1_L3 by auto

then have x ∈ C using valid_cntxts ring0.Ring_ZF_1_L3
by auto

moreover from A1 T have a + x = 0
using cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L3
by auto

ultimately show ∃ x∈C. a + x = 0
by auto

qed

A non-zero complex number has a multiplicative inverse.

lemma (in complex0) axrecex: assumes A1: a ∈ C and A2: a6=0
shows ∃ x∈C. a·x = 1

proof -
let ar = fst(a)
let ai = snd(a)
let m = ar·ar + ai·ai

from A1 have T1: ar ∈ R ai ∈ R by auto
moreover from A1 A2 have ar 6= 0R ∨ ai 6= 0R

by auto
ultimately have ∃ c∈R. m·c = 1R

using valid_cntxts field1.OrdField_ZF_1_L10
by auto

then obtain c where I: c∈R and II: m·c = 1R

by auto
let x = 〈ar·c, -ai·c〉
from T1 I have T2: ar·c ∈ R (-ai·c) ∈ R

using valid_cntxts ring0.Ring_ZF_1_L4 ring0.Ring_ZF_1_L3
by auto

then have x ∈ C by auto
moreover from A1 T1 T2 I II have a·x = 1

using cplx_mul_add_vals valid_cntxts ring0.ring_rearr_3_elemA
by auto

ultimately show ∃ x∈C. a·x = 1 by auto
qed

Complex 1 is a right neutral element for multiplication.

lemma (in complex0) ax1id: assumes A1: a ∈ C
shows a·1 = a
using prems valid_cntxts ring0.Ring_ZF_1_L2 cplx_mul_add_vals
ring0.Ring_ZF_1_L3 ring0.Ring_ZF_1_L6 by auto

A formula for sum of (complex) real numbers.
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lemma (in complex0) sum_of_reals: assumes a∈IR b∈IR
shows
a + b = 〈fst(a) + fst(b),0R〉
using prems valid_cntxts ring0.Ring_ZF_1_L2 cplx_mul_add_vals
ring0.Ring_ZF_1_L3 by auto

The sum of real numbers is real.

lemma (in complex0) axaddrcl: assumes A1: a∈IR b∈IR
shows a + b ∈ IR
using prems sum_of_reals valid_cntxts ring0.Ring_ZF_1_L4
by auto

The formula for the product of (complex) real numbers.

lemma (in complex0) prod_of_reals: assumes A1: a∈IR b∈IR
shows a · b = 〈fst(a)·fst(b),0R〉

proof -
let ar = fst(a)
let br = fst(b)
from A1 have T:
ar ∈ R br ∈ R 0R ∈ R ar·br ∈ R
using valid_cntxts ring0.Ring_ZF_1_L2 ring0.Ring_ZF_1_L4
by auto

with A1 show a · b = 〈ar·br,0R〉
using cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L2
ring0.Ring_ZF_1_L6 ring0.Ring_ZF_1_L3 by auto

qed

The product of (complex) real numbers is real.

lemma (in complex0) axmulrcl: assumes a∈IR b∈IR
shows a · b ∈ IR
using prems prod_of_reals valid_cntxts ring0.Ring_ZF_1_L4
by auto

The existence of a real negative of a real number.

lemma (in complex0) axrnegex: assumes A1: a∈IR
shows ∃ x ∈ IR. a + x = 0

proof -
let ar = fst(a)
let x = 〈-ar,0R〉
from A1 have T:
ar ∈ R (-ar) ∈ R 0R ∈ R
using valid_cntxts ring0.Ring_ZF_1_L3 ring0.Ring_ZF_1_L2
by auto

then have x∈ IR by auto
moreover from A1 T have a + x = 0

using cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L3
by auto

ultimately show ∃ x∈IR. a + x = 0 by auto
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qed

Each nonzero real number has a real inverse

lemma (in complex0) axrrecex:
assumes A1: a ∈ IR a 6= 0
shows ∃ x∈IR. a · x = 1

proof -
let R0 = R-{0R}
let ar = fst(a)
let y = GroupInv(R0,restrict(M,R0×R0))(ar)
from A1 have T: 〈y,0R〉 ∈ IR using valid_cntxts field0.Field_ZF_1_L5

by auto
moreover from A1 T have a · 〈y,0R〉 = 1

using prod_of_reals valid_cntxts
field0.Field_ZF_1_L5 field0.Field_ZF_1_L6 by auto

ultimately show ∃ x ∈ IR. a · x = 1 by auto
qed

Our IR symbol is the real axis on the complex plane.

lemma (in complex0) real_means_real_axis: shows IR = ComplexReals(R,A)
using ComplexReals_def by auto

The CplxROrder thing is a relation on the complex reals.

lemma (in complex0) cplx_ord_on_cplx_reals:
shows CplxROrder(R,A,r) ⊆ IR×IR
using ComplexReals_def slice_proj_bij real_means_real_axis
CplxROrder_def InducedRelation_def by auto

The strict version of the complex relation is a relation on complex reals.

lemma (in complex0) cplx_strict_ord_on_cplx_reals:
shows StrictVersion(CplxROrder(R,A,r)) ⊆ IR×IR
using cplx_ord_on_cplx_reals strict_ver_rel by simp

The CplxROrder thing is a relation on the complex reals. Here this is for-
mulated as a statement that in complex0 context a < b implies that a, b are
complex reals

lemma (in complex0) strict_cplx_ord_type: assumes a <R b
shows a∈IR b∈IR
using prems CplxROrder_def def_of_strict_ver InducedRelation_def
slice_proj_bij ComplexReals_def real_means_real_axis

by auto

A more readable version of the definition of the strict order relation on the
real axis. Recall that in the complex0 context r denotes the (non-strict)
order relation on the underlying model of real numbers.

lemma (in complex0) def_of_real_axis_order: shows
〈x,0R〉 <R 〈y,0R〉 ←→ 〈x,y〉 ∈ r ∧ x 6=y
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proof
let f = SliceProjection(ComplexReals(R,A))
assume A1: 〈x,0R〉 <R 〈y,0R〉
then have 〈 f〈x,0R〉, f〈y,0R〉 〉 ∈ r ∧ x 6= y

using CplxROrder_def def_of_strict_ver def_of_ind_relA
by simp

moreover from A1 have 〈x,0R〉 ∈ IR 〈y,0R〉 ∈ IR
using strict_cplx_ord_type by auto

ultimately show 〈x,y〉 ∈ r ∧ x 6=y
using slice_proj_bij ComplexReals_def by simp

next assume A1: 〈x,y〉 ∈ r ∧ x6=y
let f = SliceProjection(ComplexReals(R,A))
have f : IR → R

using ComplexReals_def slice_proj_bij real_means_real_axis
by simp

moreover from A1 have T: 〈x,0R〉 ∈ IR 〈y,0R〉 ∈ IR
using valid_cntxts ring1.OrdRing_ZF_1_L3 by auto

moreover from A1 T have 〈 f〈x,0R〉, f〈y,0R〉 〉 ∈ r
using slice_proj_bij ComplexReals_def by simp

ultimately have 〈 〈x,0R〉, 〈y,0R〉 〉 ∈ InducedRelation(f,r)
using def_of_ind_relB by simp

with A1 show 〈x,0R〉 <R 〈y,0R〉
using CplxROrder_def def_of_strict_ver
by simp

qed

The (non strict) order on complex reals is antisymmetric, transitive and
total.

