
THE DEFINITIVE GUIDES TO THE
X WINDOW SYSTEM

VOLUME SIX A

Motif Programming Manual

for Motif 2.1

Open Source Edition

Antony Fountain, Jeremy Huxtable, Paula
Ferguson and Dan Heller

Motif Programming Manual, Open Source Edition

by Antony Fountain, Jeremy Huxtable, Paula Ferguson and Dan Heller

December 2001

Copyright  1991, 1994, 2000, 2001 O’Reilly & Associates, Inc., Antony Fountain and
Jeremy Huxtable. This material may be distributed only subject to the terms and conditions
set forth in the Open Publication License, v1.0 or later (the latest version is presently
available at http://www.opencontent.org/openpub/).

This is an updated version of the Motif Programming Manual, Second Edition, published
by O’Reilly & Associates in February 1994. The source files for the Second Edition can be
found at http://www.oreilly.com/openbook/motif/. A description of the modifications
is contained in the Preface to the Third Edition, which has become the Open Source
Edition.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and O’Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the use of
the information contained herein.

Motif Programming Manual 3

Contents

Preface . 11

1. Introduction to Motif . 1

Basic User Interface Concepts . 2

What Is Motif? . 3

Designing User Interfaces . 6

2. The Motif Programming Model . 11

Basic X Toolkit Terminology and Concepts 11

The Xm and Xt Libraries . 14

Programming With Xt and Motif . 16

Summary . 39

3. Overview of the Motif Toolkit . 41

The Motif Style . 41

Application Controls . 43

Application Layout . 53

Putting Together a Complete Application 65

Changes in Motif 2.1 . 85

Summary . 96

4. The Main Window . 97

Creating a MainWindow . 98

Contents

4 Motif Programming Manual

The MenuBar . 103

The Command and Message Areas . 118

Using Resources . 123

Summary . 125

Exercises . 125

5. Introduction to Dialogs . 127

The Purpose of Dialogs . 128

The Anatomy of a Dialog . 131

Creating Motif Dialogs . 133

Dialog Resources . 143

Dialog Callback Routines . 147

Piercing the Dialog Abstraction . 151

Dialog Modality 156

Summary . 167

6. Selection Dialogs. 169

Types of SelectionDialogs . 169

SelectionDialogs . 170

PromptDialogs . 177

The Command Widget . 180

FileSelectionDialogs . 181

Summary . 193

7. Custom Dialogs. 195

Modifying Motif Dialogs . 195

Designing New Dialogs . 203

Building a Dialog . 208

Generalizing the Action Area . 221

Using a TopLevelShell for a Dialog . 227

Motif Programming Manual 5

Contents

Positioning Dialogs 229

Summary . 231

8. Manager Widgets . 233

Types of Manager Widgets . 233

Creating Manager Widgets . 235

The BulletinBoard Widget . 237

The Form Widget . 243

The RowColumn Widget . 261

The Frame Widget . 271

The PanedWindow Widget . 275

Keyboard Traversal . 283

Summary . 293

9. Containers and IconGadgets . 295

Creating a Container . 299

Creating IconGadgets . 299

Container Resources . 299

IconGadget Resources . 304

Container Constraints . 305

Container Callbacks . 310

Container Functions . 316

Summary . 318

Exercises . 318

10. ScrolledWindows and ScrollBars . 319

The ScrolledWindow Design Model . 319

Creating a ScrolledWindow . 323

Working With ScrollBars . 330

Implementing True Application-defined Scrolling 342

Contents

6 Motif Programming Manual

Working With Keyboard Traversal in ScrolledWindows 356

Summary . 358

Exercises . 359

11. The DrawingArea Widget . 361

Creating a DrawingArea Widget . 362

Using DrawingArea Callback Functions 363

Using Translations on a DrawingArea 372

Using Color in a DrawingArea . 379

Summary . 384

Exercises . 384

12. Labels and Buttons. 387

Labels . 388

PushButtons . 400

ToggleButtons . 406

ArrowButtons . 421

DrawnButtons . 427

Summary . 430

Exercise . 430

13. The List Widget . 433

Creating a List Widget . 434

Using ScrolledLists . 437

Manipulating Items . 439

Positioning the List 452

Navigating the List . 454

List Callback Routines . 454

Summary . 460

Exercises . 461

Motif Programming Manual 7

Contents

14. The ComboBox Widget . 463

Creating a ComboBox . 464

ComboBox Resources . 467

ComboBox Functions . 469

ComboBox Callbacks . 471

Summary . 473

Exercises . 474

15. The SpinBox and SimpleSpinBox Widgets. 475

Creating a SimpleSpinBox . 477

Creating a SpinBox . 485

SpinBox and SimpleSpinBox Resources 489

SpinBox and SimpleSpinBox Callbacks 490

Summary . 496

Exercises . 496

16. The Scale Widget . 499

Creating a Scale Widget . 500

Scale Values . 502

Scale Orientation and Movement . 503

Scale Resources . 504

Scale Callbacks . 505

Scale Tick Marks . 508

Summary . 510

17. The Notebook Widget . 511

Creating a Notebook . 513

Notebook Resources . 518

Notebook Constraints . 521

Notebook Callbacks . 522

Contents

8 Motif Programming Manual

Notebook Functions . 523

Summary . 525

18. Text Widgets . 527

Interacting With Text Widgets . 529

Text Widget Basics . 532

Text Clipboard Functions . 553

A Text Editor . 559

Text Callbacks . 567

Text Widget Internationalization . 582

Summary . 589

Exercises . 589

19. Menus . 591

Menu Types . 591

Creating Simple Menus . 594

Designing Menu Systems . 605

General Menu Creation Techniques . 617

Summary . 638

Exercises . 639

20. Interacting With the Window Manager 641

Interclient Communication . 642

Shell Resources . 643

VendorShell Resources . 651

Handling Window Manager Messages 655

Session Management . 659

Customized Protocols . 671

Summary . 675

Exercises . 676

Motif Programming Manual 9

Contents

21. The Clipboard . 677

Simple Clipboard Copy and Retrieval . 679

Copy by Name . 688

Clipboard Data Formats . 693

The Primary Selection and the Clipboard 696

Implementation Issues . 698

Summary . 700

22. Drag and Drop . 701

Using Drag and Drop . 701

The Drag and Drop Model . 703

Customizing Built-in Drag and Drop 716

Working With Drag Sources . 723

Working With Drop Sites . 740

Summary . 759

23. The Uniform Transfer Model . 761

Overview . 762

Exporting the Data . 763

Requesting the Data Format . 767

Importing the Data . 770

Batched Data Transfer . 773

An Example . 773

Summary . 779

24. Render Tables . 781

Renditions 782

Render Tables . 785

Tab Lists . 790

An Example . 796

Contents

10 Motif Programming Manual

Render Tables and Resource Files . 801

Missing Fonts and Renditions . .. 803

Summary . 806

25. Compound Strings . 807

Internationalized Text Output . 807

Creating Compound Strings . 809

Manipulating Compound Strings . 823

Parse Tables . 828

Rendering Compound Strings . 843

Summary . 845

26. Signal Handling . 847

Handling Signals in X11R5 . 848

Handling Signals in Xt . 850

Handling Signals in X11R6 . 859

Summary . 863

27. Advanced Dialog Programming . 865

Help Systems . 865

Working Dialogs . 875

Dynamic Message Symbols . 891

Summary . 896

A. Additional Example Programs . 899

A Bitmap Display Utility 899

A Memo Calendar . 911

Index . 919

Motif Programming Manual 11

Preface
By convention, a preface describes the book itself, while the introduction describes the
subject matter. You should read through the preface to get an idea of how the book is
organized, the conventions it follows, and so on.

This book describes how to write applications using the Motif toolkit from the Open
Software Foundation (OSF). The Motif toolkit is based on the X Toolkit Intrinsics (Xt),
which is the standard mechanism on which many of the toolkits written for the X Window
System are based. Xt provides a library of user-interface objects called widgets and
gadgets, which provide a convenient interface for creating and manipulating X windows,
colormaps, events, and other cosmetic attributes of the display. In short, widgets can be
thought of as building blocks that the programmer uses to construct a complete application.

However, the widgets that Xt provides are generic in nature and impose no user-interface
policy whatsoever. That is the job of a user-interface toolkit such as Motif. Motif provides
a complete set of widgets designed to implement the application look and feel specified in
the Motif Style Guide and the Motif Application Environment Specification.

The book provides a complete programmer’s guide to the Motif toolkit. While the OSF/
Motif toolkit is based on Xt, the focus of the book is on Motif itself, not on the Intrinsics.
Detailed information about Xt is provided by Volume 4, and references are made to that
volume throughout the course of this book. You are not required to have Volume 4 in order
to use this book effectively, as the books are not companion volumes, but complementary
ones. However, truly robust applications require a depth of knowledge about Xt and Xlib,
the layer on which Xt itself is based, that is not addressed in this book alone. We never leave
you completely in the dark about Xt or Xlib functions that we use or reference, but you
won’t learn everything there is to know about them through this particular volume.

This book covers Motif 2.1, which is the latest major release of the Motif toolkit. Motif 2.
1 is based on Release 6 of the Xlib and Xt specifications (X11R6). This release of Motif
provides many new features, as well as a number of enhancements to existing functionality.
All of the changes in Motif 2.1 are summarized in Section 3.5, which provides references
to other sections that describe the changes in more detail.

Preface

12 Motif Programming Manual

The Plot
There are several plots and subplots in this book and the stories told are intertwined. Our
primary goal is to help you learn about the Motif environment from both the programmer’s
and the user’s perspectives. However, we are talking to you as a programmer, not as a user.
We treat the user as a third party who is not with us now. In order to create an application
for the user, you sometimes have to assume her role, so at times we may ask you to play
such a role to help you think about things from the user’s perspective rather than the
programmer’s.

Each chapter begins by discussing the goals that Motif is trying to achieve using a particular
widget or gadget. For example, before we describe how to create a FileSelectionDialog, we
introduce the object visually and conceptually, discuss its features and drawbacks, and put
you in the role of the user. Once you understand what the user is working with, you should
have a better perspective on the task of presenting it to her.

The next subplot is that of application design. Many design concepts transcend the
graphical user interface (GUI) and are common to all programs that interact with users. You
could even interpret this book as a programmer’s guide that happens to use Motif as an
example. As you read the material, you should stop and think about how you might
approach a particular interface method if you were using another toolkit instead of Motif.
A wild concept, perhaps, but this approach is the key to better application design and to
toolkit independence. If Motif changes in a later release, or if you decide to port your
application to another toolkit or even another windowing system, the more generalized
your code is, the easier it will be to bring it into a new realm successfully.

The last story we are telling is that of general programming technique. By providing you
with examples of good programming habits, styles, and usages, we hope to propagate a
programming methodology that has proven to be successful over the years. These
techniques have been applied to applications that have been ported to multiple architectures
and operating systems. As an added bonus, we have thrown in a number of interesting
programming tricks. No, these are not hacks, but conveniences that are particular to C, to
UNIX, or even to the X Window System. We don’t focus on these things, but they are made
available to you in passing, so you should have no problem identifying them when they
come up.

This book is intended to be used as a programmer’s manual, not a reference manual.
Volume 6B, contains reference material for all of the Motif library functions and widget
classes. We have tried to identify those features of the toolkit that are most important for
general discussion, so we do not discuss every aspect of the Motif toolkit in the body of this
book.

Any major software development effort, especially in its early stages, has bugs that prevent
certain features from being used and the Motif toolkit is no exception. There are some bugs

Motif Programming Manual 13

Preface

in the Motif toolkit that have not yet been worked out, but this does not imply that the
toolkit is poorly written or riddled with errors. Throughout the book, we try to alert you to
any potential problems you may encounter due to bugs. In some cases, there are things that
work in Motif, but they are poorly designed, and we don’t recommend that you use them.
Again, we provide an explanation of what’s going on and sometimes describe an alternative
solution. There are also some features, resources, and functions available in the toolkit that
are not supported by OSF. OSF reserves the right to change anything not publicly
documented, so rather than discuss undocumented features, we simply ignore them.

We should also point out that this book is not intended to solve all your problems or answer
all your questions concerning Motif or its toolkit. It is not going to spoon feed you by giving
you step-by-step instructions on how to achieve a particular task. You are encouraged, and
even expected, to experiment on your own with the example applications or, better yet, with
your own programs. We want to provide you with discussion and examples that provoke
you into asking questions like, “What would happen if I changed this program to do this?”
It would be unrealistic to believe that we could address every problem that might come up.
Rather than approaching situations using overly specific examples, we discuss them in a
generalized way that should be applicable to many different scenarios.

Assumptions
The basic method for creating simple applications in Motif is conceptually simple and
straightforward. Even if you only dabble in C, you can probably understand the concepts
well enough to do most things. However, unless you have a strong handle on the C
programming language, there is an upper limit to what you will be able to do when you try
to create a full-featured, functioning application. After all, the user-interface portion of
most applications should make up no more than 30-40% of the total code. The functionality
of an application is up to you and is not discussed here. Without a strong background with
C, or some other structured programming language, you might have a problem keeping up
with the material presented here.

This book also assumes that you are familiar with the concepts and architecture of the X
Toolkit Intrinsics, which are presented in Volume 4M, and Volume 5. A basic
understanding of the X Window System is also useful. For some advanced topics, the
reader may need to consult Volume 1, and Volume 2.

How This Book Is Organized
While this book attempts to serve the widest possible audience, that does not imply that the
material is so simple that it is only useful to novice programmers. In fact, this book can be
considered an advanced programmer’s handbook, since in many places, it assumes a fairly
sophisticated knowledge of many features of the X Window System.

Preface

14 Motif Programming Manual

Each chapter is organized so that it gets more demanding as you read through it. Each
chapter begins with a short introduction to the particular Motif element that is the subject
of the chapter. The basic mechanics involved in creating and manipulating the object are
addressed next, followed by the resources and other configurable aspects of the object. If
there is any advanced material about the object, it is presented at the end of the chapter.
Many chapters also include exercises that suggest how the material can be adapted for uses
not discussed explicitly in the text.

While the chapters may be read sequentially, it is certainly not required or expected that
you do so. As you will soon discover, there are many circular dependencies that justify
skipping around between chapters. Since there is no organization that would eliminate this
problem, the material is not organized so that you “learn as you go.” Instead, we organized
the material in a top-down manner, starting with several chapters that provide an
introduction to the Motif look and feel, followed by chapters organized on a widget-by-
widget basis. The higher-level manager widgets are discussed first, followed by the
primitive widgets and gadgets. Advanced material is positioned at the end of the book,
since the details are not of paramount importance to the earlier material.

In short, everything is used everywhere. Starting at the beginning, however, means that we
won’t necessarily assume you know about the material that is referenced in later chapters.
On the other hand, the later chapters may make the assumption that you are aware of
material in earlier chapters.

The book is broken down into twenty seven chapters and one appendix as follows:

Chapter 1
Introduction to Motifanswers the question “Why Motif?” and suggests some of the
complexities that the programmer has to master in order to make an application easy
to use.

Chapter 2
The Motif Programming Modelteaches the fundamentals of Motif by example. It
presents a simple “Hello, World” program that shows the structure and style common
to all Motif programs. Much of this material is already covered in detail in Volume
4M,so the chapter can be read as a refresher, or a light introduction for those who ha-
ven’t read the earlier book. The chapter references Volume 4 and Volume 1, to point
out areas that the programmer needs to understand before progressing with Motif.

Chapter 3
Overview of the Motif Toolkitexplains what is involved in creating a real application.
The chapter discusses the arrangement of primitive widgets in an interface, the use of
dialog boxes and menus, and the relationship between an application and the window
manager. The chapter also describes all of the changes in Release 2.1 of the Motif
toolkit. After reading this chapter, the programmer should have a solid overview of

Motif Programming Manual 15

Preface

Motif application programming and be able to read the remaining chapters in any or-
der.

Chapter 4
The Main Windowdescribes the Motif MainWindow widget, which can be used to
frame many types of applications. The MainWindow is a manager widget that provides
a MenuBar, a scrollable work area, and various other optional display and control ar-
eas.

Chapter 5
Introduction to Dialogsdescribes the fundamental concepts that underly all Motif di-
alogs. It provides a foundation for the more advanced material in the following chap-
ters. In the course of the introduction, this chapter also provides details on Motif’s
predefined MessageDialog classes.

Chapter 6
Selection Dialogspresents the more complex Motif-supplied dialogs for displaying se-
lectable items, such as lists of files or commands, to the user.

Chapter 7
Custom Dialogsdescribes how to create new dialog types, either by customizing Motif
dialogs or by creating entirely new dialogs.

Chapter 8
Manager Widgetsprovides detailed descriptions of the various classes of Motif man-
ager widgets. Useful examples explore the various methods of positioning components
in Form and RowColumn widgets.

Chapter 9
The Container and Icon Gadgetdescribes two components which are new to Motif 2.
These were designed to work together in order to provide a more graphical presenta-
tion of the front end of the application than the older Main Window. The IconGadget
pictorially represents application objects; the Container lays them out in a variety of
styles, including Tablular, Grid, and Tree formats. The layout can be changed dynam-
ically: the Container and IconGadget combination approximates to a Model-View-
Controller (MVC) system for the Motif widget set.

Chapter 10
ScrolledWindows and ScrollBarsdescribes the ins and outs of scrolling, with particu-
lar attention to application-defined scrolling, which is often required when the simple
scrolling provided by the ScrolledWindow widget is insufficient.

Chapter 11
The DrawingArea Widgetdescribes the Motif DrawingArea widget, which provides a
canvas for interactive drawing. The chapter simply highlights, with numerous code ex-
amples, the difficulties that may be encountered when working with this widget, rather

Preface

16 Motif Programming Manual

than trying to teach Xlib drawing techniques. Some knowledge of Xlib is assumed; we
direct the reader to Volume 1, for additional information.

Chapter 12
Labels and Buttonsprovides an in-depth look at labels and buttons, the most common-
ly-used primitive widgets. The chapter discusses the Label, PushButton, ToggleBut-
ton, ArrowButton, and DrawnButton widget classes.

Chapter 13
The List Widgetdescribes yet another method for the user to exert control over an ap-
plication. A List widget displays a group of items from which the user can make a se-
lection.

Chapter 14
The ComboBox Widgetdescribes another component which is new in Motif 2. The
ComboBox combines List display with Text input, although the List can be hidden un-
til required. The widget therefore maximizes user convenience using the minimal of
screen space.

Chapter 15
The SpinBox and SimpleSpinBox Widgetsare also new in Motif 2. Similar in concept
to the ComboBox, the widgets allow the user to choose from a set of values, and the
current choice is presented through a TextField. The difference is that the user changes
the current choice not by selecting from a List, but by rotating through the set of avail-
able values using ArrowButtons provided for the purpose.

Chapter 16
The Scale Widgetdescribes how to use the Scale to display a range of values.

Chapter 17
The Notebook Widgetdescribes a component which provides page or tab manager
functionality to the Motif 2 toolkit. The programmer adds children to the Notebook,
only one of which is visible at any given time. The user can select between pages using
Tabs (PushButtons) aligned along the edges of the Notebook, or by selecting the re-
quired page number from a SpinBox which the Notebook creates automatically.

Chapter 18
Text Widgetsexplains how the Text and TextField widgets can be used to provide text
entry in an application, from a single data-entry field to a full-fledged text editor. Spe-
cial attention is paid to problems such as how to mask or convert data input by the user
so as to control its format. The chapter also discusses the internationalization features
of the widgets provided in Motif 1.2.

Chapter 19
Menusdescribes the menus provided by the Motif toolkit.The chapter examines how
menus are created and presents some generalized menu creation routines.

Motif Programming Manual 17

Preface

Chapter 20
Interacting With the Window Managerprovides additional information on the relation-
ship between an application and the Motif Window Manager (mwm). It discusses the
shell widget resources and window manager protocols that can be used to communi-
cate with the window manager. It also discusses various CDE desktop aspects of the
window manager interaction.

Chapter 21
The Clipboarddescribes a way for the application to interact with other applications.
Data is placed on the clipboard, where it can be accessed by other windows on the
desktop, regardless of the applications with which they are associated.

Chapter 22
Drag and Droppresents the drag and drop mechanism for transferring data that is pro-
vided in Motif 1.2. The chapter describes the built-in drag and drop features of the Mo-
tif toolkit and provides examples of adding drag and drop functionality to an
application.

Chapter 23
The Uniform Transfer Modeldescribes the scheme introduced in Motif 2 which allows
the programmer to handle the various data transfer operations supported by Motif (Pri-
mary and Secondary Selections, the Clipboard, Drag-and-Drop) using a single pro-
gramming interface.

Chapter 24
Render Tables describes the Motif 2 mechanisms which control the way in which com-
pound strings are displayed by the toolkit. In Motif 2, strings which appear in widgets
can be multi-colored, multi-font, and laid out in a multi-column arrangement. The col-
oration, font, and tabular information is held separately from the string which is to be
drawn in the form of a render table.

Chapter 25
Compound Stringsdescribes Motif’s technology for encoding font and directional in-
formation in the strings that are used by almost all Motif widgets. It discusses how to
use compound strings in an internationalized application.

Chapter 26
Signal Handlingpresents the problems that can be encountered when mixing UNIX
signals with X applications. It explains how signals work and why they can wreak such
havoc with X. It presents the new features of X11R6 which are expressly designed to
handle this problem.

Chapter 27
Advanced Dialog Programmingdescribes the issues involved in creating multi-stage
help systems, using WorkingDialogs that allow the user to interrupt long-running
tasks, and dynamically changing the pixmaps displayed in a dialog.

Preface

18 Motif Programming Manual

Appendix
Additional Example Programsprovides several additional examples that illustrate
techniques not discussed in the body of the book.

Related Documents
The following books on the X Window System are available from O’Reilly & Associates,
Inc.:

Volume Zero X Protocol Reference Manual

Volume One Xlib Programming Manual

Volume Two Xlib Reference Manual

Volume Three X Window System User’s Guide, Motif Edi-
tion

Volume Four X Toolkit Intrinsics Programming Manual,
Motif Edition

Volume Five X Toolkit Intrinsics Reference Manual

Volume Six A Motif Programming Manual

Volume Seven XView Programming Manual with accom-
panying reference volume.

Volume Eight X Window System Administrator’s Guide

PHIGS Programming Manual

PHIGS Reference Manual

PEXlib Programming Manual

PEXlib Reference Manual

Quick Reference The X Window System in a Nutshell

Programming Supplement for Release 6 of the X Window System

Conventions Used in This Book
Italic is used for:

• UNIX path names, filenames, program names, user command names, options for user
commands, and variable expressions in syntax sections.

• New terms where they are defined.

Typewriter Font is used for:

Motif Programming Manual 19

Preface

• Anything that would be typed verbatim into code, such as examples of source code and
text on the screen.

• Variables, data structures (and fields), symbols (defined constants and bit flags),
functions, macros, and a general assortment of anything relating to the C programming
language.

• All functions relating to Motif, Xt, and Xlib.

• Names of subroutines in example programs.

Italic Typewriter Font is used for:

• Arguments to functions, since they could be typed in code as shown but are arbitrary
names that could be changed.

Boldface is used for:

• Names of buttons and menus.

Obtaining Motif
Motif sources can be obtained from a number of locations, although the primary reference
site is:

http://www.opengroup.org/motif

These sources are known as Open Motif, and the use of such sources in applications is
restricted to Open Source platforms.

Alternatively, if your hardware vendor is an OSF member, they may be able to provide
Motif binaries for your machine. Various independent vendors also provide binaries for
some machines.Source licenses must be obtained directly from OSF:

OSF Direct
Open Software Foundation
11 Cambridge Center
Cambridge, MA 02142
USA
+1 617 621-7300
Internet: direct@osf.org

Obtaining the Example Programs
The example programs in this book are available electronically in a number of ways: by
FTP, FTPMAIL, BITFTP, and UUCP. The cheapest, fastest, and easiest ways are listed
first. If you read from the top down, the first one that works for you is probably the best.
Use FTP if you are directly on the Internet. Use FTPMAIL if you are not on the Internet

Preface

20 Motif Programming Manual

but can send and receive electronic mail to internet sites (this includes CompuServe users).
Use BITFTP if you send electronic mail via BITNET.Use UUCP if none of the above
works.

Versions of the example programs for Motif 2.1, Motif 1.2 and Motif 1.1 are available
electronically. If you want the Motif 2.1 version, use the filename examples21.tar.Z, as
shown in the sample sessions below. The filename for the Motif 1.2 version is examples12.
tar.Z.

FTP
To use FTP, you need a machine with direct access to the Internet. A sample session is
shown, with what you should type in boldface.

