THE DEFINITIVE GUIDES TO THE
X WINDOW SYSTEM

VOLUME SIX A

Motif Programming Manual

for Motif 2.1

Open Source Edition

Antony Fountain, Jeremy Huxtable, Paula
Ferguson and Dan Heller



Motif Programming Manual, Open Source Edition
by Antony Fountain, Jeremy Huxtable, Paula Ferguson and Dan Heller

December 2001

Copyright O 191, 184, 2000, 2001 O'Reilly & Associates, Inc., Antony Fountain and
Jeremy Huxtable. This material may be distributed only subject to the terms and conditions
set forth in the Open Publication License, v1.0 or later (the latest version is presently
available at http://www.opencontent.org/openpub/).

This is an updated version of the Motif Programming Manual, Second Edition, published
by O'Reilly & Associates in February 1994. The source files for the Second Edition can be
found at http://www.oreilly.com/openbook/motif/. A description of the modifications
is contained in the Preface to the Third Edition, which has become the Open Source
Edition.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the use of
the information contained herein.



Contents

Preface ... ... 11
1. Introductionto Motif. . ......... ... . ... . . 1
Basic User Interface Concepts ..., 2
What Is Motif? ... ... . . 3
Designing User Interfaces . .......... ... i, 6
2. The Motif Programming Model ........................ 11
Basic X Toolkit Terminology and Concepts ................ 11
The Xm and Xt Libraries .......... ... .. i, 14
Programming With Xt and Motif ........................ 16
SUMMANY . .o e 39
3. Overview of the Motif Toolkit. . ........................ 41
The Motif Style . ... ... .. 41
Application Controls .. ....... ... ... 43
Application Layout . ............. . .. 53

Putting Together a Complete Application ............... 65

ChangesinMotif2.1 ......... ... ... .. 85

SUMMAIY . . e 96
4. TheMainWindow . .......... ..t 97

CreatingaMainWindow . .......... ... ... .. ... 98

Motif Programming Manual 3



Contents

The MenuBar ...... ... ... . . . 103
The Command and Message Areas . ............ccvvuunn.. 118
USING RESOUICES ..\ vttt e e 123
SUMMAIY ottt 125
EXEICISES . .ot 125
IntroductiontoDialogs ............. ... .. . 127
The PurposeofDialogs . ......... oo 128
The AnatomyofaDialog ........... ... ... .. .. ... 131
Creating Motif Dialogs . .......... .. . ... 133
Dialog Resources ...t 143
Dialog Callback Routines ................. ... .. ...... 147
Piercing the Dialog Abstraction ........................ 151
DialogModality ........... ... .. i 156
SUMMANY . ..o e 167
SelectionDialogs. ... ...t 169
Types of SelectionDialogs . ............ ... ... ........ 169
SelectionDialogs . ... 170
PromptDialogs . ... 177
The Command Widget ......... ... .. ... .. . ... 180
FileSelectionDialogs .......... ... .. ... 181
SUMMANY . .o e 193
Custom Dialogs. . . ..o 195
Modifying Motif Dialogs ............ ... ... ... .. ... 195
Designing New Dialogs . ...........coiiiiiininnn.. 203
BuildingaDialog .......... ... i 208
Generalizing the Action Area .. .......... .. ... .. ... 221
Using a TopLevelShellforaDialog ..................... 227

Motif Programming Manual



Contents

Positioning Dialogs . .. ... ..o 229
SUMMATY o e e 231
8. ManagerWidgets. .. ... ... 233
Types of Manager Widgets . ............. ... ... ..., 233
Creating Manager Widgets . ................ ..., 235
The BulletinBoard Widget ............ ... .. ... ...... 237
The FormWidget ............ . . .. 243
The RowColumn Widget ......... ... ... ... ... ... .... 261
The Frame Widget ........ ... . . . i 271
The PanedWindow Widget . ........... ... . ... ... ... ... 275
Keyboard Traversal . .......... ... .. ... 283
SUMMANY o e 293
9. ContainersandlconGadgets. ......................... 295
CreatingaContainer ..............o ... 299
Creating lconGadgets ............ ... ... 299
Container Resources . ............cou .. 299
lconGadget Resources . . ...ttt 304
Container Constraints ............. i, 305
Container Callbacks .......... ... . ... 310
Container Functions ............ .. . 316
SUMMANY . .o e 318
EXErCISES . . oo 318
10. ScrolledWindows and ScrollBars . ..................... 319
The ScrolledWindow Design Model ..................... 319
Creating a ScrolledWindow ........................... 323
Working With ScrollBars . ........... .. ... .. ... .. .... 330

Implementing True Application-defined Scrolling .......... 342

Motif Programming Manual 5



Contents

11.

12.

13.

Working With Keyboard Traversal in ScrolledWindows . . ... 356
SUMMATY o e e 358
EXErCISES . . ot 359
The DrawingAreaWidget . ... ....... ... ... it 361
Creating a DrawingAreaWidget .. ...................... 362
Using DrawingArea Callback Functions .................. 363
Using Translations on a DrawingArea ................... 372
Using Colorina DrawingArea . ..............c.cuve.... 379
SUMMATIY . .. e 384
EXErCISES . .\t 384
Labelsand BUttONS. . .. ... 387
Labels ... 388
PUShBULIONS .. ... 400
ToggleButtons . ... ... 406
ArrOWBULIONS . .. ... 421
DrawnBUttons . ... 427
SUMMANY . .. e 430
EXerCiSe ... 430
The ListWidget . ........ ... i 433
Creatinga ListWidget ......... ... .. ... . .. 434
Using ScrolledLists . ... ..o 437
Manipulating Items . . ... .. . 439
Positioningthe List . ....... ... ... . i 452
Navigatingthe List . ...... ... ... . .. 454
List Callback Routines . ........ ... ... ..., 454
SUMMAIY . .o e 460
EXEICISES . .\t 461

Motif Programming Manual



Contents

14.

15.

16.

17.

The ComboBoxWidget . ........... .. .. 463
Creatinga ComboBOX .. ...t 464
ComboBOX RESOUICeS . .. ... 467
ComboBox Functions . .......... ... ... i 469
ComboBox Callbacks .......... ... ... 471
SUMMATIY . . e 473
EXEICISES . .ot 474
The SpinBox and SimpleSpinBox Widgets. . ............. 475
Creating a SimpleSpinBoX . .............c ... 477
Creatinga SpinBox . ........ ... .. . i i 485
SpinBox and SimpleSpinBox Resources .. ................ 489
SpinBox and SimpleSpinBox Callbacks .................. 490
SUMMANY o e e e 496
EXErCISES . .\t 496
The ScaleWidget .. ............ . i, 499
Creatinga ScaleWidget .............. ... ... .. 500
ScaleValues ....... ... .. 502
Scale Orientation and Movement . ...................... 503
Scale RESOUICES ... ...t 504
ScaleCallbacks . ... 505
Scale TickMarks . .......... i 508
SUMMANY . .ot e 510
The Notebook Widget . .......... ... ... . ..., 511
Creatinga Notebook . ........... ... . .. 513
Notebook Resources .............c.oiiiiiiiiinn.. 518
Notebook Constraints . ........... ... ... i, 521
Notebook Callbacks ........... ... ... . ... 522

Motif Programming Manual 7



Contents

18.

19.

20.

Notebook Functions .......... ... ... ... . .. 523
SUMMATY o e e 525
TextWidgets. . ... 527
Interacting With Text Widgets ........... ... ... ... ..... 529
TextWidgetBasics . ...........c i 532
Text Clipboard Functions ............................. 553
ATextEditor .........o 559
TextCallbacks ....... ... .. . 567
Text Widget Internationalization ....................... 582
SUMMAIY . .. e 589
EXErCISES .. ot 589
MENUS . .. 591
Menu TYpeS .. .. 591
Creating Simple MeNUS . . ...t 594
Designing Menu Systems . ... 605
General Menu Creation Techniques . .................... 617
SUMMANY . .o e 638
EXerCISES . .\t 639
Interacting With the Window Manager................. 641
Interclient Communication ............. ... ... ... ..... 642
ShellResoUrces . ... e 643
VendorShell Resources . ........... i 651
Handling Window Manager Messages ................... 655
Session Management . .. ... 659
Customized Protocols . ....... ... . i 671
SUMMATY . .o e 675
EXEICISES . .\ 676

Motif Programming Manual



Contents

21. TheClipboard ........ ... .. . 677
Simple Clipboard Copy and Retrieval .................... 679
CopybyName ........ ... ... . i, 688
Clipboard DataFormats ................. ... .. ....... 693
The Primary Selection and the Clipboard . ................ 696
Implementation ISSues . . ... ... ... . 698
SUMMAIY . . e 700

22, Dragand Drop .. ... ..o 701
UsingDragand Drop .............c.iiiinan.. 701
The Drag and Drop Model ............ ... ... ... ... .... 703
Customizing Built-inDragand Drop .................. 716
Working WithDrag Sources . ..., 723
Working WithDrop Sites . .......... ... ... 740
SUMMANY . .o 759

23. The Uniform TransferModel . ........................ 761
OVEIVIBW . . . ot e e 762
ExportingtheData ............. . ... i 763
Requestingthe DataFormat ........................... 767
Importingthe Data . ......... ... .. ... .. 770
Batched Data Transfer .......... .. ... ... ... 773
AnExample . ... .. . 773
SUMMANY . .ot e 779

24, RenderTables......... ... i 781
Renditions . .. ... . 782
RenderTables ........ ... . i 785
Tab ListS . ..o 790
AnExample ... ... 796

Motif Programming Manual 9



Contents

10

25.

26.

27.

Render Tables and Resource Files . ..................... 801
Missing Fonts and Renditions . ....................... 803
SUMMAIY ot e e 806
Compound StriNgS . . .. .o 807
Internationalized TextQutput ............... ... .c.... 807
Creating Compound Strings ..., 809
Manipulating Compound Strings ....................... 823
Parse Tables . ........ . . i 828
Rendering Compound Strings .. .......... .. ... 843
SUMMAIY . .. e 845
SignalHandling . ............ . . . 847
Handling Signalsin X11R5 ......... ... .. ... .. ... .... 848
Handling Signalsin Xt ......... .. ... ... ... .. . ... .. ... 850
Handling Signalsin X11R6 .............. ... .. .ccv.... 859
SUMMANY . .o e 863
Advanced Dialog Programming ....................... 865
Help Systems . ... .. 865
Working Dialogs . ... 875
Dynamic Message Symbols .............. ... ... ... .... 891
SUMMAIY . .o e e 896
Additional Example Programs ... ..................... 899

A Bitmap Display Utility ............................. 899
AMemo Calendar ........... . ... i 911
INdeX . o 919

Motif Programming Manual



Preface

By convention, a preface describes the book itself, while the introduction describes the
subject matter. You should read through the preface to get an idea of how the book is
organized, the conventions it follows, and so on.

This book describes how to write applications using the Motif toolkit from the Open
Software Foundation (OSF). The Motif toolkit is based on the X Toolkit Intrinsics (Xt),
which is the standard mechanism on which many of the toolkits written for the X Window
System are based. Xt provides a library of user-interface objects edlligets and
gadgets, which provide a convenient interface for creating and manipulating X windows,
colormaps, events, and other cosmetic attributes of the display. In short, widgets can be
thought of as building blocks that the programmer uses to construct a complete application.

However, the widgets that Xt provides are generic in nature and impose no user-interface
policy whatsoever. That is the job of a user-interface toolkit such as Motif. Motif provides
a complete set of widgets designed to implement the application look and feel specified in
the Motif Style Guideand theMotif Application Environment Specification

The book provides a complete programmer’s guide to the Motif toolkit. While the OSF/
Motif toolkit is based on Xt, the focus of the book is on Motif itself, not on the Intrinsics.
Detailed information about Xt is provided by Volume 4, and references are made to that
volume throughout the course of this book. You are not required to have Volume 4 in order
to use this book effectively, as the books are not companion volumes, but complementary
ones. However, truly robust applications require a depth of knowledge about Xt and Xlib,
the layer on which Xt itself is based, that is not addressed in this book alone. We never leave
you completely in the dark about Xt or Xlib functions that we use or reference, but you
won't learn everything there is to know about them through this particular volume.

This book covers Motif 2.1, which is the latest major release of the Motif toolkit. Motif 2.

1 is based on Release 6 of the Xlib and Xt specifications (X11R6). This release of Motif
provides many new features, as well as a number of enhancements to existing functionality.
All of the changes in Motif 2.1 are summarized in Section 3.5, which provides references
to other sections that describe the changes in more detail.

Motif Programming Manual 11



Preface

The Plot

There are several plots and subplots in this book and the stories told are intertwined. Our
primary goal is to help you learn about the Motif environment from both the programmer’s
and the user’s perspectives. However, we are talking to you as a programmer, not as a user.
We treat the user as a third party who is not with us now. In order to create an application
for the user, you sometimes have to assume her role, so at times we may ask you to play
such a role to help you think about things from the user’'s perspective rather than the
programmer’s.

Each chapter begins by discussing the goals that Motif is trying to achieve using a particular
widget or gadget. For example, before we describe how to create a FileSelectionDialog, we
introduce the object visually and conceptually, discuss its features and drawbacks, and put
you in the role of the user. Once you understand what the user is working with, you should

have a better perspective on the task of presenting it to her.

The next subplot is that of application design. Many design concepts transcend the
graphical user interface (GUI) and are common to all programs that interact with users. You
could even interpret this book as a programmer’s guide that happens to use Motif as an
example. As you read the material, you should stop and think about how you might
approach a particular interface method if you were using another toolkit instead of Motif.

A wild concept, perhaps, but this approach is the key to better application design and to
toolkit independence. If Motif changes in a later release, or if you decide to port your

application to another toolkit or even another windowing system, the more generalized
your code is, the easier it will be to bring it into a new realm successfully.

The last story we are telling is that of general programming technique. By providing you
with examples of good programming habits, styles, and usages, we hope to propagate a
programming methodology that has proven to be successful over the years. These
techniques have been applied to applications that have been ported to multiple architectures
and operating systems. As an added bonus, we have thrown in a number of interesting
programming tricks. No, these are not hacks, but conveniences that are particular to C, to
UNIX, or even to the X Window System. We don’t focus on these things, but they are made
available to you in passing, so you should have no problem identifying them when they
come up.

This book is intended to be used as a programmer’s manual, not a reference manual.
Volume 6B, contains reference material for all of the Motif library functions and widget
classes. We have tried to identify those features of the toolkit that are most important for
general discussion, so we do not discuss every aspect of the Motif toolkit in the body of this
book.

Any major software development effort, especially in its early stages, has bugs that prevent
certain features from being used and the Motif toolkit is no exception. There are some bugs

12 Motif Programming Manual



Preface

in the Motif toolkit that have not yet been worked out, but this does not imply that the
toolkit is poorly written or riddled with errors. Throughout the book, we try to alert you to
any potential problems you may encounter due to bugs. In some cases, there are things that
work in Motif, but they are poorly designed, and we don’t recommend that you use them.
Again, we provide an explanation of what's going on and sometimes describe an alternative
solution. There are also some features, resources, and functions available in the toolkit that
are not supported by OSF. OSF reserves the right to change anything not publicly
documented, so rather than discuss undocumented features, we simply ignore them.

We should also point out that this book is not intended to solve all your problems or answer
all your questions concerning Motif or its toolkit. It is not going to spoon feed you by giving
you step-by-step instructions on how to achieve a particular task. You are encouraged, and
even expected, to experiment on your own with the example applications or, better yet, with
your own programs. We want to provide you with discussion and examples that provoke
you into asking questions like, “What would happen if | changed this program to do this?”
It would be unrealistic to believe that we could address every problem that might come up.
Rather than approaching situations using overly specific examples, we discuss them in a
generalized way that should be applicable to many different scenarios.

Assumptions

The basic method for creating simple applications in Motif is conceptually simple and
straightforward. Even if you only dabble in C, you can probably understand the concepts
well enough to do most things. However, unless you have a strong handle on the C
programming language, there is an upper limit to what you will be able to do when you try
to create a full-featured, functioning application. After all, the user-interface portion of
most applications should make up no more than 30-40% of the total code. The functionality
of an application is up to you and is not discussed here. Without a strong background with
C, or some other structured programming language, you might have a problem keeping up
with the material presented here.

This book also assumes that you are familiar with the concepts and architecture of the X
Toolkit Intrinsics, which are presented in Volume 4M, and Volume 5. A basic
understanding of the X Window System is also useful. For some advanced topics, the
reader may need to consult Volume 1, and Volume 2.

How This Book Is Organized

While this book attempts to serve the widest possible audience, that does not imply that the
material is so simple that it is only useful to novice programmers. In fact, this book can be
considered an advanced programmer’s handbook, since in many places, it assumes a fairly
sophisticated knowledge of many features of the X Window System.

Motif Programming Manual 13



Preface

Each chapter is organized so that it gets more demanding as you read through it. Each
chapter begins with a short introduction to the particular Motif element that is the subject

of the chapter. The basic mechanics involved in creating and manipulating the object are
addressed next, followed by the resources and other configurable aspects of the object. If
there is any advanced material about the object, it is presented at the end of the chapter.
Many chapters also include exercises that suggest how the material can be adapted for uses
not discussed explicitly in the text.

While the chapters may be read sequentially, it is certainly not required or expected that
you do so. As you will soon discover, there are many circular dependencies that justify
skipping around between chapters. Since there is no organization that would eliminate this
problem, the material is not organized so that you “learn as you go.” Instead, we organized
the material in a top-down manner, starting with several chapters that provide an
introduction to the Motif look and feel, followed by chapters organized on a widget-by-
widget basis. The higher-level manager widgets are discussed first, followed by the
primitive widgets and gadgets. Advanced material is positioned at the end of the book,
since the details are not of paramount importance to the earlier material.

In short, everything is used everywhere. Starting at the beginning, however, means that we
won't necessarily assume you know about the material that is referenced in later chapters.
On the other hand, the later chapters may make the assumption that you are aware of
material in earlier chapters.

The book is broken down into twenty seven chapters and one appendix as follows:

Chapter 1
Introduction to Motifanswers the question “Why Motif?” and suggests some of the
complexities that the programmer has to master in order to make an application easy
to use.

Chapter 2
The Motif Programming Moddkaches the fundamentals of Motif by example. It
presents a simple “Hello, World” program that shows the structure and style common
to all Motif programs. Much of this material is already covered in detail in Volume
4M,so the chapter can be read as a refresher, or a light introduction for those who ha-
ven't read the earlier book. The chapter references Volume 4 and Volume 1, to point
out areas that the programmer needs to understand before progressing with Motif.

Chapter 3
Overview of the Motif Toolkéxplains what is involved in creating a real application.
The chapter discusses the arrangement of primitive widgets in an interface, the use of
dialog boxes and menus, and the relationship between an application and the window
manager. The chapter also describes all of the changes in Release 2.1 of the Motif
toolkit. After reading this chapter, the programmer should have a solid overview of

14 Motif Programming Manual



Preface

Motif application programming and be able to read the remaining chapters in any or-
der.

Chapter 4
The Main Windowdescribes the Motif MainWindow widget, which can be used to
frame many types of applications. The MainWindow is a manager widget that provides
a MenuBar, a scrollable work area, and various other optional display and control ar-
eas.

Chapter 5
Introduction to Dialogsiescribes the fundamental concepts that underly all Motif di-
alogs. It provides a foundation for the more advanced material in the following chap-
ters. In the course of the introduction, this chapter also provides details on Motif's
predefined MessageDialog classes.

Chapter 6
Selection Dialogpresents the more complex Motif-supplied dialogs for displaying se-
lectable items, such as lists of files or commands, to the user.

Chapter 7
Custom Dialogslescribes how to create new dialog types, either by customizing Motif
dialogs or by creating entirely new dialogs.

Chapter 8
Manager Widgetgprovides detailed descriptions of the various classes of Motif man-
ager widgets. Useful examples explore the various methods of positioning components
in Form and RowColumn widgets.

Chapter 9
The Container and Icon Gadge¢scribes two components which are new to Motif 2.
These were designed to work together in order to provide a more graphical presenta-
tion of the front end of the application than the older Main Window. The IconGadget
pictorially represents application objects; the Container lays them out in a variety of
styles, including Tablular, Grid, and Tree formats. The layout can be changed dynam-
ically: the Container and lconGadget combination approximates to a Model-View-
Controller (MVC) system for the Motif widget set.

Chapter 10
ScrolledWindows and ScrollBaggscribes the ins and outs of scrolling, with particu-
lar attention to application-defined scrolling, which is often required when the simple
scrolling provided by the ScrolledWindow widget is insufficient.

Chapter 11
The DrawingArea Widgetescribes the Motif DrawingArea widget, which provides a
canvas for interactive drawing. The chapter simply highlights, with numerous code ex-
amples, the difficulties that may be encountered when working with this widget, rather

Motif Programming Manual 15



Preface

than trying to teach Xlib drawing techniques. Some knowledge of Xlib is assumed; we
direct the reader to Volume 1, for additional information.

Chapter 12
Labels and Buttongrovides an in-depth look at labels and buttons, the most common-
ly-used primitive widgets. The chapter discusses the Label, PushButton, ToggleBut-
ton, ArrowButton, and DrawnButton widget classes.

Chapter 13
The List Widgetlescribes yet another method for the user to exert control over an ap-
plication. A List widget displays a group of items from which the user can make a se-
lection.

Chapter 14
The ComboBox Widgeescribes another component which is new in Motif 2. The
ComboBox combines List display with Text input, although the List can be hidden un-
til required. The widget therefore maximizes user convenience using the minimal of
screen space.

Chapter 15
The SpinBox and SimpleSpinBox Widgetsalso new in Motif 2. Similar in concept
to the ComboBox, the widgets allow the user to choose from a set of values, and the
current choice is presented through a TextField. The difference is that the user changes
the current choice not by selecting from a List, but by rotating through the set of avail-
able values using ArrowButtons provided for the purpose.

Chapter 16
The Scale Widgetescribes how to use the Scale to display a range of values.

Chapter 17
The Notebook Widgetescribes a component which provides page or tab manager
functionality to the Motif 2 toolkit. The programmer adds children to the Notebook,
only one of which is visible at any given time. The user can select between pages using
Tabs (PushButtons) aligned along the edges of the Notebook, or by selecting the re-
quired page number from a SpinBox which the Notebook creates automatically.

Chapter 18
Text Widgetgxplains how the Text and TextField widgets can be used to provide text
entry in an application, from a single data-entry field to a full-fledged text editor. Spe-
cial attention is paid to problems such as how to mask or convert data input by the user
so as to control its format. The chapter also discusses the internationalization features
of the widgets provided in Motif 1.2.

Chapter 19
Menusdescribes the menus provided by the Motif toolkit. The chapter examines how
menus are created and presents some generalized menu creation routines.

16 Motif Programming Manual



Preface

Chapter 20
Interacting With the Window Managgerovides additional information on the relation-
ship between an application and the Motif Window Managew(). It discusses the
shell widget resources and window manager protocols that can be used to communi-
cate with the window manager. It also discusses various CDE desktop aspects of the
window manager interaction.

Chapter 21
The Clipboarddescribes a way for the application to interact with other applications.
Data is placed on the clipboard, where it can be accessed by other windows on the
desktop, regardless of the applications with which they are associated.

Chapter 22
Drag and Droppresents the drag and drop mechanism for transferring data that is pro-
vided in Motif 1.2. The chapter describes the built-in drag and drop features of the Mo-
tif toolkit and provides examples of adding drag and drop functionality to an
application.

Chapter 23
The Uniform Transfer Modelescribes the scheme introduced in Motif 2 which allows
the programmer to handle the various data transfer operations supported by Motif (Pri-
mary and Secondary Selections, the Clipboard, Drag-and-Drop) using a single pro-
gramming interface.

Chapter 24
Render Tables describes the Motif 2 mechanisms which control the way in which com-
pound strings are displayed by the toolkit. In Motif 2, strings which appear in widgets
can be multi-colored, multi-font, and laid out in a multi-column arrangement. The col-
oration, font, and tabular information is held separately from the string which is to be
drawn in the form of a render table.

Chapter 25
Compound Stringdescribes Motif's technology for encoding font and directional in-
formation in the strings that are used by almost all Motif widgets. It discusses how to
use compound strings in an internationalized application.

Chapter 26
Signal Handlingpresents the problems that can be encountered when mixing UNIX
signals with X applications. It explains how signals work and why they can wreak such
havoc with X. It presents the new features of X11R6 which are expressly designed to
handle this problem.

Chapter 27
Advanced Dialog Programmindescribes the issues involved in creating multi-stage
help systems, using WorkingDialogs that allow the user to interrupt long-running
tasks, and dynamically changing the pixmaps displayed in a dialog.

Motif Programming Manual 17



Preface

Appendix
Additional Example Programprovides several additional examples that illustrate
techniques not discussed in the body of the book.

Related Documents

The following books on the X Window System are available from O’Reilly & Associates,
Inc.:

Volume Zero X Protocol Reference Manual

Volume One Xlib Programming Manual

Volume Two Xlib Reference Manual

Volume Three X Window System User’s Guide, Motif Edi-
tion

Volume Four X Toolkit Intrinsics Programming Manual,
Motif Edition

Volume Five X Toolkit Intrinsics Reference Manual

Volume Six A Motif Programming Manual

Volume Seven XView Programming Manuabith accom-

panying reference volume.
Volume Eight X Window System Administrator's Guide
PHIGS Programming Manual
PHIGS Reference Manual
PEXIib Programming Manual
PEXIib Reference Manual
Quick Reference The X Window System in a Nutshell

Programming Supplement for Release 6 of the X Window System

Conventions Used in This Book

Italic is used for:

» UNIX path names, filenames, program names, user command names, options for user
commands, and variable expressions in syntax sections.

* New terms where they are defined.

Typewriter Font is used for:

18 Motif Programming Manual



Preface

»  Anything that would be typed verbatim into code, such as examples of source code and
text on the screen.

» Variables, data structures (and fields), symbols (defined constants and bit flags),
functions, macros, and a general assortment of anything relating to the C programming
language.

e All functions relating to Motif, Xt, and Xlib.

* Names of subroutines in example programs.
Italic Typewriter Font is used for:

e Arguments to functions, since they could be typed in code as shown but are arbitrary
names that could be changed.

Boldfaceis used for:

 Names of buttons and menus.

Obtaining Motif

Motif sources can be obtained from a number of locations, although the primary reference
site is:
http:/Aww.opengroup.org/motif

These sources are known as Open Motif, and the use of such sources in applications is
restricted to Open Source platforms.

Alternatively, if your hardware vendor is an OSF member, they may be able to provide
Motif binaries for your machine. Various independent vendors also provide binaries for
some machines.Source licenses must be obtained directly from OSF:

OSF Direct

Open Software Foundation
11 Cambridge Center
Cambridge, MA 02142
USA

+1 617 621-7300

Internet: direct@osf.org

Obtaining the Example Programs

The example programs in this book are available electronically in a number of ways: by
FTP, FTPMAIL, BITFTP, and UUCP. The cheapest, fastest, and easiest ways are listed
first. If you read from the top down, the first one that works for you is probably the best.
Use FTP if you are directly on the Internet. Use FTPMAIL if you are not on the Internet

Motif Programming Manual 19



Preface

but can send and receive electronic mail to internet sites (this includes CompuServe users).
Use BITFTP if you send electronic mail via BITNET.Use UUCP if none of the above
works.

Versions of the example programs for Motif 2.1, Motif 1.2 and Motif 1.1 are available
electronically. If you want the Motif 2.1 version, use the filenamamples21.tar.Zas
shown in the sample sessions below. The filename for the Motif 1.2 versixemigples12.
tar.Z.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is
shown, with what you should type in boldface.

% ftp ftp.uu.net

Connected to ftp.uu.net.220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST
1992) ready.

Name (ftp.uu.net:paula): anonymous

331 Guest login ok, send domain style e-mail address as password.

Password: paula@ora.com ( use your user name and host Here

230 Guest login ok, access restrictions apply.

ftp> cd /published/oreilly/xbook/motif

250 CWD command successful.

ftp> binary ( Very important! You must specify binary transfer for compressed files.
200 Type setto I.

ftp> get examples12.tar.Z

200 PORT command successful.

150 Opening BINARY mode data connection for examples12.tar.Z

226 Transfer complete.

ftp> quit

221 Goodbye.

%

If the file is a compressed tar archive, extract the files from the archive by typing:
% zcat examples12.tar.Z | tar xf -

System V systems require the followita command instead:
% zcat examples12.tar.Z | tar xof -

If zcatis not available on your system, use separat®empresandtar commands.

FTPMAIL

FTPMAIL is a mail server available to anyone who can send electronic mail to and receive
it from Internet sites. This includes any company or service provider that allows email
connections to the Internet. Here's how you do it.

You send mail tdtpmail@online.ora.comin the message body, give the FTP commands
you want to run. The server will run anonymous FTP for you and mail the files back to you.

20 Motif Programming Manual



Preface

To get a complete help file, send a message with no subject and the single word “help” in
the body. The following is an example mail session that should get you the examples. This
command sends you a listing of the files in the selected directory, and the requested
example files. The listing is useful if there's a later version of the examples you're
interested in.

% mail ftpmail@online.ora.com

Subject:reply paula@ora.com (where you want files mailed)
opencd /published/oreilly/xbook/motif

dirmode

binary

uuencode

get examplesl2.tar.Z

quit

%

A signature at the end of the message is acceptable as long as it appears after “quit.”

All retrieved files will be split into 60KB chunks and mailed to you. You then remove the
mail headers and concatenate them into one file, andititmtoder atobit. Once you've
got the desired file, follow the directions under FTP to extract the files from the archive.

VMS, DOS, and Mac versions afidecodeatob, uncompressandtar are available.

BITFTP

BITFTP is a mail server for BITNET users. You send it electronic mail messages
requesting files, and it sends you back the files by electronic mail. BITFTP currently serves
only users who send it mail from nodes that are directly on BITNET, EARN, or NetNorth.
BITFTP is a public service of Princeton University. Here’s how it works.

To use BITFTP, send mail containing your ftp command8ItFTP@PUCC For a
complete help file, send HELP as the message body.

The following is the message body you should send to BITFTP:

FTP ftp.uu.net NETDATA

USER anonymous

PASS your Intemet email address (not your bitnet address)
CD /published/oreilly/xbook/motif

DIR

BINARYG

ET examplesl2.tar.Z

QUIT

Once you've got the desired file, follow the directions under FTP to extract the files from
the archive. Since you are probably not on a UNIX system, you may need to get versions
of uudecodeuncompressatob, andtar for your system. VMS, DOS, and Mac versions are
available. The VMS versions are gatekeeper.dec.com /archive/pub/VMS

Questions about BITFTP can be directed to Melinda ValBXINT@PUCCon BITNET.

Motif Programming Manual 21



Preface

UUCP

UUCP is standard on virtually all UNIX systems, and is available for IBM-compatible PCs
and Apple Macintoshes. The examples are available by UUCP via modem from UUNET,;
UUNET’s connect-time charges apply.

You can get the examples from UUNET whether you have an account or not. If you or your
company has an account with UUNET, you will have a system with a direct UUCP
connection to UUNET. Find that system, and type:

uucp uunet\I~/published/oreilly/xbook/motiflexamples12.tar.Z yourhosti~/  yournamé

The backslashes can be omitted if you use the Bourne sheihgtead ofcsh The file
should appear some time later (up to a day or more) in the diréasotgpool/uucppublic/
yourname If you don’t have an account but would like one so that you can get electronic
mail, then contact UUNET at 703-204-8000.

It's a good idea to get the filpublished/oreilly/xbook/motif/Is-IR.Zs a short test file
containing the filenames and sizes of all the files in the directory.

Once you've got the desired file, follow the directions under FTP to extract the files from
the archive.

Copyright

The example programs are written by Dan Heller, Paula Ferguson, Antony Fountain, and
Jeremy Huxtable for theMotif Programming Manual Copyright 1994 O’Reilly
&Associates, Inc. Permission to use, copy, and modify these programs without restriction
is hereby granted, as long as this copyright notice appears in each copy of the program
source code.

For the purposes of making the book easier to read, the above copyright notice does not
appear in the program examples. However, the copyright does exist in the electronic form
of the programs available on the Internet.

Compiling the Example Programs

Once you have the examples and you've unpacked the archive as described above, you're
ready to compile them. The easiest way is toinmsde a program supplied with the X11
distribution that generates proper Makefiles on a wide variety of sysierake uses
configuration files called Imakefiles that are included with the examples. If you have
imake you should go to the top-level directory containing the examples, and type:

% xmkmf

% make Makefiles
% make

22 Motif Programming Manual



Preface

The examples all have the same application class for purposes of the app-defaults file. The
class name is “Demos” and the app-defaults filenjo$ in the main examples directory
should be placed ifusr/X11R6/lib/app-defaults/Demos a UNIX system. If you can't

write to that directory, or if your normal X11 directory tree is installed elsewhere, you
should set the environment variable XAPPLRESDIR to the directory where you installed
the examples.

Acknowledgments

Third Edition. The current edition of this book was updated to cover Motif 2.1 by Antony
Fountain and Jeremy Huxtable, both of Imperial Software Technology. Jerry originally
wrote most of the Motif 2.1 sample programs which appear in the book. He also wrote the
utility Snap which was used to recreate all the screen shots for this manual. Originally we
intended to include this in the Appendix as a sample application, but space forbade this. For
myself, | simply made sure that the examples were non-deprecated. The text, however, is
mine, and | accept the blame for everything.

Special thanks go to the people who worked on the production of this book. The final form
of this book is the work of the staff at O'Reilly & Associates. | would like to thank all of
them for allowing me to take on this project; a special thanks to Paula Ferguson, without
whom the manuscript would never have reached the printer. The authors would like to
thank all at IST for their patience and support. A special thanks must go to Denise Buckler,
John Bishop, Andy Davies, Simon Davies, Ruth Lambert, Andy and Tricia Lovell, Graham
Salisbury, and Rob Snell, who all cheerfully assisted in the onerous task of proof reading.
Thanks to Alan Sandell for keeping the printer working. A big thanks to Andy Lovell, Neil
Smyth, and Derek Lambert for their patience and support when | could have been working
on company matters. And last but definitely not least, a very special thank you to my wife
Emma for keeping the home fires burning.

Antony J. Fountain

Second Edition.The second edition of this book was updated to cover Motif 1.2,including
drag and drop and internationalization, by Paula Ferguson. Dave Brennan, of HalL
Computer Systems, took on the unenviable task of learning everything he could about UIL
and Mrm, in order to write the UIL programming material for this edition. He did a great
job of covering a complex subject.

Adrian Nye deserves recognition for allowing me to work on this project, when I'm sure
that he had other projects he would have liked to send my way. | don’t think either one of
us had any idea how involved this update project would become. He also provided editorial
support that helped keep me on track in the final stages of the work on the book.

The other writers at O’Reilly &Associates in Cambridge, Valerie Quercia and Linda Mui,
provided support that kept me sane while | was working on the book. Their willingness to

Motif Programming Manual 23



Preface

listen and offer advice is greatly appreciated. Extra gratitude goes to Valerie Quercia for
her help with the screen dumps for the book.

David Flanagan deserves credit for always being willing to answer my questions about the
technical details of Motif and X. Douglas Rand, Scott Meeks, and David Brooks at OSF
answered questions and helped review the new material. Daniel Jahn, of SAS Institute, Inc.
, also provided valuable review comments for this edition.

Special thanks go to the people who worked on the production of this book. The final form
of this book is the work of the staff at O'Reilly &Associates. The authors would like to
thank Chris Reilly for the figures, Donna Woonteiler, Chris Tong, and Ellie Cutler for
indexing, Lenny Muellner for tools support, and Stephen Spainhour, Clairemarie Fisher
O’Leary, Kismet McDonough, and Eileen Kramer for copy editing and production of the
final copy. Thanks also to Donna Woonteiler for her patience in helping me understand the
production process.

Finally, I'd like to thank my friends for putting up with me when | kept telling them that

I'd be done working non-stop in a month or two. Special thanks to my house mate,
Meredith Hunt, who put up with me when | was stressed out and not much fun to live with,
and who took care of the cats when | wasn’t around. My friends Karen Lewis and Liz
Bradley opened their house to me when | needed to escape and be someplace where there
are mountains. And thanks to the great people at the Boston Rock Gym, who provided me
with a much-needed outlet for climbing the walls.

Despite the efforts of all of these people, the authors alone are responsible for any errors or
omissions that remain.

Paula M. Ferguson

First Edition. The first edition of this book took over a year and a half to write and compile
from the beginning. But when | look back on the entire effort, and | think about what it takes
to do things like this (and other difficult things in life), | realize that whagatly requires

is a state of mind and a mental model that lends itself to seeing the big picture and choosing
to do what's necessary to get the job done.

To this, | can only credit one person, Tim O’Reilly, my friend and editor of this book. It's

his approach to life, his values, his way of thinking about things, and his talent for
expressing them is what has influenced me more than anything else in adopting the kind of
mental framework necessary to write a book like this (or to start my company, Z-Code
Software, or to do anything | do in life). He never gives me advice when | ask for it, nor
does he tell me what to do. Instead, he uses quotes, cites anecdotes, or just describes an
abstract thought that always seems to be appropriate to every situation. In short, he’s shown
me a way of thinking about things that appreciates the big picture. | take this with me
wherever | go, and in whatever | do. Without it, | couldn’t have written this book.

24 Motif Programming Manual



Preface

Those who worked most closely with me on the project include Irene Jacobson, who
dedicated long hours to meticulous editing and support. Her intuition and insistence on
proper use of words saved many cuts of Tim O’Reilly’s scalpel. David Lewis also gets
super-high marks for his excellent feedback, for his technical expertise, and for helping
take care of certain Z-Mail ports while | was busy hunched over this computer. More thanks
go to the great folks at Z-Code Software, Bart Schaefer and Don Hatch, for not laughing at
me when | told people for at least six months that the book would take “just two more weeks
now.”(l really meant it, too!) Actually, they helped quite a bit with reading nroffd
manuscripts, and by taking care of the business whenever | was at O'Reilly &Associates’
offices in “Bahston.”

The figures in this book come in two forms: screen dumps and hand-generated figures done
by Chris Reilly. What a super job he did--and always on time. And how can | thank Kismet
McDonough, Lenny Muellner, Rosanne Wagger, Mike Sierra, Eileen Kramer, and the
other production folks at O'Reilly &Associates, who did a wonderful job of copy editing,
proofing, page layout, and all the other things that make the difference between a
manuscript and a finished book. And that's not all: Ellie Cutler wrote the index. Tony
Marotto of Cambridge Computer Associates figured out how to convert our screen dumps
into PostScript files and how to scale screen dumps without the moire and plaid patterns
you see in many books. He used Jeff Poskanpenisplusto convertxwd dumps togif

format, and then wrote a set of image-processing programs that shift and enhance the tones.
Daniel Gilly took on the enormous job of developing the reference appendices when it
became clear that | wouldn’t have time.

Enthusiastic applause goes to Libby Hanna (do | gedlaofficial OSF/Motif decoder ring
now!!??), David Brooks, Scott Meeks, Susan Thompson, Carl Scholz, Benjamin Ellsworth,
and the entire cast at OSF in Cambridge for their support. And, of cevuesgoneon the
motif-talk mailing list.(l wish | could remember all your names!)

People | can't forget: Bill “Rock” Petro, Akkana, Mike Harrigan at NCD for the terminal,
Danny Backx at BIM (sorry | didn’t get you any review copies!), John Harkin, and certain
folks at Sun that I'd love to mention, but | can’t because they’re int@thahangand they
wouldn’t want to be associated with thieword, Jordan Hayes, Paula Ferguson, and Kee
Hinckley (just because he’s cool).Also thanks to Ralph Swick and Donna Converse at the
X Consortium for being somewhat patient with me.

Added thanks to Lynn Vaughn at CNN for keeping me informed about what's going on in
the world, since | have no time to look out the window; to Short Attention-Span Theatre,
for keeping me amused; and to Yogurt World, for keeping me fed.

This book was written using a Sun workstation,\theditor (for which | guess | ought to
thank Bill Joy), SoftQuad’sqtroff X11R4 and various versions of Motif (1.0 through 1.1.
3).

Motif Programming Manual 25



Preface

For catching and reporting errors that have been fixed in the second printing, I'd like to
thank Akkana, Wayne Robertz, Glen Shute, Scott Strool, Trevor Taylor, Peter Wagner,
Andrew Wason, Tim Weinrich, and Bill Wohler.

Dan Heller

We’d Like to Hear From You

We have tested and verified all of the information in this book to the best of our ability, but
you may find that features have changed (or even that we have made mistakes!). Please let
us know about any errors you find, as well as your suggestions for future editions, by
writing:

O'Reilly & Associates, Inc.

103 Morris Street, Suite A

Sebastopol, CA 95472
1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request a
catalog, send email to:

info@ora.com (via the Internet)
uunetloralinfo (via UUCP)

To ask technical questions or comment on the book, send email to:

bookquestions@ora.cofvia the Internet)

26 Motif Programming Manual



In this chapter:

» Basic User-interface
Concepts

» What Is Motif?
 Designing User
Interfaces

Introduction to Motif

So many computers, SO many operating systems, so many toolkits

Developing an application used to be a simple choice, depending upon whether we targeted
the application for the Microsoft world, for UNIX, or for the Apple Macintosh. Each had

its own distinct toolkit interface. If you wanted to write your application cross-platform,
you had to encapsulate the functionality through a set of common C++ classes, each of
which would have a separate internal implementation for each operating environment. Yet
for the myriad of UNIX platforms, all you had to do was write Motif.

But now there is Linux, and Java, and GTK+ and Qt, and a host of other considerations.
Life never was so complex, and all we want to do is write an application. In many ways,
the task of the application programmer is now to write the application with the greatest
degree of toolkit independence that can be achieved, whether through a client-server
architecture to separate the interface from the back-end processing, or still through
encapsulation techniques which hide the underlying toolkit from the higher levels. The
toolkit ought in principle to be irrelevant; in practice this is not possible: there has to be a
windowing toolkit somewhere at the bottom level, and that toolkit must be appropriate to
the target operating system and environment. A emulator or cross-platform common toolkit
never quite succeeds in providing the requisite functionality in all levels of detail; for some
platforms, if it is not in the native toolkit, it simply isn’t ported; this is particularly true of
Windows environments, where using anything other than MFC is simply wrong in
principle. MFC isthe native windowing environment for Windows. It just is.

So why Motif? Because it remains what it has long been: the common native windowing
toolkit for all the UNIX platforms, fully supported by all the major operating system
vendors. It is still the only truly industrial strength toolkit capable of supporting large scale
and long term projects. Everything else is tainted: it isn't ready or fully functionally
complete, or the functional specification changes in a non-backwards-compatible manner
per release, or there are performance issues. Perhaps it doesn't truly port across UNIX
systems, or it isn’t fully ICCCM compliant with software written in any other toolkit on the
desktop, or there are political battles as various groups try to control the specification for

* Infandum, regina, iubes renouare dolorem...

Motif Programming Manual 1



Chapter 1: Motif Programming Model

their own purposes. Indeed it may matter very much whose version of the toolkit you have
managed to acquire, or if the toolkit is open sourced so you have no idea who is going to
stick their untrusted fingers into it at any time. So many problems with each choice you
make. With Motif, you know where you are: its stable, its robust, its professionally
supported, and it all works.

And yet whatever the toolkit you choose to write your application in, the design goals ought
to remain precisely the same. You should be trying to present the application to the user in
the most consistent, simple to use, and simple to understand manner of which you are
humanly capable. Interfaces consist of basic controls and layout managers, irrespective of
the language it is written in. In this respect, Motif, despite its long history, remains as fully
capable as any basic toolkit. It is true that Motif 1.2 lacked some of the features which we
now expect from a windowing toolkit - the philosophy of design moves on with time - but
these issues are addressed in the 2.1 version of the toolkit. The ComboBoxes, SpinBoxes,
Tree and Grid layouts are all there. Where Moatif differs from other toolkits is the strength
of the component inter-operability. The Motif toolkit is not just a collection of controls
written in a particular language: everything, but everything, is designed to work with
everything else, whether it be navigation between controls, or inter-object data transfer, or
the sharing of style resources throughout the control hierarchy. And because it is based on
top of the X interface toolkit, Xt, it will work with the vast range of third party components
and add-ons which are available to the X world. In many ways, it is precisely these aspects
which are stronger in the Motif 2.1 toolkit than ever before.

Much of this chapter can be read as a general introduction to graphical user interface
toolkits; the concepts which we present are not specific to Motif, or indeed to any other
windowing toolkit. The ideas presented here should be general enough to read in a toolkit
independent manner; how you implement those ideas using the specific Motif toolkit is
covered in subsequent chapters of this book.

Basic User Interface Concepts

Whether you are the designer of the software or an engineer responsible for implementing
someone else’s design, there are some basic principles that will benefit you in your work.
Let's begin with the basics:

« All applications running on a user's workstation should have a consistent interface
design. Programs that deviate from the expected design will almost assuredly confuse
the user even if the changes were intended for the user’s benefit. Chances are also high
that the user will not want to use the questionable software again.

» Users rely on rote memory; they will remember seemingly complicated interface
interaction techniques provided that the functions they perform are useful and are
invoked frequently. There is a limit, however, to how much users want to remember.
It is important that essential or frequently used functions follow memorable patterns.

2 Motif Programming Manual



Chapter 1: Motif Programming Model

* Novice users will probably not want to customize or alter their applications in any way.
If they do, the available methods must be as easy and painless as possible.

* Users with more experience most certainly might want to customize the application in
all sorts of ways: the greater degree of customization which the application allows, the
better.

One of the first things the hard-core X programmer learns is that “the user is always right;
if he wants to customize his interface, by God you had better let him.”

This principle is absolutely correct. Unfortunately, many early X applications carry it too
far and end up “spineless.” Many such programs actually require the user to make certain
customizations in order for the program to be usable or attractive. For some programs, the
problem worsens if unreasonable customization settings are given, since there is no sanity-
checking for unreasonable configurations.

So far, such customization issues have not become over-problematic because UNIX and X
applications are used almost exclusively by technical people who understand the
environment and know how to work within it. But it is important to consider users who
know absolutely nothing about computers and who don’t want to - they are only using your
software because they have to.

The customization issue has partly been addressed in any case by environments like CDE,
or the Schemes mechanisms on SGI platforms: users can choose from (and add to) a range
of preset styles which will affect all applications on the desktop. Part of the work of the
engineer is now to ensure that the application participates in desktop schemes of this kind,
so that the user can customize in a general way rather than having to configure the style of
every application individually.

What Is Motif?

So, back to Motif. What is it and how can it help you solve your user-interface design goals?
To start, Motif is a set of guidelines that specifies how a user interface for graphical
computers shoultbok and feel This term describes how an application appears on the
screen (the look) and how the user interacts with it (the feel). Look and Feel is not
something specific to Motif; all windowing toolkits should present a standardized
internally-consistent methodology so that the user is comfortable using the controls which
the application presents. Specific toolkits, however, have distinct look and feel, although
since some toolkits share a common design philosophy there is a cross-over so that users
familiar with one platform are not necessarily naked when presented with an alternative.
This will be made clear in the paragraphs which follow. Firstly, let us look at a Motif
application.

Motif Programming Manual 3



Chapter 1: Motif Programming Model

Figure 1-1 shows a Motif application, used for taking snapshots of windows or capturing
areas of the screen.

file  Caplurs  Oplisrs tindg

What Is Modif?

S, Weck Moo Wiist @ £ d Baw can o Selp yen dehvd yonr e -mrersce den g
gual? Todowt, Manlia s cof of poidelin e ohiar op e orbel s o 0 enamiToc e oy grap kil
comprsr renld oo o il Lo v deeontas bew e apploinen sppan oo the
arradn | s leoks and hrw cha wear sumrsory with m [dha fasd)

]:I;'Jr 1-1 dhears & Whorr! sppbosnns

Figure 1-1: A Motif Application

The user interacts with the application by typing at the keyboard, and by clicking, selecting,

and dragging various graphic elements of the application with the mouse. For example, any
application window can be moved on the screen by moving the pointer to the top of the

window’s frame (the title bar), pressing and holding down a button on the mouse, and

dragging the window to a new location. The window can be made larger or smaller by

pressing a mouse button on any of the resize corners and dragging.

Most applications sport buttons that can be clicked with the mouse to initiate application
actions. Motif uses highlighting and shadowing to make buttons, and other components,
look three-dimensional. When a button is clicked on, it actually appears to be pressed in
and released.

A row of buttons across the top of most applications formefau bar Clicking on any of

the titles in the menu bar pops up a menu of additional buttons. Buttons can also be arranged
in palettes that are always visible on the screen. When a button is clicked, the application
can take immediate action or it can pop up an additional window catledcg box A

dialog box can ask the user for more information or present additional options.

This style of application interaction isn't new to most people, since the Apple Macintosh

popularized it years ago. What is different about Motif is that the graphical user interface
specification is designed to be independent of the computer on which the application is
running.

4 Motif Programming Manual



Chapter 1: Motif Programming Model

Motif was designed by the Open Software Foundation (OSF), a non-profit consortium of
companies such as Hewlett-Packard, Digital, IBM, and dozens of other corporations.
OSF's charter calls for the development of technologies that will enhance inter-operability
between computers from different manufacturers. Targeted technologies range from user
interfaces to operating systems.

Part of OSF’s charter was to choose an appropriate windowing system environment that
would enable the technology to exist on as wide a range of computers as possible. It was
decided that the OSF/Motif toolkit should be based on the X Window System, a network-
based windowing system that has been implemented for UNIX,VMS, DOS, Macintosh,
and other operating systems. X provides an extremely flexible foundation for any kind of
graphical user interface.

When used properly, the Motif toolkit enables you to produce completely Motif-compliant
applications in a relatively short amount of time. At its heart, though, Motif is a
specification rather than an implementation. While most Motif applications are
implemented using the Motif toolkit provided by OSF, it would be quite possible for an
application implemented in a completely different way to comply with the Motif GUI. The
specification is captured in two documents: Metif Style Guide which defines the
external look and feel of applications, and #hgplication Environment Specificatipn
which defines the application programmer’s interface (API).

The Motif specifications don't have a whole lot to say about the overall layout of
applications. Instead, they focus mainly on the design of the objects that make up a user
interface - the menus, buttons, dialog boxes, text entry, and display areas. There are some
general rules, but for the most part, the consistency of the user interface relies on the
consistent behavior of the objects used to make it up, rather than their precise arrangement.

The Motif specification is broken down into two basic parts:

e The output model describes what the objects on the screen look like. This model
includes the shapes of buttons, the use of three-dimensional effects, the use of cursors
and bitmaps, and the positioning of windows and subwindows. Although some
recommendations are given concerning the use of fonts and other visual features of the
desktops, Motif is flexible in most of these recommendations.

» The input model specifies how the user interacts with the elements on the screen.
The key point of the specification is that consistency should be maintained across all

applications. Similar user-interface elements should look and act similarly regardless of the
application that contains them.

Motif can be used for virtually any application that interacts with a computer user.
Programs as conceptually different as a CAD/CAM package or an electronic malil

* Both books have been published for OSF by Prentice-Hall and are available in most technical bookstores.

Motif Programming Manual 5



Chapter 1: Motif Programming Model

application still use the same types of user-interface elements. When the user interface is
standardized, the user gets more quickly to the point where he is working with the
application, rather than just mastering its mechanics.

Those familiar with Microsoft Windows should have little trouble in using a Motif-based
application.This is not a coincidence; its user-interface is based on the same principles as
Motif. Motif can be seen as a superset of both MS-Windows and Presentation Manager.
Even though the others came first, Motif views them as specific implementations of an
abstract specification.

The Moatif interface was intentionally modelled after IBM’'s Common User Access (CUA)
specification, which defines the interface for OS/2 and Microsoft Windows. The reason for
this is that there is a proven business model for profiting from an “open systems”
philosophy. As a result, all of the major operating system vendors support Motif as their
native graphical interface environment.

You have two options for making applications Motif-compliant. You can write the entire
application yourself, and make sure that all your user-interface features conform to the
Motif GUI specifications, or you can use a programming toolkit, which is a more realistic
option. A toolkit is a collection of pre-written functions that implement all the features and
specifications of a particular GUI.

However, a toolkit cannot write an application for you, nor can it enforce good
programming techniques. It isn’t going to tell you that there are too many objects on the
screen or that your use of colors is outrageous. The job of Motif is solely to provide a
consistent appearance and behavior for user-interface controls. So, before we jump into the
mechanics of the Motif toolkit, let's take a moment longer with the philosophy of graphical
user interfaces.

Designing User Interfaces

The principles behind an effective user interface cannot be captured in the specifications
for Motif or any other GUI. Even though the Motif toolkit specifies how to create and use
its interface elements, there is still quite a bit left unsaid. As the programmer, you must take
the responsibility of using those elements effectively and helping the user to be as
productive as possible. You must take care to keep things simple for the beginner and, at
the same time, not restrict the more experienced user. This task is perhaps the most difficult
one facing the programmer in application design.

There is frequently no right or wrong way to design an interface. Good user-interface
design is usually a result of years of practice: you throw something at a user, he plays with
it, complains, and throws it back at you. Experience will teach you many lessons, although
we hope to guide you in the right direction, so that you can avoid many common mistakes
and so that the ones that you do make are less painful.

6 Motif Programming Manual



Chapter 1: Motif Programming Model

So, rather than having absolute commandments, we rely on heuristics, or rules of thumb.
Here is a rough list to start with;

» Keep the interface as simple as possible.
« Make direct connections to real-world objects or concepts.
» If real-world metaphors are not available, improvise.

» Don't restrict functionality to accommodate simplicity.

This list may sound flippant, but it is precisely what makes designing an interface so
frustrating. Keeping an interface as simple as possible relies on various other factors, the
most basic of which is intuition. The user is working with your application because he
wants to solve a particular problem or accomplish a specific task. He is going to be looking
for clues to spark that connection between the user interface and the preconceived task in
his mind. Strive to make the use of an application obvious by helping the user form a mental
mapping between the application and real-world concepts or objects. For example, a
calculator program can use buttons and text areas to graphically represent the keypad and
the one-line display on a calculator. Most simple calculators have the common digit and
arithmetic operator keys; a graphical display can easily mimic this appearance. Other
examples include a programmatic interface to a cassette player, telephone, or FAX
machine. All of these could have graphical equivalents to their real-world counterparts.

The reason these seemingly obvious examples are successful interface approaches is
because they take advantage of the fact that most people are already familiar with their real-
life counterparts. But there is another, less obvious quality inherent in those objects: they
are simple. The major problem concerning interface design is that not everything is simple.
There isn’'t always a real-world counterpart to use as a crutch. In the most frustrating cases,
the concept itself may be simple, but there may not be an obvious way to present the
interaction. Of course, once someone thinks of the obvious solution, it seems odd that it
could have been difficult in the first place.

Consider the VCR. Conceptually, a VCR is a simple device, yet statistics used to say that
70% of VCR owners don't know how to program one. How many times have you seen the
familiar 12:00-AMflashing in someone’s living room? Researchers say that this situation
occurs because most VCRs are poorly designed and are “too feature full.” They're half-
right; the problem is not that they are too feature full, but that the ways to control those
features are too complicated. Reducing the capabilities of a VCR isn’'t going to make it
easier to use; it's just going to make it less useful. The problem with VCRs is that their
designers focused too much on functionality and not enough on usability.

So, how do you design an interface for a VCR when there is no other object like it? You

improvise. Sure, the VCR is a simple device; everyone understands how one is supposed
to work, but few people have actually designed one that is easy to use until recently. Maybe
you've heard about the new device that, when connected to your VCR, enables you to have

Motif Programming Manual 7



Chapter 1: Motif Programming Model

a complete TV program guide displayed on your screen in the bar-graph layout similar to
the nightly newspaper listings. All you have to do is point and click on the program you
want to record and that's it - you're done. No more buttons to press, levels of features to
browse through, dials to adjust or manuals to read. At last, the right interface has been
constructed. None of the machine’s features have been removed. It's just that they are now
organized in an intuitive way and are accessible in an simple manner.

This method for programming VCRs satisfies the last two heuristics. Functionality has not
been reduced, yet simplicity has been heightened because a creative person thought of a
new way to approach the interface. The lesson here is that no object should be difficult to
use no matter how feature full it is or how complex it may seem. You must rely heavily on
your intuition and creativity to produce truly innovative interfaces.

Let's return to computer software and how these principles apply to the user-interface
design model. The first heuristic is simplicity, which typically involves fewer, rather than
more, user-interface elements on the screen. Buttons, popup menus, colors, and fonts
should all be used sparingly in an application. Often, the availability of hundreds of colors
and font styles along with the attractiveness of a three-dimensional interface compels many
application programmers to feel prompted, and even justified, in using all of the bells and
whistles. Unfortunately, overuse of these resources quickly fatigues the user and overloads
his ability to recognize useful and important information.

Ironically, the potential drawbacks to simplicity are those that are also found in complexity.
By oversimplifying an interface, you may introduce ambiguity. If you reduce the number
of elements on your screen or make your iconic representations too simple, you may be
providing too little information to the user about what a particular interface element is
supposed to do. Under-use of visual cues may make an application look bland and
uninteresting.

One of Motif's strengths is the degree of configurability that you can pass on to the end
user. Colors, fonts, and a wide variety of other resources can be set specifically by the user.
You should be aware, however, that once your application ships, its default state is likely
to be the interface most people use, no matter how customizable it may be. While it is true
that more sophisticated users may customize their environment, you are ultimately in
control of how flexible it is. Also, novice users quickly become experts in a well-designed
system, so you must not restrict the user from growth.

Simplicity may not always be the goal of a user interface. In some cases, an application may
be intentionally complex. Such applications are only supposed to be used by sophisticated
users. For example, consider a 747 aircraft. Obviously, these planes are intended to be
flown by experts who have years of experience. In this case, aesthetics is not the goal of the
interior design of a cockpit; the goal is that of functionality.

In order to design an effective graphical user interface for an application, you must evaluate
the goals of both your particular application and your intended audience. Only with a

8 Motif Programming Manual



Chapter 1: Motif Programming Model

complete understanding of these issues will you be able to determine the best interface to
use. And remember, an irate customer just might call you for help.

Motif Programming Manual 9



Chapter 1: Motif Programming Model

10 Motif Programming Manual



In this chapter:

 Basic X Toolkit
Terminology and
Concepts

* The Xm and Xt
Libraries

e Programming With Xt
and Motif

> S The Motif
Programming Model

This chapter teaches the fundamentals of Motif by example. It dissects a simple “Hello,
World” program, showing the program structure and style common to all Motif programs.
Because much of this material is already covered in detail in Voluk@dglkit Intrinsics
Programming Manualthis chapter can be used as a refresher or a light introduction for
those who haven't read the earlier book. It makes reference to Voluniibl,
Programming Manualand Volume 4o point out areas that the programmer needs to
understand (windows, widgets, events, callbacks, resources, translations) before
progressing with Motif.

Though we expect most readers of this book to be familiar with the X Toolkit Intrinsics
(Xt), this chapter briefly reviews the foundations of Motif in Xt. This review serves a
variety of purposes. First, for completeness, we define our terms, so if you are unfamiliar
with Xt, you will not be completely at sea if you forge ahead. Second, there are many
important aspects of the X Toolkit Intrinsics that we aren’t going to cover in this book; this
review gives us a chance to direct you to other sources of information about these areas.
Third, Motif diverges from Xt in some important ways, and we point out these differences
up front. Finally, we point out some of the particular choices you can make when Xt or
Motif provides more than one way to accomplish the same task.

If you are unfamiliar with any of the concepts introduced in this chapter, please read the
first few chapters of Volume 4. Portions of Volume 1, and Volumeé B/indow System
User’'s Guide may also be appropriate.

Basic X Toolkit Terminology and
Concepts

As discussed in Chapter [htroduction to Motif the Motif user-interface specification is
completely independent of how it is implemented. In other words, you do not have to use
the X Window System to implement a Motif-style graphical user interface (GUI).
However, to enhance portability and robustness, the Open Software Foundation (OSF)

Motif Programming Manual 11



Chapter 2: Motif Programming Model

chose to implement the Motif GUI using X as the window system and the X Toolkit
Intrinsics as the platform for the Application Programmer’s Interface (API).

Xt provides an object-oriented framework for creating reusable, configurable user-
interface components calledidgets Motif provides widgets for such common user-
interface elements as labels, buttons, menus, dialog boxes, scrollbars, and text-entry or
display areas. In addition, there are widgets called managers, whose only job is to control
the layout of other widgets, so the application doesn’t have to worry about details of widget
placement when the application is moved or resized.

A widget operates independently of the application, except through prearranged
interactions. For example, a button widget knows how to draw itself, how to highlight itself
when it is clicked on with the mouse, and how to respond to that mouse click.

The general behavior of a widget, such as a PushButton, is defined as part of the Motif
library. Xt defines certain base classes of widgets, whose behavior can be inherited and
augmented or modified by other widget classes (subclasses). The base widget classes
provide a common foundation for all Xt-based widget setaidget setsuch as Motif's

Xm library, defines a complete set of widget classes, sufficient for most user-interface
needs. Xt also supports mechanisms for creating new widgets or for modifying existing
ones.

Xt also supports lighter-weight objects caltgtigetswhich for the most part look and act

just like widgets, but their behavior is actually provided by the manager widget that
contains them. For example, a pulldown menu pane can be made up of button gadgets
rather than button widgets, with the menu pane doing much of the work that would
normally be done by the button widgets.

Most widgets and gadgets inherit characteristics from objects above them in the class
hierarchy. For example, the Motif PushButton class inherits the ability to display a label
from the Label widget class, which in turn inherits even more basic widget behavior from
its own superclasses. See VolumeXdToolkit Intrinsics Programming Manuafor a
complete discussion of Xt's classing mechanisms; see Chapfedyiew of the

Motif Toolkit , for details about the Motif widget class hierarchy.

The object-oriented approach of Xt completely insulates the application programmer from
the code inside of widgets. As a programmer, you only have access to functions that create,
manage, and destroy widgets, plus certain public widget variables knoesoascesAs

a result, the internal implementation of a widget can change without requiring changes to
the API. A further benefit of the object-oriented approach is that it forces you to think about
an application in a more abstract and generalized fashion, which leads to fewer bugs in the
short run and to a better design in the long run.

Creating a widget is referred to as instantiating it. You ask the toolkit fimstanceof a
particular widgetclass, which can be customized by setting its resources. All Motif

12 Motif Programming Manual



Chapter 2: Motif Programming Model

PushButton widgets have the ability to display a label; an instance of the PushButton
widget class actually has a label that can be set with a resource.

Creating widgets is a lot like buying a car: first you choose the model (class) of car you
want, then you choose the options you want, and then you drive an actual car off the lot.
There may exist many cars exactly like yours, others that are similar, and still others that
are completely different. You can create widgets, destroy them, and even change their
attributes just as you can buy, sell, or modify a car by painting it, adding a new stereo, and
SO on.

Widgets are designed so that many of their resources can be modified by the user at run-
time. When an application is run, Xt automatically loads data from a number of system and
user-specific files. The data from these files is used to builceBwirce databasevhich

is used to configure the widgets in the application. If you want to keep the user from
modifying resources, you can set their values when you create the widget. This practice is
commonly referred to dsard-codingresources.