lemma (in complex0) cplx_ord_antsym_trans_tot: shows
antisym(CplxROrder(R,A,r))
trans(CplxROrder(R,A,r))
CplxROrder(R,A,r) {is total on} IR

proof -
let f = SliceProjection(ComplexReals(R,A))
have f ∈ ord_iso(IR,CplxROrder(R,A,r),R,r)

using ComplexReals_def slice_proj_bij real_means_real_axis
bij_is_ord_iso CplxROrder_def by simp

moreover have CplxROrder(R,A,r) ⊆ IR×IR
using cplx_ord_on_cplx_reals by simp

moreover have I:
antisym(r) r {is total on} R trans(r)
using valid_cntxts ring1.OrdRing_ZF_1_L1 IsAnOrdRing_def
IsLinOrder_def by auto

ultimately show
antisym(CplxROrder(R,A,r))
trans(CplxROrder(R,A,r))
CplxROrder(R,A,r) {is total on} IR
using ord_iso_pres_antsym ord_iso_pres_tot ord_iso_pres_trans
by auto
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qed

The trichotomy law for the strict order on the complex reals.

lemma (in complex0) cplx_strict_ord_trich:
assumes a ∈ IR b ∈ IR
shows Exactly_1_of_3_holds(a<Rb, a=b, b<Ra)
using prems cplx_ord_antsym_trans_tot strict_ans_tot_trich
by simp

The strict order on the complex reals is kind of antisymetric.

lemma (in complex0) pre_axlttri: assumes A1: a ∈ IR b ∈ IR
shows a <R b ←→ ¬(a=b ∨ b <R a)

proof -
from A1 have Exactly_1_of_3_holds(a<Rb, a=b, b<Ra)

by (rule cplx_strict_ord_trich)
thus a <R b ←→ ¬(a=b ∨ b <R a)

by (rule Fol1_L8A)
qed

The strict order on complex reals is transitive.

lemma (in complex0) cplx_strict_ord_trans:
shows trans(StrictVersion(CplxROrder(R,A,r)))
using cplx_ord_antsym_trans_tot strict_of_transB by simp

The strict order on complex reals is transitive - the explicit version of
cplx_strict_ord_trans.

lemma (in complex0) pre_axlttrn:
assumes A1: a <R b b <R c
shows a <R c

proof -
let s = StrictVersion(CplxROrder(R,A,r))
from A1 have
trans(s) 〈a,b〉 ∈ s ∧ 〈b,c〉 ∈ s
using cplx_strict_ord_trans by auto

then have 〈a,c〉 ∈ s by (rule Fol1_L3)
then show a <R c by simp

qed

The strict order on complex reals is preserved by translations.

lemma (in complex0) pre_axltadd:
assumes A1: a <R b and A2: c ∈ IR
shows c+a <R c+b

proof -
from A1 have T: a∈IR b∈IR using strict_cplx_ord_type

by auto
with A1 A2 show c+a <R c+b

using def_of_real_axis_order valid_cntxts
group3.group_strict_ord_transl_inv sum_of_reals
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by auto
qed

The set of positive complex reals is closed with respect to multiplication.

lemma (in complex0) pre_axmulgt0: assumes A1: 0 <R a 0 <R b
shows 0 <R a·b

proof -
from A1 have T: a∈IR b∈IR using strict_cplx_ord_type

by auto
with A1 show 0 <R a·b

using def_of_real_axis_order valid_cntxts field1.pos_mul_closed
def_of_real_axis_order prod_of_reals

by auto
qed

The order on complex reals is linear and complete.

lemma (in complex0) cmplx_reals_ord_lin_compl: shows
CplxROrder(R,A,r) {is complete}
IsLinOrder(IR,CplxROrder(R,A,r))

proof -
have SliceProjection(IR) ∈ bij(IR,R)

using slice_proj_bij ComplexReals_def real_means_real_axis
by simp

moreover have r ⊆ R×R using valid_cntxts ring1.OrdRing_ZF_1_L1
IsAnOrdRing_def by simp

moreover from R_are_reals have
r {is complete} and IsLinOrder(R,r)
using IsAmodelOfReals_def valid_cntxts ring1.OrdRing_ZF_1_L1
IsAnOrdRing_def by auto

ultimately show
CplxROrder(R,A,r) {is complete}
IsLinOrder(IR,CplxROrder(R,A,r))
using CplxROrder_def real_means_real_axis ind_rel_pres_compl
ind_rel_pres_lin by auto

qed

The property of the strict order on complex reals that corresponds to com-
pleteness.

lemma (in complex0) pre_axsup: assumes A1: X ⊆ IR X 6= 0 and
A2: ∃ x∈IR. ∀ y∈X. y <R x
shows
∃ x∈IR. (∀ y∈X. ¬(x <R y)) ∧ (∀ y∈IR. (y <R x −→ (∃ z∈X. y <R z)))

proof -
let s = StrictVersion(CplxROrder(R,A,r))
have
CplxROrder(R,A,r) ⊆ IR×IR
IsLinOrder(IR,CplxROrder(R,A,r))
CplxROrder(R,A,r) {is complete}
using cplx_ord_on_cplx_reals cmplx_reals_ord_lin_compl
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by auto
moreover note A1
moreover have s = StrictVersion(CplxROrder(R,A,r))

by simp
moreover from A2 have ∃ u∈IR. ∀ y∈X. 〈y,u〉 ∈ s

by simp
ultimately have
∃ x∈IR. ( ∀ y∈X. 〈x,y〉 /∈ s ) ∧
(∀ y∈IR. 〈y,x〉 ∈ s −→ (∃ z∈X. 〈y,z〉 ∈ s))
by (rule strict_of_compl)

then show (∃ x∈IR. (∀ y∈X. ¬(x <R y)) ∧
(∀ y∈IR. (y <R x −→ (∃ z∈X. y <R z))))
by simp

qed

end
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30 MMI prelude.thy

theory MMI_prelude imports equalities

begin

In this theory file we define the context in which theorems imported from
Metamath are proven and prove the logic and set theory Metamath lemmas
that the proofs of Metamath theorems about real and complex numbers
depend on.