% ftp ftp.uu.net
Connected to ftp.uu.net.220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST
1992) ready.
Name (ftp.uu.net:paula): anonymous
331 Guest login ok, send domain style e-mail address as password.
Password: paula@ora.com (use your user name and host here)
230 Guest login ok, access restrictions apply.
ftp> cd /published/oreilly/xbook/motif
250 CWD command successful.
ftp> binary (Very important! You must specify binary transfer for compressed files.)
200 Type set to I.
ftp> get examples12.tar.Z
200 PORT command successful.
150 Opening BINARY mode data connection for examples12.tar.Z
226 Transfer complete.
ftp> quit
221 Goodbye.
%

If the file is a compressed tar archive, extract the files from the archive by typing:

% zcat examples12.tar.Z | tar xf -

System V systems require the following tar command instead:

% zcat examples12.tar.Z | tar xof -

If zcat is not available on your system, use separate uncompress and tar commands.

FTPMAIL
FTPMAIL is a mail server available to anyone who can send electronic mail to and receive
it from Internet sites. This includes any company or service provider that allows email
connections to the Internet. Here’s how you do it.

You send mail to ftpmail@online.ora.com. In the message body, give the FTP commands
you want to run. The server will run anonymous FTP for you and mail the files back to you.

Motif Programming Manual 21

Preface

To get a complete help file, send a message with no subject and the single word “help” in
the body. The following is an example mail session that should get you the examples. This
command sends you a listing of the files in the selected directory, and the requested
example files. The listing is useful if there’s a later version of the examples you’re
interested in.

% mail ftpmail@online.ora.com
Subject:reply paula@ora.com (where you want files mailed)
opencd /published/oreilly/xbook/motif
dirmode
binary
uuencode
get examples12.tar.Z
quit
%

A signature at the end of the message is acceptable as long as it appears after “quit.”

All retrieved files will be split into 60KB chunks and mailed to you. You then remove the
mail headers and concatenate them into one file, and then uudecode or atob it. Once you’ve
got the desired file, follow the directions under FTP to extract the files from the archive.

VMS, DOS, and Mac versions of uudecode, atob, uncompress, and tar are available.

BITFTP
BITFTP is a mail server for BITNET users. You send it electronic mail messages
requesting files, and it sends you back the files by electronic mail. BITFTP currently serves
only users who send it mail from nodes that are directly on BITNET, EARN, or NetNorth.
BITFTP is a public service of Princeton University. Here’s how it works.

To use BITFTP, send mail containing your ftp commands to BITFTP@PUCC. For a
complete help file, send HELP as the message body.

The following is the message body you should send to BITFTP:

FTP ftp.uu.net NETDATA
USER anonymous
PASS your Internet email address (not your bitnet address)
CD /published/oreilly/xbook/motif
DIR
BINARYG
ET examples12.tar.Z
QUIT

Once you’ve got the desired file, follow the directions under FTP to extract the files from
the archive. Since you are probably not on a UNIX system, you may need to get versions
of uudecode, uncompress, atob, and tar for your system. VMS, DOS, and Mac versions are
available. The VMS versions are on gatekeeper.dec.com in /archive/pub/VMS.

Questions about BITFTP can be directed to Melinda Varian, MAINT@PUCC on BITNET.

Preface

22 Motif Programming Manual

UUCP
UUCP is standard on virtually all UNIX systems, and is available for IBM-compatible PCs
and Apple Macintoshes. The examples are available by UUCP via modem from UUNET;
UUNET’s connect-time charges apply.

You can get the examples from UUNET whether you have an account or not. If you or your
company has an account with UUNET, you will have a system with a direct UUCP
connection to UUNET. Find that system, and type:

uucp uunet\!~/published/oreilly/xbook/motif/examples12.tar.Z yourhost\!~/ yourname/

The backslashes can be omitted if you use the Bourne shell (sh) instead of csh. The file
should appear some time later (up to a day or more) in the directory /usr/spool/uucppublic/
yourname. If you don’t have an account but would like one so that you can get electronic
mail, then contact UUNET at 703-204-8000.

It’s a good idea to get the file /published/oreilly/xbook/motif/ls-lR.Z as a short test file
containing the filenames and sizes of all the files in the directory.

Once you’ve got the desired file, follow the directions under FTP to extract the files from
the archive.

Copyright
The example programs are written by Dan Heller, Paula Ferguson, Antony Fountain, and
Jeremy Huxtable for the Motif Programming Manual, Copyright 1994 O’Reilly
&Associates, Inc. Permission to use, copy, and modify these programs without restriction
is hereby granted, as long as this copyright notice appears in each copy of the program
source code.

For the purposes of making the book easier to read, the above copyright notice does not
appear in the program examples. However, the copyright does exist in the electronic form
of the programs available on the Internet.

Compiling the Example Programs
Once you have the examples and you’ve unpacked the archive as described above, you’re
ready to compile them. The easiest way is to use imake, a program supplied with the X11
distribution that generates proper Makefiles on a wide variety of systems. imake uses
configuration files called Imakefiles that are included with the examples. If you have
imake, you should go to the top-level directory containing the examples, and type:

% xmkmf
% make Makefiles
% make

Motif Programming Manual 23

Preface

The examples all have the same application class for purposes of the app-defaults file. The
class name is “Demos” and the app-defaults file (Demos) in the main examples directory
should be placed in /usr/X11R6/lib/app-defaults/Demos on a UNIX system. If you can’t
write to that directory, or if your normal X11 directory tree is installed elsewhere, you
should set the environment variable XAPPLRESDIR to the directory where you installed
the examples.

Acknowledgments
Third Edition. The current edition of this book was updated to cover Motif 2.1 by Antony
Fountain and Jeremy Huxtable, both of Imperial Software Technology. Jerry originally
wrote most of the Motif 2.1 sample programs which appear in the book. He also wrote the
utility Snap, which was used to recreate all the screen shots for this manual. Originally we
intended to include this in the Appendix as a sample application, but space forbade this. For
myself, I simply made sure that the examples were non-deprecated. The text, however, is
mine, and I accept the blame for everything.

Special thanks go to the people who worked on the production of this book. The final form
of this book is the work of the staff at O’Reilly & Associates. I would like to thank all of
them for allowing me to take on this project; a special thanks to Paula Ferguson, without
whom the manuscript would never have reached the printer. The authors would like to
thank all at IST for their patience and support. A special thanks must go to Denise Buckler,
John Bishop, Andy Davies, Simon Davies, Ruth Lambert, Andy and Tricia Lovell, Graham
Salisbury, and Rob Snell, who all cheerfully assisted in the onerous task of proof reading.
Thanks to Alan Sandell for keeping the printer working. A big thanks to Andy Lovell, Neil
Smyth, and Derek Lambert for their patience and support when I could have been working
on company matters. And last but definitely not least, a very special thank you to my wife
Emma for keeping the home fires burning.

Antony J. Fountain

Second Edition. The second edition of this book was updated to cover Motif 1.2,including
drag and drop and internationalization, by Paula Ferguson. Dave Brennan, of HaL
Computer Systems, took on the unenviable task of learning everything he could about UIL
and Mrm, in order to write the UIL programming material for this edition. He did a great
job of covering a complex subject.

Adrian Nye deserves recognition for allowing me to work on this project, when I’m sure
that he had other projects he would have liked to send my way. I don’t think either one of
us had any idea how involved this update project would become. He also provided editorial
support that helped keep me on track in the final stages of the work on the book.

The other writers at O’Reilly &Associates in Cambridge, Valerie Quercia and Linda Mui,
provided support that kept me sane while I was working on the book. Their willingness to

Preface

24 Motif Programming Manual

listen and offer advice is greatly appreciated. Extra gratitude goes to Valerie Quercia for
her help with the screen dumps for the book.

David Flanagan deserves credit for always being willing to answer my questions about the
technical details of Motif and X. Douglas Rand, Scott Meeks, and David Brooks at OSF
answered questions and helped review the new material. Daniel Jahn, of SAS Institute, Inc.
, also provided valuable review comments for this edition.

Special thanks go to the people who worked on the production of this book. The final form
of this book is the work of the staff at O’Reilly &Associates. The authors would like to
thank Chris Reilly for the figures, Donna Woonteiler, Chris Tong, and Ellie Cutler for
indexing, Lenny Muellner for tools support, and Stephen Spainhour, Clairemarie Fisher
O’Leary, Kismet McDonough, and Eileen Kramer for copy editing and production of the
final copy. Thanks also to Donna Woonteiler for her patience in helping me understand the
production process.

Finally, I’d like to thank my friends for putting up with me when I kept telling them that
I’d be done working non-stop in a month or two. Special thanks to my house mate,
Meredith Hunt, who put up with me when I was stressed out and not much fun to live with,
and who took care of the cats when I wasn’t around. My friends Karen Lewis and Liz
Bradley opened their house to me when I needed to escape and be someplace where there
are mountains. And thanks to the great people at the Boston Rock Gym, who provided me
with a much-needed outlet for climbing the walls.

Despite the efforts of all of these people, the authors alone are responsible for any errors or
omissions that remain.

Paula M. Ferguson

First Edition. The first edition of this book took over a year and a half to write and compile
from the beginning. But when I look back on the entire effort, and I think about what it takes
to do things like this (and other difficult things in life), I realize that what it really requires
is a state of mind and a mental model that lends itself to seeing the big picture and choosing
to do what’s necessary to get the job done.

To this, I can only credit one person, Tim O’Reilly, my friend and editor of this book. It’s
his approach to life, his values, his way of thinking about things, and his talent for
expressing them is what has influenced me more than anything else in adopting the kind of
mental framework necessary to write a book like this (or to start my company, Z-Code
Software, or to do anything I do in life). He never gives me advice when I ask for it, nor
does he tell me what to do. Instead, he uses quotes, cites anecdotes, or just describes an
abstract thought that always seems to be appropriate to every situation. In short, he’s shown
me a way of thinking about things that appreciates the big picture. I take this with me
wherever I go, and in whatever I do. Without it, I couldn’t have written this book.

Motif Programming Manual 25

Preface

Those who worked most closely with me on the project include Irene Jacobson, who
dedicated long hours to meticulous editing and support. Her intuition and insistence on
proper use of words saved many cuts of Tim O’Reilly’s scalpel. David Lewis also gets
super-high marks for his excellent feedback, for his technical expertise, and for helping
take care of certain Z-Mail ports while I was busy hunched over this computer. More thanks
go to the great folks at Z-Code Software, Bart Schaefer and Don Hatch, for not laughing at
me when I told people for at least six months that the book would take “just two more weeks
now.”(I really meant it, too!) Actually, they helped quite a bit with reading nroff’d
manuscripts, and by taking care of the business whenever I was at O’Reilly &Associates’
offices in “Bahston.”

The figures in this book come in two forms: screen dumps and hand-generated figures done
by Chris Reilly. What a super job he did--and always on time. And how can I thank Kismet
McDonough, Lenny Muellner, Rosanne Wagger, Mike Sierra, Eileen Kramer, and the
other production folks at O’Reilly &Associates, who did a wonderful job of copy editing,
proofing, page layout, and all the other things that make the difference between a
manuscript and a finished book. And that’s not all: Ellie Cutler wrote the index. Tony
Marotto of Cambridge Computer Associates figured out how to convert our screen dumps
into PostScript files and how to scale screen dumps without the moire and plaid patterns
you see in many books. He used Jeff Poskanzer’s pmbplus to convert xwd dumps to gif
format, and then wrote a set of image-processing programs that shift and enhance the tones.
Daniel Gilly took on the enormous job of developing the reference appendices when it
became clear that I wouldn’t have time.

Enthusiastic applause goes to Libby Hanna (do I get a real official OSF/Motif decoder ring
now!!??), David Brooks, Scott Meeks, Susan Thompson, Carl Scholz, Benjamin Ellsworth,
and the entire cast at OSF in Cambridge for their support. And, of course, everyone on the
motif-talk mailing list.(I wish I could remember all your names!)

People I can’t forget: Bill “Rock” Petro, Akkana, Mike Harrigan at NCD for the terminal,
Danny Backx at BIM (sorry I didn’t get you any review copies!), John Harkin, and certain
folks at Sun that I’d love to mention, but I can’t because they’re into that OL-thang and they
wouldn’t want to be associated with the M-word, Jordan Hayes, Paula Ferguson, and Kee
Hinckley (just because he’s cool).Also thanks to Ralph Swick and Donna Converse at the
X Consortium for being somewhat patient with me.

Added thanks to Lynn Vaughn at CNN for keeping me informed about what’s going on in
the world, since I have no time to look out the window; to Short Attention-Span Theatre,
for keeping me amused; and to Yogurt World, for keeping me fed.

This book was written using a Sun workstation, the vi editor (for which I guess I ought to
thank Bill Joy), SoftQuad’s sqtroff, X11R4 and various versions of Motif (1.0 through 1.1.
3).

Preface

26 Motif Programming Manual

For catching and reporting errors that have been fixed in the second printing, I’d like to
thank Akkana, Wayne Robertz, Glen Shute, Scott Strool, Trevor Taylor, Peter Wagner,
Andrew Wason, Tim Weinrich, and Bill Wohler.

Dan Heller

We’d Like to Hear From You
We have tested and verified all of the information in this book to the best of our ability, but
you may find that features have changed (or even that we have made mistakes!). Please let
us know about any errors you find, as well as your suggestions for future editions, by
writing:

O’Reilly & Associates, Inc.
103 Morris Street, Suite A
Sebastopol, CA 95472
1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request a
catalog, send email to:

info@ora.com (via the Internet)
uunet!ora!info (via UUCP)

To ask technical questions or comment on the book, send email to:

bookquestions@ora.com(via the Internet)

Motif Programming Manual 1

Chapter 1

In this chapter:
• Basic User-interface

Concepts
• What Is Motif?
• Designing User

Interfaces
1

Introduction to Motif
So many computers, so many operating systems, so many toolkits*.

Developing an application used to be a simple choice, depending upon whether we targeted
the application for the Microsoft world, for UNIX, or for the Apple MacIntosh. Each had
its own distinct toolkit interface. If you wanted to write your application cross-platform,
you had to encapsulate the functionality through a set of common C++ classes, each of
which would have a separate internal implementation for each operating environment. Yet
for the myriad of UNIX platforms, all you had to do was write Motif.

But now there is Linux, and Java, and GTK+ and Qt, and a host of other considerations.
Life never was so complex, and all we want to do is write an application. In many ways,
the task of the application programmer is now to write the application with the greatest
degree of toolkit independence that can be achieved, whether through a client-server
architecture to separate the interface from the back-end processing, or still through
encapsulation techniques which hide the underlying toolkit from the higher levels. The
toolkit ought in principle to be irrelevant; in practice this is not possible: there has to be a
windowing toolkit somewhere at the bottom level, and that toolkit must be appropriate to
the target operating system and environment. A emulator or cross-platform common toolkit
never quite succeeds in providing the requisite functionality in all levels of detail; for some
platforms, if it is not in the native toolkit, it simply isn’t ported; this is particularly true of
Windows environments, where using anything other than MFC is simply wrong in
principle. MFC is the native windowing environment for Windows. It just is.

So why Motif? Because it remains what it has long been: the common native windowing
toolkit for all the UNIX platforms, fully supported by all the major operating system
vendors. It is still the only truly industrial strength toolkit capable of supporting large scale
and long term projects. Everything else is tainted: it isn’t ready or fully functionally
complete, or the functional specification changes in a non-backwards-compatible manner
per release, or there are performance issues. Perhaps it doesn’t truly port across UNIX
systems, or it isn’t fully ICCCM compliant with software written in any other toolkit on the
desktop, or there are political battles as various groups try to control the specification for

* Infandum, regina, iubes renouare dolorem...

Chapter 1: Motif Programming Model

2 Motif Programming Manual

their own purposes. Indeed it may matter very much whose version of the toolkit you have
managed to acquire, or if the toolkit is open sourced so you have no idea who is going to
stick their untrusted fingers into it at any time. So many problems with each choice you
make. With Motif, you know where you are: its stable, its robust, its professionally
supported, and it all works.

And yet whatever the toolkit you choose to write your application in, the design goals ought
to remain precisely the same. You should be trying to present the application to the user in
the most consistent, simple to use, and simple to understand manner of which you are
humanly capable. Interfaces consist of basic controls and layout managers, irrespective of
the language it is written in. In this respect, Motif, despite its long history, remains as fully
capable as any basic toolkit. It is true that Motif 1.2 lacked some of the features which we
now expect from a windowing toolkit - the philosophy of design moves on with time - but
these issues are addressed in the 2.1 version of the toolkit. The ComboBoxes, SpinBoxes,
Tree and Grid layouts are all there. Where Motif differs from other toolkits is the strength
of the component inter-operability. The Motif toolkit is not just a collection of controls
written in a particular language: everything, but everything, is designed to work with
everything else, whether it be navigation between controls, or inter-object data transfer, or
the sharing of style resources throughout the control hierarchy. And because it is based on
top of the X interface toolkit, Xt, it will work with the vast range of third party components
and add-ons which are available to the X world. In many ways, it is precisely these aspects
which are stronger in the Motif 2.1 toolkit than ever before.

Much of this chapter can be read as a general introduction to graphical user interface
toolkits; the concepts which we present are not specific to Motif, or indeed to any other
windowing toolkit. The ideas presented here should be general enough to read in a toolkit
independent manner; how you implement those ideas using the specific Motif toolkit is
covered in subsequent chapters of this book.

Basic User Interface Concepts
Whether you are the designer of the software or an engineer responsible for implementing
someone else’s design, there are some basic principles that will benefit you in your work.
Let’s begin with the basics:

• All applications running on a user’s workstation should have a consistent interface
design. Programs that deviate from the expected design will almost assuredly confuse
the user even if the changes were intended for the user’s benefit. Chances are also high
that the user will not want to use the questionable software again.

• Users rely on rote memory; they will remember seemingly complicated interface
interaction techniques provided that the functions they perform are useful and are
invoked frequently. There is a limit, however, to how much users want to remember.
It is important that essential or frequently used functions follow memorable patterns.

Motif Programming Manual 3

Chapter 1: Motif Programming Model

• Novice users will probably not want to customize or alter their applications in any way.
If they do, the available methods must be as easy and painless as possible.

• Users with more experience most certainly might want to customize the application in
all sorts of ways: the greater degree of customization which the application allows, the
better.

One of the first things the hard-core X programmer learns is that “the user is always right;
if he wants to customize his interface, by God you had better let him.”

This principle is absolutely correct. Unfortunately, many early X applications carry it too
far and end up “spineless.” Many such programs actually require the user to make certain
customizations in order for the program to be usable or attractive. For some programs, the
problem worsens if unreasonable customization settings are given, since there is no sanity-
checking for unreasonable configurations.

So far, such customization issues have not become over-problematic because UNIX and X
applications are used almost exclusively by technical people who understand the
environment and know how to work within it. But it is important to consider users who
know absolutely nothing about computers and who don’t want to - they are only using your
software because they have to.

The customization issue has partly been addressed in any case by environments like CDE,
or the Schemes mechanisms on SGI platforms: users can choose from (and add to) a range
of preset styles which will affect all applications on the desktop. Part of the work of the
engineer is now to ensure that the application participates in desktop schemes of this kind,
so that the user can customize in a general way rather than having to configure the style of
every application individually.

What Is Motif?
So, back to Motif. What is it and how can it help you solve your user-interface design goals?
To start, Motif is a set of guidelines that specifies how a user interface for graphical
computers should look and feel. This term describes how an application appears on the
screen (the look) and how the user interacts with it (the feel). Look and Feel is not
something specific to Motif; all windowing toolkits should present a standardized
internally-consistent methodology so that the user is comfortable using the controls which
the application presents. Specific toolkits, however, have distinct look and feel, although
since some toolkits share a common design philosophy there is a cross-over so that users
familiar with one platform are not necessarily naked when presented with an alternative.
This will be made clear in the paragraphs which follow. Firstly, let us look at a Motif
application.

Chapter 1: Motif Programming Model

4 Motif Programming Manual

Figure 1-1 shows a Motif application, used for taking snapshots of windows or capturing
areas of the screen.

The user interacts with the application by typing at the keyboard, and by clicking, selecting,
and dragging various graphic elements of the application with the mouse. For example, any
application window can be moved on the screen by moving the pointer to the top of the
window’s frame (the title bar), pressing and holding down a button on the mouse, and
dragging the window to a new location. The window can be made larger or smaller by
pressing a mouse button on any of the resize corners and dragging.

Most applications sport buttons that can be clicked with the mouse to initiate application
actions. Motif uses highlighting and shadowing to make buttons, and other components,
look three-dimensional. When a button is clicked on, it actually appears to be pressed in
and released.

A row of buttons across the top of most applications forms a menu bar. Clicking on any of
the titles in the menu bar pops up a menu of additional buttons. Buttons can also be arranged
in palettes that are always visible on the screen. When a button is clicked, the application
can take immediate action or it can pop up an additional window called a dialog box. A
dialog box can ask the user for more information or present additional options.

This style of application interaction isn’t new to most people, since the Apple MacIntosh
popularized it years ago. What is different about Motif is that the graphical user interface
specification is designed to be independent of the computer on which the application is
running.

Figure 1-1: A Motif Application

Motif Programming Manual 5

Chapter 1: Motif Programming Model

Motif was designed by the Open Software Foundation (OSF), a non-profit consortium of
companies such as Hewlett-Packard, Digital, IBM, and dozens of other corporations.
OSF’s charter calls for the development of technologies that will enhance inter-operability
between computers from different manufacturers. Targeted technologies range from user
interfaces to operating systems.

Part of OSF’s charter was to choose an appropriate windowing system environment that
would enable the technology to exist on as wide a range of computers as possible. It was
decided that the OSF/Motif toolkit should be based on the X Window System, a network-
based windowing system that has been implemented for UNIX,VMS, DOS, Macintosh,
and other operating systems. X provides an extremely flexible foundation for any kind of
graphical user interface.

When used properly, the Motif toolkit enables you to produce completely Motif-compliant
applications in a relatively short amount of time. At its heart, though, Motif is a
specification rather than an implementation. While most Motif applications are
implemented using the Motif toolkit provided by OSF, it would be quite possible for an
application implemented in a completely different way to comply with the Motif GUI. The
specification is captured in two documents: the Motif Style Guide, which defines the
external look and feel of applications, and the Application Environment Specification,
which defines the application programmer’s interface (API).*

The Motif specifications don’t have a whole lot to say about the overall layout of
applications. Instead, they focus mainly on the design of the objects that make up a user
interface - the menus, buttons, dialog boxes, text entry, and display areas. There are some
general rules, but for the most part, the consistency of the user interface relies on the
consistent behavior of the objects used to make it up, rather than their precise arrangement.

The Motif specification is broken down into two basic parts:

• The output model describes what the objects on the screen look like. This model
includes the shapes of buttons, the use of three-dimensional effects, the use of cursors
and bitmaps, and the positioning of windows and subwindows. Although some
recommendations are given concerning the use of fonts and other visual features of the
desktops, Motif is flexible in most of these recommendations.

• The input model specifies how the user interacts with the elements on the screen.

The key point of the specification is that consistency should be maintained across all
applications. Similar user-interface elements should look and act similarly regardless of the
application that contains them.

Motif can be used for virtually any application that interacts with a computer user.
Programs as conceptually different as a CAD/CAM package or an electronic mail

* Both books have been published for OSF by Prentice-Hall and are available in most technical bookstores.

Chapter 1: Motif Programming Model

6 Motif Programming Manual

application still use the same types of user-interface elements. When the user interface is
standardized, the user gets more quickly to the point where he is working with the
application, rather than just mastering its mechanics.

Those familiar with Microsoft Windows should have little trouble in using a Motif-based
application.This is not a coincidence; its user-interface is based on the same principles as
Motif. Motif can be seen as a superset of both MS-Windows and Presentation Manager.
Even though the others came first, Motif views them as specific implementations of an
abstract specification.

The Motif interface was intentionally modelled after IBM’s Common User Access (CUA)
specification, which defines the interface for OS/2 and Microsoft Windows. The reason for
this is that there is a proven business model for profiting from an “open systems”
philosophy. As a result, all of the major operating system vendors support Motif as their
native graphical interface environment.

You have two options for making applications Motif-compliant. You can write the entire
application yourself, and make sure that all your user-interface features conform to the
Motif GUI specifications, or you can use a programming toolkit, which is a more realistic
option. A toolkit is a collection of pre-written functions that implement all the features and
specifications of a particular GUI.

However, a toolkit cannot write an application for you, nor can it enforce good
programming techniques. It isn’t going to tell you that there are too many objects on the
screen or that your use of colors is outrageous. The job of Motif is solely to provide a
consistent appearance and behavior for user-interface controls. So, before we jump into the
mechanics of the Motif toolkit, let’s take a moment longer with the philosophy of graphical
user interfaces.

Designing User Interfaces
The principles behind an effective user interface cannot be captured in the specifications
for Motif or any other GUI. Even though the Motif toolkit specifies how to create and use
its interface elements, there is still quite a bit left unsaid. As the programmer, you must take
the responsibility of using those elements effectively and helping the user to be as
productive as possible. You must take care to keep things simple for the beginner and, at
the same time, not restrict the more experienced user. This task is perhaps the most difficult
one facing the programmer in application design.