It is considered good practice to hard-code only those resource values that are essential to
program operation and to leave the rest of the resources con?gurable. Default values for
configurable resources are typically specified in an application defaults ?le, which is more
colloquially referred to as the app-defaults ?le. By convention, this ?le is stored in the
directory/usr/X11R6/lib/app-defaultgnd it has the same name as the application with the
first letter capitalized.The app-defaults ?le is loaded into the resource database along with
other files that may contain different values set by the system administrator or the user. In
the event of a conflict between different settings, a complex set of precedence rules
determines the value actually assigned to a resource. See Volo@iBodlkit Intrinsics
Programming Manualfor more information on how to set resources using the various
resource files.

Motif widgets are prolific in their use of resources. For each widget class, there are many
resources that neither the application nor the user should ever need to change. Some of
these resources provide ?ne control over the three-dimensional appearance of Motif
widgets; these resources should not be modified, since that would interfere with the visual
consistency of Motif applications. Other resources are used internally by Motif to make one
large, complex widget appear to the user in a variety of guises.

Thecallback resourcefor a widget are a particularly important class of resources that must
be set in the application code. A widget that expects to interact with an application provides
a callback resource for each type of interaction it supports. An application associates a
function with the callback resources in which it is interested; the function is invoked when
the user performs certain actions in the widget. For example, a PushButton provides a
callback for when the user activates the button.

Note, however, that not every event that occurs in a widget results in a callback to an
application function. Widgets are designed to handle many events themselves, with no

Motif Programming Manual 13



Chapter 2: Motif Programming Model

interaction from the application. All widgets know how to draw themselves, for example.
A widget may even provide application-like functionality. For example, a Text widget
typically provides a complete set of editing commands via internal widget functions called
actions Actions are mapped to events itranslation table This table can be augmented,
selectively overridden, or completely replaced by settings contained in the implementation
of a widget class, in application code, or in a user's resource files.

In the basic Xt design, translations are intended to be configurable by the user. However,
the purpose of Xt is to provide mechanism, not impose user-interface policy. In Motif,
translations are typically not modified by either the user or the application programmer.
While it is possible for an application to install event handlers or new translations and
actions for a widget, most Motif widgets expect application interaction to occur only
through callbacks.

Since the Motif widgets are designed to allow application interaction through callbacks, we
don't discuss translations very often in this book. Some of the Motif widgets, particularly
buttons when they are used in menus, have undefined behavior when their translations are
augmented or overridden. An experienced Xt programmer may feel that Motif’s limitations
on the configurability of translations violates Xt. But consider that Xt is a library for
building toolkits, not a toolkit itself. Motif has the further job of ensuring consistent user-
interface behavior across applications.

Whether the goal of consistency is sufficient justification for OSF’s implementation is a
matter of judgement, but it should at least be taken into account. At any rate, you should be
aware of the limitations when configuring Motif widgets. Motif widgets provide callback
resources to support their expected behavior. If a widget does not have a callback
associated with an event to which you want your application to respond, you should be
cautious about adding actions to the widget or modifying its translations.

The Xm and Xt Libraries

A Motif user interface is created using both the Motif Xm library and the Intrinsics’ Xt
library. Xt provides functions for creating and setting resources on widgets. Xm provides
the widgets themselves, plus an array of utility routines and convenience functions for
creating groups of widgets that are used collectively as single user-interface components.
For example, the Motif MenuBar is not implemented as one particular widget, but as a
collection of smaller widgets put together by a convenience function.

An application may also need to make calls to the Xlib layer to render graphics or get events
from the window system. In the application itself, rather than in the user interface, you may
also be expected to make lower-level system calls into the operating system, ?le system, or
hardware-specific drivers. The application may also be making use of the X11R6 Session
Management (SM) and the X11R6 InterClient Exchange (ICE) facilifiéais, the whole

14 Motif Programming Manual



Chapter 2: Motif Programming Model

application may have calls to various libraries within the system. Figure 2-1 represents the
model for interfacing to these libraries.

Application

Xm (Moatif)

Xt (X Toolkit Intrinsics)

§\

SM
Other Xlib (X Window System)
Libraries ICE

Operating System

Figure 2-1. User interface library model

As illustrated above, the application itself may interact with all layers of the windowing
system, the operating system, and other libraries (math libraries, rpc, database) as needed.
On the other hand, the user-interface portion of the application should restrict itself to the
Motif, Xt, and Xlib libraries whenever possible. This restriction aids in the portability of

the user-interface across multiple computers and operating systems. Since X is a distributed
windowing system, once the application runs on a particular computer, it can be displayed
on any computer running X - even across a local or wide-area network.

In addition to restricting yourself to using the Motif, Xt, and Xlib libraries, you should try
to use the higher-level libraries whenever possible. Focus on using Motif-specific widgets
and functions, rather than trying to implement equivalent functionality using Xt or Xlib.
Higher-level libraries hide a great number of details that you would otherwise have to
handle yourself. By following these guidelines, you can reduce code complexity and size,
creating applications that are easier to maintain.

In situations where the Motif library does not provide the functionality you need, you may
attempt to borrow widgets from other toolkits or write your own. This technique is possible

* SM and ICE are fully described in tirogrammer’s Supplement for Release 6 of the X Window
Systemwe will conform to the X11R6 guidelines and use the SessionShell widget class throughout the ex-
amples; othewise, Session Management will not form part of this manual, and you are referred to the Supple-
ment for more details.

Motif Programming Manual 15



Chapter 2: Motif Programming Model

and made relatively simple because Motif is based onB¢tr example, an application
might make good use of a general-purpose graphing widget.

Whatever libraries you use, be sure to keep your application modular. The first and most
important step in the development of an application is its design. You should always

identify the parts of the application that are functional and the parts that make up the user
interface. Well-designed applications keep the user-interface code separate from the
functional code. You should be able to unplug the Motif code and replace it with another

user-interface widget set based on Xt merely by writing corresponding code that mirrors

the Motif implementation.

Programming With Xt and Motif

The quickest way to understand the basic Motif programming model is to examine a simple
application. Example 2-1 is a version of the classic “hello world” program that uses the
Motif toolkit. T

Example 2-1. The hello.c program

* hello.c - initialize the toolkit using an application context

** and a toplevel shell widget, then create a pushbutton that says
** Hello using the varargs interface.

*

#include <Xm/PushB.h>

main (int argc, char *argv[])

{
Widget toplevel, button;
XtAppContext app;
void button_pushed(Widget, XtPointer, XtPointer);
XmString label;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtvaOpenApplication (&app, "Hello", NULL, O, &argc, argv,
NULL,sessionShellWidgetClass, NULL);

label = XmStringCreateLocalized (“Push here to say hello");
XtSetArg(args[0], XmNlabelString, label);

button = XmCreatePushButton (toplevel, "pushme"”, args, 1);
XmStringFree (label);

XtAddCallback (button, XmNactivateCallback, button_pushed, NULL);
XtManageChild (button);

* While this book discusses certain methods for extending the Moatif library, you should refer to VolXme 4,
Toolkit Intrinsics Programming Manualor a general discussion of how to build your own widgets.

T XtVaApplnitialize () is deprecated in X11R6. The SessionShell widget classX&fa®DpenApplica-
tion () are only availble in X11R6.

16 Motif Programming Manual



Chapter 2: Motif Programming Model

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void button_pushed (Widget widget, XtPointer client_data, XtPointer call_data)

{

}
The output of the program is shown in Figure 2-2.

printf ("Hello Yourselfin");

[ |
Push hére to day hello,

Figure 2-2: Output of the hello program

You can get the source code fmello.c and the rest of the examples in this book via
anonymousftp or other methods that are described in the Preface. It is a good idea to
compile and run each example as it is presented.

The example programs come with Imakefiles that should make building them easy if you
have theimake program. This program should already béusr/X11R6/binon UNIX-

based systems that have X11 Release 6 installed. You also need the configuration files for
imake they are infusr/X11R6/lib/configon most UNIX-based systems. An Imakefile is a
system-independent makefile that is usedhigketo generate a Makefile. This process is
necessary because it is impossible to write a Makefile that works on all systems. You
invokeimakeusing thexmkmfprogram. Complete instructions for compiling the examples
usingimakeare provided in thREADME?le included with the source code.

As explained in the Preface, there are versions of the example programs for both Motif 2.1
and Motif 1.2 available electronically. However, all of the example code in this book is
designed to work with Motif 2.1 (and X11R6); the programs use functions that are not
available in Motif 1.2 (and X11R5). Where we use Motif 2.1 functions, we try to mention
how to perform the same tasks using Motif 1.2, usually in a footnote. To use the example
programs with Motif 1.2, make the changes we describe. When the necessary changes are
significant, we may explain both versions of the program. For a description of the changes
that we made to convert the example programs to Motif 2.1Ckarges in Motif 2,1in

Chapter 3.

To compile any of the examples on a UNIX system without using imake, use the following
command line:

cc-0-0 flename  filename .c-4Xm -IXt-IX11

If you want to do debugging, replace -O with -g in this command line. The order of the
libraries is important. Xm relies on Xt, and both Xm and Xt rely on Xlib k&L link
flag speci?es Xlib).

Motif Programming Manual 17



Chapter 2: Motif Programming Model

Now let’s take a look at this program step by step, noting elements of the underlying Xt
model and where Motif differs from it.

Header Files

An application that uses the Motif toolkit must include a header ?le for each widget that it
uses. For exampléello.c uses a PushButton widget, so we includentPushB.h.The
appropriate header ?le for each Motif widget class is included on the reference page for the
widget in Volume 6BMotif Reference Manual

If you simply browse througkusr/Motif2.1/include/Xn(or wherever you have installed

your Motif distribution) trying to find the appropriate header ?le, you will find that each
widget class actually has two header files. The one with the name ending in a “P” (e.qg.
PushBP.his the widget's private header ?le and should not normally be included directly
by an application. Private header files are generally used only by the code that implements
a widget class and its subclasses.

Xt uses public and private header files to hide the details of widget implementation from
applications. This technique provides object-oriented encapsulation and data hiding in the
C language, which is not designed to support object-oriented programming. (See Volume
4, X Toolkit Intrinsics Programming Manualor additional information on the object-
oriented design of widgets.)

For some types of objects, you may see another pair of header files, each containing a
capital “G” at the end of their names (for exampleshBG.randPushBGP.h These files

are for the gadget version of the object. For the most part, when we talk about widgets, we
include gadgets. Later chapters make it clear when to use gadgets and when to use widgets.

A quick examination of théinclude directives in each of the Motif widget or gadget
header files reveals that each of them includén/Xm.k, the general header ?le for the
Motif library. <Xm/Xm.t in turn includes the following files:

#include <X11/Intrinsic.h>

#include <X11/Shell.h>

#include <X11/Xatom.h>

#include <Xm/XmStrDefs.h>

#include <Xm/\Virtkeys.h>
Therefore, none of these files ever need to be included by your application, as long as you
include Xm/Xm.k. Since <Xm/Xm.k is included by each widget header ?le, you do not
need to include it directly either. If you look closely at the code, you'll see that just about
every necessary header ?le is included the moment you include your widget header ?le.
This method of using header files contrasts with the way other Xt-based toolkits, like the
Athena toolkit or the OPEN LOOK Intrinsics Toolkit (OLIT), use header files.

The Motif toolkit provides a new header ?lXm/XmAll.tr, that simply includes all of the
public header files.

18 Motif Programming Manual



Chapter 2: Motif Programming Model

We recommend that you not duplicate the inclusion of header files. One reason is that if
you include only the header files that you need, whoever has to maintain your code can see
which widgets you are dealing with in your source files. Another reason is that duplicating
header file is generally bad practice, as you run the risk of redeclaring macros, functions,
and variables.

However, it isn’t always easy to prevent multiple inclusions. For examfla/Xm.t» is
included by each widget header ?le that you include. All of the Motif, Xt and X header files
are protected from multiple inclusion using a technique caifiéef-wrapping We
recommend that you use this method in your own header files as well. The ifdef-wrapper
for <X11/Intrinsic.k» is written as follows:

#ifndef _XtlIntrinsic_h

#define _Xtlntrinsic_h

* Include whatever is necessary for the file... */

#endif /* _Xtntrinsic_h */
The wrapper definesXtintrinsic_h when a ?le is first included. If the ?le is ever
included again during the course of compiling the same sourkc&lé, the#ifdef
prevents anything from being redeclared or redefined.

Of course, the wrapper prevents multiple inclusion only within a single source ?le; the next
source ?le that gets compiled goes through the same test. If the same files are included, the
same macros, data types, and functions are declared again for the benefit of the new ?le.
For this reason, you should never write functions in a header ?le, since it would be
equivalent to having the same function exist in every source ?le. Function declarations,
however, are acceptable and expected.

In addition to the widget header files, you will most likely need other include files specific
to your application, such astdio.l» or <ctype.b».

The order of inclusion is generally not important unless certain types or declarations
required by one ?le are declared in another. In this case, you should include the files in the
necessary order. Otherwise, application-specific header files are usually included first,
followed by Ul-specific header files (with Xt header files, if any, preceding Motif header
files), followed by system-specific header files.

Setting the Language Procedure

For Release 5 of the X Window System, the X Toolkit was modified to better support
internationalization. An internationalized application retrieves the user’s language (called
a locale) from the environment or a resource ?le and operates in that language without
changes to the binary. An internationalized application must display all of its text in the
user’s language and accept textual input in that same language. It must also display dates,
times, and numbers in the appropriate format for the language environment.

Motif Programming Manual 19



Chapter 2: Motif Programming Model

X internationalization is based on the ANSI-C internationalization model. This approach is
based on the concept lafcalization whereby an application uses a library that reads a
customizing database at start-up time. This database contains information about the
characteristics of every locale that is supported by the system. When an application
establishes its locale by calliragtiocale() , the library customizes the behavior of
various routines based on the locale. See the Third Edition of Voluxiie Programming
Manual for a complete description of the concepts and implementation of X
internationalization.

Xt support of internationalization is trivial in most applications; the only additional code
needed is a call toXtSetLanguageProc() before the toolkit is initialized.
XtSetLanguageProc() sets thdanguage proceduréhat is used to set the locale of an
application. The first argument to the routine speci?es an application context, the second
argument speci?es the language procedure, and the third parameter speci?es additional data
that is passed to the language procedure when it is called. Since the language procedure is
responsible for setting the locale, an Xt application does nosethitale() directly.

The language procedure is calledXiisplaylnitialize()

If the second argument ¥iSetl anguageProc() is NULL, the routine registers a default
language procedure. Here’'s the call that we used in Example 2-1 to set the default language
procedure:

XtSetLanguageProc (NULL, NULL, NULL);

The default language procedure sets the locale according to the LANG environment
variable, verifies that the current locale is supported, and returns the value of the current
locale. For more information about establishing the locale in an Xt application, see Volume
4, X Toolkit Intrinsics Programming Manual

Most of the support for internationalization in Motif is provided by Xlib and Xt. Xlib
provides support for internationalized text output, interclient communication, and
localization of the resource database, while Xt handles establishing the locale. The Motif
Text and TextField widgets have been modified to support internationalized text input and
output; see Chapter 18ext Widget Internationalizatiofior more information. The Motif
routines that work with compound strings and render tattlese also been updated in
Motif 2.1. See Chapter 2Render Tablesand Chapter 2%;ompound Stringgor details

on the new API foXmString andXmRenderTable values.

Initializing the Toolkit

Before an application creates any widgets, it must initialize the toolkit. There are many
ways to perform this task, most of which also perform a number of related tasks, such as

* The XmFontList is obsolete in Motif 2.0 and later, and is replaced bythRenderTable .

20 Motif Programming Manual



Chapter 2: Motif Programming Model

opening a connection to the X server and loading the resource database. Here’s a list of
some of the things that are almost always done:

e Open the application’s connection to the X server.

e Parse the command line for the standard X Toolkit command-line options plus any
custom command-line options that have been defined for the application.

» Create the resource database using the app-defaults ?le, if any, as well as any user, host,
and locale-specific resource files.

» Create the application’s top-level window, a Shell class widget that handles interaction
with the window manager and acts as the parent of all of the other widgets in the
application.

There are several functions available to perform toolkit initialization. The one we use
throughout isXtVaOpenApplication() *, since it performs all of the functions listed
above in one convenient call. Here's the call we used in Example 2-1:

Widget toplevel;
XtAppContext  app;

toplevel = XtvaOpenApplication (&app, "Hello", NULL, O, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

The widget returned b¥tVaOpenApplication() is a shell widget. The shell widget
acts as the top-level window of the application and handles the application’s interaction
with the window manager. The SessionShell widget class which we will use for the top
level also interacts with the X11R6 Session Management facilities. All of the other widgets
created by the application are created as descendents of the shell, of which we’'ll talk more
later in this chapter.

The Application Context

The first argument tXtVaOpenApplication() is the address of an application context,
which is a structure that Xt uses to manage some internal data associated with an
application. Most applications do not manipulate the application context directly. Most
often, an application receives an opaque pointer to an application context in the toolkit
initialization call and merely passes that pointer to a few other toolkit functions that require
it as an argument. The fact that the application context is a public variable, rather than
hidden in the toolkit internals, is a forward-looking feature of Xt, designed to support
multiple threads of control.

The X11RS5 initialization calKtVaApplnitialize() is still supported by later versions
of the toolkit. Its use is discouraged because the new initialization calls provide a greater
degree of upward compatibility with future Xt-based applications.

* XtVaApplnitialize () is considered deprecated in X11R®/aOpenApplication () and the SessionShell
widget class are only availble in X11R6.

Motif Programming Manual 21



Chapter 2: Motif Programming Model

The Application Class

The second argument XtVaOpenApplication() is a string that defines theass
nameof the application. A class name is used in resource files to specify resource values
that apply to all instances of an application, a widget, or a resource. (See VolXme 3,
Window System User’s Guidend Volume 4X Toolkit Intrinsics Programming Manual

for details.) For many applications, the application class is rarely used and the class hame
is important only because it is also used as the name of the application’s app-defaults ?le.

Whenever a widget is created in Xt, its resources must have certain initial (or default)
values. You can either hard-code the values, allow them to default to widget-defined
values, or specify the default values in the app-defaults ?le. These default values are used
unless the user has provided his own default settings in another resource ?le.

By convention, the class name is the same as the name of the application itself, except that
the first letter is capitalizedFor example, a program namdr@wwould have a class name

of Draw and an app-defaults filename diisr/X11R6/lib/app-defaults/DrawNote,
however, that there is no requirement that an app-defaults ?le with this name actually be
installed.

Exceptions can be made to this convention, as long as you document it. For example, all
the example programs in this book have the class namembs which allows us to set
certain common defaults in a single ?le. This technique can be useful whenever you have a
large collection of independent programs that are part of the same suite of applications.

Command-line Arguments

The third and fourth arguments specify an array of objects that describe the command-line
arguments for your program, if any, and the number of arguments in the array. These
arguments are unused in most of the examples in this book and are spedifi#d asd

0, respectively. The programshowbitmap.dn the Appendix A,Additional Example
Programs provides an example of using command-line arguments. See VoluXe 4,
Toolkit Intrinsics Programming Manuafor a more complete discussion of application-
specific command-line arguments.

The fifth and sixth arguments contain the valagy\ ) and countdrgc ) of any actual
command-line arguments. The initialization call actually removes and acts on any
arguments it recognizes, such as the standard X Toolkit command-line options and any
options that you have defined in the third argument. After thisargil, should contain

only the application name and any expected arguments such as filenames. You may want
to check the argument count at this point and issue an error message if any spurious
arguments are found.

* Some applications follow the convention that if the application’s name begins with an “X”, the X is silent and
so the second letter is capitalized as well. For example, the class nat@ero$ XTerm

22 Motif Programming Manual



Chapter 2: Motif Programming Model

Fallback Resources

The seventh argument is the start didLL-terminated list ofallback resourcedor the

shell widget created by the initialization call. Fallback resources provide a kind of “belt and
suspenders” protection against the possibility that an app-defaults ?le is not installed. They
are ignored if the app-defaults ?le or any other explicit resource settings are found. When
no fallback resources are specified, the seventh argument shaduld be

It is generally a good idea to provide fallbacks for resources that are essential to the
operation of your application. An example of how fallback resources can be used by an
application is shown in the following code fragment:

String fallbacks[] =
{

"Demos*background: white",
"Demos*XmText.foreground: black",

[* list the rest of the app-defaults resources here... */
NULL

I3

toplevel=XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, fallbacks,
sessionShellWidgetClass, NULL);

Fallback resources protect your application against a missing app-defaults ?le, but they do
not guard against one that is modified incorrectly or otherwise corrupted, since they are not
used if the app-defaults ?le is present in any form. A better fallback mechanism would
provide protection against these types of problems. Fortunately, there is the function
XrmCombineDatabases() , that allows you to provide real fallbacks in case the user or
the system administrator misconfigures the app-defaults ?le.

The Top Level Shell Class

The eighth parameter specifies the type of shell to be used for the top level. It is
recommended that this is tlsessionShellWidgetclass , which is derived from the
applicationShellwidgetClass T, We are not actually using any of the features of the
X11R6 SessionShell in the examples, however we will use the SessionShell in order to
conform to the recommendations.

Additional Initialization Parameters

The ninth parameter is the start oNELL-terminated list of resource/value pairs that are
applied to the top-level widget returned KtvaOpenApplication() . If there are no
resource settings, which is often the case for this function, you cahlghkas the ninth
parameter. If you do pass any parameters, it should be done just as we describe for

* XtVaApplnitialize () is deprecated in X11R6.
T The ApplicationShell is considered obsolete in X11R6. The SessionShell is only availble in X11R6.

Motif Programming Manual 23



Chapter 2: Motif Programming Model

XtVaCreateWidget() later in this chapter. All of the functions whose names begin with
XtVa support the same type of varargs-style (variadic) argument lists.

The X11 Release 6 implementation XtVaOpenApplication() and other varargs
functions may not work entirely as expected for some non-ANSI-C compilers due to a bug
in the way that Xt declares variadic functions. This problem only arises for some compilers
that do not understand function prototypes. The problem is rare since it is compiler-
dependent and it only happens on older compilers. It is not a compiler error but an Xt error,
since functions are not supposed to mix fixed parameter declarations with variadic
declarations. XtVaOpenApplication() mixes these declarations; the first eight
parameters are fixed while the ninth throungihh arguments are variadic. ANSI-C allows,

and even requires, this type of specification.

If you experience problems such as segmentation faults or bus errors as a result of using

XtVaOpenApplication() , you can try passing an extJLL parameter after the final
NULL. Another option is to useXtOpenApplication() , which is identical to
XtVaOpenApplication() , but does not contain a variable argument list of resource/

values pairs. Instead, it uses the non-variadis andnum_args method of specifying
resource values, which we describe later in this chapter.

Creating Widgets

There is a convenience function for creating every class of widget and gadget supported by
the Motif toolkit. For example, to create a PushButton widget, you can use the function
XmCreatePushButton() . To create the corresponding gadget, you can use
XmCreatePushButtonGadget() . In addition, there are convenience functions for
creatingcompound object®\ compound object is a collection of widgets that is treated like

a single object. For example, a ScrolledList object is really a List widget inside a
ScrolledWindow widget.XmCreateScrolledList() creates the compound object
consisting of both widgets.

The convenience functions for creating all of the different types of widgets are described
in Volume 6B,Motif Reference Manualn addition to the convenience routines, the Xt
Intrinsics also define generic routines which can be used to create arbitrary widget
instances, nameltVaCreateWidget() andXtVaCreateManagedWidget() . These
functions allow you to decide whether to create a widget as managed or unmanaged, while
the Motif convenience functions always create unmanaged widgets. The Xt routines also
allow you to set resources for a widget using the varargs interface, which can often be more
convenient than thargs andnum_args method used by the Motif creation routines.

X nests windows using a parent-child model. A display screen is defined as the root
window; every application has a top-level window that is a child of the root window. A top-
level window in turn has subwindows, which overlay it but cannot extend beyond its
boundaries. If a window extends beyond the boundaries of its parent, it is clipped.

24 Motif Programming Manual



Chapter 2: Motif Programming Model

Because every widget has its own X window, widgets follow a similar parent-child model.
Whenever a widget is created, it is created as the child of another widget. The shell widget
returned by the call toXtVaOpenApplication() is the top-level widget of an
application. It is usually overlaid with a special class of widget calledrzager widget

which implements rules for controlling the size and placement of widget children. For
example, the Motif RowColumn widget is a manager that allows widgets to be laid out in
regular rows and columns, while the Form widget is a manager that allows widgets to be
placed at precise positions relative to one another. A manager widget can contain other
manager widgets as well psimitive widgets which are used to implement actual user-
interface controls. Managers also support gadgets. A gadget is a lighter-weight object that
is identical to its corresponding widget in general functionality, but does not have its own
window.

In Example 2-1,the button was created as a child of the top-level shell window.This simple

application contains only one visible widget, so it does not use a manager. Actually, shells
are extremely simple managers. A shell can only have one child; the shell makes itself
exactly the same size as the child so the shell remains invisible behind the child. Here’s the
call we used to create the button:

button = XmCreatePushButton (toplevel, "pushme", args, 1);

The first argument is the parent of the widget, which must be a manager widget that has
already been created. In this example, the parent of the PushButton widget is toplevel, the
shell widget returned by the call x@#vVaOpenApplication 0.

The second argument is a string that is used as the name of the widget in the resource
database. If a user wants to specify the color of the button label for the application, she can
use the following specification in a resource ?le:

hello.pushme.foreground: blue

The name is different from the variable name that is used to refer to the widget in
application code. The following resource specification is not correct:

hello.button.foreground: blue

The resource name does not need to be identical to the variable name given to the widget
inside the program, though to minimize confusion, many programmers make the two
names the same. If you want users to be able to configure widget resources, be sure to
include the names of the widgets in your documentation.

The remainder of the argument list is an array of resource settings, followed by the number
of items in this array. We'll talk about the format of these resource settings in the next
section.

Motif Programming Manual 25



Chapter 2: Motif Programming Model

Setting and Getting Widget Resources

A widget class defines resources of its own and it inherits resources from its superclasses.
The names of the resources provided by each widget class (new and inherited) are
documented in the widget reference pages in VolumeMiBif Reference Manuallhe

most useful resources are described in detail in the individual chapters on each of the Motif
widget classes.

When resources are set in a program, each resource name begins with tixenpidtvese

names are mnemonic constants that correspond to actual C strings that have the same name
without the XmN prefix. For example, the actual resource name associated with
XmNIlabelString is labelString . The XmNidentifies the resource as being Motif-
related. Motif also uses themC prefix to identify resource class symbols. Xt uses the
prefix XtN for any resources defined by its base widget classes. Motif also provides
correspondingimhames for most of these resourc#shen you are specifying resources

in a resource ?le or when you are using -ttmn option to specify resources on the
command line, omit thEmNorefix.

The main purpose of the constant definitions for resource names is to allow the C
preprocessor to catch spelling errors. If you use the stigty rather than the constant
XmNwidth , the program still works. However, if you typdddth , the compiler happily
compiles the application, but your program won't work and you’ll have a difficult time
trying to figure out why. Because resource names are strings, there is no way for Xt or Motif
to report an error when an unknown resource name is encountered. On the other hand, if
you useXmNwiddth , then the compiler complains that the token is an undefined variable.

Setting Resources During Widget Creation

The Motif convenience functions, as well as the Xt functi¥t@reateWidget() and
XtCreateManagedWidget() , require you to declare resource settings in an array. You
pass this array to the function, along with the number of items in the array. By contrast, the
varargs-style functions in Xt allow you to specify resources directly in a creation call, as a
NULL-terminated list of resource/value pairs.

As an example, in the call ¥XmCreatePushButton() in hello.q the only resource set

was the string displayed as the PushButton’s label, and this was passed to the creation
routine in the Arg arragrgs Alternatively, a variable length list of resources could have
been set in the same call using the Xt mechanisms, as shown in the following code:

button = XtVaCreateWidget (“pushme", xmPushButtonWidgetClass,toplevel,
XmNlabelString, label, XmNwidth, 200, XmNheight, 50, NULL);

* Some toolkits use th&tN prefix, even though its resource are not common to all Xt toolkits. If you need access
to an Xt-based resource that does not have a correspoxiaiNgonstant, you need to include the ?)1&/
StringDefs.k.

26 Motif Programming Manual



Chapter 2: Motif Programming Model

These settings specify that the widget is 200 pixels wide by 50 pixels high, rather than its
default size, which would be just big enough to display its label.

When you set resources in the creation call for the widget, those resources can no longer be
configured by the user. Such resources are said to be hard-coded. For example, since we've
set the width and height of the PushButton in the cat\faCreateManagedWidget() ,
a user resource specification of the following form is ignored:

*pushme.width: 250

*pushme.height: 100
It is recommended that you hard-code only those resource values that are absolutely
required by your program. Most widgets have reasonable default values for their resources.
If you need to modify the default values, specify the necessary resource values in an app-
defaults ?le, instead of in the application code.

Every resource has a data type that is specified by the widget class defining the resource.
When a resource is specified in a resource ?le, Xt automatically converts the resource value
from a string to the appropriate type. However, when you set a resource in your program,
you must specify the value as the appropriate type. For example, the Motif PushButton
widget expects its label to be a compound string (see Chapt€o&found Strings so

we create a compound string, use it to specify the resource value, and free it when we were
done.

Rather than specifying a value of the appropriate type, you can invoke Xt's resource
converters in a varargs list using the keywxitdaTypedArg , followed by four additional
parameters: the resource name, the type of value you are providing, the value itself, and the
size of the value in bytes. Xt figures out the type of value that is needed and performs the
necessary conversion. For example, to specify the background color of the button directly
in our program without calling an Xlib routine to allocate a colormap entry, we can use the
following code:
button=XtVaCreateManagedWidget ("pushme", xmPushButtonWidgetClass, toplevel,

XmNlabelString, label XtVaTypedArg, XmNbackground, XmRString,

"red", strlen ("red") + 1, NULL);
The data type in this construct is specified using a special symbol ca#pdeaentation
type rather than the C type. AtmRprefix identifies the symbol as a representation type.
See Volume 4X Toolkit Intrinsics Programming Manuafor more information on
resource type conversion and the possible values for representation types. These symbols
are defined in the same way as XmeN symbols that are used for resource names.

Setting Resources After Widget Creation

After a widget has been created, you can set resources for itXtsia8etValues()
The values set by this function override any values that are set either in the widget creation
call or in a resource ?le. The syntax for usktigaSetValues() is:

Motif Programming Manual 27



Chapter 2: Motif Programming Model

XtVaSetValues (widget _id, resource-value-list , NULL);

Thewidget id is the value returned from a widget creation call, r@sdurce-value-
list is aNULL-terminated list of resource/value pairs.

Some Motif widget classes also provide convenience routines for setting certain resources.
For example, XmToggleButtonSetState() sets the XmNset resource of a
ToggleButton. The available convenience functions are described in Volumdd@iB,
Reference Manuahnd in the chapters on each widget class in this book. A convenience
function has direct access to the internal fields in a widget’s data structures, so it might have
slightly better performance thaxtVaSetValues() . Functionally, however, the two
methods are generally freely interchangeable.

Getting Resource Values

The routine used to get widget resource valusMaGetValues(). The syntax of this
routine is exactly the same a@VaSetValues() , except that the value part of the
resource/value pair is the address of a variable that stores the resource value. For example,
the following code gets the label string and the width for a Label widget:

extern Widget label;

XmString str;
Dimension width;

XtVaGetValues (label, XmNlabelString, &str, XmNwidth, &width, NULL);

Notice that the value fokmNlabelString  is anXmString , which is a Motif compound
string. Almost all of the Motif widget resources that specify textual information use
compound strings rather than regular character stringsXmhiwalue andXmNvalueWcs
resources for Text and TextField widgets are the only exceptions to this policy. When you
are retrieving a string resource from a widget, make sure that you pass the address of a
compound string, not a character string, as in the following incorrect example:

extern Widget label;

char *puf;
Dimension width;

XtVaGetValues (label, XmNlabelString, &buf, /* do not do this */ XmNwidth,
&width, NULL);
If you try to get a compound string resource value with a character string variable, the
program still works, but the value of the character string is meaningless. The correct way
to handle a compound string resource is to retrieve it widna®tring variable and then
get the character string from the compound string udim$tringUnparse() . See
Chapter 25Compound Stringdor more information.

There are some things to be careful about when you are getting resource values from a
widget. First, always pass the address of the variable that is being used to store the retrieved
value. A value represented by a pointer is not copied into the address space. Instead, the

28 Motif Programming Manual



Chapter 2: Motif Programming Model

routine sets the value for the address of the pointer to the position of the internal variable
that contains the desired value. If you pass an array, rather than a pointer to the array, the
routine cannot move its address. If you pass the address of a péiviegsetValues()

is able to reset the pointer to the correct internal Vakm. values that are not represented

by pointers, such as integers, the value is simply copied. For examplédithevalue is

anint , so the resource value is copied into the variable.

You should also be careful about changing the value of a variable returned by
XtvVaGetValues() . Inthe case of a variable that is not a pointer, the value can be changed
because the variable contains a copy of the value and does not point to internal data for the
widget. However, if the variable is a pointer to a string or a data structure, it does point to
internal data for the widget. If you dereference the pointer and change the resulting value,
you are changing the internal contents of the widget. This technique should not be used to
change the value of a resource. To modify a resource value, you should use
XtVaSetValues() with a defined resource name, as this routine ensures that the widget
redraws and manages itself appropriately.

Motif also provides convenience routines for getting certain resource values from particular
widget classes. Most of these functions correspond to the convenience routines for setting
resource values. Many of the functions allocate memory for the value that is returned. For
example XmTextGetString() allocates space for and returns a pointer to the text in a
Text widget. When a convenience function for retrieving a resource value is available, we
generally recommend using it.

Using Argument Lists

The Motif convenience functions, and some Xt functions Xi@reateWidget() and
XtCreateManagedWidget() , require you to set resources using a separately-declared
array of objects of typArg . You pass this array to the appropriate function along with the
number of items in the array.

For example, the following code fragment creates a Label widget using a Motif
convenience routine:

Arg  args[2];

int n=0;

XtSetArg (args[n], XmNlabelString, label); n++;

label = XmCreateLabel (toplevel, "label", args, n);
XtManageChild (label);

For all of the Motif convenience routines, the first argument is the parent of the widget
being created, the second argument is the widget's name, and the third and fourth

* The Motif toolkit sometimes sets the given address to allocated data, which must be freed when it is no longer
needed. This situation occurs when a compound string resource is retrieved from a widget and when the text
value of a Text widget is retrieved. These cases are discussed in Chaﬂ'telxiaNidgetand Chapter 25,
Compound Strings.

Motif Programming Manual 29



Chapter 2: Motif Programming Model

arguments are the array of resource specifications and the number of resources in the array.
Since the class of the widget being created is reflected in the name of the convenience
function, it does not need to be specified as an argument to the routine. For example,
XmCreateLabel()  creates a Label widget, whik¥mCreatePushButton() creates a
PushButton widget.

Xt also provides some generic widget creation functions that use the non-variadic argument
lists for specifying widget resources. The following code fragment shows the use of
XtCreateWidget()

Arg  args[s];

int n=0;

XtSetArg (args[n], XmNlabelString, label); n++;

label = XtCreateWidget ("label", xmLabelWidgetClass, toplevel, args, n);

XtManageChild (label);
With this routine, the name of the widget is the first parameter, the widget class is the
second parameter, and the parent is the third parameter. The fourth and fifth parameters
specify the resources, as in the Motif convenience routines. Functionally, in this instance
the two methods of widget creation are logically identical, and it simply boils down to a
guestion of personal taste. In examples, we will prefer the Motif creation routines, if only
because this is a Motif and not an Xt manual.

The argument-list style of setting resources is a touch clumsy and error-prone, since it
requires you to declare an array (either locally or statically) and to make sure that it has
enough elements. It is a common programming mistake to forget to increase the size of the
array when new resource/value pairs are added; this error usually results in a segmentation
fault.

In spite of the disadvantages of this method of setting resources, there are still cases where
the convenience routines are logically preferred (as opposed to purely stylistic
considerations). One such case is when the routine creates several widgets and arranges
them in a predefined way consistent with Metif Style Guide The argument-list style
functions also can be useful when you have different resources that should be set depending
on run-time constraints. For example, the following code fragment creates a widget whose
foreground color is set only if the application knows it is using a color display:

extern Widget parent;
Arg args[s];
Pixel red;

int n=0;

XtSetArg (args[n], XmNlabelString, label); n++;
if (using_color) {

XtSetArg (args[n], XmNforeground, red); n++;
}

widget = XmCreatePushButton (parent, “name", args, n);

30 Motif Programming Manual



Chapter 2: Motif Programming Model

The non-variadic routines also allow you to pass the exact same set of resources to more
than one widget. Since the contents are unchanged, you can reuse the array for as long as it
is still available. Be careful of scoping problems, such as using a local variable outside of
the function where it is declared. The following code fragment creates a number of widgets
that all have the same hard-coded resources:

static char *labels[] = { "A Label", "Another Label", "Yet a third" };
XmString label;

Widget widget, rc;
Arg args(3];
int i,n=0;

[* Create an unmanaged RowColumn widget parent */
rc = XmCreateRowColumn (parent, "rc", NULL, O);

[* Create RowColumn's children - all 50x50 with different labels */
XtSetArg (args[n], XmNwidth, 50); n++;
XtSetArg (args[n], XmNheight, 50); n++;

for (i = O; i < XtNumber (labels); i++) {
xm_label = XmStringCreateLocalized (labels][i]);
XtSetArg (args[n], XmNlabelString, xm_label);
widget = XmCreateLabel (rc, "label", args, n + 1);
XtManageChild (widget);
XmStringFree (xm_label);

}

* Now that all the children are created, manage RowColumn */

XtManageChild (rc);
Each Label widget is created with the same width and height resource settings, while each
XmNlabelString  resource is distinct. All other resource settings for the widgets can be
set in a resource ?le.

To set resources in a resource ?le, you need to specify the names of the widgets, which in
this case are all set tabel. It is perfectly legal to give the same name to more than one
widget. As a result, a resource specification in a resource ?le that uses a particular name
affects all of the widgets with that name, provided that the widget tree matches the resource
specification. For example, you could set the foreground color of all of the Labels using the
following resource specification:

*rc.label.foreground: red

Other widgets in the application that have the widget rlabwd, but are not children of the
widget namedc, are not affected by this specification. Obviously, whether you really want
to use the same name for a number of widgets is dependent on your application. This
technique makes it easier to maintain a consistent interface, but it also limits the extent to
which the application can be customized.

We could have used the elements of Hiwels array as widget names, but in this
example, these strings contain spaces, which are “illegal” widget names. If you want to

Motif Programming Manual 31



Chapter 2: Motif Programming Model

allow the user to specify resources on a per-widget basis, you cannot use spaces or other
non-alphanumeric characters, except the hyphénafd the underscore), in widget

names. If per-widget resource specification is not a concern, you can use any widget name
you like, includingNULL or the null string'{" ).

Even if a widget has an illegal name, the user can still specify resources for it using the
widget class, as in the following example:

*rc.XmLabel.foreground: red

This resource setting causes each Label widget to have a foreground color of red, regardless
of the name of the widget (and provided that the resource value is not hard-coded for the
widget). See Volume 4X Toolkit Intrinsics Programming Manualor a discussion of
appropriate widget names and further details on resource specification syntax.

Event Handling for Widgets

Once we have created and configured the widgets for an application, they must be hooked
up to application functions via callback resources. Before we can talk about callback
resources and callback functions, we need to discuss events and event handling. In one
sense, the essence of X programming is the handling of asynchronous events. Events can
occur in any order, in any window, as the user moves the pointer, switches between the
mouse and the keyboard, moves and resizes windows, and invokes functions available
through user interface components. X handles events by dispatching them to the
appropriate application and to the separate windows that make up each application.

Xlib provides many low-level functions for handling events. In special cases, which are
described later in this book, you may need to dip down to this level to handle events.
However, Xt simplifies event handling by having widgets handle many events for you,
without any application interaction. For example, widgets know how to redraw themselves,
so they respond automaticallyfgpose events, which are generated when one window is
covered up by another and then uncovered. These “widget survival skills” are handled by
functions callednethodsdeep in the widget internals. Some typical methods redraw the
widget, respond to changes in resource settings that result from calls to
XtVaSetValues() , and free any allocated storage when the widget is destroyed.

The functionality of a widget also encompasses its behavior in response to user events. This
type of functionality is typically handled by action routines. Each widget defines a table of
events, called a translation table, to which it responds. The translation table maps each
event, or sequence of events, to one or more actions.

Consider the PushButton frello.c Run the program and note how the widget highlights

its border as the pointer moves into it, displays in reverse-video when you click on it, and
switches back when you release the button. Watch how the highlighting disappears when
you move the pointer out of the widget. Also, notice how pressing the SPACEBAR while

32 Motif Programming Manual



Chapter 2: Motif Programming Model

the pointer is in the widget has the same effect as clicking on it. These behaviors are the
kinds of things that are captured in the widget's translation table:

<Btn1Down>: Arm()

<Btn1Down>, <Btn1Up>: Activate() Disarm()
<Btn1Down>(2+): MultiArm()
<Btn1Up>(2+): MultiActivate()
<BtnlUp>: Activate() Disarm()
<Btn2Down>: ProcessDrag()
<Key>osfSelect: ArmAndActivate()
<Key>osfActivate: PrimitiveParentActivate()
<Key>osfCancel: PrimitiveParentCancel()
<Key>osfHelp: Help()

~Shift ~Meta ~Alt <Key>Return: PrimitiveParentActivate()
~Shift ~Meta ~Alt <Key>space: ArmAndActivate()
<EnterWindow>: Enter()
<LeaveWindow>: Leave()

The translation table contains a list of event translations on the left side, with a set of action
functions on the right side. When an event specified on the left occurs, the action routine
on the right is invoked. As we just described, moving the pointer in and out of the
PushButton causes some visual feedback.EfterWindow andLeaveWindow events
generated by the pointer motion causeBhter() andLeave() actions to be invoked.

As another example, when the first mouse button is pressed down inside the PushButton,
the Arm() action routine is called. This routine contains the code that displays the button
as if it were “pushed in,” as opposed to “pushed out.” When the mouse button is released,
both theActivate() andDisarm()  routines are invoked in that order. Here is where
your application actually steps in. If you have provided an appropriate callback function,
theActivate() action calls it. Th®isarm() routine causes the button to be redrawn so
that it appears “pushed out” again.

Event Specification

In the Xt syntax, events are specified using symbols that are tied fairly closely to pure X
hardware events, such BsittonPress  or EnterWindow. For exampleBtn1Down>

speci?es a button press for the first mouse bueyPress events are indicated by
symbols called keysyms which are hardware-independent symbols that represent
individual keystrokes. Different keyboards may produce different hardkesteodedor

the same key; the X server uses keysyms as a portable representation, based on the common
labels found on the tops of keys.

Motif provides a further level of indirection in the formwiftual keysymswhich describe

key events in a completely device-independent manner. For exaosfAetivate

indicates that the user invoked an action that Motif considers to be an activating action. An
activating action typically corresponds to the RETURN key being pressed or the left mouse
button being clicked. SimilarlygsfHelp corresponds to a user request for help, such as
the HELP or F1 key being pressed.

Motif Programming Manual 33



Chapter 2: Motif Programming Model

Virtual keysyms are supposed to be provided by the vendor of the user’s hardware, based
on the keys on the keyboard, but some X vendors also provide keysym databases to support
multiple keyboards. The X Consortium provides a virtual keysym database in ther?le
X11R6/lib/XKeysymDBThis ?le contains a number of predefined key bindings that OSF
has registered with the X Consortium to support actions in the Motif toolkit.

Virtual keysyms can be invoked by physical events, but the Motif toolkit goes one step
further and defines them in the formwaftual bindings Here’s the translation table for the
PushButton widget expressed using virtual bindings:

BSelect Press: Arm()

BSelect Click Activate() Disarm()
BSelect Release: Activate() Disarm()
BSelect Press 2+: MultiArm()

BSelect Release 2+: MultiActivate() Disarm()
BTranserPress: ProcessDrag()
KSelect: ArmAndActivate()
KHelp: Help()

Examples of virtual bindings aiSelect , which corresponds to the first mouse button,
andKHelp , which is usually the HELP key on the keyboard. The rule of thumb is that any
virtual binding beginning with a “B” corresponds to a mouse button event, while any
binding beginning with a “K” corresponds to a keyboard event. More than one event can
be bound to a single virtual keysym. For exampleMbéf Style Guidgoermits F1 to be a

help key, so that key is also virtually boundKidelp .

Virtual bindings can be specified by a system administrator, a user, or an application. One
common use of virtual bindings is to reconfigure the operation of the BACKSPACE and
DELETE keys. On some keyboards, the BACKSPACE key is in a particularly difficult
location for frequent access. Users of this type of keyboard may prefer to use the DELETE
key for backspacing. These people may find the default operation of the Motif Text widget
annoying, since it does not allow them to backspace using their “normal” backspace key.

Since Xt allows applications and users to override, augment, or replace translation tables,
many people familiar with Xt try to specify a new translation for the DELETE key to make

it act like a backspace. The translation invokes the action routine that backspaces in a Text
widget. However, this approach is limited, in that it only works for a single Text widget.
The Text widget has the following translation:

<Key>osfBackSpace: delete-previous-char()

The virtual keysynosfBackSpace is bound tadelete-previous-char() , which is

the backspace action. Rather than changing the translation table to spec#ifeyrat
Delete should invoke this action, a user can redefine the virtual binding of the
osfBackSpace keysym. A user can configure his own bindings by specifying the new
virtual keysym bindings in amotifbind ?le in his home directory. The following virtual
binding speci?es that the DELETE key is mappeastBackSpace

34 Motif Programming Manual



Chapter 2: Motif Programming Model

osfBackSpace: <Key>Delete

As a result of this specification, the DELETE key performs the backspace action in the Text
widget, as well as any other widgets in the Motif toolkit that useo#fidackSpace

keysym. The advantage of using virtual bindings is that the interface remains consistent and
nothing in the toolkit or the application needs to change.

Virtual keysym bindings can also be set in a resource ?le, using the
XmNdefaultVirtualBindings resource. The resource can be specified for all
applications or on a per-application basis. To map the DELETE kesfBackSpace
use the following specification:
*defaultVirtualBindings: \

osfBackSpace: <Key>Delete \n\

other bindings
The only difference between the syntax for the resource specification and.fapttileind
?le is that the resource specification must have a newline chanacidoetween each
entry. The complete syntax of Motif virtual bindings is explained in VolumeNo&if
Reference Manual

Motif a client,xmbind that configures the virtual key bindings for Motif applications. This
action is performed by the Motif Window Managern) or any application that uses the
Motif toolkit at startup, so you really only need to usebindif you want to reconfigure
the bindings without restartingwmor a Motif application. Motif also provides a function,
XmTranslateKey() , to translate a keycode into a virtual keysym. This function allows
applications that override the defatkeyProc to handle Motif's virtual key bindings.

Callbacks

Translations and actions allow a widget class to define associations between events and
widget functions. A complex widget, such as the Motif Text widget, is almost an
application in itself, since its actions provide a complete set of editing functions. But
beyond a certain point, a widget is helpless unless control is passed from the widget to the
application. A widget that expects to call application functions defines one or more callback
resources, which are the hooks on which an application can hang its functions. For
example, the PushButton widget defines the&mNactivateCallback ,
XmNarmCallback , andXmNdisarmCallback callback resources.

Itis no accident that the callback resource names bear a resemblance to the names of widget
action routines. In addition to highlighting the widget, the action routines call any
application functions associated with the callbacks of the same name. There is no reason
why a callback has to be called by an action; a widget could install a low-level event handler
to perform the same task. However, this convention is followed by most widgets.

Figure 2-3 illustrates the event-handling path that results in an application callback being
invoked. The widget's translation table registers the widget’s interest in a particular type of

Motif Programming Manual 35



Chapter 2: Motif Programming Model

event. When Xt receives an event that happened in the widget's window, it tests the event
against the translation table. If there is no match, the event is thrown away. If there is a
match, the event is passed to the widget and an action routine is invoked. The action routine
may perform a function internal to the widget, such as changing the widget's appearance
by highlighting it. Depending on the design of the widget, the action routine may then pass
control to an application callback function. If the action is associated with a callback
resource, it checks to see if a callback function has been registered for that resource, and if
so, it dispatches the callback.

There are several ways to connect an application function to a callback resource. The most
common is to calKtAddCallback()  , as demonstrated hello.c

void button_pushed(Widget, XtPointer, XtPointer);

XtAddCallback (button, XmNactivateCallback, button_pushed, NULL);

The first argument speci?es the widget for which the callback is installed. The second
parameter is the name of the callback resource, while the third is a pointer to the callback
function. The fourth argument is referred tahsnt data If this parameter is specified, its
value is passed to the callback function when it is called. Here, the client NaliaLis

The client data can be a value of any type that has the same sizXtBsimter .An

XtPointer  is usually the same aschar pointer; it is typically represented by a 32-bit
value. You can pass pointers to variables, data structures, and arrays as client data. You
cannot pass actual data structures; the result of passing a data structure is undefined. You
can pass variables of tyji@ or char , but understand that you are passing the data by
value, not by reference. If you want to pass a variable so that the callback routine can
change its value, you must pass the address of the variable. In this case, you need to make
sure that the variable is global, rather than local, since a local variable loses its scope
outside of the routine that calAddCallback()

The callback function itself is passed the widget, the client data, if any, and a third argument
that is referred to asall data The signature of a callback function can be expressed in one
of two ways: using an ANSI-compliant function prototype or using the older style
conventions of K&R C. The ANSI-style function declaration is as follows:

void button_pushed (Widget widget, XtPointer client_data, XtPointer call_data)

36 Motif Programming Manual



Chapter 2: Motif Programming Model

In the strictest sense, declaring the types of the parameters to the function is the proper way
to handle function declarations and signatures. While this convention is good style and

Xt Intrinsics
A 13 o A
User presses Button 1

Y

X Toolkit Intrinsics
Event Loop

Determine the widget
the event occurred in

Does event
match widget's
translations?

Action routine Callback

Registered?

Application

A

Callback function

Figure 2-3: Event handling using action routines and callbacks

Motif Programming Manual 37



Chapter 2: Motif Programming Model

recommended for upwards compatibility, most compilers today still understand the older
style conventions:
void button_pushed (widget, client_data, call_data)

Widget widget;

XtPointer  client_data;

XtPointer  call_data;
The second style is potentially the more portable method, although it is extremely difficult
to think of any operating system vendors whose compiler is not ANSI aware. In the course
of the book, we make a habit of declarimtient data and call data as
XtPointers , even though we usually know the actual types of the parameters being
passed to the function. Before referencing these parameters, we cast the values to the
appropriate types.

The third parameter in a Motif-based callback function is always a structure that contains
information specific to the widget class that invoked the callback function, as well as
information about the event that triggered the callback. There is a generic callback

structure XmAnyCallbackStruct , as well as variations for specific widget classes and
callback resources. ThénAnyCallbackStruct is defined as follows:
typedef struct {
int reason;
XEvent *event;

} XmAnyCallbackStruct;

The callback structure for the Motif PushButton widget class, the

XmPushButtonCallbackStruct , is defined as follows:
typedef struct {
int reason;
XEvent *event;
int click_count;

} XmPushButtonCallbackStruct;

We discuss the callback structures for a widget class in this book (see the chapter
corresponding to the specific widget type). The callback structures are also documented in
the widget reference pages in Volume 6&tif Reference Manual

All of the callback structures contain at least the two fields found in
XmAnyCallbackStruct . The reason field always contains a symbolic value that
indicates why the callback was called. These values are defiesriotif2.1/include/
Xm/Xm.hand are usually self-explanatory. For example, when a callback function
associated with a PushButtorXenNactivateCallback resource is called, threason

is XmCR_ACTIVATEThe different values foreason make it easier to write callback
routines that are called by more than one type of widget. By testimggitn  field, you

can determine the appropriate action to take in the callback. Because the widget is always
passed to the callback function, you can also find out what widget caused the function to
be invoked.

38 Motif Programming Manual



Chapter 2: Motif Programming Model

Theevent field contains the actual event that triggered the callback, which can provide a

great deal of useful information. See Volum&4,oolkit Intrinsics Programming Manual,

for information on how to interpret the contents of an event. That subject is not discussed
at length in this book, although our examples frequently use the events in callback
structures to control processing.

The Event Loop

Once all of the widgets for an application have been created and managed and all of the
callbacks have been registered, it's time to start the application running. The final two
function calls irhello.cperform this task:

XtRealizeWidget (toplevel);

XtAppMainLoop (app);
Realizing a widget creates the actual window for the widget. When you call
XtRealizeWidget() on the top-level widget of an application (the one returned by the
call to XtVaOpenApplication() ), Xt recursively traverses the hierarchy of widgets in
the application and creates a window for each widget. Before this point, the widgets existed
only as data structures on the client side of the X connection. After the call, the widgets are
fully instantiated, with windows, fonts, and other X server data in place. ThEXpsse
event is also generated, which causes the application to be displayed.

The call toXtAppMainLoop()  turns control of the application over to the X Toolkit
Intrinsics. Xt handles the dispatching of events to the appropriate widgets, which in turn
pass them to the application via callbacks. The application code is idle until summoned to
life by user-generated events.

Summary

We've looked at the skeleton of a simple Motif program. Every application follows more
or less the same plan:

1. Initialize the X Toolkit Intrinsics.

2. Create and manage widgets.

3. Configure widgets by setting their resources.
4. Register callbacks to application functions.

5. Realize the widgets and turn control over to Xt's event loop.
How this skeleton is fleshed out in a real application is the subject of the next chapter.
Chapter 30verview of the Motif Toolkiaddresses the role of manager widgets in laying

out a user interface, the use of dialog boxes and other popups for transient interactions with
the user, the many specialized types of widgets available in Motif, and other essential

Motif Programming Manual 39



Chapter 2: Motif Programming Model

concepts. Once you have read that chapter, you should have a sufficient foundation for
reading the remaining chapters in any order.

40 Motif Programming Manual



In this chapter:

e The Motif Style
 Application Controls
 Application Layout

 Putting Together a
Complete Application

» Changes in Motif 2.1
e Summary

Overview of the Motif
Toolkit

This chapter helps the reader understand the components of a real Motif application. It
discusses how to handle the geometry management of primitive widgets within a manager
widget, when to put components into the main window, when to use dialog boxes and
menus, and how to relate to the window manager. After reading this chapter, the
programmer should have a solid overview of Motif application programming, and she
should be able to read the remaining chapters in any order.

In Chapter 2The Motif Programming Modelye talked about the basic structure of an Xt-
based program. We described how to initialize the toolkit, create and configure widgets,
link them to the application, and turn control over to Xt's main loop. In this chapter, we
discuss the widgets in the Motif toolkit and how you can put them together to create an
effective user interface for an application.

If you already have a basic understanding of the Motif widgets, you can jump ahead to any
of the later chapters in the book that focus on individual widget classes. This chapter
provides some insight into the design of the widgets and a general overview of the Motif
style and methodology, which you may find useful when developing your own
applications.

This chapter also describes all of the new features in Release 2.1 of Motif. If you are
familiar with Motif 1.2 but need to get up to speed with Motif 2.1, you shouldCbadges

in Motif 2.10n page 85. In this section, we summarize the new features and tell you where
to find more information about them.We also describe all the changes made to the example
programs in this book to make them up-to-date with Motif 2.1. While Motif 2.1 is
backwards-compatible with Motif 1.2, there are a number of functions and resources in
Motif 2.1 that replace obsolete functions and resources in Motif 1.2.

The Motif Style

You don't build a house just by nailing together a bunch of boards; you have to design it
from the ground up before you really get started. Even with a prefabricated house, where

Motif Programming Manual 41



Chapter 3:Overview of the Motif Toolkit

many of the components have already been built, you need a master plan for putting the
pieces together. Similarly, when you are designing a graphical user interface for an
application, you have to think about the tasks your application is going to perform. You
must envision the interface and then learn to use your tools effectively in order to create
what you’'ve envisioned.

The Motif toolkit provides basic components that you can assemble into a graphical user
interface. However, without design schematics, the process of assembling the user-
interface elements may become ad hoc or inconsistent. Here is whietetiftétyle Guide

comes in. It presents a set of guidelines for how widgets should be assembled and grouped,
as well as how they should function and interact with the user.

All Motif programmers should be intimately familiar with t8&yle GuideWhile we make
recommendations for Motif style from time to time, this book is not a replacement for the
Style Guide There are many aspects of Motif style that are not covered in detail here, as
they involve the content of an application rather than just the mechanics. On the other hand,
the Motif Style Guides not an instructional manual for the Moatif toolkit. In fact, many of

the objects described in tt&tyle Guideare not even widgets, but higher-level, more
complex objects that are composed of many widgets.

For example, th8tyle Guidedescribes an object called a MenuBar, which spans the top of
the main window of an application. The MenuBar contains menu titles that, when clicked
on, display PulldownMenus. The Motif toolkit does not implement MenuBars or
PulldownMenus as distinct widget classes, nor does Shde Guide make any
recommendations about how menu objects should be implemented. WSatleh€&uide

does talk about (albeit somewhat loosely) are the actions that can be taken by an item on a
menu: it can invoke an application function, pop up a dialog box containing yet more
options and commands, or display a cascading menu (also known as a pullright menu).

The Style Guidealso makes recommendations about the menus that an application should
provide. For example, most applications should haviéeamenu that provides items such

as arkxit button to exit the application andavebutton to save ?le. It also speci?es details

of presentation, such as that you should provide an ellipsis (...) as part of the label for a
menu item that requires the user to provide more information before action is taken.

How the Motif toolkit goes about supporting, and in some cases enforcing, the guidelines
of theMotif Style Guidéorings up some interesting points, particularly in relation to some
of the underlying principles of the X Toolkit Intrinsics. In Xt, a widget is envisioned as a
self-contained object that is designed to serve a specific, clearly-defined function. Many of
the Motif widgets, such as Labels, PushButtons, ScrollBars, and other common interface
objects, are implemented as separate widgets.

In other cases, however, Motif steps outside of the Xt model by creating compound objects
out of several widgets and then expecting you to treat them as if they were a single object.
For example, Motif provides the ScrolledText and ScrolledList objects, which combine a

42 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

Text or List widget with a ScrolledWindow widget, which in turn automatically manages
horizontal and vertical ScrollBars.

In another case, the Motif toolkit provides a complex, general-purpose widget that can be
configured to appear in several guises. There is no MenuBar widget class and no
PulldownMenu widget class. Instead, the RowColumn widget, which also serves as a
general-purpose manager widget, has resources that allow it to be configured as either a
MenuBar or a PulldownMenu pane. Those familiar with Xt may find this widget design to
be a breach of Xt's design goals, though.

In order to allow the programmer to think of ScrolledText objects, MenuBars, and
PulldownMenus as distinct objects, the Motif toolkit provides convenience creation
functions. These routines make it appear as though you are creating discrete objects when,
in fact, you are not. For example, the toolkit functiodCreateMenuBar() and
XmCreateSimplePulldownMenu() automatically create and configure a RowColumn
widget as a MenuBar and a PulldownMenu, respectively. There are also convenience
routines for creating various types of predefined dialog boxes, which are actually composed
of widgets from four or five separate widget classes.

Convenience routines emphasize the functional side of user-interface objects while hiding
their implementation. However, since Motif is a truly object-oriented system, it behoves
you to understand what you're really dealing with. For example, if you want to use resource
classes to configure all MenuBars to be one color and all PulldownMenus another, you
cannot do so because they are not actually distinct widget classes. The class name for both
objects isXmRowColumn

In the remainder of this chapter, we look at Motif user-interface objects from the
perspective of both the functional object illusion and the actual widget implementation. In
the body of the book, we use the Motif convenience routines for creating both compound
objects, and simple widgets or gadgets. With the compound objects, we show you how to
pierce the veil of Motif's convenience functions and work directly with the underlying
widgets when necessary. Figure 3-1 shows the entire class hierarchy of the Motif widget
set.

We begin by taking a closer look at the Motif user-interface components with which the
user typically interacts. Then we examine how the manager widget classes are used to
arrange the more visible application controls. And finally, we explore the use of all of these
objects to create functional windows and dialogs that make up a real application.

Application Controls

In many ways, application controls are the heart of a graphical user interface. Rather than
controlling an application by typing commands, the user is presented with choices using
graphical elements. The user no longer needs to remember the syntax of commands, since

Motif Programming Manual 43



Chapter 3:Overview of the Motif Toolkit

her choices are presented to her as she goes along. As we've discussed, some of Motif's
application controls (such as menus) are compound objects assembled by convenience
routines. Others are simple, single-purpose widgets that you can create directly.

The widgets in this latter group are collectively referred tpramitive widgets -- not
because they are simple, but because they are designed to work alone. The contrast is not
between primitive and sophisticated widgets, but between primitive and manager widgets.
Some of the primitive Motif widget classes have corresponding gadget classes. The

Core —| ArrowButtonGadget I

|Recrobj I-—| Gadget I__ LabelGadget
WindowObj I SeparatorGadget

— | ArrowButton I

— | Label

— | List

Primitive I—

—| ScrollBar

—| Separator

Text

L | TextField

1l

Constraint I_| Manager I_

. MessageBox
Container 9

DrawingArea

Frame

Composite I—
Notebook

PanedWindow

Motif

Key
: Xt Intrinsics

RowColumn

[T

Scale

—| SpinBox '—' SimpleSpinBox I

GrabShell
le] I—| TopLevelShell I—| ApplicationShell PrintShell I
Shell
WwmShell I—| L I—| Di I SessionShell I

Figure 3-1: Class Hierarchy of the Motif widget set

1

44 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

following sections describe the different types of primitive application controls available in
the Motif toolkit.

The compound objects in the Motif toolkit are composed of primitive widgets and gadgets.

Because an understanding of these objects relies on an understanding of the primitive
widgets, as well as the Motif manager and shell widgets, we are going to postpone
discussing compound objects until later in the chapter.

The Primitive Widget Class

The Primitive widget class is a superclass for all of the Motif primitive widgets. This widget
class is a metaclass; it serves only to define certain common behavior used by all its
subclasses, so one never instantiates a widget directly from the Primitive class. This
statement is somewhat like saying that hammer is a class of object, but that you never really
have a generic hammer. You can only have a specific type of hammer, like a claw hammer,
a ball peen hammer, or a sledge hammer.

Just as all hammers have particular characteristics that qualify them as hammers, the
Primitive widget class provides its subclasses with common resources such as window
border attributes, highlighting, and help with keyboard traversal (so the user can avoid the
mouse and navigate through the controls in a window using the keyboard). The actual
widget classes that you use are subclassed from the Primitive class, as shown in Figure 3-2.

The Primitive class itself inherits even more basic widget behavior from the Xt-defined
Core widget class, which establishes the basic nature of “widgetness.” The Core class
provides widgets with the capability to have windows and background colors, as well as

—| ArrowButton I
C: I

—| Label

| List I
Core I—| Primitive I—

—| ScrollBar I

—1| Separator I
| Text I

=) .

PushButton

Xt Intrinsics

Figure 3-2: The Primitive widget class hierarchy

* A claw hammer has the prongs in the back behind the hammer-head that allow you to pull nails out of a wall; a
ball peen hammer has a round corner where the claw would be otherwise be; a sledge hammer is the large, heav-
yweight hammer used to drive thick nails through concrete or to destroy things.