30.1 Importing from Metamath - how is it done

We are interested in importing the theorems about complex numbers that
start from the ”recnt” theorem on. This is done mostly automatically by
the mmisar tool that is included in the IsarMathLib distribution. The tool
works as follows:
First it reads the list of (Metamath) names of theorems that are already
imported to IsarMathlib (”known theorems”) and the list of theorems that
are intended to be imported in this session (”new theorems”). The new
theorems are consecutive theorems about complex numbers as they appear
in the Metamath database. Then mmisar creates a ”Metamath script” that
contains Metamath commands that open a log file and put the stataments
and proofs of the new theorems in that file in a readable format. The tool
writes this script to a disk file and executes metamath with standard input
redirected from that file. Then the log file is read and its contents converted
to the Isar format. In Metamath, the proofs of theorems about complex
numbers depend only on 28 axioms of complex numbers and some basic
logic and set theory theorems. The tool finds which of these dependencies
are not known yet and repeats the process of getting their statements from
Metamath as with the new theorems. As a result of this process mmisar
creates files new theorems.thy, new deps.thy and new known theorems.txt.
The file new theorems.thy contains the theorems (with proofs) imported
from Metamath in this session. These theorems are added (by hand) to the
current MMI_Complex_ZF_x.thy file. The file new deps.thy contains the state-
ments of new dependencies with generic proofs ”by auto”. These are added
to the MMI_logis_and_sets.thy. Most of the dependencies can be proven au-
tomatically by Isabelle. However, some manual work has to be done for the
dependencies that Isabelle can not prove by itself and to correct problems
related to the fact that Metamath uses a metalogic based on distinct vari-
able constraints (Tarski-Megill metalogic), rather than an explicit notion of
free and bound variables.
The old list of known theorems is replaced by the new list and mmisar is
ready to convert the next batch of new theorems. Of course this rarely works
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in practice without tweaking the mmisar source files every time a new batch
is processed.

30.2 The context for Metamath theorems

We list the Metamth’s axioms of complex numbers and define notation here.

The next definition is what Metamath X ∈ V is translated to. I am not
sure why it works, probably because Isabelle does a type inference and the
”=” sign indicates that both sides are sets.

consts
IsASet :: i⇒o (_ isASet [90] 90)

defs
set_def [simp]: X isASet ≡ X = X

The next locale sets up the context to which Metamath theorems about
complex numbers are imported. It assumes the axioms of complex numbers
and defines the notation used for complex numbers.
One of the problems with importing theorems from Metamath is that Meta-
math allows direct infix notation for binary operations so that the notation
afb is allowed where f is a function (that is, a set of pairs). To my knowl-
edge, Isar allows only notation f〈a,b〉 with a possibility of defining a syntax
say a + b to mean the same as f〈a,b〉 (please correct me if I am wrong here).
This is why we have two objects for addition: one called caddset that rep-
resents the binary function, and the second one called ca which defines the
a + b notation for caddset〈a,b〉. The same applies to multiplication of real
numbers.

locale MMIsar0 =
fixes real (IR)
fixes complex (C)
fixes one :: i (1)
fixes zero :: i (0)
fixes iunit :: i (i)
fixes caddset (+)
fixes cmulset (·)
fixes lessrrel (<R)

fixes ca (infixl + 69)
defines ca_def: a + b ≡ +〈a,b〉
fixes cm (infixl · 71)
defines cm_def: a · b ≡ ·〈a,b〉
fixes sub (infixl - 69)
defines sub_def: a - b ≡

⋃
{ x ∈ C. b + x = a }

fixes cneg :: i⇒i (-_ 95)
defines cneg_def: - a ≡ 0 - a

470



fixes cdiv (infixl / 70)
defines cdiv_def: a / b ≡

⋃
{ x ∈ C. b · x = a }

fixes cpnf (+∞)
defines cpnf_def: +∞ ≡ C
fixes cmnf (−∞)
defines cmnf_def: −∞ ≡ {C}
fixes cxr (IR∗)
defines cxr_def: IR∗ ≡ IR ∪ {+∞,−∞}
fixes lessr (infix <R 68)
defines lessr_def: a <R b ≡ 〈a,b〉 ∈ <R
fixes cltrrset (<)
defines cltrrset_def:
< ≡ (<R ∩ IR×IR) ∪ {〈−∞,+∞〉} ∪
(IR×{+∞}) ∪ ({−∞}×IR )
fixes cltrr (infix < 68)
defines cltrr_def: a < b ≡ 〈a,b〉 ∈ <
fixes lsq (infix ≤ 68)
defines lsq_def: a ≤ b ≡ ¬ (b < a)

assumes MMI_pre_axlttri:
A ∈ IR ∧ B ∈ IR −→ (A <R B ←→ ¬(A=B ∨ B <R A))
assumes MMI_pre_axlttrn:
A ∈ IR ∧ B ∈ IR ∧ C ∈ IR −→ ((A <R B ∧ B <R C) −→ A <R C)
assumes MMI_pre_axltadd:
A ∈ IR ∧ B ∈ IR ∧ C ∈ IR −→ (A <R B −→ C+A <R C+B)
assumes MMI_pre_axmulgt0:
A ∈ IR ∧ B ∈ IR −→ ( 0 <R A ∧ 0 <R B −→ 0 <R A·B)
assumes MMI_pre_axsup:
A ⊆ IR ∧ A 6= 0 ∧ (∃ x∈IR. ∀ y∈A. y <R x) −→
(∃ x∈IR. (∀ y∈A. ¬(x <R y)) ∧ (∀ y∈IR. (y <R x −→ (∃ z∈A. y <R z))))
assumes MMI_axresscn: IR ⊆ C
assumes MMI_ax1ne0: 1 6= 0
assumes MMI_axcnex: C isASet
assumes MMI_axaddopr: + : ( C × C ) → C
assumes MMI_axmulopr: · : ( C × C ) → C
assumes MMI_axmulcom: A ∈ C ∧ B ∈ C −→ A · B = B · A
assumes MMI_axaddcl: A ∈ C ∧ B ∈ C −→ A + B ∈ C
assumes MMI_axmulcl: A ∈ C ∧ B ∈ C −→ A · B ∈ C
assumes MMI_axdistr:
A ∈ C ∧ B ∈ C ∧ C ∈ C −→ A·(B + C) = A·B + A·C
assumes MMI_axaddcom: A ∈ C ∧ B ∈ C −→ A + B = B + A
assumes MMI_axaddass:
A ∈ C ∧ B ∈ C ∧ C ∈ C −→ A + B + C = A + (B + C)
assumes MMI_axmulass:
A ∈ C ∧ B ∈ C ∧ C ∈ C −→ A · B · C = A · (B · C)
assumes MMI_ax1re: 1 ∈ IR
assumes MMI_axi2m1: i · i + 1 = 0
assumes MMI_ax0id: A ∈ C −→ A + 0 = A
assumes MMI_axicn: i ∈ C
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assumes MMI_axnegex: A ∈ C −→ ( ∃ x ∈ C. ( A + x ) = 0 )
assumes MMI_axrecex: A ∈ C ∧ A 6= 0 −→ ( ∃ x ∈ C. A · x = 1)
assumes MMI_ax1id: A ∈ C −→ A · 1 = A
assumes MMI_axaddrcl: A ∈ IR ∧ B ∈ IR −→ A + B ∈ IR
assumes MMI_axmulrcl: A ∈ IR ∧ B ∈ IR −→ A · B ∈ IR
assumes MMI_axrnegex: A ∈ IR −→ ( ∃ x ∈ IR. A + x = 0 )
assumes MMI_axrrecex: A ∈ IR ∧ A 6= 0 −→ ( ∃ x ∈ IR. A · x = 1 )