There is frequently no right or wrong way to design an interface. Good user-interface
design is usually a result of years of practice: you throw something at a user, he plays with
it, complains, and throws it back at you. Experience will teach you many lessons, although
we hope to guide you in the right direction, so that you can avoid many common mistakes
and so that the ones that you do make are less painful.

Motif Programming Manual 7

Chapter 1: Motif Programming Model

So, rather than having absolute commandments, we rely on heuristics, or rules of thumb.
Here is a rough list to start with:

• Keep the interface as simple as possible.

• Make direct connections to real-world objects or concepts.

• If real-world metaphors are not available, improvise.

• Don’t restrict functionality to accommodate simplicity.

This list may sound flippant, but it is precisely what makes designing an interface so
frustrating. Keeping an interface as simple as possible relies on various other factors, the
most basic of which is intuition. The user is working with your application because he
wants to solve a particular problem or accomplish a specific task. He is going to be looking
for clues to spark that connection between the user interface and the preconceived task in
his mind. Strive to make the use of an application obvious by helping the user form a mental
mapping between the application and real-world concepts or objects. For example, a
calculator program can use buttons and text areas to graphically represent the keypad and
the one-line display on a calculator. Most simple calculators have the common digit and
arithmetic operator keys; a graphical display can easily mimic this appearance. Other
examples include a programmatic interface to a cassette player, telephone, or FAX
machine. All of these could have graphical equivalents to their real-world counterparts.

The reason these seemingly obvious examples are successful interface approaches is
because they take advantage of the fact that most people are already familiar with their real-
life counterparts. But there is another, less obvious quality inherent in those objects: they
are simple. The major problem concerning interface design is that not everything is simple.
There isn’t always a real-world counterpart to use as a crutch. In the most frustrating cases,
the concept itself may be simple, but there may not be an obvious way to present the
interaction. Of course, once someone thinks of the obvious solution, it seems odd that it
could have been difficult in the first place.

Consider the VCR. Conceptually, a VCR is a simple device, yet statistics used to say that
70% of VCR owners don’t know how to program one. How many times have you seen the
familiar 12:00-AM flashing in someone’s living room? Researchers say that this situation
occurs because most VCRs are poorly designed and are “too feature full.” They’re half-
right; the problem is not that they are too feature full, but that the ways to control those
features are too complicated. Reducing the capabilities of a VCR isn’t going to make it
easier to use; it’s just going to make it less useful. The problem with VCRs is that their
designers focused too much on functionality and not enough on usability.

So, how do you design an interface for a VCR when there is no other object like it? You
improvise. Sure, the VCR is a simple device; everyone understands how one is supposed
to work, but few people have actually designed one that is easy to use until recently. Maybe
you’ve heard about the new device that, when connected to your VCR, enables you to have

Chapter 1: Motif Programming Model

8 Motif Programming Manual

a complete TV program guide displayed on your screen in the bar-graph layout similar to
the nightly newspaper listings. All you have to do is point and click on the program you
want to record and that’s it - you’re done. No more buttons to press, levels of features to
browse through, dials to adjust or manuals to read. At last, the right interface has been
constructed. None of the machine’s features have been removed. It’s just that they are now
organized in an intuitive way and are accessible in an simple manner.

This method for programming VCRs satisfies the last two heuristics. Functionality has not
been reduced, yet simplicity has been heightened because a creative person thought of a
new way to approach the interface. The lesson here is that no object should be difficult to
use no matter how feature full it is or how complex it may seem. You must rely heavily on
your intuition and creativity to produce truly innovative interfaces.

Let’s return to computer software and how these principles apply to the user-interface
design model. The first heuristic is simplicity, which typically involves fewer, rather than
more, user-interface elements on the screen. Buttons, popup menus, colors, and fonts
should all be used sparingly in an application. Often, the availability of hundreds of colors
and font styles along with the attractiveness of a three-dimensional interface compels many
application programmers to feel prompted, and even justified, in using all of the bells and
whistles. Unfortunately, overuse of these resources quickly fatigues the user and overloads
his ability to recognize useful and important information.

Ironically, the potential drawbacks to simplicity are those that are also found in complexity.
By oversimplifying an interface, you may introduce ambiguity. If you reduce the number
of elements on your screen or make your iconic representations too simple, you may be
providing too little information to the user about what a particular interface element is
supposed to do. Under-use of visual cues may make an application look bland and
uninteresting.

One of Motif’s strengths is the degree of configurability that you can pass on to the end
user. Colors, fonts, and a wide variety of other resources can be set specifically by the user.
You should be aware, however, that once your application ships, its default state is likely
to be the interface most people use, no matter how customizable it may be. While it is true
that more sophisticated users may customize their environment, you are ultimately in
control of how flexible it is. Also, novice users quickly become experts in a well-designed
system, so you must not restrict the user from growth.

Simplicity may not always be the goal of a user interface. In some cases, an application may
be intentionally complex. Such applications are only supposed to be used by sophisticated
users. For example, consider a 747 aircraft. Obviously, these planes are intended to be
flown by experts who have years of experience. In this case, aesthetics is not the goal of the
interior design of a cockpit; the goal is that of functionality.

In order to design an effective graphical user interface for an application, you must evaluate
the goals of both your particular application and your intended audience. Only with a

Motif Programming Manual 9

Chapter 1: Motif Programming Model

complete understanding of these issues will you be able to determine the best interface to
use. And remember, an irate customer just might call you for help.

Chapter 1: Motif Programming Model

10 Motif Programming Manual

Motif Programming Manual 11

Chapter 1

In this chapter:
• Basic X Toolkit

Terminology and
Concepts

• The Xm and Xt
Libraries

• Programming With Xt
and Motif

• Summary

2
The Motif

Programming Model
This chapter teaches the fundamentals of Motif by example. It dissects a simple “Hello,
World” program, showing the program structure and style common to all Motif programs.
Because much of this material is already covered in detail in Volume 4, X Toolkit Intrinsics
Programming Manual, this chapter can be used as a refresher or a light introduction for
those who haven’t read the earlier book. It makes reference to Volume 1, Xlib
Programming Manual, and Volume 4 to point out areas that the programmer needs to
understand (windows, widgets, events, callbacks, resources, translations) before
progressing with Motif.

Though we expect most readers of this book to be familiar with the X Toolkit Intrinsics
(Xt), this chapter briefly reviews the foundations of Motif in Xt. This review serves a
variety of purposes. First, for completeness, we define our terms, so if you are unfamiliar
with Xt, you will not be completely at sea if you forge ahead. Second, there are many
important aspects of the X Toolkit Intrinsics that we aren’t going to cover in this book; this
review gives us a chance to direct you to other sources of information about these areas.
Third, Motif diverges from Xt in some important ways, and we point out these differences
up front. Finally, we point out some of the particular choices you can make when Xt or
Motif provides more than one way to accomplish the same task.

If you are unfamiliar with any of the concepts introduced in this chapter, please read the
first few chapters of Volume 4. Portions of Volume 1, and Volume 3, X Window System
User’s Guide, may also be appropriate.

Basic X Toolkit Terminology and
Concepts
As discussed in Chapter 1, Introduction to Motif, the Motif user-interface specification is
completely independent of how it is implemented. In other words, you do not have to use
the X Window System to implement a Motif-style graphical user interface (GUI).
However, to enhance portability and robustness, the Open Software Foundation (OSF)

Chapter 2: Motif Programming Model

12 Motif Programming Manual

chose to implement the Motif GUI using X as the window system and the X Toolkit
Intrinsics as the platform for the Application Programmer’s Interface (API).

Xt provides an object-oriented framework for creating reusable, configurable user-
interface components called widgets. Motif provides widgets for such common user-
interface elements as labels, buttons, menus, dialog boxes, scrollbars, and text-entry or
display areas. In addition, there are widgets called managers, whose only job is to control
the layout of other widgets, so the application doesn’t have to worry about details of widget
placement when the application is moved or resized.

A widget operates independently of the application, except through prearranged
interactions. For example, a button widget knows how to draw itself, how to highlight itself
when it is clicked on with the mouse, and how to respond to that mouse click.

The general behavior of a widget, such as a PushButton, is defined as part of the Motif
library. Xt defines certain base classes of widgets, whose behavior can be inherited and
augmented or modified by other widget classes (subclasses). The base widget classes
provide a common foundation for all Xt-based widget sets. A widget set, such as Motif’s
Xm library, defines a complete set of widget classes, sufficient for most user-interface
needs. Xt also supports mechanisms for creating new widgets or for modifying existing
ones.

Xt also supports lighter-weight objects called gadgets, which for the most part look and act
just like widgets, but their behavior is actually provided by the manager widget that
contains them. For example, a pulldown menu pane can be made up of button gadgets
rather than button widgets, with the menu pane doing much of the work that would
normally be done by the button widgets.

Most widgets and gadgets inherit characteristics from objects above them in the class
hierarchy. For example, the Motif PushButton class inherits the ability to display a label
from the Label widget class, which in turn inherits even more basic widget behavior from
its own superclasses. See Volume 4, X Toolkit Intrinsics Programming Manual, for a
complete discussion of Xt’s classing mechanisms; see Chapter 3, Overview of the
Motif Toolkit , for details about the Motif widget class hierarchy.

The object-oriented approach of Xt completely insulates the application programmer from
the code inside of widgets. As a programmer, you only have access to functions that create,
manage, and destroy widgets, plus certain public widget variables known as resources. As
a result, the internal implementation of a widget can change without requiring changes to
the API. A further benefit of the object-oriented approach is that it forces you to think about
an application in a more abstract and generalized fashion, which leads to fewer bugs in the
short run and to a better design in the long run.

Creating a widget is referred to as instantiating it. You ask the toolkit for an instance of a
particular widgetclass, which can be customized by setting its resources. All Motif

Motif Programming Manual 13

Chapter 2: Motif Programming Model

PushButton widgets have the ability to display a label; an instance of the PushButton
widget class actually has a label that can be set with a resource.

Creating widgets is a lot like buying a car: first you choose the model (class) of car you
want, then you choose the options you want, and then you drive an actual car off the lot.
There may exist many cars exactly like yours, others that are similar, and still others that
are completely different. You can create widgets, destroy them, and even change their
attributes just as you can buy, sell, or modify a car by painting it, adding a new stereo, and
so on.

Widgets are designed so that many of their resources can be modified by the user at run-
time. When an application is run, Xt automatically loads data from a number of system and
user-specific files. The data from these files is used to build the resource database, which
is used to configure the widgets in the application. If you want to keep the user from
modifying resources, you can set their values when you create the widget. This practice is
commonly referred to as hard-coding resources.

It is considered good practice to hard-code only those resource values that are essential to
program operation and to leave the rest of the resources con?gurable. Default values for
configurable resources are typically specified in an application defaults ?le, which is more
colloquially referred to as the app-defaults ?le. By convention, this ?le is stored in the
directory /usr/X11R6/lib/app-defaults and it has the same name as the application with the
first letter capitalized.The app-defaults ?le is loaded into the resource database along with
other files that may contain different values set by the system administrator or the user. In
the event of a conflict between different settings, a complex set of precedence rules
determines the value actually assigned to a resource. See Volume 4, X Toolkit Intrinsics
Programming Manual, for more information on how to set resources using the various
resource files.

Motif widgets are prolific in their use of resources. For each widget class, there are many
resources that neither the application nor the user should ever need to change. Some of
these resources provide ?ne control over the three-dimensional appearance of Motif
widgets; these resources should not be modified, since that would interfere with the visual
consistency of Motif applications. Other resources are used internally by Motif to make one
large, complex widget appear to the user in a variety of guises.

The callback resources for a widget are a particularly important class of resources that must
be set in the application code. A widget that expects to interact with an application provides
a callback resource for each type of interaction it supports. An application associates a
function with the callback resources in which it is interested; the function is invoked when
the user performs certain actions in the widget. For example, a PushButton provides a
callback for when the user activates the button.

Note, however, that not every event that occurs in a widget results in a callback to an
application function. Widgets are designed to handle many events themselves, with no

Chapter 2: Motif Programming Model

14 Motif Programming Manual

interaction from the application. All widgets know how to draw themselves, for example.
A widget may even provide application-like functionality. For example, a Text widget
typically provides a complete set of editing commands via internal widget functions called
actions. Actions are mapped to events in a translation table. This table can be augmented,
selectively overridden, or completely replaced by settings contained in the implementation
of a widget class, in application code, or in a user’s resource files.

In the basic Xt design, translations are intended to be configurable by the user. However,
the purpose of Xt is to provide mechanism, not impose user-interface policy. In Motif,
translations are typically not modified by either the user or the application programmer.
While it is possible for an application to install event handlers or new translations and
actions for a widget, most Motif widgets expect application interaction to occur only
through callbacks.

Since the Motif widgets are designed to allow application interaction through callbacks, we
don’t discuss translations very often in this book. Some of the Motif widgets, particularly
buttons when they are used in menus, have undefined behavior when their translations are
augmented or overridden. An experienced Xt programmer may feel that Motif’s limitations
on the configurability of translations violates Xt. But consider that Xt is a library for
building toolkits, not a toolkit itself. Motif has the further job of ensuring consistent user-
interface behavior across applications.

Whether the goal of consistency is sufficient justification for OSF’s implementation is a
matter of judgement, but it should at least be taken into account. At any rate, you should be
aware of the limitations when configuring Motif widgets. Motif widgets provide callback
resources to support their expected behavior. If a widget does not have a callback
associated with an event to which you want your application to respond, you should be
cautious about adding actions to the widget or modifying its translations.

The Xm and Xt Libraries
A Motif user interface is created using both the Motif Xm library and the Intrinsics’ Xt
library. Xt provides functions for creating and setting resources on widgets. Xm provides
the widgets themselves, plus an array of utility routines and convenience functions for
creating groups of widgets that are used collectively as single user-interface components.
For example, the Motif MenuBar is not implemented as one particular widget, but as a
collection of smaller widgets put together by a convenience function.

An application may also need to make calls to the Xlib layer to render graphics or get events
from the window system. In the application itself, rather than in the user interface, you may
also be expected to make lower-level system calls into the operating system, ?le system, or
hardware-specific drivers. The application may also be making use of the X11R6 Session
Management (SM) and the X11R6 InterClient Exchange (ICE) facilities*. Thus, the whole

Motif Programming Manual 15

Chapter 2: Motif Programming Model

application may have calls to various libraries within the system. Figure 2-1 represents the
model for interfacing to these libraries.

As illustrated above, the application itself may interact with all layers of the windowing
system, the operating system, and other libraries (math libraries, rpc, database) as needed.
On the other hand, the user-interface portion of the application should restrict itself to the
Motif, Xt, and Xlib libraries whenever possible. This restriction aids in the portability of
the user-interface across multiple computers and operating systems. Since X is a distributed
windowing system, once the application runs on a particular computer, it can be displayed
on any computer running X - even across a local or wide-area network.

In addition to restricting yourself to using the Motif, Xt, and Xlib libraries, you should try
to use the higher-level libraries whenever possible. Focus on using Motif-specific widgets
and functions, rather than trying to implement equivalent functionality using Xt or Xlib.
Higher-level libraries hide a great number of details that you would otherwise have to
handle yourself. By following these guidelines, you can reduce code complexity and size,
creating applications that are easier to maintain.

In situations where the Motif library does not provide the functionality you need, you may
attempt to borrow widgets from other toolkits or write your own. This technique is possible

* SM and ICE are fully described in the Programmer’s Supplement for Release 6 of the X Window
System. We will conform to the X11R6 guidelines and use the SessionShell widget class throughout the ex-
amples; othewise, Session Management will not form part of this manual, and you are referred to the Supple-
ment for more details.

Xlib (X Window System)

Xt (X Toolkit Intrinsics)

Xm (Motif)

User Interface

Application

Other
Libraries ICE

SM

Operating System

Figure 2-1. User interface library model

Chapter 2: Motif Programming Model

16 Motif Programming Manual

and made relatively simple because Motif is based on Xt.* For example, an application
might make good use of a general-purpose graphing widget.

Whatever libraries you use, be sure to keep your application modular. The first and most
important step in the development of an application is its design. You should always
identify the parts of the application that are functional and the parts that make up the user
interface. Well-designed applications keep the user-interface code separate from the
functional code. You should be able to unplug the Motif code and replace it with another
user-interface widget set based on Xt merely by writing corresponding code that mirrors
the Motif implementation.

Programming With Xt and Motif
The quickest way to understand the basic Motif programming model is to examine a simple
application. Example 2-1 is a version of the classic “hello world” program that uses the
Motif toolkit.†

Example 2-1. The hello.c program

/* hello.c -- initialize the toolkit using an application context
** and a toplevel shell widget, then create a pushbutton that says
** Hello using the varargs interface.
*/

#include <Xm/PushB.h>

main (int argc, char *argv[])
{

Widget toplevel, button;
XtAppContext app;
void button_pushed(Widget, XtPointer, XtPointer);
XmString label;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Hello", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);

label = XmStringCreateLocalized ("Push here to say hello");
XtSetArg(args[0], XmNlabelString, label);
button = XmCreatePushButton (toplevel, "pushme", args, 1);
XmStringFree (label);
XtAddCallback (button, XmNactivateCallback, button_pushed, NULL);
XtManageChild (button);

* While this book discusses certain methods for extending the Motif library, you should refer to Volume 4, X
Toolkit Intrinsics Programming Manual, for a general discussion of how to build your own widgets.

† XtVaAppInitialize () is deprecated in X11R6. The SessionShell widget class, and XtVaOpenApplica-
tion () are only availble in X11R6.

Motif Programming Manual 17

Chapter 2: Motif Programming Model

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void button_pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

printf ("Hello Yourself!\n");
}

The output of the program is shown in Figure 2-2.

You can get the source code for hello.c and the rest of the examples in this book via
anonymous ftp or other methods that are described in the Preface. It is a good idea to
compile and run each example as it is presented.

The example programs come with Imakefiles that should make building them easy if you
have the imake program. This program should already be in /usr/X11R6/bin on UNIX-
based systems that have X11 Release 6 installed. You also need the configuration files for
imake; they are in /usr/X11R6/lib/config on most UNIX-based systems. An Imakefile is a
system-independent makefile that is used by imake to generate a Makefile. This process is
necessary because it is impossible to write a Makefile that works on all systems. You
invoke imake using the xmkmf program. Complete instructions for compiling the examples
using imake are provided in the README ?le included with the source code.

As explained in the Preface, there are versions of the example programs for both Motif 2.1
and Motif 1.2 available electronically. However, all of the example code in this book is
designed to work with Motif 2.1 (and X11R6); the programs use functions that are not
available in Motif 1.2 (and X11R5). Where we use Motif 2.1 functions, we try to mention
how to perform the same tasks using Motif 1.2, usually in a footnote. To use the example
programs with Motif 1.2, make the changes we describe. When the necessary changes are
significant, we may explain both versions of the program. For a description of the changes
that we made to convert the example programs to Motif 2.1, see Changes in Motif 2.1, in
Chapter 3.

To compile any of the examples on a UNIX system without using imake, use the following
command line:

cc -O -o filename filename .c -lXm -lXt -lX11

If you want to do debugging, replace -O with -g in this command line. The order of the
libraries is important. Xm relies on Xt, and both Xm and Xt rely on Xlib (the -lX11 link
flag speci?es Xlib).

Figure 2-2: Output of the hello program

Chapter 2: Motif Programming Model

18 Motif Programming Manual

Now let’s take a look at this program step by step, noting elements of the underlying Xt
model and where Motif differs from it.

Header Files
An application that uses the Motif toolkit must include a header ?le for each widget that it
uses. For example, hello.c uses a PushButton widget, so we include <Xm/PushB.h>.The
appropriate header ?le for each Motif widget class is included on the reference page for the
widget in Volume 6B, Motif Reference Manual.

If you simply browse through /usr/Motif2.1/include/Xm (or wherever you have installed
your Motif distribution) trying to find the appropriate header ?le, you will find that each
widget class actually has two header files. The one with the name ending in a “P” (e.g.
PushBP.h) is the widget’s private header ?le and should not normally be included directly
by an application. Private header files are generally used only by the code that implements
a widget class and its subclasses.

Xt uses public and private header files to hide the details of widget implementation from
applications. This technique provides object-oriented encapsulation and data hiding in the
C language, which is not designed to support object-oriented programming. (See Volume
4, X Toolkit Intrinsics Programming Manual, for additional information on the object-
oriented design of widgets.)

For some types of objects, you may see another pair of header files, each containing a
capital “G” at the end of their names (for example, PushBG.h and PushBGP.h). These files
are for the gadget version of the object. For the most part, when we talk about widgets, we
include gadgets. Later chapters make it clear when to use gadgets and when to use widgets.

A quick examination of the #include directives in each of the Motif widget or gadget
header files reveals that each of them includes <Xm/Xm.h>, the general header ?le for the
Motif library. <Xm/Xm.h> in turn includes the following files:

#include <X11/Intrinsic.h>
#include <X11/Shell.h>
#include <X11/Xatom.h>
#include <Xm/XmStrDefs.h>
#include <Xm/VirtKeys.h>

Therefore, none of these files ever need to be included by your application, as long as you
include <Xm/Xm.h>. Since <Xm/Xm.h> is included by each widget header ?le, you do not
need to include it directly either. If you look closely at the code, you’ll see that just about
every necessary header ?le is included the moment you include your widget header ?le.
This method of using header files contrasts with the way other Xt-based toolkits, like the
Athena toolkit or the OPEN LOOK Intrinsics Toolkit (OLIT), use header files.

The Motif toolkit provides a new header ?le, <Xm/XmAll.h>, that simply includes all of the
public header files.

Motif Programming Manual 19

Chapter 2: Motif Programming Model

We recommend that you not duplicate the inclusion of header files. One reason is that if
you include only the header files that you need, whoever has to maintain your code can see
which widgets you are dealing with in your source files. Another reason is that duplicating
header file is generally bad practice, as you run the risk of redeclaring macros, functions,
and variables.

However, it isn’t always easy to prevent multiple inclusions. For example, <Xm/Xm.h> is
included by each widget header ?le that you include. All of the Motif, Xt and X header files
are protected from multiple inclusion using a technique called ifdef-wrapping. We
recommend that you use this method in your own header files as well. The ifdef-wrapper
for <X11/Intrinsic.h> is written as follows:

#ifndef _XtIntrinsic_h
#define _XtIntrinsic_h
/* Include whatever is necessary for the file... */
#endif /* _XtIntrinsic_h */

The wrapper defines _XtIntrinsic_h when a ?le is first included. If the ?le is ever
included again during the course of compiling the same source (.c) ?le, the #ifdef
prevents anything from being redeclared or redefined.

Of course, the wrapper prevents multiple inclusion only within a single source ?le; the next
source ?le that gets compiled goes through the same test. If the same files are included, the
same macros, data types, and functions are declared again for the benefit of the new ?le.
For this reason, you should never write functions in a header ?le, since it would be
equivalent to having the same function exist in every source ?le. Function declarations,
however, are acceptable and expected.

In addition to the widget header files, you will most likely need other include files specific
to your application, such as <stdio.h> or <ctype.h>.

The order of inclusion is generally not important unless certain types or declarations
required by one ?le are declared in another. In this case, you should include the files in the
necessary order. Otherwise, application-specific header files are usually included first,
followed by UI-specific header files (with Xt header files, if any, preceding Motif header
files), followed by system-specific header files.

Setting the Language Procedure
For Release 5 of the X Window System, the X Toolkit was modified to better support
internationalization. An internationalized application retrieves the user’s language (called
a locale) from the environment or a resource ?le and operates in that language without
changes to the binary. An internationalized application must display all of its text in the
user’s language and accept textual input in that same language. It must also display dates,
times, and numbers in the appropriate format for the language environment.

Chapter 2: Motif Programming Model

20 Motif Programming Manual

X internationalization is based on the ANSI-C internationalization model. This approach is
based on the concept of localization, whereby an application uses a library that reads a
customizing database at start-up time. This database contains information about the
characteristics of every locale that is supported by the system. When an application
establishes its locale by calling setlocale() , the library customizes the behavior of
various routines based on the locale. See the Third Edition of Volume 1, Xlib Programming
Manual, for a complete description of the concepts and implementation of X
internationalization.

Xt support of internationalization is trivial in most applications; the only additional code
needed is a call to XtSetLanguageProc() before the toolkit is initialized.
XtSetLanguageProc() sets the language procedure that is used to set the locale of an
application. The first argument to the routine speci?es an application context, the second
argument speci?es the language procedure, and the third parameter speci?es additional data
that is passed to the language procedure when it is called. Since the language procedure is
responsible for setting the locale, an Xt application does not call setlocale() directly.
The language procedure is called by XtDisplayInitialize() .