Motif Programming Manual 45



Chapter 3:Overview of the Motif Toolkit

translations, actions, and so on. You could actually use a simple Core widget as an instance
and define your own translations and action routines, although this technique is not used
frequently. Complete details are provided in Volume 4.

The Label Class

The Label widget provides a visual label either as text or as an image in the form of a
Pixmap .The text of a Label is akmString , or compound string, not a character string
(char* ).A compound string can be oriented from left-to-right or right-to-left and it can
also contain multiple lines and multiple fon@hapter 25 Compound Stringsliscusses
functions that manipulate compound strings, as well as functions that convert between
character strings and compound strings.

The Label widget does not provide any callback routines, since it does not have any
specified behavior. Using Xt, you could install event translations and action routines to
make a Label respond to user input, but the Label widget is not intended to be used this way.
Itis only meant to be used to display labels or other visual aids. In Motif, instances of Label
and all of its subclasses are automatically registered as drag sources for drag and drop
operations by the toolKit

Label widgets are described in detail in Chaptetabels and Button§igure 3-3 displays
a single Label widget with multiple lines and multiple fonts.

—| xmLabel |
This is a label

that contains three
|zeparate fonts and lines|

Figure 3-3: A Label with multiple lines and fonts

The PushButton Class

The PushButton widget supports the same visual display capabilities as a Label, since it is
subclassed from Label. In addition, the PushButton provides resources for the programmer
to install callback routines that are called when the user arms, activates, or disarms the
button. The PushButton also displays a shadow border that changes in appearance to
indicate when the pointer is in the widget and when it has been activated.

When a PushButton is not selected, it appears to project out towards the user. When the
pointer moves into the button, its border is highlighted. When the user actually selects the

* |n fact, in Motif 2.1, drag and drop for a Label, LabelGadget, or Scale may be disabled by default if the resource
XmNenableUnselectableDrag is False. See the section on XmDisplay in Volume 6B for more details.

46 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

button by pressing the first mouse button on it, the button appears to be pushed in and is
said to be armed. The user activates a PushButton by releasing the mouse button while the
button is armed. PushButton widgets are also covered in detail in Chapter 12. Figure 3-4
shows some examples of PushButtons.

—| XmPushButton

| Ok |Cance|| Helpl

Figure 3-4: PushButton widgets

The DrawnButton Class

The DrawnButton widget is similar to a PushButton in its functionality and its three-
dimensional appearance. However, the DrawnButton is used when an application wants to
draw the text or image directly into the widget's window, rather than have the widget
handle the drawing. If the image is dynamic and changes frequently during the course of an
application, you may want to handle the drawing yourself. The DrawnButton provides
additional callback resources that are called when the button is resized or exposed and
additional ways to draw an outlined border. The DrawnButton widget is discussed in
Chapter 12. Figure 3-5 shows some DrawnButtons.

—| XmDrawnButton

Figure 3-5: DrawnButton widgets

The ToggleButton Class

The ToggleButton widget displays text or graphics like a Label widget, but it has an
additional indicator graphic (a square, diamond, and additionally in Motif 2.1, a circle or
check mark shape) to the side of the label. The indicator shows the state of the
ToggleButton: in Motif 1.2 this could be simply on or off; in Motif 2.1 a toggle can exist

in a thirdindeterminatestate. When the ToggleButton is on, the indicator is colored and
appears to be pushed in. When the button is off, the indicator appears to project outward.
In the indeterminate state, the toggle is half colored, half uncolored. The ToggleButton
provides an additional resource for specifying a callback routine that is called when the user
changes the state of the ToggleButton.

Motif Programming Manual 47



Chapter 3:Overview of the Motif Toolkit

One common use of ToggleButtons is to set the application state. In this case, the callback
routines typically set simplBoolean variables internal to the application. ToggleButtons

can also be arranged in two different kinds of groups. In one configuration, known as a
RadioBox, only one button in the group of buttons can be chosen at a time. The other
configuration, a CheckBox, allows the user to select any number of buttons. When
ToggleButtons are grouped as a RadioBox, the indicators are by default diamond-shaped;
otherwise, they default to a square-shaped appearance. ToggleButton widgets are described
in detail in Chapter 12. Figure 3-6 shows the two different ways that ToggleButtons can be
grouped.

| AmTaggieButton [=] EmTopgienstten
One W Gl Qe AL
T Seuen Twao i Sayen
Thres 1 ali Thresd Elgst
W For Hinge Faiur Hina
Fligss T Fiya Ty
CheckBox RadioBox

Figure 3-6: ToggleButton widgets

The CascadeButton Class

The CascadeButton widget is a special kind of button that is used to popup menus. A
CascadeButton can only be used as a child of a RowColumn widget, such as: in a MenuBar
as the title of a PulldownMenu, in a PulldownMenu pane as an item that has a cascading
menu associated with it, or as the button in an OptionMenu. The menu that is posted by a
CascadeButton is not a part of the widget itself; the menu is associated with the button
through a resource. A CascadeButton merely provides the label and other visual aids that
support the appearance that a menu can pop up from the object. Even though the
CascadeButton widget class is subclassed from Label and could inherit all of its
functionality, Motif imposes restrictions on the labels that a CascadeButton can display.
CascadeButton labels cannot contain multiple lines or multiple fonts. Because
CascadeButtons are typically used in menus, they do not display border shadows like other
buttons. They do have similar highlighting behavior when selected, however.
CascadeButton widgets are explained in both ChaptEhelMain Windowand Chapter

20, Interacting with the Window Manager

The ArrowButton Class

Despite the similarity in its name, the ArrowButton widget is not subclassed from Label
like the other button widgets. Like the remaining widgets described in this section, it is
subclassed directly from the Primitive widget class. The ArrowButton widget contains an
image of an arrow pointing in one of four directions: up, down, left, or right. When the user
selects this widget, the ArrowButton provides visual feedback giving the illusion that the

48 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

button is pressed in and invokes a callback routine that an application can use to perform
application-specific positioning.

In most respects, an ArrowButton can be considered identical to a PushButton, as it is easy
enough to provide an arrow pixmap for a PushButton. Since directional arrows are a
common user-interface element, the ArrowButton is provided as a separate widget class for
simplicity. ArrowButton widgets are covered in detail in Chapter 12. Figure 3-7 shows the
four variations of the ArrowButton widget.

| = o Bt ton)|

Figure 3-7: ArrowButton widgets

The List Class

The List widget provides a mechanism for the programmer to make a list of text items
available to the user for selection. The user selects items from a List using the mouse or the
keyboard. The List widget allows you to specify whether the user can select a single item
or multiple items. While List is a Primitive widget, it is typically created as part of a
ScrolledList compound object using a Motif convenience function. The advantage of the
ScrolledList object is that it provides a ScrollBar when the List grows bigger than the size
of its visible area. Instances of the List widget are automatically registered as drag sources
for drag and drop operations by the toolkit. We explore the List widget in detail in Chapter

Motif Programming Manual 49



Chapter 3:Overview of the Motif Toolkit

13, The List WidgetFigure 3-8 shows a List widget in context with other interface
elements.

= Amiist

Hama [SaTly Foras
Addrass Fl"!-. Kingi Strest, Bath
Account Number |NZ213H43-4
Transactions

CIATTT  Saith Cosmetice [T
LA Rith Buelding Sechety 490,50
NS drws Publishing 1234
OIS iltahies Elsctrbs Do, 8,
BLASEET  Bigheors Ca, 148
4R The Ceess Sy B.11

save] Linda| Cancel|

Figure 3-8: A List widget in an application dialog

The ScrollBar Class

The ScrollBar widget is one of the more intuitive user-interface elements in the Motif
toolkit. ScrollBars are almost always used as children of a ScrolledwWindow widget. When
the contents of a window are larger than the viewing area, a ScrollBar allows the user to
scroll the window to view the entire contents.

ScrollBars can be oriented vertically or horizontally. The ScrollBar also provides a number
of callback resources that allow you to control its operation. ScrollBar widgets are

50 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

discussed in Chapter 18crolled Windows and ScrollBafsigure 3-9 shows both vertical
and horizontal ScrollBars.

s ridifar

-ag—— Vertical
ScrollBar

Horizontal
. ScrollBar

Figure 3-9: ScrollBars

The Separator Class

The Separator widget is used as a visual aid to separate adjacent items in a display. A
Separator appears as a line between the objects it is separating; it can be oriented vertically
or horizontally. Separators can be used in menus to separate menu items, in dialog boxes to
separate discrete areas of control, and at various points in an interface for purely aesthetic
reasons.

The Text and TextField Classes

The Text widget is a complete text editor contained in a widget. The Text widget provides
resources to configure the editing style of the widget, as well as callback resources that
allow text verification. The widget can be configured as a multiline text entry area or as a
single-line data entry ?eld. The TextField widget class is available as a somewhat lighter-
weight text entry area. The TextField widget is limited to a single-line, but in all other
respects there is little difference between the two classes. Instances of the Text and
TextField widgets are automatically registered as drag sources and drop sites for drag and
drop operations by the toolkit.

Motif Programming Manual 51



Chapter 3:Overview of the Motif Toolkit

The Text and TextField widgets can be used in many different ways to support the text
entry requirements of an application. The two widgets are described in detail in Chapter 18
Text WidgetsFigure 3-10 shows an application that uses various forms of the Text widget.

| ErnTasy
File Edit Ssarch Help
Soarch Fattarm  svad Raplace Pattem
Faund thres oocurrenos
[Visser Commands B
HAHE
B - 1sege disalager far ¥
SPERETS
[=tn #ilsl f-neclick] [-seosstry gecml  [-risplay
misplayl  [-rarl [-50d maptypas] [-ree] (-5 avls~tvpa-or-
fde] [~halp) [-e%] [-plane nueber) [0 calar] [-bg <olar]
PESAIPTIA
imid 15 an § Window Systaw (sage namplag otflicy.  Keed
alliws B whars TH dEsg) 1d & wirdde din Fmage seiid in @
ipacially Pormatted dusp File, such s praduced by woed(1],
i
Figure 3-10: Text Widgets.
Gadgets

Another set of application controls is provided in the form of gadgets. There are gadgets
that are equivalent to many of the primitive widgets: ArrowButtonGadgets,
SeparatorGadgets, PushButtonGadgets, CascadeButtonGadgets, ToggleButtonGadgets,
LabelGadgets, and in Motif 2.1, IconGadgets. The IconGadget is similar to a LabelGadget,
except that it can display a label and an image simultaneously. The appearance and
behavior of the gadgets are mostly identical to that of the corresponding Widgietgher
understanding of how gadgets work depends on an understanding of the manager widgets
that support them, so we are going to return to this topic later in the chapter.

ArrowButtonGadget I
IconGadget I

LabelGadget

SeparatorGadget

Figure 3-11: The Gadget class hierarchy

Core

Object
| RectObj I-—| Gadget

WindowObj

* The IconGadget is exceptional: there is no widget equivalent to this gadget class.

52 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

The Gadget class is a superclass for all of the Motif gadgets. Like Primitive, this class is a
metaclass that is never instantiated. However, gadgets are not widgets. The Gadget class is
subclassed from the RectObj class, not from the Core widget class. Figure 3-11 shows the
class hierarchy for gadgets.

Application Layout

While the controls are the most obvious part of a graphical user interface, these elements
alone do not make an effective interface. A random arrangement of buttons or a collection
of nested menus can make an application as obscure and as difficult to use as one with a
command-line interface. The arrangement of the controls in an application makes all the
difference.

To help you lay out your application, Motif provides you with a set of manager widgets.
You can think of manager widgets as boxes in which you can put things. These boxes,
however, can grow or shrink as necessary to provide the best ?t possible for the items that
they contain. You can place boxes inside of other boxes, whether or not they contain other
items. By using different size boxes, you can organize things in many different ways.

Manager widgets are so named because they manage the size and position of other widgets.
The relationship between a manager widget and the widgets that it manages is commonly
referred to as thgarent-childmodel. The manager acts as the parent, and the other widgets
are its children.

Unlike primitive widgets, such as PushButtons, ScrollBars, and Labels, whose usefulness
depends on their visual appearance and interaction with the user, manager widgets provide
no visual feedback and have few callback routines that react to user input. Manager widgets
have two basic purposes: they manage the sizes and positions of their children, and they
provide support for gadgets. Like other widgets, manager widgets have windows, they can
receive events, and they can be manipulated directly with Motif and Xt functions. You can
draw directly into the window of a manager widget, look for events in the widget, and
specify resources for it.

There are many manager widget classes, each of which is tuned for a particular kind of
widget layout. A manager widget can manage other manager widgets, as well as primitive
widgets like Labels and PushButtons. In fact, the layout of an application is typically a kind
of tree structure. As discussed in Chapter 1, the top of the tree is always a shell widget like
that returned byXtVaApplnitialize() . Shell widgets are composite widgets that can
only have a single managed child. This child is usually a general-purpose manager widget.
This manager contains other managers and the primitive widgets that compose the user
interface for a window in an application.

Motif Programming Manual 53



Chapter 3:Overview of the Motif Toolkit

Figure 3-12 shows all of the different manager and primitive widgets that make up the
displayed dialog box.

Shell

Form
Form

Label

LabelGadget

RowColumn

RowColumn

TextField

RowColumn(RadioBox)

RowColumn

ToggleGadgets

— TextField

LabelGadget

PushButton

Form

Dd Lol Hels |

Figure 3-12: The layout of a dialog box

The parent-child relationships between the widgets in this dialog box are illustrated in the
tree structure shown in Figure 3-13.

54 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

Although the dialog box is composed of many different components, it appears to the user
as a single, conceptually focused user-interface object.

Shell I

Form
=
—l Form I——| RowColumn I_
LabelGadget

LabelGadget
TextField

ToggleButtonGadget

_‘ RowColumn = I Te adget l
|| ROWColUmn I— _I LabelGadget l _| ToggleButtonGadget l
l RowColumn i
| | L

b | TextField

- | Form I——| PushButton I

Figure 3-13: Parent-child relationships between widgets

The Manager Widget Class

As with the Primitive widget class and the Gadget class, the Manager widget class is a
superclass for all of the Motif manager widgets. The Manager class is another metaclass.
You never create an instance of a Manager widget; you create an instance of one of its
subclasses. The actual widget classes that you use are shown in Figure 3-14.

Manager is subclassed from the Xt Constraint class, which in turn is subclassed from the
Xt Composite class. The Composite widget class defines the basic characteristics of
widgets that are able to manage the size and position of other widgets. Xt uses the general
term composite widgeffor any widget with this capability. The Constraint class adds the
capability to provide additional resources for the widgets that are being managed. These

Motif Programming Manual 55



Chapter 3:Overview of the Motif Toolkit

resources constrain the position of the widgets. They can be thought of as hints about how
the widgets should be laid out.

Object

RectObj

Q
Q
o

Xt Intrinsics

Key
: Mott
WindowObj

Composite

.
L

Constraint

.
L

FileSelectionBox

| Manager I_

Container
DrawingArea
Frame
Notebook
PanedWindow
RowColumn

Scale

—| ScrolledWindow I—| MainWindow I
—| SpinBox I—| SimpleSpinBox I

Figure 3-14: Class hierarchy of the Manager widget classes

[T

Motif provides a number of general-purpose manager widgets that allow the programmer
to manage the size and arrangement of an arbitrary number of children. In some ways, the
art of Motif programming is the design of effective widget layouts, using these particular
manager widgets. Motif also provides some narrowly-focused manager widgets, such as
certain dialog classes, that can almost be treated as if they were single user-interface
components. These widgets create and manage their children with minimal help from an
application.We sometimes refer to these widgets as compound objects, since they include
both a manager widget and one or more children. This section describes the different
manager widgets briefly; a more detailed description of the widgets is given in Chapter 8,
Manager Widgets

The DrawingArea Class

The DrawingArea widget provides an area in which an application can display graph-
ics. Callback routines can be used to notify the application when expose and resize

56 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

events take place and when there is input from the keyboard or mouse. The Drawin-
gArea can also be used to manage the geometry layout for child widgets, but its func-
tionality in this area is quite limited.The DrawingArea is discussed in detail in Chapter
11, The DrawingArea

The ScrolledWindow Class

The ScrolledWindow widget provides a viewport for data such as text or graphics. If
the data that is being viewed is larger than the ScrolledWindow, ScrollBars allow the
user to view the entire contents of the window interactively. The ScrolledWindow is
discussed in Chapter 18crolledWindows and ScrollBars

The MainWindow Class

The MainWindow widget acts as the standard layout manager for the main window of
an application. It is specifically tuned to pay attention to the existence of a MenuBar,

a command area, a message area, a work region, and ScrollBars, although all of these
areas are optional. The MainWindow is discussed in ChapfEh& Main Window

The RowColumn Class

The RowColumn widget is perhaps the most widely used and robust of all of the man-
ager widgets. As its name suggests, the widget lays out its children in rows and col-
umns. The RowColumn widget is used by many different parts of the toolkit to
implement compound objects like MenuBars, PulldownMenus, CheckBoxes, and Ra-
dioBoxes. The general purpose RowColumn is discussed in Chaplendger Widg-

ets

The Frame Class

The Frame widget provides a three-dimensional border for a widget that does not nor-
mally have a border. It can also be used to enhance the style of the border for a widget
that already has a border. In Motif, a Frame widget can have two children: a work area
and a title. The work area child can be a manager widget that contains many other chil-
dren. The Frame is discussed in Chaptavi@nager Widgets

The PanedWindow Class

The PanedWindow widget manages its children in a vertically (and, in Motif 2.1, a hor-
izontally) tiled format. Its width always matches the widest widget in its list of man-
aged children; the widget forces all of its children to stretch to the same width as that
widget. Each pane in a PanedWindow contains a child widget; every pane has an as-
sociated sash (or grip) that allows the user to change the height of the pane interactive-
ly. Resizing a pane with the grip can cause the widgets in other panes to change size.
The PanedWindow is discussed in Chaptdvi@nager Widgets

Motif Programming Manual 57



Chapter 3:Overview of the Motif Toolkit

The BulletinBoard Class

The BulletinBoard widget does not impose much of a layout policy for the widgets that
it manages. The widget acts like a real bulletin board, in that an application pins a
widget on the bulletin board, and it sticks where it is placed. The BulletinBoard does
impose margins and has a resource that controls whether or not its children can over-
lap. However, when a BulletinBoard is resized, it does not move or resize its children
based on its new size. The BulletinBoard is useful mostly for the layout of dialog boxes
and other windows that are rarely resized. The predefined Motif dialog widget classes
use BulletinBoard widgets for this reason. The BulletinBoard is discussed in Chapter
8, Manager Widgets

The Form Class

The Form widget provides a great deal of control over the placement and sizing of the
widgets it manages. A Form can lay out its children in a grid-like manner or it can al-
low its children to link themselves to one another in a chain-like fashion. Form uses
constraint resources to specify how children are resized and positioned relative to each
other and the Form as a whole. The Form is discussed in Chaptaréager Widgets

The Scale Class

The Scale widget is a slider object that is somewhat similar in appearance and func-
tionality to a ScrollBar. A Scale is typically used to provide feedback to the user about
the value of a state variable in an application. This widget class is not intended to be
used as a general manager. The Scale creates and manages its own widgets, which are
needed to construct the Scale object. The only children that you can add to a Scale
widget are Label widgets that represent tick marks, although in Motif 2.1 there are con-
venience routines to automatically place tick marks along the Scale. The Scale is dis-
cussed in Chapter 18he Scale Widget

The following Manager widget classes are additionally available in Motif 2.1:

The Container Class

The Container class is a complex constraint widget which can lay out IconGadget chil-
dren in three styles: in a tree arrangement, with a tabular data style, and in a free float-
ing format based upon the X, y specifications for each child. The Container class allows
for a more object-oriented approach to the front end of an application than the older
MainWindow, in that the IconGadget children can pictorially represent application ob-
jects of some kind with the Container providing the layout and selection mechanisms.
The Container is discussed in ChaptefBe Container and IconGadget Widgéiig-

* Available from Motif 2.0 onwards.

58 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

ure 3-15 shows the Container configured to display in a tree arrangement with addi-
tional tabular data.

s ontainar
buta | j

Harny Gize AT
1 Al Thu &ug 17 1&0206 200
1 2043 Tue Aug 15 1420124 200
1 resources 138 Thu A 17 1600348 200
i C1_Ein 512 Thi Aaka 17 Thi:38 260
w1 e =12 Thu fag 17 Zh:00:-38 200
_I‘l =12 Thu Aug 17 ZE00EE 200
n | 512 Thu Aarg 17 1&0Z203 200
[ containers| &3m Thu dua 17 210127 200
L[4 Makefila 2676 Thi &3 17 154702 200
L i: containgra JB316 Thil A 17 20:00:35 200
L[ container.res 36 Thi Aug 17 1 ScE0ed] 300
p 1 bltmaps 51z Thu &ug 17 154544 200

Figure 3-15: A Container widget with IconGadget children

The SpinBox Class

The SpinBox class allows the user to input data by selecting from, and rotating
through, a set of values. Text widget children are added to the SpinBox, whereupon the
range or set of values associated with each text is specified through constraint resourc-
es. The SpinBox automatically adds extra ArrowButtons which are used for rotating
through the values of the text widget child which currently has the input focus. The
programmer however has to supply the Text widgets underneath the SpinBox. For con-
venience, the SimpleSpinBox subclass is provided which encapsulates the most fre-
guent use of this type of arrangement: it comes with a single built-in Text child. The
SpinBox is discussed in Chapter,THe SpinBox and SimpleSpinBox Widgeisure

Motif Programming Manual 59



Chapter 3:Overview of the Motif Toolkit

3-16 shows a SpinBox containing three Label and Text children, and a SimpleSpin-
Box. The SimpleSpinBox is not meant to be used as a general purpose manager.

i : | SpinBox with
=l IS BT o =il multiple Text
children
1 Day ¥ Month|§12 Year|I1959 =N
, . SpinBox
—| ¥msimpleSpinBox < ArrowButtons
4 Grade |EF'. —ﬁ
5 SimpleSpinBox

Figure 3-16: SpinBox and SimpleSpinBox widgets

The ComboBox Class

The ComboBox class combines textual input with list selection. The widget presents
itself to the user as a Text widget with an ArrowButton to the side. The user can either
type directly into the Text widget, or press the ArrowButton, when a list of items from
which to choose is popped up immediately under the Text. Whether in fact the Text
widget is directly editable, and whether the list of available options is permanently vis-
ible (as opposed to being displayed on user request by pressing the ArrowButtons) is
controllable through resources when the ComboBox is created. This widget class is not
intended to be used as a general manager. The ComboBox is discussed in Chapter 14
The ComboBox Widgesample ComboBoxes are shown in Figure 3-17.

K CrTTb b g

Day

Mienth

Year

T eesi sy

Figure 3-17: ComboBoxes with other widgets

60

Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

The Notebook Class

The Notebook class lays out its children as though they are pages in a book. That is,
only one child is currently visible at any given time, and they all occupy a single area
on the screen; the user can chose from the available pages either by selecting from Tabs
which can be associated with a child, or by activating the Page Scroller, which is typ-
ically a SpinBox. To complete the analogy, resources are provided to control the gen-
eral book-like characteristics of the Notebook in terms of its binding and overlapping
page appearance. The Notebook is a constraint widget: you add children, and then
specify the role which each child is to perform. Typically, a Form or other manager is
added to represent some page, and optionally PushButtons can be added and associated
with a page in order to represent Tab inserts along the edges of the Notebook pages.
The Notebook is discussed in Chapter Thie Notebook Widgefigure 3-18 shows a
Notebook with Tabs inserted on the edge.

EmNotebook

Table of Corterts

Chapter 1 Infroduction
Chaptar I Gatting Startad
Chapber 3 The Clats Hisrarchy
Chapter 4 Rewguried

7
i Chapter 5 Trouble Shooting
T

150 2= jew JTY

1= o

Appendix & widget Reference
Apperii= | Blloaraphy

Appandix C Permurbed indes
¥ i

1= h\j

D
E_1

Figure 3-18: The Notebook widget

Geometry Management

The process by which a manager widget controls the layout of its children is known as
geometry managemert child widget is always placed within the boundaries of its parent.

A child cannot move or resize itself without requesting permission from its parent, which
can deny the request. The manager, acting as the parent, can even force the child into an
arbitrary size or position. However, like any good parent, a manager widget should be fair
at all times and not deny reasonable requests made by its children. As you might expect,
geometry management can be quite complex in an application with several levels of
managers.

As an example, consider adding a new item to a List widget. In order to display the new
item, the List widget must grow vertically, so it requests a new size from its manager

Motif Programming Manual 61



Chapter 3:Overview of the Motif Toolkit

parent. If that parent can accommodate the larger size, or it has another mechanism for
satisfying the request, such as ScrollBars, it can approve the request. However, if the
manager itself must grow to honor the List widget's request, it has to negotiate with its own
parent. This chain reaction may go all the way up to the shell widget, in which case the shell
must communicate with the window manager about the new size. If the window manager
and the shell agree to the new size, the acknowledgement filters back down through the
widget tree to the List widget, which can now grow to its requested size. If any of the
composite widgets in the hierarchy refuse to resize, the List widget's request is either
denied or only partially fulfilled.

Most of the time, this type of interaction completes successfully, as there are rarely disputes
among children about resizing negotiations or positional boundaries. Children usually go
where their managers put them and make very few requests of their own. One exception is
a RowColumn widget that is acting as a MenuBar, since it must be situated at the top of the
window, and it must span the window horizontally. ScrollBars are another possible
exception, since they are typically positioned at the edges of ScrolledWindow widgets.

So, how do children request geometry changes from their parents? The answer to this
guestion is rather complicated, since the X Toolkit Intrinsics supports a large selection of
functions that enable two-way communication about geometry management. For example,
a child can us&tMakeGeometryRequest() to request permission to be made a specific
size or to be placed in a particular location. A parent can use a function like
XtQueryGeometry()  to give a child the opportunity to announce its preferred geometry.

Some of these functions and methods are described in Chapter 1, but a detailed treatment
of custom geometry management techniques is beyond the scope of this book. These
functions are mostly used by the internals of composite and constraint widgets. See Volume

4, for a more detailed discussion of geometry management techniques.

In the Motif toolkit, geometry management cannot work without cooperation. The easiest
way for a child to cooperate with its parents and siblings is simply to comply with whatever
layout policy is supported by its manager widget parent. A child should not try to force
itself into a size or a position that is not supported by its parent. Each of the manager widget
classes described above is designed to support a specific layout style. For example, the
RowColumn widget lays out its children in rows and columns, the Form widget allows its
children to specify positions relative to other widgets within the Form, and the
PanedWindow widget lets its children specify their desired maximum and minimum
heights.

Manager widgets use constraint resources to support their layout policies. Constraint
resources are defined by Xt's Constraint widget class, which is a superclass for the
Manager widget class and thus all of the Motif manager widgets. Unlike other resources,
constraint resources apply to ttigldren of a manager widget, not to the manager itself.

Examples of constraint resources include maximum and minimum heights, relative sizes

62 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

and positions, specific positional constraints, and even absolute X, y coordinates. While
these examples deal exclusively with size and position, constraint resources can be used for
any arbitrary information that needs to be kept on a per-child basis.

Here’'s how constraint resources work. When a manager needs to size or position its
children, it deals only with the children that are managed; unmanaged children are ignored
in geometry management negotiations. For each managed child, the manager examines the
child’s constraint resources. Depending on the constraints that are specified, the manager
either enforces the geometry changes or negotiates with its own parent to see if it can
comply with the changes. This process uses an extra internal data structure for each child.
The data structure stores the constraints that are used by the widget's parent to aid it in
geometry management.

Gadget Management

In addition to handling geometry management, manager widgets are responsible for their
gadget children. In order to understand how managers support gadgets, we need to define
more clearly what a gadget is. Every widget has its own X window, which simplifies many
aspects of programming, since each widget can take responsibility for repainting itself,
selecting its own events, and in general being as self-sufficient as possible. Historically,
however, windows have been perceived as heavyweight objects. The concern is that system
performance will be degraded if an application uses too many windows. Since an
application with a graphical user interface frequently uses hundreds of widgets, or perhaps
even thousands for a very large program, the performance issue is an important one.

Gadgets, or windowless widgets, were originally developed as a part of Motif. They were
added to Xt as of X11 Release 4. Motif provides gadget versions of many common
primitive widgets, such as PushButtons and Labels. Like widgets, gadgets can be created
using either Motif convenience functions XtCreateManagedWidget() . While the

widget and gadget versions of an object are functionally very similar, there are some small
but important differences.

Because a gadget does not have its own window, it is entirely dependent on its parent, a
manager widget, for its basic functionality. For example, the manager must handle
redrawing the gadget on exposure, highlighting it as a result of keyboard traversal, and
notifying it of event activity. Without a window, a gadget has no control over window-
based attributes normally associated with a widget. For this reason, gadgets can only be
used in managers that support them. How closely a gadget emulates its widget counterpart
is largely dependent on the capabilities of the manager widget parent.

In Motif 1.2, the Manager class limits the colors that can be used by gadgets. A gadget uses
the same background, foreground, and shadow colors as its manager widget parent. These
restrictions are not inherent in the Xt Composite widget class or in Xt-based gadgets; they
are specific to the Motif 1.2 Manager and Gadget classes. It is possible to write a Composite

Motif Programming Manual 63



Chapter 3:Overview of the Motif Toolkit

widget that allows its gadget children to specify their own background colors. Such a
widget would have to paint the area of its window occupied by the gadget with the specified
color to give the user the impression that the gadget is indeed a separately-colored widget.
Indeed, gadgets in Motif 2.1 have been redesigned with precisely this extra functionality.

Although gadgets were originally developed to improve performance, it is no longer
necessary to automatically use them if you are looking for performance improvements in
an application with many widgets. In both X11 Release 4 and Release 5, windows have
become substantially lighter-weight objects than they were when gadgets were first
developed. If anything, gadgets are worse than widgets at this point from a performance
perspective because the Motif managers take a very simplistic approach to the way they
handle events for gadgets. A manager tracks all eventsMotienNotify , whether or

not its gadgets have expressed interest in the events. As a result, gadgets typically generate
a great deal of network traffic. X terminal users are especially likely to notice a network
performance drop. There are some other complications that surround the use of gadgets,
which we discuss when they come up in the course of this book.

Keyboard Traversal

Keyboard traversals a mechanism that allows a user to navigate through the components
in a user interface using only the keyboard. TWetif Style Guidespeci?es that all
applications must support keyboard traversal for all application functionality. Support of
keyboard traversal is important because not every display provides a mouse or other
pointing device. For some applications, such as data entry, using keyboard traversal is more
convenient than using a pointing device. All of the Motif widgets support keyboard-based
navigation.

Keyboard traversal is based on the conceptal group A tab group is a group of widgets
that are related for the purpose of keyboard traversal. For example, all the items in a menu
are considered a tab group, since they are grouped together and perform related functions.

At any given time, only one component on a display can be “listening” to the keyboard for
keyboard events. The widget that is listening to the keyboard is said to have the keyboard
focus, or input focus. The widget that has the input focus identifies itself by displaying a
location cursor. The location cursor is often a highlighted border that surrounds the widget.
A user can move the input focus to another widget using the mouse or the keyboard.

The user can move the keyboard focus between items in the same tab group using the arrow
keys. When the user finds the item that she wants, she can activate it with the RETURN key
or the SPACEBAR. If the user wants to move from one tab group to another, she uses the
TAB key. (In a multiline Text widget, CTRL-TAB is used because otherwise there would

be no way to insert a tab character.) To traverse the tab groups in reverse, the SHIFT key
is used with the TAB key. Keyboard traversal wraps from the last item to the first item, both
within a tab group and between tab groups.

64 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

Although keyboard traversal is not completely controlled by manager widgets, they do play
a pivotal role in implementing it. A manager widget is typically initialized as a tab group;

its primitive widget children are members of the tab group. The Text and List widgets are
exceptions to this rule. These widgets are set up as their own tab groups, so that keyboard
traversal can be used to move among the text in a Text widget or the items in a List widget.
Within a tab group, there is no sense of a manager-within-manager structure. The widget
hierarchy is flattened out so that it appears to the user that all of the controls in a window
are at the same level.

Keyboard traversal only works if each widget in an interface cooperates. If a PushButton
has the keyboard focus and the user presses the TAB key, the internals of the PushButton
widget are responsible for directing the focus to the next tab group. Manager widgets play
a key role in keyboard traversal because they are responsible for the keyboard events that
take place within gadgets. If an event occurs within a PushButton gadget, its manager
parent is responsible for directing the input focus to the next tab group.

Although the whole process of keyboard traversal may seem complex and difficult, it is
automated by the Motif toolkit and does not require application intervention. However, the
toolkit does provide mechanisms that allow you to control keyboard navigation. There are
resources that allow you to specify widgets that are tab groups, widgets that are in tab
groups, and widgets that do not participate in keyboard navigation. There are also functions
that allow you to specify explicitly the direction of keyboard traversal. Fortunately, such
?ne-tuning is rarely necessary.

Putting Together a Complete Application

Managers and primitive widgets provide the basic tools with which you can build a
graphical user interface from the ground up. Motif also provides several components that
address the large-scale organization of an application. The specialized MainWindow
manager widget is intended to be used as the organizing frame for an application. Motif also
provides different types of menus and dialog boxes that can be used to organize application
functionality.

Since an application is always used in conjuction with a window manager, we need to
discuss the role played by the window manager. In the course of this discussion, we also
need to take a closer look at shell widgets, since they provide the communication link
between an application and the window manager.

Both pixmaps and colors play an important role in a graphical user interface. Motif
provides routines that cache pixmaps so that they can be reused throughout an application.
The three-dimensional appearance of Motif components is implemented using a variety of
color resources. It is important to understand these resources so that the 3D shadows are an
effective part of the user interface.

Motif Programming Manual 65



Chapter 3:Overview of the Motif Toolkit

The Main Window

Every application is different. A word processor, paint program, or spreadsheet typically
has a single main work area, with controls taking on a peripheral role, perhaps in
PulldownMenus. More sophisticated programs, on the other hand, may have several main
work areas. For example, an electronic mail program may have a work area in which the
user reviews and selects from a list of incoming messages, another where she reads and
responds to messages, and yet another where she issues commands to organize, delete, or
otherwise affect groups of messages. Still other applications, such as data-entry programs,
don't really have a separate work area. The work area is really just a collection of controls,
such as CheckBoxes and text entry areas, that are filled in by the user.

It is quite conceivable that an application could provide multiple windows for performing
different tasks. For example, an order entry program might use one window for looking up
a customer record, another for checking stock on hand, and yet another for entering the
current order. Motif allows for the creation of multiple top-level application windows, as
well as transient dialog boxes that ask for additional information or confirmation before
carrying out a command.

Nonetheless, every application has at least one main window. The main window is the most
visible window in an application. It is the first window the user sees and also the place
where the user interacts with most application functionality. No matter how small or large
an application may be, there needs to be a focal point that ties it all together. As a program
grows more complex, the main window may grow more abstract and perform fewer
functions, but it always exists. In a sophisticated application, the main window is
transformed into a hub where the user starts, finishes, and returns again and again as she
goes from one function to the next.

66 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

The Motif Style Guidesuggests a particular layout for the main window. Applications
should use this layout unless they have a compelling reason not to. The recommended
layout is shown in Figure 3-19.

1=l Errida inldindors |
Menu Bar p | Elle Edit Help

Work Area >

Command Area — g | crmamne
Message Area ————  Maiiags

Figure 3-19: Recommended layout for MainWindow widget

A main window should have a menu bar across the top, with the work area immediately
below it. The work area usually contains the main interface object of the application. For
example, a paint or draw application might provide a DrawingArea widget as a canvas, an
electronic mail application might provide a ScrolledList of message summaries from which
the user can make selections, and a Text editor might place a Text widget in the work area.
An application work area might require a custom widget or a non-widget-based X window
instead.

The work area can have both horizontal and vertical scrollbars allowing the user to view its
entire contents if they are too large to be displayed all at once. The main window can also
contain an optionatommand aredelow the work area, where the user can enter typed
commands. This area is most helpful for porting character-based applications to a Motif
GUI, but it can be useful for other applications as well. At the bottom of the main window

is an optionamessage ared his area should be used for status and informational messages
only, not for error messages or any other type of message that requires a response from the
user.

While it is possible to construct your own main window, the Motif toolkit provides the
special-purpose MainWindow widget, which supports the recommended style. All of the
elements in the MainWindow are optional, so an application can use it to display just the
areas that it requires. The MainWindow widget is described in detail in Chapter 1.

Motif Programming Manual 67



Chapter 3:Overview of the Motif Toolkit

Menus

Motif supports three different styles of menus. PulldownMenus that are displayed from the
MenuBar in a MainWindow are the most common type of menu. A PulldownMenu is
displayed when the user selects a CascadeButton in the MenuBar. The menu pane is
displayed below the CascadeButton. Figure 3-20 shows a typical MenuBar and
PulldownMenu.

=] vt |
Filz Edit Helo |
" HEw Ctri+N
Opsn.  Cirl+0
R LT
Sdna Ctris
San A, CETIHA
Esit CTFI4E
= ]

| Saye the current file |

Figure 3-20: A MenuBar and an associated PulldownMenu

An item in a PulldownMenu can haveascading menassociated with it. The cascading
menu is displayed to the right of the menu item as shown in Figure 3-21, so these menus
are sometimes referred to@dglright menus

Eile | Edit Hlp ||
- L CTrl+i) |
Ll [ 1 g

F Copy  CErlsy

Faste Ctrl+P

Clgar

[earch  Ecateh. Ctries
IEplu.ce.. CtriFR

Cearches the cusrent fike |

Figure 3-21: A cascading menu

MenuBars, PulldownMenus, and cascading menus are all created in a similar way. Motif
provides convenience functions that create specially configured RowColumn widgets for
these menu objects. The RowColumn widget is then populated with PushButtons,
CascadeButtons, ToggleButtons, and Separators, or their gadget equivalents. In the case of

68 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

a MenuBar, all of the children must be CascadeButtons, since each button brings up a

separate menu. In a PulldownMenu pane, most of the items are PushButtons or

ToggleButtons, although Separators can be used for clarity. If an item posts a cascading
menu, it must be a CascadeButton. The additional menu is created separately, populated
with its own buttons, and attached to the CascadeButton.

Motif also supports a construct called an OptionMenu. An OptionMenu is another
specially-configured RowColumn widget, but in this case the behavior is quite different.
An OptionMenu is typically used to prompt the user to choose a value. The RowColumn
widget displays a Label and a CascadeButton that shows the current value. When the user
clicks on the button, a menu that contains the rest of the choices is popped up directly on
top of the CascadeButton. Choosing an item from the menu modifies the label of the
CascadeButton so that it shows the currently-selected item. Figure 3-22 shows an
OptionMenu, both before and after it is popped up.

Additionally, Motif provides PopupMenus. Unlike the other types of menus, a PopupMenu
is not attached to a visible interface element. A PopupMenu can be popped up at any
arbitrary location in an application, usually as a result of the user pressing the third mouse
button. PopupMenus are meant to provide shortcuts to application functionality, so an
application can use different PopupMenus in different contexts and for different
components in an interface.

Eile Edit Haip | Eile Edit Haip |
Draw Made  Circle Draw Made [Clrcla
Siara
- LlI'IEI
Before After

Figure 3-22: An OptionMenu

A menu can be torn off from the component that posted it. A menu is normally only
displayed for as long as it takes the user to make a selection. Once the selection is made,
the menu is closed. When a menu is torn off, it remains posted in its own window. Now the
user can make as many selections from the menu as she would like without having to repost
the menu each time. For more information on tear-off menu functionality, as well as the
different types of Motif menus, see Chaptey @nus

The Window Manager

To the user, the MainWindow looks like the top-level window of an application. In
window-system talk, a top-level window resides at the top of the window hierarchy for an

Motif Programming Manual 69



Chapter 3:Overview of the Motif Toolkit

application. Its parent is theoot window which is what the user perceives as the
background behind all the windows on the desktop. In the Xt-world, however, things are a
little different. Behind every visible top-level application window is a special kind of
widget known as a shell widget.

Every window that can be placed independently on the screen, including top-level windows
and dialog boxes, has a shell widget as its parent. The user does not see the shell because it
is obscured by all of the other widgets in the window. A shell widget can only contain one
managed child widget; the shell does not perform any geometry management except to
shrink-wrap itself around this child. The child is typically a manager widget, such as a
MainWindow, that is responsible for managing the layout of the primitive components,
such as Labels, Text widgets, ScrollBars, and PushButtons. The items that the user actually
sees and interacts with are descendants of the shell widget because they are contained
within its boundaries.

Aside from managing its single child, the main job of the shell is to communicate with the
window manageon behalf of the application. Without the shell, the application has no idea
what else is happening on the desktop. It is very important for you to understand that the
window manager is a separate application from your own. The visual and physical
interaction between an application and the window manager is usually so close that most
users cannot tell the difference between the two, but the distinction is important from a
programming perspective.

To get an idea of the relationship between the window manager and an application, let's
compare it with the way a bed is built and how it fits into a room. A bed is made up of a
frame, a mattress, and as many accessories as you want to pile on top of it. The main
window is the mattress; the sheets, pillows, blankets, and stuffed animals you throw on it
represent the user-interface controls inside the main window. The whole lot sits on top of
the bed frame, which is the shell widget. When you push a bed around the room, you're
really pushing the bed'’s frame. The rest just happens to go along with it. The same is true
for windows on the screen. The user never moves an application window, she moves the
shell widget using the window manager frame. The application just happens to move with
it.

You may have to stretch your imagination a little to visualize a bed resizing itself with its
frame, but this is precisely what happens when the user resizes an application. It is the
window manager that the user interacts with during a resizing operation. The window
manager only informs the application about the new size when the user is done resizing.
The window manager tells the shell, the shell communicates the new size to its child, and
the change filters down to the rest of the widgets in the application.

The window manager frame is composewfdow decorationghat the window manager
places on all top-level windows. These controls allow the user to interactively move a
window, resize it, cause it to redraw itself, or even to close it. Figure 3-23 shows the

70 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

standard Motif window managem(vn) decorations. For information on how to usem
see Motif Volume 3.

Window menu button Title bar Minimize button
Maximize
, button
'window Manager DEcorations| 7|
- Client
area

<« Horizontal

resize
handle
Vertical resize handle Resize
Corner

Figure 3-23: Motif window manager decorations

Thewindow menulisplays a list of window manager functions that allow the user to move,
resize, and exit the application. An application does not have access to the menu itself or
the items within it; similarly, it cannot get handles to the minimize and maximize buttons.
These objects belong to the window manager and act independently from an application.

Motif provideswindow manager protocolhat allow menu items like these to affect an
application. An application can also interact with the window manager using many of the
same types of protocols. You can specify which of the items in the window menu you want
to appear, whether or not there are resize handles on the window frame, and whether or not
you want to allow the user to iconify the window. However, the user is expecting all of the
applications on her desktop to interact consistently with the window manager. This
expectation is magnified by the fact that the user has probably set quite a few resources for
the window manager. Since unexpected interference from an application rarely makes
users happy, you should leave the window manager alone. A technical discussion of the
window manager can be found in ChapterI2@eracting with the Window Manager

As we pointed out earlier, it is possible for an application to have more than one
independent window. In addition to the main window, there may be one or more dialog
boxes, as well as popup windows, and even independent application windows that co-exist
with the main window. Each of these cases requires different handling by the window

Motif Programming Manual 71



Chapter 3:Overview of the Motif Toolkit

manager, and as a result, there are several different classes of shell widgets. Figure 3-24
shows the class hierarchy of the different types of shell widgets available in the Motif
toolkit. The Shell widget class is another metaclass that speci?es resources and behaviors
inherited by all of its subclasses.

RectObj
Xt Intrinsics

Key
Object
Motif

(o)
o
UIIa

WindowObj

fl

Composite I

T
Shell
WMShell I—|

Figure 3-24: The Shell widget class hierarchy

GrabShell
TopLevelShell I—| ApplicationShell I PrintShell I
T e I—| DialogShell I

.

SessionShell I

Shells for Menus

In some cases, an application needs to put up a temporary window that is completely free
of window manager interaction. Menus are one such a case. When a user pops up a menu,
she typically wants to make a choice immediately, and she wants that choice to take
precedence over any other window system activity. The window manager does not need to
be involved either to decorate or to position the menu, as it is entirely up to the application.

As its name suggests, the OverrideShell widget class is provided for windows that bypass
the window manager. OverrideShells are like futons; you can place them on the floor
without using a bed-frame (and without being tasteless). It doesn’t make much sense to use
an OverrideShell as the main window for an application, except possibly for a screen-
locking application. The purpose of this type of application is to prevent other applications
from appearing on the screen while the computer is left unattended. Because the window
manager is unaware of the OverrideShell, it does not provide window manager controls,
and it does not interpret window manager accelerators and other methods for bypassing the
lock.

The OverrideShell is a generic Xt-based widgetclass, so the Motif toolkit provides the
MenuShell to service the special interface needs required byahie Style GuideThe
MenusShell’s translation table is set to support keyboard traverséinitocusPolicy is

set to XmPOINTER and its XmNallowShellResize resource is set tdrue . The
MenuShell also makes sure that its child is a RowColumn widget. There is little more to be
said about MenuShells, but for an in-depth discussion on the various types of menus you
can use in Motif, see Chapter,Menus

72 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

Shells for Window Manager Communication

Shell widgets must communicate with the window manager to negotiate screen real estate
and a wide variety of other properties. The information that is exchanged is defined by the
X Consortium’s Inter-Client Communications Conventions Manu@CCCM). The
WMShell widget class implements ICCCM-compliant behavior as a standard part of the X
Toolkit Intrinsics, so that it is available to all vendors providing Xt-based widget sets and
window managers. This shell widget is what allows Motif applications to work correctly
with virtually any ICCCM-compliant window manager. In our analogy, a WMShell is a
simple, wire bed-frame that doesn't have any special attributes, like wheels or rollers.

The VendorShell widget class is subclassed from the WMShell class; it allows vendors,
such as OSF, to define attributes that are specific to their own window managers. In our
analogy, this widget class is like having a bed frame that has attached cabinets, shelves
above the headboard, or nice wheels that glide on the carpet. The Motif VendorShell is
aware of special featuresmfvm The widget does not actually add any functionality to the
window manager, but it is designed for applications that wish to interact with it. For
example, all the attributes of window manager decorations can be modified or controlled
through resources specific to the VendorShell.

WMShells and VendorShells are never instantiated directly by an application, but the
features they provide are available to an application. For example, the Motif VendorShell
allows an application to specify the items in the window menu and to control what happens
when the user closes the window from the window menu. Chaptémt2taction with the
Window Managerdiscusses window manager interactions in more detail.

Shells for Dialogs

You can think of dialog boxes as an applicati@@sondary windowsince dialogs are not
meant to remain on the screen for very long, they do not need all of the decorations that are
typically provided by the window manager. However, dialogs are not completely
independent like menus, so they do need to be controlled by the window manager. For
example, if an application is iconified, its dialog boxes are typically iconified as well.
Dialog boxes are usually implemented in Xt using TransientShells.

The DialogShell is a Motif-defined widget class subclassed from the TransientShell and
VendorShell classes. Motif functions for creating dialog boxes tend to hide the shell widget
side of the dialog. When you make a call likmCreateMessageDialog() , you are
actually creating a MessageBox widget as a child of a DialogShell widgeCtagter 5
Introduction to Dialogsfor details on Motif dialogs.

Shells for Application Windows

When you initialize the X Toolkit with a call such AOpenApplication() , you are
automatically returned a SessionShell widget to use as the top-level widget in your

Motif Programming Manual 73



Chapter 3:Overview of the Motif Toolkit

application. If an application uses additional top-level windows, they are typically
TopLevelShells. The differences between these two classes are subtle and deal mostly with
how resources are specified in a resource ?le. In Chapiarsiom Dialogswe explore

some ways in which TopLevelShells can be used as primary windows apart from the main
window.

Dialogs

Some applications can get all their work done in one main window. Others may require
multiple windows, so Motif allows an application to have multiple top-level windows.
However, even applications without this level of complexity need to display transient
windows called dialog boxes. Motif provides two main types of dialog boxes: message
dialogs and selection dialogs. Message dialogs are designed to allow an application to
communicate with the user, while selection dialogs prompt the user to enter different types
of information. It is also possible to create custom dialogs for specialized application
functionality.

Message Dialogs

Message dialogs simply communicate some kind of message to the user and include
buttons that allow the user to respond to the message. For example, a menu item to delete
a ?le might issue a dialog with the message, “Are you sure?” with PushButtons l#bsglled

No, andCancel

The Motif MessageBox widget that is used to create message dialogs actually comes in
seven different guises. The different styles are meant to be used for different types of
messages; some of the styles also display a symbol definedMyptihiStyle GuideMotif
provides convenience routines for creating all of the different styles, so they are often
referred to as if they are distinct widget classes.

ErrorDialog

The ErrorDialog shows a “do not enter” symbol along with a message that the user has
made an error. For example, she may have pressed a PushButton at the wrong time,
made an invalid selection in a List widget, or entered an unknown filename for a Text
widget.

InformationDialog

The InformationDialog displays an “i” along with an informational message. These di-
alogs are usually displayed in response to a request for help.

*The ApplicationShell, XtApplnitialize () and XtVaApplnitialize () are considered deprecated in
X11R6.

74 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

MessageDialog

The MessageDialog does not display a symbol by default, although a symbol can be
specified using th&mNsymbolPixmap resource. These dialogs can be used to display
any kind of message.

QuestionDialog

The QuestionDialog shows a question mark symbol with a question that the user needs
to answer. Questions are typically of the yes/no form, so the possible answers typically
includeYesandNo. A QuestionDialog should not be used for a question that requires
an answer in the form of text or a selection from a list of some kind.

TemplateDialog

Motif provides a TemplateDialog to allow an application to create a custom dialog. By
default, the TemplateDialog does not display a symbol or a message, but these items
can be added to the dialog.

WarningDialog

The WarningDialog displays an exclamation mark along with a message that warns the
user about a particular situation. These dialogs are commonly used to make sure that
the user wants to do something destructive, like delete a ?le or exit an application with-
out saving data.

WorkingDialog

The WorkingDialog displays an hourglass with a message indicating that the applica-
tion is busy processing a lengthy computation or anything else that requires the user to
wait.

Figure 3-25 shows a typical QuestionDialog in an application. For more information on
message dialogs, see Chaptdn&pduction to Dialogs

smGuestionDialog
T Ml s Tionsd”™ alraady exism
Cremrwmirife |17

el "o Help

Figure 3-25: A QuestionDialog

Selection Dialogs

Selection dialogs are meant to provide the user with a list of choices of some sort. Motif
provides different styles of selection dialogs for different purposes. For example, a

Motif Programming Manual 75



Chapter 3:Overview of the Motif Toolkit

SelectionDialog presents a ScrolledList containing an arbitrary list of choices that can be
selected with the mouse. The dialog also contains TextField widget that can be used to type
in a choice which may or may not also be on the list. Figure 3-26 shows a SelectionDialog.

[=] Amsalec TinnBo

| e

| FfwAr
February
March
April
May

| L2

| ity
ALt

I

Sedection
I

| oK | Apphy | cancel| Help |

Figure 3-26: A SelectionDialog

The PromptDialog, as shown in Figure 3-27 is useful for prompting the user to enter some
information.

= sl ec TR P rommT

Emall Address
[afii =%, ro, 0k

o I:um:zl| Help |

Figure 3-27: A PromptDialog

76 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

The FileSelectionDialog is a more complex cousin to the SelectionDialog. It is used to
select a ?le in the directory structure. A FileSelectionDialog is shown in Figure 3-28.

A | R s T i e

Diractary
Sl et 20 BB, oot e

Filter Flles
o BT F oA BLIT TR s
b il

Dirsctariet | Combolos

1 b

Coim b8 oorwd
Chox Coimbof o aliak
Examoie ey T B
ik o ] g T

L ETImare M G
Safection
1

OK | Filter | Cancel| Help

Figure 3-28: A FileSelectionDialog

The CommandDialog is an extension of the PromptDialog in that items input to the text
entry field are stored in a ScrolledList. The intent is for the user to provide the application
with commands; the list region contains a history of the commands that have already been
typed. The user can select an item in the history list to reissue a previous command. Figure
3-29 shows an example of a CommandDialog.

[=]  ¥mCommandDiakag

lpr e=llioc

amacs editor.c
sdesigner quesTiormsd
ke s Tion

Cioenmand

Iz =] *.d

Figure 3-29: A CommandDialog

For detailed information about all of the different Motif selection dialogs, see Chapter 6,
Selection Dialogs

Motif Programming Manual 77



Chapter 3:Overview of the Motif Toolkit

Custom Dialogs

There are many types of functionality that are not covered by the standard Motif dialog
types. Fortunately, it is fairly easy to create your own dialogs. If you need to create a custom
dialog, there are some guidelines in ketif Style Guidehat you should follow. At the
highest level, all dialogs are broken down into two major componentsotiie| area(or

work area) and thaction area These areas are conceptual regions that may be represented
by multiple widgets.

In a message dialog, the control area is used only to display messages, but as you can see
from the selection dialogs, this area can be used to provide a variety of control elements.
For example, the SelectionDialog uses a List widget and a TextField widget. It is also
common for a custom dialog to display an array of PushButtons or ToggleButtons. A
communications program might have a setup dialog that allows the user to set parameters
such as baud rate, parity, start and stop bits, and so on, using an array of ToggleButtons.
The controls in the control area provide information that is used by the application once an
action area button is pressed.

Figure 3-30 shows a custom dialog with a control area that contains many items. Chapter
7, Custom Dialogsdiscusses how to build customized dialogs, which may require the
direct creation of widgets in the control area. Motif dialogs, on the other hand, do not

78 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

require you to create any of the objects in the control area. The widgets displayed in that
part of the dialog are always predefined and automatically created.

Coda Censratian
Dirsctary: | Xfufaf MeEd P20, woen Jes /0 Er i
Languags [
i |0l e B N Comarams Ot

Stubs fessardBo skubs. o N Conarato

Baberng | EossardBo. h N Cenerate

Plamaps |[[DmesndBes_pivemns,  J Cenerate

Main Frogram |[Cesssndpos. © N Canarate
¥ resur et | [T oenenday, rew )  Cenarate
s ket e bl e W Sensrats Optlors.
Options. W apply on Gensrats
Cerera e Renet Aoply Class Heip

Figure 3-30: A custom dialog

Dialog Modality

One important concept to be aware of when it comes to dialagedality In general,
GUI-based programs are expected to be modeless. What this ultimately means is that the
user, not the application, should be in control. The user should be able to choose from an
array of application functions at any time, rather than stepping through them in a
prearranged sequence, under the application’s control.

Of course, there are limits to modelessness. Sometimes one thing has to happen before
another. Often, sequencing can be taken care of simply by nesting graphical user interface
elements. For example, faced with the main window, the user may have only a choice of
menu titles; once she pulls down the file menu, she may have a choice of opening, closing,
saving, renaming, or printing the contents of a ?le. At some point, though, she goes far
enough down a particular path that her choices need to be constrained.

With respect to dialogs, modality allows a dialog box to acquire input before the user can
go back to working with the application. For example, if the user asks to load a ?le, she may
need to specify a filename in a dialog before she can edit the ?le. A modal dialog requires
an answer immediately, by disallowing input to any other part of the application until it is

Motif Programming Manual 79



Chapter 3:Overview of the Motif Toolkit

either satisfied or cancelled. There may be other cases, though, where dialogs are modeless.
They can be left up on the screen without an immediate response, while the user interacts
with the main application window or another dialog.

Pixmaps

In this section, we are going to take a closer look at how Motif supports graphic images.
The Motif Label widget and all of its subclasses can display pixmaps as their labels. The
MessageBox provides thémNsymbolPixmap resource for specifying the image that is
displayed in a dialog.

The Motif toolkit provides a number of routines for manipulating pixmaps.
XmGetPixmapByDepth()  andXmGetPixmap() both create a pixmap and cache it, so

that it can be reused by an applicati®mGetPixmapByDepth()  provides a way to

specify the depth of the pixmap that is crea¥dGetPixmap() always creates a pixmap

that has the same depth as the screen on which image is created. The caching mechanism
provided by these routines is on a per-client basis; different processes cannot share
pixmaps.

Whenever a new pixmap is created using one of these functions, the toolkit retains a handle
to the pixmap in case another call is made requesting the same image. If this occurs, the
function returns the exact same pixmap that was returned to the original requester and
increments an internal reference counter. In order to keep a clean house, whenever you
retrieve a pixmap using eithefmGetPixmap() or XmGetPixmapByDepth() , you

should callXmDestroyPixmap() ~ when you no longer need the image. This function
decrements the reference count for the pixmap. If the reference count reaches zero,
XmbDestroyPixmap()  actually callsXDestroyPixmap()  to discard the pixmap.

XmGetPixmapByDepth()  takes the following form:

Pixmap XmGetPixmapByDepth( Screenscteen
char *Image_name,
Pixel  foreground
Pixel  background
int depth )

The image_name can either be a filename or the name of an image registered using
Xminstalllmage() , which we are going to describe shortly. The background and
foreground colors and the depth of the pixmap are specified by the corresponding
parameters.

XmGetPixmap() takes the same form a@nGetPixmapByDepth() , minus thedepth
parameter XmGetPixmap() creates a pixmap that has the same depth as the given
screen , so you cannot rely oXmGetPixmap() to create a single-plane pixm%pn

Motif, you can usXmGetPixmapByDepth()  to create a bitmap; you can also use an Xlib
routine,XCreateBitmapFromData()

80 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

WheneveiXmGetPixmapByDepth()  or XmGetPixmap() is called, it looks in the cache

for a previously-created pixmap that matches the given name, colors, and depth. If the
routine finds a match, it returns the cached pixmap and increments the reference count for
the image. Since the pixmaps are cached, two separate parts of an application could have a
handle to the same pixmap.

The image_name parameter is the key to where the routines get the data for the pixmap.
As we just mentioned, this parameter can either be a filename or a symbolic name
previously registered usingXminstalllmage() . Both XmGetPixmap() and
XmGetPixmapByDepth()  use the following algorithm to determine what pixmap to
return or create:

1. Look in the pixmap cache for an image that has the saoneen , image_name,
foreground , background , anddepth as the specified image. If there is a match,
return the pixmap.

2. If there is no match in the pixmap cache, look in the image cache for an image that
matches the specifigihage_name. If there is a match, use the image to create the pix-
map that is returned.

3. Otherwise, interpret thimage_name as a filename, read the pixmap data directly out
of that ?le, and create the pixmap.

The first step is fairly straightforward. The second step checks the image cache that is used
internally by the Motif toolkit. Motif defines a number of images that you can use in an
application. Table 3-1 lists the image names predefined by the toolkit.

. Table 3-1: Predefined Image Names in the Motif Toolkit

Image Name Description

background Solid background tile

25 _foreground A 25% foreground, 75% background tile
50_foreground A 50% foreground, 50% background tile
75_foreground A 75% foreground, 25% background tile

vertical_tile Vertical lines tile (Motif 1.2.3 onwards)

horizontal_tile Horizontal lines tile (Motif 1.2.3 onwards)

horizontal As horizontal_tile (Motif 1.2.2 backwards compatibility)
vertical As horizontal_tile (Motif 1.2.2 backwards compatibility)
slant_left Left slanting lines tile

slant_right Right slanting lines tile

menu_cascade A rightwards pointing arrow (Motif 2.1)

* The terms single-bit and single-plane are interchangeable; they imply a pixmap with only twoGalud4..
While the termbitmapusually refers to a single-plane pixmap, this is not necessarily true outside of the X social
culture.

Motif Programming Manual 81



Chapter 3:Overview of the Motif Toolkit

. Table 3-1: Predefined Image Names in the Motif Toolkit (continued)

Image Name Description

menu_cascade_rtol A leftwards pointing arrow (Motif 2.1)
menu_checkmark A tick mark (Motif 2.1)

menu_dash A horizontal line (Motif 2.1)

collapsed A rightwards pointing filled arrow (Motif 2.1)
collapsed_rtol A leftwards pointing filled arrow (Motif 2.1)
expanded A filled arrow pointing downwards (Motif 2.1)

Motif also installs a number of images at run-time to support dialog images and other
random pixmaps. None of these image names are publicly available. You can install your
own images by predefining them and loading them into the image cache using
Xminstalllmage() , which takes the following form:

Boolean Xminstalllmage (XImage image ,char*  image_name)

The image parameter is a pointer to &fimage data structure that has been previously
created or, more commonly, statically initialized by the application. It is possible to create
an image dynamically from an existing window or pixmap u3@gtimage() , but this

is not the way the function is typically used.

If you attempt to install an image using iamage _name that matches one already in the
cache, the function returialse and the image is not installed. Otherwise, the function
returnsTrue . You can uninstall an image by callidgnUninstalllmage() . Once the

image is uninstalled, it cannot be referenced by name any more and a new image may be
installed with the same name. Th&Image structure is not copied by
Xminstalllmage() , so if the image pointer you pass has been allocated using
XCreatelmage()  or XGetlimage() , you must not free the data until after you call
XmuUninstalllmage()

If XmGetPixmap() or XmGetPixmapByDepth() finds a match in the image cache, it
creates the pixmap based on the image data, not on the image itself. As a result, the pixmap
that is created is not affected by the image being uninstall&dbininstallmage()

If the pixmap retrieval routines do not find a match in the image cache, the pixmap is loaded
from a ?le. Ifimage_name starts with a slash character (/), it is taken as a full pathname.
Otherwise, the routines look for the ?le using a search path. On POSIX systems, the
environment variablXBMLANGPATEGN be set to specify a desired directory in which to
search for bitmap files. If this variable is not set, the pathname used is based on the values
of the XAPPLRESDIR HOMEandLANGenvironment variables. See the reference page in
Volume 6B, for complete details on the search path that is used.

When XmGetPixmap() or XmGetPixmapByDepth() looks in the pixmap cache for a
image name, the pathname must match completely for the routine to return a cached image.

82 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

The ?lexlogo64will not match a previously-loaded pixmap that has the nasréX11R6/
include/bitmaps/xlogo64if you do not need to worry about using different pixmaps for
different environments, we recommended that you always specify a full pathname to these
routines to be assured that you get the desired ?le.

Color

Color plays an important role in a graphical user interface. It appeals to the senses, so it can
provide an aesthetic quality, while at the same time it can be used to convey information to
the user. However, for all the power of color, it is frequently abused by applications. A
color combination that appeals to some people may offend others. The safest bet with color
is to avoid hard-coding any use of color in your application and provide enough flexibility
so that the user can configure colors in a resource ?le or interactively using the application.
Of course, many applications are based on the use of color, so this sweeping generalization
only applies to those parts of an application that are not dependent on color. In any case,
you should be wary when providing information or state purely through the use of color: a
color-blind user may not notice the differences; color-blindness is not a trivial or rare issue.

The Motif widget set provides a number of widget resources that specify colors. All of the
Motif widgets use th&XmNforeground andXmNbackground resources. Although every
widget class makes different use of ¥raNbackground andXmNforeground resources,

text is typically rendered in the foreground color and everything else is shown using the
background color. Some widgets provide additional color resources for particular aspects
of their appearance. For example, ToggleButtons usirtiNselectColor  resource for

the square/diamond selection indicator, PushButtons Xred&larmColor as their
background when they are armed, and ScrollBars<ogétroughColor to set the color

of the area behind the slider and directional arrows. In Motif 2.1, gadgets can also be
colored in much the same way that their widget equivalents can; in Motif 1.2, however,
their colors are inherited from their Manager parent.