constdefs
StrictOrder (infix Orders 65)
R Orders A ≡ ∀ x y z. (x∈A ∧ y∈A ∧ z∈A) −→
(〈x,y〉 ∈ R ←→ ¬(x=y ∨ 〈y,x〉 ∈ R)) ∧ (〈x,y〉 ∈ R ∧ 〈y,z〉 ∈ R −→ 〈x,z〉

∈ R)

end
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31 Metamath interface.thy

theory Metamath_interface imports Complex_ZF MMI_prelude

begin

This theory contains some lemmas that make it possible to use the theorems
translated from Metamath in a the complex0 context.

The next lemma states that we can use the theorems proven in the MMIsar0

context in the complex0 context. Unfortunately we have to use low level
Isabelle methods ”rule” and ”unfold” in the proof, simp and blast fail on
the order axioms.

lemma (in complex0) MMIsar_valid:
shows MMIsar0(IR,C,1,0,i,CplxAdd(R,A),CplxMul(R,A,M),
StrictVersion(CplxROrder(R,A,r)))

proof -
let real = IR
let complex = C
let zero = 0
let one = 1
let iunit = i
let caddset = CplxAdd(R,A)
let cmulset = CplxMul(R,A,M)
let lessrrel = StrictVersion(CplxROrder(R,A,r))
have IR ⊆ C using axresscn by simp
moreover have 1 6= 0 using ax1ne0 by simp
moreover have C isASet by simp
moreover have CplxAdd(R,A) : C × C → C

using axaddopr by simp
moreover have CplxMul(R,A,M) : C × C → C

using axmulopr by simp
moreover have
∀ a b. a ∈ C ∧ b ∈ C −→ a· b = b · a
using axmulcom by simp

moreover have ∀ a b. a ∈ C ∧ b ∈ C −→ a + b ∈ C
using axaddcl by simp

moreover have ∀ a b. a ∈ C ∧ b ∈ C −→ a · b ∈ C
using axmulcl by simp

moreover have
∀ a b C. a ∈ C ∧ b ∈ C ∧ C ∈ C −→
a · (b + C) = a · b + a · C
using axdistr by simp

moreover have ∀ a b. a ∈ C ∧ b ∈ C −→
a + b = b + a

using axaddcom by simp
moreover have ∀ a b C. a ∈ C ∧ b ∈ C ∧ C ∈ C −→

a + b + C = a + (b + C)
using axaddass by simp
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moreover have
∀ a b c. a ∈ C ∧ b ∈ C ∧ c ∈ C −→ a·b·c = a·(b·c)
using axmulass by simp

moreover have 1 ∈ IR using ax1re by simp
moreover have i·i + 1 = 0

using axi2m1 by simp
moreover have ∀ a. a ∈ C −→ a + 0 = a

using ax0id by simp
moreover have i ∈ C using axicn by simp
moreover have ∀ a. a ∈ C −→ (∃ x∈C. a + x = 0)

using axnegex by simp
moreover have ∀ a. a ∈ C ∧ a 6= 0 −→ (∃ x∈C. a · x = 1)

using axrecex by simp
moreover have ∀ a. a ∈ C −→ a·1 = a

using ax1id by simp
moreover have ∀ a b. a ∈ IR ∧ b ∈ IR −→ a + b ∈ IR

using axaddrcl by simp
moreover have ∀ a b. a ∈ IR ∧ b ∈ IR −→ a · b ∈ IR

using axmulrcl by simp
moreover have ∀ a. a ∈ IR −→ (∃ x∈IR. a + x = 0)

using axrnegex by simp
moreover have ∀ a. a ∈ IR ∧ a6=0 −→ (∃ x∈IR. a · x = 1)

using axrrecex by simp
ultimately have real ⊆ complex ∧
one 6= zero ∧
complex isASet ∧
caddset ∈ complex × complex → complex ∧
cmulset ∈ complex × complex → complex ∧
(∀ A B. A ∈ complex ∧ B ∈ complex −→
cmulset 〈A, B〉 = cmulset 〈B, A〉) ∧
(∀ A B. A ∈ complex ∧ B ∈ complex −→ caddset 〈A, B〉 ∈ complex) ∧
(∀ A B. A ∈ complex ∧ B ∈ complex −→ cmulset 〈A, B〉 ∈ complex) ∧
(∀ A B C.
A ∈ complex ∧ B ∈ complex ∧ C ∈ complex −→
cmulset 〈A, caddset 〈B, C〉〉 =
caddset 〈cmulset 〈A, B〉, cmulset 〈A, C〉〉) ∧
(∀ A B. A ∈ complex ∧ B ∈ complex −→
caddset 〈A, B〉 = caddset 〈B, A〉) ∧
(∀ A B C.
A ∈ complex ∧ B ∈ complex ∧ C ∈ complex −→
caddset 〈caddset 〈A, B〉, C〉 =
caddset 〈A, caddset 〈B, C〉〉) ∧
(∀ A B C.
A ∈ complex ∧ B ∈ complex ∧ C ∈ complex −→
cmulset 〈cmulset 〈A, B〉, C〉 =
cmulset 〈A, cmulset 〈B, C〉〉) ∧
one ∈ real ∧
caddset 〈cmulset 〈iunit, iunit〉, one〉 = zero ∧
(∀ A. A ∈ complex −→ caddset 〈A, zero〉 = A) ∧
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iunit ∈ complex ∧
(∀ A. A ∈ complex −→ (∃ x∈complex. caddset 〈A, x〉 = zero)) ∧
(∀ A. A ∈ complex ∧ A 6= zero −→
(∃ x∈complex. cmulset 〈A, x〉 = one)) ∧
(∀ A. A ∈ complex −→ cmulset 〈A, one〉 = A) ∧
(∀ A B. A ∈ real ∧ B ∈ real −→ caddset 〈A, B〉 ∈ real) ∧
(∀ A B. A ∈ real ∧ B ∈ real −→ cmulset 〈A, B〉 ∈ real) ∧
(∀ A. A ∈ real −→ (∃ x∈real. caddset 〈A, x〉 = zero)) ∧
(∀ A. A ∈ real ∧ A 6= zero −→ (∃ x∈real. cmulset 〈A, x〉 = one))
by simp

moreover have (∀ a b. a ∈ real ∧ b ∈ real −→
〈a, b〉 ∈ lessrrel ←→ ¬ (a = b ∨ 〈b, a〉 ∈ lessrrel))

proof -
have I:
∀ a b. a ∈ IR ∧ b ∈ IR −→ (a <R b ←→ ¬(a=b ∨ b <R a))
using pre_axlttri by blast