If the second argument to XtSetLanguageProc() is NULL, the routine registers a default
language procedure. Here’s the call that we used in Example 2-1 to set the default language
procedure:

XtSetLanguageProc (NULL, NULL, NULL);

The default language procedure sets the locale according to the LANG environment
variable, verifies that the current locale is supported, and returns the value of the current
locale. For more information about establishing the locale in an Xt application, see Volume
4, X Toolkit Intrinsics Programming Manual.

Most of the support for internationalization in Motif is provided by Xlib and Xt. Xlib
provides support for internationalized text output, interclient communication, and
localization of the resource database, while Xt handles establishing the locale. The Motif
Text and TextField widgets have been modified to support internationalized text input and
output; see Chapter 18, Text Widget Internationalization, for more information. The Motif
routines that work with compound strings and render tables* have also been updated in
Motif 2.1. See Chapter 24, Render Tables, and Chapter 25, Compound Strings, for details
on the new API for XmString and XmRenderTable values.

Initializing the Toolkit
Before an application creates any widgets, it must initialize the toolkit. There are many
ways to perform this task, most of which also perform a number of related tasks, such as

* The XmFontList is obsolete in Motif 2.0 and later, and is replaced by the XmRenderTable .

Motif Programming Manual 21

Chapter 2: Motif Programming Model

opening a connection to the X server and loading the resource database. Here’s a list of
some of the things that are almost always done:

• Open the application’s connection to the X server.

• Parse the command line for the standard X Toolkit command-line options plus any
custom command-line options that have been defined for the application.

• Create the resource database using the app-defaults ?le, if any, as well as any user, host,
and locale-specific resource files.

• Create the application’s top-level window, a Shell class widget that handles interaction
with the window manager and acts as the parent of all of the other widgets in the
application.

There are several functions available to perform toolkit initialization. The one we use
throughout is XtVaOpenApplication() * , since it performs all of the functions listed
above in one convenient call. Here’s the call we used in Example 2-1:

Widget toplevel;
XtAppContext app;

toplevel = XtVaOpenApplication (&app, "Hello", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

The widget returned by XtVaOpenApplication() is a shell widget. The shell widget
acts as the top-level window of the application and handles the application’s interaction
with the window manager. The SessionShell widget class which we will use for the top
level also interacts with the X11R6 Session Management facilities. All of the other widgets
created by the application are created as descendents of the shell, of which we’ll talk more
later in this chapter.

The Application Context

The first argument to XtVaOpenApplication() is the address of an application context,
which is a structure that Xt uses to manage some internal data associated with an
application. Most applications do not manipulate the application context directly. Most
often, an application receives an opaque pointer to an application context in the toolkit
initialization call and merely passes that pointer to a few other toolkit functions that require
it as an argument. The fact that the application context is a public variable, rather than
hidden in the toolkit internals, is a forward-looking feature of Xt, designed to support
multiple threads of control.

The X11R5 initialization call XtVaAppInitialize() is still supported by later versions
of the toolkit. Its use is discouraged because the new initialization calls provide a greater
degree of upward compatibility with future Xt-based applications.

* XtVaAppInitialize () is considered deprecated in X11R6. XtVaOpenApplication () and the SessionShell
widget class are only availble in X11R6.

Chapter 2: Motif Programming Model

22 Motif Programming Manual

The Application Class

The second argument to XtVaOpenApplication() is a string that defines the class
name of the application. A class name is used in resource files to specify resource values
that apply to all instances of an application, a widget, or a resource. (See Volume 3, X
Window System User’s Guide, and Volume 4, X Toolkit Intrinsics Programming Manual,
for details.) For many applications, the application class is rarely used and the class name
is important only because it is also used as the name of the application’s app-defaults ?le.

Whenever a widget is created in Xt, its resources must have certain initial (or default)
values. You can either hard-code the values, allow them to default to widget-defined
values, or specify the default values in the app-defaults ?le. These default values are used
unless the user has provided his own default settings in another resource ?le.

By convention, the class name is the same as the name of the application itself, except that
the first letter is capitalized.* For example, a program named draw would have a class name
of Draw and an app-defaults filename of /usr/X11R6/lib/app-defaults/Draw. Note,
however, that there is no requirement that an app-defaults ?le with this name actually be
installed.

Exceptions can be made to this convention, as long as you document it. For example, all
the example programs in this book have the class name of Demos, which allows us to set
certain common defaults in a single ?le. This technique can be useful whenever you have a
large collection of independent programs that are part of the same suite of applications.

Command-line Arguments

The third and fourth arguments specify an array of objects that describe the command-line
arguments for your program, if any, and the number of arguments in the array. These
arguments are unused in most of the examples in this book and are specified as NULL and
0, respectively. The program xshowbitmap.c in the Appendix A, Additional Example
Programs, provides an example of using command-line arguments. See Volume 4, X
Toolkit Intrinsics Programming Manual, for a more complete discussion of application-
specific command-line arguments.

The fifth and sixth arguments contain the value (argv) and count (argc) of any actual
command-line arguments. The initialization call actually removes and acts on any
arguments it recognizes, such as the standard X Toolkit command-line options and any
options that you have defined in the third argument. After this call, argv should contain
only the application name and any expected arguments such as filenames. You may want
to check the argument count at this point and issue an error message if any spurious
arguments are found.

* Some applications follow the convention that if the application’s name begins with an “X”, the X is silent and
so the second letter is capitalized as well. For example, the class name of xterm is XTerm.

Motif Programming Manual 23

Chapter 2: Motif Programming Model

Fallback Resources

The seventh argument is the start of a NULL-terminated list of fallback resources for the
shell widget created by the initialization call. Fallback resources provide a kind of “belt and
suspenders” protection against the possibility that an app-defaults ?le is not installed. They
are ignored if the app-defaults ?le or any other explicit resource settings are found. When
no fallback resources are specified, the seventh argument should be NULL.

It is generally a good idea to provide fallbacks for resources that are essential to the
operation of your application. An example of how fallback resources can be used by an
application is shown in the following code fragment:

String fallbacks[] =
{

"Demos*background: white",
"Demos*XmText.foreground: black",
/* list the rest of the app-defaults resources here... */
NULL

};
...
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, fallbacks,

sessionShellWidgetClass, NULL); *

...

Fallback resources protect your application against a missing app-defaults ?le, but they do
not guard against one that is modified incorrectly or otherwise corrupted, since they are not
used if the app-defaults ?le is present in any form. A better fallback mechanism would
provide protection against these types of problems. Fortunately, there is the function
XrmCombineDatabases() , that allows you to provide real fallbacks in case the user or
the system administrator misconfigures the app-defaults ?le.

The Top Level Shell Class

The eighth parameter specifies the type of shell to be used for the top level. It is
recommended that this is the sessionShellWidgetclass , which is derived from the
applicationShellWidgetClass †. We are not actually using any of the features of the
X11R6 SessionShell in the examples, however we will use the SessionShell in order to
conform to the recommendations.

Additional Initialization Parameters

The ninth parameter is the start of a NULL-terminated list of resource/value pairs that are
applied to the top-level widget returned by XtVaOpenApplication() . If there are no
resource settings, which is often the case for this function, you can pass NULL as the ninth
parameter. If you do pass any parameters, it should be done just as we describe for

* XtVaAppInitialize () is deprecated in X11R6.

† The ApplicationShell is considered obsolete in X11R6. The SessionShell is only availble in X11R6.

Chapter 2: Motif Programming Model

24 Motif Programming Manual

XtVaCreateWidget() later in this chapter. All of the functions whose names begin with
XtVa support the same type of varargs-style (variadic) argument lists.

The X11 Release 6 implementation of XtVaOpenApplication() and other varargs
functions may not work entirely as expected for some non-ANSI-C compilers due to a bug
in the way that Xt declares variadic functions. This problem only arises for some compilers
that do not understand function prototypes. The problem is rare since it is compiler-
dependent and it only happens on older compilers. It is not a compiler error but an Xt error,
since functions are not supposed to mix fixed parameter declarations with variadic
declarations. XtVaOpenApplication() mixes these declarations; the first eight
parameters are fixed while the ninth through nth arguments are variadic. ANSI-C allows,
and even requires, this type of specification.

If you experience problems such as segmentation faults or bus errors as a result of using
XtVaOpenApplication() , you can try passing an extra NULL parameter after the final
NULL. Another option is to use XtOpenApplication() , which is identical to
XtVaOpenApplication() , but does not contain a variable argument list of resource/
values pairs. Instead, it uses the non-variadic args and num_args method of specifying
resource values, which we describe later in this chapter.

Creating Widgets
There is a convenience function for creating every class of widget and gadget supported by
the Motif toolkit. For example, to create a PushButton widget, you can use the function
XmCreatePushButton() . To create the corresponding gadget, you can use
XmCreatePushButtonGadget() . In addition, there are convenience functions for
creating compound objects. A compound object is a collection of widgets that is treated like
a single object. For example, a ScrolledList object is really a List widget inside a
ScrolledWindow widget. XmCreateScrolledList() creates the compound object
consisting of both widgets.

The convenience functions for creating all of the different types of widgets are described
in Volume 6B, Motif Reference Manual. In addition to the convenience routines, the Xt
Intrinsics also define generic routines which can be used to create arbitrary widget
instances, namely XtVaCreateWidget() and XtVaCreateManagedWidget() . These
functions allow you to decide whether to create a widget as managed or unmanaged, while
the Motif convenience functions always create unmanaged widgets. The Xt routines also
allow you to set resources for a widget using the varargs interface, which can often be more
convenient than the args and num_args method used by the Motif creation routines.

X nests windows using a parent-child model. A display screen is defined as the root
window; every application has a top-level window that is a child of the root window. A top-
level window in turn has subwindows, which overlay it but cannot extend beyond its
boundaries. If a window extends beyond the boundaries of its parent, it is clipped.

Motif Programming Manual 25

Chapter 2: Motif Programming Model

Because every widget has its own X window, widgets follow a similar parent-child model.
Whenever a widget is created, it is created as the child of another widget. The shell widget
returned by the call to XtVaOpenApplication() is the top-level widget of an
application. It is usually overlaid with a special class of widget called a manager widget,
which implements rules for controlling the size and placement of widget children. For
example, the Motif RowColumn widget is a manager that allows widgets to be laid out in
regular rows and columns, while the Form widget is a manager that allows widgets to be
placed at precise positions relative to one another. A manager widget can contain other
manager widgets as well as primitive widgets, which are used to implement actual user-
interface controls. Managers also support gadgets. A gadget is a lighter-weight object that
is identical to its corresponding widget in general functionality, but does not have its own
window.

In Example 2-1,the button was created as a child of the top-level shell window.This simple
application contains only one visible widget, so it does not use a manager. Actually, shells
are extremely simple managers. A shell can only have one child; the shell makes itself
exactly the same size as the child so the shell remains invisible behind the child. Here’s the
call we used to create the button:

button = XmCreatePushButton (toplevel, "pushme", args, 1);

The first argument is the parent of the widget, which must be a manager widget that has
already been created. In this example, the parent of the PushButton widget is toplevel, the
shell widget returned by the call to XtVaOpenApplication ().

The second argument is a string that is used as the name of the widget in the resource
database. If a user wants to specify the color of the button label for the application, she can
use the following specification in a resource ?le:

hello.pushme.foreground: blue

The name is different from the variable name that is used to refer to the widget in
application code. The following resource specification is not correct:

hello.button.foreground: blue

The resource name does not need to be identical to the variable name given to the widget
inside the program, though to minimize confusion, many programmers make the two
names the same. If you want users to be able to configure widget resources, be sure to
include the names of the widgets in your documentation.

The remainder of the argument list is an array of resource settings, followed by the number
of items in this array. We’ll talk about the format of these resource settings in the next
section.

Chapter 2: Motif Programming Model

26 Motif Programming Manual

Setting and Getting Widget Resources
A widget class defines resources of its own and it inherits resources from its superclasses.
The names of the resources provided by each widget class (new and inherited) are
documented in the widget reference pages in Volume 6B, Motif Reference Manual. The
most useful resources are described in detail in the individual chapters on each of the Motif
widget classes.

When resources are set in a program, each resource name begins with the prefix XmN. These
names are mnemonic constants that correspond to actual C strings that have the same name
without the XmN prefix. For example, the actual resource name associated with
XmNlabelString is labelString . The XmN identifies the resource as being Motif-
related. Motif also uses the XmC prefix to identify resource class symbols. Xt uses the
prefix XtN for any resources defined by its base widget classes. Motif also provides
corresponding XmN names for most of these resources.* When you are specifying resources
in a resource ?le or when you are using the -xrm option to specify resources on the
command line, omit the XmN prefix.

The main purpose of the constant definitions for resource names is to allow the C
preprocessor to catch spelling errors. If you use the string width rather than the constant
XmNwidth , the program still works. However, if you type widdth , the compiler happily
compiles the application, but your program won’t work and you’ll have a difficult time
trying to figure out why. Because resource names are strings, there is no way for Xt or Motif
to report an error when an unknown resource name is encountered. On the other hand, if
you use XmNwiddth , then the compiler complains that the token is an undefined variable.

Setting Resources During Widget Creation

The Motif convenience functions, as well as the Xt functions XtCreateWidget() and
XtCreateManagedWidget() , require you to declare resource settings in an array. You
pass this array to the function, along with the number of items in the array. By contrast, the
varargs-style functions in Xt allow you to specify resources directly in a creation call, as a
NULL-terminated list of resource/value pairs.

As an example, in the call to XmCreatePushButton() in hello.c, the only resource set
was the string displayed as the PushButton’s label, and this was passed to the creation
routine in the Arg array args. Alternatively, a variable length list of resources could have
been set in the same call using the Xt mechanisms, as shown in the following code:

button = XtVaCreateWidget ("pushme", xmPushButtonWidgetClass,toplevel,
XmNlabelString, label, XmNwidth, 200, XmNheight, 50, NULL);

* Some toolkits use the XtN prefix, even though its resource are not common to all Xt toolkits. If you need access
to an Xt-based resource that does not have a corresponding XmN constant, you need to include the ?le <X11/
StringDefs.h>.

Motif Programming Manual 27

Chapter 2: Motif Programming Model

These settings specify that the widget is 200 pixels wide by 50 pixels high, rather than its
default size, which would be just big enough to display its label.

When you set resources in the creation call for the widget, those resources can no longer be
configured by the user. Such resources are said to be hard-coded. For example, since we’ve
set the width and height of the PushButton in the call to XtVaCreateManagedWidget() ,
a user resource specification of the following form is ignored:

*pushme.width: 250
*pushme.height: 100

It is recommended that you hard-code only those resource values that are absolutely
required by your program. Most widgets have reasonable default values for their resources.
If you need to modify the default values, specify the necessary resource values in an app-
defaults ?le, instead of in the application code.

Every resource has a data type that is specified by the widget class defining the resource.
When a resource is specified in a resource ?le, Xt automatically converts the resource value
from a string to the appropriate type. However, when you set a resource in your program,
you must specify the value as the appropriate type. For example, the Motif PushButton
widget expects its label to be a compound string (see Chapter 25, Compound Strings), so
we create a compound string, use it to specify the resource value, and free it when we were
done.

Rather than specifying a value of the appropriate type, you can invoke Xt’s resource
converters in a varargs list using the keyword XtVaTypedArg , followed by four additional
parameters: the resource name, the type of value you are providing, the value itself, and the
size of the value in bytes. Xt figures out the type of value that is needed and performs the
necessary conversion. For example, to specify the background color of the button directly
in our program without calling an Xlib routine to allocate a colormap entry, we can use the
following code:

button = XtVaCreateManagedWidget ("pushme", xmPushButtonWidgetClass, toplevel,
XmNlabelString, label,XtVaTypedArg, XmNbackground, XmRString,
"red", strlen ("red") + 1, NULL);

The data type in this construct is specified using a special symbol called a representation
type, rather than the C type. An XmR prefix identifies the symbol as a representation type.
See Volume 4, X Toolkit Intrinsics Programming Manual, for more information on
resource type conversion and the possible values for representation types. These symbols
are defined in the same way as the XmN symbols that are used for resource names.

Setting Resources After Widget Creation

After a widget has been created, you can set resources for it using XtVaSetValues() .
The values set by this function override any values that are set either in the widget creation
call or in a resource ?le. The syntax for using XtVaSetValues() is:

Chapter 2: Motif Programming Model

28 Motif Programming Manual

XtVaSetValues (widget_id, resource-value-list , NULL);

The widget_id is the value returned from a widget creation call, and resource-value-
list is a NULL-terminated list of resource/value pairs.

Some Motif widget classes also provide convenience routines for setting certain resources.
For example, XmToggleButtonSetState() sets the XmNset resource of a
ToggleButton. The available convenience functions are described in Volume 6B, Motif
Reference Manual, and in the chapters on each widget class in this book. A convenience
function has direct access to the internal fields in a widget’s data structures, so it might have
slightly better performance than XtVaSetValues() . Functionally, however, the two
methods are generally freely interchangeable.

Getting Resource Values

The routine used to get widget resource values is XtVaGetValues(). The syntax of this
routine is exactly the same as XtVaSetValues() , except that the value part of the
resource/value pair is the address of a variable that stores the resource value. For example,
the following code gets the label string and the width for a Label widget:

extern Widget label;
XmString str;
Dimension width;
...
XtVaGetValues (label, XmNlabelString, &str, XmNwidth, &width, NULL);

Notice that the value for XmNlabelString is an XmString , which is a Motif compound
string. Almost all of the Motif widget resources that specify textual information use
compound strings rather than regular character strings. The XmNvalue and XmNvalueWcs
resources for Text and TextField widgets are the only exceptions to this policy. When you
are retrieving a string resource from a widget, make sure that you pass the address of a
compound string, not a character string, as in the following incorrect example:

extern Widget label;
char *buf;
Dimension width;
...
XtVaGetValues (label, XmNlabelString, &buf, /* do not do this */ XmNwidth,

&width, NULL);

If you try to get a compound string resource value with a character string variable, the
program still works, but the value of the character string is meaningless. The correct way
to handle a compound string resource is to retrieve it with an XmString variable and then
get the character string from the compound string using XmStringUnparse() . See
Chapter 25, Compound Strings, for more information.

There are some things to be careful about when you are getting resource values from a
widget. First, always pass the address of the variable that is being used to store the retrieved
value. A value represented by a pointer is not copied into the address space. Instead, the

Motif Programming Manual 29

Chapter 2: Motif Programming Model

routine sets the value for the address of the pointer to the position of the internal variable
that contains the desired value. If you pass an array, rather than a pointer to the array, the
routine cannot move its address. If you pass the address of a pointer, XtVaGetValues()
is able to reset the pointer to the correct internal value.* For values that are not represented
by pointers, such as integers, the value is simply copied. For example, the width value is
an int , so the resource value is copied into the variable.

You should also be careful about changing the value of a variable returned by
XtVaGetValues() . In the case of a variable that is not a pointer, the value can be changed
because the variable contains a copy of the value and does not point to internal data for the
widget. However, if the variable is a pointer to a string or a data structure, it does point to
internal data for the widget. If you dereference the pointer and change the resulting value,
you are changing the internal contents of the widget. This technique should not be used to
change the value of a resource. To modify a resource value, you should use
XtVaSetValues() with a defined resource name, as this routine ensures that the widget
redraws and manages itself appropriately.

Motif also provides convenience routines for getting certain resource values from particular
widget classes. Most of these functions correspond to the convenience routines for setting
resource values. Many of the functions allocate memory for the value that is returned. For
example, XmTextGetString() allocates space for and returns a pointer to the text in a
Text widget. When a convenience function for retrieving a resource value is available, we
generally recommend using it.

Using Argument Lists

The Motif convenience functions, and some Xt functions like XtCreateWidget() and
XtCreateManagedWidget() , require you to set resources using a separately-declared
array of objects of type Arg . You pass this array to the appropriate function along with the
number of items in the array.

For example, the following code fragment creates a Label widget using a Motif
convenience routine:

Arg args[2];
int n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
label = XmCreateLabel (toplevel, "label", args, n);
XtManageChild (label);

For all of the Motif convenience routines, the first argument is the parent of the widget
being created, the second argument is the widget’s name, and the third and fourth

* The Motif toolkit sometimes sets the given address to allocated data, which must be freed when it is no longer
needed. This situation occurs when a compound string resource is retrieved from a widget and when the text
value of a Text widget is retrieved. These cases are discussed in Chapter 18, Text Widgets, and Chapter 25,
Compound Strings.

Chapter 2: Motif Programming Model

30 Motif Programming Manual

arguments are the array of resource specifications and the number of resources in the array.
Since the class of the widget being created is reflected in the name of the convenience
function, it does not need to be specified as an argument to the routine. For example,
XmCreateLabel() creates a Label widget, while XmCreatePushButton() creates a
PushButton widget.

Xt also provides some generic widget creation functions that use the non-variadic argument
lists for specifying widget resources. The following code fragment shows the use of
XtCreateWidget() :

Arg args[5];
int n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
label = XtCreateWidget ("label", xmLabelWidgetClass, toplevel, args, n);
XtManageChild (label);

With this routine, the name of the widget is the first parameter, the widget class is the
second parameter, and the parent is the third parameter. The fourth and fifth parameters
specify the resources, as in the Motif convenience routines. Functionally, in this instance
the two methods of widget creation are logically identical, and it simply boils down to a
question of personal taste. In examples, we will prefer the Motif creation routines, if only
because this is a Motif and not an Xt manual.

The argument-list style of setting resources is a touch clumsy and error-prone, since it
requires you to declare an array (either locally or statically) and to make sure that it has
enough elements. It is a common programming mistake to forget to increase the size of the
array when new resource/value pairs are added; this error usually results in a segmentation
fault.

In spite of the disadvantages of this method of setting resources, there are still cases where
the convenience routines are logically preferred (as opposed to purely stylistic
considerations). One such case is when the routine creates several widgets and arranges
them in a predefined way consistent with the Motif Style Guide. The argument-list style
functions also can be useful when you have different resources that should be set depending
on run-time constraints. For example, the following code fragment creates a widget whose
foreground color is set only if the application knows it is using a color display:

extern Widget parent;
Arg args[5];
Pixel red;
int n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
if (using_color) {

XtSetArg (args[n], XmNforeground, red); n++;
}
...
widget = XmCreatePushButton (parent, "name", args, n);

Motif Programming Manual 31

Chapter 2: Motif Programming Model

The non-variadic routines also allow you to pass the exact same set of resources to more
than one widget. Since the contents are unchanged, you can reuse the array for as long as it
is still available. Be careful of scoping problems, such as using a local variable outside of
the function where it is declared. The following code fragment creates a number of widgets
that all have the same hard-coded resources:

static char *labels[] = { "A Label", "Another Label", "Yet a third" };
XmString label;
Widget widget, rc;
Arg args[3];
int i, n = 0;

/* Create an unmanaged RowColumn widget parent */
rc = XmCreateRowColumn (parent, "rc", NULL, 0);

/* Create RowColumn's children -- all 50x50 with different labels */
XtSetArg (args[n], XmNwidth, 50); n++;
XtSetArg (args[n], XmNheight, 50); n++;

for (i = 0; i < XtNumber (labels); i++) {
xm_label = XmStringCreateLocalized (labels[i]);
XtSetArg (args[n], XmNlabelString, xm_label);
widget = XmCreateLabel (rc, "label", args, n + 1);
XtManageChild (widget);
XmStringFree (xm_label);

}
/* Now that all the children are created, manage RowColumn */
XtManageChild (rc);

Each Label widget is created with the same width and height resource settings, while each
XmNlabelString resource is distinct. All other resource settings for the widgets can be
set in a resource ?le.

To set resources in a resource ?le, you need to specify the names of the widgets, which in
this case are all set to label. It is perfectly legal to give the same name to more than one
widget. As a result, a resource specification in a resource ?le that uses a particular name
affects all of the widgets with that name, provided that the widget tree matches the resource
specification. For example, you could set the foreground color of all of the Labels using the
following resource specification:

*rc.label.foreground: red

Other widgets in the application that have the widget name label, but are not children of the
widget named rc, are not affected by this specification. Obviously, whether you really want
to use the same name for a number of widgets is dependent on your application. This
technique makes it easier to maintain a consistent interface, but it also limits the extent to
which the application can be customized.

We could have used the elements of the labels array as widget names, but in this
example, these strings contain spaces, which are “illegal” widget names. If you want to

Chapter 2: Motif Programming Model

32 Motif Programming Manual

allow the user to specify resources on a per-widget basis, you cannot use spaces or other
non-alphanumeric characters, except the hyphen (-) and the underscore(_), in widget
names. If per-widget resource specification is not a concern, you can use any widget name
you like, including NULL or the null string ("").

Even if a widget has an illegal name, the user can still specify resources for it using the
widget class, as in the following example:

*rc.XmLabel.foreground: red

This resource setting causes each Label widget to have a foreground color of red, regardless
of the name of the widget (and provided that the resource value is not hard-coded for the
widget). See Volume 4, X Toolkit Intrinsics Programming Manual, for a discussion of
appropriate widget names and further details on resource specification syntax.