The XmNborderColor resource is another resource that can be specified for any widget,
as it is defined by the Core widget class. Since Motif widgets typically have a border width
of 0, this resource is rarely used. TXmNhighlightColor resource speci?es the color

of the highlighting rectangle that is displayed around the interface component that has the
keyboard focus. This resource is defined by the Gadget, Manager, and Primitive
metaclasses, so it can be specified for any Motif component.

Perhaps the most troublesome of all the color resourcesnaxopShadowColor and
XmNbottomShadowColor . These are the colors that give Motif widgets their 3D
appearance on a color display. If set inappropriately, these colors can ruin the aesthetics of
an interface. These resources are set automatically by the toolkit based on the background
color of the object, so the colors are not normally a problem. If the background color of a
PushButton is blue when it is created, the toolkit automatically calculates the

Motif Programming Manual 83



Chapter 3:Overview of the Motif Toolkit

XmNtopShadowColor to be a slightly lighter shade of blue and the
XmNbottomShadowColor to be a slightly darker shade.

The problems arise if you want to change the background color of a widget dynamically
because the toolkit does not automatically change the shadow colors for you. So if you
change theXmNbackground of the PushButton to red, the top and bottom shadow colors
remain the different shades of blue. In Motif 1.2, note that the shadow resources are only
used by widgets, not gadgets: if you dynamically change the background color of a
manager widget, it automatically recalculates the top and bottom shadow colors and
redisplays its gadgets correctly. Many consider the fact that this process is not automated
for widgets to be a design flaw in the Motif toolkit.

If you need to change the background color of a widget dynamically, you can recalculate
the shadow colors and set the resources yourself. You can uxen@@ngeColor()
routine, which takes the following form:

void XmChangeColor (Widget widget , Pixel background )

This routine changes all the foreground color, shadow colors, and select color for the
specified widget based on theackground color. The select color only applies to
ToggleButtons XmNselectColor ) and PushButtons<mNarmCalor ).

The routineXmGetColors() can be used to query the colors which Motif
calculates . XmGetColors () takes the following form:

void XmGetColors( Screen * screen
Colormap colormap
Pixel bg,
Pixel * fg,
Pixel * top_shadow ,
Pixel *  pottom_shadow
Pixel *select)

This routine takes a colormap and a background color and calculates and returns an
appropriate foreground color, top and bottom shadow colors, and select color. Once you
have the colors, you could specify the appropriate resources for the widget.

A basic problem behind setting and getting colors for widgets is that what you get for a
given pixel value depends on the colormap. A pixel is simply an index value into an array
of color definitions (a colormap). The problem with colormaps is that you never know what
colormap is associated with any particular widget.

By calling XtVaSetValues() using the type-converting resoureéyaTypedArg , we

defer the problem to the toolkit and its string-to-color type converter. The toolkit allocates
the color out of the colormap already owned by the toolkit and sets the background color
accordingly. Then we can get the actual pixel value and the colormap using
XtVaGetValues() . We pass the colormap and the background pixel value to

84 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

XmGetColors() to calculate the rest of the colors. Once we have obtained all of the
colors, we can set them usiXtVaSetValues()

The Label widget and its subclasses cannot display text using more than one color.
However, you can create a multi-plane pixmap and render various strings directly into it
usingXDrawString() . You can use multiple colors by changing the foreground color in
the GCusingXSetForeground() or XChangeGC() . Once you have the pixmap, you can

use it to set thXmNlabelPixmap resource for the widget.

The text of the entries in a List widget is rendered using the widggtiéforeground

color. You cannot change the color of individual items in a List widget. The
XmNbackground of the List affects all areas of the widget not associated with the entries
themselves. The text in a Text widget or a TextField widget is also displayed using the
XmNforeground color; there is no way to display text using different colors in these
widgets. When a List widget or Text widget is the direct child of a ScrolledWindow, the
ScrollBars automatically match the background color of the List or Text widget.

Changes in Motif 2.1

Release 2.1 of the Motif toolkit introduces a number of new features, as well as many
enhancements to existing functionality. This section summarizes all of the changes in Motif
2.1 and refers you to other sections in the book for more detailed information on specific
changes. We also describe the changes that we made to the example programs in the book
to make them accurate with respect to Motif 2.1.

General Toolkit Changes

Gadget Resources

Gadgets can now be painted independently, and no longer directly inherit their color
appearance from the Manager parent. Foreground, background, top and bottom shadow,
and highlight colors are now included in the gadget cache. Similarly cached are the top and
bottom shadow pixmaps, and the highlight pixmap.

Traits

A Trait is an encapsulation of a piece of logical widget behavior. It defines a set of methods
for querying and setting this behavior, whatever it may be. Different widget classes may
share in common the behavior, even though their class inheritance graphs are only vaguely
related. To be more concrete, if we consider a ComboBox and a Text widget, the class
hierarchy for the ComboBox does not derive through a Text class directly, and yet
considered logically, because the ComboBox and the Text widget both have a value which
is a string, there is sufficient in common such that we could define methods to read or write

Motif Programming Manual 85



Chapter 3:Overview of the Motif Toolkit

the value irrespective of which widget instance we are actually dealing with. Such methods
already exist in Motif 2.0, and are known as a Trait.

Traits are named, and there is a standard routine for querying a widget to determine whether
it supports a given trait. And thus there are two ways of setting the value of a text widget:
we can use the oldefmTextSetString() functional interface, or we can fetch the
XmQTaccessTextual trait from the widget concerned, then usegttyalue()  routine

of the trait. The beauty of the second method is that it will also work for other widgets in
the Motif set which are logically also Text-like in some of their behavior.

However, Traits are really the domain of the widget author, to provide consistency in
behavior between logically related widget classes. Mention of particular Traits will be

made if and when necessary, otherwise you are referred to the Widget Writer's Guide in
the official documentation.

Renditions and RenderTables

The XmFontList data type and associated functions are now considered deprecated. In
Motif 1.2, the appearance of compound strings depended upon a small number of widget
attributes, of which th&¥mNfontList  resource is the most important. The mechanisms for
inheriting compound string appearance characteristics relied solely upon default
XmFontList values derived usually from the containing VendorShell or BulletinBoard. In
Motif 2.0, there is the new entity called tenRendition , which is a named (tagged)
object that consists of a complete set of appearance resources, including coloration, font,
underline and strike-through settings. XmRendition is a shareable object which is
independently reference counted. AmRenderTable is simply a set oKmRendition

objects; compound strings are rendered by comparing tags associated with components in
the string against taggesimRendition objects in theXmRenderTable . The means
whereby a widget inherits compound string rendering information is now rationalized
through the Trait mechanisms: a parent widget may choose to implement a Trait which
provides default render table data to its descendants. The BulletinBoard, VendorShell, and
MenuShell classes implement such a Trait.

The appearance of a compound string can now be specified through a whole group of
attributes that can be manipulated as a single set. Compound strings may now be multi-
colored as a result.

An XmRendition object is a pseudo-widget: although not true widget classes, Renditions
and RenderTables may be specified in resource files, as well as in code. Widget classes
which used to support th&mNfontList now also support arXmNrenderTable

resource. For backwards compatibility, teNfontList resource continues to persist,
although it is internally implemented through the rémRenderTable type.

It is not necessary to precisely specify all attributes for each and every Rendition within a
RenderTable: attributes may be given the va{o®S_IS which simply means that the

86 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

value of the attribute is inherited from Renditions which are placed earlier in the
RenderTable.

Renditions and RenderTables are discussed at length in Chapter 24.

TabLists

In Motif 1.2, creating tabular or multi-columnar data within a widget could usually only be
performed through some code by the programmer which required careful calculations
based upon the size of the current font. Motif 2.0 introduces the notion<ofiBabList ,

which is a set oKmTabobjects. AnXmTabdescribes a logical offset across a widget: it
consists of a floating point quantity, a unit in which the quantity is expressed (inches, font
units, millimetres, and so forth), and an offset model, which specifies whether the Tab value
is counted in terms of absolute distance across the widget, or relative to a pxeviabs
object in thexmTabList .

The newXmRendition object contains akmTabList attribute. The creation of a multi-
column list can now be achieved by embedding tab component separators within the
compound strings of the list: each tab separator marks the beginning of a new column entry,
where that column appears on the screen depends ofmiktabList attribute of the
Rendition used to render that portion of the compound string. Tabs and TabLists are
covered as part of the discussion in ChapteiZBnpound Strings

Compound Strings

Compound strings have been re-modelled to use the new XmRendition object. In order to
do this, new XmString component types have been defined.

The compound string segments XmSTRING_COMPONENT_RENDITION _BEGIN  and
XmMSTRING_COMPONENT_RENDITION_EiND be embedded into a compound string in
order to associate portions of the string with particular Rendition specifications.

To enable tabular layout of compound strings, the XewETRING_COMPONENT _TAB
segment is defined, and this marks a column boundary within the string. How this is
rendered will depend upon the value of KmTabList attribute associated with the
current Rendition in force.

Additionally, the compound string segmeRKmSTRING_COMPONENT_LAYOUT_PaisiH
XmMSTRING_COMPONENT _LAYOUT P@&n be used to embed layout direction
specifications into the string.

XmStringComponentCreate () has been augmented to create the new component types.

Compound Strings are discussed in Chapter 25.

Motif Programming Manual 87



Chapter 3:Overview of the Motif Toolkit

Parse Mappings and Parse Tables

Strings and compound strings can be dynamically manipulated by new table-driven parsing
routines. AnXmParseMapping represents an entry in the table XanParseTable is the

table itself. Each entry in the table specifies a transformation: what to compare against in
the original input string, what to replace any matching occurrence with, and so forth. The
XmParseMapping object can either perform simple substitutions by supplying fixed
substitution patterns, or it can specify further substitution routines which dynamically
modify the input depending on circumstances.

Typically, parse tables and their constituent parse mapping objects are used by passing
them as parameters to th¥mStringParseText (), XmStringUnparse (), and
XmStringGenerate () functions.

Essentially, parse tables are simply filters which provide programmatic control over the
way in which strings are converted into compound strings, or vice versa.

Parse Mappings are discussed in ChapteC2fpound Strings

Layout Direction

In Motif 1.2, although compound strings could be reversed by suitable setting of the
XmNstringDirection resource, the layout of components in which they were rendered
could not. The new Motif 2.0XmNIlayoutDirection resource rectifies the issue: it is
possible to reverse the layout of a ComboBox, for example, so that the constituent arrow
button is drawn to the left of the text. This could be performed at user request either for
reasons of Internationalization or handedness. Layout direction resources are added to both
the Manager and Primitive base classes: all Motif widgets therefore inherit the control.

Uniform Transfer Model

In Motif 1.2, different styles of communication between widgets required separate code to
implement. Thus the codes to implement data transfer through the ClipBoard, to the
primary or secondary selection, and through Drag and Drop would not necessarily share
much in common in terms of the functions required to achieve the desired effect. In Motif
2.0, the disparate communication interfaces have been subsumed into a common Uniform
Transfer Model.

Under the Model, two new callbacks are added to the systexmidoonvertCallback

and anXmNdestinationCallback . The convert callback is associated with the source

of the data, and is both responsible for exporting the data in the format required by the
destination, and in furnishing a list of formats in which the source is prepared to export that
data. The destination callback communicates with the source in order to determine the best
format in which to receive the data, and it arranges for the data to be handled appropriately
when it arrives by setting up a transfer procedure to perform the task. The simplest

88 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

destination callback could in fact request data in a fixed format from the source without
bothering to request the list of supported forms.

The programmer is not required to implement convert and destination callbacks for all the
various types of data transfer which Motif supports. Widgets have mechanisms which

utilize the Trait system in order to effect default data transference. A programmer only

needs to write convert or destination callbacks where the data is to be transferred in a
manner which differs from the built-in target formats.

The Uniform Transfer Model is discussed in Chapter 23

Automatic Popup Support

In the past, in order to popup a context sensitive menu, it was necessary to write event
handler code to intercept ButtonPress events, followed by the appropriate code to pick and
display the relevant menu. In Motif 2.0, the RowColumn widget has been enhanced to
provide auto-popup behavior, and the decision making process of selecting the relevant
menu to display has been encapsulated in a new callback, the
XmNpopupHandlerCallback , built into the Manager and Primitive classes. Now it is
only necessary to provide the callback, filling in an appropriate field of the callback data,
in order to specify the required menu: the housekeeping tasks of event interception and
menu display are built-in.

Specific Widget Changes

Motif 2.1 introduces a number of new widget classes, as well as including new resources
for classes previously defined.

VendorShell

The VendorShell has the new resourcesXmNbuttonRenderTable

XmNlabelRenderTable , andXmNtextRenderTable . These supersede the deprecated
XmNbuttonFontList XmNlabelFontList , XmNtextFontList resources

respectively.

For finer control over the X input contexts which are created in Internationalized
applications, the resouré@nNinputMethod is provided: the valusSmPER_SHELtreates

one input context per shell hierarchy, the vaKrePER_WIDGETreates one for each
widget which requests one.

VendorShell also supports tkenNlayoutDirection resource. The widget does not use
this resource itself, but maintains and supplies the resource as a default for whichever
descendant in the widget hierarchy lacks an explicit value.

Motif Programming Manual 89



Chapter 3:Overview of the Motif Toolkit

In Motif 2.0, XmNshellUnitType is considered deprecated: it is replaced by the
XmNunitType resource. This also acts as a default value for widget descendants requiring
resolution information.

ArrowButton

The XmNdetailShadowThickness resource allows the programmer to specify the
shadow thickness inside the triangle of the ArrowButton. The ArrowButtonGadget also
supports the resource.

BulletinBoard

The BulletinBoard has the new resourcesXmNbuttonRenderTable

XmNlabelRenderTable , andXmNtextRenderTable  which superseded the deprecated
XmNbuttonFontList XmNlabelFontList XmNtextFontList resources
respectively.

ComboBox

ComboBox is a new widget as of Motif 2.0, combining direct textual input with the
convenience of list selection.

Container

Container is a new widget in Motif 2.0. It organises IconGadget children in a variety of
layout styles, including a Tree format.

Display

The XmDisplay object has suffered a number of changes in order to interface Motif with a
CDE desktop. Most of the resources alter the appearance of Toggles, and the shadowing on
Buttons, and are described fully in Volume 6B.

The most important of the new resources are MmNnoFontCallback  and
XmNnoRenditionCallback lists. Whenever an attempt is made to render a compound
string, if font or rendition information is found to be absent, a callback can be supplied by
the programmer which can attempt to find an alternative. This is a significant improvement
over Motif 1.2, where the system itself would decide on an appropriate default font without
recourse to any intelligent intervention.

DrawingArea

DrawingArea now supports the new XmNconvertCallback and
XmNdestinationCallback resources associated with the Uniform Transfer Model. The
DrawingArea itself does not define any export target formats.

90 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

FileSelectionBox

In Motif 2.0 and later, the search pattern and base directory path can be displayed in
separate text fields, as opposed to being concatenated together and displayed in a single
field. The resourcXmNpathMode controls whether this new feature is enabled.

Gadget

The appearance resources XmNbackground , XmNbackgroundPixmap
XmNbottomShadowColor , XmNbottomShadowPixmap ,  XmNhighlightPixmap
XmNtopShadowPixmap are added so that Gadgets no longer strictly inherit their colors
from the Manager parent.

As for the Manager and Primitive base classes, Gadget also supports
XmNlayoutDirection to control the order in which components of the object are laid
out.

GrabShell

A new widget in Motif 2.0. GrabShell is a shell widget which grabs the pointer and
keyboard when it is mapped. It therefore directs focus to its child, and is used by the
ComboBox to implement its popup list.

IconGadget

New in Motif 2.0, the IlconGadget can display both textual and pixmap information
simultaneously. The gadget is closely associated with the Container. Each IconGadget
supposedly represents pictorially some application object of some kind, and the Container
organises the layout and selection of the given objects. Extra “detail” data can be associated
with an IconGadget, and the Container can display this extra information in a tabular
format.

Label

The XmNfontList  resource is deprecated, and is superseded bynthizenderTable
resource. Similarly for LabelGadget.

List

The List supports keyboard matching of items in Motif 2.0 and later. If the resource
XmNmatchBehavior is enabled, characters typed are compared with the first character of
each item, and the new currently selected item is reset accordingly. The color of the
selected item itself can now be specified throughximdlselectColor  resource.

The set of selected positions can be manipulated through the new
XmNselectedPositions , XmNselectedPositionCount resources.

Motif Programming Manual 91



Chapter 3:Overview of the Motif Toolkit

The way in which the user selects items in the list is controllable through the
XmNselectionMode resource. KMNORMAL MQDHvigating the list using the keyboard
can select the item under the location cursoXiADD_MODRavigating through the list
has no side effects with respect to the selected item set.

The List supports thE¥mNdestinationCallback in order to make the widget partake in
the Uniform Transfer Model.
MainWindow

From Motif 2.0, the routineXmMainWindowSetAreas () is marked as deprecated. The
programmer should set thénNcommandwWindowXmNmenuBay XmNmessageWindow
XmNworkWindow, XmNhorizontalScrollBar , XmNverticalScrollBar resources
directly using the standard Xt mechanisms.

Manager

New support for automatic popup menu control is provided through the Motif 2.0
XmNpopupMenuHandlerCallback

The Motif 2.0XmNlayoutDirection resource facilitates automatic layout control.

MenuShell

The XmNbuttonFontList and XmNlabelFontList resources are deprecated, and are
superseded by thEmNbuttonRenderTable  and XmNlabelRenderTable  resources.
Similarly deprecated is th&XmNdefaultFontList resource, although there is no
replacemenkKmNdefaultRenderTable resource.

Notebook

Notebook is a new widget in Motif 2.0. It simply lays out its children as though they are
pages in a book.

PanedWindow

As of Motif 2.0, the PanedWindow now officially supports a horizontal configuration: set
the XmNorientation  resource t&XmHORIZONTAbr XmVERTICALto taste.

Primitive

The XmNlayoutDirection , XmNconvertCalback  resources are added to this base

class.

To support automatic context-sensitive menus, XhréNpopupHandlerCallback has
been added to the system.

92 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

PrintShell

The PrintShell interfaces with the X11R6 X Print (Xp) extensions. A widget hierarchy can
be printed by creating that hierarchy underneath a PrintShell, followed by appropriate code
to invoke the printing. Printing can be either synchronous, or asynchronous, and the
programmer can decide, by setting appropriate widget resources, whether the output is to
consist of the contents of the widgets concerned, or whether it is more of a screen snapshot
of the widgets themselves.

RowColumn

A new resourceXmNtearOffTitle , allows the programmer to specify a title for a tear-
off menu.

Scale

As of Motif 2.0, the Scale widget supports automatic tick marks. The function
XmScaleSetTicks () evenly spaces marks of various sizes along the edge.

The Scale can be configured as to whether it responds to user input through the new
XmNeditable resource: for a read-only scale, set the resource to false.

Arrows can be placed at either or both ends of the Scale througfmNshowArrows
resource, and the general appearance of the slider is configurable through
XmNsliderMark : this can be configured to appear in various etched rectangle
arrangements, as a circle, or as a thumb mark.

The size of the slider is configurable throughXheNsliderSize  resource. This resource
is undocumented by the official channels, and thus there is no official guidance to its usage.

The color of the slider is also tunable: it can either be based upon the foreground or
background of the Scale, or upon the existing trough color. XrhisliderVisual
resource controls this aspect of behavior.

The Scale can behave as a thermometer, with the slider anchored at one end rather than
floating in the middleXmNslidingMode is the resource required to configure this setting.

Lastly, as of Motif 2.0, th&XmNfontList resource is deprecated, and replaced with the
newerXmNrenderTable resource. The Scale also supportsXtéNconvertCallback
list in order to participate in the Uniform Transfer Model.

Screen

The XmScreen object has been enhanced to provide a greater control over the way in which
Motif allocates colors. ThEmNcolorAllocationProc resource allows the programmer

to specify a procedure to perform the allocation. The default is the standard
XAllocColor () routine.

Motif Programming Manual 93



Chapter 3:Overview of the Motif Toolkit

Similarly, the algorithm by which Motif calculates default foreground, background, and
shadow colors is also now tunable throughXh#NcolorCalculationProc resource.

The allocation of pixmaps can be controlled throughXmébitmapConversionModel
resource: by defaulXtnMATCH_DEPYHixmaps are created such that the depth matches
the widget for which they are allocated. Setting the valuertd]ATCH_DYNAMEDNnverts
loaded bitmap files to a pixmap depth of 1.

Also on the subject of pixmaps, th€mNinsensitiveStipplePixmap resource
provides a stipple to use when making widgets appear insensitive. This is mostly used
internally by the Gadget utilities.

Motif as of version 2.0 supports the notion of color objects Ximé&luseColorObject

resource enables the feature, such that if a color is dynamically altered, all widgets which
reference the color are changed as a side effect. Clearly, this resource is part of the CDE
enhancements to Motif: it allows the desktop to change the whole style of color of an
application without having to modify the entire widget hierarchy.

ScrollBar

Much of the enhancements associated with the Scale are in fact related to the ScrollBar:
XmNeditable , XmNshowArrows, XmNsliderMark XmNsliderVisual ,
XmNslidingMode are all newly supported as of Motif 2.0.

The resourceXmNsnapBackMultiple  controls the behavior of the ScrollBar if the user
drags the mouse outside the bounds of the widget. It specifies a distance, which if exceeded,
causes the ScrollBar to snap back to its pre-drag settings.

ScrolledWindow

As of Motif 2.0, the ScrolledWindow (and derived classes) supports automatic drag
through the resourcémNautoDragModel .

SpinBox and SimpleSpinBox

Two new widget classes, the first available as of Motif 2.0, the second from Motif 2.1,
which allows the user to rotate through a range of values. SpinBox is the general purpose
manager, into which any number of Text components are added. It rotates the values
associated with the Text component which currently has the focus. SimpleSpinBox is a pre-
packaged unit that contains a single built-in Text component. The range of values
associated with any Text is specified through constraint resources. Rotation of the values
is achieved by pressing on an ArrowButton which the SpinBox components automatically
add for the purpose.

94 Motif Programming Manual



Chapter 3: Overview of the Motif Toolkit

Text and TextField

The number of lines within the Text is now available through XheéNtotalLines
resource, added as of Motif 2.1.

In both widget classes, thEmNfontList resource is obsolete, replaced with the
XmNrenderTable resource, and tKenNdestinationCallback is added in order to
interface with the Uniform Transfer Model.

ToggleButton and ToggleButtonGadget

The Toggle widgets have been reworked in order to provide consistency of appearance
under the CDE environment.

The resourc&XmNdetailShadowThickness controls the thickness of the shadow on the
Toggle indicator.

In Motif 2.0 and later, a Toggle may be in one of three states: set, unset, and indeterminate.
By default, the Toggle holds two states, unless the resoimdoggleMode is set to
XmTOGGLE INDETERMINATE which enables the third state. The resource
XmNindeterminatelnsensitivePixmap and XmNindeterminatePixmap are
pixmaps displayed when the toggle is in the third indeterminate state.

In Motif 1.2, the resourc¥mNindicatorOn  is a Boolean value; in Motif 2.0 and later, this
becomes an enumerated type, and specifies not just whether the indicator is visible, but also
its appearance: a check box, shadowed box, check (tick) mark, cross, and so on become
available. This blurs the distinction with the resoukaNindicatorType , which is
extended to includ¥mONE_OF _MANY_ROUXBDONE_OF MANY_DIAMONt#licating a

round or diamond shaped indicator.

The resource XmNset also changes type from Boolean to an enumeration. The valid range
is now XmUNSETXmSET andXmINDETERMINATE

Lastly, anXmNunselectColor is added from Motif 2.0 onwards to complement the
XmNselectColor  resource.

Changes to the Example Programs

All of the example programs in this book have been updated to Motif 2.1 and X11R6. For
example, calls tenanipulate compound strings and font lists have been
replaced with calls thandle the new render table type

Changes involving new Motif 2.1 functions and resources are described in detail when each
example is presented.

Motif Programming Manual 95



Chapter 3:Overview of the Motif Toolkit

Summary

The Motif widget set gives you a great deal of flexibility in designing an application. But
with this flexibility can come indecision, or even confusion, about the most effective way

to use these objects. If you want to give a user a set of exclusive choices, should you use a
PulldownMenu, a dialog box that contains ToggleButtons arranged in a CheckBox, or a
List widget? There is no right answer--or perhaps it is better to say that the right answer
depends on the nature of the choices and the flow of control in your application.

Designing an effective user-interface is an art. Only experience and experimentation can
teach you the most effective way to organize an application. What we can do in this book
is teach you how to use each widget class and give you a sense of the tradeoffs involved in
using different widgets. In this chapter, we've given you a broad overview of the Motif
toolkit. Subsequent chapters delve into each widget class in detail. You should be able to
read the chapters in any order, as the needs of your application dictate.

96 Motif Programming Manual



In this chapter:
 Creating a MainWindow
» The MenuBar

e The Command and Message
Areas

» Using Resources
e Summary

« Exercises The Maln WlndOW

This chapter describes the Motif MainWindow widget, which can be used to frame many
types of applications. The MainWindow is a manager widget that provides a menu bar, a
scrollable work area, and various other optional display and control areas.

As discussed in Chapter 8verview of the Motif Toolkitthe main window of an
application is the most visible and the most used of all the windows in an application. It is
the focal point of the user’s interactions with the program, and it is typically the place where
the application provides most of its visual feedback.To encourage consistency across the
desktop, theMotif Style Guidesuggests a generic main window layout, which can vary
from application to application, but is generally followed by most Motif applications. Such

a layout is shown in Figure 4-1. As described in Section 3.4.1, a main window can provide

a menubar, a work area, horizontal and vertical scrollbars, a command area, and a message
area.

ETl | i

MenuBar His i HiH

Command Area >

| tabain

gl T
Work Area DlES
Message Area =

Figure 4-1: The main window of a Motif program

In an effort to facilitate the task of building a main window, the Motif toolkit provides the
MainWindow widget. This widget supports the different areas of the generic main window

Motif Programming Manual 97



Chapter 4: The Main Window

layout. However, the MainWindow widget is not the only way to handle the layout of the
main window of your application. You are not required to use the MainWindow widget and
you should not feel that you need to follow the Motif specifications to the letter. While the
Style Guidestrongly recommends using the main window layout, many applications simply
do not ?t the standard GUI design model. For example, a clock application, a terminal
emulator, a calculator, and a host of other desktop applications do not follow the Motif
specifications in this regard, but they can still have Motif elements within them and can still
be regarded as Motif-compliant. If you already have an application in mind, chances are
you already know whether or not the main window layout is suited to the application; if you
are in doubt, your best bet is to comply with khetif Style Guide

Before we start discussing the MainWindow widget, you should realize that this widget
class does not create any of the widgets it manages. It merely facilitates managing the
widgets in a way that is consistent with tB#yle Guide In order to discuss the
MainWindow widget, we are going to have to discuss a number of other widget classes and
use them in examples. As a beginning chapter in a large book on Motif programming, this
may seem like a bit much to handle, especially if you are completely unfamiliar with the
Motif toolkit. We encourage you to branch off into other chapters whenever you find it
necessary to do so. However, it is not our intention to explain these other widgets ahead of
time, nor is it our assumption that you already understand them. The lack of an
understanding of the other widgets should not interfere with our goal of describing the
MainWindow widget and how it fits into the design of an application.

Creating a MainWindow

The MainWindow widget class is defined ixXm/MainW.k», which must be included
whenever you create a MainWindow widget. As mentioned in Chaptéhe Motif
Programming Modelyou should probably use a SessionShell or TopLevelShell widget as
the parent of a MainwWindow If the MainWindow is being used as the main application
window, the SessionShell returned ByOpenApplication() T (or another similar
toolkit initialization function) is typically used as the parent. The function
XmCreateMainWindow() can be used to create an instance of a MainWindow widget, as
shown in the following code fragmé‘nt

#include <Xm/Xm.h>
#include <Xm/MainW.h>

main (int argc, char *argv(])

{
Widget app_shell, main_w;

* The ApplicationShell is considered deprecated in X11R6.
T XtApplnitialize (), XtVaApplnitialize () are now considered deprecated in X11R6.
T XtVaApplinitialize () is considered deprecated in X11R6.

98 Motif Programming Manual



Chapter 4: The Main Window

XtAppContext — app_context;

* Resources for the MainWindow */

Arg resource_values...];

Cardinal num_values;* Number of resources applied */

XtSetLanguageProc (NULL, NULL, NULL);
app_shell=XtVaOpenApplication (&app_context,"App-Class",NULL, 0, &argc,
argv, NULL, sessionShellwidgetClass, NULL);
main_w = XmCreateMainWindow (app_shell, “mw”, resource_values, num_
values);
XtManageChild (main_w);
XtRealizeWidget (app_shell);
XtAppMainLoop (app_context);
}

The MainWindow class is subclassed from the ScrolledWindow class, which means that it
inherits all the attributes of a ScrolledWindow, including its resources. A ScrolledWindow
allows the user to view an arbitrary widget of any size by attaching horizontal and vertical
ScrollBars to it. You can think of a MainWindow as a ScrolledWindow with the additional
ability to have an optional menu bar, command area, and message area. Because the
MainWindow is subclassed from the ScrolledWindow widget, we will be referring to some
ScrolledWindow resources and disclosing some facts about the ScrolledWindow. For more
information about the ScrolledWindow, see ChapteiStBolled Windows and ScrollBars.

You may eventually need to learn more about the ScrolledWindow widget to best make use
of the MainWindow, but this chapter tries to present the fundamentals of the MainWindow
widget, rather than focus on the ScrolledWindow.

While a MainWindow does control the sizes and positions of its widget children like any
manager widget, the geometry management it performs is not the classic management style
of other manager widgets. The MainWindow is a special-case object that handles only
certain types of children and performs only simple widget positioning. It is designed to
support the generic main window layout specified byMugif Style GuideLet's take a

look at how the MainWindow can be used in an actual application. Example 1-1
demonstrates how the MainWindow widget fits into a typical application design.

Example 1-1: The show_pix.c program

* show_pix.c -- A minimal example of a MainWindow. Use a Label as the
*workWindow to display a bitmap specified on the command line.

*

#include <Xm/MainW.h>

#include <Xm/Label.h>

main (int argc, char *argv(])

{

Widget toplevel, main_w, label_w;
XtAppContext — app_context;
Pixmap pixmap;

* XtVaApplnitialize () is considered deprecated in X11R6.

Motif Programming Manual 99



Chapter 4: The Main Window

Arg alf4y;
Cardinal ac=0;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app_context, "Demos", NULL, O, &argc,
argv, NULL, sessionShellwidgetClass, NULL);
if (fargv[1]) {
printf ("usage: %s bitmap-file\n", argv[Q]);
exit (1);
}

ac=0;

XtSetArg(al[ac], XmNscrollBarDisplayPolicy, XmAS_NEEDED); ac++;
XtSetArg(al[ac], XmNscrollingPolicy, XmAUTOMATIC); ac++;
main_w = XmCreateMainWindow (toplevel, "main_window", al, ac);

[* Load bitmap given in argv[1] */
pixmap = XmGetPixmap (XtScreen (toplevel), argv[1], BlackPixelOfScreen
(XtScreen (toplevel)), WhitePixelOfScreen (XtScreen
(toplevel)));
if (pixmap == XMUNSPECIFIED_PIXMAP) {
printf (“can't create pixmap from %s\n", argv[1]);
exit (2);
}
* Now create label using pixmap */
ac=0;
XtSetArg(al[ac], XmNIabelType, XmPIXMAP); ac++;
XtSetArg(al[ac], XmNlabelPixmap, pixmap); ac++;
label_w = XmCreateLabel (main_w, "label", al, ac);

* set the label as the "work area" of the main window */
XtVaSetValues (main_w, XmNworkWindow, label_w, NULL);
XtManageChild (label_w);

XtManageChild (main_w);

XtRealizeWidget (toplevel);

XtAppMainLoop (app_context);

}
In this example, the MainWindow widget is not used to its full potential. It only contains
one other widget, a Label widget, that is used to display a bitmap from the ?le specified as
the first argument on the command limeg{[1] )."The Label widget is used as the work
area window for the MainWindow. We did this intentionally to focus your attention on the
scrolled-window aspect of the MainWindow widget. The following command line:

% show_pix /usr/X11R6/include/bitmaps/xlogo64

* XtVaOpenApplication () parses the command-line arguments that are used when the program is run. The
command-line options that are specific to Xlib or Xt are evaluated and removed from the argument list. What is
not parsed is left iargv ; our program readargv [1] as the name of a bitmap to display in the MainWindow.

100 Motif Programming Manual



Chapter 4: The Main Window

produces the output shown in Figure 4-2.

thaorss

Figure 4-2: Output of show_pix xlogo64

The ?le specified on the command line should contain X11 bitmap data, so that the
application can create a pixmap. The pixmap is displayed in a Label widget, which has been
specified as thEmNworkWindow of the MainWindow. As shown in Figure 4-2, the bitmap

is simply displayed in the window. However, if a larger bitmap is specified, only a portion
of the bitmap can be displayed, so ScrollBars are provided to allow the user to view the
entire bitmap. The output of the command:

% show_pix /usr/X11R6/include/bitmaps/escherknot

is shown in Figure 4-3.

Figure 4-3: Output of show_pix escherknot

The bitmap is obviously too large to be displayed in the MainWindow without either
clipping the image or enlarging the window. Rather than resize its own window to an
unreasonable size, the MainWindow can display ScrollBars. This behavior is enabled by
setting the MainWindow resourcesnNscrollBarDisplayPolicy to XmAS_NEEDED

and XmNscrollingPolicy to XmAUTOMATICThese values automate the process
whereby ScrollBars are managed when they are needed. If there is enough room for the
entire bitmap to be displayed, the ScrollBars are not provided. Try resizisgdhe pix

window and see how the ScrollBars appear and disappear as needed. This behavior occurs
as a result of settingmNscrollBarDisplayPolicy to XmAS_NEEDED

Since we do not specify a size for the MainWindow, the toolkit sets both the width and
height to bel00 pixels. These default values are not a documented feature. Both the
MainWindow and the ScrolledWindow suffer from the same problem: if you do not

Motif Programming Manual 101



Chapter 4: The Main Window

specifically set the&XmNwidth andXmNheight resources, the default size of the widget is
not very useful.

The XmNscrolBarDisplayPolicy and XmNscrollingPolicy resources are
inherited from the ScrolledWindow widget class. BecaXisiscrollingPolicy is set

to XmMAUTOMATIGhe toolkit creates and manages the ScrollBars automatically. Another
possible value for the resource XsnAPPLICATION DEFINED which implies that the
application is going to create and manage the ScrollBars for the MainWindow and control
all of the aspects of their functionality. Application-defined scrolling is the default style for
the MainWindow widget, but it is unlikely that you will want to leave it that way in this
instance: application-defined scrolling is usually required for hand-drawn X graphics, but
since the Label widget knows how to draw itself, we can leave the scrolling policy as
XmMAUTOMATIG-or complete details on the different scrolling styles, see Chapter 10.

Using the application-defined scrolling policy does not necessarily require you to provide
your own scrolling mechanisms. It simply relieves the MainWindow widget of the
responsibility of handling the scrolling functionality. If you use a ScrolledList or
ScrolledText widget as the work area, you should definitely leave the
XmNscrollingPolicy as XmAPPLICATION_DEFINED since these widgets manage
their own ScrollBars. They will handle the scrolling behavior instead of the MainWindow.
Example 1-2 shows an example of a program that uses a ScrolledList for the work area in
a MainWindow widgef.

Example 1-2: The main_list.c program

/* main_list.c -- Use the ScrolledList window as the feature
* component of a MainWindow widget.
*

#include <Xm/MainW.h>
#include <Xm/List.h>

main (int argc, char *argv[])

{

Widget app_shell, main_w, list_w;
XtAppContext — app_context;
Pixmap pixmap;

XtSetLanguageProc (NULL, NULL, NULL);
app_shell = XtvaOpenApplication (&app_context, "Demos”, NULL, 0, &argc,
argv, NULL, sessionShellWidgetClass, NULL);
main_w = XmCreateMainWindow (app_shell, “main_window", NULL, 0);
list_ w = XmCreateScrolledList (main_w, "main_list', NULL, 0);
XtVaSetValues (list_w, XtVaTypedArg, XmNitems, XmRString,
"Red, Green, Blue, Orange, Maroon, Grey, Black, White", 53,
XmNitemCount, 8, XmNuvisibleltemCount, 5, NULL);

* XtVaApplnitialize() is considered deprecated in X11R6.

102 Motif Programming Manual



Chapter 4: The Main Window

XtManageChild (list_w);

* setthe list_w as the "work area" of the main window */
XtVaSetValues (main_w, XmNworkWindow, XtParent (list_w), NULL);
XtRealizeWidget (app_shell);

XtAppMainLoop (app);

}
In order to simplify the application, we specified the items in the ScrolledList as a single
string:
XtVaSetValues (list_w, XtVaTypedArg, XmNitems, XmRString,
"Red, Green, Blue, Orange, Maroon, Grey, Black, White", 53,
XmNitemCount, 8, XmNuvisibleltemCount, 5,
NULL);
This technique provides the easiest way to specify a list for a List widget. The items in a
List widget must be specified as an array of compound strings. If we took the time to create
each list item separately, we would have to create each compound string, assemble the array
of XmString objects and specify it as tenNitems resource, and then free each string
separately after the widget was created. By uXiMaTypedArg , the whole list can be
created in one line using the List widget’s type converter to convert the string into a list of
compound strings. We use this form of resource specification frequently in the book to
simplify examples. See Volume 4, for a complete discussion on how this kind of type
conversion is done. See Chapter TBe List Widgetfor details on the List widget; see
Chapter 25Compound Stringdor details on XmStrings.

It is important to note that whileXmCreateScrolledList() creates both a
ScrolledWindow widget and a List widget, it returns the List widget. As a result, we must
useXtParent()  to get access to the ScrolledWindow widget, so that it can be specified
as the work area of the MainWindow. A common programming error with a ScrolledText
or a ScrolledList widget is using the actual Text or List widget rather than its
ScrolledWindow parent. Again, we refer you to Chapter 10, for a complete discussion of
the use of ScrolledText and ScrolledList compound objects.

The MenuBar

Creating a MenuBar is a fairly complex operation, and one that is completely independent
of the MainWindow itself. However, one of the principal reasons for using the
MainWindow widget is that it manages the layout of a MenuBar. In this section, we
demonstrate the simplest means of creating a MenuBar. Once a MenuBar has been created,
you simply tell the MainWindow to include it in the window layout by specifying the
MenuBar as the value of thénNmenuBarresource for the MainWindow.

In the Motif toolkit, a MenuBar is not implemented as a separate widget, but as a set of
CascadeButtons arranged horizontally in a RowColumn widget. Each CascadeButton is
associated with a PulldownMenu that can contain PushButtons, ToggleButtons, Labels,
and Separators. The managing RowColumn widget has a resource setting indicating that it

Motif Programming Manual 103



Chapter 4: The Main Window

is being used as a MenuBar.You do not need to know any specific details about any of these
widgets in order to create a functional MenuBar, since Motif provides convenience routines
that allow you to create self-sufficient menu systems. While the specifics on creating
PopupMenus, PulldownMenus, and MenuBars are covered in more detail in Chapter 20
Interacting with the Window Managehe basic case that we present in this section is quite
simple.

There are a variety of methods that you can use to create and manage a MenuBar, but the
easiest method is to use the convenience menu creation routine provided by the Motif
toolkit: XmVaCreateSimpleMenuBar()  ."This function is demonstrated in the following

code fragment:

XmString file, edit, help;
Widget menubar, main_w;

[* Create a simple MenuBar that contains three menus */

file = XmStringCreateLocalized ("File");

edit = XmStringCreatelLocalized ("Edit");

help = XmStringCreateLocalized ("Help");

menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",
XmVaCASCADEBUTTON, file, 'F,
XmVaCASCADEBUTTON, edit, 'E/,
XmVaCASCADEBUTTON, help, 'H',
NULL);

XmStringFree (file);

XmStringFree (edit);

XmStringFree (help);

The output generated by this code is shown in Figure 4-4.

File Edit Help

Figure 4-4: A simple MenuBar

Like the functions XtVaSetValues() and XtVaCreateWidget() , the routine
XmVaCreateSimpleMenuBar() takes a variable-length argument list of configuration
parameters. In addition to resource/value pairs, it also takes special arguments that specify
the items in the MenuBar. You can specify RowColumn-specific resource/value pairs just
as you would for any varargs routine. Once all the items in a MenuBar have been created,
it must be managed usingManageChild()

If you are specifying an item in the MenuBar, the first parameter is a symbolic constant that
identifies the type of the item. Since CascadeButtons are the only elements that can display

* There is also a non-varargs version of this function. It requires you to create each of the buttons in the MenuBar
individually and associate it with a PulldownMenu via resources. The varargs function is often easier to use.

104 Motif Programming Manual



Chapter 4: The Main Window

PulldownMenus, the first parameter should always be ¢tn¢aCASCADEBUTTORe

label of the CascadeButton is given by the second parameter, which must be a compound
string. In the above example, the variallee contains a compound string that contains

the textFile . The third parameter speci?es an optional mnemonic character for the
CascadeButton that can be used to post the menu from the keyboard. The mnemonic for the
File menu isF. By convention, the first letter of a menu or menu item label is used as the
mnemonic.

We use the compound string creation functi®mStringCreatelLocalized() , to

create the compound strings for the menu labels. This function creates a compound string
with the text encoded in the current locale. For a complete discussion of compound strings,
see Chapter 25.

Since you are not creating each CascadeButton using the normal creation routines, you are
not returned a handle to each button.You might think that the label string that you assign to
each button is used as the widget's name, but this is not the case. The buttons are created
sequentially, so the MenuBar assigns the nbamtten_  n to each button. The valueis

the position of the button in the MenuBar, where positions are numbered starting with 0
(zero).We will discuss how you can specify resources for items on the MenuBar later in the
chapter.

Do not attempt to install callback routines on the CascadeButtons themselves. If you need
to know when a particular menu is popped up, you should us@rtNpopupCallback on

the MenuShell that contains the PulldownMenu associated with the CascadeButton. The
popup and popdown callback lists are described briefly in Chap@rsipm Dialogsfor

more information, see Volume %, Toolkit Intrinsics Programming Manual

Creating a PulldownMenu

Every CascadeButton in a MenuBar must have a PulldownMenu associated with it. You
can create the items in a PulldownMenu using a method that is similar to the one for
creating a MenuBar. A PulldownMenu can be created using the function
XmVaCreateSimplePulldownMenu() . This routine is slightly more involved than
XmVaCreateSimpleMenuBar() . The routine takes the following form:

Widget XmVaCreateSimplePulldownMenu ( Widget parent
String name ,
int post_from_button
XtCallbackProc  callback )
The post from_button parameter speci?es the CascadeButton that posts the

PulldownMenu. This parameter is an index (starting at zero) into the array of
CascadeButtons in thmarent widget, which should be a MenuBar. Theme parameter
speci?es the widget name for the RowColumn widget that is the PulldownMenu. This name
is not the title of the CascadeButton associated with the menu. The MenuShell that contains
the PulldownMenu uses the same name wijtbpup appended to it. Theallback

Motif Programming Manual 105



Chapter 4: The Main Window

parameter speci?es a function that is invoked whenever the user activates any of the items
in the menu. The rest of the arguments<toVaCreateSimplePulldownMenu() are

either RowColumn resource/value pairs or special arguments that specify the items in the
PulldownMenu.

You should not manage a PulldownMenu after you create it because you do not want it to

appear until it is posted by the user. The CascadeButton that posts the menu handles
managing the menu when it needs to be displayed. The following code fragment shows the
use ofXmVaCreateSimplePulldownMenu() to create a PulldownMenu:

XmString open, save, quit, quit_acc;
Widget menubar, menu;

* First menu is the File menu -- callback is file_cb() */

open = XmStringCreateLocalized ("Open...");

save = XmStringCreateLocalized ("Save...");

quit = XmStringCreateLocalized ("Quit");

quit_acc = XmStringCreateLocalized ("Ctrl-C");

menu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", O, file_cb,
XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaPUSHBUTTON, save, 'S', NULL, NULL,

XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, 'Q', "Ctri<Key>c", quit_acc,
NULL);

XmStringFree (open);

XmStringFree (save);

XmStringFree (quit);

XmStringFree (quit_acc);

Unlike a MenuBar, which can only contain CascadeButtons, a PulldownMenu can contain
a number of different types of elements. As WthVaCreateSimpleMenuBar() , these
elements are specified by a symbolic constant that identifies the type of the item. The
symbolic constant is followed by a variable number of additional parameters that depend
on the type of the menu item.You can use the following values to specify the items in a
PulldownMenu:

XmVaPUSHBUTTON
The item is a PushButton. It takes four additional parameters: a compound string label,
a mnemonic, an accelerator, and a compound string that contains a text representation
of the accelerator. When the PushButton is selectedalf'ack  routine is called.
Itis passed an integer valuedient data that indicates the item on the Pulldown-
Menu that was activated. The value is an index into the menu that range$ tmm
1, if client_data is two, then the third item in the menu was selected.

XmVaTOGGLEBUTTON
The item is a ToggleButton. It takes the same four additional parameters as described
for XmVaPUSHBUTTOWhen the ToggleButton is selected, the value of the button is

106 Motif Programming Manual



Chapter 4: The Main Window

toggled and theallback  routine is called. Thelient_data that is passed to the
callback routine is handled the same as for PushButtons.

XmVaCHECKBUTTON
This value is identical tXmVaTOGGLEBUTTON

XmVaRADIOBUTTON
The item is a ToggleButton with RadioBox characteristics, which means that only one
item in the menu can be set at a time. The PulldownMenu does not enforce this behav-
ior, so you must either handle it yourself or specify other RowColumn resources to
make the menu function like a RadioBox. We demonstrate creating a menu with Radi-
oBox behavior later in the chapter. This value takes the same additional parameters and
deals with the callback routine in the same way as ToggleButtons.

XmVaCASCADEBUTTON
The item is a CascadeButton, which is usually associated with a pullright menu. The
value takes two additional parameters: a compound string label and a mnemonic. Pull-
right menus are, ironically, easier to implement and manage using the not-so-simple
menu creation routines described in Chapterénus

XmVaSEPARATOR
The item is a Separator and it does not take any additional parameters. Since separators
cannot be selected, the callback routine is not called for this item. Adding a separator
does not affect the item count with respect to¢hent_data values that are passed
to the callback routine for other menu items.

XmVaSINGLE _SEPARATOR
This value is identical tmVaSEPARATOR

XmVaDOUBLE_SEPARATOR
This value is identical t&mVVaSEPARATORXcept that the separator widget displays
a double line instead of a single line.

XmVaTITLE
The item is a Label that is used to create a title in a menu. It takes one additional pa-
rameter: a compound string label. The item is not selectable, so it does not have a mne-
monic associated with it and it does not call the callback routine. Adding a title does
not affect the item count with respect to tbent_data values that are passed to
the callback routine for other menu items.

Just as with the CascadeButtons in a MenuBar, the labels associated with each menu item
are not the names of the widgets themselves. The names of the buttbotoare n,

wheren is the position of the button in the menu (starting with zero). Similarly, the names

of the separators and the titles agparator n andlabel _ n, respectively. We will
discuss how you can use resources to specify labels, mnemonics, and accelerators for
menus and menu items later in the chapter.

Motif Programming Manual 107



Chapter 4: The Main Window

Menus are not intended to be changed dynamically. You should not add, delete, or modify
the menus on the MenuBar or the menu items in PulldownMenus once an application is
running. Rather than delete an item on a menu when it is not appropriate, you should change
the sensitivity of the item usingmNsensitive . The menus in an application should be
static in the user’s eyes; changing the menus would be like changing the functionality of
the program while the user is running it. The one exception to this guideline involves menu
items that correspond to dynamic objects. For example, if you have a menu that contains
an item for each application that is running on a display, it is acceptable for the items on the
menu to change to reflect the current state of the display.

SimpleMenu Callback Routines

The callback routine associated with ffile menu shown earlier is invoked whenever the
user selects any of the buttons in the menu. Just like any callback, the routine takes the form
of anXtCallbackProc

void file_cb ( Widget widget , XtPointer  client data , XtPointer  call data )

The widget parameter is a handle to the widget that was selected in the menu. The
client_data parameter is the index of the menu item in the menu.calhalata

parameter is a pointer to a callback structure that contains data about the callback. Both the
client_data andcall data  parameters should be cast to their appropriate types before
the data that they contain is accessed.

Every Motif callback routine has a callback structure associated with it. The simplest such
structure is of typXmAnyCallbackStruct  , which has the following form:

typedef struct {
int reason;
XEvent *event;
} XmAnyCallbackStruct;

All of the Motif callback structures have these two fields, but they also contain more
detailed information about why the callback function was invoked. The callback routine for

the File menu would be passed XmPushButtonCallbackStruct , since all of the
menu items are PushButtons. This structure has the following form:

typedef struct {
int reason;
XEvent *event;
int click_count;
} XmPushButtonCallbackStruct;
Theclick_count field is not normally used when a PushButton is in a menu. If one of
the items in the menu were a ToggleButton,dhiledata  parameter would be of type
XmToggleButtonCallbackStruct , which has the following form:

typedef struct {
int reason;

108 Motif Programming Manual



Chapter 4: The Main Window

XEvent *event;
int set;
} XmToggleButtonCallbackStruct;

The set field indicates whether the item was selected (turned on) or deselected (turned
off).

When a menu contains both PushButtons and ToggleButtons, you can determine which of
the two callback structures thall_data parameter points to by examining tieason

field. Since all callback structures have this field, it is always safe to query it. As its name
implies, this field indicates why the callback routine was invoked. The value of this field
may also indicate the type of the widget that invoked the callback. While we can always
determine the type of thwiidget parameter by using the macttisSubClass()  , using
thereason field is more straightforward. The PushButton widget uses the Yah@&R
ACTIVATE to indicate that it has been activated, while the ToggleButton Xis&€R
VALUE_CHANGHD indicate that its value has been changed. In our exampleatoa

will always beXmCR_ACTIVATEsince there are only PushButtons in the menu. If there
were also ToggleButtons in the menu, we would know that the callback was invoked by a
ToggleButton if the value werdémCR_VALUE_CHANGED

Theevent field in all of the callback structures is a pointer toX&vent structure. The
XEvent identifies the actual event that caused the callback routine to be invoked. In this
example, the event is not of particular interest.

In the callback function, you can choose to do whatever is appropriate for the item that was
selected. The callback structure is probably not going to be of that much help in most cases.
However, theclient_data passed to the function can be used to identify which of the
menu items was selected. The following code fragment demonstrates theliese of

data :

f*amenu item from the "File" pulldown menu was selected */
void file_cb (Widget widget, XtPointer client_data, XtPointer call_data)
{

extern void OpenNewFile(void), SaveFile(void);

intitem_no = (int) client_data;

if (item_no == 0)
[* the "new" button */
OpenNewFile ();

elseif (item_no==1)
[* the "save" button */
SaveFile();

else
[* the "Quit" button */
exit (0);

}

The callback routines for menu items should be as simple as possible from a structural point
of view. A well-designed application should have application-specific entry points such as

Motif Programming Manual 109



Chapter 4: The Main Window

OpenNewFile() andSaveFie() , as shown in the previous example. These routines
should be defined in separate files that are not necessarily associated with the user-interface
portion of the program. The use of modular programming techniques helps considerably
when an application is being maintained by a large group of people or when it needs to be
ported to other user-interface platforms.

A Sample Application

Let's examine an example program that integrates what we have discussed so far.
Example 1-3 modifies the behavior of our first example, which displayed an arbitrary
pixmap, by allowing the user to change the bitmap dynamically using a Motif
FileSelectionDialog. The program also allows the user to dynamically change the color of
the bitmap using a PulldownMenu. As you can see by the size of the program, adding these
two simple features is not trivial. Many functions and widgets are required in order to make
the program functional. As you read the example, don’t worry about unknown widgets or
details that we haven't addressed just yet; we will discuss them afterwards. For now, just
try to identify the familiar parts and see how everything works togéther.

Example 1-3: The dynapix.c program

* dynapix.c -- Display a bitmap in a MainWindow, but allow the user

** to change the bitmap and its color dynamically. The design of the

** program is structured on the pulldown menus of the menubar and the
** callback routines associated with them. To allow the user to choose
** a new bitmap, the "Open" button pops up a FileSelectionDialog where
** a new bitmap file can be chosen.

*

#include <Xm/MainW.h>

#include <Xm/Label.n>

#include <Xm/MessageB.h>

#include <Xm/FileSB.h>

* Globals: the toplevel window/widget and the label for the bitmap.
** "colors" defines the colors we use, "cur_color" is the current

** color being used, and "cur_bitmap" references the current bitmap
*file.

*

Widget toplevel, label;

String colors[] = {"Black”, "Red", "Green", "Blue'};

Pixel cur_color;

* make large enough for full pathnames */

char cur_bitmap[1024] = "xlogo64";

main (int argc, char *argv(])

{

* XtVaApplnitialize () is considered deprecated in X11Ré&StringGetLtoR () is deprecated in Motif 2.0,
and is replaced b¥mStringUnparse ().

110 Motif Programming Manual



Chapter 4: The Main Window

Widget main_w, menubar, menu, widget;
XtAppContext  app;

Pixmap pixmap;

XmString file, edit, help, open, quit, red, green, blue, black;
void file_cb(Widget, XtPointer, XtPointer);

void change_color(Widget, XtPointer, XtPointer);
void help_cb(Widget, XtPointer, XtPointer);

Arg al[10];

Cardinal ac=0;

XtSetLanguageProc (NULL, NULL, NULL);

[* Initialize toolkit and parse command line options. */

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

f* main window contains a MenuBar and a Label displaying a pixmap */

ac=0;

XtSetArg(al[ac], XmNscrollBarDisplayPolicy, XmAS_NEEDED); ac++;

XtSetArg(al[ac], XmNscrollingPolicy, XmAUTOMATIC); ac++;

main_w = XmCreateMainWindow (toplevel, "main_window", al, ac);

[* Create a simple MenuBar that contains three menus */

file = XmStringCreatelLocalized ("File");

edit = XmStringCreatelLocalized ("Edit");

help = XmStringCreateLocalized ("Help");

menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",
XmVaCASCADEBUTTON, file, 'F,
XmVaCASCADEBUTTON, edit, 'E/,
XmVaCASCADEBUTTON, help, 'H',
NULL);

XmStringFree (file);

XmStringFree (edit);

[* don't free "help" compound string yet -- reuse it later */

[* Tell the menubar which button is the help menu */

if (widget = XtNameToWidget (menubar, "button_2")) I= (Widget) 0)

XtVaSetValues (menubar, XmNmenuHelpWidget, widget, NULL);

[* First menu is the File menu -- callback is file_ch() */

open = XmStringCreateLocalized ("Open...");

quit = XmStringCreateLocalized ("Quit");

XmVaCreateSimplePulldownMenu (menubar, “file_menu", 0O, file_cb,

XmVaPUSHBUTTON, open, 'N', NULL, NULL,

XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, ‘Q", NULL, NULL,
NULL);

XmStringFree (open);

XmStringFree (quit);

* Second menu is the Edit menu -- callback is change_color() */

black = XmStringCreateLocalized (colors[0]);

red = XmStringCreatelLocalized (colors[1]);

green = XmStringCreateLocalized (colors[2]);

blue = XmStringCreatelLocalized (colors|[3]);

menu = XmVaCreateSimplePulldownMenu (menubar, “edit_menu", 1, change_
color,
XmVaRADIOBUTTON, black, 'k, NULL, NULL,
XmVaRADIOBUTTON, red, ‘R, NULL, NULL,
XmVaRADIOBUTTON, green, 'G', NULL, NULL,

Motif Programming Manual 111



Chapter 4: The Main Window

XmVaRADIOBUTTON, blue, 'B', NULL, NULL,
f* RowColumn resources to enforce */
XmNradioBehavior, True,
* radio behavior in Menu */
XmNradioAlwaysOne, True,
NULL);
XmStringFree (black);
XmStringFree (red);
XmStringFree (green);
XmStringFree (blue);
[* Initialize menu so that "black” is selected. */
if (widget = XtNameToWidget (menu, "button_0")) != (Widget) 0)
XtVaSetValues (widget, XmNset, XmSET, NULL);
* Third menu is the help menu - callback is help_ch() */
XmVaCreateSimplePulldownMenu (menubar, "help_menu", 2, help_cb,
XmVaPUSHBUTTON, help, 'H', NULL, NULL, NULL);
XmStringFree (help); /* we're done with it; now we can free it */
XtManageChild (menubar);
* user can still specify the initial bitmap */
if (argv[1])
(void) strcpy (cur_bitmap, argv[1]);
[* initialize color */
cur_color = BlackPixelOfScreen (XtScreen (toplevel)),
[* create initial bitmap */
pixmap = XmGetPixmap (XtScreen (toplevel), cur_bitmap, cur_color,
WhitePixelOfScreen (XtScreen (toplevel)));
if (pixmap == XMUNSPECIFIED_PIXMAP) {
puts ("can't create initial pixmap");
exit (1);
}
* Now create label using pixmap */
ac=0;
XtSetArg(al[ac], XmNIabelType, XmPIXMAP); ac++;
XtSetArg(al[ac], XmNIabelPixmap, pixmap); ac++;
label = XmCreateLabel (main_w, "label", al, ac);
XtManageChild (label);
[* set the label as the "work area" of the main window */
XtVaSetValues (main_w, XmNmenuBar, menubar, XmNworkWindow, label, NULL);
XtManageChild (main_w);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);
}
*
** Popdown routine for the File Selection Box
*
void hide_fsb (Widget w, XtPointer client_data, XtPointer call_data)
{
* This also pops down the XmDialogShell parent of the
** File Selection Box
*
XtUnmanageChild (w);
}

112 Motif Programming Manual



Chapter 4: The Main Window

* Any item the user selects from the File menu calls this function.

** |t will either be "Open" (item_no == 0) or "Quiit" (item_no == 1).

*

void file_cb( Widget widget, # menu item that was selected */
XtPointer  client_data, /* the index into the menu */
XtPointer  call_data) / unused*/

static Widget dialog; /* make it static for reuse */
void load_pixmap(Widget, XtPointer, XtPainter);
int item_no = (int) client_data;

if (tem_no == 1) /* the "quit" item */
exit (0);

[*"Open" was selected. Create a Motif FileSelectionDialog w/callback */

if (\dialog) {
dialog = XmCreateFileSelectionDialog (toplevel, “file_sel", NULL, 0);
XtAddCallback (dialog, XmNokCallback, load_pixmap, NULL);
XtAddCallback (dialog, XmNcancelCallback, hide_fsb, NULL);

}

[* This also pops up the XmDialogShell parent of the File selection box */

XtManageChild (dialog);

}

[* The OK button was selected from the FileSelectionDialog (or, the user
** double-clicked on a file selection). Try to read the file as a bitmap.
** |f the user changed colors, we call this function directly from
** change_color()to reload the pixmap. In this case, we pass NULL as the
** callback struct so we can identify this special case.
*
/
void load_pixmap (Widget dialog, XtPointer client_data, XtPointer call_data)
{
Pixmap pixmap;
char *file = NULL;
XmpFileSelectionBoxCallbackStruct *cbs;

cbs = (XmFileSelectionBoxCallbackStruct *) call_data;
if (cbs) {
file = (char *) XmStringUnparse (cbs->value, NULL,
XMCHARSET_TEXT, XmCHARSET_TEXT,
NULL, O, XmOUTPUT_ALL);
if (file == (char *) 0)
return; /* internal error */
(void) strcpy (cur_bitmap, file);
XtFree (file); /* free allocated data from XmStringUnparse() */
}
pixmap = XmGetPixmap (XtScreen (toplevel), cur_bitmap, cur_color,
WhitePixelOfScreen (XtScreen (toplevel)));
if (pixmap == XMUNSPECIFIED_PIXMAP)
printf ("Can't create pixmap from %s\n", cur_bitmap);
else {
Pixmap old;
XtVaGetValues (label, XmNlabelPixmap, &old, NULL);
XmDestroyPixmap (XtScreen (toplevel), old);
XtVaSetValues (label, XmNIabelType, XmPIXMAP, XmNIlabelPixmap, pixmap,

Motif Programming Manual 113



Chapter 4: The Main Window

NULL);
}

}

[* called from any of the "Edit* menu items. Change the color of the

** current bitmap being displayed. Do this by calling load_pixmap().

*

void change_color ( Widget widget, [* selected menu item */
XtPointer  client_data, /* the index into the menu */
XtPointer  call_data) /*unused */

XColor xcolor, unused;

Display  *dpy = XtDisplay (label);

Colormap cmap = DefaultColormapOfScreen (XtScreen (label));
int item_no = (int) client_data;

if (XAllocNamedColor (dpy, cmap, colors[item_no], &xcolor, &unused) == 0
|| cur_color == xcolor.pixel)
return;

cur_color = xcolor.pixel;
load_pixmap (widget, NULL, NULL);
}

#define MSG \

"Use the FileSelection dialog to find bitmap files to\n\
display in the scrolling area in the main window. Use\n\
the edit menu to display the bitmap in different colors."

[* The help button in the help menu from the menubar was selected.
** Display help information defined above for how to use the program.
** This is done by creating a Motif information dialog box. Again,

** make the dialog static so we can reuse it.

*
void help_ch (Widget widget, XtPointer client_data, XtPointer call_data)
{
static Widget dialog;
if ({dialog) {
Arg args[5];
intn=0;
XmString msg = XmStringCreateLocalized (MSG);
XtSetArg (args[n], XmNmessageString, msg); n++;
dialog =XmCreatelnformationDialog (toplevel, "help_dialog",args, n);
}
[* This also pops up the XmDialogShell parent of the XmMessageBox */
XtManageChild (dialog);
}

114 Motif Programming Manual



Chapter 4: The Main Window

The output of the program is shown in Figure 4-5.

dpnapis
Flle Edit Help

X

Figure 4-5: Output of dynapix.c

The beginning of the program is pretty much as expected. After the toolkit is initialized, the
MainWindow and the MenuBar are created the same way as in the previous examples. Just
after the MenuBar is created, however, we make the following calls:

if (widget = XtNameToWidget (menubar, "button_2")) = (Widget) 0)

XtVaSetValues (menubar, XmNmenuHelpWidget, widget, NULL);

The purpose of these statements is to inform the MenuBar which of its CascadeButtons
contains theHelp menu. Setting the MenuBarXdmNmenuHelpWidget resource to the
CascadeButton returned E¥tNameToWidget() causes the MenuBar to position the
menu specially. Thelelp menu is placed at the far right on the MenuBar; this position is
necessary for the application to conform to Motif style guidelines. For details on how to
support a help system, see Chapte€Custom Dialogsand Chapter 27Advanced Dialog
Programming.