{ fix a b assume a ∈ real ∧ b ∈ real
with I have (a <R b ←→ ¬(a=b ∨ b <R a))

by blast
hence
〈a, b〉 ∈ lessrrel ←→ ¬ (a = b ∨ 〈b, a〉 ∈ lessrrel)
by simp

} thus (∀ a b. a ∈ real ∧ b ∈ real −→
(〈a, b〉 ∈ lessrrel ←→ ¬ (a = b ∨ 〈b, a〉 ∈ lessrrel)))

by blast
qed
moreover have (∀ a b c.
a ∈ real ∧ b ∈ real ∧ c ∈ real −→
〈a, b〉 ∈ lessrrel ∧ 〈b, c〉 ∈ lessrrel −→ 〈a, c〉 ∈ lessrrel)

proof -
have II: ∀ a b c. a ∈ IR ∧ b ∈ IR ∧ c ∈ IR −→
((a <R b ∧ b <R c) −→ a <R c)
using pre_axlttrn by blast

{ fix a b c assume a ∈ real ∧ b ∈ real ∧ c ∈ real
with II have (a <R b ∧ b <R c) −→ a <R c

by blast
hence
〈a, b〉 ∈ lessrrel ∧ 〈b, c〉 ∈ lessrrel −→ 〈a, c〉 ∈ lessrrel
by simp

} thus (∀ a b c.
a ∈ real ∧ b ∈ real ∧ c ∈ real −→
〈a, b〉 ∈ lessrrel ∧ 〈b, c〉 ∈ lessrrel −→ 〈a, c〉 ∈ lessrrel)

by blast
qed
moreover have (∀ A B C.
A ∈ real ∧ B ∈ real ∧ C ∈ real −→
〈A, B〉 ∈ lessrrel −→
〈caddset 〈C, A〉, caddset 〈C, B〉〉 ∈ lessrrel)
using pre_axltadd by simp
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moreover have (∀ A B. A ∈ real ∧ B ∈ real −→
〈zero, A〉 ∈ lessrrel ∧ 〈zero, B〉 ∈ lessrrel −→
〈zero, cmulset 〈A, B〉〉 ∈ lessrrel)
using pre_axmulgt0 by simp

moreover have
(∀ A. A ⊆ real ∧ A 6= 0 ∧ (∃ x∈real. ∀ y∈A. 〈y, x〉 ∈ lessrrel) −→
(∃ x∈real.
(∀ y∈A. 〈x, y〉 /∈ lessrrel) ∧
(∀ y∈real. 〈y, x〉 ∈ lessrrel −→ (∃ z∈A. 〈y, z〉 ∈ lessrrel))))
using pre_axsup by simp

ultimately have
(∀ A B. A ∈ real ∧ B ∈ real −→
〈A, B〉 ∈ lessrrel ←→ ¬ (A = B ∨ 〈B, A〉 ∈ lessrrel)) ∧
(∀ A B C.
A ∈ real ∧ B ∈ real ∧ C ∈ real −→
〈A, B〉 ∈ lessrrel ∧ 〈B, C〉 ∈ lessrrel −→ 〈A, C〉 ∈ lessrrel) ∧
(∀ A B C.
A ∈ real ∧ B ∈ real ∧ C ∈ real −→
〈A, B〉 ∈ lessrrel −→
〈caddset 〈C, A〉, caddset 〈C, B〉〉 ∈ lessrrel) ∧
(∀ A B. A ∈ real ∧ B ∈ real −→
〈zero, A〉 ∈ lessrrel ∧ 〈zero, B〉 ∈ lessrrel −→
〈zero, cmulset 〈A, B〉〉 ∈ lessrrel) ∧
(∀ A. A ⊆ real ∧ A 6= 0 ∧ (∃ x∈real. ∀ y∈A. 〈y, x〉 ∈ lessrrel) −→
(∃ x∈real.
(∀ y∈A. 〈x, y〉 /∈ lessrrel) ∧
(∀ y∈real. 〈y, x〉 ∈ lessrrel −→ (∃ z∈A. 〈y, z〉 ∈ lessrrel)))) ∧
real ⊆ complex ∧
one 6= zero ∧
complex isASet ∧
caddset ∈ complex × complex → complex ∧
cmulset ∈ complex × complex → complex ∧
(∀ A B. A ∈ complex ∧ B ∈ complex −→
cmulset 〈A, B〉 = cmulset 〈B, A〉) ∧
(∀ A B. A ∈ complex ∧ B ∈ complex −→ caddset 〈A, B〉 ∈ complex) ∧
(∀ A B. A ∈ complex ∧ B ∈ complex −→ cmulset 〈A, B〉 ∈ complex) ∧
(∀ A B C.
A ∈ complex ∧ B ∈ complex ∧ C ∈ complex −→
cmulset 〈A, caddset 〈B, C〉〉 =
caddset 〈cmulset 〈A, B〉, cmulset 〈A, C〉〉) ∧
(∀ A B. A ∈ complex ∧ B ∈ complex −→
caddset 〈A, B〉 = caddset 〈B, A〉) ∧
(∀ A B C. A ∈ complex ∧ B ∈ complex ∧ C ∈ complex −→
caddset 〈caddset 〈A, B〉, C〉 =
caddset 〈A, caddset 〈B, C〉〉) ∧
(∀ A B C. A ∈ complex ∧ B ∈ complex ∧ C ∈ complex −→
cmulset 〈cmulset 〈A, B〉, C〉 = cmulset 〈A, cmulset 〈B, C〉〉) ∧
one ∈ real ∧
caddset 〈cmulset 〈iunit, iunit〉, one〉 = zero ∧
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(∀ A. A ∈ complex −→ caddset 〈A, zero〉 = A) ∧
iunit ∈ complex ∧
(∀ A. A ∈ complex −→ (∃ x∈complex. caddset 〈A, x〉 = zero)) ∧
(∀ A. A ∈ complex ∧ A 6= zero −→
(∃ x∈complex. cmulset 〈A, x〉 = one)) ∧
(∀ A. A ∈ complex −→ cmulset 〈A, one〉 = A) ∧
(∀ A B. A ∈ real ∧ B ∈ real −→ caddset 〈A, B〉 ∈ real) ∧
(∀ A B. A ∈ real ∧ B ∈ real −→ cmulset 〈A, B〉 ∈ real) ∧
(∀ A. A ∈ real −→ (∃ x∈real. caddset 〈A, x〉 = zero)) ∧
(∀ A. A ∈ real ∧ A 6= zero −→ (∃ x∈real. cmulset 〈A, x〉 = one))
by (rule five_more_conj)