Event Handling for Widgets
Once we have created and configured the widgets for an application, they must be hooked
up to application functions via callback resources. Before we can talk about callback
resources and callback functions, we need to discuss events and event handling. In one
sense, the essence of X programming is the handling of asynchronous events. Events can
occur in any order, in any window, as the user moves the pointer, switches between the
mouse and the keyboard, moves and resizes windows, and invokes functions available
through user interface components. X handles events by dispatching them to the
appropriate application and to the separate windows that make up each application.

Xlib provides many low-level functions for handling events. In special cases, which are
described later in this book, you may need to dip down to this level to handle events.
However, Xt simplifies event handling by having widgets handle many events for you,
without any application interaction. For example, widgets know how to redraw themselves,
so they respond automatically to Expose events, which are generated when one window is
covered up by another and then uncovered. These “widget survival skills” are handled by
functions called methods deep in the widget internals. Some typical methods redraw the
widget, respond to changes in resource settings that result from calls to
XtVaSetValues() , and free any allocated storage when the widget is destroyed.

The functionality of a widget also encompasses its behavior in response to user events. This
type of functionality is typically handled by action routines. Each widget defines a table of
events, called a translation table, to which it responds. The translation table maps each
event, or sequence of events, to one or more actions.

Consider the PushButton in hello.c. Run the program and note how the widget highlights
its border as the pointer moves into it, displays in reverse-video when you click on it, and
switches back when you release the button. Watch how the highlighting disappears when
you move the pointer out of the widget. Also, notice how pressing the SPACEBAR while

Motif Programming Manual 33

Chapter 2: Motif Programming Model

the pointer is in the widget has the same effect as clicking on it. These behaviors are the
kinds of things that are captured in the widget’s translation table:

<Btn1Down>: Arm()
<Btn1Down>, <Btn1Up>: Activate() Disarm()
<Btn1Down>(2+): MultiArm()
<Btn1Up>(2+): MultiActivate()
<Btn1Up>: Activate() Disarm()
<Btn2Down>: ProcessDrag()
<Key>osfSelect: ArmAndActivate()
<Key>osfActivate: PrimitiveParentActivate()
<Key>osfCancel: PrimitiveParentCancel()
<Key>osfHelp: Help()
~Shift ~Meta ~Alt <Key>Return: PrimitiveParentActivate()
~Shift ~Meta ~Alt <Key>space: ArmAndActivate()
<EnterWindow>: Enter()
<LeaveWindow>: Leave()

The translation table contains a list of event translations on the left side, with a set of action
functions on the right side. When an event specified on the left occurs, the action routine
on the right is invoked. As we just described, moving the pointer in and out of the
PushButton causes some visual feedback. The EnterWindow and LeaveWindow events
generated by the pointer motion cause the Enter() and Leave() actions to be invoked.

As another example, when the first mouse button is pressed down inside the PushButton,
the Arm() action routine is called. This routine contains the code that displays the button
as if it were “pushed in,” as opposed to “pushed out.” When the mouse button is released,
both the Activate() and Disarm() routines are invoked in that order. Here is where
your application actually steps in. If you have provided an appropriate callback function,
the Activate() action calls it. The Disarm() routine causes the button to be redrawn so
that it appears “pushed out” again.

Event Specification

In the Xt syntax, events are specified using symbols that are tied fairly closely to pure X
hardware events, such as ButtonPress or EnterWindow. For example, <Btn1Down>
speci?es a button press for the first mouse button. KeyPress events are indicated by
symbols called keysyms, which are hardware-independent symbols that represent
individual keystrokes. Different keyboards may produce different hardware keycodes for
the same key; the X server uses keysyms as a portable representation, based on the common
labels found on the tops of keys.

Motif provides a further level of indirection in the form of virtual keysyms, which describe
key events in a completely device-independent manner. For example, osfActivate
indicates that the user invoked an action that Motif considers to be an activating action. An
activating action typically corresponds to the RETURN key being pressed or the left mouse
button being clicked. Similarly, osfHelp corresponds to a user request for help, such as
the HELP or F1 key being pressed.

Chapter 2: Motif Programming Model

34 Motif Programming Manual

Virtual keysyms are supposed to be provided by the vendor of the user’s hardware, based
on the keys on the keyboard, but some X vendors also provide keysym databases to support
multiple keyboards. The X Consortium provides a virtual keysym database in the ?le /usr/
X11R6/lib/XKeysymDB. This ?le contains a number of predefined key bindings that OSF
has registered with the X Consortium to support actions in the Motif toolkit.

Virtual keysyms can be invoked by physical events, but the Motif toolkit goes one step
further and defines them in the form of virtual bindings. Here’s the translation table for the
PushButton widget expressed using virtual bindings:

BSelect Press: Arm()
BSelect Click Activate() Disarm()
BSelect Release: Activate() Disarm()
BSelect Press 2+: MultiArm()
BSelect Release 2+: MultiActivate() Disarm()
BTranserPress: ProcessDrag()
KSelect: ArmAndActivate()
KHelp: Help()

Examples of virtual bindings are BSelect , which corresponds to the first mouse button,
and KHelp , which is usually the HELP key on the keyboard. The rule of thumb is that any
virtual binding beginning with a “B” corresponds to a mouse button event, while any
binding beginning with a “K” corresponds to a keyboard event. More than one event can
be bound to a single virtual keysym. For example, the Motif Style Guide permits F1 to be a
help key, so that key is also virtually bound to KHelp .

Virtual bindings can be specified by a system administrator, a user, or an application. One
common use of virtual bindings is to reconfigure the operation of the BACKSPACE and
DELETE keys. On some keyboards, the BACKSPACE key is in a particularly difficult
location for frequent access. Users of this type of keyboard may prefer to use the DELETE
key for backspacing. These people may find the default operation of the Motif Text widget
annoying, since it does not allow them to backspace using their “normal” backspace key.

Since Xt allows applications and users to override, augment, or replace translation tables,
many people familiar with Xt try to specify a new translation for the DELETE key to make
it act like a backspace. The translation invokes the action routine that backspaces in a Text
widget. However, this approach is limited, in that it only works for a single Text widget.
The Text widget has the following translation:

<Key>osfBackSpace: delete-previous-char()

The virtual keysym osfBackSpace is bound to delete-previous-char() , which is
the backspace action. Rather than changing the translation table to specify that <Key>
Delete should invoke this action, a user can redefine the virtual binding of the
osfBackSpace keysym. A user can configure his own bindings by specifying the new
virtual keysym bindings in a .motifbind ?le in his home directory. The following virtual
binding speci?es that the DELETE key is mapped to osfBackSpace :

Motif Programming Manual 35

Chapter 2: Motif Programming Model

osfBackSpace: <Key>Delete

As a result of this specification, the DELETE key performs the backspace action in the Text
widget, as well as any other widgets in the Motif toolkit that use the osfBackSpace
keysym. The advantage of using virtual bindings is that the interface remains consistent and
nothing in the toolkit or the application needs to change.

Virtual keysym bindings can also be set in a resource ?le, using the
XmNdefaultVirtualBindings resource. The resource can be specified for all
applications or on a per-application basis. To map the DELETE key to osfBackSpace ,
use the following specification:

*defaultVirtualBindings: \
osfBackSpace: <Key>Delete \n\
other bindings

The only difference between the syntax for the resource specification and for the .motifbind
?le is that the resource specification must have a newline character (\n) between each
entry. The complete syntax of Motif virtual bindings is explained in Volume 6B, Motif
Reference Manual.

Motif a client, xmbind, that configures the virtual key bindings for Motif applications. This
action is performed by the Motif Window Manager (mwm) or any application that uses the
Motif toolkit at startup, so you really only need to use xmbind if you want to reconfigure
the bindings without restarting mwm or a Motif application. Motif also provides a function,
XmTranslateKey() , to translate a keycode into a virtual keysym. This function allows
applications that override the default XtKeyProc to handle Motif’s virtual key bindings.

Callbacks

Translations and actions allow a widget class to define associations between events and
widget functions. A complex widget, such as the Motif Text widget, is almost an
application in itself, since its actions provide a complete set of editing functions. But
beyond a certain point, a widget is helpless unless control is passed from the widget to the
application. A widget that expects to call application functions defines one or more callback
resources, which are the hooks on which an application can hang its functions. For
example, the PushButton widget defines the XmNactivateCallback ,
XmNarmCallback , and XmNdisarmCallback callback resources.

It is no accident that the callback resource names bear a resemblance to the names of widget
action routines. In addition to highlighting the widget, the action routines call any
application functions associated with the callbacks of the same name. There is no reason
why a callback has to be called by an action; a widget could install a low-level event handler
to perform the same task. However, this convention is followed by most widgets.

Figure 2-3 illustrates the event-handling path that results in an application callback being
invoked. The widget’s translation table registers the widget’s interest in a particular type of

Chapter 2: Motif Programming Model

36 Motif Programming Manual

event. When Xt receives an event that happened in the widget’s window, it tests the event
against the translation table. If there is no match, the event is thrown away. If there is a
match, the event is passed to the widget and an action routine is invoked. The action routine
may perform a function internal to the widget, such as changing the widget’s appearance
by highlighting it. Depending on the design of the widget, the action routine may then pass
control to an application callback function. If the action is associated with a callback
resource, it checks to see if a callback function has been registered for that resource, and if
so, it dispatches the callback.

There are several ways to connect an application function to a callback resource. The most
common is to call XtAddCallback() , as demonstrated in hello.c:

void button_pushed(Widget, XtPointer, XtPointer);
...
XtAddCallback (button, XmNactivateCallback, button_pushed, NULL);

The first argument speci?es the widget for which the callback is installed. The second
parameter is the name of the callback resource, while the third is a pointer to the callback
function. The fourth argument is referred to as client data. If this parameter is specified, its
value is passed to the callback function when it is called. Here, the client data is NULL.

The client data can be a value of any type that has the same size as an XtPointer .An
XtPointer is usually the same as a char pointer; it is typically represented by a 32-bit
value. You can pass pointers to variables, data structures, and arrays as client data. You
cannot pass actual data structures; the result of passing a data structure is undefined. You
can pass variables of type int or char , but understand that you are passing the data by
value, not by reference. If you want to pass a variable so that the callback routine can
change its value, you must pass the address of the variable. In this case, you need to make
sure that the variable is global, rather than local, since a local variable loses its scope
outside of the routine that calls XtAddCallback() .

The callback function itself is passed the widget, the client data, if any, and a third argument
that is referred to as call data. The signature of a callback function can be expressed in one
of two ways: using an ANSI-compliant function prototype or using the older style
conventions of K&R C. The ANSI-style function declaration is as follows:

void button_pushed (Widget widget, XtPointer client_data, XtPointer call_data)

Motif Programming Manual 37

Chapter 2: Motif Programming Model

In the strictest sense, declaring the types of the parameters to the function is the proper way
to handle function declarations and signatures. While this convention is good style and

Figure 2-3: Event handling using action routines and callbacks

X Toolkit Intrinsics
Event Loop

Action routine
Callback

Registered?

Callback function

Does event

translations?

Widget

Application

Xt Intrinsics

match widget’s

User presses Button 1

Determine the widget
the event occurred in

Yes

No

No

Yes

Chapter 2: Motif Programming Model

38 Motif Programming Manual

recommended for upwards compatibility, most compilers today still understand the older
style conventions:

void button_pushed (widget, client_data, call_data)
Widget widget;
XtPointer client_data;
XtPointer call_data;

The second style is potentially the more portable method, although it is extremely difficult
to think of any operating system vendors whose compiler is not ANSI aware. In the course
of the book, we make a habit of declaring client_data and call_data as
XtPointers , even though we usually know the actual types of the parameters being
passed to the function. Before referencing these parameters, we cast the values to the
appropriate types.

The third parameter in a Motif-based callback function is always a structure that contains
information specific to the widget class that invoked the callback function, as well as
information about the event that triggered the callback. There is a generic callback
structure, XmAnyCallbackStruct , as well as variations for specific widget classes and
callback resources. The XmAnyCallbackStruct is defined as follows:

typedef struct {
int reason;
XEvent *event;

} XmAnyCallbackStruct;

The callback structure for the Motif PushButton widget class, the
XmPushButtonCallbackStruct , is defined as follows:

typedef struct {
int reason;
XEvent *event;
int click_count;

} XmPushButtonCallbackStruct;

We discuss the callback structures for a widget class in this book (see the chapter
corresponding to the specific widget type). The callback structures are also documented in
the widget reference pages in Volume 6B, Motif Reference Manual.

All of the callback structures contain at least the two fields found in
XmAnyCallbackStruct . The reason field always contains a symbolic value that
indicates why the callback was called. These values are defined in /usr/Motif2.1/include/
Xm/Xm.h and are usually self-explanatory. For example, when a callback function
associated with a PushButton’s XmNactivateCallback resource is called, the reason
is XmCR_ACTIVATE. The different values for reason make it easier to write callback
routines that are called by more than one type of widget. By testing the reason field, you
can determine the appropriate action to take in the callback. Because the widget is always
passed to the callback function, you can also find out what widget caused the function to
be invoked.

Motif Programming Manual 39

Chapter 2: Motif Programming Model

The event field contains the actual event that triggered the callback, which can provide a
great deal of useful information. See Volume 4, X Toolkit Intrinsics Programming Manual,
for information on how to interpret the contents of an event. That subject is not discussed
at length in this book, although our examples frequently use the events in callback
structures to control processing.

The Event Loop
Once all of the widgets for an application have been created and managed and all of the
callbacks have been registered, it’s time to start the application running. The final two
function calls in hello.c perform this task:

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

Realizing a widget creates the actual window for the widget. When you call
XtRealizeWidget() on the top-level widget of an application (the one returned by the
call to XtVaOpenApplication()), Xt recursively traverses the hierarchy of widgets in
the application and creates a window for each widget. Before this point, the widgets existed
only as data structures on the client side of the X connection. After the call, the widgets are
fully instantiated, with windows, fonts, and other X server data in place. The first Expose
event is also generated, which causes the application to be displayed.

The call to XtAppMainLoop() turns control of the application over to the X Toolkit
Intrinsics. Xt handles the dispatching of events to the appropriate widgets, which in turn
pass them to the application via callbacks. The application code is idle until summoned to
life by user-generated events.

Summary
We’ve looked at the skeleton of a simple Motif program. Every application follows more
or less the same plan:

1. Initialize the X Toolkit Intrinsics.

2. Create and manage widgets.

3. Configure widgets by setting their resources.

4. Register callbacks to application functions.

5. Realize the widgets and turn control over to Xt’s event loop.

How this skeleton is fleshed out in a real application is the subject of the next chapter.
Chapter 3, Overview of the Motif Toolkit, addresses the role of manager widgets in laying
out a user interface, the use of dialog boxes and other popups for transient interactions with
the user, the many specialized types of widgets available in Motif, and other essential

Chapter 2: Motif Programming Model

40 Motif Programming Manual

concepts. Once you have read that chapter, you should have a sufficient foundation for
reading the remaining chapters in any order.

Motif Programming Manual 41

Chapter 1

In this chapter:
• The Motif Style
• Application Controls
• Application Layout
• Putting Together a

Complete Application
• Changes in Motif 2.1
• Summary

3
Overview of the Motif

Toolkit
This chapter helps the reader understand the components of a real Motif application. It
discusses how to handle the geometry management of primitive widgets within a manager
widget, when to put components into the main window, when to use dialog boxes and
menus, and how to relate to the window manager. After reading this chapter, the
programmer should have a solid overview of Motif application programming, and she
should be able to read the remaining chapters in any order.

In Chapter 2, The Motif Programming Model, we talked about the basic structure of an Xt-
based program. We described how to initialize the toolkit, create and configure widgets,
link them to the application, and turn control over to Xt’s main loop. In this chapter, we
discuss the widgets in the Motif toolkit and how you can put them together to create an
effective user interface for an application.

If you already have a basic understanding of the Motif widgets, you can jump ahead to any
of the later chapters in the book that focus on individual widget classes. This chapter
provides some insight into the design of the widgets and a general overview of the Motif
style and methodology, which you may find useful when developing your own
applications.

This chapter also describes all of the new features in Release 2.1 of Motif. If you are
familiar with Motif 1.2 but need to get up to speed with Motif 2.1, you should read Changes
in Motif 2.1 on page 85. In this section, we summarize the new features and tell you where
to find more information about them.We also describe all the changes made to the example
programs in this book to make them up-to-date with Motif 2.1. While Motif 2.1 is
backwards-compatible with Motif 1.2, there are a number of functions and resources in
Motif 2.1 that replace obsolete functions and resources in Motif 1.2.

The Motif Style
You don’t build a house just by nailing together a bunch of boards; you have to design it
from the ground up before you really get started. Even with a prefabricated house, where

Chapter 3:Overview of the Motif Toolkit

42 Motif Programming Manual

many of the components have already been built, you need a master plan for putting the
pieces together. Similarly, when you are designing a graphical user interface for an
application, you have to think about the tasks your application is going to perform. You
must envision the interface and then learn to use your tools effectively in order to create
what you’ve envisioned.

The Motif toolkit provides basic components that you can assemble into a graphical user
interface. However, without design schematics, the process of assembling the user-
interface elements may become ad hoc or inconsistent. Here is where the Motif Style Guide
comes in. It presents a set of guidelines for how widgets should be assembled and grouped,
as well as how they should function and interact with the user.

All Motif programmers should be intimately familiar with the Style Guide. While we make
recommendations for Motif style from time to time, this book is not a replacement for the
Style Guide. There are many aspects of Motif style that are not covered in detail here, as
they involve the content of an application rather than just the mechanics. On the other hand,
the Motif Style Guide is not an instructional manual for the Motif toolkit. In fact, many of
the objects described in the Style Guide are not even widgets, but higher-level, more
complex objects that are composed of many widgets.

For example, the Style Guide describes an object called a MenuBar, which spans the top of
the main window of an application. The MenuBar contains menu titles that, when clicked
on, display PulldownMenus. The Motif toolkit does not implement MenuBars or
PulldownMenus as distinct widget classes, nor does the Style Guide make any
recommendations about how menu objects should be implemented. What the Style Guide
does talk about (albeit somewhat loosely) are the actions that can be taken by an item on a
menu: it can invoke an application function, pop up a dialog box containing yet more
options and commands, or display a cascading menu (also known as a pullright menu).

The Style Guide also makes recommendations about the menus that an application should
provide. For example, most applications should have a File menu that provides items such
as an Exit button to exit the application and a Save button to save ?le. It also speci?es details
of presentation, such as that you should provide an ellipsis (...) as part of the label for a
menu item that requires the user to provide more information before action is taken.

How the Motif toolkit goes about supporting, and in some cases enforcing, the guidelines
of the Motif Style Guide brings up some interesting points, particularly in relation to some
of the underlying principles of the X Toolkit Intrinsics. In Xt, a widget is envisioned as a
self-contained object that is designed to serve a specific, clearly-defined function. Many of
the Motif widgets, such as Labels, PushButtons, ScrollBars, and other common interface
objects, are implemented as separate widgets.

In other cases, however, Motif steps outside of the Xt model by creating compound objects
out of several widgets and then expecting you to treat them as if they were a single object.
For example, Motif provides the ScrolledText and ScrolledList objects, which combine a

Motif Programming Manual 43

Chapter 3: Overview of the Motif Toolkit

Text or List widget with a ScrolledWindow widget, which in turn automatically manages
horizontal and vertical ScrollBars.

In another case, the Motif toolkit provides a complex, general-purpose widget that can be
configured to appear in several guises. There is no MenuBar widget class and no
PulldownMenu widget class. Instead, the RowColumn widget, which also serves as a
general-purpose manager widget, has resources that allow it to be configured as either a
MenuBar or a PulldownMenu pane. Those familiar with Xt may find this widget design to
be a breach of Xt’s design goals, though.

In order to allow the programmer to think of ScrolledText objects, MenuBars, and
PulldownMenus as distinct objects, the Motif toolkit provides convenience creation
functions. These routines make it appear as though you are creating discrete objects when,
in fact, you are not. For example, the toolkit functions XmCreateMenuBar() and
XmCreateSimplePulldownMenu() automatically create and configure a RowColumn
widget as a MenuBar and a PulldownMenu, respectively. There are also convenience
routines for creating various types of predefined dialog boxes, which are actually composed
of widgets from four or five separate widget classes.

Convenience routines emphasize the functional side of user-interface objects while hiding
their implementation. However, since Motif is a truly object-oriented system, it behoves
you to understand what you’re really dealing with. For example, if you want to use resource
classes to configure all MenuBars to be one color and all PulldownMenus another, you
cannot do so because they are not actually distinct widget classes. The class name for both
objects is XmRowColumn.

In the remainder of this chapter, we look at Motif user-interface objects from the
perspective of both the functional object illusion and the actual widget implementation. In
the body of the book, we use the Motif convenience routines for creating both compound
objects, and simple widgets or gadgets. With the compound objects, we show you how to
pierce the veil of Motif’s convenience functions and work directly with the underlying
widgets when necessary. Figure 3-1 shows the entire class hierarchy of the Motif widget
set.

We begin by taking a closer look at the Motif user-interface components with which the
user typically interacts. Then we examine how the manager widget classes are used to
arrange the more visible application controls. And finally, we explore the use of all of these
objects to create functional windows and dialogs that make up a real application.

Application Controls
In many ways, application controls are the heart of a graphical user interface. Rather than
controlling an application by typing commands, the user is presented with choices using
graphical elements. The user no longer needs to remember the syntax of commands, since

Chapter 3:Overview of the Motif Toolkit

44 Motif Programming Manual

her choices are presented to her as she goes along. As we’ve discussed, some of Motif’s
application controls (such as menus) are compound objects assembled by convenience
routines. Others are simple, single-purpose widgets that you can create directly.

The widgets in this latter group are collectively referred to as primitive widgets -- not
because they are simple, but because they are designed to work alone. The contrast is not
between primitive and sophisticated widgets, but between primitive and manager widgets.
Some of the primitive Motif widget classes have corresponding gadget classes. The

ApplicationShellMenuShell

WMShell

Manager

Primitive

OverrideShell

Object

RectObj

WindowObj

ArrowButtonGadgetCore

PanedWindow

Notebook

Frame

DrawingArea

Container

ComboBox

TextField

Text

ScrollBar

List

Label

SeparatorGadget

LabelGadget

IconGadget

Separator

ScrolledWindow

Scale

ArrowButton

SpinBox

BulletinBoard

RowColumn

CascadeButtonGadget

PushButtonGadget

ToggleButtonGadget

ToggleButton

PushButton

DrawnButton

CascadeButton

Gadget

Form

SelectionBox

MessageBox

Command

FileSelectionBox

Shell

Composite

Constraint

DialogShellVendorShell TransientShell

PrintShellTopLevelShell

GrabShell

MainWindow

SimpleSpinBox

Key

Motif

Xt Intrinsics

Figure 3-1: Class Hierarchy of the Motif widget set

SessionShell

Motif Programming Manual 45

Chapter 3: Overview of the Motif Toolkit

following sections describe the different types of primitive application controls available in
the Motif toolkit.

The compound objects in the Motif toolkit are composed of primitive widgets and gadgets.
Because an understanding of these objects relies on an understanding of the primitive
widgets, as well as the Motif manager and shell widgets, we are going to postpone
discussing compound objects until later in the chapter.

The Primitive Widget Class
The Primitive widget class is a superclass for all of the Motif primitive widgets. This widget
class is a metaclass; it serves only to define certain common behavior used by all its
subclasses, so one never instantiates a widget directly from the Primitive class. This
statement is somewhat like saying that hammer is a class of object, but that you never really
have a generic hammer. You can only have a specific type of hammer, like a claw hammer,
a ball peen hammer, or a sledge hammer.*

Just as all hammers have particular characteristics that qualify them as hammers, the
Primitive widget class provides its subclasses with common resources such as window
border attributes, highlighting, and help with keyboard traversal (so the user can avoid the
mouse and navigate through the controls in a window using the keyboard). The actual
widget classes that you use are subclassed from the Primitive class, as shown in Figure 3-2.

The Primitive class itself inherits even more basic widget behavior from the Xt-defined
Core widget class, which establishes the basic nature of “widgetness.” The Core class
provides widgets with the capability to have windows and background colors, as well as

* A claw hammer has the prongs in the back behind the hammer-head that allow you to pull nails out of a wall; a
ball peen hammer has a round corner where the claw would be otherwise be; a sledge hammer is the large, heav-
yweight hammer used to drive thick nails through concrete or to destroy things.

Primitive

TextField

Text

ScrollBar

List

Label

Separator

ArrowButton

ToggleButton

PushButton

DrawnButton

CascadeButton

Figure 3-2: The Primitive widget class hierarchy

Core

Motif

Xt Intrinsics

Chapter 3:Overview of the Motif Toolkit

46 Motif Programming Manual

translations, actions, and so on. You could actually use a simple Core widget as an instance
and define your own translations and action routines, although this technique is not used
frequently. Complete details are provided in Volume 4.