PulldownMenus are created next in the expected manner. The only variation isHdit the
menu, where each item in the menu represents a color. Since only one color can be used at
a time, the color that is currently being used is marked with a diamond-shape indinator
order to get this radio-box behavior, each menu item in the PulldownMenu is a
XmVaRADIOBUTTOANd the menu is told to treat the items as a RadioBox. The analogy is
that of an old car radio, where selecting a new station causes the other selectors to pop out.
Just as you can only have the radio tuned to one station at a time, you may only have one
color set at a time. The RadioBox functionality is managed automatically by the
RowColumn widget that is used to implement the PulldownMenu. Setting the
XmNradioBehavior and XmNradioAlwaysOne  RowColumn resources tdrue

provides the RadioBox behavior. See Chapter lLabels and Buttonsfor a complete

* From Motif 2.0 onwards, the shape partly depends upon the XmDisplay dbjdnableToggleVisual re-
source, and may appear round, as in Figure 4.6.

Motif Programming Manual 115



Chapter 4: The Main Window

description and further examples of this type of behavior. Figure 4-6 shows the RadioBox-
style Edit menu.

dpriapl
Flle | Edit Help

» DAk
Bl
[ ]

{0

Figure 4-6: The Edit menu for dynapix.c

Although the RowColumn manages the RadioBox automatically, we need to turn the radio
on by setting the initial color. After the PulldownMenu is created, the menu (RadioBox) is
initialized so that its first item is selected, since we know that we are using black as the
initial color. XtNameToWidget() is used again to get the appropriate button from the
menu. Since the menu items were created usmyaRADIOBUTTQNhe widget that is
returned is a ToggleButton. ThémNset resource is used to turn the button on. Once the
menu has been initialized, the Motif toolkit handles everything automatically.

Note that when we create thielp menu, there is only one item in the menu. You might
think that it is redundant to have a sinblelp item in theHelp menu, but this design is an
element of Motif style. Théotif Style Guidestates that items on the MenuBar should
always post PulldownMenu, not perform application actions directly.

It is important to note thatXmVaCreateSimplePulldownMenu() returns the
RowColumn widget that contains the items in the menu, even though the routine creates
both the RowColumn widget and its MenuShell parent. The routine does not return the
MenuShell widget that is actually popped up and down when the menu posted. To get a
handle to that widget, you need to u&Parent() on the RowColumn widget. This
design makes sense, since you need access to the RowColumn widget much more often
than you need access to the MenuShell.

Once all of the items have been installed, the MenuBar is managed using
XtManageChil@) . The approach to creating MenuBars, PulldownMenus, menu items, and
their associated callback routines that we have described here is meant to be simple and
straightforward. In some cases, you may find that these techniques are too limiting. For
example, you cannot specify different callback routines for different items in the same
menu, you cannot pass different client data for different items, and you cannot name the
widgets individually. The most inconvenient aspect of this method, however, is that it
requires so much redundant code in order to build a realistically sized MenuBar. Our intent
here is to introduce the basic concepts of menus and to demonstrate the recommended

116 Motif Programming Manual



Chapter 4: The Main Window

design approach for applications. We describe how the menu creation process can be
generalized for large menu systems in Chapter 19.

The rest of Example 1-3 is composed of callback routines that are used by the
PulldownMenu items. For example, when the user selects either of the itemd-ile the
menu, the functiofiile_cb() is called. If theQuit item is selected, thdient data

parameter ik and the program exits. If tt@penitem is selectedslient data is0 and

a FileSelectionDialog is popped up to allow the user to select a new bitmap ?le. The dialog
is created using the convenience routkmCreateFileSelectionDialog() , which
produces the results shown in Figure 4-7. Two callback routines are installed for the dialog:
load_pixmap() , which is called when the user pressesOKebutton, andhide fsh()

which is called when the user selects@amcelbutton. For more detailed information on

the FileSelectionDialog, see Chapter&election Dialogs

fibe_tal_popup

Filt=r
Fusrding luges B0 b teen s ™

Directories Flhe

DEENIREE

-_.'_l 11 'l.'l:"-ﬂl.' _l.-_l
Dashe:
DioraT:
Exzl
FipHor 2
Hipdart

3| Fald

I =

Sadection

Fugrst g Tudes K18 b D epsd

0K Fllter | Cancel Help

Figure 4-7: File FileSelectionDialog for dynapix.c

Theload _pixmap()  function loads a new bitmap from a ?le and displays it in the Label
widget. This function uses the same method for loading a pixmap as was used earlier in
main() .Since the function is invoked as a callback by the FileSelectionDialog, we need to
get the value of the ?le selection. The value is taken fromvalue field of the
FileSelectionDialog’s callback structure{mFileSelectionBoxCallbackStruct

Since the filename is represented as a compound string, it must be converted to a character
string. The conversion is done usiKmStringUnparse()  *, which creates a regular C

string for use byXmGetPixmap() . Theload_pixmap() routine is also called directly

* XmStringGetLtoR () is considered deprecated from Motif 2.0 onwards.

Motif Programming Manual 117



Chapter 4: The Main Window

from change color() , so we need to check thall data  parameter. This parameter
is NULL if the routine is not invoked as a callback.

If XmGetPixmap() succeeds, we get the old pixmap and destroy it using
XmbDestroyPixmap()  before we install the new pixmamGetPixmap() loads and

caches a pixmap. If the function is called more than once for a given image, it returns the
cached image, which saves space because a new version of the pixmap is not allocated for
each call.XmDestroyPixmap()  decrements the reference count for the image; if the
reference count reaches to zero, the pixmap is actually destroyed. Otherwise, another
reference to it may exist, so nothing is done. It is important to use these two functions in
conjunction with each other. However, if you use other pixmap-loading functions to create
pixmaps, you cannot usénDestroyPixmap()  to free them.

The functionchange_color() is used as the callback routine for items inEdé& menu.

The names of the colors are stored indblers  array. The index of a color in this array

is the same as the index of the corresponding menu item in the menu.The color name is
parsed and loaded usin¢AllocNamedColor() , provided that the string exists in the
RGB database (usuallysr/X11R6/lib/rgb.tXt If the routine is successful, it returns a non-
zero status and théColor structure is filled with the RGB data and pixel value. In this
case, load_pixmap() is called to reload the pixmap with the new color. If
XAllocNamedColof) returns zero, or if the returned pixel value is the same as the current
one,change_color() returns, as there is no point in reloading an identical pixmap. For
additional information about loading and using colors, see Volume 1, and Volume 2.

Thehelp_cb() function is the callback routine for thielp menu item on thelelpmenu.

It simply displays an InformationDialog that contains a message describing how to use the
program. See Chapter 5|ntroduction to Dialogsand Chapter 27, Advanced Dialog
Programming for a complete description of these dialogs and suggestions on
implementing a functional help system.

The Command and Message Areas

We have already covered most of what you need to know about the MainWindow of an
application in this chapter and Chapter@yerview of the Motif ToolkifThe material in

the rest of the chapter is considered somewhat advanced, so you could skip the remaining
sections and be relatively secure in moving onto the next chapter. The remaining material
provides details about the MainWindow widget that need to be discussed in order to make
this chapter complete.

The greatest difficulty with the command and message areas of the MainWindow is that
these objects are better defined in the Motif specification than in the Motif toolkit. The
command area is intended to support a tty-style command-line interface to an application.
The command area is not supposed to actdigemor any sort of terminal emulator; it is

just a single-line text area for entering individually typed commands for an application.The

118 Motif Programming Manual



Chapter 4: The Main Window

message area is just an output-only area that is used for error and status messages as needed
by an application. While both of these areas are optional MainWindow elements, the
message area is usually more common than the command area. Nevertheless, let's begin by
discussing the command area.

A command area is especially convenient for applications that are being converted from a
tty-style interface to a graphical user interface. Properly converted, such applications can
do rather well as GUI-based programs, although the conversion can be more difficult than
you might expect. For example, a PostScript interpreter could be implemented using a
command area in the MainWindow. However, since PostScript is a verbose language, it
does not work well with single-line text entry fields.

Example 1-4 shows how the command area can be used to allow the user to input standard
UNIX commands. The output of the commands is displayed in the ScrolledText object,
which is the work area of the MainWindow. For simplicity, we've kept the MenuBar small

so as to dedicate most of the program to the use of the command area.

Example 1-4: The cmd_area.c program

f*cmd_area.c - use a ScrolledText object to view the
** output of commands input by the user in a Command window.
*

#include <Xm/Text.h>

#include <Xm/MainW.h>

#include <Xm/Command.h>
#include <stdio.h> /* For popen() */

f* main() -- initialize toolkit, create a main window, menubar,
** a Command Area and a ScrolledText to view the output of commands.
*

main (int argc, char *argv[])

{

Widget toplevel, main_w, menubar, menu, command_w, text_w;
XtAppContext  app;

XmString file, quit;

extern void exit(int);

void exec_cmd(Widget, XtPointer, XtPointer);

Arg args[5];

int n=0;

XtSetLanguageProc (NULL, NULL, NULL);

[* initialize toolkit and create toplevel shell */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

* XtVaApplnitialize () is considered deprecated in X11R@StringGetLtoR () is deprecated in Motif 2.0:
XmStringUnparse () is the preferred function.

Motif Programming Manual 119



Chapter 4: The Main Window

sessionShellWidgetClass, NULL);
(void) close (0); /* don't let commands read from stdin */

* MainWindow for the application -- contains menubar, ScrolledText

** and CommandArea (which prompts for filename).

*

n=0;

XtSetArg(args[n], XmNcommandWindowLocation,
XmCOMMAND_BELOW_WORKSPACE); n++;

main_w = XmCreateMainWindow (toplevel, "main_w", args, n);

[* Create a simple MenuBar that contains one menu */

file = XmStringCreateLocalized ("File");

menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",
XmVaCASCADEBUTTON, file, 'F, NULL);

XmStringFree (file);

[+ "File" menu has only one item (Quit), so make callback exit() */
quit = XmStringCreateLocalized ("Quit");
menu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0,
(void (*)() exit,
XmVaPUSHBUTTON, quit, 'Q’, NULL, NULL, NULL);
XmStringFree (quit);

f* Menubar is done -- manage it */
XtManageChild (menubar);

[* Create ScrolledText - this is work area for the MainWindow */
n=0;

XtSetArg (args[n], XmNrows, 24); n++;

XtSetArg (args[n], XmNcolumns, 80); n++;

XtSetArg (args[n], XmNeditable, False); n++;

XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT);n++;
text_ w = XmCreateScrolledText (main_w, “text_w", args, n);
XtManageChild (text_w);

[* store text_w as user data in "File" menu for file_ch() callback */
XtVaSetValues (menu, XmNuserData, text_w, NULL);

[* Create the command area -- this must be a Command class widget */
file = XmStringCreateLocalized (“Command:");
n=0;
XtSetArg(args[n], XmNpromptString, file); n++;
command_w = XmCreateCommand (main_w, "command_w", args, n);
XmStringFree (file);
XtAddCallback (command_w, XmNcommandEnteredCallback, exec_cmd,
(XtPointer) text_w);
XtVaSetValues (command_w,
XmNmenuBar, menubar,
XmNcommandWindow, command_w,
XmNworkWindow, XtParent (text_w),
NULL);
XtManageChild (command_wj);

120 Motif Programming Manual



Chapter 4: The Main Window

XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

* execute the command and redirect output to the ScrolledText window */

voidexec_cmd (Widget cmd_widget, /¥ command, not Text widget */
XtPointer  client_data, /* passed text w client_data */
XtPointer  call_data)

char *cmd, buf[BUFSIZ];

XmTextPosition pos;

FILE *pp, *popen();

Widget text_w = (Widget) client_data;
XmCommandCallbackStruct‘cbs = (XmCommandCallbackStruct *) call_data;

cmd = (char *) XmStringUnparse (cbs->value, XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT, XmCHARSET_TEXT, NULL, 0, XmOUTPUT_ALL);

if (‘lemd || emd) {
[* nothing typed? */
if (cmd)
XtFree (cmd);
return;
}
* make sure the file is a regular text file and open it */
if ((pp = popen (cmd, "r")) == (FILE *) 0)
perror (cmd);
XtFree (cmd);
if (pp == (FILE *) 0)
return;
[* Clear output from any previous command */
XmTextSetString (text_w, “);

[* put the output of the command in the Text widget by reading

* until EOF (meaning that the command has terminated).

*

for (pos = 0; fgets (buf, sizeof (buf), pp) ; pos += strlen (buf))
XmTextReplace (text_w, pos, pos, buf);

(void) pclose (pp);
}

This example uses a Command widget for the command area. The output of the program is
shown in Figure 4-8. The Command widget provides a command entry area and a
command history area. However, you do not necessarily have to use a Command widget

Motif Programming Manual 121



Chapter 4: The Main Window

for the command area. A TextField widget can be used instead to provide a simple
command area.

T ] 1 TR L™

Figure 4-8: Output from the cmd_area program

When we created the MainWindow, we set XmNcommandwWindowLocation resource

to XmCOMMAND_BELOW_ WORKSRA@H caused the command area to be placed below
the work window. Although the default value of the resourcEnECOMMAND_ABOVE _
WORKSPACHeStyle Guideecommends that the command area be positioned beneath the
work window, rather than above it. You need to explicitly set the value of
XmNcommandWindowLocation to ensure that the command area is positioned
appropriately.

Note that we use the ScrolledWindow that is createxnb@reateScrolledText() for

the work window, rather than the scrolling area provided by the MainWindow. Since
XmCreateScrolledText() returns a Text widget, we are careful to use the parent of the
Text widget for theXmNworkWindow resource of the MainWindow. We set the areas of the
MainWindow usinghe standard XtVaSetValues() routine i

Note that it is not entirely necessary to explicitly specify the roles each child of the
MainWindow will perform. When you create a widget as a child of a MainWindow widget,
the MainWindow checks the type of the widget you are adding. If the new widget is a
RowColumn that is being used as a MenuBanNrowColumnType is XmMENU_BARhe
MainWindow automatically uses it for the menu bar.This same check is performed for a

* In Motif 2.0 and later XmMainWindowSetAreas () is considered deprecated.

122 Motif Programming Manual



Chapter 4: The Main Window

Command widget, which is automatically used as the command area. The resources you
can use to specify child roles are:

XmNmenuBar XmNcommandWindow
XmNverticalScrollBar XmNhorizontalScrollBar
XmNworkWindow XmNmessageWindow

Once one of these values is set, it cannot be relelity although it can be reset to another
widget.

The message area is important in most applications, since it is typically the place where
brief status and informational messages are displayed. The message area can be
implemented using different widgets, such as a read-only Text widget, a read-only
ScrolledText object, or a Label widget. Using a Label widget as the message area is quite
simple and really doesn't require any explanat@mapter 18Text Widgetsdescribes how

to use a read-only text area for the message area in a MainWindow.

If you specify theXmNmessageWindowresource, the message area is positioned across the
bottom of the MainWindow. If you are not satisfied with how the MainWindow handles the
layout of the message area, you can make the message area widget a child of the work area
manager widget and handle the layout yourself.

Using Resources

Resources specific to the MainWindow and its sub-elements can be useful when
configuring the default appearance of your application. If you set these resourcapm an
defaults?le, the specifications can also provide a framework for users to follow when they
want to set their own configuration parameters. Even users who are sophisticated enough
to figure out how X resource files work still copy existing files and modify them to their
own tastes. To assist users, the app-defaults file for an application should be informative
and complete, even though it might be lengthy.

Of course, the first step in specifying resources in an app-defaults ?le is to determine
exactly which aspects of the program you want to be configurable. Remember, consistency
is the only way to keep from completely confusing a user. Once you have decided which
portions of the application are going to be configurable, you can set resource values by
specifying complete widget hierarchies. As an example, let’s specify some resources for the
menu system frordynapix.c The application creates théde menu in the following way:

XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,
XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, 'Q', NULL, NULL,
NULL);

We can add accelerators to both thpen and Quit menu items using the following
resource specifications:

Motif Programming Manual 123



Chapter 4: The Main Window

dynapix.main_window.menubar*button_0.accelerator: Ctri<Key>0
dynapix.main_window.menubar*button_0.acceleratorText: Ctr+O
dynapix.main_window.menubar*button_1.accelerator: Ctri<Key>C
dynapix.main_window.menubar*button_1.acceleratorText: Ctr+C

The result is shown in Figure 4-9.

dymapix i
[Fite pait Halp
Qpen. Crrlea™
quit  Ctrlsc

Figure 4-9: The File menu for dynapix.c with accelerators

These resource settings work becadsaNaccelerator  and XmNacceleratorText

were not hard-coded by the application. By the same token, the labels of the MenuBar titles
and the menu items in the PulldownMenus are hard-coded values that cannot be modified
through resources. To relax this restriction, you could try settinglitle  andmnemonic
parameters t&NULL in calls toXmVaCreateSimplePulldownMenu() . Unfortunately,

this technique makes resource specification awfully messy, since the CascadeButtons in the
MenuBar and the various PulldownMenus all have names of theljotton_  n. The

other alternative is to use the more advanced methods of menu creation that are described
in Chapter 19.

The MainWindow provides a few other resources that control different visual attributes:
they are XmNmainWindowMarginHeight , XmNmainWindowMarginWidth , and
XmNshowSeparator . The XmNshowSeparator resource controls whether or not
Separator widgets are displayed between the different areas of a MainWindow. The margin
resources specify the width and height of the MainWindow’s margins. Generally, these
resources should not be set by the application, but left to the user to specify. For example:

*XmMainwWindow.showSeparator: True

*XmMainWindow.mainWindowMarginWidth: 10

*XmMainwWindow.mainWindowMarginHeight: 10
The class name for the MainWindow widgeXmmMainWindow. If these resource settings
were specified in an app-defaults ?le, they would affect all of the MainWindow widgets in
the application. If a user makes these specifications itXtdefaults?le, they would apply
to all MainWindow widgets in all applications.

124 Motif Programming Manual



Chapter 4: The Main Window

Summary

This chapter introduced you to the concepts involved in creating the main window of an
application.To a lesser degree, we showed you how the MainWindow widget can be used
to accomplish some of the necessary tasks. We identified the areas involved in a
MainWindow and used some convenience routines to build some adequate prototypes.

The MainWindow can be difficult to understand because of its capabilities as a
ScrolledWindow and because it supports the management of so many other objects. The
work area of a MainWindow usually contains a manager widget that contains other
widgets. Although the MainWindow can handle the layout of its different areas, we do not
necessarily encourage you to use all its of its features. For larger, production-style
applications, you would probably be better off using the MainWindow for the sake of the
MenuBar, while placing the rest of the layout in the hands of a more general-purpose
manager widget. These are described in ChaptdaBager Widgets

You could also decide not to use the MainWindow widget at all. If done properly, you could
probably use one of the manager widget classes described in Chadtanayer Widgets

and still be Motif-compliant. Depending on your application, you might find this technique
easier to deal with than the MainWindow widget.

Exercises

Based on the material in this chapter, you should be able to do the following exercises:
1. Modify dynapix.cto have a new PulldownMenu that controls the background color of
the pixmap.

2. Modify dynapix.cso that it has a command area. The callback for the Command
widget should understand either filenames or color names. If you feel adventurous, try
to have it understand both the commafid and the commandaolor . Each
command would take a second argument indicating the ?le or color to use.

Motif Programming Manual 125



Chapter 4: The Main Window

126 Motif Programming Manual



In this chapter:

e The Purpose of Dialogs
e The Anatomy of a Dialog
» Creating Motif Dialogs

» Dialog Resources

* Dialog Callback Routines

* Piercing the Dialog
Abstraction

 Dialog Modality |ntrOdUCt|0n tO
e Dialogs

This chapter describes the fundamental concepts that underlie all Motif dialogs. It provides
a foundation for the more advanced material in the following chapters. In the course of the
introduction, the chapter also provides information about Motif's predefined
MessageDialog classes.

In Chapter 4The Main Windowwe discussed the top-level windows that are managed by
the window manager and that provide the overall framework for an application. Most
applications are too complex to do everything in one main top-level window. Situations
arise that call for secondary windows,tiansient windowsthat serve specific purposes.
These windows are commonly referred tala@dog boxesor more simply as dialogs.

Dialog boxes play an integral role in a GUI-based interface such as Motif. The examples in
this book use dialogs in many ways, so just about every chapter can be used to learn more
about dialogs. We've already explored some of the basic concepts in ChafterNotif
Programming Modeland Chapter,3verview of the Motif ToolkiHowever, the use of
dialogs in Motif is quite complex, so we need more detail to proceed further.

The Motif Style Guidemakes a set of generic recommendations about how all dialogs
should look. Thétyle Guideaalso speci?es precisely how certain dialogs should look, how
they should respond to user events, and under what circumstances the dialogs should be
used. We refer to these dialogs as predefined Motif dialogs, since the Motif toolkit
implements each of them for you. These dialogs are completely self-sufficient, opaque
objects that require very little interaction from your application. In most situations, you can
create the necessary dialog using a single convenience routine and you're done. If you need
more functionality than what is provided by a predefined Motif dialog, you may have to
create your own customized dialog. In this case, building and handling the dialog requires
a completely different approach.

There are three chapters on basic dialog usage in this book - two on the predefined Motif
dialogs and one on customized dialogs. There is also an additional chapter later in the book
that deals with more advanced dialog topics. This first chapter discusses the most common

Motif Programming Manual 127



Chapter 5: Introduction to Dialogs

class of Motif dialogs, called MessageDialogs. These are the simplest kinds of dialogs; they
typically display a short message and use a small set of standard responses(d(ch as
Yes orNo. These dialogs are transient, in that they are intended to be used immediately and
then dismissed. MessageDialogs define resources and attributes that are shared by most of
the other dialogs in the Motif toolkit, so they provide a foundation for us to build upon in
the later dialog chapters. Although Motif dialogs are meant to be opaque objects, we will
examine their implementation and behavior in order to understand how they really work.
This information can help you understand not only what is happening in your application,
but also how to create customized dialogs.

Chapter 6 Selection Dialogsdescribes another set of predefined Motif dialogs, called
SelectionDialogs. Since these dialogs are the next step in the evolution of dialogs, most of
the material in this chapter is applicable there as well. SelectionDialogs typically provide
the user with a list of choices. These dialogs can remain displayed on the screen so that they
can be used repeatedly. ChapterCustom Dialogsaddresses the issues of creating
customized dialogs, and Chapter, Zdvanced Dialog Programmingliscusses some
advanced topics in X and Motif programming using dialogs as a backdrop.

The Purpose of Dialogs

For most applications, it is impossible to develop an interface that provides the full
functionality of the application in a single main window. As a result, the interface is

typically broken up into discrete functional modules, where the interface for each module
is provided in a separate dialog box.

As an example, consider an electronic mail application. The broad range of different

functions includes searching for messages according to patterns, composing messages,
editing an address book, reporting error messages, and so on. Dialog boxes are used to
display simple messages, as shown in Figure 5-1. They are also used to prompt the user to

ErmerageEo
This 5 & Messags

Ok Cangzl Halp

Figure 5-1: A Message dialog

128 Motif Programming Manual



Chapter 5: Introduction to Dialogs

answer simple questions, as shown in Figure 5-2. A dialog box can also present a more

Figure 5-2: A Question dialog

complicated interaction, as shown in Figure 5-3.

farnfectamatiF3. 1 i 11y /vo luessR/Chmter i Custon

custom dialog. d
custon call backs.
custon, dial o9, H

Figure 5-3: A Custom dialog

In Figure 5-3, many different widget classes are used to provide an interface that allows the
user to generate code from a popular Motif GUI builder. The purpose of a dialog is to focus
on one particular task in an application. Since the scope of these tasks is usually quite
limited, an application usually provides them in dialog boxes, rather than in its main
window.

There is actually no such thing as a dialog widget class in the Motif toolkit. A dialog is
actually made up of a DialogShell widget and a manager widget child that implements the
visible part of the dialog. The DialogShell interacts with the window manager to provide

Motif Programming Manual 129



Chapter 5: Introduction to Dialogs

the transient window behavior required of dialogs. When we refer to a dialog widget, we
are really talking about the manager widget and all of its children collectively.

When you write a custom dialog, you simply create and manage the children of the
DialogShell in the same way that you create and manage the children of a top-level
application shell. The predefined Motif dialogs follow the same approach, except that the
toolkit creates the manager widget and all of its children internally. Most of the standard
Motif dialogs are composed of a DialogShell and either a MessageBox or SelectionBox
widget. Each of these widget classes creates and manages a number of internal widgets
without application intervention. See ChapterGyerview of the Motif Toolkito review

the various types of predefined Motif dialogs.

All of the predefined Motif dialogs are subclassed from the BulletinBoard widget class. As
such, a BulletinBoard can be thought of as the generic dialog widget class, although it can
certainly be used as generic manager widget (see Chaptan8dger Widge)s Indeed, a

dialog widget is a manager widget, but it is usually not treated as such by the application.
The BulletinBoard widget provides the keyboard traversal mechanisms that support
gadgets, as well as a number of dialog-specific resources.

It is important to note that for the predefined Motif dialogs, each dialog is implemented as
a single widget class, even though there are smaller, primitive widgets under the hood.
When you create a MessageBox widget, you automatically get a set of Labels and
PushButtons that are laid out as described irMbgf Style GuideWhat is not created
automatically is the DialogShell widget that manages the MessageBox widget. You can
either create the shell yourself and place the MessageBox in it or use a Motif convenience
routine that creates both the shell and its dialog widget child.

The Motif toolkit uses the DialogShell widget class as the parent for all of the predefined
Motif dialogs. In this context, a MessageBox widget combined with a DialogShell widget
creates what the Motif toolkit calls a MessageDialog. A careful look at terminology can
help you to distinguish between actual widget class and Motif compound objects. The name
of the actual widget class endsHaox, while the name of the compound object made up of
the widget and a DialogShell ends ialog . For example, the convenience routine
XmCreateMessageBox()  creates a MessageBox widget, which you need to place inside
of a DialogShell yourself. Alternatively XmCreateMessageDialog() creates a
MessageDialog composed of a MessageBox and a DialogShell.

Another point about terminology involves the commonly-used term dialog box. When we
say dialog box, we are referring to a compound object composed of a DialogShell and a
dialog widget, not the dialog widget alone. This terminology can be confusing, since the
Motif toolkit also provides widget classes that entor .

One subtlety in the use of MessageBox and SelectionBox widgets is that certain types of
behavior depend on whether or not the widget is a direct child of a DialogShell. For
example, theMotif Style Guidesays that clicking on th®K button in the action area of a

130 Motif Programming Manual



Chapter 5: Introduction to Dialogs

MessageDialog invokes the action of the dialog and then dismisses the dialog.
Furthermore, pressing the RETURN key anywhere in the dialog is equivalent to clicking
on theOK button. However, none of this takes place when the MessageBox widget is not
a direct child of a DialogShell.

Perhaps the most important thing to remember is how the Motif toolkit treats dialogs. Once
a dialog widget is placed in a DialogShell, the toolkit tends to treat the entire combination
as a single entity. In fact, as we move on, you'll find that the toolkit’s use of convenience
routines, callback functions, and popup widget techniques all hide the fact that the dialog
is composed of these discrete elements. While the Motif dialogs are really composed of
many primitive widgets, such as PushButtons and TextFields, the single-entity approach
implies that you never access the subwidgets directly. If you want to change the label for a
button, you set a resource specific to the dialog class, rather than getting a handle to the
button widget and changing its resource. Similarly, you always install callbacks on the
dialog widget itself, instead of installing them directly on buttons in the control or action
areas.

This approach may be confusing for those already familiar with Xt programming, but not
yet familiar with the Motif toolkit. Similarly, those who learn Xt programming through
experiences with the Motif toolkit might get a misconception of what Xt programming is
all about. We try to point out the inconsistencies between the two approaches so that you
will understand the boundaries between the Motif toolkit and its Xt foundations.

The Anatomy of a Dialog

As described in Chapter 3Qverview of the Motif Toolkitdialogs are typically broken

down into two regions known as the control and action areas. The control area is also
referred to as the work area. The control area contains the widgets that provide the
functionality of the dialog, such as Labels, ToggleButtons, and List widgets. The action
area contains PushButtons whose callback routines actually perform the action of the
dialog box. While most dialogs follow this pattern, it is important to realize that these two
regions represent user-interface concepts and do not necessarily reflect how Motif dialogs
are implemented.

Motif Programming Manual 131



Chapter 5: Introduction to Dialogs

Figure 5-4 shows these areas in a sample dialog box.

Color Sabaction
ST -EIEI?
| 1] ! 1
Rl Hu
51896
| I I J
Crasn & TuraThan
__________fGieds 43304
| i |
Blu= Erighiress
—EColors- ——Codor chjiects
Py B — Control
raney biue Area
MauyElue |
cn:-ran-:r.-.l-r blu=
I
dAark shate bl
DarkSlataElus
tlats s
AR | Marms
A
Coddr nams
Kernflamar Bl o Hﬂﬂ EIElEtlI‘_
Salections CrenflawerEl e -
| Aoply) Close | Help | I Action
| Area

Figure 5-4: A sample dialog

The Motif Style Guidedescribes in a general fashion how the control and action areas for
all dialogs should be laid out. For predefined Motif dialogs, the control area is rigidly
specified. For customized dialogs, there is only a general set of guidelines to follow. The
guidelines for the action area specify a number of common actions that can be used in both
predefined Motif dialogs and customized dialogs. These actions have standard meanings
that help ensure consistency between different Motif applications.

By default, the predefined Motif MessageDialogs provide three action buttons, which are
normally labelledOK, Cance| andHelp, respectively. SelectionDialogs provide a fourth
button, normally labelleépply, which is placed between tlK andCancelbuttons. This
button is created but not managed, so it is not visible unless the application explicitly
manages it. Th&tyle Guidespecifies that th©K button applies the action of the dialog
and dismisses it, while thpply button applies the action but does not dismiss the dialog.
The Cancelbutton dismisses the dialog without performing any action other than resetting

132 Motif Programming Manual



Chapter 5: Introduction to Dialogs

the dialog to the initial state, and tHelp button provides any help that is available for the
dialog'. When you are creating custom dialogs, or even when you are using the predefined
Motif dialogs, you may need to provide actions other than the default ones. If so, you
should change the labels on the buttons so that the actions are obvious. You should try to
use the common actions defined byMaif Style Guidef they are appropriate, since these
actions have standard meanings. We will address this issue further as it comes up in
discussion; it is not usually a problem until you create your own customized dialogs, as
described in Chapter TCustom Dialogs

Creating Motif Dialogs

Under most circumstances, creating a predefined Motif dialog box is very simple. All Motif
dialog types have corresponding convenience routines that simplify the task of creating and
managing them. For example, a standard MessageDialog can be created as shown in the
following code fragment:

#include <Xm/MessageB.h>

extern Widget parent;

Widget dialog;
Arg arg[s];
XmString Xms;
int n=0;

xms = XmStringCreateLocalized ("Hello World");

XtSetArg (arg[n], XmNmessageString, xms); n++;

dialog = XmCreateMessageDialog (parent, "message", arg, n);

XmStringFree (xms);
The convenience routine does almost everything automatically.The only thing that we have
to do is specify the message that we want to display.

Dialog Header Files

As we mentioned earlier, there are two basic types of predefined Motif dialog boxes:
MessageDialogs and SelectionDialogs. MessageDialogs present a simple message, to
which a yes QK) or no Cance) response usually suffices. There are six types of
MessageDialogs: ErrorDialog, InformationDialog, QuestionDialog, TemplateDialog,
WarningDialog, and WorkingDialog. These types are not actually separate widget classes,
but rather instances of the generic MessageDialog that are configured to display different
graphic symbols. All of the MessageDialogs are compound objects that are composed of a
MessageBox widget and a DialogShell. When using MessageDialogs, you must include the
?le Xm/MessageB:h

* A more complete list of the pre-defined actions is given in Section 7.2.4. Note that Figure 5-4 has a button la-
belledCloserather tharCance| because the dialog in this instance is popped down without any reset.

Motif Programming Manual 133



Chapter 5: Introduction to Dialogs

SelectionDialogs allow for more complicated interactions. The user can select an item from
a list or type an entry into a TextField widget before acting on the dialog. There are
essentially four types of SelectionDialogs, although the situation is a bit more complex than
for MessageDialogs. The PromptDialog is a specially configured SelectionDialog; both of
these dialogs are compound objects that are composed of a SelectionBox widget and a
DialogShell. The Command widget and the FileSelectionDialog are based on separate
widget classes. However, they are both subclassed from the SelectionBox and share many
of its features. When we use the general term “selection dialogs”, we are referring to these
three widget classes plus their associated dialog shells. To use a SelectionDialog, you must
include the file Xm/SelectioBh."For FileSelectionDialogs, the appropriate include ?le is
<Xm/FileSB.k, and for the Command widget it iXm/Commandh

Creating a Dialog

You can use any of the following convenience routines to create a dialog box.They are
listed according to the header ?le in which they are declared:

<Xm/MessageB=

Widget XmCreateMessageBox(Widget, char *, ArgList, Cardinal)
Widget XmCreateMessageDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateErrorDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreatelnformationDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateQuestionDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateTemplateDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateWarningDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateWorkingDialog(Widget, char *, ArgList, Cardinal)

<Xm/SelectioBi#

Widget XmCreateSelectionBox(Widget, char *, ArgList, Cardinal)
Widget XmCreateSelectionDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreatePromptDialog(Widget, char *, ArgList, Cardinal)

<Xm/FileSB.h:
Widget XmCreateFileSelectionBox(Widget, char *, ArgList, Cardinal)
Widget XmCreateFileSelectionDialog(Widget, char *, ArgList, Cardinal)

<Xm/Command

Widget XmCreateCommand(Widget, char *, ArgList, Cardinal)
Each of these routines creates a dialog widget. In addition, the routines thaDetabjin
automatically create a DialogShell as the parent of the dialog widget. All of the
convenience functions for creating dialogs use the standard Motif creation routine format.
For exampleXmCreateMessageDialog() takes the following form:

Widget XmCreateMessageDialog (Widget parent, char *name,
ArgList arglist; Cardinal argcount)

* Yes, you read that right. It does, in fact, r&alectioB.lThe reason for the missimgs there is a fourteen-char-
acter filename limit on UNIX System V machines.

134 Motif Programming Manual



Chapter 5: Introduction to Dialogs

In this case, we are creating a common MessageDialog, which is a MessageBox with a
DialogShell parent.Thparent parameter speci?es the widget that acts as the owner or
parent of the DialogShell. Note that the parent must not be a gadget, since the parent must
have a window associated with it. The dialog widget itself is a child of the DialogShell. You
are returned a handle to the newly created dialog widget, not the DialogShell parent. For
the routines that just create a dialog widget,gagent parameter is simply a manager
widget that contains the dialog.

The arglist  andargcount parameters for the convenience routines specify resources
using the old-stylérgList format, just like the rest of the Motif convenience routines. A
varargs-style interface is not available for creating dialogs. However, you can use the
varargs-style interface for setting resources on a dialog after is has been created by using
XtVaSetValues()

Setting Resources

There are a number of resources and callback functions that apply to almost all of the Motif
dialogs. These resources deal with the action area buttons in the dialogs. Other resources
only apply to specific types of dialogs; they deal with the different control area components
such as Labels, TextFields, and List widgets. The different resources are listed below,
grouped according to the type of dialogs that they affect:

General dialog resources

XmNokLabelString XmNokCallback
XmNcancelLabelString XmNcancelCallback
XmNhelpLabelString XmNhelpCallback

MessageDialog resources
XmNmessageString XmNsymbolPixmap
SelectionDialog resources

XmNapplyLabelString XmNapplyCallback
XmNselectionLabelString XmNlistLabelString

FileSelectionDialog resources

XmNfilterLabelString XmNdirListLabelString
XmNfileListLabelString

Command resources
XmNpromptString

The labels and callbacks of the various buttons in the action area are specified by resources
based on the standard Motif dialog button names. For exampéniNekLabelString

resource is used to set the label for@€button.XmNokCallback is used to specify the
callback routine that the dialog should call when that button is activated. As discussed

Motif Programming Manual 135



Chapter 5: Introduction to Dialogs

earlier, it may be appropriate to change the labels of these buttons, but the resource and
callback names will always have names that correspond to their default labels.

The XmNmessageString resource speci?es the message that is displayed by the
MessageDialog. Th&XmNsymbolPixmap resource specifies the iconic symbol that is
associated with each of the MessageDialog types. This resource is rarely changed, so
discussion of it is deferred until Chapter 27.

The other resources apply to the different types of selection dialogs. For example,
XmNselectionLabelString sets the label that is placed above the list area in a
SelectionDialog. These resources are discussed in Chapter 6.

All of these resources apply to the Labels and PushButtons in the different dialogs. It is
important to note that they are different from the usual resources for Labels and

PushButtons. For example, the Label resoXrobllabelString  would normally be used

to specify the label for both Label and PushButton widgets. Dialogs use their own resources
to maintain the abstraction of the dialog widget as a discrete user-interface object.

Another important thing to remember about the resources that refer to widget labels is that
their values must be specified as compound strings. Compound strings allow labels to be
rendered in arbitrary fonts and to span multiple lines. See Chapt€o&fpound Strings

for more information.

The following code fragment demonstrates how to specify dialog resources and callback
routines:

Widget dialog;
XmString msg, yes, no;
externvoid  my_callback(Widget, XtPointer, XtPointer);

dialog = XmCreateQuestionDialog (parent, "dialog", NULL, 0);

yes = XmStringCreatelLocalized ("Yes");

no = XmStringCreatelLocalized ("No");

msg = XmStringCreateLocalized ("Do you want to quit?");

XtVaSetValues (dialog, XmNmessageString, msg, XmNokLabelString, yes,
XmNcancelLabelString, no, NULL);

XtAddCallback (dialog, XmNokCallback, my_callback, NULL);

XtAddCallback (dialog, XmNcancelCallback, my_callback, NULL);

XmStringFree (yes);
XmStringFree (no);
XmStringFree (msg);

Dialog Management

None of the Motif toolkit convenience functions manage the widgets that they create, so the
application must calktManageChild() explicitly. It just so happens that managing a

dialog widget that is the immediate child of a DialogShell causes the entire dialog to pop
up. Similarly, unmanaging the same dialog widget causes it and its DialogShell parent to

136 Motif Programming Manual



Chapter 5: Introduction to Dialogs

pop down. This behavior is consistent with the Motif toolkit’s treatment of the dialog/shell
combination as a single object abstraction. The toolkit is treating its own dialog widgets as
opaque objects and trying to hide the fact that there are Dialog Shells associated with them.
The toolkit is also making the assumption that when the programmer manages a dialog, she
wants it to pop up immediately.

This practice is somewhat confusing to experienced programmers of Xt, who are used to
calling the routineXtPopup () andXtPopdown () to display and hide a dialog. You should
note that managing or unmanagimy immediate child of a Motif DialogShell will cause

the whole dialog to appear or disappear respectively: this behavior is not restricted to just
the built-in Motif dialog objects

For referenceXtPopup () andXtPopdown () take the following forms:

void XtPopup (Widget shell , XtGrabKind grab_kind )

void XtPopdown (Widget shell )
The shellparameter to the function must be a shell widget; in this case it happens to be a
DialogShell. If you created the dialog using one of the Motif convenience routines, you can
get a handle to the DialogShell by calliktiParent()  on the dialog widget.

The grab_kind parameter can be one oftGrabNone , XtGrabNonexclusive , or
XtGrabExclusive . We almost always usé&GrabNone , since the other values imply a
server grabwhich means that other windows on the desktop are locked out. Grabbing the
server results in what is calladodality, it implies that the user cannot interact with
anything but the current dialog. While a grab may be desirable in some cases, the Motif
toolkit provides some predefined resources that handle the grab for you automatically. The
advantage of using this alternate method is that it allows the client to communicate more
closely with the Motif Window Managemiwvn) and it provides for different kinds of
modality. These methods are discussed in Section 5.7.1. For detailed information on
XtPopup() and the different uses @rab_kind see Volume 4X Toolkit Intrinsics
Programming Manual

Let's take a closer look at how dialogs are really used in an application. Examining the
overall design and the mechanics that are involved will help to clarify a number of issues
about managing and unmanaging dialogs and DialogShells. The program listed in Example
5-1 displays an InformationDialog when the user presses a PushButton in the application’s
main window!

Example 5-1: The hello_dialog.c program

[*hello_dialog.c -- your typical Hello World program using
** an InformationDialog.

* To be more precise, the ChangeManaged() method of the DialogSheKigaf®ip () andXtPopdown () in-
ternally, provided that thEmNmappedWhenManagedesource of the DialogShell is true (the default).

T XtVaApplnitialize () is considered deprecated in X11R6.

Motif Programming Manual 137



Chapter 5: Introduction to Dialogs

138

*

#include <Xm/RowColumn.h>
#include <Xm/MessageB.h>
#include <Xm/PushB.h>

main (int argc, char *argv[])

{

}

XtAppContext app;

Widget toplevel, rc, hpb, gpb;

[* callbacks for the pushbuttons -- pops up dialog */

void popup_callback(Widget, XtPointer, XtPointer);
void exit_callback(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, O, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

rc = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);

hpb = XmCreatePushButton (rc, "Hello", NULL, 0);
XtAddCallback (hpb,
XmNactivateCallback,
popup_callback,
(XtPointer) "Hello World");

gpb = XmCreatePushButton (rc, "Goodbye", NULL, 0);
XtAddCallback (gpb, XmNactivateCallback, exit_callback, NULL);

XtManageChild (hpb);
XtManageChild (gpby);
XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

[* callback for the “Hello” PushButton.
** Popup an InformationDialog displaying the text passed as the client
** data parameter.

*

void popup_callback (Widget button, XtPainter client_data,

{

XtPointer call_data)

Widget dialog;
XmString  xm_string;

void activate_callback(Widget, XtPointer, XtPointer);
Arg args[s];

int n=0;

char *text = (char *) client_data;

/* set the label for the dialog */

xm_string = XmStringCreateLocalized (text);

XtSetArg (args[n], XmNmessageString, xm_string); n++;
[* Create the InformationDialog as child of button */

Motif Programming Manual



Chapter 5: Introduction to Dialogs

dialog = XmCreatelnformationDialog (button, “info", args, n);
/* no longer need the compound string, free it */
XmStringFree (xm_string);
* add the callback routine */
XtAddCallback (dialog, XmNokCallback, activate_callback, NULL);
* manage the MessageBox: has the side effect of displaying the
XmDialogShell parent*/
XtManageChild (dialog);
}

*
** callback routine when the user pressed the “Goodbye” button
*
!
void exit_callback (Widget w, XtPointer client_data, XtPointer call_data)

{
}

exit (0);

[* callback routine for when the user presses the OK button.
** Yes, despite the fact that the OK button was pressed, the
** widget passed to this callback routine is the dialog!
*
void activate_callback (Widget dialog,
XtPainter client_data,
XtPointer call_data)

{
puts ("OK was pressed.");

}
The output of this program is shown in Figure 5-5.

il
Helka

| Gaodiye P e iy

i Helboworid

o Cancel Help

Figure 5-5: Output of the hello_dialog program

Dialogs are often invoked from callback routines attached to PushButtons or other
interactive widgets. Once the dialog is created and popped up, control of the program is
returned to the main event-handling logitAppMainLoop() ),where normal event
processing resumes. At this point, if the user interacts with the dialog by selecting a control
or activating one of the action buttons, a callback routine for the dialog is invoked. In
Example 5-1, we happen to use a MessageDialog, but the type of dialog used is irrelevant
to the model.

Motif Programming Manual 139



Chapter 5: Introduction to Dialogs

When the PushButton in the main window is prespepup_callback() is called. A

text string that is used as the message to display in the InformationDialog is passed as client
data. The dialog uses a single callback routiagivate callback() , for the
XmNokCallback resource. This function is invoked when the user pressé&3Ktoitton.

The callback simply prints a message to standard output that the button has been pressed.
Similar callback routines could be installed for @ncelandHelp buttons through the
XmNcancelCallback  andXmNhelpCallback resources.

Closing Dialogs

You might notice that activating either t&é& or theCancelbutton in the previous example
causes the dialog to be automatically popped downMidté Style Guidesays that when

any button in the action area of a predefined Motif dialog is pressed, except lftelthe
button, the dialog should be dismissed. The Motif toolkit takes this specification at face
value and enforces the behavior, which is consistent with the idea that Motif dialogs are
self-contained, self-sufficient objects. They manage everything about themselves from
their displays to their interactions with the user. And when it's time to go away, they
unmanage themselves. Your application does not have to do anything to cause any of the
behavior to occur.

Unfortunately, this behavior does not take into account error conditions or other
exceptional events that may not necessarily justify the dialog’s dismissal. For example, if
pressingOK causes a ?le to be updated, but the operation fails, you may not want the dialog
to be dismissed. If the dialog is still displayed, the user can try again without having to
repeat the actions that led to popping up the dialog.

The XmNautoUnmanage resource provides a way around the situation. This resource
controls whether the dialog box is automatically unmanaged when the user selects an action
area button other than tielp button. If XmNautoUnmanage is True , after the callback
routine for the button is invoked, the DialogShell is popped down and the dialog widget is
unmanaged automatically. However, if the resource is sEtlse , the dialog is not
automatically unmanaged. The value of this resource defadltseofor MessageDialogs

and SelectionDialogs; it defaultsFalse for FileSelectionDialogs.

Since it is not always appropriate for a dialog box to unmanage itself automatically, it turns
out to be easier to seémNautoUnmanage to False in most circumstances. This
technique makes dialog management easier, since it keeps the toolkit from indiscriminately
dismissing a dialog simply because an action button has been activated. While it is true that
we could program around this situation by callXiPopup() or XtManageChild()

from a callback routine in error conditions, this type of activity is confusing because of the
double-negative action it implies. In other words, programming around the situation is just
undoing something that should not have been done in the first place.

140 Motif Programming Manual



Chapter 5: Introduction to Dialogs

This discussion brings up some issues about when a dialog should be unmanaged and when
it should be destroyed. If you expect the user to have an abundant supply of computer
memory, you may reuse a dialog by retaining a handle to the dialog, as shown in Example
5-4 later in this chapter. There are also performance considerations that may affect whether
you choose to destroy or reuse dialogs. It takes less time to reuse a dialog than it does to
create a new one, provided that your application is not so large that it is consuming all of
the system’s resources. If you do not retain a handle to a dialog, and if you need to conserve
memory and other resources, you should destroy the dialog whenever you pop it down.

Another method the user might use to close a dialog is to seleCtabeitem from the
window menu. This menu can be pulled down from the title bar of a window. Since the
menu belongs to the window manager, rather than the shell widget or the application, you
cannot install any callback routines for its menu items. However, you can use the
XmNdeleteResponse resource to control how the DialogShell respond<Qmaeaction.

" It can have one of the following values:

XmUNMAP
This value causes the dialog to be unmapped. The dialog disappears from the screen,
but it is not destroyed, nor is it iconified. The dialog widget and its windows are still
intact and can be redisplayed usiKtPopup() . This value is the default for Dia-
logShells.

XmDESTROY
This value destroys the DialogShell and callsXteNdestroyCallback . Note that
all of the shell’s children are also destroyed, including the dialog widget and its sub-
widgets. When the dialog is destroyed, you cannot redisplay the dialog or reference its
handle again. If you need the dialog again, you have to create another one. Examples
of using theXmNdestroyCallback  are presented in Chapter 2Xdvanced Dialog
Programming

XmDO_NOTHING

This value causes the toolkit to take no action. The value should only be specified in
circumstances where you want to handle the event on your own. However, handling
the event involves much more than installing a simple callback routine. It requires
building a lower-level mechanism that interprets the proper events when they are sent
by the window manager. The most common thing to do in such cases is to activate the
default action of the dialog or to interpose a prompting mechanism to verify the user’'s
action. This topic is discussed in Chapter Rleracting with the Window Manager

It may be convenient for your application to know when a dialog has been popped up or
down. If so, you can install callbacks that are invoked whenever either of these events take
place. The actions of popping up and down dialogs can be monitored through the

* The Motif VendorShell, from which the DialogShell is subclassed, is responsible for trapping the notification
and determining what to do next, based on the value of the resource.

Motif Programming Manual 141



Chapter 5: Introduction to Dialogs

XmNpopupCallback andXmNpopdownCallback callback routines. For example, when
the function associated withXmNpopupCallback is invoked, you could position the
dialog automatically, rather than allowing the window manager to control the placement.
See Chapter Tustom Dialogsfor more information on these callbacks.

Generalizing Dialog Creation

Posting dialogs that display informative messages is something just about every application
is going to do frequently. Rather than write a separate routine for each case where a
message needs to be displayed, we can generalize the process by writing a single routine
that handles most, if not all, cases. Example 5-2 showRBds$tBialog() routine. This

routine creates a MessageDialog of a given type and displays an arbitrary message. Rather
than use the convenience functions provided by Motif for each of the MessageDialog types,
the routine uses the generic functidmCreateMessageDialog() and configures the
symbol to be displayed by setting tkeNdialogType resource.

Example 5-2: The PostDialog() routine

*

** PostDialog() -- a generalized routine that allows the programmer
** t0 specify a dialog type (message, information, error, help, etc.),
** and the message to display.

*

Widget PostDialog (Widget parent, int dialog_type, char *msg)

{
Widget dialog;
XmString  text;

dialog = XmCreateMessageDialog (parent, "dialog", NULL, O);
text = XmStringCreateLocalized (msg);
XtVaSetValues (dialog,
XmNdialogType, dialog_type,
XmNmessageString, text,
NULL);
XmStringFree (text);
XtManageChild (dialog);
return dialog;

}

This routine allows the programmer to specify several parameters: the parent widget, the
type of dialog that is to be used, and the message that is to be displayed. The function
returns the new dialog widget, so that the calling routine can modify it, unmanage it, or

keep a handle to it. You may have additional requirements that this simplified example does
not satisfy. For instance, the routine does not allow you to specify callback functions for

the buttons in the action area and it does not handle the destruction of the widget when it is
no longer needed. You could extend the routine to handle these issues, or you could control
them outside the context of the function. You may also want to extend the routine so that it
reuses the same dialog each time it is called and so that it allows you to disable the different

142 Motif Programming Manual



Chapter 5: Introduction to Dialogs

action area buttons. All of these issues are discussed again in Ch&aistddn Dialogs
and in Chapter 2 Advanced Dialog Programming

Dialog Resources

The following sections discuss resources that are specific to Motif dialogs. In most cases,
these resources are BulletinBoard widget resources, since all Motif dialogs are subclassed
from this class. However, they are not intended to be used by generic BulletinBoard
widgets. The resources only apply when the widget is an immediate child of a DialogShell
widget; they are really intended to be used exclusively by the predefined Motif dialog
classes. Remember that the resources must be set on the dialog widget, not the DialogShell.
See Chapter 8ylanager Widgetsfor details on the generic BulletinBoard resources.

The Default Button

All predefined Motif dialogs have @efault buttonin their action area. The default button

is activated when the user presses the RETURN key in the dialogORHmutton is
normally the default button, but once the dialog is displayed, the user can change the default
button by using the arrow keys to traverse the action buttons. The action button with the
keyboard focus is always the default button. Since the default button can be changed by the
user, the button that is the default is only important when the dialog is initially popped up.
The importance of the default button lies in its ability to influence the user’s default
response to the dialog.

You can change the default button for a MessageDialog by setting the
XmNdefaultButtonType resource on the dialog widget. This resource is specific to
MessageDialogs; it cannot be set for the various types of selection dialogs. The resource
can have one of the following values:

XmDIALOG_OK_BUTTON
This value speci?es that the default button is the furthest button on the left of the dialog.
By default, this button is th©K button, although its label may have been changed to
another string.

XmDIALOG_CANCEL_BUTTON
This value speci?es that tancelbutton is the default button. This value is appropri-
ate in situations where the action of the dialog is destructive, such as for a WarningDi-
alog that is posted in order to warn the user of a possibly dangerous action.

XmDIALOG_HELP_BUTTON
This value speci?es thdelp button, which is always the furthest button on the right of
a Motif dialog. This button is rarely set as the default button.

XmDIALOG_NONE
This value speci?es that there is no default button.

Motif Programming Manual 143



Chapter 5: Introduction to Dialogs

The values forXmNdefaultButtonType come up again later, when we discuss
XmMessageBoxGetChild() and again in Chapter 6, when we consider the routine
XmSelectionBoxGetChild() *. An example of how the default button type can be used

is shown in Example 5-3.

Example 5-3. The WarningMsg() function

[+ WarningMsg() -- Inform the user that she is about to embark on a
** dangerous mission and give her the opportunity to back out.
*
void WarningMsg (Widget parent, XtPointer client_data, XtPointer call_data)
{
static Widget dialog;
XmString text, ok_str, cancel_str;
char *msg = (char *) client_data;

if (\dialog)
dialog = XmCreateWarningDialog (parent, "warning", NULL, 0);
text = XmStringCreateLocalized (msg);

ok_str = XmStringCreateLocalized ("Yes");

cancel_str = XmStringCreatelLocalized ("No");

XtVaSetValues (dialog, XmNmessageString, text,
XmNokLabelString, ok_str,
XmNcancelLabelString, cancel_str,
XmNdefaultButtonType, XmDIALOG_CANCEL_BUTTON,
NULL);

XmStringFree (text);

XmStringFree (ok_str);

XmStringFree (cancel_str);

XtManageChild (dialog);

}

The intent of this function is to create a dialog that tries to discourage the user from
performing a destructive action. By using a WarningDialog and by makinGaheel

button the default choice, we have given the user adequate warning that the action may have
dangerous consequences.The output of a program running this code fragment is shown in
Figure 5-6.

WA TR
¥ Avewomisure

Lt Hi | Help

Figure 5-6: An instance of the WarningMsg() routine

* Strictly speaking, the *GetChild() routines are deprecated in Motif 2.0 and later. You should prefer the routine
XtNameToWidget ().

144 Motif Programming Manual



Chapter 5: Introduction to Dialogs

You can also set the default button for a dialog by the setting the BulletinBoard resource
XmNdefaultButton .  This technique works for both MessageDialogs and
SelectionDialogs. The resource value must be a widget ID, which means that you have to
get a handle to a subwidget in the dialog to set the resource. You can get the handle to
subwidgets usingXmMessageBoxGetChild() or XmSelectionBoxGetChild() i

Since this method breaks the Motif dialog abstraction, we describe it later in Section 5.6.3.

Initial Keyboard Focus

When a dialog widget is popped up, one of the internal widgets in the dialog has the
keyboard focus. This widget is typically the default button for the dialog, which makes
sense in most cases. However, there are situations where it is appropriate for another widget
to have the initial keyboard focus. For example, when a PromptDialog is popped up, it
makes sense for the TextField to have the keyboard focus so that the user can immediately
start typing a response.

The XmNinitialFocus resource can be used to handle this situation. Since this resource
is a Manager widget resource, it can be used for both MessageDialogs and
SelectionDialogs, although it is normally only used for SelectionDialogs. The resource
speci?es the subwidget that has the keyboard focus the first time that the dialog is popped
up. If the dialog is popped down and popped up again later, it remembers the widget that
had the keyboard focus when it was popped down and that widget is given the keyboard
focus again. The resource value must again be a widget ID. The default value of
XmNinitialFocus for MessageDialogs is the subwidget that is also the
XmNdefaultButton  for the dialog. For SelectionDialogs, the text entry area is the default
value for the resource.

Button Sizes

The XmNminimizeButtons  resource controls how the dialog sets the widths of the action
area buttons. If the resource is seTige , the width of each button is set so that it is as
small as possible while still enclosing the entire label, which means that each button will
have a different width. The default valuerallse specifies that the width of each button

is set to the width of the widest button, so that all buttons have the same width.

The Dialog Title

When a new shell widget is mapped to the screen, the window manager creates its own
window that contains the title bar, resize handles, and other window decorations and makes
the window of the DialogShell the child of this new window. This technique is called
reparenting a window; it is only done by the window manager in order to add window

* XtNameToWidget () should be used in preference in Motif 2.0 and later.

Motif Programming Manual 145



Chapter 5: Introduction to Dialogs

decorations to a shell window. The window manager reparents instances of all of the shell
widget classes except OverrideShell. These shells are used for menus and thus should not
have window manager decorations.

Most window managers that reparent shell windows display titles in the title bars of their
windows. For predefined Motif dialogs, the Motif toolkit sets the default title to the name
of the dialog widget with the stringpopup appended. Since this string is almost certainly
not an appropriate title for the window, you can change the title explicitly using the
XmNdialogTitle BulletinBoard resource. (Do not confuse this title with the message
displayed in MessageDialog, which is set HynNmessageString .) The value for
XmNdialogTitle must be a compound string. The BulletinBoard in turn sets the
XmNtitle  resource of the DialogShell; the value of this resource is a regular C string.

So, you can set the title for a dialog window in one of two ways. The following code
fragment shows how to set the title using XnaNdialogTitle resource:

XmString title_string = XmStringCreateLocalized ("Dialog Box");
Widget dialog = XmCreateMessageDialog (parent, "dialog_name", NULL, 0);

XtVaSetValues (dialog, XmNdialogTitle, title_string, NULL);

XmStringFree (title_string);
This technique requires creating a compound string. If you sefrtiNtile  resource
directly on the DialogShell, you can use a regular C string, as in the following code
fragment:

dialog = XmCreateMessageDialog (parent, "dialog_name", NULL, 0);

XtvVaSetValues (XtParent (dialog), XmNtitle, "Dialog Box", NULL);
While the latter method is easier and does not require creating and freeing a compound
string, it does break the abstraction of treating the dialog as a single entity.

Dialog Resizing

The XmNnoResize resource controls whether or not the window manager allows the
dialog to be resized. If the resource is sélne , the window manager does not display
resize handles in the window manager frame for the dialog. The default vetaksef
speci?es that the window manager should provide resize handles. Since some dialogs
cannot handle resize events very well, you may find it better aesthetically to prevent the
user from resizing them.

This resource is an attribute of the BulletinBoard widget, even though it only affects the
shell widget parent of a dialog widget. The resource is provided as a convenience to the
programmer, so that she is not required to get a handle to the DialogShell. The resource
only affects the presence of resize handles in the window manager frame; it does not deal
with other window manager controls. See Chapter I&&racting with the Window

146 Motif Programming Manual



Chapter 5: Introduction to Dialogs

Manager for details on how to specify the window manager controls for a DialogShell, or
any shell widget, directly.

Dialog Render Tables

The BulletinBoard widget provides resources that enable you to specify the render tables
that are used for all of the Button, Label, and Text widget descendants of the BulletinBoard.
Since Motif dialog widgets are subclassed from the BulletinBoard, you can use these
resources to make sure that fonts and other appearance resources that are used within a
dialog are consistent. ThénNbuttonRenderTable T resource speci?es the render table

that is used for all of the button descendants of the dialog. The resource is set on the dialog
widget itself, not on its individual children. Similarly, thénNlabelRenderTable *

resource is used to set the render table for all of the Label descendants of the dialog and
XmNtextRenderTable 8 is used for all of the Text and TextField descendants.

If one of these resources is not set, the toolkit determines the render table by searching up
the widget hierarchy for an ancestor that holdsXh&)TspecifyRenderTable trait.
BulletinBoard, VendorShell, MenuShell, and derived widget classes hold this trait. If an
ancestor is found, the render table resource is set to the value of that render table resource
in the ancestor widget. See Chapter 24, for more information on render tables.

You can override theXmNbuttonRenderTable , XmNlabelRenderTable , and
XmNtextRenderTable resources on a per-widget basis by setting the
XmNrenderTable resource directly on individual widgets. Of course, you must break the
dialog abstraction and retrieve the widgets internal to the dialog itself to set this resource.
While we describe how to retrieve the widgets in Section 5.6, we do not necessarily
recommend configuring dialogs down to this level of detail.

Dialog Callback Routines

As mentioned earlier, the predefined Motif dialogs have their own resources to reference
the labels and callback routines for the action area PushButtons. Instead of accessing the
PushButton widgets in the action area to install callbacks, you use the resources
XmNokCallback , XmNcancelCallback , andXmNhelpCallback on the dialog widget

itself. These callbacks correspond to each of the three buén&ance| andHelp.

Installing callbacks for a dialog is no different than installing them for any other type of
Motif widget; it may just seem different because the dialog widgets contain so many

* As of Motif 2.0, theXmFontList is obsolete, and is replaced by KmRenderTable type. For backwards
compatibility, theXmFontList is implemented through afmRenderTable

T XmNbuttonFontList is deprecated, and is replacedXyNbuttonRenderTable
F XmNlabelFontList is deprecated, and is replacedXmyNIlabelRenderTable
§ XmNtextFontList is deprecated, and is replacedXmgNtextRenderTable

Motif Programming Manual 147



Chapter 5: Introduction to Dialogs

subwidgets. The following code fragment demonstrates the installation of simple callback
for all of the buttons in a MessageDialog:

dialog = XmCreateMessageDialog (w, "notice”, NULL, 0);

XtAddCallback (dialog, XmNokCallback, ok_pushed, (XtPointer) "Hi");
XtAddCallback (dialog, XmNcancelCallback, cancel_pushed, (XtPointer) "Bye");
XtAddCallback (dialog, XmNhelpCallback, help_pushed, NULL);
XtManageChild (dialog);

* ok_pushed() --the OK button was selected. */
void ok_pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

char *message = (char *) client_data;
printf ("OK was selected: %s\n", message);

}

¥ cancel_pushed() --the Cancel button was selected. */
void cancel_pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

char *message = (char *) client_data;
printf ("Cancel was selected: %s\n", message);

}

* help_pushed() --the Help button was selected. */
void help_pushed (Widget widget, XtPointer client_data, XtPointer call_data)

{

}

In this example, a dialog is created and callback routines for each of the three responses are
added using{tAddCallback() . We also provide simple client data to demonstrate how

the data is passed to the callback routines. These callback routines simply print the fact that
they have been activated; the messages they print are taken from the client data.

printf ("Help was selected\n”);

All of the dialog callback routines take three parameters, just like any standard callback
routine. Thewidget parameter is the dialog widget that contains the button that was
selected; it is not the DialogShell widget or the PushButton that the user selected from the
action area. The second parameter is tfient data , which is supplied to
XtAddCallback()  , and the third is theall_data , which is provided by the internals

of the widget that invoked the callback.

The client_data parameter is of typ&XtPointer , which means that you can pass
arbitrary values to the function, depending on what is necessary. However, you cannot pass
afloat or a double value or an actual data structure. If you need to pass such values, you
must pass the address of the variable or a pointer to the data structure. In keeping with the
philosophy of abstracting and generalizing code, you should useli¢ht data

148 Motif Programming Manual



Chapter 5: Introduction to Dialogs

parameter as much as possible because it eliminates the need for some global variables and
it keeps the structure of an application modular.

For the predefined Motif dialogs, tleall data  parameter is a pointer to a data structure
that is filled in by the dialog box when the callback is invoked. The data structure contains
a callback reason and the event that invoked the callback. The structure is of type
XmAnyCallbackStruct ~ , which is declared as follows:

typedef struct {
int reason;
XEvent *event;
} XmAnyCallbackStruct;

The value of theeason field is an integer value that can be any onXmfCR_HELP
XmCR_OKor XmCR_CANCEIThe value speci?es the button that the user pressed in the
dialog box. The values for threason field remain the same, no matter how you change
the button labels for a dialog. For example, you can change the label @K twatton to
sayHelp, using the resourcémNokLabelString , but thereason parameter will still be
XmCR_OKvhen the button is activated.