thus MMIsar0(IR,C,1,0,i,CplxAdd(R,A),CplxMul(R,A,M),
StrictVersion(CplxROrder(R,A,r))) by (unfold MMIsar0_def)

qed

In complex0 context the strict version of the order relation on complex reals
is a relation on complex reals.

end
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32 MMI examples.thy

theory MMI_examples imports MMI_Complex_ZF

begin

This theory contains 10 theorems translated from Metamath (with proofs).
It is included in the proof document as an illustration how a translated
Metamath proof looks like. The ”known theorems.txt” file included in the
IsarMathLib distribution provides a list of all translated facts.

lemma (in MMIsar0) MMI_dividt:
shows ( A ∈ C ∧ A 6= 0 ) −→ ( A / A ) = 1

proof -
have S1: ( A ∈ C ∧ A ∈ C ∧ A 6= 0 ) −→

( A / A ) = ( A · ( 1 / A ) ) by (rule MMI_divrect)
from S1 have S2: ( ( A ∈ C ∧ A ∈ C ) ∧ A 6= 0 ) −→

( A / A ) = ( A · ( 1 / A ) ) by (rule MMI_3expa)
from S2 have S3: ( A ∈ C ∧ A 6= 0 ) −→

( A / A ) = ( A · ( 1 / A ) ) by (rule MMI_anabsan)
have S4: ( A ∈ C ∧ A 6= 0 ) −→

( A · ( 1 / A ) ) = 1 by (rule MMI_recidt)
from S3 S4 show ( A ∈ C ∧ A 6= 0 ) −→ ( A / A ) = 1 by (rule MMI_eqtrd)

qed

lemma (in MMIsar0) MMI_div0t:
shows ( A ∈ C ∧ A 6= 0 ) −→ ( 0 / A ) = 0

proof -
have S1: 0 ∈ C by (rule MMI_0cn)
have S2: ( 0 ∈ C ∧ A ∈ C ∧ A 6= 0 ) −→

( 0 / A ) = ( 0 · ( 1 / A ) ) by (rule MMI_divrect)
from S1 S2 have S3: ( A ∈ C ∧ A 6= 0 ) −→

( 0 / A ) = ( 0 · ( 1 / A ) ) by (rule MMI_mp3an1)
have S4: ( A ∈ C ∧ A 6= 0 ) −→ ( 1 / A ) ∈ C by (rule MMI_recclt)
have S5: ( 1 / A ) ∈ C −→ ( 0 · ( 1 / A ) ) = 0

by (rule MMI_mul02t)
from S4 S5 have S6: ( A ∈ C ∧ A 6= 0 ) −→

( 0 · ( 1 / A ) ) = 0 by (rule MMI_syl)
from S3 S6 show ( A ∈ C ∧ A 6= 0 ) −→ ( 0 / A ) = 0 by (rule MMI_eqtrd)

qed

lemma (in MMIsar0) MMI_diveq0t:
shows ( A ∈ C ∧ C ∈ C ∧ C 6= 0 ) −→

( ( A / C ) = 0 ←→ A = 0 )
proof -

have S1: ( C ∈ C ∧ C 6= 0 ) −→ ( 0 / C ) = 0 by (rule MMI_div0t)
from S1 have S2: ( C ∈ C ∧ C 6= 0 ) −→

( ( A / C ) =
( 0 / C ) ←→ ( A / C ) = 0 ) by (rule MMI_eqeq2d)

from S2 have S3: ( A ∈ C ∧ C ∈ C ∧ C 6= 0 ) −→
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( ( A / C ) =
( 0 / C ) ←→ ( A / C ) = 0 ) by (rule MMI_3adant1)

have S4: 0 ∈ C by (rule MMI_0cn)
have S5: ( A ∈ C ∧ 0 ∈ C ∧ ( C ∈ C ∧ C 6= 0 ) ) −→

( ( A / C ) = ( 0 / C ) ←→ A = 0 ) by (rule MMI_div11t)
from S4 S5 have S6: ( A ∈ C ∧ ( C ∈ C ∧ C 6= 0 ) ) −→

( ( A / C ) = ( 0 / C ) ←→ A = 0 ) by (rule MMI_mp3an2)
from S6 have S7: ( A ∈ C ∧ C ∈ C ∧ C 6= 0 ) −→

( ( A / C ) = ( 0 / C ) ←→ A = 0 ) by (rule MMI_3impb)
from S3 S7 show ( A ∈ C ∧ C ∈ C ∧ C 6= 0 ) −→

( ( A / C ) = 0 ←→ A = 0 ) by (rule MMI_bitr3d)
qed

lemma (in MMIsar0) MMI_recrec: assumes A1: A ∈ C and
A2: A 6= 0

shows ( 1 / ( 1 / A ) ) = A
proof -

from A1 have S1: A ∈ C .
from A2 have S2: A 6= 0.
from S1 S2 have S3: ( 1 / A ) ∈ C by (rule MMI_reccl)
have S4: 1 ∈ C by (rule MMI_1cn)
from A1 have S5: A ∈ C .
have S6: 1 6= 0 by (rule MMI_ax1ne0)
from A2 have S7: A 6= 0.
from S4 S5 S6 S7 have S8: ( 1 / A ) 6= 0 by (rule MMI_divne0)
from S3 S8 have S9: ( ( 1 / A ) · ( 1 / ( 1 / A ) ) ) = 1

by (rule MMI_recid)
from S9 have S10: ( A · ( ( 1 / A ) · ( 1 / ( 1 / A ) ) ) ) =

( A · 1 ) by (rule MMI_opreq2i)
from A1 have S11: A ∈ C .
from A2 have S12: A 6= 0.
from S11 S12 have S13: ( A · ( 1 / A ) ) = 1 by (rule MMI_recid)
from S13 have S14: ( ( A · ( 1 / A ) ) · ( 1 / ( 1 / A ) ) ) =