The Label Class

The Label widget provides a visual label either as text or as an image in the form of a
Pixmap .The text of a Label is an XmString , or compound string, not a character string
(char *).A compound string can be oriented from left-to-right or right-to-left and it can
also contain multiple lines and multiple fonts. Chapter 25, Compound Strings, discusses
functions that manipulate compound strings, as well as functions that convert between
character strings and compound strings.

The Label widget does not provide any callback routines, since it does not have any
specified behavior. Using Xt, you could install event translations and action routines to
make a Label respond to user input, but the Label widget is not intended to be used this way.
It is only meant to be used to display labels or other visual aids. In Motif, instances of Label
and all of its subclasses are automatically registered as drag sources for drag and drop
operations by the toolkit* .

Label widgets are described in detail in Chapter 12, Labels and Buttons. Figure 3-3 displays
a single Label widget with multiple lines and multiple fonts.

The PushButton Class

The PushButton widget supports the same visual display capabilities as a Label, since it is
subclassed from Label. In addition, the PushButton provides resources for the programmer
to install callback routines that are called when the user arms, activates, or disarms the
button. The PushButton also displays a shadow border that changes in appearance to
indicate when the pointer is in the widget and when it has been activated.

When a PushButton is not selected, it appears to project out towards the user. When the
pointer moves into the button, its border is highlighted. When the user actually selects the

* In fact, in Motif 2.1, drag and drop for a Label, LabelGadget, or Scale may be disabled by default if the resource
XmNenableUnselectableDrag is False. See the section on XmDisplay in Volume 6B for more details.

Figure 3-3: A Label with multiple lines and fonts

Motif Programming Manual 47

Chapter 3: Overview of the Motif Toolkit

button by pressing the first mouse button on it, the button appears to be pushed in and is
said to be armed. The user activates a PushButton by releasing the mouse button while the
button is armed. PushButton widgets are also covered in detail in Chapter 12. Figure 3-4
shows some examples of PushButtons.

The DrawnButton Class

The DrawnButton widget is similar to a PushButton in its functionality and its three-
dimensional appearance. However, the DrawnButton is used when an application wants to
draw the text or image directly into the widget’s window, rather than have the widget
handle the drawing. If the image is dynamic and changes frequently during the course of an
application, you may want to handle the drawing yourself. The DrawnButton provides
additional callback resources that are called when the button is resized or exposed and
additional ways to draw an outlined border. The DrawnButton widget is discussed in
Chapter 12. Figure 3-5 shows some DrawnButtons.

The ToggleButton Class

The ToggleButton widget displays text or graphics like a Label widget, but it has an
additional indicator graphic (a square, diamond, and additionally in Motif 2.1, a circle or
check mark shape) to the side of the label. The indicator shows the state of the
ToggleButton: in Motif 1.2 this could be simply on or off; in Motif 2.1 a toggle can exist
in a third indeterminate state. When the ToggleButton is on, the indicator is colored and
appears to be pushed in. When the button is off, the indicator appears to project outward.
In the indeterminate state, the toggle is half colored, half uncolored. The ToggleButton
provides an additional resource for specifying a callback routine that is called when the user
changes the state of the ToggleButton.

Figure 3-4: PushButton widgets

Figure 3-5: DrawnButton widgets

Chapter 3:Overview of the Motif Toolkit

48 Motif Programming Manual

One common use of ToggleButtons is to set the application state. In this case, the callback
routines typically set simple Boolean variables internal to the application. ToggleButtons
can also be arranged in two different kinds of groups. In one configuration, known as a
RadioBox, only one button in the group of buttons can be chosen at a time. The other
configuration, a CheckBox, allows the user to select any number of buttons. When
ToggleButtons are grouped as a RadioBox, the indicators are by default diamond-shaped;
otherwise, they default to a square-shaped appearance. ToggleButton widgets are described
in detail in Chapter 12. Figure 3-6 shows the two different ways that ToggleButtons can be
grouped.

The CascadeButton Class

The CascadeButton widget is a special kind of button that is used to popup menus. A
CascadeButton can only be used as a child of a RowColumn widget, such as: in a MenuBar
as the title of a PulldownMenu, in a PulldownMenu pane as an item that has a cascading
menu associated with it, or as the button in an OptionMenu. The menu that is posted by a
CascadeButton is not a part of the widget itself; the menu is associated with the button
through a resource. A CascadeButton merely provides the label and other visual aids that
support the appearance that a menu can pop up from the object. Even though the
CascadeButton widget class is subclassed from Label and could inherit all of its
functionality, Motif imposes restrictions on the labels that a CascadeButton can display.
CascadeButton labels cannot contain multiple lines or multiple fonts. Because
CascadeButtons are typically used in menus, they do not display border shadows like other
buttons. They do have similar highlighting behavior when selected, however.
CascadeButton widgets are explained in both Chapter 4, The Main Window, and Chapter
20, Interacting with the Window Manager.

The ArrowButton Class

Despite the similarity in its name, the ArrowButton widget is not subclassed from Label
like the other button widgets. Like the remaining widgets described in this section, it is
subclassed directly from the Primitive widget class. The ArrowButton widget contains an
image of an arrow pointing in one of four directions: up, down, left, or right. When the user
selects this widget, the ArrowButton provides visual feedback giving the illusion that the

RadioBoxCheckBox

Figure 3-6: ToggleButton widgets

Motif Programming Manual 49

Chapter 3: Overview of the Motif Toolkit

button is pressed in and invokes a callback routine that an application can use to perform
application-specific positioning.

In most respects, an ArrowButton can be considered identical to a PushButton, as it is easy
enough to provide an arrow pixmap for a PushButton. Since directional arrows are a
common user-interface element, the ArrowButton is provided as a separate widget class for
simplicity. ArrowButton widgets are covered in detail in Chapter 12. Figure 3-7 shows the
four variations of the ArrowButton widget.

The List Class

The List widget provides a mechanism for the programmer to make a list of text items
available to the user for selection. The user selects items from a List using the mouse or the
keyboard. The List widget allows you to specify whether the user can select a single item
or multiple items. While List is a Primitive widget, it is typically created as part of a
ScrolledList compound object using a Motif convenience function. The advantage of the
ScrolledList object is that it provides a ScrollBar when the List grows bigger than the size
of its visible area. Instances of the List widget are automatically registered as drag sources
for drag and drop operations by the toolkit. We explore the List widget in detail in Chapter

Figure 3-7: ArrowButton widgets

Chapter 3:Overview of the Motif Toolkit

50 Motif Programming Manual

13, The List Widget. Figure 3-8 shows a List widget in context with other interface
elements.

The ScrollBar Class

The ScrollBar widget is one of the more intuitive user-interface elements in the Motif
toolkit. ScrollBars are almost always used as children of a ScrolledWindow widget. When
the contents of a window are larger than the viewing area, a ScrollBar allows the user to
scroll the window to view the entire contents.

ScrollBars can be oriented vertically or horizontally. The ScrollBar also provides a number
of callback resources that allow you to control its operation. ScrollBar widgets are

Figure 3-8: A List widget in an application dialog

Motif Programming Manual 51

Chapter 3: Overview of the Motif Toolkit

discussed in Chapter 10, Scrolled Windows and ScrollBars. Figure 3-9 shows both vertical
and horizontal ScrollBars.

The Separator Class

The Separator widget is used as a visual aid to separate adjacent items in a display. A
Separator appears as a line between the objects it is separating; it can be oriented vertically
or horizontally. Separators can be used in menus to separate menu items, in dialog boxes to
separate discrete areas of control, and at various points in an interface for purely aesthetic
reasons.

The Text and TextField Classes

The Text widget is a complete text editor contained in a widget. The Text widget provides
resources to configure the editing style of the widget, as well as callback resources that
allow text verification. The widget can be configured as a multiline text entry area or as a
single-line data entry ?eld. The TextField widget class is available as a somewhat lighter-
weight text entry area. The TextField widget is limited to a single-line, but in all other
respects there is little difference between the two classes. Instances of the Text and
TextField widgets are automatically registered as drag sources and drop sites for drag and
drop operations by the toolkit.

Figure 3-9: ScrollBars

Vertical
ScrollBar

Horizontal
ScrollBar

Chapter 3:Overview of the Motif Toolkit

52 Motif Programming Manual

The Text and TextField widgets can be used in many different ways to support the text
entry requirements of an application. The two widgets are described in detail in Chapter 18,
Text Widgets. Figure 3-10 shows an application that uses various forms of the Text widget.

Gadgets
Another set of application controls is provided in the form of gadgets. There are gadgets
that are equivalent to many of the primitive widgets: ArrowButtonGadgets,
SeparatorGadgets, PushButtonGadgets, CascadeButtonGadgets, ToggleButtonGadgets,
LabelGadgets, and in Motif 2.1, IconGadgets. The IconGadget is similar to a LabelGadget,
except that it can display a label and an image simultaneously. The appearance and
behavior of the gadgets are mostly identical to that of the corresponding widgets* . A further
understanding of how gadgets work depends on an understanding of the manager widgets
that support them, so we are going to return to this topic later in the chapter.

* The IconGadget is exceptional: there is no widget equivalent to this gadget class.

Figure 3-10: Text Widgets.

Object

RectObj

WindowObj

ArrowButtonGadgetCore

SeparatorGadget

LabelGadget

IconGadget

CascadeButtonGadget

PushButtonGadget

ToggleButtonGadget
Gadget

Figure 3-11: The Gadget class hierarchy

Motif Programming Manual 53

Chapter 3: Overview of the Motif Toolkit

The Gadget class is a superclass for all of the Motif gadgets. Like Primitive, this class is a
metaclass that is never instantiated. However, gadgets are not widgets. The Gadget class is
subclassed from the RectObj class, not from the Core widget class. Figure 3-11 shows the
class hierarchy for gadgets.

Application Layout
While the controls are the most obvious part of a graphical user interface, these elements
alone do not make an effective interface. A random arrangement of buttons or a collection
of nested menus can make an application as obscure and as difficult to use as one with a
command-line interface. The arrangement of the controls in an application makes all the
difference.

To help you lay out your application, Motif provides you with a set of manager widgets.
You can think of manager widgets as boxes in which you can put things. These boxes,
however, can grow or shrink as necessary to provide the best ?t possible for the items that
they contain. You can place boxes inside of other boxes, whether or not they contain other
items. By using different size boxes, you can organize things in many different ways.

Manager widgets are so named because they manage the size and position of other widgets.
The relationship between a manager widget and the widgets that it manages is commonly
referred to as the parent-child model. The manager acts as the parent, and the other widgets
are its children.

Unlike primitive widgets, such as PushButtons, ScrollBars, and Labels, whose usefulness
depends on their visual appearance and interaction with the user, manager widgets provide
no visual feedback and have few callback routines that react to user input. Manager widgets
have two basic purposes: they manage the sizes and positions of their children, and they
provide support for gadgets. Like other widgets, manager widgets have windows, they can
receive events, and they can be manipulated directly with Motif and Xt functions. You can
draw directly into the window of a manager widget, look for events in the widget, and
specify resources for it.

There are many manager widget classes, each of which is tuned for a particular kind of
widget layout. A manager widget can manage other manager widgets, as well as primitive
widgets like Labels and PushButtons. In fact, the layout of an application is typically a kind
of tree structure. As discussed in Chapter 1, the top of the tree is always a shell widget like
that returned by XtVaAppInitialize() . Shell widgets are composite widgets that can
only have a single managed child. This child is usually a general-purpose manager widget.
This manager contains other managers and the primitive widgets that compose the user
interface for a window in an application.

Chapter 3:Overview of the Motif Toolkit

54 Motif Programming Manual

Figure 3-12 shows all of the different manager and primitive widgets that make up the
displayed dialog box.

The parent-child relationships between the widgets in this dialog box are illustrated in the
tree structure shown in Figure 3-13.

Figure 3-12: The layout of a dialog box

ru
by

_l
p

D
on

e

P
rin

t

H
el
p

P
rin

te
r
N
am

e:

S
ta
n
d
a
rd
 M

e
s
s
a
g
e
 H

e
a
d
e
rs

A
ll
 M

e
s
s
a
g
e
 H

e
a
d
e
rs

M
e
s
s
a
g
e
 B

o
d
y
 O

n
ly

A
c
ti
v
e
 F

o
ld
e
r:
 /
u
s
r/
s
p
o
o
l/
m

a
il
/a

rg
v

P
ri
n
t
M

e
s
s
a
g
e
s

M
e
s
s
a
g
e
s

3
 5

 9
-1

2

Label

Shell

Form
Form

RowColumn

LabelGadget

TextField

RowColumn(RadioBox)

ToggleGadgets

PushButton

Form

LabelGadget

RowColumn

RowColumn

TextField

Motif Programming Manual 55

Chapter 3: Overview of the Motif Toolkit

Although the dialog box is composed of many different components, it appears to the user
as a single, conceptually focused user-interface object.

The Manager Widget Class
As with the Primitive widget class and the Gadget class, the Manager widget class is a
superclass for all of the Motif manager widgets. The Manager class is another metaclass.
You never create an instance of a Manager widget; you create an instance of one of its
subclasses. The actual widget classes that you use are shown in Figure 3-14.

Manager is subclassed from the Xt Constraint class, which in turn is subclassed from the
Xt Composite class. The Composite widget class defines the basic characteristics of
widgets that are able to manage the size and position of other widgets. Xt uses the general
term composite widget for any widget with this capability. The Constraint class adds the
capability to provide additional resources for the widgets that are being managed. These

Form

RowColumn

LabelGadget

RowColumn

Figure 3-13: Parent-child relationships between widgets

Label

RowColumn

LabelGadget

Form

Form

RowColumn

PushButton

PushButton

PushButton

ToggleButtonGadget

ToggleButtonGadget

ToggleButtonGadget

LabelGadget

TextField

Shell

LabelGadget

TextField

Chapter 3:Overview of the Motif Toolkit

56 Motif Programming Manual

resources constrain the position of the widgets. They can be thought of as hints about how
the widgets should be laid out.

Motif provides a number of general-purpose manager widgets that allow the programmer
to manage the size and arrangement of an arbitrary number of children. In some ways, the
art of Motif programming is the design of effective widget layouts, using these particular
manager widgets. Motif also provides some narrowly-focused manager widgets, such as
certain dialog classes, that can almost be treated as if they were single user-interface
components. These widgets create and manage their children with minimal help from an
application.We sometimes refer to these widgets as compound objects, since they include
both a manager widget and one or more children. This section describes the different
manager widgets briefly; a more detailed description of the widgets is given in Chapter 8,
Manager Widgets.

The DrawingArea Class

The DrawingArea widget provides an area in which an application can display graph-
ics. Callback routines can be used to notify the application when expose and resize

Manager

Object

RectObj

WindowObj

Core

PanedWindow

Notebook

Frame

DrawingArea

Container

ComboBox

ScrolledWindow

Scale

SpinBox

BulletinBoard

RowColumn

Form

SelectionBox

MessageBox

Command

FileSelectionBox

Composite

Constraint

MainWindow

SimpleSpinBox

Key

Motif

Xt Intrinsics

Figure 3-14: Class hierarchy of the Manager widget classes

Motif Programming Manual 57

Chapter 3: Overview of the Motif Toolkit

events take place and when there is input from the keyboard or mouse. The Drawin-
gArea can also be used to manage the geometry layout for child widgets, but its func-
tionality in this area is quite limited.The DrawingArea is discussed in detail in Chapter
11, The DrawingArea.

The ScrolledWindow Class

The ScrolledWindow widget provides a viewport for data such as text or graphics. If
the data that is being viewed is larger than the ScrolledWindow, ScrollBars allow the
user to view the entire contents of the window interactively. The ScrolledWindow is
discussed in Chapter 10, ScrolledWindows and ScrollBars.

The MainWindow Class

The MainWindow widget acts as the standard layout manager for the main window of
an application. It is specifically tuned to pay attention to the existence of a MenuBar,
a command area, a message area, a work region, and ScrollBars, although all of these
areas are optional. The MainWindow is discussed in Chapter 4, The Main Window.

The RowColumn Class

The RowColumn widget is perhaps the most widely used and robust of all of the man-
ager widgets. As its name suggests, the widget lays out its children in rows and col-
umns. The RowColumn widget is used by many different parts of the toolkit to
implement compound objects like MenuBars, PulldownMenus, CheckBoxes, and Ra-
dioBoxes. The general purpose RowColumn is discussed in Chapter 8, Manager Widg-
ets.

The Frame Class

The Frame widget provides a three-dimensional border for a widget that does not nor-
mally have a border. It can also be used to enhance the style of the border for a widget
that already has a border. In Motif, a Frame widget can have two children: a work area
and a title. The work area child can be a manager widget that contains many other chil-
dren. The Frame is discussed in Chapter 8, Manager Widgets.

The PanedWindow Class

The PanedWindow widget manages its children in a vertically (and, in Motif 2.1, a hor-
izontally) tiled format. Its width always matches the widest widget in its list of man-
aged children; the widget forces all of its children to stretch to the same width as that
widget. Each pane in a PanedWindow contains a child widget; every pane has an as-
sociated sash (or grip) that allows the user to change the height of the pane interactive-
ly. Resizing a pane with the grip can cause the widgets in other panes to change size.
The PanedWindow is discussed in Chapter 8, Manager Widgets.

Chapter 3:Overview of the Motif Toolkit

58 Motif Programming Manual

The BulletinBoard Class

The BulletinBoard widget does not impose much of a layout policy for the widgets that
it manages. The widget acts like a real bulletin board, in that an application pins a
widget on the bulletin board, and it sticks where it is placed. The BulletinBoard does
impose margins and has a resource that controls whether or not its children can over-
lap. However, when a BulletinBoard is resized, it does not move or resize its children
based on its new size. The BulletinBoard is useful mostly for the layout of dialog boxes
and other windows that are rarely resized. The predefined Motif dialog widget classes
use BulletinBoard widgets for this reason. The BulletinBoard is discussed in Chapter
8, Manager Widgets.

The Form Class

The Form widget provides a great deal of control over the placement and sizing of the
widgets it manages. A Form can lay out its children in a grid-like manner or it can al-
low its children to link themselves to one another in a chain-like fashion. Form uses
constraint resources to specify how children are resized and positioned relative to each
other and the Form as a whole. The Form is discussed in Chapter 8,Manager Widgets.

The Scale Class

The Scale widget is a slider object that is somewhat similar in appearance and func-
tionality to a ScrollBar. A Scale is typically used to provide feedback to the user about
the value of a state variable in an application. This widget class is not intended to be
used as a general manager. The Scale creates and manages its own widgets, which are
needed to construct the Scale object. The only children that you can add to a Scale
widget are Label widgets that represent tick marks, although in Motif 2.1 there are con-
venience routines to automatically place tick marks along the Scale. The Scale is dis-
cussed in Chapter 16, The Scale Widget.

The following Manager widget classes are additionally available in Motif 2.1:*

The Container Class

The Container class is a complex constraint widget which can lay out IconGadget chil-
dren in three styles: in a tree arrangement, with a tabular data style, and in a free float-
ing format based upon the x, y specifications for each child. The Container class allows
for a more object-oriented approach to the front end of an application than the older
MainWindow, in that the IconGadget children can pictorially represent application ob-
jects of some kind with the Container providing the layout and selection mechanisms.
The Container is discussed in Chapter 9, The Container and IconGadget Widgets. Fig-

* Available from Motif 2.0 onwards.

Motif Programming Manual 59

Chapter 3: Overview of the Motif Toolkit

ure 3-15 shows the Container configured to display in a tree arrangement with addi-
tional tabular data.

The SpinBox Class

The SpinBox class allows the user to input data by selecting from, and rotating
through, a set of values. Text widget children are added to the SpinBox, whereupon the
range or set of values associated with each text is specified through constraint resourc-
es. The SpinBox automatically adds extra ArrowButtons which are used for rotating
through the values of the text widget child which currently has the input focus. The
programmer however has to supply the Text widgets underneath the SpinBox. For con-
venience, the SimpleSpinBox subclass is provided which encapsulates the most fre-
quent use of this type of arrangement: it comes with a single built-in Text child. The
SpinBox is discussed in Chapter 15, The SpinBox and SimpleSpinBox Widgets. Figure

Figure 3-15: A Container widget with IconGadget children

Chapter 3:Overview of the Motif Toolkit

60 Motif Programming Manual

3-16 shows a SpinBox containing three Label and Text children, and a SimpleSpin-
Box. The SimpleSpinBox is not meant to be used as a general purpose manager.

The ComboBox Class

The ComboBox class combines textual input with list selection. The widget presents
itself to the user as a Text widget with an ArrowButton to the side. The user can either
type directly into the Text widget, or press the ArrowButton, when a list of items from
which to choose is popped up immediately under the Text. Whether in fact the Text
widget is directly editable, and whether the list of available options is permanently vis-
ible (as opposed to being displayed on user request by pressing the ArrowButtons) is
controllable through resources when the ComboBox is created. This widget class is not
intended to be used as a general manager. The ComboBox is discussed in Chapter 14,
The ComboBox Widget. Sample ComboBoxes are shown in Figure 3-17.

SpinBox with
multiple Text

SimpleSpinBox

Figure 3-16: SpinBox and SimpleSpinBox widgets

SpinBox

children

ArrowButtons

Figure 3-17: ComboBoxes with other widgets

Motif Programming Manual 61

Chapter 3: Overview of the Motif Toolkit

The Notebook Class

The Notebook class lays out its children as though they are pages in a book. That is,
only one child is currently visible at any given time, and they all occupy a single area
on the screen; the user can chose from the available pages either by selecting from Tabs
which can be associated with a child, or by activating the Page Scroller, which is typ-
ically a SpinBox. To complete the analogy, resources are provided to control the gen-
eral book-like characteristics of the Notebook in terms of its binding and overlapping
page appearance. The Notebook is a constraint widget: you add children, and then
specify the role which each child is to perform. Typically, a Form or other manager is
added to represent some page, and optionally PushButtons can be added and associated
with a page in order to represent Tab inserts along the edges of the Notebook pages.
The Notebook is discussed in Chapter 17, The Notebook Widget. Figure 3-18 shows a
Notebook with Tabs inserted on the edge.

Geometry Management
The process by which a manager widget controls the layout of its children is known as
geometry management. A child widget is always placed within the boundaries of its parent.
A child cannot move or resize itself without requesting permission from its parent, which
can deny the request. The manager, acting as the parent, can even force the child into an
arbitrary size or position. However, like any good parent, a manager widget should be fair
at all times and not deny reasonable requests made by its children. As you might expect,
geometry management can be quite complex in an application with several levels of
managers.

As an example, consider adding a new item to a List widget. In order to display the new
item, the List widget must grow vertically, so it requests a new size from its manager

Figure 3-18: The Notebook widget

Chapter 3:Overview of the Motif Toolkit

62 Motif Programming Manual

parent. If that parent can accommodate the larger size, or it has another mechanism for
satisfying the request, such as ScrollBars, it can approve the request. However, if the
manager itself must grow to honor the List widget’s request, it has to negotiate with its own
parent. This chain reaction may go all the way up to the shell widget, in which case the shell
must communicate with the window manager about the new size. If the window manager
and the shell agree to the new size, the acknowledgement filters back down through the
widget tree to the List widget, which can now grow to its requested size. If any of the
composite widgets in the hierarchy refuse to resize, the List widget’s request is either
denied or only partially fulfilled.

Most of the time, this type of interaction completes successfully, as there are rarely disputes
among children about resizing negotiations or positional boundaries. Children usually go
where their managers put them and make very few requests of their own. One exception is
a RowColumn widget that is acting as a MenuBar, since it must be situated at the top of the
window, and it must span the window horizontally. ScrollBars are another possible
exception, since they are typically positioned at the edges of ScrolledWindow widgets.

So, how do children request geometry changes from their parents? The answer to this
question is rather complicated, since the X Toolkit Intrinsics supports a large selection of
functions that enable two-way communication about geometry management. For example,
a child can use XtMakeGeometryRequest() to request permission to be made a specific
size or to be placed in a particular location. A parent can use a function like
XtQueryGeometry() to give a child the opportunity to announce its preferred geometry.

Some of these functions and methods are described in Chapter 1, but a detailed treatment
of custom geometry management techniques is beyond the scope of this book. These
functions are mostly used by the internals of composite and constraint widgets. See Volume
4, for a more detailed discussion of geometry management techniques.

In the Motif toolkit, geometry management cannot work without cooperation. The easiest
way for a child to cooperate with its parents and siblings is simply to comply with whatever
layout policy is supported by its manager widget parent. A child should not try to force
itself into a size or a position that is not supported by its parent. Each of the manager widget
classes described above is designed to support a specific layout style. For example, the
RowColumn widget lays out its children in rows and columns, the Form widget allows its
children to specify positions relative to other widgets within the Form, and the
PanedWindow widget lets its children specify their desired maximum and minimum
heights.