Because theeason field provides information about the user’s response to the dialog in
terms of the button that was pushed, we can simplify the previous code fragment and use
one callback function for all of the possible actions. The callback function can determine
which button was selected by examinimgason. Example 5-4 demonstrates this
simplification”

Example 5-4. The reason.c program

[* reason.c -- examine the reason field of the callback structure
** passed as the call_data of the callback function. This field

** indicates which action area button in the dialog was pressed.
*

#include <Xm/RowColumn.h>

#include <Xm/MessageB.h>

#include <Xm/PushB.h>

* main() --create a pushbutton whose callback pops up a dialog box */
main (int argc, char *argv(])
{

XtAppContext  app;

Widget toplevel, rc, pbl, pb2;

void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

rc = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);

pb1 = XmCreatePushButton (rc, "Hello", NULL, 0);

* XtVaApplnitialize () is considered deprecated in X11R6.

Motif Programming Manual 149



Chapter 5: Introduction to Dialogs

XtAddCallback (pb1, XmNactivateCallback, pushed,
(XtPointer) "Hello World");

pb2 = XmCreatePushButton (rc, "Goodbye", NULL, 0);

XtAddCallback (pb2, XmNactivateCallback, pushed,
(XtPointer) "Goodbye World");

XtManageChild (pb2);

XtManageChild (pb2);

XtManageChild (rc);

XtRealizeWidget (toplevel);

XtAppMainLoop (app);

}

* pushed() -the callback routine for the main app's pushbuttons.
** Create and popup a dialog box that has callback functions for
** the OK, Cancel and Help buttons.
*
void pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{
static Widget dialog;
char *message = (char *) client_data;
XmString t = XmStringCreateLocalized (message);

[* See if we've already created this dialog -- if so,
** we don't need to create it again. Just set the message
** and manage it (pop it up).
*
if (\dialog) {
void callback(Widget, XtPointer, XtPointer);
Arg args[5];
intn=0;
XtSetArg (args[n], XmNautoUnmanage, False); n++;
dialog = XmCreateMessageDialog (widget, “notice", args, n);
XtAddCallback (dialog, XmNokCallback, callback,
(XtPointer) "Hi");
XtAddCallback (dialog, XmNcancelCallback, callback,
(XtPointer) "Foo");
XtAddCallback (dialog, XmNhelpCallback, callback,
(XtPointer) "Bar");
}
XtVaSetValues (dialog, XmNmessageString, t, NULL);
XmStringFree (t);
* Managing child of DialogShell pops up the dialog */
XtManageChild (dialog);
}

[* callback() --One of the dialog buttons was selected.
** Determine which one by examining the "reason" parameter.
*
void callback (Widget widget, XtPointer client_data, XtPointer call_data)
{
char *putton;
char *message = (char *) client_data;
XmAnyCallbackStructtcbs = (XmAnyCallbackStruct *) call_data;

150 Motif Programming Manual



Chapter 5: Introduction to Dialogs

switch (cbs->reason) {
case XmCR_OK : button = "OK", break;
case XMCR_CANCEL : button ="Cancel"; break;
case XmCR_HELP : button ="Help"; break;
}

printf ("%s was selected: %s\n", button, message);

if (cbs->reason '= XmCR_HELP) {
[* the ok and cancel buttons "close" the widget:.
** Unmanaging child of DialogShell pops down the dialog.
*
XtUnmanageChild (widget);

}

Another interesting change in this application is the ywashed() determines if the

dialog has already been created. By making the dialog widget hstatite to the
pushed() callback function, we retain a handle to this object across multiple button
presses. For each invocation of the callback, the dialog’s message is reset and it is popped
up again.

Considering style guide issues again, it is important to know when it is appropriate to
dismiss a dialog. As noted earlier, the toolkit automatically unmanages a dialog whenever
any of the action area buttons are activated, except fddehebutton. This behavior is
controlled by XmNautoUnmanage, which defaults toTrue . However, if you set this
resource to False, the callback routines for the buttons in the action area have to control the
behavior on their own. In Example 5-4, the callback routine pops down the dialog when the
reason is XmCR_OK oKmCR_CANCEbut not when it iXmCR_HELP

Piercing the Dialog Abstraction

As described earlier, Motif treats dialogs as if they are single user-interface objects.

However, there are times when you need to break this abstraction and work with some of
the individual widgets that make up a dialog. This section describes how the dialog

convenience routines work, how to work directly with the DialogShell, and how to access

the widgets that are internal to dialogs.

Convenience Routines

The fact that Motif dialogs are self-sufficient does not imply that they are black boxes that
perform magic that you cannot perform yourself. For example, the convenience routines for
the MessageDialog types follow these basic steps:

1. Create a popup shell widget of tygmDialogShellWidgetClass using XtCre-
atePopupShell()

Motif Programming Manual 151



Chapter 5: Introduction to Dialogs

2. Create a widget of typemMessageBoxWidgetClass as the child of the Dia-
logShell.

3. Set theXmNdialogType resource for the dialog.

4. Install a callback routine for thémNdestroyCallback  resource of the MessageBox,
so that it automatically destroys its DialogShell parent.

The XmNdialogType resource can be set to one of the following values:

XmDIALOG_ERROR XmDIALOG_INFORMATION XmDIALOG_MESSAGE
XmDIALOG_QUESTION XmDIALOG_TEMPLATE XmDIALOG_WARNING
XmDIALOG_WORKING

The type of the dialog does not affect the kind of widget that is created. The only thing the

type affects is the graphical symbol that is displayed in the control area of the dialog. The

convenience routines set the resource based on the routine that is called (e.g.

XmCreateErrorDialog() sets the resource t&XmDIALOG_ERRQR The widget

automatically sets the graphical symbol based on the dialog type. You can change the type

of a dialog after it is created usiXtVaSetValues() ; modifying the type also changes

the dialog symbol that is displayed.

The Motif dialog convenience routines create DialogShells internally to support the single-
object dialog abstraction. With these routines, the toolkit is responsible for the DialogShell,
so the dialog widget uses i¥snNdestroyCallback  to destroy its parent upon its own
destruction. If the dialog is unmapped or unmanaged, so is its DialogShell parent. The
convenience routines do not add any resources or call any functions to support the special
relationship between the dialog widget and the DialogShell, since most of the code that
handles the interaction is written into the internals of the BulletinBoard.

The DialogShell

As your programs become more complex, you may eventually have to access the
DialogShell parent of a dialog widget in order to get certain things done. This section
examines DialogShells as independent widgets and describes how they are different from
other shell widgets. There are three main features of a DialogShell that differentiate it from
a SessionShell and a TopLevelShell

» A DialogShell cannot be iconified by the user or by the application.

* When the parent of a DialogShell is iconified, withdrawn, unmapped, or destroyed, the
DialogShell children of that window are withdrawn or destroyed.

« A DialogShell is always placed on top of the shell widget that owns the parent of the
DialogShellf

* The ApplicationShell is considered deprecated in X11R6.
T This is at the whim of the window manager. Fovm this is true. See Chapter 20 for more details.

152 Motif Programming Manual



Chapter 5: Introduction to Dialogs

The DialogShell is subclassed from the TransientShell and VendorShell classes. A shell
that is subclassed from TransientShell cannot be iconified independently of its parent.
However, if the parent of a DialogShell is iconified or unmapped, the DialogShell is
unmapped as well. If the parent is destroyed, so is the DialogShell and the dialog within it.
Remember, the parent of the DialogShell is another widget somewhere in the application,
such as a Label, a PushButton, a SessionShell, or even another DialogShell. For example,
if the callback for PushButton creates a dialog, the PushButton might be designated as the
owner of the dialog. If the shell that contains the PushButton is iconified, the dialog is also
withdrawn from the screen. If the PushButton’s shell or the PushButton itself is destroyed,
the dialog is destroyed as well.

The parent-child relationship between a DialogShell and its parent is different from the
classic case, where the parent actually contains the child within its geometrical bounds. The
DialogShell widget is a popup child of its parent, which means that the usual geometry-
management relationship does not apply. Nonetheless, the parent widget must be managed
in order for the child to be displayed. If a widget has popup children, those children are not
mapped to the screen if the parent is not managed, which means that you must never make
a menu item the parent of a DialogShell.

Assuming that the parent is displayed, the window manager attempts to place the
DialogShell based on the value of tKemNdefaultPosition BulletinBoard resource.

The default value of this resourceltsie , which means that the window manager positions
the DialogShell so that it is centred on top of its parent. If the resource id-atsetq the
application and the window manager negotiate about where the dialog is placed. This
resource is only relevant when the BulletinBoard is the immediate child of a DialogShell,
which is always the case for Motif dialogs. If you want, you can position the dialog by
setting theXmNxand XmNyresources for the dialog widget. Positioning the dialog on the
screen must be done througiXmNmapCallback routine, which is called whenever the
application callsXtManageChild) . See Chapter 7, for a discussion about dialog
positioning.

The Motif Window Manager imposes an additional constraint on the stacking order of the
DialogShell and its parentawmalways forces the DialogShell to be directly on top of its
parent in the stacking order. The result is that the shell that contains the widget acting as
the parent of the DialogShell cannot be placed on top of the dialog. This behavior is defined
by the Motif Style Guideand is enforced by the Motif Window Manager and the Motif
toolkit. Many end-users have been known to report the behavior as an application-design
bug, so you may want to describe this behavior explicitly in the documentation for your
application, in order to prepare the user ahead of time.

* Other window managers behave differently. See Chapter 20 for more details about window manager interaction.

Motif Programming Manual 153



Chapter 5: Introduction to Dialogs

Internally, DialogShell widgets communicate frequently with dialog widgets in order to
support the single-entity abstraction promoted by the Motif toolkit. However, you may find
that you need to access the DialogShell part of a Motif dialog in order to query information
from the shell or to perform certain actions on it. The includeXte/BialogS.b provides
a convenient macro for identifying whether or not a particular widget is a DialogShell:

#define XmlsDialogShell(w)\

XtlsSubclass(w, xmDialogShellWidgetClass)

If you need to use this macro, or you want to create a DialogShell using
XmCreateDialogShd])l , you need to includeXm/DialogS.bk.

The macro is useful if you want to determine whether or not a dialog widget is the direct
child of a DialogShell. For example, earlier in this chapter, we mentioned thislotiife

Style Guidesuggests that if the user activates@tebutton in a MessageDialog, the entire
dialog should be popped down. If you have created a MessageDialog without using
XmCreateMessageDialog() and you want to be sure that the same thing happens when
the user presses tlK button in that dialog, you need to test whether or not the parent is
a DialogShell before you pop down the dialog. The following code fragment shows the use
of the macro in this type of situation:

[* traverse up widget tree until we find a dialog shell parent */
Widget GetDialogShellChild (Widget widget)

{
Widget parent;

while (widget) {
if (((parent = XtParent (widget)) '= (Widget) 0)
if (XmisDialogShell (parent))
return widget;
widget = parent;

}
return (Widget) O;
}

[* traverse up the tree to find any shell ancestor */
Widget GetShell (Widget w)

{
while (widget && !XtlsShell (widget))
widget = XtParent (widget);
return widget;
}

void ok_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget top;

[* do whatever the callback needs to do */

* if immediate parent is not a DialogShell, mimic the same

** behavior as if it were.
*

154 Motif Programming Manual



Chapter 5: Introduction to Dialogs

* Motif DialogShell */
if (top = GetDialogShellChild (w)) != (Widget) 0)
XtUnmanageChild (top);
* Probably a topLevelShellwidgetClass */
if ((top = GetShell (w)) = (Widget)))
XtPopdown (top);
}
The Motif toolkit defines similar macros for all of its widget classes. For example, the
header file Xm/MessageB:hdefines the macrEmisMessageBox()
#define XmIsMessageBox(w)\
XtlsSubclass (w, xmMessageBoxWidgetClass)
This macro determines whether or not a particular widget is subclassed from the
MessageBox widget class. Since all of the MessageDialogs are really instances of the
MessageBox class, the macro covers all of the different types of MessageDialogs. If the
widget is a MessageBox, the macro returns True whether or not the widget is an immediate
child of a DialogShell. Note that this macro does not refiue  if the widget is a
DialogShell.

Internal Widgets

All of the Motif dialog widgets are composed of primitive subwidgets such as Labels,
PushButtons, and TextField widgets. For most tasks, it is possible to treat a dialog as a
single entity. However, there are some situations when it is useful to be able to get a handle
to the widgets internal to the dialog. For example, one way to set the default button for a
dialog is to use th&XmNdefaultButton resource. The value that you specify for this
resource must be a widget ID, so this is one of those times when it is necessary to get a
handle to the actual subwidgets contained within a dialog.

You can retrieve a subwidget of any component uxthgmeToWidget() *, which has
the following form:

Widget XtNameToWidget (Widget widget , char *child)

The widget parameter is a handle to a dialog widget, not its DialogShell parent. The
child parameter is the name associated with a descendasdgef . The children of a
MessageBox have the following constant names:

Symbol Message Separator
OK Cancel Help

For example, the Cancel button in a MessageDialog can be accessed as follows:

Widget cancel_b = XtNameToWidget (message_box, “Cancel’);

* The Motif convenience routinemMessageBoxGetChild (), XmSelectionBoxGetChild (), and so forth,
are considered deprecated in Motif 2x@nFileSelectionBoxGetChild () has not been maintained in par-
ticular, and Motif 2 components of the FileSelectionBox cannot be accessed using this convenience function.

Motif Programming Manual 155



Chapter 5: Introduction to Dialogs

One method that you can use to customize the predefined Motif dialogs is to unmanage the
subwidgets that are inappropriate for your purposes. To get the widget ID for a widget, so
that you can pass it tUnmanageChild() , you need to caktNameToWidget() . You
can also use this routine to get a handle to a widget that you want to temporarily disable.
These techniques are demonstrated in the following code fragment:

text = XmStringCreateLocalized ("You have new mail.");

XtSetArg (args[0], XmNmessageString, text);

dialog = XmCreatelnformationDialog (parent, “message”, args, 1);

XmStringFree (text);

XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtUnmanageChild (XtNameToWidget (dialog, “Cancel));

The output of a program using this code fragment is shown in Figure 5-7.

MEEEa0e_DapLD

i ekl Pide el il |

QK =]

Figure 5-7: MessageDialog with unmanaged Cancel, and insensitive Help buttons

Since the message in this dialog is so simple, it does not make sense to havedi¢th an
and aCancelbutton, so we unmanage the latter. On the other hand, it does make sense to
have aHelp button. However, there is currently no help available, so we make the button
unselectable by desensitizing it usXigpetSensitive()

Dialog Modality

The concept of forcing the user to respond to a dialog is knovmodality. Modality
governs whether or not the user can interact with other windows on the desktop while a
particular dialog is active. Dialogs are either modal or modeless. There are three levels of
modality: primary application modal, full application modal, and system modal. In all
cases, the user must interact with a modal dialog before control is released and normal input
is resumed. In a system modal dialog, the user is prevented from interacting with any other
window on the display. Full application modal dialogs allow the user to interact with any
window on the desktop except those that are part of the same application as the modal
window. Primary application modal dialogs allow the user to interact with any other
window on the display except for the window that is acting as the parent for this particular
dialog.

For example, if the user selected an action that caused an error dialog to be displayed, the
dialog could be primary application modal, so that the user would have to acknowledge the
error before she interacts with the same window again. This type of modality does not

156 Motif Programming Manual



Chapter 5: Introduction to Dialogs

restrict her ability to interact with another window in the same application, provided that
the other window is not the one acting as the parent for the modal dialog.

Modal dialogs are perhaps the most frequently misused feature of a graphical user interface.
Programmers who fail to grasp the concept of event-driven programming and design,
whereby the user is in control, often fall into the convenient escape route that modal dialogs
provide. This problem is difficult to detect, let alone cure, because there are just as many
right ways to invoke modal dialogs as there are wrong ways. Modality should be used in
moderation, but it should also be used consistently. Let's examine a common scenario.
Note that this example does not necessarily favor using modal dialogs; it is presented as a
reference point for the types of things that people are used to doing in tty-based programs.

A text editor has a function that allows the user to save its text to a ?le. In order to save the
text, the program needs a filename. Once it has a filename, the program needs to check that
the user has sufficient permission to open or create the ?le and it also needs to see if there
is already some text in the ?le. If an error condition occurs, the program needs to notify the
user of the error, ask for a new filename, or get permission to overwrite the ?le’s contents.
Whatever the case, some interaction with the user is necessary in order to proceed. If this
were a typical terminal-based application, the program flow would be similar to that in the
following code fragment:

FILE *fp;

char buf [BUFSIZ], file [BUFSIZ];

extern char *index();

printf ("What file would you like to use?");

if ({(fgets (file, sizeof (file), stdin)) || file[0] == 0) {
puts ("Cancelled."); return;

}

* get rid of newline terminator */

*(index (file, \n)) = O;

[*"a+" creates file if it doesn't exist */
if ({(fo = fopen (file, "a+"))) {

perror (file); return;
}

if (ftell (fp) > 0) {
[* There's junk in the file already */
printf ("Overwrite contents of %s? “, file);
buf[0] = 0;
if ((fgets (buf, sizeof (buf), stdin)) || buf[0] == 0 || buf[0] =="n"||
buf[0] =="N) {
puts (“Cancelled.”);
fclose (fp);
return;

}

}
rewind (fp);

Motif Programming Manual 157



Chapter 5: Introduction to Dialogs

This style of program flow is still possible with a graphical user interface system using
modal dialogs. In fact, the style is frequently used by engineers who are trying to port tty-
based applications to Motif. It is also a logical approach to programming, since it does one
task followed by another, asking only for information that it needs when it needs it.

However, in an event-driven environment, where the user can interact with many different
parts of the program simultaneously, displaying a series of modal dialogs is not the best
way to handle input and frequently it's just plain wrong as a design approach. You must
adopt a new paradigm in interface design that conforms to the capabilities of the window
system and meets the expectations of the user. It is essential that you understand the event-
driven model if you want to create well-written, easy-to-use applications.

Window-based applications should be modelled on the behavior of a person filling out a
form, such as an employment application or a medical questionnaire. Under this scenario,
you are given a form asking various questions. You take it to your seat and fill it out
however you choose. If it asks for your license number, you can get out your driver’s
license and copy down the number. If it asks for your checking account number, you can
examine your check book for that information. The order in which you fill out the
application is entirely up to you. You are free to examine the entire form and fill out
whatever portions you like, in whatever order you like.

When the form is complete, you return it to the person who gave it to you. The attendant
can check it over to see if you forgot something. If there are errors, you typically take it
back and continue until it's right. The attendant can simply ask you the question straight
out and write down whatever you say, but this prevents him from doing other work or
dealing with other people. Furthermore, if you don’t know the answer to the question right
away, then you have to take the form back and fill it out the way you were doing it before.
No matter how you look at it, this process is not an interview where you are asked questions
in sequence and must answer them that way. You are supposed to prepare the form off-line,
without requiring interaction from anyone else.

Window-based applications should be treated no differently. Each window, or dialog, can
be considered to be a form of some sort. Allow the user to fill out the form at her own
convenience and however she chooses. If she wants to interact with other parts of the
application or other programs on the desktop, she should be allowed to do so. When the user
selects one of the buttons in the action area, this action is her way of returning the form. At
this time, you may either accept it or reject it. At no point in the process so far have we
needed a modal dialog.

Once the form has been submitted, you can take whatever action is appropriate. If there are
errors in any section of the dialog, you may need to notify the user of the error. Here is
where a modal dialog can be used legitimately. For example, if the user is using a
FileSelectionDialog to specify the ?le she wants to read and the ?le is unreadable, then you
must notify her so that she can make another selection. In this case, the notification is

158 Motif Programming Manual



Chapter 5: Introduction to Dialogs

usually in the form of an ErrorDialog, with a message that explains the error &id an
button. The user can read the message and press the button to acknowledge the error.

It is often difficult to judge what types of questions or how much information is appropriate
in modal dialogs. The rule of thumb is that questions in modal dialogs should be limited to
simple, yes/no questions. You should not prompt for any information that is already
available through an existing dialog, but instead bring up that dialog and instruct the user
to provide the necessary information there. You should also avoid posting modal dialogs
that prompt for a filename or anything else that requires typing. You should be requesting
this type of information through the text fields of modeless dialog boxes.

As for the issue of forcing the user to fill out forms in a particular order, it may be perfectly
reasonable to require this type of interaction. You should implement these restrictions by
managing and unmanaging separate dialogs, rather than by using modal dialogs to prevent
interaction with all but a single dialog.

All of these admonitions are not to suggest that modal dialogs are rare or that you should
avoid using them at all costs. On the contrary, they are extremely useful in certain
situations, are quite common, and are used in a wide variety of ways--even those that we
might not recommend. We have presented all of these warnings because modal dialogs are
frequently misused and programs that use fewer of them are usually better than those that
use more of them. Modal dialogs interrupt the user and disrupt the flow of work in an
application. There is no sanity checking to prevent you from misusing dialogs so it is up to
you to keep the use of modal dialogs to a minimum.

Implementing Modal Dialogs

Once you have determined that you need to implement a modal dialog, you can use the
XmNdialogStyle  resource to set the modality of the dialog. This resource is defined by
the BulletinBoard widget class; it is only relevant when the widget is an immediate child
of a DialogShell. The resource can be set to one of the following values:

XmDIALOG_MODELESS

XmDIALOG_PRIMARY_APPLICATION_MODAL

XmDIALOG_FULL_APPLICATION_MODAL

XmDIALOG_SYSTEM_MODAL
XmDIALOG_MODELESSthe default value for the resource, so unless you change the value
any dialog that you create will be modeless.

When you use one of the modal values, the user has no choice but to respond to your dialog
box before continuing to interact with the application. If you use modality at all, you should
probably avoid usinggmDIALOG_SYSTEM_ MODAIInce it is rarely necessary to restrict

the user from interacting with all of the other applications on the desktop. This style of
modality is typically reserved for system-level interactions. Under the Motif Window
Manager, when a system modal dialog is popped up, if the user moves the mouse outside

Motif Programming Manual 159



Chapter 5: Introduction to Dialogs

of the modal dialog, the cursor turns into the international “do not enter” symbol. Attempts
to interact with other windows cause the server to beep.

Example 5-5 shows a sample program that displays a dialog box that the user must reply to
before continuing to interact with the application.

Example 5-5. The modal.c program

f* modal.c -- demonstrate modal dialogs. Display two pushbuttons
** each activating a modal dialog.

*

#include <Xm/RowColumn.h>

#include <Xm/MessageB.h>

#include <Xm/PushB.h>

¥ main() --create a pushbutton whose callback pops up a dialog box */
main (int argc, char *argv(])
{

XtAppContext app;

Widget toplevel, button, rowcolumn;

void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL,sessionShellWidgetClass, NULL);

rowcolumn = XmCreateRowColumn (toplevel, “rowcolumn”, NULL, 0);
button = XmCreatePushButton (rowcolumn, “Application Modal", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed,

(XtPointer) XmDIALOG_FULL_APPLICATION_MODAL);
XtManageChild (button);
button = XmCreatePushButton (rowcolumn, "System Modal", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed,

(XtPointer) XmDIALOG_SYSTEM_MODAL);
XtManageChild (button);
XtManageChild (rowcolumn);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

* pushed() --the callback routine for the main app's pushbutton.

** Create either a full-application or system modal dialog box.

il

void pushed (Widget widget, XtPointer client_data, XtPointer call_data)

{
static Widget dialog;
XmString t;
void dlg_callback(Widget, XtPointer, XtPointer);

unsigned char modality = (unsigned char) client_data;

[* See if we've already created this dialog -- if so,
** we don't need to create it again. Just re-pop it up.

* XtVaApplnitialize () is considered deprecated in X11R6.

160 Motif Programming Manual



Chapter 5: Introduction to Dialogs

*

if (dialog) {
Arg args[5];
intn=0;
XmString ok = XmStringCreateLocalized ("OK");
XtSetArg(args[n], XmNautoUnmanage, False); n++;
XtSetArg(args[n], XmNcancelLabelString, ok); n++;
dialog = XmCreatelnformationDialog (widget, "notice", args, n);
XtAddCallback (dialog, XmNcancelCallback, dlg_callback, NULL);
XtUnmanageChild (XtNameToWidget (dialog, “OK"));
XtUnmanageChild (XtNameToWidget (dialog, “Help”);

}

t = XmStringCreateLocalized ("You must reply to this message now!");

XtVaSetValues (dialog, XmNmessageString, t, XmNdialogStyle, modality,

NULL);
XmStringFree (t);
XtManageChild (dialog);
}
void dig_callback (Widget dialog, XtPointer client_data, XtPointer call_data)
{
XtUnmanageChild (dialog);
}

The output of this program is shown in Figure 5-8.

el
Application Modal
Sysram Madal

M TiCe_ponuD

i Vou mant renly §Gthis mestage rowl

0K

Figure 5-7: Output of modal.c

This program demonstrates both application modal and system modal dialogs.The value for
theXmNdialogType resource is passed as client data to the callback routine that posts the
dialog.

Forcing an Immediate Response

In Example 5-5, once the dialog is posted, the function returns SétAppMainLoop()

can continue to process the events. If the function does not return, the application will not
respond to user events and, for that matter, the dialog will not even be displayed. Just
because a dialog is realized and managed does not mean that it is displayed on the screen,
as events must be processed in order for it to appear. See ChapgtdvaTced Dialog

Motif Programming Manual 161



Chapter 5: Introduction to Dialogs

Programming for a discussion of this phenomenon. (See Volumxlith, Programming
Manual, for more information on event processing.)

However, there are situations where it would be nice not to have to return from the function
and break its flow of control. As an example, consider a function that allows the user to
perform a particularly dangerous action, such as removing or overwriting a ?le. What you’'d
like to do is prompt the user first and allow her to reconsider the action before proceeding.
If she confirms the action, you'd like to continue from within the same function without
having to return in order to process events.

In order to write this type of function, we need to find a way to process the events that

display and manage the dialog without returning to the main loop. The user also needs to
be able to respond to the dialog, so we really need to allow normal event processing to
continue in the context of the function. Let's assume that there is a hypothetical function,

AskUser() , that we can use in the following way:

if (AskUser ("Are you sure you want to do this?") == YES) {
[* proceed with action... */

}

The functionAskUser()  should post a full application modal MessageDialog, wait for the
user to respond to the dialog, and return a predefined value fordiier NO The magic

of the function is to get around the requirement that events can only be read and processed
directly fromXtAppMainLoop() . The code for such a function is shown in Example 5-7.

Example 5-6. The AskUser() routine

#define YES1

#define NO2

*

** AskUser() -- a generalized routine that asks the user a question
* and returns the Yes/No response.

*

int AskUser (Widget parent, char *question)

{
static Widget dialog;

XmString text, yes, no;

static int answer;

void response(Widget, XtPointer, XtPointer);
extern XtAppContextapp;

if ({dialog) {

dialog = XmCreateQuestionDialog (parent, "dialog", NULL, 0);
yes = XmStringCreateLocalized ("Yes");
no = XmStringCreatelLocalized ("No");
XtVaSetValues (dialog,
XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL,
XmNokLabelString, yes,
XmNcancelLabelString, no,
NULL);
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);

162 Motif Programming Manual



Chapter 5: Introduction to Dialogs

XtAddCallback (dialog, XmNokCallback, response,

(XtPointer) &answer);
XtAddCallback (dialog, XmNcancelCallback, response,
(XtPointer) &answer);
XmStringFree (yes);
XmStringFree (no);
}
answer = 0;

text = XmStringCreateLocalized (question);
XtVaSetValues (dialog, XmNmessageString, text, NULL);
XmStringFree (text);
XtManageChild (dialog);
f*while the user hasn't provided an answer, simulate main loop.
** The answer changes as soon as the user selects one of the
** puttons and the callback routine changes its value.
*
while (@answer == 0)
XtAppProcessEvent (app, XtIMAII);
XtUnmanageChild (dialog);
return answer;

}

* response() --The user made some sort of response to the
** question posed in AskUser(). Set the answer (client_data)
** accordingly and destroy the dialog.
*
/
void response (Widget widget, XtPointer client_data, XtPointer call_data)

{
int *answer = (int *) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
switch (chs->reason) {
case XmCR_OK :*answer = YES; break;
case XmCR_CANCEL : *answer = NO; break;
default s return;
}
}

The first parameter to the function is the widget that acts as the parent of the new dialog. It
is important to choose this widget wisely. The parent widget must not be a gadget or an
unrealized widget; it should be a widget that is currently mapped to the screen. Widgets that
are menu items are not good candidates, since they are not mapped to the screen for very
long. The top-level shell widget of the widget that caused the callback function to be
invoked is typically a good choice. The second parameter is the string that is displayed in
the dialog.

The routine is intended to be used to display a dialog that asks a Yes/No question, so we
change th@OK andCancellabels to sayfesandNo, respectively. The routine creates a
QuestionDialog as a statlidget , which allows us to reuse the dialog, rather than create

it each time the function is called. This technique may improve performance on some
machines. The modality of the dialog and the labels for the PushButtons in the action area

Motif Programming Manual 163



Chapter 5: Introduction to Dialogs

are set at creation time, but the actual message string is set each time that the function is
called, since the message can change. When we install the callback routines for the buttons,
we use the address of theswer variable as the client data. As a result, when the user
responds to the question by selecting the Yedsodsutton, the callback routine has access

to the variable and can change its value accordingly.

Thewhile loop is where the application waits for the user to make a selection. The loop
exits when the variablansweris  changed from its initial value (0) to eithéES(1) or

NO (2) by the callback routine. By usib@AppProcessEvent() , we have effectively
reproduced th&XtAppMainLoop()  function that is used in the main application. Rather
than returning to that level and breaking our flow of control, we have introduced a
miniature main loop in the function itself.

While theAskUser() routine in Example 5-6 is useful as it is written, there are a number
of enhancements that will make it even more useful. By using what we've learned in this
chapter, we can come up with a simple, yet extremely robust interface for prompting the
user for responses to questions without breaking the natural flow of control in the
application. Example 5-7 demonstrates a generalized versikskidéer() in a complete
application. The programsk_user.callows the user to execute UNIX commands that
create and remove a temporary ?le.

Example 5-7. The ask_user.c program

[* ask_user.c - the user is presented with two pushbuttons.

** The first creates a file (fmp/foo) and the second removes it.

** In each case, a dialog pops up asking for verification of the action.
*k

** This program is intended to demonstrate an advanced implementation
** of the AskUser () function. This time, the function is passed the

** strings to use for the OK button and the Cancel button as well as
** the button to use as the default value.

o/

#include <Xm/DialogS.h>

#include <Xm/SelectioB.h>

#include <Xm/RowColumn.h>

#include <Xm/MessageB.h>

#include <Xm/PushB.h>

#define YES1
#define NO2
[* Generalize the question/answer process by creating a data structure
** that has the necessary labels, questions and everything needed to
** execute a command.
*
typedef struct {
char *label; [* label for pushbutton used to invoke cmd */
char *question; /* question for dialog box to confirm cmd */

* XtVaApplnitialize () is considered deprecated in X11R6.

164 Motif Programming Manual



Chapter 5: Introduction to Dialogs

char *yes; * what the "OK" button says */

char *no; f* what the "Cancel" button says */

int dfit; f* which should be the default answer */

char *cmd; * actual command to execute (using system()) */
} QandA;

QandA touch_foo = {"Create", "Create /tmp/foo?", "Yes", "No",
YES, "touch ftmp/foo'};

QandA rm_foo ={"Remove", "Remove /tmp/foo?", "Yes", "No",
NO, "rm ftmp/foo'};

XtAppContext app;

main (int argc, char *argv[])

{
Widget toplevel, button, rowcolumn;
XmString label;
Arg args(2];
void pushed(Widget, XtPointer, XtPointer);
XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL,sessionShellWidgetClass, NULL);
rowcolumn = XmCreateRowColumn (toplevel, “rowcolumn”, NULL, 0);
label = XmStringCreatelLocalized (touch_foo.label);
XtSetArg(args[0], XmNlabelString, label);
button = XmCreatePushButton (rowcolumn, "button”, args, 1);
XtAddCallback (button,
XmNactivateCallback, pushed, (XtPointer) &touch_foo);
XtManageChild (button);
XmStringFree (label);
label = XmStringCreatelLocalized (rm_foo.label);
XtSetArg (args[0], XmNlabelString, label);
button = XmCreatePushButton (rowcolumn, “button”, args, 1);
XtAddCallback (button, XmNactivateCallback, pushed,
(XtPointer) &m_foo);
XtManageChild (button);
XmStringFree (label);
XtManageChild (rowcolumn);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);
}

[* pushed() --when a button is pressed, ask the question described
** by the QandA parameter (client_data). Execute the cmd if YES.
*
void pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{
QandA *quest = (QandA *) client_data;
if (AskUser (widget, quest->question,
quest->yes, quest->no, quest->dfit) == YES) {
printf ("Executing: %s\n", quest->cmd);
system (quest->cmd);
}else

Motif Programming Manual 165



Chapter 5: Introduction to Dialogs

printf ("Not executing: %s\n", quest->cmd);

}

* AskUser() -- a generalized routine that asks the user a question

** and returns a response. Parameters are: the question, the labels

* for the "Yes" and "No" buttons, and the default selection to use.

*

AskUser (Widget parent, char *question, char *ans1, char *ans2, int default_

ans)
{
static Widget  dialog = NULL; /* static to avoid multiple creation */
XmString text, yes, no;
static int answer;
void response(Widget, XtPointer, XtPointer);
if (‘dialog) {

dialog = XmCreateQuestionDialog (parent, "dialog", NULL, 0);

XtVaSetValues (dialog, XmNdialogStyle,
XmDIALOG_FULL_APPLICATION_MODAL, NULL);

XtSetSensitive (XtNameToWidget (dialog, “Help”), False);

XtAddCallback (dialog, XmNokCallback, response,

(XtPointer) &answer);
XtAddCallback (dialog, XmNcancelCallback, response,
(XtPointer) &answer);
}
answer = 0;

text = XmStringCreateLocalized (question);

yes = XmStringCreateLocalized (ansl);

no = XmStringCreatelLocalized (ans2);

XtVaSetValues (dialog,
XmNmessageString, text,
XmNokLabelString, yes,
XmNcancelLabelString, no,
XmNdefaultButtonType,
(default_ans == YES?

XmDIALOG_OK_BUTTON:
XmDIALOG_CANCEL_BUTTON),

NULL);

XmStringFree (text);

XmStringFree (yes);

XmStringFree (no);

XtManageChild (dialog);

while (answer == 0)

XtAppProcessEvent (app, XtIMAII);

XtUnmanageChild (dialog);

[* make sure the dialog goes away before returning. Sync with server

** and update the display.

*

XSync (XtDisplay (dialog), 0);

XmUpdateDisplay (parent);

return answer,

}

* response() --The user made some sort of response to the

166 Motif Programming Manual



Chapter 5: Introduction to Dialogs

** question posed in AskUser(). Set the answer (client_data)

** accordingly.

*

void response (Widget widget, XtPointer client_data, XtPointer call_data)

{
int *answer = (int *) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

if (cbs->reason == XmCR_OK)
*answer = YES;
else if (chs->reason == XmCR_CANCEL)
*answer = NO;
}
The new version of\skUser() is more dynamic than before, since more of the dialog is
configurable upon each invocation of the function. The routine now allows you to specify
the message, the labels for @i andCancelbuttons, and the default button for the dialog.
The flexibility of the routine is achieved at the cost of a few more lines of source code and
additional parameters to the function. The performance of the function is completely
unaffected.

One case that the new versionAskUser() does not deal with is the need for additional
buttons in the action area of the dialog. For example, what if you need to pravicheeal

button in addition to th¥esandNo answers? Let's say that the user has selecte@utte

menu item in a text editor application. Since the user has yet to update the changes to the
?le that she has been editing, the application posts a dialog that asks her if she wants to
update her changes before exiting. There are three possible responses:

* Yes, update the changes and eXi§.
* No, don't update the changes, but exit anywsg) (
« Don't update the changes and don't exit the applicatt@nge).

One easy way to provide these three choices is to set the labellftmipHmutton toCancel
using theXmNhelpLabelString resource. Then you just need to modify the callback
function so that it handles thémCR_HELPeason and returns a new value for @aencel
button.

However, this solution does not work if you want to provide help in addition to these
choices. The default MessageDialog only provides three buttons in the action area,
although you can add additional action area buttons to the dialog. For more information on
how to handle this situation, see ChapteCustom Dialogs

Summary

Dialogs are used extensively in all window-oriented applications and their uses are quite
diverse. As a result, it is impossible to provide numerous examples of the use of any one
particular style of dialog. This chapter introduced the implementation of Motif dialogs by

Motif Programming Manual 167



Chapter 5: Introduction to Dialogs

using the predefined MessageDialogs as examples. We described how to create the dialogs,
how to set various dialog resources, how to handle dialog callback routines, and how to
implement modal dialogs. Although our examples used MessageDialogs, much of the
discussion is applicable to other types of Motif dialogs.

The next chapter deals with the predefined Motif selection dialogs. These dialogs allow you
to provide the user with a group of choices from which to make a selection. Chapter 7,
Custom Dialogsdiscusses how you can breakaway from the predefined Motif dialogs and
build dialogs on your own. Chapter Zdvanced Dialog Programmingets into advanced
topics in Xt and Motif programming, using various types of MessageDialogs as examples.

168 Motif Programming Manual



In this chapter:

» Types of
SelectionDialogs

 SelectionDialogs

e PromptDialogs

» The Command Widget
 FileSelectionDialogs

e Summary

Selection Dialogs

This chapter describes the predefined Motif selection-style dialogs. These dialogs display
a list of items, such as files or commands, and allow the user to select items.

In Chapter 5]ntroduction to Dialogswe introduced the idea that dialogs are transient
windows that perform a single task in an application. Dialogs may perform tasks that range
from displaying a simple message, to asking a question, to providing a highly interactive
window that obtains information from the user. The previous chapter also introduced
MessageDialogs and discussed how they are used by the Motif toolkit.This chapter
discusses SelectionDialogs, which are at the next level of complexity in predefined Motif
dialogs.

In general, SelectionDialogs are used to present the user with a list of choices. The user can
also enter a new selection or edit an existing one by typing in a text area in the dialog.
SelectionDialogs are appropriate when the user is supposed to respond to the dialog with
more than just a simple yes or no answer. With respect to the action area, SelectionDialogs
have the same default button as MessageBoxes @KgCance| andHelp). The dialogs

also provide anApply button, but the button is not always managed by default.
SelectionDialogs are meant to be less transient than MessageDialogs, since the user is
expected to do more than read a message.

Types of SelectionDialogs

As explained in Chapter 5, there are four kinds of SelectionDialogs. The SelectionDialog
and the PromptDialog are compound objects composed of a SelectionBox and a
DialogShell. To use these objects, you need to include the headeXfiliseslectioB .

The FileSelectionDialog is another compound object made up of a FileSelectionBox and a
DialogShell. The include file for this object ir/FileSB.k. The Command widget is
somewhat different, in that it is typically used as part of a larger interface, rather than as a
dialog. To use the Command widget, include the ffen¥Command}. You can create

each of these dialogs using the associated convenience routines:

Widget XmCreateSelectionBox (Widgptarent , char‘hame ArgList args , Cardinalnum_args )
Widget XmCreateSelectionDialog (Widgearent , char*hame ArgList args , Cardinalnum_args )
Widget XmCreatePromptDialog (Widggarent , char*hame Arglist args , Cardinalnum_args )

Motif Programming Manual 169



Chapter 6: Selection Dialogs

Widget XmCreateFileSelectionBox (Widgearent , charhame ArgList args , Cardinalnum_args )

Widget XmCreateFileSelectionDialog (Widgetrent , char ame, ArgList args , Cardinalnum_args )

Widget XmCreateCommand (Widgedrent , char‘hame Arglist args , Cardinalnum_args )
Like the MessageDialog convenience routines, each of the SelectionDialog routines creates
a dialog widget. In addition, routines that end Dialog automatically create a
DialogShell as the parent of the dialog widget. Note that the Command widget does not
provide a convenience routine that creates a DialogShell; to put a Command widget in a
DialogShell, you must create the DialogShell yourself. All of the convenience functions
use the standard format for Motif creation routines.

The SelectionBox resourcénNdialogType specifies the type of dialog that has been
created. The resource is set automatically by the dialog convenience routines. Unlike the
XmNdialogType resource for MessageDialogs, the SelectionBox resource cannot be
changed once the dialog has been created. The resource can have one of the following
values:

XmDIALOG_WORK_AREA XmDIALOG_PROMPT

XmDIALOG_SELECTION XmDIALOG_COMMAND

XmDIALOG_FILE_SELECTION
These values should be self-explanatory, with the exceptidmBiALOG_WORK_AREA
This value is set when a SelectionBox is not the child of a DialogShell and it is not one of
the other types of dialogs. In other words, if you create a SelectionDialog using
XmCreateSelectionDialog() , the value isSXmDIALOG_SELECTIONbut if you use
XmCreateSelectionBox() , the wvalue is XmDIALOG WORK _AREAWhen a
SelectionBox is created as the child of a DialogShell Ajyely button is automatically
managed, except KmNdialogType is set taXmDIALOG_PROMPDtherwise, the button
is created but not managed.

The different types of SelectionDialogs are meant to be used for unique purposes. Each
dialog provides different components that the user can interact with to perform a task. In
the following sections, we examine each of the SelectionDialogs in turn.

SelectionDialogs

The SelectionDialog provides a ScrolledList that allows the user to select from a list of
choices, as well as a TextField where the user can type in choices. When the user makes a
selection from the list, the selected item is displayed in the text entry area. The user can also
type new or existing choices into the text entry area directly. The dialog does not take any
action until the user activates one of the buttons in the action area or presses the RETURN
key. If the user double-clicks on an item in the List, the item is displayed in the text area
and theOK button is automatically activated. Example 6-1 demonstrates the use of a
SelectionDialog.

170 Motif Programming Manual



Chapter 6: Selection Dialogs

Example 6-1. The select_dlg.c program

* select_dig.c -- display two pushbuttons: days and months.
** \When the user selections one of them, post a selection

** dialog that displays the actual days or months accordingly.
** \When the user selects or types a selection, post a dialog
** the identifies which item was selected and whether or not
** the item is in the list.

*k

** This program demonstrates how to use selection boxes,
** methods for creating generic callbacks for action area

** selections, abstraction of data structures, and a generic

** MessageDialog posting routine.

*

#include <Xm/SelectioB.h>

#include <Xm/RowColumn.h>

#include <Xm/MessageB.h>

#include <Xm/PushB.h>

Widget PostDialog();
char *days[] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"};
char *months[] = {"January", "February", "March", "April", "May", “June",
"July", "August", "September”, "October", "November", "December'},

typedef struct {

char *abel;

char *strings;

int  size;
} Listitem;

Listitem month_items = {"Months", months, XtNumber (months)};
Listltem days_items = {"Days", days, XtNumber (days)};

* main() --create two pushbuttons whose callbacks pop up a dialog */
main (int argc, char *argv(])
{

Widgettoplevel, button, rc;

XtAppContextapp;

voidpushed();

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demos", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);
rc = XmCreateRowColumn (toplevel, “rowcolumn®, NULL, O);
button = XmCreatePushButton (rc, month_items.label, NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed,
(XtPointer) &month_items);
XtManageChild (button);
button = XmCreatePushButton (rc, days_items.label, NULL, O);
XtAddCallback (button, XmNactivateCallback, pushed,

* XtVaApplnitialize () is deprecated in X11R&mStringGetLtoR () is depecated in Motif 2.0{mStrin-
gUnparse () is the preferred funtion.

Motif Programming Manual 171



Chapter 6: Selection Dialogs

172

}

(XtPointer) &days_items);
XtManageChild (button);
XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

* pushed() -the callback routine for the main app's pushbutton.
** Create a dialog containing the list in the items parameter.

*

void pushed (Widget widget, XtPointer client_data, XtPointer call_data)

{

}

Widget dialog;

XmString t, *str;

inti;

extern void dialog_callback();

Listitem *items = (Listitem *) client_data;

str = (XmString *) XtMalloc (items->size * sizeof (XmString));
t = XmStringCreateLocalized (items->label);

for (i= 0; i < items->size; i++)
str[i] = XmStringCreateLocalized (items->strings]i]);

dialog = XmCreateSelectionDialog (widget, "selection”, NULL, 0);
XtVaSetValues (dialog,
XmNlistLabelString, t,
XmNlistlitems, str,
XmNlistitemCount, items->size,
XmNmustMatch, True,
NULL);

XtSetSensitive (XtNameToWidget (dialog, “Help”), False);

XtAddCallback (dialog, XmNokCallback, dialog_callback, NULL);

XtAddCallback (dialog, XmNnoMatchCallback, dialog_callback, NULL);

XmStringFree (t);

while (i >= 0)
XmStringFree (str[i]); /* free elements of array */

XtFree ((char *) str); /* now free array pointer */
XtManageChild (dialog);

[* dialog_callback() --The OK button was selected or the user
** input a name by himself. Determine whether the result is
** a valid name by looking at the “reason" field.

*

void dialog_callback (Widget widget, XtPointer client_data,

{

XtPointer call_data)

char msg[256], *prompt, *value;
int dialog_type;
XmSelectionBoxCallbackStruct *cbs =
(XmSelectionBoxCallbackStruct *) call_data;
switch (chs->reason) {
case XmCR_OK : prompt = "Selection: ";

Motif Programming Manual



Chapter 6: Selection Dialogs

dialog_type = XmDIALOG_MESSAGE;
break;

case XMCR_NO_MATCH:prompt = "Not a valid selection: *;
dialog_type = XmDIALOG_ERROR,;
break;

default : prompt = "Unknown selection: *;
dialog_type = XmDIALOG_ERROR,;
break;

value = (char *) XmStringUnparse (cbs->value, XmFONTLIST_DEFAULT_TAG,
XmMCHARSET_TEXT, XmCHARSET_TEXT, NULL, 0,
XmOUTPUT_ALL);
sprintf (msg, "%s%s", prompt, value);
XtFree (value);
(void) PostDialog (XtParent (XtParent (widget)), dialog_type, msg);
if (cbs->reason '= XmCR_NO_MATCH) {
XtUnmanageChild (widget);
[* The shell parent of the Selection box */
XtDestroyWidget (XtParent (widget));

}
I*

** Destroy the shell parent of the Message box, and thus the box itself
*
void destroy_dialog (Widget dialog, XtPointer client_data, XtPointer call_data)

{

XtDestroyWidget (XtParent (dialog));

* The shell parent of the Message box */
}
*

** PostDialog() -- a generalized routine that allows the programmer
** to specify a dialog type (message, information, error, help,
** etc..), and the message to show.
*
Widget PostDialog (Widget parent, int dialog_type, char *msg)
{
Widget dialog;
XmString text;
dialog = XmCreateMessageDialog (parent, "dialog", NULL, O);
text = XmStringCreateLocalized (msg);
XtVaSetValues (dialog, XmNdialogType, dialog_type,
XmNmessagesString, text, NULL);
XmStringFree (text);
XtUnmanageChild (XtNameToWidget (dialog, “Cancel");
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtAddCallback (dialog, XmNokCallback, destroy_dialog, NULL);
XtManageChild (dialog);
return dialog;

Motif Programming Manual 173



Chapter 6: Selection Dialogs

The output of the program is shown in Figure 6-1.

[E18 g
sl tic ol e

Days A

Mot

JArlaE ry

Febeiisri

RErch

april

Jung

July

A5 |

SR T

Salaction

Pl

] Apoly Cance|

Figure 6-1: Output of the select_dIg program

The program displays two PushButtons, one for months and one for the days of the week.
When either button is activated, a SelectionDialog that displays the list of items
corresponding to the button is popped up. In keeping with the philosophy of modular
programming techniques, we have broken the application into three routines - two
callbacks and one general-purpose message posting function. The lists of day and month
names are stored as arrays of strings.We have declared a data strstiteme, |, to store

the label and the items for a list. Two instances of this data structure are initialized to the
correct values for the lists of months and days. We pass these data structures as the
client_data to the callback functiopushed() . This callback routine is associated with

both of the PushButtons.

Thepushed() callback function creates the SelectionDialogs. Since the list of items for a
SelectionDialog must be specified as an arra}(rostring values, the list passed in the
client_data parameter must be converted. We create an array of compound strings the
size of the list and copy each item into the new array using
XmStringCreateLocalized() . The resulting list is used as the value for the
XmNlistitems  resource. The number of items in the list is specified as the value of the
XmNlistitemCount resource. This value must be given for the list to be displayed. It
must be less than or equal to the actual number of items in the list. We also set the
XmNlistLabelString resource to specify the label for the list of items in the dialog. The
SelectionDialog also provides tkenNlistVisibleltemCount resource for specifying

the number of visible items in the list. We let the dialog use the default value for this
resource.

174 Motif Programming Manual



Chapter 6: Selection Dialogs

The final resource that we set for the SelectionDialogniNmustMatch. This resource
controls whether an item that the user types in the text entry area must match one of the
items in the list. By setting the resourceTtoe , we are specifying that the user cannot
make up a month or day name. When the user activate®Khleutton or presses the
RETURN key, the widget checks the item in the text entry area against those in the list. If
the selection doesn’t match any of the items in the list, the program pops up a dialog that
indicates the error.

Once the dialog is created, we desensitizélép button because we are not providing
help. We install a callback routine for & button using thXmNokCallback . To handle

the case when the user types an item that does not match, we also install a callback routine
for theXmNnoMatchCallback . Thedialog_callback() routine is used to handle both
cases. We use theason field of the callback structure to determine why the callback
was called and act accordingly. Ttxglue field of the callback structure contains the
selected item. If the item is valid, we use the value to create a dialog that confirms the
selection. Otherwise, we post an error dialog that indicates the invalid selection. In both
cases we use the generalized functostDialog()  , to display the MessageDialog. If

the selection is valid, the routine pops down and destroys the SelectionDialog. Otherwise,
we leave the dialog posted so that the user can make another selection.

Just as a point of discussion, you should realize that it was an arbitrary decision to have the
PostDialog() function accepthar strings rather than axmString . The routine could

be modified to use akmString , but doing so doesn’t buy us anything. If you find that
your application deals with one string format more often than the other, you may want to
modify your routines accordingly. You should be aware that converting from one type of
string to the other is relatively expensive; if it is done frequently, you may see an effect on
performance. Another option is for your routine to accept both string types as different
parameters. You can pass a valid value for one parametbitihdor the other parameter

and deal with them accordingly. For more information on handling compound strings, see
Chapter 25Compound Strings

Callback Routines

The SelectionDialog provides callbacks for its action buttons in the same way as the
MessageDialog. Instead of accessing the PushButton widgets to install callbacks, you use
the resourcesXxmNokCallback , XmNapplyCallback , XmNcancelCallback , and
XmNhelpCallback on the dialog widget itself. These callbacks correspond to each of the
four buttons,OK, Apply, Cance| and Help. The SelectionDialog also provides the
XmNnoMatchCallback for handling the case when the item in the text entry area does not
match an item in the list.

All of these callback routines take three parameters, just like any standard callback routine.
The callback structure that is passed to all of the callback routines talkigata

Motif Programming Manual 175



Chapter 6: Selection Dialogs

parameter is of typ¥mSelectionBoxCallbackStruct . This structure is similar to the
one used by MessageDialogs, but it has more fields. The structure is declared as follows:
typedef struct {
int reason;
XEvent *event;
XmString value;
int length;

} XmSelectionBoxCallbackStruct;

The value of theeason field is an integer value that specifies the reason that the callback
routine was invoked. The field can be one of the following values:

XmCR_OK XmCR_APPLY XmCR_CANCEL

XmCR_HELP XmCR_NO_MATCH
Thevalue andlength fields represent the compound string version of the item that the
user selected from the list or typed into the text entry area. In order to get the actual
character string for the item, you have to ugeStingUnparse() to convert the
compound string into a character string. (See Chapter 25, for a discussion of compound
strings.)

Internal Widgets

The SelectionDialog is obviously composed of primitive subwidgets, like PushButtons,
Labels, a ScrolledList, and a TextField widget. For most tasks, it is possible to treat the
dialog as a single entity because the dialog provides resources that manage the different
components. However, there are some situations where it is useful to be able to get a handle
to the widgets internal to the dialog. TH&NameToWidget() T routine allows you to
access the internal widgets. This routine takes the following form:

Widget XtNameToWidget ( Wdget widget ,char*  chid _name)

The widget parameter is a handle to a dialog widget, not its DialogShell parent. The
child name  parameter specifies a particular subwidget in the dialog. For the
SelectionDialog, the following are the names of the built-in components:

OK Cancel Help Apply

ltems Selection Text SeparatortemsList
These names are fairly self-explanatoBglection is the Label associated with the
SelectionDialog TextField widgetems is the Label for the items list, and so forth. Note
thatltemsList  is the List itself, and not the ScrolledWindow containing the List. This
means that ItemsList is not a direct child of the SelectionDialog, and hence you need to
access the widget using a wildcard specificatioxtiameToWidget (), as follows:

* XmStringGetLtoR () is considered deprecated from Motif 2.0.
T XmSelectionBoxGetChild () is deprecated as of Motif 2.0.

176 Motif Programming Manual



Chapter 6: Selection Dialogs

Widget list = XtNameToWidget (dialog, “*ltemsList”);

One use oXtNameToWidget() is to get a handle to th&pply button so that you can
manage it. When you create a SelectionBox that is not a child of a DialogShell, the toolkit
creates thé\pply button, but it is unmanaged by default. Tply button is available to

the PromptDialog, but it is unmanaged by default. To use the button, you must manage it
and specify a callback routine, as in the following code fragment:

XtAddCallback (dialog, XmNapplyCallback, dialog_callback, NULL);

XtManageChild (XtNameToWidget (dialog, “Apply”));

The callback routine is the same as the one we set f@KHmutton, but theeason field

in the callback structure will indicate that it was called as a result éfgplybutton being
activated.

PromptDialogs

The PromptDialog is uniqgue among the SelectionDialogs, in that it does not create a
ScrolledList object. For the PromptDialog, the following are the names of the built-in
components:

OK Cancel Help Apply

Selection Text Separator
This dialog allows the user to type a text string in the text entry area and then enter it by
selecting theOK button or by pressing the RETURN key. Example 6-2 shows an example
of creating and using a PromptDialog.

Example 6-2. The prompt_dlg.c program

[+ prompt_dlg.c -- prompt the user for a string. Two PushButtons

** are displayed. When one is selected, a PromptDialog is displayed
** allowing the user to type a string. When done, the PushButton's
** label changes to the string.

*

#include <Xm/SelectioB.h>

#include <Xm/RowColumn.h>

#include <Xm/PushB.h>

main (int argc, char *argv[])

{
XtAppContext  app;
Widget toplevel, rc, button;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);

* Initialize toolkit and create toplevel shell */

toplevel = XtVaOpenApplication (&app, "Demos"”, NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

/* RowColumn managed both PushButtons */

Motif Programming Manual 177



Chapter 6: Selection Dialogs

rc = XmCreateRowColumn (toplevel, “rowcol”, NULL, 0);
* Create two pushbuttons -- both have the same callback */
button = XmCreatePushButton (rc, "PushMe 1", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed, NULL);
XtManageChild (button);
button = XmCreatePushButton (rc, "PushMe 2", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed, NULL);
XtManageChild (button);
XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

*
** Destroy the prompt dialog’s shell parent, and thus also the prompt
*

void destroy_dialog (Widget w, XtPointer client_data, XtPointer call_data)

{
}

XtDestroyWidget (XtParent (w));

* pushed() the callback routine for the main app's pushbuttons.

** Create a dialog that prompts for a new button name.

=/

void pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget dialog;

XmString t = XmStringCreateLocalized ("Enter New Button Name:");
void read_name(Widget, XtPointer, XtPointer);

Arg args[5];

int n=0;

[* Create the dialog -- the PushButton acts as the DialogShell's
** parent (not the parent of the PromptDialog).

*

XtSetArg (args[n], XmNselectionLabelString, t); n++;

XtSetArg (args[n], XmNautoUnmanage, False); n++;

dialog = XmCreatePromptDialog (widget, “prompt", args, n);
XmStringFree (t);

[* always destroy compound strings when done */

¥ When the user types the name, call read_name()... */

XtAddCallback (dialog, XmNokCallback, read_name, (XtPointer) widget);

[* If the user selects cancel, just destroy the dialog */

XtAddCallback (dialog, XmNcancelCallback, destroy_dialog, NULL);

[*No help is available... */
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtManageChild (dialog);

}

[*read_name() --the text field has been filled in. */

void read_name (Widget widget, XtPointer client_data, XtPointer call_data)

{
Widget push_button = (Widget) client_data;
XmSelectionBoxCallbackStruct *cbs;

178

Motif Programming Manual



Chapter 6: Selection Dialogs

cbs = (XmSelectionBoxCallbackStruct *) call_data;
XtVaSetValues (push_button, XmNlabelString, cbs->value, NULL);
[ Name's fine -- go ahead and enter it */
XtDestroyWidget (XtParent (widget));
}

The output of the program is shown in Figure 6-2.
pr

I
Furihide 1 |
Fushhe 3| |

PrCDE_poge

Eriter New Button Hame
Buktan 2

oK | cancel

Figure 6-2: Output of the prompt_dlg program

The callback routine for each of the PushButtpashed() , creates a PromptDialog that
prompts the user to enter a new name for the PushButton. The PushButton is passed as the
client_data to theXmNokCallback routine,read name() , so that the routine can set

the label of the PushButton directly from inside the callback.r@dwk name() function

destroys the dialog once it has set the label, since the dialog is no longer needed.

If the Cancelbutton is pressed, the text is not needed, so we can simply destroy the dialog,
using thedestroy dialog () callback. We seXmNautoUnmanage to False for the

dialog because the application is assuming the responsibility of managing the dialog. There
is no help for the dialog so ttéelp button is disabled by setting it insensitive.

The text area in the PromptDialog is a TextField widget, so you can get a handle to it and
set TextField widget resources accordingly. U&sameToWidget() to access the
widget. In order to promote the single-entity abstraction, the dialog provides two resources
that affect the TextField widget. You can set XmeNtextString  resource to change the
value of the text string in the widget. Like other string resources, the value for this resource
must be a compound string. TKenNtextColumns resource specifies the width of the
TextField in columns.

One frustrating feature of the predefined SelectionDialogs is that when they are popped up,
the TextField widget does not necessarily receive the keyboard focus by default. If the user
is not paying attention, starts typing, and then presses the RETURN key, all of the
keystrokes will be thrown away except the RETURN, which will activat@©tidutton.

This problem is solved through tiXenNinitialFocus resource. This resource specifies

the widget that has the keyboard focus the first time that the dialog is popped up. The text
entry area is the default value of the resource for SelectionDialogs. You can also program
around the problem by usingmProcessTraversal() to set the focus to a particular
widget.

Motif Programming Manual 179



Chapter 6: Selection Dialogs

The Command Widget

A Command widget allows the user to enter commands and have them saved in a history
list widget for later reference. The Command widget is composed of a text entry area and
a command history list. Unlike all of the other predefined Motif dialogs, this widget does
not provide any action area buttons. The widget does provide a convenient interface for
applications that have a command-driven interface, such as a debugger.

You can use the convenience routimCreateCommand() to create a Command widget

or you can us&tVaCreateWidget() with the classsmCommandWidgetClass . Motif

does not provide a convenience routine for creating a Command widget in a DialogShell.
The rationale is that the Command widget is intended to be used on a more permanent basis,
since it accumulates a history of command input. A Command widget is typically used as
part of a larger interface, such as in a MainWindow, which is why it does not have action
buttons. (See Chapter #he Main Windowfor an example.) If you want to create a
CommandDialog, you will have to create the DialogShell widget yourself and make the
Command widget its immediate child. See Chapter 5, for more information about
DialogShells.

The Command widget class is subclassed from SelectionBox. There are similarities
between the two widgets, in that the user has the ability to select items from a list. However,
the list is composed of the commands that have been previously entered. When the user
enters a command, it is added to the list. If the user selects an item from the command
history list, the command is displayed in the text entry area. Although the Command widget
inherits resources from the SelectionBox, many of the resources are not applicable since
the Command widget does not have any action area buttons. None of the SelectionBox
resources for setting the labels and callbacks of the buttons apply to the Command widget.
For the Command widget, the following are the names of the built-in components:

Selection Text ItemsList

The Command widget provides a number of resources that can be used to control the
command history list. Th&mNhistoryltems  and XmNhistoryltemCount resources
specify the list of commands and the number of commands in the list. The
XmNhistoryVisibleltemCount resource controls the number of items that are visible

in the command histor)XmNhistoryMaxitems  specifies the maximum number of items

in the history list. When the maximum value is reached, a command is removed from the
beginning of the list to make room for each new command that is entered.

The Command widget provides two callback resoubéedycommandEnteredCallback

and XmNcommandChangedCallback , for the text entry area. When the user changes the
text in the command entry area, tksmNcommandChangedCallback is invoked. If the

user presses the RETURN key or double-clicks on an item in the command history list, the
XmNcommandEnteredCallback is called. The callback routine for each of the callbacks
takes the usual three parameters. The callback structure passed to the routiroad in the

180 Motif Programming Manual



Chapter 6: Selection Dialogs

data parameter is of typ&mCommandCallbackStruct , which is identical to the
XmSelectionBoxCallbackStruct . The possible values for theason field in the
structure ar&mCR_COMMAND_ENTERE®XmMCR_COMMAND_CHANGED

You can get a handle to the subwidgets of the Command widget using function
XtNameToWidget()

In order to support the idea that the dialog is a single widget, the toolkit also provides a
number of convenience routines that you can use to modify the Command widget. The
function XmCommandSetValue() sets the text in the command entry area of the dialog.
The function takes the following form:

void XmCommandSetValue (Widget widget , XmString command

The commandis displayed in the command entry area. The Command widget resource
XmNcommandspecifies the text for the command entry area, so you can also set this
resource directly. Alternatively, you can vsaTextSetString() on the Text widget in

the dialog to set the command. However, note that the string you specify to this function is
a regular character string, not a compound string.

If you want to append some text to the string in the command entry area, you can use the
routineXmCommandAppendValue() , which takes the following form:

void XmCommandAppendValue (Widget widget , XmString command

The commandis added to the end of the string in the command entry area. The function
XmCommandError() displays an error message in the history area of the Command
widget. The function takes the following form:

void XmCommandError (Widget widget , XmString message)

The error message is displayed until the user enters the next command.

FileSelectionDialogs

Like the Command widget, the FileSelectionBox is subclassed from SelectionBox. The
FileSelectionDialog looks somewhat different than the other selection dialogs because of
its complexity and its unusual widget layout and architecture. Functionally, the
FileSelectionDialog allows the user to move through the file system and select a file or a
directory for use by the application. The dialog also lets the user specify a filter that controls
the files that are displayed in the dialog. This filter is generally specified as a regular
expression reminiscent of the classic UNIX meta-characters’{ergtches all files, while

*c matches all files that end io).

* XmSelectionBoxGetChild () is deprecated as of Motif 2.0.

Motif Programming Manual 181



Chapter 6: Selection Dialogs

Figure 6-3 shows a FileSelectionDialog.

filesb_popip
Dilrectory
Directory ——p itmal
Filter Files
Filter — g Makefi e s
et age 00
Diractorias  <mduestionBos Files

B e g
drdbcache o
dwnapis

Directories — Fiberih._Pcsar
halla
mcals | i
Selaction
[ -4——— Selection
DK | Fllter Cancel Help:

Figure 6-3: A typical FileSelectionDialog

The control area of the FileSelectionDialog has potentially five componerfiter

text area, a curremirectory  field, a Directorieslist displaying the directories in the
current directory specified by the filterFées list area containing files within the current
directory, and &electiorarea. If the user selects a directory,Directoryfield is modified

to reflect the selection. THéleslist shows the files in the current directory. T3edection
text entry area specifies the file selected by the user. If the user selects a file frilesthe
list, the full pathname is displayed in t8electiortext entry area.