( 1 · ( 1 / ( 1 / A ) ) ) by (rule MMI_opreq1i)
from A1 have S15: A ∈ C .
from S3 have S16: ( 1 / A ) ∈ C .
from S3 have S17: ( 1 / A ) ∈ C .
from S8 have S18: ( 1 / A ) 6= 0 .
from S17 S18 have S19: ( 1 / ( 1 / A ) ) ∈ C by (rule MMI_reccl)
from S15 S16 S19 have S20:
( ( A · ( 1 / A ) ) · ( 1 / ( 1 / A ) ) ) =

( A · ( ( 1 / A ) · ( 1 / ( 1 / A ) ) ) ) by (rule MMI_mulass)
from S19 have S21: ( 1 / ( 1 / A ) ) ∈ C .
from S21 have S22: ( 1 · ( 1 / ( 1 / A ) ) ) =

( 1 / ( 1 / A ) ) by (rule MMI_mulid2)
from S14 S20 S22 have S23:
( A · ( ( 1 / A ) · ( 1 / ( 1 / A ) ) ) ) =

( 1 / ( 1 / A ) ) by (rule MMI_3eqtr3)
from A1 have S24: A ∈ C .
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from S24 have S25: ( A · 1 ) = A by (rule MMI_mulid1)
from S10 S23 S25 show ( 1 / ( 1 / A ) ) = A by (rule MMI_3eqtr3)

qed

lemma (in MMIsar0) MMI_divid: assumes A1: A ∈ C and
A2: A 6= 0

shows ( A / A ) = 1
proof -

from A1 have S1: A ∈ C .
from A1 have S2: A ∈ C .
from A2 have S3: A 6= 0.
from S1 S2 S3 have S4: ( A / A ) = ( A · ( 1 / A ) ) by (rule MMI_divrec)
from A1 have S5: A ∈ C .
from A2 have S6: A 6= 0.
from S5 S6 have S7: ( A · ( 1 / A ) ) = 1 by (rule MMI_recid)
from S4 S7 show ( A / A ) = 1 by (rule MMI_eqtr)

qed

lemma (in MMIsar0) MMI_div0: assumes A1: A ∈ C and
A2: A 6= 0

shows ( 0 / A ) = 0
proof -

from A1 have S1: A ∈ C .
from A2 have S2: A 6= 0.
have S3: ( A ∈ C ∧ A 6= 0 ) −→ ( 0 / A ) = 0 by (rule MMI_div0t)
from S1 S2 S3 show ( 0 / A ) = 0 by (rule MMI_mp2an)

qed

lemma (in MMIsar0) MMI_div1: assumes A1: A ∈ C
shows ( A / 1 ) = A

proof -
from A1 have S1: A ∈ C .
from S1 have S2: ( 1 · A ) = A by (rule MMI_mulid2)
from A1 have S3: A ∈ C .
have S4: 1 ∈ C by (rule MMI_1cn)
from A1 have S5: A ∈ C .
have S6: 1 6= 0 by (rule MMI_ax1ne0)
from S3 S4 S5 S6 have S7: ( A / 1 ) = A ←→ ( 1 · A ) = A

by (rule MMI_divmul)
from S2 S7 show ( A / 1 ) = A by (rule MMI_mpbir)

qed

lemma (in MMIsar0) MMI_div1t:
shows A ∈ C −→ ( A / 1 ) = A

proof -
have S1: A =

if ( A ∈ C , A , 1 ) −→
( A / 1 ) =
( if ( A ∈ C , A , 1 ) / 1 ) by (rule MMI_opreq1)
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have S2: A =
if ( A ∈ C , A , 1 ) −→
A = if ( A ∈ C , A , 1 ) by (rule MMI_id)

from S1 S2 have S3: A =
if ( A ∈ C , A , 1 ) −→
( ( A / 1 ) =
A ←→
( if ( A ∈ C , A , 1 ) / 1 ) =
if ( A ∈ C , A , 1 ) ) by (rule MMI_eqeq12d)

have S4: 1 ∈ C by (rule MMI_1cn)
from S4 have S5: if ( A ∈ C , A , 1 ) ∈ C by (rule MMI_elimel)
from S5 have S6: ( if ( A ∈ C , A , 1 ) / 1 ) =

if ( A ∈ C , A , 1 ) by (rule MMI_div1)
from S3 S6 show A ∈ C −→ ( A / 1 ) = A by (rule MMI_dedth)

qed

lemma (in MMIsar0) MMI_divnegt:
shows ( A ∈ C ∧ B ∈ C ∧ B 6= 0 ) −→

( - ( A / B ) ) = ( ( - A ) / B )
proof -

have S1: ( A ∈ C ∧ ( 1 / B ) ∈ C ) −→
( ( - A ) · ( 1 / B ) ) =
( - ( A · ( 1 / B ) ) ) by (rule MMI_mulneg1t)

have S2: ( B ∈ C ∧ B 6= 0 ) −→ ( 1 / B ) ∈ C by (rule MMI_recclt)
from S1 S2 have S3: ( A ∈ C ∧ ( B ∈ C ∧ B 6= 0 ) ) −→

( ( - A ) · ( 1 / B ) ) =
( - ( A · ( 1 / B ) ) ) by (rule MMI_sylan2)

from S3 have S4: ( A ∈ C ∧ B ∈ C ∧ B 6= 0 ) −→
( ( - A ) · ( 1 / B ) ) =
( - ( A · ( 1 / B ) ) ) by (rule MMI_3impb)

have S5: ( ( - A ) ∈ C ∧ B ∈ C ∧ B 6= 0 ) −→
( ( - A ) / B ) =
( ( - A ) · ( 1 / B ) ) by (rule MMI_divrect)

have S6: A ∈ C −→ ( - A ) ∈ C by (rule MMI_negclt)
from S5 S6 have S7: ( A ∈ C ∧ B ∈ C ∧ B 6= 0 ) −→

( ( - A ) / B ) =
( ( - A ) · ( 1 / B ) ) by (rule MMI_syl3an1)

have S8: ( A ∈ C ∧ B ∈ C ∧ B 6= 0 ) −→
( A / B ) = ( A · ( 1 / B ) ) by (rule MMI_divrect)

from S8 have S9: ( A ∈ C ∧ B ∈ C ∧ B 6= 0 ) −→
( - ( A / B ) ) =
( - ( A · ( 1 / B ) ) ) by (rule MMI_negeqd)

from S4 S7 S9 show ( A ∈ C ∧ B ∈ C ∧ B 6= 0 ) −→
( - ( A / B ) ) = ( ( - A ) / B ) by (rule MMI_3eqtr4rd)

qed

lemma (in MMIsar0) MMI_divsubdirt:
shows ( ( A ∈ C ∧ B ∈ C ∧ C ∈ C ) ∧ C 6= 0 ) −→