Manager widgets use constraint resources to support their layout policies. Constraint
resources are defined by Xt’s Constraint widget class, which is a superclass for the
Manager widget class and thus all of the Motif manager widgets. Unlike other resources,
constraint resources apply to the children of a manager widget, not to the manager itself.
Examples of constraint resources include maximum and minimum heights, relative sizes

Motif Programming Manual 63

Chapter 3: Overview of the Motif Toolkit

and positions, specific positional constraints, and even absolute x, y coordinates. While
these examples deal exclusively with size and position, constraint resources can be used for
any arbitrary information that needs to be kept on a per-child basis.

Here’s how constraint resources work. When a manager needs to size or position its
children, it deals only with the children that are managed; unmanaged children are ignored
in geometry management negotiations. For each managed child, the manager examines the
child’s constraint resources. Depending on the constraints that are specified, the manager
either enforces the geometry changes or negotiates with its own parent to see if it can
comply with the changes. This process uses an extra internal data structure for each child.
The data structure stores the constraints that are used by the widget’s parent to aid it in
geometry management.

Gadget Management
In addition to handling geometry management, manager widgets are responsible for their
gadget children. In order to understand how managers support gadgets, we need to define
more clearly what a gadget is. Every widget has its own X window, which simplifies many
aspects of programming, since each widget can take responsibility for repainting itself,
selecting its own events, and in general being as self-sufficient as possible. Historically,
however, windows have been perceived as heavyweight objects. The concern is that system
performance will be degraded if an application uses too many windows. Since an
application with a graphical user interface frequently uses hundreds of widgets, or perhaps
even thousands for a very large program, the performance issue is an important one.

Gadgets, or windowless widgets, were originally developed as a part of Motif. They were
added to Xt as of X11 Release 4. Motif provides gadget versions of many common
primitive widgets, such as PushButtons and Labels. Like widgets, gadgets can be created
using either Motif convenience functions or XtCreateManagedWidget() . While the
widget and gadget versions of an object are functionally very similar, there are some small
but important differences.

Because a gadget does not have its own window, it is entirely dependent on its parent, a
manager widget, for its basic functionality. For example, the manager must handle
redrawing the gadget on exposure, highlighting it as a result of keyboard traversal, and
notifying it of event activity. Without a window, a gadget has no control over window-
based attributes normally associated with a widget. For this reason, gadgets can only be
used in managers that support them. How closely a gadget emulates its widget counterpart
is largely dependent on the capabilities of the manager widget parent.

In Motif 1.2, the Manager class limits the colors that can be used by gadgets. A gadget uses
the same background, foreground, and shadow colors as its manager widget parent. These
restrictions are not inherent in the Xt Composite widget class or in Xt-based gadgets; they
are specific to the Motif 1.2 Manager and Gadget classes. It is possible to write a Composite

Chapter 3:Overview of the Motif Toolkit

64 Motif Programming Manual

widget that allows its gadget children to specify their own background colors. Such a
widget would have to paint the area of its window occupied by the gadget with the specified
color to give the user the impression that the gadget is indeed a separately-colored widget.
Indeed, gadgets in Motif 2.1 have been redesigned with precisely this extra functionality.

Although gadgets were originally developed to improve performance, it is no longer
necessary to automatically use them if you are looking for performance improvements in
an application with many widgets. In both X11 Release 4 and Release 5, windows have
become substantially lighter-weight objects than they were when gadgets were first
developed. If anything, gadgets are worse than widgets at this point from a performance
perspective because the Motif managers take a very simplistic approach to the way they
handle events for gadgets. A manager tracks all events, even MotionNotify , whether or
not its gadgets have expressed interest in the events. As a result, gadgets typically generate
a great deal of network traffic. X terminal users are especially likely to notice a network
performance drop. There are some other complications that surround the use of gadgets,
which we discuss when they come up in the course of this book.

Keyboard Traversal
Keyboard traversal is a mechanism that allows a user to navigate through the components
in a user interface using only the keyboard. The Motif Style Guide speci?es that all
applications must support keyboard traversal for all application functionality. Support of
keyboard traversal is important because not every display provides a mouse or other
pointing device. For some applications, such as data entry, using keyboard traversal is more
convenient than using a pointing device. All of the Motif widgets support keyboard-based
navigation.

Keyboard traversal is based on the concept of a tab group. A tab group is a group of widgets
that are related for the purpose of keyboard traversal. For example, all the items in a menu
are considered a tab group, since they are grouped together and perform related functions.

At any given time, only one component on a display can be “listening” to the keyboard for
keyboard events. The widget that is listening to the keyboard is said to have the keyboard
focus, or input focus. The widget that has the input focus identifies itself by displaying a
location cursor. The location cursor is often a highlighted border that surrounds the widget.
A user can move the input focus to another widget using the mouse or the keyboard.

The user can move the keyboard focus between items in the same tab group using the arrow
keys. When the user finds the item that she wants, she can activate it with the RETURN key
or the SPACEBAR. If the user wants to move from one tab group to another, she uses the
TAB key. (In a multiline Text widget, CTRL-TAB is used because otherwise there would
be no way to insert a tab character.) To traverse the tab groups in reverse, the SHIFT key
is used with the TAB key. Keyboard traversal wraps from the last item to the first item, both
within a tab group and between tab groups.

Motif Programming Manual 65

Chapter 3: Overview of the Motif Toolkit

Although keyboard traversal is not completely controlled by manager widgets, they do play
a pivotal role in implementing it. A manager widget is typically initialized as a tab group;
its primitive widget children are members of the tab group. The Text and List widgets are
exceptions to this rule. These widgets are set up as their own tab groups, so that keyboard
traversal can be used to move among the text in a Text widget or the items in a List widget.
Within a tab group, there is no sense of a manager-within-manager structure. The widget
hierarchy is flattened out so that it appears to the user that all of the controls in a window
are at the same level.

Keyboard traversal only works if each widget in an interface cooperates. If a PushButton
has the keyboard focus and the user presses the TAB key, the internals of the PushButton
widget are responsible for directing the focus to the next tab group. Manager widgets play
a key role in keyboard traversal because they are responsible for the keyboard events that
take place within gadgets. If an event occurs within a PushButton gadget, its manager
parent is responsible for directing the input focus to the next tab group.

Although the whole process of keyboard traversal may seem complex and difficult, it is
automated by the Motif toolkit and does not require application intervention. However, the
toolkit does provide mechanisms that allow you to control keyboard navigation. There are
resources that allow you to specify widgets that are tab groups, widgets that are in tab
groups, and widgets that do not participate in keyboard navigation. There are also functions
that allow you to specify explicitly the direction of keyboard traversal. Fortunately, such
?ne-tuning is rarely necessary.

Putting Together a Complete Application
Managers and primitive widgets provide the basic tools with which you can build a
graphical user interface from the ground up. Motif also provides several components that
address the large-scale organization of an application. The specialized MainWindow
manager widget is intended to be used as the organizing frame for an application. Motif also
provides different types of menus and dialog boxes that can be used to organize application
functionality.

Since an application is always used in conjuction with a window manager, we need to
discuss the role played by the window manager. In the course of this discussion, we also
need to take a closer look at shell widgets, since they provide the communication link
between an application and the window manager.

Both pixmaps and colors play an important role in a graphical user interface. Motif
provides routines that cache pixmaps so that they can be reused throughout an application.
The three-dimensional appearance of Motif components is implemented using a variety of
color resources. It is important to understand these resources so that the 3D shadows are an
effective part of the user interface.

Chapter 3:Overview of the Motif Toolkit

66 Motif Programming Manual

The Main Window
Every application is different. A word processor, paint program, or spreadsheet typically
has a single main work area, with controls taking on a peripheral role, perhaps in
PulldownMenus. More sophisticated programs, on the other hand, may have several main
work areas. For example, an electronic mail program may have a work area in which the
user reviews and selects from a list of incoming messages, another where she reads and
responds to messages, and yet another where she issues commands to organize, delete, or
otherwise affect groups of messages. Still other applications, such as data-entry programs,
don’t really have a separate work area. The work area is really just a collection of controls,
such as CheckBoxes and text entry areas, that are filled in by the user.

It is quite conceivable that an application could provide multiple windows for performing
different tasks. For example, an order entry program might use one window for looking up
a customer record, another for checking stock on hand, and yet another for entering the
current order. Motif allows for the creation of multiple top-level application windows, as
well as transient dialog boxes that ask for additional information or confirmation before
carrying out a command.

Nonetheless, every application has at least one main window. The main window is the most
visible window in an application. It is the first window the user sees and also the place
where the user interacts with most application functionality. No matter how small or large
an application may be, there needs to be a focal point that ties it all together. As a program
grows more complex, the main window may grow more abstract and perform fewer
functions, but it always exists. In a sophisticated application, the main window is
transformed into a hub where the user starts, finishes, and returns again and again as she
goes from one function to the next.

Motif Programming Manual 67

Chapter 3: Overview of the Motif Toolkit

The Motif Style Guide suggests a particular layout for the main window. Applications
should use this layout unless they have a compelling reason not to. The recommended
layout is shown in Figure 3-19.

A main window should have a menu bar across the top, with the work area immediately
below it. The work area usually contains the main interface object of the application. For
example, a paint or draw application might provide a DrawingArea widget as a canvas, an
electronic mail application might provide a ScrolledList of message summaries from which
the user can make selections, and a Text editor might place a Text widget in the work area.
An application work area might require a custom widget or a non-widget-based X window
instead.

The work area can have both horizontal and vertical scrollbars allowing the user to view its
entire contents if they are too large to be displayed all at once. The main window can also
contain an optional command area below the work area, where the user can enter typed
commands. This area is most helpful for porting character-based applications to a Motif
GUI, but it can be useful for other applications as well. At the bottom of the main window
is an optional message area. This area should be used for status and informational messages
only, not for error messages or any other type of message that requires a response from the
user.

While it is possible to construct your own main window, the Motif toolkit provides the
special-purpose MainWindow widget, which supports the recommended style. All of the
elements in the MainWindow are optional, so an application can use it to display just the
areas that it requires. The MainWindow widget is described in detail in Chapter 1.

Figure 3-19: Recommended layout for MainWindow widget

Menu Bar

Work Area

Command Area

Message Area

Chapter 3:Overview of the Motif Toolkit

68 Motif Programming Manual

Menus
Motif supports three different styles of menus. PulldownMenus that are displayed from the
MenuBar in a MainWindow are the most common type of menu. A PulldownMenu is
displayed when the user selects a CascadeButton in the MenuBar. The menu pane is
displayed below the CascadeButton. Figure 3-20 shows a typical MenuBar and
PulldownMenu.

An item in a PulldownMenu can have a cascading menu associated with it. The cascading
menu is displayed to the right of the menu item as shown in Figure 3-21, so these menus
are sometimes referred to as pullright menus.

MenuBars, PulldownMenus, and cascading menus are all created in a similar way. Motif
provides convenience functions that create specially configured RowColumn widgets for
these menu objects. The RowColumn widget is then populated with PushButtons,
CascadeButtons, ToggleButtons, and Separators, or their gadget equivalents. In the case of

Figure 3-20: A MenuBar and an associated PulldownMenu

Figure 3-21: A cascading menu

Motif Programming Manual 69

Chapter 3: Overview of the Motif Toolkit

a MenuBar, all of the children must be CascadeButtons, since each button brings up a
separate menu. In a PulldownMenu pane, most of the items are PushButtons or
ToggleButtons, although Separators can be used for clarity. If an item posts a cascading
menu, it must be a CascadeButton. The additional menu is created separately, populated
with its own buttons, and attached to the CascadeButton.

Motif also supports a construct called an OptionMenu. An OptionMenu is another
specially-configured RowColumn widget, but in this case the behavior is quite different.
An OptionMenu is typically used to prompt the user to choose a value. The RowColumn
widget displays a Label and a CascadeButton that shows the current value. When the user
clicks on the button, a menu that contains the rest of the choices is popped up directly on
top of the CascadeButton. Choosing an item from the menu modifies the label of the
CascadeButton so that it shows the currently-selected item. Figure 3-22 shows an
OptionMenu, both before and after it is popped up.

Additionally, Motif provides PopupMenus. Unlike the other types of menus, a PopupMenu
is not attached to a visible interface element. A PopupMenu can be popped up at any
arbitrary location in an application, usually as a result of the user pressing the third mouse
button. PopupMenus are meant to provide shortcuts to application functionality, so an
application can use different PopupMenus in different contexts and for different
components in an interface.

A menu can be torn off from the component that posted it. A menu is normally only
displayed for as long as it takes the user to make a selection. Once the selection is made,
the menu is closed. When a menu is torn off, it remains posted in its own window. Now the
user can make as many selections from the menu as she would like without having to repost
the menu each time. For more information on tear-off menu functionality, as well as the
different types of Motif menus, see Chapter 19, Menus.

The Window Manager
To the user, the MainWindow looks like the top-level window of an application. In
window-system talk, a top-level window resides at the top of the window hierarchy for an

Before After

Figure 3-22: An OptionMenu

Chapter 3:Overview of the Motif Toolkit

70 Motif Programming Manual

application. Its parent is the root window, which is what the user perceives as the
background behind all the windows on the desktop. In the Xt-world, however, things are a
little different. Behind every visible top-level application window is a special kind of
widget known as a shell widget.

Every window that can be placed independently on the screen, including top-level windows
and dialog boxes, has a shell widget as its parent. The user does not see the shell because it
is obscured by all of the other widgets in the window. A shell widget can only contain one
managed child widget; the shell does not perform any geometry management except to
shrink-wrap itself around this child. The child is typically a manager widget, such as a
MainWindow, that is responsible for managing the layout of the primitive components,
such as Labels, Text widgets, ScrollBars, and PushButtons. The items that the user actually
sees and interacts with are descendants of the shell widget because they are contained
within its boundaries.

Aside from managing its single child, the main job of the shell is to communicate with the
window manager on behalf of the application. Without the shell, the application has no idea
what else is happening on the desktop. It is very important for you to understand that the
window manager is a separate application from your own. The visual and physical
interaction between an application and the window manager is usually so close that most
users cannot tell the difference between the two, but the distinction is important from a
programming perspective.

To get an idea of the relationship between the window manager and an application, let’s
compare it with the way a bed is built and how it fits into a room. A bed is made up of a
frame, a mattress, and as many accessories as you want to pile on top of it. The main
window is the mattress; the sheets, pillows, blankets, and stuffed animals you throw on it
represent the user-interface controls inside the main window. The whole lot sits on top of
the bed frame, which is the shell widget. When you push a bed around the room, you’re
really pushing the bed’s frame. The rest just happens to go along with it. The same is true
for windows on the screen. The user never moves an application window, she moves the
shell widget using the window manager frame. The application just happens to move with
it.

You may have to stretch your imagination a little to visualize a bed resizing itself with its
frame, but this is precisely what happens when the user resizes an application. It is the
window manager that the user interacts with during a resizing operation. The window
manager only informs the application about the new size when the user is done resizing.
The window manager tells the shell, the shell communicates the new size to its child, and
the change filters down to the rest of the widgets in the application.

The window manager frame is composed of window decorations that the window manager
places on all top-level windows. These controls allow the user to interactively move a
window, resize it, cause it to redraw itself, or even to close it. Figure 3-23 shows the

Motif Programming Manual 71

Chapter 3: Overview of the Motif Toolkit

standard Motif window manager (mwm) decorations. For information on how to use mwm,
see Motif Volume 3.

The window menu displays a list of window manager functions that allow the user to move,
resize, and exit the application. An application does not have access to the menu itself or
the items within it; similarly, it cannot get handles to the minimize and maximize buttons.
These objects belong to the window manager and act independently from an application.

Motif provides window manager protocols that allow menu items like these to affect an
application. An application can also interact with the window manager using many of the
same types of protocols. You can specify which of the items in the window menu you want
to appear, whether or not there are resize handles on the window frame, and whether or not
you want to allow the user to iconify the window. However, the user is expecting all of the
applications on her desktop to interact consistently with the window manager. This
expectation is magnified by the fact that the user has probably set quite a few resources for
the window manager. Since unexpected interference from an application rarely makes
users happy, you should leave the window manager alone. A technical discussion of the
window manager can be found in Chapter 20, Interacting with the Window Manager.

As we pointed out earlier, it is possible for an application to have more than one
independent window. In addition to the main window, there may be one or more dialog
boxes, as well as popup windows, and even independent application windows that co-exist
with the main window. Each of these cases requires different handling by the window

Resize

Horizontal
resize

Vertical resize handle

Client

Window menu button Title bar Minimize button

Maximize

Figure 3-23: Motif window manager decorations

button

area

handle

Corner

Chapter 3:Overview of the Motif Toolkit

72 Motif Programming Manual

manager, and as a result, there are several different classes of shell widgets. Figure 3-24
shows the class hierarchy of the different types of shell widgets available in the Motif
toolkit. The Shell widget class is another metaclass that speci?es resources and behaviors
inherited by all of its subclasses.

Shells for Menus

In some cases, an application needs to put up a temporary window that is completely free
of window manager interaction. Menus are one such a case. When a user pops up a menu,
she typically wants to make a choice immediately, and she wants that choice to take
precedence over any other window system activity. The window manager does not need to
be involved either to decorate or to position the menu, as it is entirely up to the application.

As its name suggests, the OverrideShell widget class is provided for windows that bypass
the window manager. OverrideShells are like futons; you can place them on the floor
without using a bed-frame (and without being tasteless). It doesn’t make much sense to use
an OverrideShell as the main window for an application, except possibly for a screen-
locking application. The purpose of this type of application is to prevent other applications
from appearing on the screen while the computer is left unattended. Because the window
manager is unaware of the OverrideShell, it does not provide window manager controls,
and it does not interpret window manager accelerators and other methods for bypassing the
lock.

The OverrideShell is a generic Xt-based widgetclass, so the Motif toolkit provides the
MenuShell to service the special interface needs required by the Motif Style Guide. The
MenuShell’s translation table is set to support keyboard traversal, its XmNfocusPolicy is
set to XmPOINTER, and its XmNallowShellResize resource is set to True . The
MenuShell also makes sure that its child is a RowColumn widget. There is little more to be
said about MenuShells, but for an in-depth discussion on the various types of menus you
can use in Motif, see Chapter 19, Menus.

MenuShell

WMShell

OverrideShell

Object

RectObj

WindowObj

Core

Shell

Composite

DialogShellVendorShell TransientShell

ApplicationShell PrintShellTopLevelShell

GrabShell

Key

Motif

Xt Intrinsics

Figure 3-24: The Shell widget class hierarchy

SessionShell

Motif Programming Manual 73

Chapter 3: Overview of the Motif Toolkit

Shells for Window Manager Communication

Shell widgets must communicate with the window manager to negotiate screen real estate
and a wide variety of other properties. The information that is exchanged is defined by the
X Consortium’s Inter-Client Communications Conventions Manual (ICCCM). The
WMShell widget class implements ICCCM-compliant behavior as a standard part of the X
Toolkit Intrinsics, so that it is available to all vendors providing Xt-based widget sets and
window managers. This shell widget is what allows Motif applications to work correctly
with virtually any ICCCM-compliant window manager. In our analogy, a WMShell is a
simple, wire bed-frame that doesn’t have any special attributes, like wheels or rollers.

The VendorShell widget class is subclassed from the WMShell class; it allows vendors,
such as OSF, to define attributes that are specific to their own window managers. In our
analogy, this widget class is like having a bed frame that has attached cabinets, shelves
above the headboard, or nice wheels that glide on the carpet. The Motif VendorShell is
aware of special features of mwm. The widget does not actually add any functionality to the
window manager, but it is designed for applications that wish to interact with it. For
example, all the attributes of window manager decorations can be modified or controlled
through resources specific to the VendorShell.

WMShells and VendorShells are never instantiated directly by an application, but the
features they provide are available to an application. For example, the Motif VendorShell
allows an application to specify the items in the window menu and to control what happens
when the user closes the window from the window menu. Chapter 20, Interaction with the
Window Manager, discusses window manager interactions in more detail.

Shells for Dialogs

You can think of dialog boxes as an application’s secondary windows. Since dialogs are not
meant to remain on the screen for very long, they do not need all of the decorations that are
typically provided by the window manager. However, dialogs are not completely
independent like menus, so they do need to be controlled by the window manager. For
example, if an application is iconified, its dialog boxes are typically iconified as well.
Dialog boxes are usually implemented in Xt using TransientShells.

The DialogShell is a Motif-defined widget class subclassed from the TransientShell and
VendorShell classes. Motif functions for creating dialog boxes tend to hide the shell widget
side of the dialog. When you make a call like XmCreateMessageDialog() , you are
actually creating a MessageBox widget as a child of a DialogShell widget. See Chapter 5,
Introduction to Dialogs, for details on Motif dialogs.

Shells for Application Windows

When you initialize the X Toolkit with a call such as XtOpenApplication() , you are
automatically returned a SessionShell widget to use as the top-level widget in your

Chapter 3:Overview of the Motif Toolkit

74 Motif Programming Manual

application*. If an application uses additional top-level windows, they are typically
TopLevelShells. The differences between these two classes are subtle and deal mostly with
how resources are specified in a resource ?le. In Chapter 7, Custom Dialogs, we explore
some ways in which TopLevelShells can be used as primary windows apart from the main
window.

Dialogs
Some applications can get all their work done in one main window. Others may require
multiple windows, so Motif allows an application to have multiple top-level windows.
However, even applications without this level of complexity need to display transient
windows called dialog boxes. Motif provides two main types of dialog boxes: message
dialogs and selection dialogs. Message dialogs are designed to allow an application to
communicate with the user, while selection dialogs prompt the user to enter different types
of information. It is also possible to create custom dialogs for specialized application
functionality.

Message Dialogs

Message dialogs simply communicate some kind of message to the user and include
buttons that allow the user to respond to the message. For example, a menu item to delete
a ?le might issue a dialog with the message, “Are you sure?” with PushButtons labelled Yes,
No, and Cancel.

The Motif MessageBox widget that is used to create message dialogs actually comes in
seven different guises. The different styles are meant to be used for different types of
messages; some of the styles also display a symbol defined by the Motif Style Guide. Motif
provides convenience routines for creating all of the different styles, so they are often
referred to as if they are distinct widget classes.

ErrorDialog

The ErrorDialog shows a “do not enter” symbol along with a message that the user has
made an error. For example, she may have pressed a PushButton at the wrong time,
made an invalid selection in a List widget, or entered an unknown filename for a Text
widget.

InformationDialog

The InformationDialog displays an “i” along with an informational message. These di-
alogs are usually displayed in response to a request for help.

* The ApplicationShell, XtAppInitialize () and XtVaAppInitialize () are considered deprecated in
X11R6.

Motif Programming Manual 75

Chapter 3: Overview of the Motif Toolkit

MessageDialog

The MessageDialog does not display a symbol by default, although a symbol can be
specified using theXmNsymbolPixmap resource. These dialogs can be used to display
any kind of message.

QuestionDialog

The QuestionDialog shows a question mark symbol with a question that the user needs
to answer. Questions are typically of the yes/no form, so the possible answers typically
includeYesandNo. A QuestionDialog should not be used for a question that requires
an answer in the form of text or a selection from a list of some kind.

TemplateDialog

Motif provides a TemplateDialog to allow an application to create a custom dialog. By
default, the TemplateDialog does not display a symbol or a message, but these items
can be added to the dialog.

WarningDialog

The WarningDialog displays an exclamation mark along with a message that warns the
user about a particular situation. These dialogs are commonly used to make sure that
the user wants to do something destructive, like delete a ?le or exit an application with-
out saving data.

WorkingDialog

The WorkingDialog displays an hourglass with a message indicating that the applica-
tion is busy processing a lengthy computation or anything else that requires the user to
wait.

Figure 3-25 shows a typical QuestionDialog in an application. For more information on
message dialogs, see Chapter 5, Introduction to Dialogs.

Selection Dialogs

Selection dialogs are meant to provide the user with a list of choices of some sort. Motif
provides different styles of selection dialogs for different purposes. For example, a

Figure 3-25: A QuestionDialog

Chapter 3:Overview of the Motif Toolkit

76 Motif Programming Manual

SelectionDialog presents a ScrolledList containing an arbitrary list of choices that can be
selected with the mouse. The dialog also contains TextField widget that can be used to type
in a choice which may or may not also be on the list. Figure 3-26 shows a SelectionDialog.

The PromptDialog, as shown in Figure 3-27 is useful for prompting the user to enter some
information.

Figure 3-26: A SelectionDialog

Figure 3-27: A PromptDialog

Motif Programming Manual 77

Chapter 3: Overview of the Motif Toolkit

The FileSelectionDialog is a more complex cousin to the SelectionDialog. It is used to
select a ?le in the directory structure. A FileSelectionDialog is shown in Figure 3-28.