The Motif 1.2 FileSelectionBox contained only four areas: the data displayed in the Filter
and Directory fields was concatenated into a single TextField, with the filter pattern
appended onto the current directory name.

For backwards compatibility, this is also true of the Motif 2.x FileSelectionBox, depending
upon the value of thEmNpathMode resource. [XmNpathMode is XmPATH_MODE_FULL

the FileSelectionBox has Motif 1.2 behavior; for separate filter and directory fields, set
XmNpathMode to XmPATH_MODE_RELATIVEigure 6-3 displays the File Selection Box

in the path relative mode.

The FileSelectionDialog has four buttons in its action area.KeCance| andHelp
buttons are the same as for other SelectionDialogsFiltee button acts on the directory
and pattern specified in the filter text entry area. For example, the user couldisrisec/
motif/llib/Xmas the directory andas the filtef. When the user selects thitter button or

* The Motif 1.2 FileSelectionBox has only four component areas.

182 Motif Programming Manual



Chapter 6: Selection Dialogs

presses RETURN in the Text widget, the directory part of the filter is searched and all of
the directories within that directory are displayed in the directories list. The pattern part is
then used to find all of the matching files in the directory and the files are shown in the files
list. Only files are placed in this list; directories are excluded since they are listed
separately.

While this process seems straightforward, it become confusing in Motif 1.2 for users and
programmers alike because of the way that the widget parsed the filter in the single Filter
field. For example, consider the following stringsr/src/motif/lib/Xm This pathname
appears to be a common directory path, but in fact, the widget interpreted the filter so that
the directory igusr/src/matif/liband the pattern i¥m If searched, the directories list will
contain all the directories itusr/src/motif/lib and the files list won't contain anything
becauseXmis a directory, not a pattern that matches any files. Since users frequently made
this mistake when using the FileSelectionDialog, you had to be sure to explain the
operation of the dialog in the documentation for your application. For Motif 2.1, with the
filter and directory portions placed in separate text fields, the issue is much clarified as far
as the user is concerned.

For a File Selection Box which has the path mode as full (Motif 1.2 compatible), the
convention that the widget follows is to use the last the filter to separate the directory

part from the pattern part. Fortunately, the FileSelectionDialog provides resources and
other mechanisms to retrieve the proper parts of the filter specification. We will
demonstrate how to use these mechanisms in the next few subsections.

Creating a FileSelectionDialog

The convenience function for creating a FileSelectionDialog is
XmCreateFileSelectionDialog() . The routine is declared inXxm/FileSB.k. The
function creates a FileSelectionBox widget and its DialogShell parent and returns the
FileSelectionBox. Alternatively, you can create a FileSelectionBox widget using either
XmCreateFileSelectionBox() or XtVaCreateWidget() with the widget class
specified asmFileSelectionBoxWidgetClass . In this case, you could use the widget

as part of a larger interface, or put it in a DialogShell yourself.

Example 6-3 demonstrates how a FileSelectionDialog can be created. This program
produces the dialog shown in Figure 6-3. The intent of the program is to display a single
FileSelectionDialog and print the selection that is made. We will provide a more realistic

example shortly. For now, you should notice how little code is actually required to create
the dialog.

T In Motif 1.2, the user would entéusr/src/motif/lib/Xm/*in the single Filter field.

* XtVaApplnitialize () is deprecated in X11RBmStringGetLtoR () is deprecated in Motif 2.0: pref&¥m-
StringUnparse ().

Motif Programming Manual 183



Chapter 6: Selection Dialogs

184

Example 6-3. The show_files.c program

f* show._files.c -- introduce FileSelectionDialog; print the file
** selected by the user.

*

!

#include <Xm/FileSB.h>

main (int argc, char *argv(])
{
Widget toplevel, text_w, dialog;
XtAppContext  app;
extern void exit(int);
void echo_file(Widget, XtPointer, XtPointer);
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

[* Create a simple Motif 2.1 FileSelectionDialog */
XtSetArg (args[0], XmNpathMode, XmPATH_MODE_RELATIVE);
dialog = XmCreateFileSelectionDialog (toplevel, "filesb”, args, 1);
XtAddCallback (dialog, XmNcancelCallback, (void (*)()) exit, NULL);
XtAddCallback (dialog, XmNokCallback, echo_file, NULL);
XtManageChild (dialog);
XtAppMainLoop (app);

}

[* callback routine when the user selects OK in the FileSelection
** Dialog. Just print the file name selected.
=/
void echo_file (Widget widget, /* file selection box */
XtPainter client_data,
XtPointer call_data)

char *filename;
XmFileSelectionBoxCallbackStruct *chs =
(XmFileSelectionBoxCallbackStruct *) call_data;

filename = (char *) XmStringUnparse (chs->value,
XmMFONTLIST_DEFAULT_TAG,
XMCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL);
if (filename)
[* must have been an internal error */

return;

if (*filename) {
[* nothing typed? */
puts ("No file selected.”);
[*even™ is an allocated byte */
XtFree (filename);

Motif Programming Manual



Chapter 6: Selection Dialogs

return;

];)rintf ("Filename given: \"%s\"\n", filename);
XtFree (flename);
}

The program simply prints the selected file when the user activat@ithetton. The user
can change the file by selecting an item from the files list or by typing directly in the
selection text entry area. The user can also activate the dialog by double-clicking on an item
in the files list. The FileSelectionDialog itself is very simple to create; most of the work in
the program is done by the callback routine for@tebutton.

Internal Widgets

A FileSelectionDialog is made up of a number of subwidgets, including Text, List, and
PushButton widgets. You can get the handles to these children using the routine
XtNameToWidget()

FileSelectionDialog can manage a work area child: you can customize the operation of a
FileSelectionDialog by adding a work area that contains other components. For a detailed
discussion of this technique, see Chapt&ustom Dialogs

Getting the children of a FileSelectionDialog is not necessary in most cases because the
Motif toolkit provides FileSelectionDialog resources that access most of the important
resources of the children. You should only get handles to the children if you need to change
resources that are not involved in the file selection mechanisms. For the FileSelectionBox
widget, the following are the names of the built-in components:

Apply Cancel Help ItemsList
ltems OK Selection Tex
Separator FilterLabel FilterText Dir

DirList DirL DirText

These values should be self-explanat@il is the Label associated with the new Motif
2.1 separate Directory fieldXnNpathMode equals XmPATH_MODE_RELATIYEand
DirText is the separate Directory TextField itself. Note that as in the case of the
SelectionDialogJtemsListis the List itself, and not the ScrolledWindow containing the
List. This means that ItemsList is not a direct child of the FileSelectionDialog, and hence
you need to access the widget using a wildcard specificati¥tNaimeToWidget (), as
follows:

Widget list = XtNameToWidget (fsh, “*IltemsList”);

* XmFileSelectionBoxGetChild () is deprecated from Motif 2.0 onwards. It has not been maintained: there
are no bit masks to access the Motif 2.0 Directory Ldbidl () and Text DirText ) which are displayed when
XmNpathMode is XmPATH_MODE_RELATIVE

Motif Programming Manual 185



Chapter 6: Selection Dialogs

Callback Routines

The XmNokCallback XmNcancelCallback XmNapplyCallback
XmNhelpCallback , and XmNnoMatchCallback  callbacks can be specified for a
FileSelectionDialog as they are for SelectionDialog. The callback routines take the usual
parameters, but the callback structure passed ircahalata  parameter is of type

XmFileSelectionBoxCallbackStruct . The structure is declared as follows:
typedef struct {

int reason;
XEvent *event;
XmString value;
int length;
XmString mask;
int mask_length;
XmString dir;
int dir_length;
XmString pattern;
int pattern_length;

} XmFileSelectionBoxCallbackStruct;

The value of theeason field is an integer value that specifies the reason that the callback
routine was invoked. The possible values are the same as those for a SelectionDialog:
XmCR_OK XmCR_APPLY XmCR_CANCEL
XmCR_HELP XmCR_NO_MATCH
Thevalue field contains the item that the user selected from the files list or typed into the
selection text entry area. The value corresponds tXriiddirSpec resource and it does
not necessarily have to match an item in the directories or files listsiable field
corresponds to th&mNdirMask resource; it represents a combination of the entire
pathname specification in the filter. Tl and pattern  fields represent the two
components that make up the mask. All of these fields are compound strings; they can be
converted to character strings uskmgStringUnparse()

File Searching

You can force a FileSelectionDialog to reinitialize the directory and file lists by calling
XmFileSelectionDoSearch() . This routine reads the directory filter and scans the
specified directory, which is useful if you set the mask directly. The function takes the
following form:

void XmFileSelectionDoSearch ( XmFileSelectionBoxWidget widget ,
XmString dirmask )

When the routine is called, the widget invokes its directory search procedure and sets the
text in the filter text entry area to thedirmask  parameter. Calling

* XmStringGetLtoR () is deprecated from Motif 2.0 onwards.

186 Motif Programming Manual



Chapter 6: Selection Dialogs

XmFileSelectionDoSearch() has the same effect as setting the filter and selecting the
Filter button.

By default, the FileSelectionDialog searches the directory specified in the mask according
to its internal searching algorithm. You can replace this file searching procedure with your
own routine by specifying a callback routine for XreNfileSearchProc ~ resource. This
resource is not a callback list, so you do not install it by cakiAgdCallback() . Since

the resource is just a single procedure, you specify it as a value like you would any other
resource, as shown in the following code fragment:

extern void my_search_proc(Widget, XtPointer, XtPointer);
XtVaSetValues (file_selection_dialog,
XmNfileSearchProc, my_search_proc, NULL);
If you specify a search procedure, it is used to generate the list of filenames for the files list.
A file search routine takes the following form:

void (* XmSearchProc) (Widget widget , XtPointer search _data )

The widget parameter is the actual FileSelectionBox widget seatch data is a

pointer to a callback structure of typ@nFileSelectionBoxCallbackStruct . This
structure is just like the one used in the callback routines discussed in the previous section.
Do not be concerned with the value of thason field in this situation because none of

the routines along the way use the value. The search function should scan the directory
specified by thealir field of thesearch data parameter. Thpattern  should be used

to filter the files within the directory. You can get the complete filter fromnask field.

After the search procedure has determined the new list of files that it is going to use, it must
set theXmNfileListltems and XmNfileListitemCount resources to store the list

into the List widget used by the FileSelectionDialog. The routine must also set the
XmNlistUpdated resource tdrue to indicate that it has indeed done something, whether
or not any files are found. The function can also seXthdldirSpec resource to reflect

the full file specification in the selection text entry area, so that if the user sele€@K the
button, the specified file is used. Although this step is optional, we recommend doing it in
case the old value is no longer valid.

To understand why it may be necessary to have your own file search procedure, consider
how you would customize a FileSelectionDialog so that it only displays the writable files

in an arbitrary directory. This customization might come in handy for a save operation in
an electronic mail application, where the user invokeSaweaction that displays a
FileSelectionDialog that lists the files in which the user can save messages. Files that are
not writable should not be displayed in the dialog. Example 6-4 shows an example of how
a file search procedure can be used to implement this type of dialog.

* XtVaApplnitialize () is deprecated in X11RBmStringGetLtoR () is deprecated in Motif 2.0: pref&¥m-
StringUnparse ().

Motif Programming Manual 187



Chapter 6: Selection Dialogs

188

Example 6-4. The file_sel.c program

[*file_sel.c - file selection dialog displays a list of all the writable
** files in the directory described by the XmNmask of the dialog.
** This program demonstrates how to use the XmNfileSearchProc for
** file selection dialog widgets.

*

#include <stdio.h>

#include <Xm/Xm.h>

#include <Xm/FileSB.h>

#include <Xm/DialogS.h>

#include <Xm/PushBG.h>

#include <Xm/PushB.h>

#include <X11/Xos.h>

#include <sys/stat.h>

void do_search(Widget XtPointer, XtPointer);
void new_file_cb(Widget, XtPointer, XtPointer);
[* routine to determine if a file is accessible, a directory,
** or writable. Return -1 on all errors or if the file is not
* writable. Return O if it's a directory or 1 if its a plain
** writable file.
*
intis_writable (char *file)
{
struct stat s_buf;
[*if file can't be accessed (via stat()) return. */
if (stat (file, &s_buf) ==-1)
return -1;
else if ((s_buf.st mode & S_IFMT) == S_IFDIR)
return O; /* a directory */
else if (I(s_buf.st_mode & S_IFREG) || access (file, W_OK) ==-1)
* not a normal file or it is not writable */
return -1;
[* legitimate file */
return 1;

}

f* main() -- create a FileSelectionDialog
*
main (int argc, char *argv[])

{
Widget toplevel, dialog;
XtAppContext app;
extern void exit(int);
Arg args[s};
int n=0;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

XtSetArg (args[n], XmNfileSearchProc, do_search); n++;
dialog = XmCreateFileSelectionDialog (toplevel, "Files", args, n);
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);

Motif Programming Manual



Chapter 6: Selection Dialogs

[*if user presses OK button, call new_file_ch() */
XtAddCallback (dialog, XmNokCallback, new_file_cb, NULL);
[* if user presses Cancel button, exit program */
XtAddCallback (dialog, XmNcancelCallback, (void (*)()) exit, NULL);
XtManageChild (dialog);
XtAppMainLoop (app);
}

[* a new file was selected -- check to see if it's readable and not
** a directory. If it's not readable, report an error. If it's a
** directory, scan it just as though the user had typed it in the mask
** Text field and selected "Search”.
*
void new_file_cb (Widget widget, XtPointer client_data,
XtPointer call_data)
{
char *file;
XmFileSelectionBoxCallbackStruct *cbs = (XmFileSelectionBoxCallbackStruct
¥ call_data;
* get the string typed in the text field in char * format */
if ({(file = (char *) XmStringUnparse (cbs->value,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL)))
return;
if (*file 1="r) {
[*if it's not a directory, determine the full pathname
** of the selection by concatenating it to the "dir" part
*
char *dir, *newfile;
if (dir = XmStringUnparse (chs->dir,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL)) {
newfile = XtMalloc (strlen (dir) + 1 + strlen (file) + 1);
sprintf (newfile, "%s/%s", dir, file);
XtFree (file);
XtFree (dir);
file = newfile;
}

switch (is_writable (file)) {
case 1: puts (file); /* or do anything you want */ break;
case 0:{
[* a directory was selected, scan it */
XmString str = XmStringCreateLocalized (file);
XmFileSelectionDoSearch (widget, str);

XmStringFree (str);
break;

}

case -1:

* a system error on this file */

Motif Programming Manual 189



Chapter 6: Selection Dialogs

190

}

perror (file);

}
XtFree (file);

[* do_search() -- scan a directory and report only those files that
** are writable. Here, we let the shell expand the (possible)
** wildcards and return a directory listing by using popen().
** A *real* application should -not- do this; it should use the
** system's directory routines: opendir(), readdir() and closedir().

*

void do_search (Widget widget, /* file selection box widget */

{

XtPointer search_data, XtPointer call_data)

char *mask, buf BUFSIZ], *p;
XmString  names[256]; /* maximum of 256 files in dir */
int i=0;
FILE *pp, *popen();
XmFileSelectionBoxCallbackStruct *cbs = (XmFileSelectionBoxCallbackStruct
*) search_data;
if ({(mask = (char *) XmStringUnparse (cbs->mask,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL)))
return; /* can't do anything */
sprintf (buf, "/binfls %s", mask);
XtFree (mask);
* let the shell read the directory and expand the filenames */
if ({(op = popen (buf, "))
return;
* read output from popen() - this will be the list of files */
while (fgets (buf, sizeof buf, pp)) {
if (p = index (buf, \n")
*p=0;
* only list files that are writable and not directories */
if (is_writable (buf) == 1 &&
(names][i] = XmStringCreateLocalized (buf))) i++;
}
pclose (pp);
if (i) {
XtVaSetValues (widget,
XmNfileListltems, names,
XmNfileListitemCount, i,
XmN(dirSpec, names[0],
XmNlistUpdated, True,
NULL);
while (i > 0)
XmStringFree (names|--i);
}else
XtVaSetValues (widget,
XmNfileListitems, NULL,
XmNfileListltemCount, O,
XmNlistUpdated, True,

Motif Programming Manual



Chapter 6: Selection Dialogs

NULLY);

}
The program simply displays a FileSelectionDialog that only lists the files that are writable
by the user. The directories listed may or may not be writable. We are not testing that case
here as it is handled by another routine that deals specifically with directories, which are
discussed in the next section. TXmaNfileSearchProc is set todo_search() , which
is our own routine that creates the list of files for the files List widget. The function calls
is_writable() to determine if a file is accessible and if it is a directory or a regular file
that is writable.

The callback routine for théDK button is set tonew file cb() through the
XmNokCallback resource. This routine is called when a new file is selected in from the
files list or new text is entered in the selection text entry area ai@kheatton is pressed.

The specified file is evaluated usiisgwritable() and acted on accordingly. If itis a
directory, the directory is scanned as if it had been entered in the filter text entry area. If the
file cannot be read, an error message is printed. Otherwise, the file is a legitimate selection
and, for demonstration purposes, the filename is printstdioat

Obviously, a real application would do something more appropriate in each case; errors
would be reported using ErrorDialogs and legitimate values would be used by the
application. An example of such a program is given in Chaptefed®, Widgetsasfile_
browser.c This program is an extension of Example 6-4 that takes a more realistic
approach to using a FileSelectionDialog. Of course, the intent of that program is to show
how Text widgets work, but its use of dialogs is consistent with the approach we are taking
here.

Directory Searching

The FileSelectionDialog also provides a directory searching function that is analogous to
the file searching function. While file searching may be necessary for some applications, it
is less likely that customized directory searching will be as useful, since the default action
taken by the toolkit should cover all common usages. However, since it is impossible to
second-guess the requirements of all applications, Motif allows you to specify a directory
searching function through th@nNdirSearchProc  resource.

The procedure is used to create the list of directories. The method used by the procedure is
virtually identical to the one used for files, except that the routine must set different
resources. The routine must set XmaNdirListltems and XmNdirListitemCount

resources to store the list of directories in the List widget. The valXenlistUpdated

must be set just as it was for the file selection routineXamddirectoryValid must also

be set to eithefrue orFalse . If the directory cannot be readmNdirectoryValid is

set toFalse to prevent theXmNfileSearchProc ~ from being called. In this way, the file
searching procedure is protected from getting invalid directories from the directory
searching procedure.

Motif Programming Manual 191



Chapter 6: Selection Dialogs

The Search Process

In order to fully customize the directory and file searching functions in a
FileSelectionDialog, it is important to understand exactly how the dialog works. This
material is advanced and is intended for programmers who need to write advanced file and/
or directory searching routines. When the user or the application invokes a directory search,
the FileSelectionDialog performs the following tasks:

1. The List widgets are unmapped to give the user immediate feedback that something is
happening. So, if a file and/or directory search takes along time, the user has a visual
cue that the application is not waiting for input.

2. All of the items are deleted from the List widgets.

3. The widget calls its qualify search procedure to construct a proper directory mask, base
directory, and file search pattern based on the text in the filter text entry area. The pro-
cedure creates a callback structure of the tipeileSelectionBoxCallback-

Struct  for use by the directory and file search routines.

4. TheXmNdirSearchProc  function is called with the callback structure constructed by
the qualify search procedure. The directory search routine checks to be sure that it can
search the specified directory and if it can, it creates the list of directories for the dialog.
If the directory cannot be searched, the routine XatldirectoryValid to False .

5. TheXmNfileSearchProc  function is called ifXmNdirectoryValid has been set
to True . This routine creates the list of files for the dialogXiihNdirectoryValid
has been set tBalse , the file list remains empty.

Just as for the directory and file search routines, you can write your own qualify search
procedure and install it as the value for KmNqualifySearchProc resource. The
routine takes the following form:

void (* XmQualifyProc) ( Widget widget ,
XtPointer input_data
XtPointer output_data)

Thewidget parameter is the actual FileSelectionBox wid@giyt data  andoutput

data are pointers to callback structures of ty)eFileSelectionBoxCallback-

Struct . input data  contains the directory information that needs to be qualified. The
routine uses this information to fill in theutput data  callback structure that is then
passed to the directory and file search procedures.

The XmNfileTypeMask resource indicates the types of files for which a particular search
routine should be looking. The resource can be set to one of the following values:

XmFILE_REGULAR XmFILE_DIRECTORY XmFILE_ANY_TYPE

If you are using the same routine for both tXenNdirSearchProc  and the
XmNfileSearchProc  , you can query this resource to determine the type of file to search
for.

192 Motif Programming Manual



Chapter 6: Selection Dialogs

Summary

This chapter described the different types of selection dialogs provided by the Motif toolkit.
These dialogs implement some common functionality that is needed by many different
applications. This chapter builds on the material in Chaptdn&pduction to Dialogs

which introduced the concept of dialogs and discussed the basic mechanisms that
implement them. While the dialogs are designed to be used as single-entity abstractions,
they can be customized to provide additional functionality as necessary. We describe how
to customize the dialogs and how to create your own dialogs in Chapter 7.

Motif Programming Manual 193



Chapter 6: Selection Dialogs

194 Motif Programming Manual



In this chapter:

» Modifying Motif Dialogs
 Designing New Dialogs

* Building a Dialog

» Generalizing the Action Area

» Using a TopLevelShell for a
Dialog
* Positioning Dialogs

- S Custom Dialogs

This chapter describes how to create new types of dialogs, either by customizing Motif
dialogs or by creating entirely new dialogs.

In this chapter we examine methods for creating your own dialogs. The need for such
dialogs exists when those provided by Motif are too limited in functionality or are not
specialized enough for your application. Sometimes it is not clear when you need to create
your own dialog. In some situations, you may find that a Motif dialog would be just fine if
only they did this one little thing. Fortunately, you can often make small adjustments to a
predefined Motif dialog, rather than building an entirely new dialog box from scratch.

There are some issues to consider before you decide how you want to approach the problem
of developing custom dialogs. For example, do you want to use your own widget layout or
is the layout of one of the predefined dialogs sufficient? Do you have specialized user-
interface appearance and functionality needs that go beyond what is provided by Motif?
The answers to these questions affect the design of your dialogs. The discussion and
examples provided in this chapter address both scenarios. We provide information on how
to create dialogs that are based on the predefined Motif dialogs, as well as how to design
completely new dialogs.

Before we get started, we should mention that creating your own dialogs makes heavy use
of manager widgets, such as the Form, BulletinBoard, RowColumn, and PanedWindow

widgets. While we use and describe the manager widgets in context, you may want to

consult Chapter 8ylanager Widgetsfor specific details about these widgets.

Modifying Motif Dialogs

We begin by discussing the simpler case of modifying existing Motif dialogs. In Chapter
5, Introduction to Dialogswe showed you how to modify a dialog to some extent by
changing the default labels on the buttons in the action area or by unmanaging or
desensitizing certain components in the dialog. What we did not mention is that you can
also add new components to a dialog box to expand its functionality. All of the predefined
Motif dialog widgets let you add children. In this sense, you can treat a dialog as a manager

Motif Programming Manual 195



Chapter 7: Custom Dialogs

widget. Motif allows you to add multiple children to an existing dialog, so you can provide
additional controls, action area buttons, and even a MenuBar.

Modifying MessageDialogs

At the end of Chapter 5, we described a scenario where an application might want to have
more than three action area buttons in a MessageDialog. If the user has sele@ted the
button in a text editor but has not saved her changes, an application might want to post a
dialog that asks about saving the changes before exiting. The user could want to save the
changes and exit, not save the changes and exit anyway, cancel the exit operation, or get
help.

The MessageDialog supports three action area buttons, so creating a dialog with four
buttons requires designing a custom dialog. The MessageDialog allows you to provide
additional action area buttons. Example 7-1 demonstrates how to create a QuestionDialog
with four action area buttons.

Example 7-1. The question.c program
[* question.c - create a QuestionDialog with four action buttons */

#include <Xm/MessageB.h>
#include <Xm/PushB.h>

main (int argc, char *argv[])

{
XtAppContext app;
Widget toplevel, pb;
void pushed(Widget, XtPointer, XtPointer);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, O, &argc, argv, NULL,
sessionShellWidgetClass, NULL);
pb = XmCreatePushButton (toplevel, "Button", NULL, 0);
XtAddCallback (pb, XmNactivateCallback, pushed, NULL);
XtManageChild (pb);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);
}
void pushed (Widget w, XtPointer client_data, XtPointer call_data)
{
Widget dialog, no_button;
void dig_callback(Widget, XtPointer, XtPointer);
Arg args[s];
int n=0;
XmString m;

XmString yes = XmStringCreateLocalized ("Yes");

* XtVaApplnitialize () is deprecated in X11R6.

196 Motif Programming Manual



Chapter 7: Custom Dialogs

XmString no = XmStringCreatelLocalized ("No");

m = XmStringCreateLocalized ("Do you want to update your changes?");
XtSetArg (argsn], XmNautoUnmanage, False); n++;

XtSetArg (args[n], XmNmessageString, m); n++;

XtSetArg (args[n], XmNokLabelString, yes); n++;

dialog = XmCreateQuestionDialog (w, "notice", args, n);
XtAddCallback (dialog, XmNokCallback, dig_callback, NULL);
XtAddCallback (dialog, XmNcancelCallback, dlg_callback, NULL);
XtAddCallback (dialog, XmNhelpCallback, dig_callback, NULL);
XmStringFree (m);

XmStringFree (yes);

XtSetArg(args[0], XmNlabelString, no);

no_button = XmCreatePushButton (dialog, "no", args, 1);
XtAddCallback (no_button, XmNactivateCallback, dig_callback, NULL);
XtManageChild (no_button);

XtManageChild (dialog);

}
void dig_callback (Widget w, XtPointer client_data, XtPointer call_data)
{
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
switch (cbs->reason) {
case XmCR_OK :* FALLTHROUGH */
case XmCR_CANCEL : XtUnmanageChild (w); break;
case XMCR_ACTIVATE : XtUnmanageChild (XtParent (w)); break;
case XmCR_HELP : puts ("Help selected"); break;
}
}

The dialog box from the program is shown in Figure 7-1.

netice_popup

B Do wanT 1o updats your chargs?

Vs M Camzal Halp

Figure 7-1: Output of the question program

The extra button is added to the dialog by creating a PushButton as a child of the dialog.
We are treating the MessageDialog just like any other manager widget. The MessageDialog
inserts any additional PushButton children into the action area aftekteitton, which

is why we added Bo button. If you add more than one button, they are all put aft€khe
button, in the order that you create them. We have also changed the labé&kflthtton

so that it is now th&esbutton.

Since theNo button is not part of the standard MessageDialog, we have to set the callback
routine on itsXmNactivateCallback . For the rest of the buttons, we use the callbacks

Motif Programming Manual 197



Chapter 7: Custom Dialogs

defined by the dialog. The dialog callback routidig, callback (), has to handle the
various callbacks in different ways. By checkingréson field of the callback structure,
the routine can determine which button was selected. FofesendCancelbuttons, the
routine unposts the dialog by unmanaging the MessageDialog. Ao théton, we need
to be a bit more careful about popping down the right widget. Sineddbet in this case
is the PushButton, we need to céfParent () to get the MessageDialog.

The MessageDialog also supports the addition of other children besides PushButtons. If
you add a MenuBar child, it is placed across the top of the dialog, although it is not clear
why you would want a MenuBar in a MessageDialog. Any other type of widget child is
considered the work area. The work area is placed below the message text if it exists. If
there is a symbol, but no message, the work area is placed to the right of the symbol. The
MessageDialog only supports the addition of one work area; the layout of multiple work
area children is undefined.

The XmNdialogType resource can take the val¥enDIALOG_TEMPLATEThis value
creates a TemplateDialog, which is basically an empty MessageDialog that can be modified
by the programmer. By default, the dialog only contains a Separator. @yicsetting
various resources on a TemplateDialog when it is created, you can cause the dialog to create
other standard children. If you set a string or callback resource for an action area button,
the button is created. If you set tb@nNmessageString resource, the message is
displayed in the standard location. If you set ¥maNsymbolPixmap resource, the
specified symbol appears in its normal location. If you don’t set a particular resource, then
that child is not created, which means that you cannot modify the resource later with
XtSetValues (), set a callback for the child wiktAddCallback (), or retrieve the child
throughXtNameToWidget ().

Modifying SelectionDialogs

The Motif SelectionDialog supports the same types of modifications as the MessageDialog.
You can provide additional action area buttons, a work area child, and a MenuBar. Unlike
the MessageDialog, the first widget that is added is taken as the workarea, regardless of
whether it is a PushButton or a Menuéﬁryou want to add a PushButton to the action

area of a SelectionDialog, you need to add a fake unmanaged work area widget first, so that
the PushButton is placed in the action area, rather than used as the work area. After you add
a work area, if you add a MenuBatr, it is placed along the top of the dialog, and PushButton

* There is a persistent bug such that attempting to unmanage the Separator (for whatever reason) before adding
any other children to the TemplateDialog causes a segmentation fault.

T The fact that the first child is always taken to be the work area is considered a bug. As a result of the bug, you
need to be careful about the order in which you add children to a SelectionDialog.

198 Motif Programming Manual



Chapter 7: Custom Dialogs

children are inserted after tiK button. The position of the work area child is controlled
by theXmNchildPlacement  resource, which can take the following values:

XmPLACE_ABOVE_SELECTION XmPLACE_BELOW_SELECTION
XmPLACE_TOP

The SelectionDialog only supports the addition of one work area; the layout of multiple
work area children is undefined.

Consider providing additional controls in a PromptDialog like the one used in the program
prompt_dlgfrom Chapter 6Selection Dialogsin this program, the dialog prompts the user

for a new label for the PushButton that activated the dialog. By adding another widget to
the dialog, we can expand its functionality to prompt for either a label name or a button
color. The user enters either value in the same text input area and the RadioBox controls
how the text is evaluated. Example 7-2 shows the new program.

Example 7-2. The modify_btn.c program

* modify_btn.c -- demonstrate how a default Motif dialog can be
** modified to support additional items that extend the usability
** of the dialog itself. This is a modification of the prompt_dig.c
** program.

*

#include <Xm/SelectioB.h>

#include <Xm/RowColumn.h>

#include <Xm/PushB.h>

main (int argc, char *argv[])

{
XtAppContext app;
Widget toplevel, rc, button;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);

* Initialize toolkit and create toplevel shell */

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

/* RowColumn managed both PushButtons */

rc = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);

[* Create two pushbuttons -- both have the same callback */

button = XmCreatePushButton (rc, "PushMe 1", NULL, 0);

XtAddCallback (button, XmNactivateCallback, pushed, NULL);

XtManageChild (button);

button = XmCreatePushButton (rc, "PushMe 2", NULL, 0);

XtAddCallback (button, XmNactivateCallback, pushed, NULL);

XtManageChild (button);

* XtVaApplnitialize () is considered deprecated in X11R&1SelectionBoxGetChild () is deprecated in
Motif 2.0. The Toggle value in Motif 2.0 and later is an enumerated type, not a BéohSirmgGetLtoR ()
is deprecated from Motif 2.0: prefdmStringUnparse ().

Motif Programming Manual 199



Chapter 7: Custom Dialogs

XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

* pushed() -the callback routine for the main app's pushbuttons.
** Create a dialog that prompts for a new button name or color.
** A RadioBox is attached to the dialog. Which button is selected
** n this box is held as an int (0 or 1) in the XmNuserData resource
** of the dialog itself. This value is changed when selecting either
** of the buttons in the ToggleBox and is queried in the dialog's
** XmNokCallback function.
*
void pushed (Widget pb, XtPointer client_data, XtPointer call_data)
{
Widget dialog, toggle_box;
XmString t, btnl, btn2;
void read_name(Widget, XtPointer, XtPointer);
void toggle_callback(Widget, XtPointer, XtPointer);
void destroy_callback(Widget, XtPointer, XtPointer);
Arg args[s};
int n=0;

[* Create the dialog -- the PushButton acts as the DialogShell's

** parent (not the parent of the PromptDialog). The "userData"

** s used to store the value

*

t = XmStringCreateLocalized ("Enter New Button Name:");

XtSetArg (args[n], XmNselectionLabelString, t); n++;

XtSetArg (args[n], XmNautoUnmanage, False); n++;

XtSetArg (args[n], XmNuserData, 0); n++;

dialog = XmCreatePromptDialog (pb, "notice_popup", args, n);

XmStringFree (t); /* always destroy compound strings when done */

[ When the user types the name, call read_name()... */

XtAddCallback (dialog, XmNokCallback, read_name, pb);

[* If the user selects cancel, just destroy the dialog */

XtAddCallback (dialog, XmNcancelCallback, destroy_callback, NULL);

[*No help is available... */

XtUnmanageChild (XtNameToWidget (dialog, “Help"));

[* Create a toggle box - callback routine is toggle_callback() */

btn1 = XmStringCreateLocalized (*Change Name");

btn2 = XmStringCreateLocalized ("Change Color");

toggle_box = XmVaCreateSimpleRadioBox (dialog,
“radio_box", 0, toggle_callback,
XmVaRADIOBUTTON, btn1, O, NULL, NULL,
XmVaRADIOBUTTON, btn2, 0, NULL, NULL,
NULL);

XtManageChild (toggle_box);

XtManageChild (dialog);

}

I

** This is passed the prompt when called. We destroy the shell parent.
*

200 Motif Programming Manual



Chapter 7: Custom Dialogs

void destroy_callback (Widget prompt, XtPointer client_data,
XtPointer call_data)

{
}

XtDestroyWidget ( XtParent (prompt));

[* callback for the items in the toggle box -- the "client data" i
** the item number selected. Since the function gets called whenever
** either of the buttons changes from true to false or back again,
** it will always be called in pairs - ignore the "False" settings.
** \When cbs->set is true, set the dialog's label string accordingly.
*
void toggle_callback (Widget toggle_box, XtPointer client_data,
XtPointer call_data)
{
Widget dialog = XtParent (XtParent (toggle_box));
XmString str;
int n = (int) client_data;
XmToggleButtonCallbackStruct *cbs;

cbs = (XmToggleButtonCallbackStruct *) call_data;

if (cbs->set == XmUNSET)
return; /* wait for the one that toggles "on" */
if (n==0)
str = XmStringCreatelLocalized ("Enter New Button Name:");
else
str = XmStringCreateLocalized ("Enter Text Color:");
XtVaSetValues (dialog, XmNselectionLabelString, str,
* reset the user data to reflect new value */
XmNuserData, n,
NULL);
XmStringFree (str);
}

* read_name() --the text field has been filled in. Get the userData
** from the dialog widget and set the PushButton's name or color.

*
/
void read_name (Widget dialog, XtPointer client_data, XtPointer call_data)
{
char *text;
int n;

Widget push_button = (Widget) client_data;
XmSelectionBoxCallbackStruct *cbs =
(XmSelectionBoxCallbackStruct *) call_data;
[* userData: n == 0 -> Button Label, n == 1 -> Button Color */
XtVaGetValues (dialog, XmNuserData, &n, NULL);
if (n==0)
XtVaSetValues (push_button, XmNIabelString, cbs->value, NULL);
else {
* convert compound string into regular text string */
text = (char *) XmStringUnparse (cbs->value,
XmMFONTLIST_DEFAULT_TAG,
XmMCHARSET_TEXT,

Motif Programming Manual 201



Chapter 7: Custom Dialogs

XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL);
XtVaSetValues (push_button,
XtVaTypedArg, XmNforeground, XmRString, text,
strlen (text) + 1, NULL);
XtFree (text); /* must free text gotten from XmStringUnparse() */

}
The new dialog is shown in Figure 7-2.

.m:.

| | 8 _poplan_ Do
Pushists I
k= 1 Chang= Nams=
a Tharnga Colar

Envter Tent Codor:
whi b

OK Cancel

Figure 7-2: Output of the modify_btn program

We add a RadioBox as the work area child of the PromptDialog. The ToggleButtons in the

RadioBox indicate whether the input text is supposed to change the label of the PushButton
or its text color. To determine which of these attributes to change, we use the callback
routinetoggle_callback 0.

Rather than storing the state of the RadioBox in a global variable, we store the value in the
XmNuserData resource of the dialog widget. Using this technique, we can retrieve the
value any time we wish and minimize the number of global variables in the program. The
XmNuserData resource is available for all Motif widgets except shells, so it is a convenient
storage area for arbitrary values. The type of valueXh@dlluserData takes is any type
whose size is less than or equal to the size of an XtPointer, which is typically defined as a
char pointer. As a result, storing an int works just fine. If you want to store a data structure
in this resource, you need to store a pointer to the structure. The size or type of the structure
is irrelevant, since pointers are the samesize.

When the user enters new text and presses RETURN or activateK tmeton,read

name() is called. This callback routine gets thmNuserData from the dialog widget. If

the value is 0, the label of the PushButton is reset usingrnihabelString  resource.
Since the callback routine provides the text in compound string format, it is already in the

*You might run into problems with unusual architectures where pointers of different types are not the same size,
like DOS.

202 Motif Programming Manual



Chapter 7: Custom Dialogs

correct format for the label. If thémNuserData is 1, then the text describes a color name
for the PushButton.

Rather than converting the string into a color explicitly, we us¥tWeeTypedArg feature
of XtVaSetValues () to do the conversion for us. This feature converts a value to the
format needed by the specified resource. Ximdforeground resource takes a variable
of type Pixel as a value. The conversion works provided there is an underlying conversion
function to support it.Motif does not supply a conversion function to change a compound
string into a Pixel value, but there is one for converting a C string into a Pixel. We convert
the compound string into a C string usiXgnStringUnparse () and then set the
foreground color as follows:

XtVaSetValues (push_button, XtVaTypedArg, XmNforeground, XmRString, text,

strlen (text) + 1, NULL);

So far, we've described the possibilities for both MessageDialogs and SelectionDialogs. If
the layouts that are possible do not meet your needs, you should consider building your own
dialogs from scratch.

Designing New Dialogs

In this section, we introduce the methods for building a dialog entirely from scratch. To
create a new dialog, you need to follow basically the same steps that are used by the Motif
convenience routines, which we described in Chapter 5. We've modified the list a bit to
reflect the flexibility that you have in controlling the kind of dialog that you make. Here are
the steps that you need to follow:

1. Choose a shell widget that best fits the needs of your dialog. You may continue to use
a DialogShell if you like.

2. Choose an appropriate manager widget to control the layout of the components of the
dialog. This manager is a child of the shell widget. The manager widget you choose
greatly affects how the dialog is laid out. You do not have to use a BulletinBoard or
Form widget, but you can if you liké.

3. Create the control area, which may include any of the Motif primitive or manager
widgets. This step is the one that gives you the most flexibility, as you have complete
control over the contents and layout of the control area.

* For more information on conversion functions, how to write them, or how to install your own, see Vol¥me 4,
Toolkit Intrinsics Programming Manual

T If you do want to use a DialogShell with either a Form or a BulletinBoard widget as the manager, you can use
one of the Motif convenience routine$mCreateBulletinBoardDialog () or XmCreateFormDialog ().
These routines give you a starting point for creating a custom dialog. However, in this chapter, we create each
of the widgets explicitly, so that you have a complete sense of what goes into a dialog.

Motif Programming Manual 203



Chapter 7: Custom Dialogs

4. Create an action area with PushButtons suaBlesCance| andHelp. Since you are
creating the control area yourself, you cannot is®NokCallback and the other re-
sources specific to the predefined Motif dialogs. Instead, you use the callback resourc-
es appropriate for the widgets that you use in the dialog.

5. Pop up the shell created in the first step.

The Shell

In Chapter 4,The Main Windowwe demonstrated the purpose of a main window in an
application and the kinds of widgets that you use in a top-level window. Dialog boxes, as
introduced in Chapter 5, are thought of as transient windows that act as satellites to a top-
level shell. A transient dialog should use a DialogShell widget. However, not all dialogs are
transient. A dialog may act as a secondary application window that remains on display for
an extended period of time. This usage is especially common in large applications. The
MainWindow widget can even be used in a dialog b&or dialogs of this type, you may

want to use a TopLevelShell, or a SessionShell.

Choosing the appropriate shell widget for a dialog depends on the activities carried out in
the dialog, so it is difficult to provide rules or even heuristics to guide you in your choice.
As discussed in Chapter 5, a DialogShell cannot be iconified, it is always placed on top of
the shell widget that owns the parent of the dialog, and it is always destroyed or withdrawn
from the screen if its parent is destroyed or withdrawn. These three characteristics may
influence your decision to use a DialogShell. A SessionShell or a TopLevelShell, on the
other hand, is always independent of other windows, so you can change its stacking order,
iconify it separately, and not worry about it being withdrawn because of another widget.
The main difference between an SessionShell and a TopLevelShell is that a SessionShell is
designed to start a completely new widget tree, as if it were a completely separate
application. It is recommended that an application only have one SessignShell.

For some applications, you may want a shell with characteristics of several of the available
shell classes. Unfortunately, it is difficult to intermix the capabilities of a DialogShell with
those of a SessionShell or a TopLevelShell because it involves doing quite a bit of intricate
window manager interaction. Having ultimate control over the activities of a shell widget
requires setting up a number of event handlers on the shell and monitoring certain window
property event state changes. Aside from being very complicated, you run the risk of

* Creating multiple MainWindow widgets in a single application has some problems associated with it, and has
not found to be entirely robust.

T In X11R6, the simple ApplicationShell is considered deprecated: you should use the SessionShell in its place.
SessionShell is derived from ApplicationShell. Programs using an ApplicationShell will still work, although
their participation in X11R6 Session Management is limited.

T Multiple Application Shells (or derived classes) in a single application can be difficult to handle correctly: all
sorts of focus issues can arise. There is poor guidance on the use of multiple ApplicationShell widgets in any
case. Where the application shells occupy multiple screens, the issues are much less problematic.

204 Motif Programming Manual



Chapter 7: Custom Dialogs

breaking Motif compliance. See Chapter Bieracting with the Window Managefor
details on how you might handle this situation.

Once you have chosen the shell widget that you want to use, you need to decide how to
create it. A DialogShell can be created using the routit@seatePopupShell () or
XtVaCreatePopupShell (), or the Motif toolkit convenience routine,
XmCreateDialogShell (). A SessionShell or a TopLevelShell can be created using either

of the popup shell routinextAppCreateShell () or XtVaAppCreateShell (). The
difference between the two types of routines involves whether the newly-created shell is
treated like a popup shell or as a more permanent window on the desktop. If you create the
shell as a popup shell, you need to select an adequate parent. The parent for a popup shell
must be an initialized and realized widget. It can be any kind of widget, but it may not be a
gadget because the parent must have a window. A dialog that uses a popup shell inherits
certain attributes from its parent. For example, if the parent is insenithMsénsitive

is set toFalse ), the entire dialog is insensitive as well.

The Manager Child

The manager widget that you choose for a dialog is the only managed child of the shell
widget, which means that the widget must contain both the control area and the action area
of the dialog and manage the relationship between them. Recall tivbtiiStyle Guide
suggests that a dialog be composed of two main areas: the control area and the action area.
Both of these areas extend to the left and right sides of a dialog and are stacked vertically,
with the control area on the top. The action area usually does not fluctuate in size as the
shell is resized, while the control area may be resized in any way. Figure 7-3 illustrates the
general layout of a dialog.

Hiztary
iwidast
N i MaiaT
Eallbarks taing L Control Area
Calibacks gHelght may
Methods luctuate)
Go T Clase Hsin — Action Area

—  (Constant Height)

Figure 7-3: Layout of a dialog

Motif dialog widgets handle this layout automatically. When you create your own dialog,
you are responsible for managing the layout. You could consider using the PanedwWindow
widget as the manager widget for a dialog. The PanedWindow supports both vertically and
horizontally stacked windowseach of which may or may not be resizable, which allows

Motif Programming Manual 205



Chapter 7: Custom Dialogs

you to create the suggested layout. If you use a PanedWindow as the manager widget for a
dialog, it can manage other managers that act as the control and action areas. The control
area can be resizable, while the action area is not. The PanedWindow also provides a
separator between the panes, which fulfillsShde Guideecommendation that there be a
Separator widget between the control and action areas.

Of course you can use whatever manager widget you like for a dialog. If you use a
BulletinBoard or a Form widget, you may be able to take advantage of the special
interaction these widgets have with a DialogShell. The RowColumn widget can also lay out
its children vertically, so you could use one to manage the control and action areas of a
dialog. The difficulty with using a RowColumn involves resizing, in that there is no way to

tell the widget to keep the bottom partition a constant height while allowing the top to
fluctuate as necessary. The same problem can also arise with other manager widgets, so you
need to be sure that the resizing behavior is appropriate.

The Control Area

The control area of a dialog box contains the widgets that provide the functionality of the
dialog, such as Labels, ToggleButtons, and List widgets. Creating the control area of a
dialog is entirely application-defined. You can use any of the Motif primitive and manager
widgets in the control area to implement the functionality of the dialog. The ability to
design your own control area is the main reason to create your own dialog as opposed to
using one of the predefined Motif dialogs.

The Action Area

The action area of a dialog contains PushButtons whose callback routines actually perform
the action of the dialog box. Constructing the action area for a dialog involves specifying
labels and callback routines for the buttons and determining the best way to get information
from the control area of the dialog. Thotif Style Guidedefines a number of common
dialog box actions. The common actions are designed to provide consistency between
different Motif applications. You are not required to use the common actions, but you
should consider them before creating your own arbitrary actions. The button labels and
their corresponding actions are shown in the following list.

Yes
Indicates an affirmative response and causes the dialog to be dismissed.

No
Indicates a negative response and causes the dialog to be dismissed.

* Horizontal orientation for the PanedWindow was officially supported in Motif 2.0.

206 Motif Programming Manual



Chapter 7: Custom Dialogs

OK
Applies any changes reflected in the control area, performs any related actions, and
causes the dialog box to be dismissed.

Close
Closes the dialog box without performing any action.

Apply
Applies any changes reflected in the control area, performs any related actions, and
leaves the dialog open for further interaction.

Retry
Tries the task in progress again. This action is commonly found in dialog boxes that
report errors.

Stop
Stops the task in progress at the next possible breaking point. This action is often found
in dialog boxes that indicate that the application is “busy.”

Pause
Pauses the task in progress. This action is used in combinatiofRegthme

Resume
Resumes the task in progress. This action is used in combinatiorPaithe

Reset
Resets the controls in the work area to the values they had at the time the dialog was
originally opened.

Cancel
Resets the controls in the work area and causes the dialog to be dismissed.

Help
Provides help for the dialog box.

The following heuristics can help in designing the action area for a dialog box:

» Lay out the action area as a single horizontal row at the bottom of the dialog.
» Set the action area apart from the rest of the dialog using a Separator.
» Use single-word button labels.

» Choose command-style verbs over nouns when possible. Since some words can be
interpreted in more than one way, be careful to avoid ambiguity.

» Affirmative actions should be placed farthest to the left (in a left-to-right language
environment), followed by negative actions, followed by cancelling actions. For
example,Yesshould always be placed to the lefiNd.

» Help, if available, should always be placed farthest to the right (in a left-to-right
language environment).

Motif Programming Manual 207



Chapter 7: Custom Dialogs

Depending on your application, you may want to create your own actions and overlook
some of these guidelines. Figure 7-4 shows a custom dialog that demonstrates some of the
issues involved in designing an action area.

Search
Caarch Tor
Pralisdas Tramilation
W Calibscks B k=thads
widgat name varlable nanmse

SLPIres Pl o roes

B All diakogt |gnore Case
Currert dialag FAippend
Current sub=haerarchy 8 Expliclt walue
Befire jrarnch Al yalies

Fird Sadrih ||'i'!: _C IQiE_ I'!g?lu

Figure 7-4: A custom dialog

In this dialog, theHelp andClosebuttons are the only ones with a label recommended by
Motif. Since the other common actions did not effectively represent the actions of the
dialog, we chose our own labels. THiad... andSearch list..buttons popup further dialogs
without closing the window.

We do not use th&K action in the dialog because it doesn’t work with the desired usage

of the dialog. By definitionQK should perform the action and dismiss the dialog. Here we
have in effect two actions: perform a search according to the current criteria, and popup the
results of previous searches. In neither case is the current dialog dismissed. It was felt that
neitherOK nor Applywere appropriate in these circumstances.

Building a Dialog

Now that we've explained the design process for a dialog, let's create a real dialog and
identify each of the steps in the process. Consider the problem of providing help. While the
Motif InformationDialog is adequate for brief help messages, a customized dialog may be
more appropriate for displaying large amounts of text. Our custom dialog displays the text
in a scrolling region which is capable of handling arbitrarily large amounts of data.

Example 7-3 shows a program that uses a main application window as a generic backdrop.
The MainWindow widget contains a MenuBar that has two meéfilesandHelp. TheHelp
menu contains several items that, when selected, pop up a dialog window that displays the

208 Motif Programming Manual



Chapter 7: Custom Dialogs

associated help text. The text that we provide happens to be predefined in the program, but
you could incorporate information from other sources, such as a database or an external file.

Example 7-3. The help_text.c program

[*help_text.c:

** Create a simple main window that contains a sample (dummy) work
** area and a menubar. The menubar contains two items: File and Help.
** The items in the Help pulldown call help_ch(), which pops up a

** home-made dialog that displays predefined help texts. The purpose
** of this program is to demonstrate how one might approach the

** problem displaying a large amount of text in a dialog box.

*

#include <stdio.h>

#include <ctype.h>

#include <Xm/DialogS.h>

#include <Xm/MainW.h>

#include <Xm/RowColumn.h>

#include <Xm/Form.h>

#include <Xm/Text.h>

#include <Xm/PushBG.h>

#include <Xm/LabelG.h>

#include <Xm/PanedW.h>

* The following help text information is a continuous stream of characters
** that will all be placed in a single ScrolledText object. If a specific
** newline is desired, you must do that yourself. See “index_help" below.
*
String context_help[] = {
"This is context-sensitive help. Well, not really, but such",
"help text could easily be generated by a real help system.”,
"All you really need to do is obtain information from the user",
"about the widget from which he needs help, or perhaps prompt",
“for other application-specific contexts.",
NULL};

String window_help[] = {
"Each of the windows in your application should have an",
"XmNhelpCallback associated with it so you can monitor when",
"the user presses the Help key over any particular widget.",
"This is another way to provide context-sensitive help.",
"The MenuBar should always have a Help entry at the far right",
"that provides help for most aspects of the program, including”,
“the user interface. By providing different levels of help”,
"indexing, you can provide multiple stages of help, making the",
"entire help system easier to use.",
NULL},

String index_help[] = {

* XtVaApplnitialize () is deprecated in X11R6.

Motif Programming Manual 209



Chapter 7: Custom Dialogs

"This is a small demonstration program, so there is very little",
"material to provide an index. However, an index should contain”,
"a summary of the type of help available. For example, we have:\n",

" Help On Context\n”,

" Help On Windows\n",

" This Index\n",

“\n",

"Higher-end applications might also provide a tutorial.”,
NULL};

String *help_texts[] = {context_help, window_help, index_help};

main (int argc, char *argv[])

{
XtAppContext app;
Widget toplevel, rc, main_w, menubar, w, label_g;
void help_ch(Widget, XtPointer, XtPointer);
void file_cb(Widget, XtPointer, XtPointer);
XmString strl, str2, str3;
Widget *cascade_btns;
int num_btns;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, O, &argc, argv, NULL,
sessionShellwidgetClass, NULL);

* the main window contains the work area and the menubar */

main_w = XmCreateMainWindow (toplevel, "main_w", NULL, 0);

* Create a simple MenuBar that contains two cascade buttons */

strl = XmStringCreatelLocalized ("File");

str2 = XmStringCreatelLocalized ("Help");

menubar = XmVaCreateSimpleMenuBar (main_w, "main_w",
XmVaCASCADEBUTTON, strl, 'F,
XmVaCASCADEBUTTON, str2, 'H',
NULL);
XmStringFree (strl);

XmStringFree (str2);

[* create the "File" pulldown menu -- callback is file_cb() */

strl = XmStringCreateLocalized ("New");

str2 = XmStringCreatelLocalized ("Open");

str3 = XmStringCreatelLocalized ("Quit");

XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, strl, 'N', NULL, NULL,
XmVaPUSHBUTTON, str2, 'O', NULL, NULL,

XmVaSEPARATOR,
XmVaPUSHBUTTON, str3, 'Q', NULL, NULL,
NULL);

XmStringFree (strl);

XmStringFree (str2);

XmStringFree (str3);

[* create the "Help" menu - callback is help_ch() */
strl = XmStringCreatelLocalized ("On Context");
str2 = XmStringCreatelLocalized ("On Window");
str3 = XmStringCreatelLocalized ("Index");

210 Motif Programming Manual



Chapter 7: Custom Dialogs

w = XmVaCreateSimplePulldownMenu (menubar, "help_menu", 1, help_cb,
XmVaPUSHBUTTON, strl, 'C', NULL, NULL,
XmVaPUSHBUTTON, str2, 'W', NULL, NULL,
XmVaPUSHBUTTON, str3, I, NULL, NULL,
NULL);
XmStringFree (strl);
XmStringFree (str2);
XmStringFree (str3);
* Identify the Help Menu for the MenuBar */
XtVaGetValues (menubar, XmNchildren, &cascade_btns,
XmNnumChildren, &num_btns, NULL);
XtVaSetValues (menubar, XmNmenuHelpWidget, cascade_btns[num_btns-
1], NULL);
XtManageChild (menubar);
[* the work area for the main window -- just create dummy stuff */
rc = XmCreateRowColumn (main_w, "rc", NULL, 0);
strl = XmStringCreatelLocalized (
"“\n This is an Empty\nSample Control Area\n");
XtSetArg (args[0], XmNlabelString, strl);
label_g = XmCreateLabelGadget (rc, "label", args, 1);
XtManageChild (label_g);
XmStringFree (strl);
XtManageChild (rc);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);
}

* callback for all the entries in the File pulldown menu. */
void file_cb (Widget w, XtPointer client_data, XtPointer call_data)

{
intitem_no = (int) client_data;
if (tem_no == 2)
[* the Quit menu button */
exit (0);
printf ("ltem %d (%s) selected\n”, item_no + 1, XtName (w));
}

* climb widget tree until we get to the top. Return the Shell */
Widget GetTopShell (Widget w)

{
while (w && XtisWMShell (w))
w = XtParent (w);
return w;
}

#include "info.xbm"

* bitmap data used by our dialog */

[* callback for all the entries in the Help pulldown menu.

** Create a dialog box that contains control and action areas.

*

void help_cb (Widget w, XtPointer client_data, XtPointer call_data)

{
Widget help_dialog, pane, text_w, form, sep, widget, label;

Motif Programming Manual 211



Chapter 7: Custom Dialogs

void DestroyShell(Widget, XtPointer, XtPointer);
Pixmap pixmap;

Pixel fg, bg;

Arg args[10];

int n=0;

int i;

char *p, buf BUFSIZ];

int item_no = (int) client_data;

Dimension  h;

[* Set up a DialogShell as a popup window. Set the delete

** window protocol response to XmDESTROY to make sure that

** the window goes away appropriately. Otherwise, its XmUNMAP

** which means itd be lost forever, since we're not storing

** the widget globally or statically to this function.

*

i=0;

XtSetArg (args[i], XmNdeleteResponse, XmDESTROY); i++
help_dialog = XmCreateDialogShell ( GetTopShell(w), "Help", args, i);

[* Create a PanedWindow to manage the stuff in this dialog. */
[* PanedWindow won't let us set these to 0! */
XtSetArg (args[0], XmNsashWidth, 1);
[ Make small so user doesn't try to resize */
XtSetArg (args[1], XmNsashHeight, 1);
pane = XmCreatePanedWindow (help_dialog, "pane", args, 2);
[* Create a RowColumn in the form for Label and Text widgets.
** This is the control area.
*
form = XmCreateForm (pane, "form1", NULL, 0);
XtVaGetValues (form, /* once created, we can get its colors */
XmNforeground, &fg,
XmNbackground, &bg,
NULL);
[* create the pixmap of the appropriate depth using the colors
** that will be used by the parent (form).
*
pixmap = XCreatePixmapFromBitmapData (XtDisplay (form),
RootWindowOfScreen (XtScreen (form)),
(char *) info_bits, info_width, info_height,
fg, bg,
DefaultDepthOfScreen (XtScreen (form)));
[* Create a label gadget using this pixmap */
n=0;
XtSetArg (args[n], XmNlabelType, XmPIXMAP); n++;
XtSetArg (args[n], XmNlabelPixmap, pixmap); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
label = XmCreateLabelGadget (form, "label", args, n);
XtManageChild (label);
* prepare the text for display in the ScrolledText object
** we are about to create.
*
for (p = buf, i = 0; help_texts[item_no][i]; i++) {

212 Motif Programming Manual



Chapter 7: Custom Dialogs

p += strlen (strepy (p, help_textsfitem_no][i]));
if (lisspace (p[-1]))
[* spaces, tabs and newlines are spaces. */
*p++=""; I lines are concatenated together, insert space */

}

*-p =0; /* get rid of trailing space... */

n=0;

XtSetArg (args[n], XmNscrollVertical, True); n++;
XtSetArg (args[n], XmNscrollHorizontal False); n++;
XtSetArg (args[n], XmNeditMode, XMMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False);  n++;
XtSetArg (args[n], XmNwordWrap, True); n++;
XtSetArg (args[n], XmNvalue, buf); n++;
XtSetArg (args[n], XmNrows, 5); n++;

text_w = XmCreateScrolledText (form, "help_text", args, n);
[* Attachment values must be set on the Text widget's PARENT,
** the ScrolledwWindow. This is the object that is positioned.
*
!
XtVaSetValues (XtParent (text_w),

XmNleftAttachment, XmATTACH_WIDGET,
XmNleftwidget, label,
XmNtopAttachment, XMATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmMATTACH_FORM,
NULL);

XtManageChild (text_w);

XtManageChild (form);

[* Create another form to act as the action area for the dialog */
XtSetArg (args[0], XmNfractionBase, 5);

form = XmCreateForm (pane, "form2", args, 1);

[* The OK button is under the pane's separator and is

** attached to the left edge of the form. It spreads from

** position O to 1 along the bottom (the form is split into

** 5 separate grids via XmNfractionBase upon creation).

*

widget = XmCreatePushButtonGadget (form, "OK", NULL, 0);

XtVaSetValues (widget,
XmNtopAttachment, XmMATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmMATTACH_POSITION,
XmNleftPosition, 1,
XmNrightAttachment, XmMATTACH_POSITION,
XmNrightPosition, 2,
XmNshowAsDefault, True,
XmNdefaultButtonShadowThickness, 1,
NULL);

XtManageChild (widget);

XtAddCallback (widget, XmNactivateCallback, DestroyShell,
(XtPointer) help_dialog);

[* This is created with its XmNsensitive resource set to False

** hecause we don't support “more" help. However, this is the

** place to attach it to if there were any more.

*

Motif Programming Manual 213



Chapter 7: Custom Dialogs

widget = XmCreatePushButtonGadget (form, "More", NULL, 0);

XtVaSetValues (widget,
XmNsensitive, False,
XmNtopAttachment, XmMATTACH_FORM,
XmNbottomAttachment, XmMATTACH_FORM,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 3,
XmNrightAttachment, XmMATTACH_POSITION,
XmNrightPosition, 4,
XmNshowAsDefault, False,
XmNdefaultButtonShadowThickness, 1,
NULL);

XtManageChild (widget);
[* Fix the action area pane to its current height -- never let it resize */
XtManageChild (form);
XtVaGetValues (widget, XmNheight, &h, NULL);
XtVaSetValues (form, XmNpaneMaximum, h, XmNpaneMinimum, h, NULL);
[* This also pops up the dialog, as it is the child of a DialogShell */
XtManageChild (pane);

}

* The callback function for the "OK" button. Since this is not a
** predefined Motif dialog, the "widget" parameter is not the dialog
* jtself. That is only done by Motif dialog callbacks. Here in the
** real world, the callback routine is called directly by the widget
** that was invoked. Thus, we must pass the dialog as the client
** data to get its handle. (We could get it using GetTopShell(),
** put this way is quicker, since it's immediately available.)
*
void DestroyShell (Widget widget, XtPointer client_data,
XtPointer call_data)

{

Widget shell = (Widget) client_data;

XtDestroyWidget (shell);
}

The output of the program is shown in Figure 7-5.

hedp text | - -
Fjle el

This is an EmpTy
Sarmole Cantral Area

Halp

This 1= T~
ot b-sensitive halp.
¥all, mof real Ty, bet

iuch help text cauld

ezt |y be generated by a |

LA panes

Figure 7-5: Output of help_text program

214 Motif Programming Manual



Chapter 7: Custom Dialogs

The function help_ch() is the callback routine that is invoked by all ¢iéfigmenu items.
This routine follows the steps that we outlined earlier to create the dialog box.

The Shell

Since the dialog is a transient dialog, we use a DialogShell widget for the shell. We create
the shell as follows:
i=0;
XtSetArg (args[il, XmNdeleteResponse, XmDESTROY); i++;
help_dialog = XmCreateDialogShell (GetTopShell (w), "Help", args, i);
Instead of using the Motif convenience function, we could have used
XtVaCreatePopupShell (), instead, as shown in the following code fragment:
help_dialog = XtVaCreatePopupShell ("Help", xmDialogShellwidgetClass,
GetTopShell (w),
XmNdeleteResponse, XmDESTROY, NULL);
Both methods return a DialogShell. ThémNdeleteResponse resource is set to
XmDESTROYbecause we want th€loseitem from the window menu in the window
manager’s titlebar for the shell to destroy the shell and its children. The default value for
this resource iIXmUNMAMad we wanted to reuse the same dialog upon each invocation,
we would have usedmUNMARBNd retained a handle to the dialog widget.

The name of the dialog i#lelp, since that is the first parameter in the call to
XtVaCreatePopupShell (). Resource specifications in a resource file that pertain to this
dialog should uselelp as the widget name, as shown below:

*Help*foreground: green

The string displayed in the title bar of a dialog defaults to the name of the dialog. Since the
name of the dialog iBlelp, the title defaults to the same value. However, this method of
setting the title does not prevent the value from being changed by the user in a resource file.
For example, the following specification changes the title:

*Help.title: Help Dialog
The title can also be set using tkeNtile  resource, as shown in the following code
fragments®

help_dialog = XtVaCreatePopupShell ("Help", xmDialogShellWidgetClass, parent,
XmNtitle, "Help Dialog", NULL);

i=0;
XtSetArg (args[i], XmNtitle, “Help Dialog”); i++;
help_dialog = XmCreateDialogShell (parent, “Help”, args, i);

* XmNtitle is defined identically tXtNtitle  , which is an Xt resource, which means that the value is a regular
character string, not a compound string.

Motif Programming Manual 215



Chapter 7: Custom Dialogs

When the title is hard-coded in the application, any resource specifications in a resource file
are ignored.