( ( A - B ) / C ) =
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( ( A / C ) - ( B / C ) )
proof -

have S1: ( ( A ∈ C ∧ ( - B ) ∈ C ∧ C ∈ C ) ∧ C 6= 0 ) −→
( ( A + ( - B ) ) / C ) =
( ( A / C ) + ( ( - B ) / C ) ) by (rule MMI_divdirt)

have S2: B ∈ C −→ ( - B ) ∈ C by (rule MMI_negclt)
from S1 S2 have S3: ( ( A ∈ C ∧ B ∈ C ∧ C ∈ C ) ∧ C 6= 0 ) −→

( ( A + ( - B ) ) / C ) =
( ( A / C ) + ( ( - B ) / C ) ) by (rule MMI_syl3anl2)

have S4: ( A ∈ C ∧ B ∈ C ) −→
( A + ( - B ) ) = ( A - B ) by (rule MMI_negsubt)

from S4 have S5: ( A ∈ C ∧ B ∈ C ∧ C ∈ C ) −→
( A + ( - B ) ) = ( A - B ) by (rule MMI_3adant3)

from S5 have S6: ( A ∈ C ∧ B ∈ C ∧ C ∈ C ) −→
( ( A + ( - B ) ) / C ) =
( ( A - B ) / C ) by (rule MMI_opreq1d)

from S6 have S7: ( ( A ∈ C ∧ B ∈ C ∧ C ∈ C ) ∧ C 6= 0 ) −→
( ( A + ( - B ) ) / C ) =
( ( A - B ) / C ) by (rule MMI_adantr)

have S8: ( B ∈ C ∧ C ∈ C ∧ C 6= 0 ) −→
( - ( B / C ) ) = ( ( - B ) / C ) by (rule MMI_divnegt)

from S8 have S9: ( ( B ∈ C ∧ C ∈ C ) ∧ C 6= 0 ) −→
( - ( B / C ) ) = ( ( - B ) / C ) by (rule MMI_3expa)

from S9 have S10: ( ( A ∈ C ∧ B ∈ C ∧ C ∈ C ) ∧ C 6= 0 ) −→
( - ( B / C ) ) = ( ( - B ) / C ) by (rule MMI_3adantl1)

from S10 have S11: ( ( A ∈ C ∧ B ∈ C ∧ C ∈ C ) ∧ C 6= 0 ) −→
( ( A / C ) + ( - ( B / C ) ) ) =
( ( A / C ) + ( ( - B ) / C ) ) by (rule MMI_opreq2d)

have S12: ( ( A / C ) ∈ C ∧ ( B / C ) ∈ C ) −→
( ( A / C ) + ( - ( B / C ) ) ) =
( ( A / C ) - ( B / C ) ) by (rule MMI_negsubt)

have S13: ( A ∈ C ∧ C ∈ C ∧ C 6= 0 ) −→
( A / C ) ∈ C by (rule MMI_divclt)

from S13 have S14: ( ( A ∈ C ∧ C ∈ C ) ∧ C 6= 0 ) −→
( A / C ) ∈ C by (rule MMI_3expa)

from S14 have S15: ( ( A ∈ C ∧ B ∈ C ∧ C ∈ C ) ∧ C 6= 0 ) −→
( A / C ) ∈ C by (rule MMI_3adantl2)

have S16: ( B ∈ C ∧ C ∈ C ∧ C 6= 0 ) −→
( B / C ) ∈ C by (rule MMI_divclt)

from S16 have S17: ( ( B ∈ C ∧ C ∈ C ) ∧ C 6= 0 ) −→
( B / C ) ∈ C by (rule MMI_3expa)

from S17 have S18: ( ( A ∈ C ∧ B ∈ C ∧ C ∈ C ) ∧ C 6= 0 ) −→
( B / C ) ∈ C by (rule MMI_3adantl1)

from S12 S15 S18 have S19: ( ( A ∈ C ∧ B ∈ C ∧ C ∈ C ) ∧ C 6= 0
) −→
( ( A / C ) + ( - ( B / C ) ) ) =
( ( A / C ) - ( B / C ) ) by (rule MMI_sylanc)

from S11 S19 have S20: ( ( A ∈ C ∧ B ∈ C ∧ C ∈ C ) ∧ C 6= 0 ) −→
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( ( A / C ) + ( ( - B ) / C ) ) =
( ( A / C ) - ( B / C ) ) by (rule MMI_eqtr3d)

from S3 S7 S20 show ( ( A ∈ C ∧ B ∈ C ∧ C ∈ C ) ∧ C 6= 0 ) −→

( ( A - B ) / C ) =
( ( A / C ) - ( B / C ) ) by (rule MMI_3eqtr3d)

qed

end
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33 Metamath sampler.thy

theory Metamath_sampler imports Metamath_interface MMI_Complex_ZF_1

begin

This theory file contains some examples of theorems translated fro Meta-
math and formulated in the complex0 context.

Metamath uses the set of real numbers extended with +∞ and −∞. The
+∞ and −∞ symbols are defined quite arbitrarily as C and {C}, respec-
tively. The next lemma that corresponds to Metamath’s renfdisj states
that +∞ and −∞ are not elements of R.

lemma (in complex0) renfdisj: shows IR ∩ {+∞,−∞} = 0
proof -

let real = IR
let complex = C
let one = 1
let zero = 0
let iunit = i
let caddset = CplxAdd(R,A)
let cmulset= CplxMul(R,A,M)
let lessrrel = StrictVersion(CplxROrder(R,A,r))
have MMIsar0
(real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
using MMIsar_valid by simp

then have real ∩ {complex, {complex}} = 0
by (rule MMIsar0.MMI_renfdisj)

thus IR ∩ {+∞,−∞} = 0 by simp
qed

The order relation used most often in Metamath is defined on the set of
complex reals extended with +∞ and −∞. The next lemma allows to use
Metamath’s xrltso that states that the < relations is a strict linear order on
the extended set.

lemma (in complex0) xrltso: < Orders IR∗

proof -
let real = IR
let complex = C
let one = 1
let zero = 0
let iunit = i
let caddset = CplxAdd(R,A)
let cmulset= CplxMul(R,A,M)
let lessrrel = StrictVersion(CplxROrder(R,A,r))
have MMIsar0
(real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
using MMIsar_valid by simp
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then have
(lessrrel ∩ real × real ∪
{〈{complex}, complex〉} ∪ real × {complex} ∪
{{complex}} × real) Orders (real ∪ {complex, {complex}})

by (rule MMIsar0.MMI_xrltso)
moreover have lessrrel ∩ real × real = lessrrel

using cplx_strict_ord_on_cplx_reals by auto
ultimately show < Orders IR∗ by simp

qed

end
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