The Manager Child

The next task is to create a manager widget that acts as the sole child of the DialogShell,
since shell widgets can have only one managed child. This section deals heavily with
manager widget issues, so if you have problems keeping up, you should look ahead to
Chapter 8Manager WidgetsHowever, the main point of the section is to provide enough
context for you to understand Example 7-3. We are using a PanedWindow widget as the
child of the DialogShell. The PanedWindow is created as follows:

XtSetArg (args[0], XmNsashWidth, 1);

XtSetArg (args[1], XmNsashHeight, 1);

pane = XmCreatePanedWindow (help_dialog, "pane", help_dialog, args, 2);
The PanedWindow manages two Form widget children, one each for the control area and
the action area. These children are also called the PanedWindow’s panes. Normally, in a
PanedWindow, the user can resize the panes by moving the control sashes that are placed
between the panes. Because the action area is not supposed to grow or shrink in size, we
don’t want to allow the user to adjust the sizes of the panes. There are really two issues
involved here: the user might try to resize the panes individually or she might resize the
entire dialog, which would cause the PanedWindow itself to resize them.

You can prevent the PanedWindow from resizing the action area when it is itself resized by
setting the pane constraint resoukreNskipAdjust to True. However, this technique

still allows the user to resize the individual panes, which means that you need to disable the
control sashes. The best way to prevent both undesirable resize possibilities is to set the
action area pane constraints maximum and minimum allowed heights to the same value.
These settings should cause the PanedWindow to disable the sashes for that particular pane,
but due to a bug in the PanedWindow widget class, the sashes are rarely disabled. To
compensate, we try to make the sashes invisible by setting their sizes to a minimum value.
Unfortunately, the PanedWindow won't let you set the size of a sash to 0 (a design error),
so we set the values ffmNsashWidth andXmNsashHeight to 17

The PanedWindow widget is created unmanaged usinGreatePanedWindow (). As

pointed out in Chapter 8, manager widgets should not be managed until all of their children
have been created and managed. Using this order allows the children’s desired sizes and
positions to be specified before the manager widget tries to negotiate other sizes and
positions.

* The only other problem that might arise is that keyboard traversal still allows the user to reach the sashes, so you
may want to remove them from the traversal list by setting XmhtraversalOn  resources t&alse . This
issue is described in detail in Chapter 8.

216 Motif Programming Manual



Chapter 7: Custom Dialogs

The Control Area

The Form widget is the control area, so it is created as a child of the PanedWindow, as
shown in the following fragment:

form = XmCreateForm (pane, “form1", NULL, O);

As far as the PanedWindow is concerned, the Form widget is a single child whose width is
stretched to the left and right edges of the shell. Within the Form, we add two widgets: a
Label widget that contains the help pixmap and a ScrolledText for the help information.

In order to create the Label, we must first create the pixmap it is going to use. The following
code fragment shows how we create the pixmap and then create the Label:

XtVaGetValues (form, XmNforeground, &fg, XmNbackground, &bg, NULL);
pixmap = XCreatePixmapFromBitmapData (XtDisplay (form),
RootWindowOfScreen (XtScreen (form)),
bitmap_bits,
bitmap_width,
bitmap_height,
fg,
by,
DefaultDepthOfScreen (XtScreen (form)));
n=0;
XtSetArg (args[n], XmNlabelType, XmPIXMAP); n++;
XtSetArg (args[n], XmNlabelPixmap, pixmap); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
label = XmCreateLabelGadget (form, "label", args, n);
XtManageChild (label);

We cannot create the pixmap until we know the foreground and background colors, so we
retrieve these colors from the Form, since it has a valid window and colormap. This
approach works for either monochrome or color screens. We use these values as the
foreground and background for the pixmap we create in the «call to
XCreatePixmapFromBitmapData  ()." The bits for the bitmap, the width, and the height

are predefined in the X bitmap file included earlier in the prografo.xbr). The Label

uses the pixmap by setting tenNIlabelType and XmNlabelPixmap resources (see
Chapter 12| abels and Buttondor more information on these resources).

The attachment resources we specified for the Label are constraint resources for the Form
widget that describe how the Form should lay out its children. These constraint resources
are ignored by the Label widget itself. See Chaptéiahager Widgetsfor a complete

description of how constraint resources are handled by widgets. In this case, the top,

*We could have usedmGetPixmap () to create a pixmap, but this routine does not allow us to load a pixmap
directly from bitmap data, as we have done here. For us &mGetPixmap (), the file that contains the bitmap
data would have to exist at run-time, or we would have to load the bitmap data directly intoXiratafic For
more information on this technique, see Section 3.4.5 in Chapg®verview of the Motif Togilmlgi:t.

Motif Programming Manual 217



Chapter 7: Custom Dialogs

bottom, and left sides of the Label are all attached to the edge of the Form, which causes
the Label to position itself relative to the Form.

Next, we create a ScrolledText compound object to display the help text, as shown in the
following fragment:

n=0;

XtSetArg (args[n], XmNscrollVertical, True); n++;

XtSetArg (args[n], XmNscrollHorizontal, False); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNeditable, False); n++;

XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
XtSetArg (args[n], XmNwordWrap, True); n++;

XtSetArg (args[n], XmNvalue, buf); n++;

XtSetArg (args[n], XmNrows,5); n++;

text_ w = XmCreateScrolledText (form, "help_text", args, n);
XtVaSetValues (XtParent (text_w),

XmNleftAttachment, XmMATTACH_WIDGET,
XmNleftwidget, label,
XmNtopAttachment, XMATTACH_FORM,
XmNrightAttachment, XmMATTACH_FORM,
XmNbottomAttachment, XmMATTACH_FORM,
NULL);

XtManageChild (text_w);

In order to useXmCreateScrolledText (), we must use the old-styletSetArg ()

method of setting the resources that are passed to the function. The routine actually creates
two widgets that appear to be a single interface object. A ScrolledwWindow widget and a
Text widget are created so that the Text widget is a child of the ScrolledWindow. The
toolkit returns a handle to the Text widget, but since the ScrolledWindow widget is the
direct child of the Form, we set the constraint resources on the ScrolledWindow, not the
Text widget. The top, right, and bottom sides of the ScrolledWindow are attached to the
Form, while the left side is attached to the Label widget, so that the two widgets are always
positioned next to each other.

We could have passed these resource/value pairs arghelist, but then the resources
would have been set on both the ScrolledWindow widget and the Text widget. Since the
attachment constraints would be ignored by the Text widget, there would be no real harm
in setting them on both widgets. However, it is better programming style to set the
resources directly on the ScrolledWindow. Details on the Text widget and the ScrolledText
object can be found in Chapter 1Bext Widgets Chapter 10ScrolledWindows and
ScrollBars discusses the ScrolledWindow widget and its resources.

The text for the widget is set using tkeNvalue resource. The value for this resource is

the appropriate help text taken from the help_texts array declared at the beginning of the
program. We set thEmNeditable resource to False so that the user cannot edit the help
text.

218 Motif Programming Manual



Chapter 7: Custom Dialogs

The Text and Label widgets are the only two items in the Form widget. Once these children
are created and managed, the Form can be managedXidantageChild ().

The Action Area

At this point, the control area of the dialog has been created, so it is time to create the action
area. In our example, the action area is pretty simple, as the only action needed is to close
the dialog. We use thHeK button for this action. For completeness, we have also provided
aMorebutton to support additional or extended help. Since we don’t provide any additional
help, we set this button insensitive (although you can extend this example by providing it).

The action area does not have to be contained in a separate widget, although it is generally
much easier to do so. We use a Form widget in order to position the buttons evenly across
the width of the dialog. We create the Form as follows:

XtSetArg (args[0], XmNfractionBase, 5);
form = XmCreateForm (pane, "form2", args, 1);

The XmNfractionBase  resource of the Form widget is set to five, so that the Form is
broken down into five equal units, as shown in Figure 7-6.

[ox )
| |
| |
| |

0 1 2 3 4 5

Positions

Figure 7-6: The XmNfractionBase resource divides the form into equal units

Position zero is the left edge of the form and position five is the right edge of the form. We
chose five because it gave us the best layout aesthetically. The region is divided up equally,
so you can think of the sections as percentages of the total width (or height) of the Form.
By using this layout method, we don’t have to be concerned with the width of the Form or
of the DialogShell itself, since we know that the placement of the buttons will always be
proportional. We create tf@K button as shown in the following code fragment:

widget = XmCreatePushButtonGadget (form, "OK", NULL, 0);

XtVaSetValues (widget,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmMATTACH_FORM,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 1,
XmNrightAttachment, XmATTACH_POSITION,

Motif Programming Manual 219



Chapter 7: Custom Dialogs

XmNrightPosition, 2,

XmNshowAsDefault, True,

XmNdefaultButtonShadowThickness, 1,

NULLY);
The left and right sides of the button are placed at positions one and two, respectively. Since
this button is the default button for the dialog, we want the button to be displayed as such.
We setXmNshowAsDefault  to True, andKmNdefaultButtonShadowThickness to 1.
The value for theXmNdefaultButtonShadowThickness resource is a pixel value that
specifies the width of an extra three-dimensional border that is placed around the default
button to distinguish it from the other buttons. An alternative to specifying the
XmNshowAsDefault  resource is to set th&mNdefaultButton resource on the
containing Form to the value of the PushButton widgeor example,

XtVaSetValues (form, XmNdefaultButton, push_button, NULL);

If XmNshowAsDefault is False , the button is not shown as the default, regardless of the
value of any default shadow thickndss.

Because the dialog is not reused, we want the callback f@Khieutton to destroy the
DialogShell. We use thEmNactivateCallback of the PushButton to implement the
functionality. The callback routine BestroyShell (), which is shown below:

void DestroyShell (Widget widget, XtPointer client_data,

XtPointer call_data)
{
Widget shell = (Widget) client_data;
XtDestroyWidget (shell);
}
Since the dialog is not a predefined Motif dialog, Whdget parameter to the callback
routine is not the dialog, but the PushButton that caused the callback to be invoked. This
difference is subtle and it is often overlooked by programmers who are breaking away from
the predefined dialogs to build their own dialogs. We pass the Dialog&feltialog
as client data to the callback routine, so that the callback can destroy the widget.

TheMore button is not used in the application, since we do not provide any additional help
for the dialog. We create the button as follows:

widget = XmCreatePushButtonGadget (form, "More", NULL, 0);

XtVaSetValues (widget,
XmNsensitive, False,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmMATTACH_FORM,

* Setting theXmNdefaultButton resource is generally to be preferred, although if the Form concerned is not
the child of the containing Shell, the Button may not initially show the required visuals until it gains the key-
board focus.

T TheXmNshowAsDefault resource can also take a numeric value that indicates the shadow thickness to use, but
its value is only interpreted in this wayXmNdefaultButtonShadowThickness is set to 0. This function-
ality is for backwards compatibility with Motif 1.0 and should not be used.

220 Motif Programming Manual



Chapter 7: Custom Dialogs

XmNleftAttachment, XmMATTACH_POSITION,
XmNleftPosition, 3,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 4,
XmNshowAsDefault, False,
XmNdefaultButtonShadowThickness, 1,
NULL);
In this case, theXmNshowAsDefault resource is set t#alse . We have also set

XmNsensitive  to False so that the widget is insensitive to user input.

Once the buttons in the action area have been created, we need to fix the size of the action
area. We manage the Form and then we retrieve the height of one of the action area buttons,
so that we can use the value as the minimum and maximum height of the pane. We set the
XmNpaneMaximumand XmNpaneMinimum constraint resources on the Form, so that the
PanedWindow sets the action area to a constant height.

Once the control area and the action area have been created and managed, the
PanedWindow is managed usiXtiManageChild (), which has the side effect of popping

up the parent DialogShellSee Chapter 5, for a complete discussion of the posting of
dialogs.

Generalizing the Action Area

While dialogs can vary in many respects, the structure of the action area usually remains
consistent for all dialogs. Most large programs are going to make use of many customized
dialogs. In the general case, you do not want to rewrite the code to generate an action area
for each special case. It is much easier and more efficient to write a generalized routine that
creates an action area for any dialog.

Whenever we generalize any procedure, we first identify how the situation may change
from one case to the next. For example, not all action areas have only two buttons; you may
have any number from one to, say, ten. As a result, you need to be able to change the
number of partitions in the Form widget to an arbitrary value depending on the number of
actions in the dialog. The positions to which the left and right sides of each action button
are attached also need to be adjusted.

Some known quantities in this equation are that the action area must be at the bottom of a
dialog and it must contains PushButtons. While the PushButtons may be either widgets or
gadgets, you should probably choose one or the other and use them consistently throughout
your application. In general, all of the buttons in the action area should be from the same
class, and all of the action areas in an application should be consistent with one another.

*In Motif 1.2, the special behavior to automatically popup a DialogShell relied upon the child being a Bullet-
inBoard or derivative for proper operation. This is no longer the case in Motif 2.x: the ChangeManaged() method
of the DialogShell is less sensitive to a particular child class.

Motif Programming Manual 221



Chapter 7: Custom Dialogs

Each button in an action area has its own label, its own callback routine, and its own
associated client data. To create a general action area, we need a data structure that abstracts
this information. The ActionArealtem structure is defined as follows:

typedef struct {
char *abel; /* PushButton's Label */
void (*callback)();  /* pointer to a callback routine */
XtPointer  data; [* client data for the callback routine */
} ActionArealtem;

This data structure contains all of the information that we need to know in order to create
an action area; the rest of the information is known or it can be derived.

Now we can write a routine that creates an action area. The purpose of the function is to
create and return a composite widget that contains the specified number of PushButtons,
where the buttons are arranged horizontally and evenly spaced. The
CreateActionArea () routine is used in Example 7-4. This program does not do anything
substantial, but it does present a generalized architecture for creating dialogs for an
application.

Example 7-4. The action_area.c program

[* action_area.c - demonstrate how CreateActionArea() can be used
** in a real application. Create what would otherwise be identified
** as a PromptDialog, only this is of our own creation. As such,

** we provide a TextField widget for input. When the user presses
** Return, the OK button is activated.

*

#include <Xm/DialogS.h>

#include <Xm/PushBG.h>

#include <Xm/PushB.h>

#include <Xm/LabelG.h>

#include <Xm/PanedW.h>

#include <Xm/Form.h>

#include <Xm/RowColumn.h>

#include <Xm/TextF.h>

typedef struct {
char *abel;
void (*callback)();
XtPointer data;

} ActionArealtem;

static void do_dialog(Widget, XtPointer, XtPointer);
static void close_dialog(Widget, XtPointer, XtPointer);
static void activate_cb(Widget, XtPointer, XtPointer);
static void ok_pushed(Widget, XtPointer, XtPointer);
static void clear_pushed(Widget, XtPointer, XtPointer);
static void help(Widget, XtPointer, XtPointer);

* XtVaApplnitialize () is considered deprecated in X11R6.

222 Motif Programming Manual



Chapter 7: Custom Dialogs

main (int argc, char *argv(])

{
Widget toplevel, button;
XtAppContext  app;
XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

button = XmCreatePushButton (toplevel, "Push Me", NULL, 0);
XtManageChild (button);
XtAddCallback (button, XmNactivateCallback, do_dialog, NULL);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

[* callback routine for "Push Me" button. Actually, this represents
** a function that could be invoked by any arbitrary callback. Here,
**we demonstrate how one can build a standard customized dialog box.
** The control area is created here and the action area is created in
** a separate, generic routine: CreateActionArea().
*
static void do_dialog (Widget w, XtPointer client_data,
XtPointer call_data)

{
Widget dialog, pane, rc, text_w, action_a, label_g;
XmString string;
Arg args[6];
int n;
Widget CreateActionArea(Widget, ActionArealtem *, int);

static ActionArealtem action_items[] = {
{"OK",0k_pushed,NULL},
{"Clear", clear_pushed, NULL},
{"Cancel", close_dialog, NULL},
{"Help",help, "Help Button'},

[* The DialogShell is the Shell for this dialog. Set it up so

** that the "Close" button in the window manager's system menu
** destroys the shell (it only unmaps it by default).

*

n=0;

[* give arbitrary title in wm */

XtSetArg (args[n], XmNltitle, “Dialog Shell”); n++;

[* system menu "Close" action */

XtSetArg (args[n], XmNdeleteResponse, XmDESTROQY); n++;
dialog = XmCreateDialogShell (XtParent (w), "dialog", args, n);
[* now that the dialog is created, set the Cancel button's

** client data, so close_dialog() will know what to destroy.

*

action_items[2].data = (XtPointer) dialog;

[* Create the paned window as a child of the dialog. This will

** contain the control area and the action area

** (created by CreateActionArea() using the action_items above).
*

Motif Programming Manual 223



Chapter 7: Custom Dialogs

n=0;
XtSetArg (args[n], XmNsashWidth, 1); n++;
XtSetArg (args[n], XmNsashHeight, 1); n++;
pane = XmCreatePanedWindow (dialog, “pane”, args, n);
[* create the control area which contains a
** | abel gadget and a TextField widget.
*
rc = XmCreateRowColumn (pane, “control_area", NULL, 0);
string = XmStringCreatelLocalized ("Type Something:");
n=0;
XtSetArg (args[n], XmNlabelString, string); n++;
label_g = XmCreateLabelGadget (rc, "label", args, n);
XmStringFree (string);
XtManageChild (label_g);
text w = XmCreateTextField (rc, "text-field", NULL, O);
XtManageChild (text_w);
f* RowColumn is full -- now manage */
XtManageChild (rc);
* Set the client data for the "OK" and "Cancel" buttons */
action_items[0].data = (XtPointer) text_w;
action_items[1].data = (XtPointer) text_w;
[* Create the action area. */
action_a = CreateActionArea (pane, action_items,
XtNumber (action_items));
[* callback for Return in TextField. Use action_a as client data */
XtAddCallback (text_w, XmNactivateCallback, activate_cb,
(XtPointer) action_a);
XtManageChild (pane);
}

* The next four functions are the callback routines for the buttons
** in the action area for the dialog created above. Again, they are
** simple examples, yet they demonstrate the fundamental design approach.
*
static void close_dialog (Widget w, XtPointer client_data,
XtPointer call_data)

{

Widget shell = (Widget) client_data;

XtDestroyWidget (shell);
}

* The "ok" button was pushed or the user pressed Return */
static void ok_pushed (Widget w, XtPainter client_data,
XtPointer call_data)

{
Widget text_w = (Widget) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
char *ext = XmTextFieldGetString (text_w);
printf ("String = %s\n", text);
XtFree (text);

}

static void clear_pushed (Widget w, XtPointer client_data,
XtPointer call_data)

224 Motif Programming Manual



Chapter 7: Custom Dialogs

{
Widget text_ w = (Widget) client_data;
XmAnyCallbackStruct‘cbs = (XmAnyCallbackStruct *) call_data;
* cancel the whole operation; reset to NULL. */
XmTextFieldSetString (text_w, ");
}
static void help (Widget w, XtPointer client_data, XtPointer call_data)
{
String string = (String) client_data;
puts (string);
}

[* When Return is pressed in TextField widget, respond by getting
** the designated "default button” in the action area and activate
* it as if the user had selected it.
*
static void activate_cb (Widget text_w, XtPointer client_data,
XtPointer call_data)
{
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
Widget dfit, action_area = (Widget) client_data;

* get the "default button” from the action area... */
XtVaGetValues (action_area, XmNdefaultButton, &dfit, NULL);
if (dfit) /* sanity check - this better work */
* make the default button think it got pushed using
** XtCallActionProc(). This function causes the button
** t0 appear to be activated as if the user pressed it.
*
XtCallActionProc (dfit, "ArmAndActivate", cbs->event, NULL, 0);
}

#define TIGHTNESS 20
Widget CreateActionArea (Widget parent, ActionArealtem *actions,
int num_actions)
{
Widget action_area, widget;
int i;
action_area = XmCreateForm (parent, "action_area", NULL, 0);
XtVaSetValues (action_area,
XmNfractionBase, TIGHTNESS*num_actions - 1,
XmNleftOffset, 10,
XmNrightOffset, 10,
NULL);
for (i = 0; i < num_actions; i++) {
widget = XmCreatePushButton (action_area, actions]i].label,
NULL, O);
XtVaSetValues (widget,
XmNleftAttachment,
i? XmATTACH_POSITION: XmATTACH_FORM,
XmNleftPosition, TIGHTNESS*,
XmNtopAttachment XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,

Motif Programming Manual 225



Chapter 7: Custom Dialogs

XmNrightAttachment,
il=num_actions -1 ?
XmATTACH_POSITION :
XmATTACH_FORM,
XmNrightPosition, TIGHTNESS *i + (TIGHTNESS - 1),
XmNshowAsDefault,i == 0,
XmNdefaultButtonShadowThickness, 1,
NULL);
if (actionsi].callback)
XtAddCallback (widget, XmNactivateCallback, actions]i].callback,
(XtPointer) actions]i].data);
XtManageChild (widget);
if 1==0){
[* Set the action_area’s default button to the first widget
** created (or, make the index a parameter to the function
** or have it be part of the data structure). Also, set the
** pane window constraint for max and min heights so this
** particular pane in the PanedWindow is not resizable.
*
Dimension height, h;
XtVaGetValues (action_area, XmNmarginHeight, &h, NULL);
XtVaGetValues (widget, XmNheight, &height, NULL);
height +=2 * h;
XtVaSetValues (action_area,
XmNdefaultButton, widget,
XmNpaneMaximum, height,
XmNpaneMinimum, height,
NULL);
}

}
XtManageChild (action_area);
return action_area;

}
The application uses a PushButton to create and pop up a customized dialog. The control
area is composed of a RowColumn widget that contains a Label gadget and a TextField
widget. The action area is created usCmgateActionArea (). The actions and the
number of actions are specified in tiions andnum_actions parameters. We use a
Form widget to lay out the actions. We give the Form the remtien_area since it is

226 Motif Programming Manual



Chapter 7: Custom Dialogs

descriptive and it makes it easy for the user to specify the area in a resource file. The output
of the program in shown in Figure 7-7.

[ ||
Fuith M !
Dialceg Shell

Tupe Samathing
Halle wee]dd

Q1K Claas Camncal Hadp
Figure 7-7: Output of the action_area program

In order to distribute the PushButtons evenly across the action area, we use the
XmNfractionBase  resource of the Form widget to segment the widget into equal
portions. The value of the resource is based on the value 1@ NESSdefinition,

which controls the spacing between buttons. A higher value causes the PushButtons to be
closer together, while a lower value spaces them further apart. We use th@0s&tume

purely aesthetic reasons. As each button is created, its attachments are set. The left side of
the first button and right side of the last button are attached to the left and right edges of the
Form, respectively, while all of the other left and right edges are attached to positions.

The callback routine and associated client data for each button are added using
XtAddCallback (). The first button in the action area is specified as the default button for
the dialog. TheXmNdefaultButton  resource indicates which button is designated as the
default button for certain actions that take place in the control area of the dialog. The
XmNactivateCallback of the TextField widget in the control area uses the resource to
activate the default button when the user presses the RETURN key in the TextField.

The CreateActionArea () function also set¥mNpaneMaximumandXmNpaneMinimum
constraint resources on the action area. These are PanedWindow constraint resources that
are used to specify the height of the action area. The assumption, of course, is that the parent
of the action area is a PanedWindow. If that is not true, these resource specifications have
no effect.

Using a TopLevelShell for a Dialog

You don't have to use a DialogShell widget to implement a dialog. In fact, it is quite
common to use a TopLevelShell or even a SessionShetlases where the particular
functionality is an important part of a larger application. For example, an e-mail application
has a variety of functions that range from reading messages to composing new ones. As

* The ApplicationShell is considered deprecated in X11R6.

Motif Programming Manual 227



Chapter 7: Custom Dialogs

shown in Figure 7-8, you can have a separate TopLevelShell, complete with a MenuBar,
that looks and acts like a separate application, but is still considered a dialog, since it is only
a sub-part of the whole application.

As you can see, this dialog uses the same elements as other dialogs. The control area is
complete with a ScrolledText region and other controls, while the action area contains
action buttons. The principal difference between this dialog (which uses a TopLevelShell)
and a dialog implemented with a DialogShell is that this dialog that uses a TopLevelShell
may be iconified separately from the other windows in the program.

| EwBerch: Editor Verskon 16,1
Flte £dit Optiomm Help

Fila sk mmkd
e
ROSTAEE TraE §YECisE SEWiR1SDracar T
1 remfind psu that tie sain gerver w811 ba dawn Far
roeti e wyi berorcs tosmprrpw sorrieg CAuousk I8Eh

Fresm 1las armasds

Hagpry Birtaday, Juliec|

ak S Include Carcel

Figure 7-8: An editor dialog from a workbench application

When you need to implement a dialog with a TopLevelShell, you should not regard or
implement it as a popup dialog. But for the most part, there is little difference from this
approach and the method discussed for regular dialogs. You may still use BulletinBoards,
Forms, and RowColumns to manage the inner controls. You still need an action area
(provided you want to look and act like a dialog), and you still need to handle the cases
where the dialog is popped up and down. You can create the TopLevelShell with
XtVaAppCreateShell (). The shell is automatically mapped onto the screen when you
call XtPopup (). You may also want to catiMapRaised () on the shell, in case it is already
popped up but is not at the top of the window hierarchy.

In direct contrast to the DialogShell widget, managing the immediate child of a
TopLevelShell does not cause the dialog to pop up automatically. Even if that child is
subclassed from the BulletinBoard widget, this type of behavior only happens if the shell

228 Motif Programming Manual



Chapter 7: Custom Dialogs

is a DialogShell widget. Because you are using a TopLevelShell, you cannot rely on the
special communication that happens between a DialogShell and child widgets.

If you want to use one of the standard Motif dialogs, such as a MessageDialog or a
FileSelectionDialog, in a shell widget that can be iconified separately from its primary
window shell, you can put the dialog in a TopLevelShell. Create the shell using
XtVaAppCreateShell () and then use one of the Motif convenience routines to create a
MessageBox or a FileSelectionBox, rather than the corresponding dialog widget. The
following code fragment shows an example of this usage:

shell = XtVaAppCreateShell (NULL, "Class", topLevelShellWidgetClass, dpy,
XtNtitle, "Dialog Shell Title", NULL);
dialog = XmCreateMessageBox (shell, "MessageDialog", NULL, 0);
XtAddCallback (dialog, XmNokCallback, callback_func, NULL);
XtAddCallback (dialog, XmNcancelCallback, callback_func, NULL);
XtAddCallback (dialog, XmNhelpCallback, help_func, NULL);

Positioning Dialogs

In all of the dialog examples that you have seen so far, the toolkit has handled the
positioning of the dialog. For dialogs that use the DialogShell widget with a subclass of
BulletinBoard as the immediate child, tkenNdefaultPosition resource controls this
behavior. If the resource ifrue , the dialog is centered relative to the parent of the
DialogShell and placed on top of the parent. If the resource isEatéo , the application

is responsible for positioning the dialog. It is easy to position a dialog using the
XmNmapCallback resource that is supported by all of the Motif manager widgets, as
shown in Example 7-5.

Example 7-5. The map_dlg.c program

*map_dlg.c -- Use the XmNmapCallback to automatically position

** a dialog on the screen. Each time the dialog is displayed, it

** js mapped down and to the right by 200 pixels in each direction.

*

#include <Xm/MessageB.h>

#include <Xm/PushB.h>

[+ main() --create a pushbutton whose callback pops up a dialog box */
main (int argc, char *argv[])

{
Widget toplevel, button;
XtAppContext  app;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, “Demos", NULL, 0, &argc, argv, NULL,

* XtVaApplnitialize () is deprecated in X11R6.

Motif Programming Manual 229



Chapter 7: Custom Dialogs

sessionShellWidgetClass, NULL);
button = XmCreatePushButton (toplevel, "Push Me", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed,
(XtPointer) "Hello World");
XtManageChild (button);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);
}

* callback function for XmNmapCallback. Position dialog in 200 pixel
** "steps”. When the edge of the screen is hit, start over.
*
static void map_dialog (Widget dialog, XtPointer client_data,
XtPointer call_data)
{
static Position X, y;
Dimension w, h;
XtVaGetValues(dialog, XmNwidth, &w, XmNheight, &h, NULL);
if (X + w) >= WidthOfScreen (XtScreen (dialog)))
x=0;
if ((y + h) >= HeightOfScreen (XtScreen (dialog)))
y=0;
XtVaSetValues (dialog, XmNx, X, XmNy, y, NULL);
X +=200;
y +=200;

* pushed() -the callback routine for the main app's pushbutton.
** Create and popup a dialog box that has callback functions for
** the Ok, Cancel and Help buttons.
*
void pushed (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget dialog;

Arg arg[5];

int n=0;

char *message = (char *) client_data;

XmString t = XmStringCreatelLocalized (message);

XtSetArg (arg[n], XmNmessageString, t); n++;

XtSetArg (arg[n], XmNdefaultPosition, False); n++;

dialog = XmCreateMessageDialog (w, “notice”, arg, n);
XmStringFree (t);

XtAddCallback (dialog, XmNmapCallback, map_dialog, NULL);
XtManageChild (dialog);

}
Each time the dialog is mapped to the screenmtdge dialog () routine is invoked. The
routine merely places the dialog at a location that is 200 pixels from its previous position.
Obviously, this example is meant to demonstrate the technique of positioning a dialog,
rather than providing any useful functionality. THeNwidth , XmNheight , XmNx and
XmNyresources are retrieved from the DialogShell widget since the dialog is a predefined
Motif dialog. Similarly, the position of the DialogShell is set by calitigaSetValues ()
using the same resources.

230 Motif Programming Manual



Chapter 7: Custom Dialogs

If you are using a SessionShadl a TopLevelShell, rather than a DialogShell, the position

of the dialog is subject to various resources that are controlled by the user and/or the
window manager. For example, if the user is usimgm she can set the resource
interactivePlacement , which allows her to position the shell interactively. While it is
acceptable for an application to control the placement of a DialogShell, it should not try to
control the placement of a TopLevelShell or a SessionShell because that is the user’s
domain. However, if you feel you must, you can position any shell widget directly by
setting itsXmNxandXmNyresources to the desired position when the shell is created or later
using XtVaSetValues (). The Motif toolkit passes the coordinate values to the window
manager and allows it to position the dialog at the intended location.

This issue is an important dilemma in user-interface design. If you are going to hard-code
the position of a dialog on the screen, you probably do not want to position the dialog at
that location each time that it is popped up. Imagine that you pop up a dialog, move it to an
uncluttered area on your screen, interact with it for a while, and then pop it down. If you

use the dialog again, you would probably like it to reappear in the location where you put
it previously. The best way to handle this dilemma is to avoid doing any of your own dialog

placement, with the possible exception of the first time that a dialog is popped up.

Whether or not you want to position a dialog when it is displayed, you may still find it
useful to be informed about when a dialog is popped up or downXmfiNienapCallback

is not the best tool for this purpose, since it is not called each time the popped-up state of
the dialog changes. ThémNpopupCallback andXmNpopdownCallback callbacks are

meant for this purpose. These resources are defined and implemented by X Toolkit
Intrinsics for all shell widgets. ThémNpopupCallback is invoked each tim&tPopup ()

is called on a shell widget, while tixenNpopdownCallback is called forXtPopdown ().

People often get confused by the terminology of a dialog being popped down and a shell
being iconified. Remember that whether or not a shell is popped up is independent of its
iconic state. Although a DialogShell cannot be iconified separately, other shells can. These
shells may also be popped up and down usiRgpup () andXtPopdown () independent

of their iconic stateXtPopup () causes a shell to be deiconified, whi#opdown ()

causes the dialog and its icon to be withdrawn from the screen, regardless of its iconic state.
The subject of window iconification is discussed in Chapterl@@racting with the
Window Manager

Summary

Obviously, it is impossible to cover all of the possible scenarios of how dialogs can and
should be used in an application. If nothing else, you should come away from the chapters
on dialogs with a general feeling for the design approach that we encourage. You should

* The ApplicationShell is considered deprecated in X11R6.

Motif Programming Manual 231



Chapter 7: Custom Dialogs

also understand the steps that are necessary to create and use both predefined Motif dialogs
and customized dialogs. For a final look at some particularly thorny issues in using dialogs,
see Chapter 2Advanced Dialog Programming

232 Motif Programming Manual



In this chapter:

e Types of Manager Widgets
» Creating Manager Widgets
» The BulletinBoard Widget
* The Form Widget

» The RowColumn Widget

e The Frame Widget

e The PanedWindow Widget

» Keyboard Traversal M an ag e r WI d g etS

e Summary

This chapter provides detailed descriptions of the various classes of Motif manager
widgets. Examples explore the various methods of positioning children within the
BulletinBoard, Form, and RowColumn widgets.

As their name implies, manager widgets manage other widgets, which means that they
control the size and location (geometry) and input focus policy for one or more widget
children. The relationship between managers and the widgets that they manage is
commonly referred to as the parent-child model. The manager acts as the parent and the
other widgets are its children. Since manager widgets can also be children of other
managers, this model produces the widget hierarchy, which is a framework for how widgets
are laid out visually on the screen and how resources are specified in the resource database.

While managers are used and explained in different contexts throughout this book, this
chapter discusses the details of the different manager widget classes. Clapbevidw

of the Motif Toolkitdiscusses the general concepts behind manager widgets and how they
fit into the broader application model. You are encouraged to review the material in this
and other chapters for a wider range of examples, since it is impossible to deal with all of
the possibilities here. For an in-depth discussion of the X Toolkit Composite and Constraint
widget classes, from which managers are subclassed, see VolXmeodlkit Intrinsics
Programming Manual

Types of Manager Widgets

The Manager widget class is a metaclass for a number of functional subclasses. The
Manager widget class is never instantiated; the functionality it provides is inherited by each
of its subclasses. In this chapter, we describe the general-purpose Motif manager widgets,
which are introduced below:

BulletinBoard
The BulletinBoard is the most basic of the manager widgets. The geometry manage-
ment is, as the class name implies, like a bulletin board. A child is pinned up on the
BulletinBoard in a particular location and remains there until it moves itself or some-

Motif Programming Manual 233



Chapter 8: Manager Widgets

one else moves it. The BulletinBoard widget does not impose any layout policy on its
children, but it does support keyboard traversal. The BulletinBoard is a superclass for
more sophisticated and useful managers. The BulletinBoard is also designed to be used
as the container for dialog boxes, so it has translation tables and callback routines for
this purpose. The predefined Motif dialogs use the BulletinBoard widget class to han-
dle all of their input mechanisms; each dialog widget class handles its own geometry
management. See Chaptetriroduction to Dialogsfor a complete discussion of di-
alogs.

Form
The Form widget is subclassed from the BulletinBoard. The Form extends the capabil-
ities of the BulletinBoard by introducing a sophisticated geometry management policy
that involves both absolute and relative positioning and sizing of its children. For ex-
ample, a Form may lay out its children in a grid-like manner, anchoring the edges of
each child to specific positions on the grid, or it may attach the children to one another
in a chain-like fashion.

RowColumn
The RowColumn widget lays out its children in rows and columns. Resources control
the number of rows or columns and the packing of widgets into those rows and col-
umns. The Motif toolkit uses the RowColumn internally to implement many objects
that are not implemented as individual widgets, such as PopupMenus, PulldownMen-
us, MenuBars, RadioBoxes, and CheckBoxes. There are a number of RowColumn re-
sources that are specific to these objects.

Frame
The purpose of the Frame widget is to provide a visible, three-dimensional border for
objects such as RowColumns or Labels that do not provide a border for themselves.
The Frame widget may have two children: a work area child and a label child. The
Frame sizes itself just big enough to contain its children.

PanedWindow
The PanedWindow manages its children in a vertically or horizontild format. In
a vertical orientation, the widget takes its width from the widest widget in its list of
children. When horizontally oriented, the PanedWindow takes its height from the
height of the tallest child. The PanedWindow also provides control sashes or grips that
enable the user to adjust the individual heights of the PanedWindow’s children. Con-
straint resources for the PanedWindow allow each child to specify its desired maxi-
mum and minimum height and whether it may be resized.

DrawingArea

Although the DrawingArea widget is subclassed from the Manager widget class, it is
not generally used in the way that conventional managers are used. The widget does

* Horizontal layout was introduced in Motif 2.0.

234 Motif Programming Manual



Chapter 8: Manager Widgets

not do any drawing itself, and it doesn’t define any keyboard or mouse behavior, al-
though it does provide callbacks for user input. It is basically a free-form widget that
can be used for application-specific purposes. The widget provides callback resources
to handle keyboard, mouse, exposure, and resize events. While the DrawingArea
widget can have children, it does not manage them in any defined way. Since the
DrawingArea widget is typically used for application drawing, rather than for manag-
ing other widgets, it is discussed separately in ChapteTté&,Drawing Area

ScrolledWindow

The ScrolledWindow widget provides a viewing area into another widget. The user can
adjust the viewing area using ScrollBars that are attached to the ScrolledWindow. The
ScrolledWindow can handle scrolling automatically, so that the application does not
have to do any work. The widget also has an application-defined mode, which allows
an application to control all of the aspects of scrolling. Since the operation of the
ScrolledWindow is tied to the operation of ScrollBars, the two widgets are discussed
together in Chapter 1GGcrolledWindows and ScrollBars

MainWindow
The MainWindow widget is subclassed from the ScrolledWindow widget. The Main-
Window is the standard layout manager for the main application window in a Motif
application. The widget is designed to lay out a MenuBar, a work area, ScrollBars, a
command area, and a message area. Since the MainWindow is central to many Motif
applications, it is discussed separately in Chaptdihé, Main Window

Scale
The Scale widget displays a slider object that has a specific value in a range of values.
The user can adjust the value of the widget by moving the slider. The Scale creates and
manages its own widgets. In Motif 1.2, the only sensible children that you could add
to a Scale were Label widgets that represent tick marks, and these would have to be
laid out by the programmer. However, in Motif 2.0, the functi¥mScaleSet-
Ticks () was introduced which automatically places marks at calculated positions
along the Scale edge. The widget class is therefore not meant to be a general-purpose
manager, so it is described separately in ChapteT hé,Scale Widget

The MessageBox, SelectionBox, FileSelectionBox, and Command widgets are also Motif
manager widgets. These widgets are used for predefined Motif dialogs and are discussed in
Chapter 5)ntroduction to Dialogs Chapter 6Selection Dialogsand Chapter TCustom

Dialogs.

Creating Manager Widgets

A manager widget may be created and destroyed like any other widget. The main difference
between using a manager and other widgets involves when the widget is declared to be
managed in the creation process. We normally suggest that you create manager widgets

Motif Programming Manual 235



Chapter 8: Manager Widgets

using the appropriate convenience functioXiMaCreateWidget() , rather than using
XtVaCreateManagedWidget() , and then manage it later usilanageChild) .To
understand why this technique can be important, you need to understand how a manager
widget manages its children.

A manager widget manages its children by controlling the sizes and positions of the
children. The process of widget layout only happens when the child and the parent are both
in the managed state. If a child is created as an unmanaged widget, the parent skips over
that widget when it is determining the layout until such time as the child is managed.
However, if a manager widget is not itself managed, it does not perform geometry
management on any of its children regardless of whether those children are managed.

To demonstrate the problems that you are trying to avoid, consider creating a manager as a
managed widget before any of its children are created. The manager is going to have a set
of PushButtons as its children. When the first child is added using
XtVaCreateManagedWidget() , the manager widget negotiates the size and position of

the PushButton. Depending on the type of manager widget being used, the parent either
changes its size to accommodate the new child or it changes the size of the child to its own
size. In either case, these calculations are not necessary because the geometry needs to
change as more buttons are added. The problem becomes complicated by the fact that when
the manager’s size changes, it must also negotiate its new size with its own parent, which
causes that parent to negotiate with its parent all the way up to the highest-level shell. If the
new size is accepted, the result goes back down the widget tree with each manager widget
resizing itself on the way down. Repeating this process each time a child is added almost
certainly affects performance.

Because of the different geometry management methods used by the different manager
widgets, there is the possibility that all of this premature negotiation can result in a different
layout than you intended. For example, as children are added to a RowColumn widget, the
RowColumn checks to see if there is enough room to place the new child on the same row
or column. If there isn't, then a new row or column is created. This behavior depends
heavily on whether the RowColumn is managed and also on whether its size has been
established by being realized. If the manager parent is not managed when the children are
added, the whole process can be avoided, yet you still have the convenience of using
XtVaCreateManagedWidget() for all of the widget children should you so wish. When

*To be precise, a manager does not actually manage its children until it is both managed and realized. If you re-
alize all of your widgets at once, by calliKgRealizeWidget () on the top-level widget of the application,
as described in Chapter Phe Motif Programming Modeit, should not make a difference whether a manager
is managed before or after its children are created. However, if you are adding widgets to a tree of already-real-
ized widgets, the principles set forth in this section are important. If you are adding children to an already-real-
ized parent, the child is automatically realized when it is managed. If you are adding a manager widget as a child
of a realized widget, you should explicitly manage all children before managing the parent. The performance
implications can be quite severe otherwise, and can be exponential to the number of already managed children.
The code examples all explicitly manage the child before the parent to demonstrate the correct technique, even
though the application shell may not as yet be realized.

236 Motif Programming Manual



Chapter 8: Manager Widgets

the manager is itself managed, it queries its children for their size and position requests,
calculates its own size requirements, and communicates that size back up the widget tree.

For best results, you should use the appropriate Motif convenience function,
XtCreateWidget () or XtVaCreateWidget() to create manager widgets, reserving
XtVaCreateManagedWidget() for primitive widgets. Creating a primitive widget as an
unmanaged widget serves no purpose, unless you explicitly want the widget's parent to
ignore it for some reason. If you are adding another manager as a child, the same principle
applies; you should also create it as an unmanaged widget until all its children are added as
well. The idea is to descend as deeply into the widget tree and create as many children as
possible before managing the manager parents as you ascend back up. Once all the children
have been adde&tManageChild()  can be called for the managers so that they only
have to negotiate with their parents once, thus saving time, improving performance, and
probably producing better results.

Despite all we've just said, realize that the entire motivating factor behind this principle is

to optimize the method by which managers negotiate sizes and positions of their children.

If a manager only has one child, it does not matter if you create the manager widget as
managed or not. Also, the geometry management constraints of some widgets are such that
no negotiation is required between the parent and the children. In these situations, it is not
necessary to create the manager as an unmanaged widget, even though it has children. We
will explain these cases as they arise.

In the rest of this chapter, we examine the basic manager widget classes and present
examples of how they can be used. While geometry management is the most obvious and
widely used aspect of the widget class, managers are also responsible for keyboard
traversal, gadget display, and gadget event handling. Many of the resources of the Manager
metaclass are inherited by each of its subclasses for handling these tasks.

The BulletinBoard Widget

The BulletinBoard is the most basic of the manager widget subclasses. The BulletinBoard
widget does not enforce position or size policies on its children, so it is rarely used by
applications as a general geometry manager for widgets. The BulletinBoard is the
superclass for the Form widget and all of the predefined Motif dialog widgets. To support
these roles, the BulletinBoard has a number of resources that are used specifically for
communicating with DialogShells.

The BulletinBoard has callback resources Focusin , FocusOut , and MapNotify

events. These callbacks are invoked when the user moves the mouse or uses the TAB key
to traverse the widget hierarchy. The events do not require much visual feedback and they
only require application-specific callback routines when an application needs to set internal
states based on the events. XhéNfocusCallback andXmNmapCallback resources

are used extensively by DialogShells.

Motif Programming Manual 237



Chapter 8: Manager Widgets

Despite the low profile of the BulletinBoard as a manager widget, there is a lot to be learned
from it, since the principles also apply to most other manager widgets. In this spirit, let's
take a closer look at the BulletinBoard widget and examine the different things that can be
done with it as a manager widget. If you want to use a BulletinBoard directly in an
application, you must include the fileXsn/BulletinB.k». The following code fragment
shows the two recommended ways to create a BulletinBoard:

Widget bboard = XtVaCreateWidget ("name", xmBulletinBoardWidgetClass, parent ,

resource-value-list , NULL);
[* Create children */

XtManageChild (bboard);

Widget bboard = XmCreateBulletinBoard (parent, “name”,
resource-value-array
resource-value-count )
* Create children */

XtManageChild (bboard);

Theparent parameter is the parent of the BulletinBoard, which may be another manager
widget or a shell widget. You can specify any of the resources that are specific to the
BulletinBoard, but unless you are using the widget as a dialog box, your choices are quite
limited.

Resources

Of the few BulletinBoard resources not tied to DialogShells, the only visual one is
XmNshadowType. When used in conjunction with tb@nNshadowThickness resource,

you can control the three-dimensional appearance of the widget. There are four possible
values forXmNshadowType:

XmSHADOW_IN XmSHADOW_OUT

XmSHADOW_ETCHED_IN XmSHADOW_ETCHED_OUT
The default value foKmNshadowThickness is 0, except when the BulletinBoard is the
child of a DialogShell, in which case the default valuk. i either case, the value can be
changed by the application or by the user.

The XmNbuttonRenderTable * resource may be set to a render table as described in
Chapter 24Render TablesThis render table is used for each of the button children of the
BulletinBoard, when the button does not specify its own render table. If the resource is not
specified, its value is taken from thk@nNbuttonRenderTable  of the nearest ancestor
which holds theXxmQTspecifyRenderTable Trait. BulletinBoard, VendorShell, and

* The XmFontList is obsolete as of Motif 2.0, and is replaced byXimRenderTable . XmNbuttonFontList
XmNIlabelFontList ~, andXmNtextFontList are deprecated, and the resouxedlbuttonRenderTable
XmNlabelRenderTable , XmNtextRenderTable are preferred respectively.

238 Motif Programming Manual



Chapter 8: Manager Widgets

MenuShell hold this Trait. Similarly, theXmNlabelRenderTable and
XmNtextRenderTable resources can be set for Label and Text widgets, respectively,
that are direct children of the BulletinBoard.

Geometry Management

Since the BulletinBoard does not provide any geometry management by default, you must
be prepared to manage the positions and sizes of the widgets within a BulletinBoard. As a
result, you must set thémNxandXmNyresources for each child. You may also have to set
theXmNwidth andXmNheight resources if you need consistent or predetermined sizes for
the children. In order to maintain the layout, you must add an event handler for resize
(ConfigureNotify ) events, so that the new sizes and positions of the children can be
calculated. Example 8-1 shows the use of an event handler with the BulletinBoard.

Example 8-1. The corners.c program

[* corners.c -- demonstrate widget layout management for a

** BulletinBoard widget. There are four widgets each labelled

** top-left, top-right, bottom-left and bottom-right. Their

** positions in the bulletin board correspond to their names.

** Only when the widget is resized does the geometry management
** kick in and position the children in their correct locations.

*

#include <Xm/BulletinB.h>

#include <Xm/PushB.h>

char *corners[] ={"Top Left", “Top Right",
"Bottom Left", "Bottom Right" };
static void resize(Widget, XEvent *, String *, Cardinal *);

main (int argc, char *argv(])
{
Widget toplevel, bboard, button;
XtAppContext  app;
XtActionsRec rec;
int i;

XtSetLanguageProc (NULL, NULL, NULL);

[* Initialize toolkit and create toplevel shell */

toplevel =XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

[* Create your standard BulletinBoard widget */

bboard = XmCreateBulletinBoard (toplevel, "bboard", NULL, 0);

[* Set up a translation table that captures "Resize" events

** (also called ConfigureNotify or Configure events). If the

** event is generated, call the function resize().

*

rec.string = "resize";

* XtVaApplnitialize () is considered deprecated in X11R6.

Motif Programming Manual 239



Chapter 8: Manager Widgets

rec.proc = resize;
XtAppAddActions (app, &rec, 1);
XtOverrideTranslations (bboard,
XtParseTranslationTable ("<Configure>: resize()"));
[* Create children of the dialog -- a PushButton in each corner. */
for (i = O; i < XtNumber (corners); i++) {
button = XmCreatePushButton (bboard, corners]i], NULL, 0);
XtManageChild (button);

}
XtManageChild (bboard);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

[* resize(), the routine that is automatically called by Xt upon the

** delivery of a Configure event. This happens whenever the widget
** gets resized.

*

static void resize ( Widget w, f* Widget that resized */
XEvent *event,
String args|], f*unused */
Cardinal *num_args) /*unused */
{
WidgetList children;
Dimension w_width, w_height;
short margin_w, margin_h;
XConfigureEvent  *cevent = (XConfigureEvent *) event;
int width = cevent->width;
int height = cevent->height;

* get handle to BulletinBoard's children and marginal spacing */
XtVaGetValues (w, XmNchildren, &children, XmNmarginWidth, &margin_w,
XmNmarginHeight, &margin_h, NULL);

[* place the top left widget */
XtVaSetValues (children[0], XmNx, margin_w,

XmNy, margin_h, NULL);
[* top right */
XtVaGetValues (children[1], XmNwidth, &w_width, NULL);
XtVaSetValues (children[1], XmNXx, width - margin_w - w_width,

XmNy, margin_h, NULL);
[* bottom left */
XtVaGetValues (children[2], XmNheight, &w_height, NULL);
XtVaSetValues (children[2], XmNx, margin_w,
XmNy, height - margin_h - w_height,
NULL);

[* bottom right */
XtVaGetValues (children[3], XmNheight, &w_height,

XmNwidth, &w_width, NULL);
XtVaSetValues (children[3], XmNx, width - margin_w - w_width,

XmNy, height - margin_h - w_height,

NULL);

240 Motif Programming Manual



Chapter 8: Manager Widgets

The program uses four widgets, labellEgp Left Top Right Bottom Left andBottom

Right The positions of the buttons in the BulletinBoard correspond to their names. Since
the widgets are not positioned when they are created, the geometry management only
happens when the widget is resized. Figure 8-1 shows the application before and after a
resize event.

COTMErs

Top Leftithftt

expand window

LArners:

Top Lert] Top Right]

BoTiom Laft BaTrom Right

Figure 8-1: Output of the corners program before and after a resize event

When a resize event occurs, X generateSoafigureNotify event. This event is
interpreted by Xt and the translation table of the widget corresponding to the resized
window is searched to see if the application is interested in being notified of the event. We

have indicated interest in this event by callingtAppAddActions() and
XtOverrideTranslations() , as shown below:
XtActionsRec rec;

.r.(.ec.string ="resize";

rec.proc = resize;

XtAppAddActions (app, &rec, 1);

XtOverrideTranslations (bboard,

XtParseTranslationTable (“<Configure>: resize()"));

As described in Volume 4 Toolkit Intrinsics Programming Manua translation table
pairs a sequence of one or more events with a sequence of one or more functions that are
called when the event sequence occurs. In this case, the evebonifigareNotify
event and the function resize() . Translations are specified as strings and then parsed
into an internal format with the functiotParseTranslationTable() . The routine
creates an internal structure of events and the functions to which they correspond. Xt
provides the table for translating event strings suckGmfigure> to the actual
ConfigureNotify event, but Xt cannot convert the stringsize() to an actual

Motif Programming Manual 241



Chapter 8: Manager Widgets

function unless we provide a lookup table. TXtéctionsRec  type performs this task.
The structure is defined as follows:

typedef struct {
Stringstring;
XtActionProcproc;
} XtActionsRec;
The action list is initialized to map the strirgpize to the actual functiomesize()
using XtAppAddActions() . We install the translation table on the widget using
XtOverrideTranslations() so that when &onfigureNotify event occurs, the
resize()  function is called.

Theresize()  function takes four arguments. The first two arguments are a pointer to the
widget in which the event occurred and the event structure.ase and num_args
parameters are ignored because we did not specify any extra parameters to be passed to the
function when we installed it. Since the function is called as a result of the event happening
on the BulletinBoard widget, we know that we are dealing with a composite widget. We
also know that there is only one event type that could have caused the function to be called,
so we cast thevent parameter accordingly.

The task of the function is to position the children so that there is one per corner in the
BulletinBoard. We get a handle to all of the children of the BulletinBoard. Since we are
going to place the children around the perimeter of the widget, we also need to know how
far from the edge to place them. This distance is taken from the values for
XmNmarginWidth andXmNmarginHeight . All three resource values are retrieved in the
following call:
XtVaGetValues (w, XmNchildren, &children,

XmNmarginWidth, &margin_w,

XmNmarginHeight, &margin_h,

NULL);
The remainder of the function simply places the children at the appropriate positions within
the BulletinBoard. The routine uses a very simple method for geometry management, but
it does demonstrate the process.

The general issue of geometry management for composite widgets is not trivial. If you plan
on doing your own geometry management for a BulletinBoard or any other composite
widget, you should be very careful to consider all the resources that could possibly affect
layout. In our example, we considered the margin width and height, but there is also
XmNallowOverlap , XmNborderWidth  (which is a general Core widget resource),
XmNshadowThickness (a general manager widget resource) and the same values
associated with the children of the BulletinBoard.

There are also issues about what to do if a child decides to resize itself, such as if a Label
widget gets wider. In this case, you must first evaluate what the geometry layout of the
widgets would be if you were to grant the Label permission to resize itself as it wants. This

242 Motif Programming Manual



Chapter 8: Manager Widgets

evaluation is done by asking each of the children how big they want to be and calculating
the hypothetical layout. The BulletinBoard either accepts or rejects the new layout. Of
course, the BulletinBoard may have to make itself bigger too, which requires asking its
parent for a new size, and so on. If the BulletinBoard cannot resize itself, then you have to
decide whether to force other children to be certain sizes or to reject the resize request of
the child that started all the negotiation. Geometry management is by no means a simple
task; it is explained more completely in VolumeX4 Toolkit Intrinsics Programming
Manual

The Form Widget

The Form widget is subclassed from the BulletinBoard class, so it inherits all of the
resources that the BulletinBoard has to offer. Accordingly, the children of a Form can be
placed at specific x, y coordinates and geometry management can be performed as in
Example 8-1. However, the Form provides additional geometry management features that
allow its children to be positioned relative to one another and relative to specific locations
in the Form.

In order to use a Form, you must include the filer¥Form.l». A Form is created in a
similar way to other manager widgets, either through a convenience routine or using the
general purpose Xt mechanisms, as shown below:
Widget form = XtVaCreateWidget (‘name", xmFormWidgetClass, parent, resource-
value-list , NULL);

[* create children */
XtManageChild (form);

Widget form = XmCreateForm ( parent, “name”, resource-value-array , resource-
value-count );

[* create children */

XtManageChild (form);

Form Attachments

Geometry management in a Form is done using attachment resources. These resources are
constraint resources, which means that they are specified for the children of the Form. The
resources provide various ways of specifying the position of a child of a Form by attaching
each of the four sides of the child to another entity. The side of a widget can be attached to
another widget, to a fixed position in the Form, to a flexible position in the Form, to the

Motif Programming Manual 243



Chapter 8: Manager Widgets

Form itself, or to nothing at all. These attachments can be considered hooks, rods, and
anchor points, as shown in Figure 8-2.

o |

Figure 8-2: Attachments in a Form

In this figure, there are three widgets. The sizes and types of the widgets are not important.
What is important is the relationship between the widgets with respect to their positions in
the Form.Widget 1lis attached to the top and left sides of the Form by creating two
attachments. The top side of the widget is hooked to the top of the Form. It can slide from
side to side, but it cannot be moved up or down (just like a shower curtain). The left side
can slide up and down, but not to the right or to the left. Given these two attachment
constraints, the top and left sides of the widget are fixed. The right and bottom edges of the
widget are not attached to anything, but other widgets are attached to those edges.

The left side ofNVidget 2is attached to the right side\Widget 1 Similarly, the top side of
Widget 2is attached to the top side \Widget 1 As a result, the top and left sides of the
widget cannot be moved unlegédget 1moves. The same kind of attachments hold for
Widget 3 The top side of this widget is attached to the bottokVidfet 1and its left side

is attached to the left side Wfidget 1 Given these constraints, no matter how large each
of the widgets may be, or how the Form may be resized, the positional relationship of the
widgets is maintained.

In general, you must attach at least two adjacent edges of a widget to keep it from moving
unpredictably. If you only attach one edge of a widget, you are only specifying relative
position: both opposing sides must be attached for potential resize behavior.

244 Motif Programming Manual



Chapter 8: Manager Widgets

The following resources represent the four sides of a widget:

XmNtopAttachment XmNbottomAttachment

XmNrightAttachment XmNleftAttachment
For example, if we want to specify that the top of a widget is attached to something, we use
the XmNtopAttachment  resource. Each of the four resources can be set to one of the
following values:

XmATTACH_FORM XmATTACH_OPPOSITE_FORM
XmATTACH_WIDGET XmATTACH_OPPOSITE_WIDGET
XmATTACH_NONE

XmATTACH_SELF XmATTACH_POSITION

XmATTACH_FORM

When an attachment is setXmATTACH_FORIthe specified side is attached to the Form

as shown in Figure 8-3. If the resource that has this vaKratopAttachment , then the

top side of the widget is attached to the top of the Form. The top attachment does not
guarantee that the widget will not move from side to sid&miNbottomAttachment  is

also set tomATTACH_FORIihe bottom of the widget is attached to the bottom side of the
Form. With both of these attachments, the widget is resized to the height of the Form itself.
The same would be true for the right and left edges of the widget if they were attached to
the Form.

Figure 8-3: XmNtopAttachment set to XmATTACH_FORM

XmATTACH_OPPOSITE_FORM

When an attachment is set XinATTACH_OPPOSITE_FORMe specified side of the
widget is attached to the opposite side of the Form. For examplaNfopAttachment

is set toXmATTACH_OPPOSITE_FORiMe top side of the widget is attached to the bottom

side of the Form. This value must be used with a negative offset value (discussed in the next
section) or the widget is placed off of the edge of the Form and it is not visible. While it
may seem confusing, this value is the only one that can be applied to an attachment resource
that allows you to specify a constant offset from the edge of a Form.

Motif Programming Manual 245



Chapter 8: Manager Widgets

XmATTACH_WIDGET

The XmATTACH_WIDGElue indicates that the side of a widget is attached to another
widget. The other widget must be specified using the appropriate resource from the
following list:

XmNtopWidget XmNbottomWidget

XmNleftwidget XmNrightWidget
The value for one of these resources must be the widget ID. For example, Figure 8-4 shows
how to attach the right side @fidget 1to the left side ofVidget 2 This attachment method
is commonly used to chain together a series of adjacent widgets. Chaining widgets
horizontally does not guarantee that the widgets will be aligned vertically, or vice versa.

XmNrightAttachment
XmATTACH_WIDGET XmNrightWidget: Widget 2

Figure 8-4: XmNrightAttachment set to XmATTACH_WIDGET

XmATTACH_OPPOSITE_WIDGET

The XmATTACH_OPPOSITE_WIDGE®&Iue is just like XmATTACH_WIDGET, except

that the widget is attached to the same edge of the specified widget, as shown in Figure 8-
5. In this case, the right side Wfidget lis attached to the right side Wfidget 3 This
attachment method allows you to align the edges of a group of widgets. As with

246 Motif Programming Manual



Chapter 8: Manager Widgets

XmATTACH_WIDGETthe other widget must be specified usidxagnNtopWidget ,
XmNbottomWidget , XmNleftWidget , or XmNrightWidget
20

: XmNrightAttachment:
| MATTACH_OPPOSITE_WIDGET

XmNrightwWidget: Widget 3

/ 0 5 10 15 20 25 30 35
v

Form Widget 1

i1\ Theright
sides are
Widget 3 aligned

Figure 8-5: XmNrightAttachment set to XmATTACH_OPPOSITE_WIDGET

XmATTACH_NONE

XmATTACH_NON#pecifies that the side of a widget is not attached to anything, which is
the default value This case could be represented by a dangling hook that is not attached
to anything. If the entire widget moves because another side is attached to something, then
this side gets dragged along with it so that the widget does not need resizing. Unless a
particular side of a widget is attached to something, that side of the widget is free-floating
and moves proportionally with the other parts of the widget.

XmATTACH_POSITION

When the side of a widget is attached usintATTACH_POSITIONthe side is anchored to
a relative position in the Form. This value works by segmenting the Form into a fixed
number of equally-spaced horizontal and vertical positions, based on the value of the

* This is true for any individual edge. However, a widget which has no attachments specéigdimte will have
an implicit XmATTACH_FORAttachment on the top and left edges assigned by the containing Form.

Motif Programming Manual 247



Chapter 8: Manager Widgets

XmNfractionBase  resource. The position of the side must be specified using the
appropriate resource from the following list:

XmNtopPosition XmNbottomPosition
XmNleftPosition XmNrightPosition

See Section 8.4.3 for a complete discussion of position attachments.

XmATTACH_SELF

When an attachment is set XmATTACH_SELRhe side of the widget is attached to its
initial position in the Form. You position the widget initially by specifying its X,y location

in the Form. After the widget has been placed in the Form, the attachment for the side
reverts toXmATTACH_POSITIONwith the corresponding position resource set to the
relative position of the x,y coordinate in the Form.

Some Examples

Now that we have explained the concept of Form attachments, we can reimplement the four
corners example from the previous section. Unlike in the previous version, we no longer
need a resize procedure to calculate the positions of the widgets. By specifying the correct
attachments, as shown in Example 8-2, the widgets are placed and managed correctly by
the Form when it is resized.

Example 8-2. The form_corners.c program

[*form_corners.c -- demonstrate form layout management. Just as

** in corners.c, there are four widgets each labelled top-left,

** top-right, bottom-left and bottom-right. Their positions in the

** form correspond to their names. As opposed to the BulletinBoard

** widget, the Form manages this layout management automatically by
** specifying attachment types for each of the widgets.

*

#include <Xm/PushB.h>

#include <Xm/Form.h>

char *corners[] = {"Top Left", "Top Right", "Bottom Left", "Bottom Right};

main (int argc, char *argv[])

{
Widget toplevel, form, button;
XtAppContext  app;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL,sessionShellWidgetClass, NULL);

form = XmCreateForm (toplevel, "form", NULL, 0);

[* Attach the edges of the widgets to the Form. Which edge of

* XtVaApplnitialize() is considered deprecated in X11R6.

248 Motif Programming Manual



Chapter 8: Manager Widgets

}

** the widget that's attached is relative to where the widget is

** positioned in the Form. Edges not attached default to having

** an attachment type of XmATTACH_NONE.

*

button = XmCreatePushButton (form, corners[0], NULL, O);

XtVaSetValues (button, XmNtopAttachment, XmATTACH_FORM, XmNleftAttachment,
XmATTACH_FORM, NULL);

XtManageChild (button);

button = XmCreatePushButton (form, corners[1], NULL, O);

XtVaSetValues (button, XmNtopAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM, NULL);

XtManageChild (button);

button = XmCreatePushButton (form, corners[2], NULL, 0);

XtVaSetValues (button, XmNbottomAttachment, XmATTACH_
FORM,XmNleftAttachment, XmATTACH_FORM, NULL);

XtManageChild (button);

button = XmCreatePushButton (form, corners[3], NULL, 0);

XtVaSetValues (button, XmNbottomAttachment, XmATTACH_FORM,

XmNrightAttachment, XmATTACH_FORM, NULL);

XtManageChild (button);

XtManageChild (form);

XtRealizeWidget (toplevel);

XtAppMainLoop (app);

In this example, two sides of each widget are attached to the Form. It is not necessary to
attach the other sides of the widgets to anything else. If we attach the other sides to each
other, the widgets would have to be resized so that they could stretch to meet each other.
With the specified attachments, the output of the program looks just like the output in
Figure 8-1.

A more complex example of Form attachments is shown in Example 8-3. This example
implements the layout shown in Figure 8-2

Example 8-3. The attach.c program

[* attach.c -- demonstrate how attachments work in Form widgets. */
#include <Xm/PushB.h>
#include <Xm/Form.h>

main (int argc, char *argv(])

{

Widgettoplevel, parent, one, two, three;
XtAppContextapp;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

parent = XmCreateForm (toplevel, "form", NULL, 0);

one = XmCreatePushButton (parent, "One", NULL, 0);

* XtVaApplnitializ