The CommandDialog is an extension of the PromptDialog in that items input to the text
entry field are stored in a ScrolledList. The intent is for the user to provide the application
with commands; the list region contains a history of the commands that have already been
typed. The user can select an item in the history list to reissue a previous command. Figure
3-29 shows an example of a CommandDialog.

For detailed information about all of the different Motif selection dialogs, see Chapter 6,
Selection Dialogs.

Figure 3-28: A FileSelectionDialog

Figure 3-29: A CommandDialog

Chapter 3:Overview of the Motif Toolkit

78 Motif Programming Manual

Custom Dialogs

There are many types of functionality that are not covered by the standard Motif dialog
types. Fortunately, it is fairly easy to create your own dialogs. If you need to create a custom
dialog, there are some guidelines in the Motif Style Guide that you should follow. At the
highest level, all dialogs are broken down into two major components: the control area (or
work area) and the action area. These areas are conceptual regions that may be represented
by multiple widgets.

In a message dialog, the control area is used only to display messages, but as you can see
from the selection dialogs, this area can be used to provide a variety of control elements.
For example, the SelectionDialog uses a List widget and a TextField widget. It is also
common for a custom dialog to display an array of PushButtons or ToggleButtons. A
communications program might have a setup dialog that allows the user to set parameters
such as baud rate, parity, start and stop bits, and so on, using an array of ToggleButtons.
The controls in the control area provide information that is used by the application once an
action area button is pressed.

Figure 3-30 shows a custom dialog with a control area that contains many items. Chapter
7, Custom Dialogs, discusses how to build customized dialogs, which may require the
direct creation of widgets in the control area. Motif dialogs, on the other hand, do not

Motif Programming Manual 79

Chapter 3: Overview of the Motif Toolkit

require you to create any of the objects in the control area. The widgets displayed in that
part of the dialog are always predefined and automatically created.

Dialog Modality

One important concept to be aware of when it comes to dialogs is modality. In general,
GUI-based programs are expected to be modeless. What this ultimately means is that the
user, not the application, should be in control. The user should be able to choose from an
array of application functions at any time, rather than stepping through them in a
prearranged sequence, under the application’s control.

Of course, there are limits to modelessness. Sometimes one thing has to happen before
another. Often, sequencing can be taken care of simply by nesting graphical user interface
elements. For example, faced with the main window, the user may have only a choice of
menu titles; once she pulls down the file menu, she may have a choice of opening, closing,
saving, renaming, or printing the contents of a ?le. At some point, though, she goes far
enough down a particular path that her choices need to be constrained.

With respect to dialogs, modality allows a dialog box to acquire input before the user can
go back to working with the application. For example, if the user asks to load a ?le, she may
need to specify a filename in a dialog before she can edit the ?le. A modal dialog requires
an answer immediately, by disallowing input to any other part of the application until it is

Figure 3-30: A custom dialog

Chapter 3:Overview of the Motif Toolkit

80 Motif Programming Manual

either satisfied or cancelled. There may be other cases, though, where dialogs are modeless.
They can be left up on the screen without an immediate response, while the user interacts
with the main application window or another dialog.

Pixmaps
In this section, we are going to take a closer look at how Motif supports graphic images.
The Motif Label widget and all of its subclasses can display pixmaps as their labels. The
MessageBox provides the XmNsymbolPixmap resource for specifying the image that is
displayed in a dialog.

The Motif toolkit provides a number of routines for manipulating pixmaps.
XmGetPixmapByDepth() and XmGetPixmap() both create a pixmap and cache it, so
that it can be reused by an application. XmGetPixmapByDepth() provides a way to
specify the depth of the pixmap that is created. XmGetPixmap() always creates a pixmap
that has the same depth as the screen on which image is created. The caching mechanism
provided by these routines is on a per-client basis; different processes cannot share
pixmaps.

Whenever a new pixmap is created using one of these functions, the toolkit retains a handle
to the pixmap in case another call is made requesting the same image. If this occurs, the
function returns the exact same pixmap that was returned to the original requester and
increments an internal reference counter. In order to keep a clean house, whenever you
retrieve a pixmap using either XmGetPixmap() or XmGetPixmapByDepth() , you
should call XmDestroyPixmap() when you no longer need the image. This function
decrements the reference count for the pixmap. If the reference count reaches zero,
XmDestroyPixmap() actually calls XDestroyPixmap() to discard the pixmap.

XmGetPixmapByDepth() takes the following form:

Pixmap XmGetPixmapByDepth(Screen *screen
char *image_name ,
Pixel foreground ,
Pixel background ,
int depth)

The image_name can either be a filename or the name of an image registered using
XmInstallImage() , which we are going to describe shortly. The background and
foreground colors and the depth of the pixmap are specified by the corresponding
parameters.

XmGetPixmap() takes the same form as XmGetPixmapByDepth() , minus the depth
parameter. XmGetPixmap() creates a pixmap that has the same depth as the given
screen , so you cannot rely on XmGetPixmap() to create a single-plane pixmap.* In
Motif, you can use XmGetPixmapByDepth() to create a bitmap; you can also use an Xlib
routine, XCreateBitmapFromData() .

Motif Programming Manual 81

Chapter 3: Overview of the Motif Toolkit

Whenever XmGetPixmapByDepth() or XmGetPixmap() is called, it looks in the cache
for a previously-created pixmap that matches the given name, colors, and depth. If the
routine finds a match, it returns the cached pixmap and increments the reference count for
the image. Since the pixmaps are cached, two separate parts of an application could have a
handle to the same pixmap.

The image_name parameter is the key to where the routines get the data for the pixmap.
As we just mentioned, this parameter can either be a filename or a symbolic name
previously registered using XmInstallImage() . Both XmGetPixmap() and
XmGetPixmapByDepth() use the following algorithm to determine what pixmap to
return or create:

1. Look in the pixmap cache for an image that has the samescreen , image_name ,
foreground , background , anddepth as the specified image. If there is a match,
return the pixmap.

2. If there is no match in the pixmap cache, look in the image cache for an image that
matches the specifiedimage_name . If there is a match, use the image to create the pix-
map that is returned.

3. Otherwise, interpret theimage_name as a filename, read the pixmap data directly out
of that ?le, and create the pixmap.

The first step is fairly straightforward. The second step checks the image cache that is used
internally by the Motif toolkit. Motif defines a number of images that you can use in an
application. Table 3-1 lists the image names predefined by the toolkit.

* The terms single-bit and single-plane are interchangeable; they imply a pixmap with only two colors: 0 and 1.
While the term bitmap usually refers to a single-plane pixmap, this is not necessarily true outside of the X social
culture.

. Table 3-1: Predefined Image Names in the Motif Toolkit

Image Name Description

background Solid background tile

25_foreground A 25% foreground, 75% background tile

50_foreground A 50% foreground, 50% background tile

75_foreground A 75% foreground, 25% background tile

vertical_tile Vertical lines tile (Motif 1.2.3 onwards)

horizontal_tile Horizontal lines tile (Motif 1.2.3 onwards)

horizontal As horizontal_tile (Motif 1.2.2 backwards compatibility)

vertical As horizontal_tile (Motif 1.2.2 backwards compatibility)

slant_left Left slanting lines tile

slant_right Right slanting lines tile

menu_cascade A rightwards pointing arrow (Motif 2.1)

Chapter 3:Overview of the Motif Toolkit

82 Motif Programming Manual

Motif also installs a number of images at run-time to support dialog images and other
random pixmaps. None of these image names are publicly available. You can install your
own images by predefining them and loading them into the image cache using
XmInstallImage() , which takes the following form:

Boolean XmInstallImage (XImage image , char * image_name)

The image parameter is a pointer to an XImage data structure that has been previously
created or, more commonly, statically initialized by the application. It is possible to create
an image dynamically from an existing window or pixmap using XGetImage() , but this
is not the way the function is typically used.

If you attempt to install an image using an image_name that matches one already in the
cache, the function returns False and the image is not installed. Otherwise, the function
returns True . You can uninstall an image by calling XmUninstallImage() . Once the
image is uninstalled, it cannot be referenced by name any more and a new image may be
installed with the same name. The XImage structure is not copied by
XmInstallImage() , so if the image pointer you pass has been allocated using
XCreateImage() or XGetImage() , you must not free the data until after you call
XmUninstallImage() .

If XmGetPixmap() or XmGetPixmapByDepth() finds a match in the image cache, it
creates the pixmap based on the image data, not on the image itself. As a result, the pixmap
that is created is not affected by the image being uninstalled by XmUninstallImage() .

If the pixmap retrieval routines do not find a match in the image cache, the pixmap is loaded
from a ?le. If image_name starts with a slash character (/), it is taken as a full pathname.
Otherwise, the routines look for the ?le using a search path. On POSIX systems, the
environment variable XBMLANGPATH can be set to specify a desired directory in which to
search for bitmap files. If this variable is not set, the pathname used is based on the values
of the XAPPLRESDIR, HOME, and LANG environment variables. See the reference page in
Volume 6B, for complete details on the search path that is used.

When XmGetPixmap() or XmGetPixmapByDepth() looks in the pixmap cache for a
image name, the pathname must match completely for the routine to return a cached image.

menu_cascade_rtol A leftwards pointing arrow (Motif 2.1)

menu_checkmark A tick mark (Motif 2.1)

menu_dash A horizontal line (Motif 2.1)

collapsed A rightwards pointing filled arrow (Motif 2.1)

collapsed_rtol A leftwards pointing filled arrow (Motif 2.1)

expanded A filled arrow pointing downwards (Motif 2.1)

. Table 3-1: Predefined Image Names in the Motif Toolkit (continued)

Image Name Description

Motif Programming Manual 83

Chapter 3: Overview of the Motif Toolkit

The ?le xlogo64 will not match a previously-loaded pixmap that has the name /usr/X11R6/
include/bitmaps/xlogo64. If you do not need to worry about using different pixmaps for
different environments, we recommended that you always specify a full pathname to these
routines to be assured that you get the desired ?le.

Color
Color plays an important role in a graphical user interface. It appeals to the senses, so it can
provide an aesthetic quality, while at the same time it can be used to convey information to
the user. However, for all the power of color, it is frequently abused by applications. A
color combination that appeals to some people may offend others. The safest bet with color
is to avoid hard-coding any use of color in your application and provide enough flexibility
so that the user can configure colors in a resource ?le or interactively using the application.
Of course, many applications are based on the use of color, so this sweeping generalization
only applies to those parts of an application that are not dependent on color. In any case,
you should be wary when providing information or state purely through the use of color: a
color-blind user may not notice the differences; color-blindness is not a trivial or rare issue.

The Motif widget set provides a number of widget resources that specify colors. All of the
Motif widgets use the XmNforeground and XmNbackground resources. Although every
widget class makes different use of the XmNbackground and XmNforeground resources,
text is typically rendered in the foreground color and everything else is shown using the
background color. Some widgets provide additional color resources for particular aspects
of their appearance. For example, ToggleButtons use the XmNselectColor resource for
the square/diamond selection indicator, PushButtons use XmNarmColor as their
background when they are armed, and ScrollBars use XmNtroughColor to set the color
of the area behind the slider and directional arrows. In Motif 2.1, gadgets can also be
colored in much the same way that their widget equivalents can; in Motif 1.2, however,
their colors are inherited from their Manager parent.

The XmNborderColor resource is another resource that can be specified for any widget,
as it is defined by the Core widget class. Since Motif widgets typically have a border width
of 0, this resource is rarely used. The XmNhighlightColor resource speci?es the color
of the highlighting rectangle that is displayed around the interface component that has the
keyboard focus. This resource is defined by the Gadget, Manager, and Primitive
metaclasses, so it can be specified for any Motif component.

Perhaps the most troublesome of all the color resources are XmNtopShadowColor and
XmNbottomShadowColor . These are the colors that give Motif widgets their 3D
appearance on a color display. If set inappropriately, these colors can ruin the aesthetics of
an interface. These resources are set automatically by the toolkit based on the background
color of the object, so the colors are not normally a problem. If the background color of a
PushButton is blue when it is created, the toolkit automatically calculates the

Chapter 3:Overview of the Motif Toolkit

84 Motif Programming Manual

XmNtopShadowColor to be a slightly lighter shade of blue and the
XmNbottomShadowColor to be a slightly darker shade.

The problems arise if you want to change the background color of a widget dynamically
because the toolkit does not automatically change the shadow colors for you. So if you
change the XmNbackground of the PushButton to red, the top and bottom shadow colors
remain the different shades of blue. In Motif 1.2, note that the shadow resources are only
used by widgets, not gadgets: if you dynamically change the background color of a
manager widget, it automatically recalculates the top and bottom shadow colors and
redisplays its gadgets correctly. Many consider the fact that this process is not automated
for widgets to be a design flaw in the Motif toolkit.

If you need to change the background color of a widget dynamically, you can recalculate
the shadow colors and set the resources yourself. You can use the XmChangeColor()
routine, which takes the following form:

void XmChangeColor (Widget widget , Pixel background)

This routine changes all the foreground color, shadow colors, and select color for the
specified widget based on the background color. The select color only applies to
ToggleButtons (XmNselectColor) and PushButtons (XmNarmColor).

The routine XmGetColors() can be used to query the colors which Motif
calculates . XmGetColors () takes the following form:

void XmGetColors(Screen * screen ,
Colormap colormap ,
Pixel bg,
Pixel * fg ,
Pixel * top_shadow ,
Pixel * bottom_shadow ,
Pixel *select)

This routine takes a colormap and a background color and calculates and returns an
appropriate foreground color, top and bottom shadow colors, and select color. Once you
have the colors, you could specify the appropriate resources for the widget.

A basic problem behind setting and getting colors for widgets is that what you get for a
given pixel value depends on the colormap. A pixel is simply an index value into an array
of color definitions (a colormap). The problem with colormaps is that you never know what
colormap is associated with any particular widget.

By calling XtVaSetValues() using the type-converting resource, XtVaTypedArg , we
defer the problem to the toolkit and its string-to-color type converter. The toolkit allocates
the color out of the colormap already owned by the toolkit and sets the background color
accordingly. Then we can get the actual pixel value and the colormap using
XtVaGetValues() . We pass the colormap and the background pixel value to

Motif Programming Manual 85

Chapter 3: Overview of the Motif Toolkit

XmGetColors() to calculate the rest of the colors. Once we have obtained all of the
colors, we can set them using XtVaSetValues() .

The Label widget and its subclasses cannot display text using more than one color.
However, you can create a multi-plane pixmap and render various strings directly into it
using XDrawString() . You can use multiple colors by changing the foreground color in
the GC using XSetForeground() or XChangeGC() . Once you have the pixmap, you can
use it to set the XmNlabelPixmap resource for the widget.

The text of the entries in a List widget is rendered using the widget’s XmNforeground
color. You cannot change the color of individual items in a List widget. The
XmNbackground of the List affects all areas of the widget not associated with the entries
themselves. The text in a Text widget or a TextField widget is also displayed using the
XmNforeground color; there is no way to display text using different colors in these
widgets. When a List widget or Text widget is the direct child of a ScrolledWindow, the
ScrollBars automatically match the background color of the List or Text widget.

Changes in Motif 2.1
Release 2.1 of the Motif toolkit introduces a number of new features, as well as many
enhancements to existing functionality. This section summarizes all of the changes in Motif
2.1 and refers you to other sections in the book for more detailed information on specific
changes. We also describe the changes that we made to the example programs in the book
to make them accurate with respect to Motif 2.1.

General Toolkit Changes

Gadget Resources

Gadgets can now be painted independently, and no longer directly inherit their color
appearance from the Manager parent. Foreground, background, top and bottom shadow,
and highlight colors are now included in the gadget cache. Similarly cached are the top and
bottom shadow pixmaps, and the highlight pixmap.

Traits

A Trait is an encapsulation of a piece of logical widget behavior. It defines a set of methods
for querying and setting this behavior, whatever it may be. Different widget classes may
share in common the behavior, even though their class inheritance graphs are only vaguely
related. To be more concrete, if we consider a ComboBox and a Text widget, the class
hierarchy for the ComboBox does not derive through a Text class directly, and yet
considered logically, because the ComboBox and the Text widget both have a value which
is a string, there is sufficient in common such that we could define methods to read or write

Chapter 3:Overview of the Motif Toolkit

86 Motif Programming Manual

the value irrespective of which widget instance we are actually dealing with. Such methods
already exist in Motif 2.0, and are known as a Trait.

Traits are named, and there is a standard routine for querying a widget to determine whether
it supports a given trait. And thus there are two ways of setting the value of a text widget:
we can use the older XmTextSetString() functional interface, or we can fetch the
XmQTaccessTextual trait from the widget concerned, then use the setValue() routine
of the trait. The beauty of the second method is that it will also work for other widgets in
the Motif set which are logically also Text-like in some of their behavior.

However, Traits are really the domain of the widget author, to provide consistency in
behavior between logically related widget classes. Mention of particular Traits will be
made if and when necessary, otherwise you are referred to the Widget Writer’s Guide in
the official documentation.

Renditions and RenderTables

The XmFontList data type and associated functions are now considered deprecated. In
Motif 1.2, the appearance of compound strings depended upon a small number of widget
attributes, of which the XmNfontList resource is the most important. The mechanisms for
inheriting compound string appearance characteristics relied solely upon default
XmFontList values derived usually from the containing VendorShell or BulletinBoard. In
Motif 2.0, there is the new entity called the XmRendition , which is a named (tagged)
object that consists of a complete set of appearance resources, including coloration, font,
underline and strike-through settings. An XmRendition is a shareable object which is
independently reference counted. An XmRenderTable is simply a set of XmRendition
objects; compound strings are rendered by comparing tags associated with components in
the string against tagged XmRendition objects in the XmRenderTable . The means
whereby a widget inherits compound string rendering information is now rationalized
through the Trait mechanisms: a parent widget may choose to implement a Trait which
provides default render table data to its descendants. The BulletinBoard, VendorShell, and
MenuShell classes implement such a Trait.

The appearance of a compound string can now be specified through a whole group of
attributes that can be manipulated as a single set. Compound strings may now be multi-
colored as a result.

An XmRendition object is a pseudo-widget: although not true widget classes, Renditions
and RenderTables may be specified in resource files, as well as in code. Widget classes
which used to support the XmNfontList now also support an XmNrenderTable
resource. For backwards compatibility, the XmNfontList resource continues to persist,
although it is internally implemented through the new XmRenderTable type.

It is not necessary to precisely specify all attributes for each and every Rendition within a
RenderTable: attributes may be given the value XmAS_IS, which simply means that the

Motif Programming Manual 87

Chapter 3: Overview of the Motif Toolkit

value of the attribute is inherited from Renditions which are placed earlier in the
RenderTable.

Renditions and RenderTables are discussed at length in Chapter 24.

TabLists

In Motif 1.2, creating tabular or multi-columnar data within a widget could usually only be
performed through some code by the programmer which required careful calculations
based upon the size of the current font. Motif 2.0 introduces the notion of an XmTabList ,
which is a set of XmTab objects. An XmTab describes a logical offset across a widget: it
consists of a floating point quantity, a unit in which the quantity is expressed (inches, font
units, millimetres, and so forth), and an offset model, which specifies whether the Tab value
is counted in terms of absolute distance across the widget, or relative to a previous XmTab
object in the XmTabList .

The new XmRendition object contains an XmTabList attribute. The creation of a multi-
column list can now be achieved by embedding tab component separators within the
compound strings of the list: each tab separator marks the beginning of a new column entry,
where that column appears on the screen depends on the XmNtabList attribute of the
Rendition used to render that portion of the compound string. Tabs and TabLists are
covered as part of the discussion in Chapter 25, Compound Strings.

Compound Strings

Compound strings have been re-modelled to use the new XmRendition object. In order to
do this, new XmString component types have been defined.

The compound string segments XmSTRING_COMPONENT_RENDITION_BEGIN and
XmSTRING_COMPONENT_RENDITION_END can be embedded into a compound string in
order to associate portions of the string with particular Rendition specifications.

To enable tabular layout of compound strings, the new XmSTRING_COMPONENT_TAB
segment is defined, and this marks a column boundary within the string. How this is
rendered will depend upon the value of the XmTabList attribute associated with the
current Rendition in force.

Additionally, the compound string segments XmSTRING_COMPONENT_LAYOUT_PUSH and
XmSTRING_COMPONENT_LAYOUT_POP can be used to embed layout direction
specifications into the string.

XmStringComponentCreate () has been augmented to create the new component types.

Compound Strings are discussed in Chapter 25.

Chapter 3:Overview of the Motif Toolkit

88 Motif Programming Manual

Parse Mappings and Parse Tables

Strings and compound strings can be dynamically manipulated by new table-driven parsing
routines. An XmParseMapping represents an entry in the table, an XmParseTable is the
table itself. Each entry in the table specifies a transformation: what to compare against in
the original input string, what to replace any matching occurrence with, and so forth. The
XmParseMapping object can either perform simple substitutions by supplying fixed
substitution patterns, or it can specify further substitution routines which dynamically
modify the input depending on circumstances.

Typically, parse tables and their constituent parse mapping objects are used by passing
them as parameters to the XmStringParseText (), XmStringUnparse (), and
XmStringGenerate () functions.

Essentially, parse tables are simply filters which provide programmatic control over the
way in which strings are converted into compound strings, or vice versa.

Parse Mappings are discussed in Chapter 25, Compound Strings.

Layout Direction

In Motif 1.2, although compound strings could be reversed by suitable setting of the
XmNstringDirection resource, the layout of components in which they were rendered
could not. The new Motif 2.0 XmNlayoutDirection resource rectifies the issue: it is
possible to reverse the layout of a ComboBox, for example, so that the constituent arrow
button is drawn to the left of the text. This could be performed at user request either for
reasons of Internationalization or handedness. Layout direction resources are added to both
the Manager and Primitive base classes: all Motif widgets therefore inherit the control.

Uniform Transfer Model

In Motif 1.2, different styles of communication between widgets required separate code to
implement. Thus the codes to implement data transfer through the ClipBoard, to the
primary or secondary selection, and through Drag and Drop would not necessarily share
much in common in terms of the functions required to achieve the desired effect. In Motif
2.0, the disparate communication interfaces have been subsumed into a common Uniform
Transfer Model.

Under the Model, two new callbacks are added to the system: an XmNconvertCallback ,
and an XmNdestinationCallback . The convert callback is associated with the source
of the data, and is both responsible for exporting the data in the format required by the
destination, and in furnishing a list of formats in which the source is prepared to export that
data. The destination callback communicates with the source in order to determine the best
format in which to receive the data, and it arranges for the data to be handled appropriately
when it arrives by setting up a transfer procedure to perform the task. The simplest

Motif Programming Manual 89

Chapter 3: Overview of the Motif Toolkit

destination callback could in fact request data in a fixed format from the source without
bothering to request the list of supported forms.

The programmer is not required to implement convert and destination callbacks for all the
various types of data transfer which Motif supports. Widgets have mechanisms which
utilize the Trait system in order to effect default data transference. A programmer only
needs to write convert or destination callbacks where the data is to be transferred in a
manner which differs from the built-in target formats.

The Uniform Transfer Model is discussed in Chapter 23.

Automatic Popup Support

In the past, in order to popup a context sensitive menu, it was necessary to write event
handler code to intercept ButtonPress events, followed by the appropriate code to pick and
display the relevant menu. In Motif 2.0, the RowColumn widget has been enhanced to
provide auto-popup behavior, and the decision making process of selecting the relevant
menu to display has been encapsulated in a new callback, the
XmNpopupHandlerCallback , built into the Manager and Primitive classes. Now it is
only necessary to provide the callback, filling in an appropriate field of the callback data,
in order to specify the required menu: the housekeeping tasks of event interception and
menu display are built-in.

Specific Widget Changes
Motif 2.1 introduces a number of new widget classes, as well as including new resources
for classes previously defined.

VendorShell

The VendorShell has the new resources XmNbuttonRenderTable ,
XmNlabelRenderTable , and XmNtextRenderTable . These supersede the deprecated
XmNbuttonFontList , XmNlabelFontList , XmNtextFontList resources
respectively.

For finer control over the X input contexts which are created in Internationalized
applications, the resource XmNinputMethod is provided: the value XmPER_SHELL creates
one input context per shell hierarchy, the value XmPER_WIDGET creates one for each
widget which requests one.

VendorShell also supports the XmNlayoutDirection resource. The widget does not use
this resource itself, but maintains and supplies the resource as a default for whichever
descendant in the widget hierarchy lacks an explicit value.

Chapter 3:Overview of the Motif Toolkit

90 Motif Programming Manual

In Motif 2.0, XmNshellUnitType is considered deprecated: it is replaced by the
XmNunitType resource. This also acts as a default value for widget descendants requiring
resolution information.

ArrowButton

The XmNdetailShadowThickness resource allows the programmer to specify the
shadow thickness inside the triangle of the ArrowButton. The ArrowButtonGadget also
supports the resource.

BulletinBoard

The BulletinBoard has the new resources XmNbuttonRenderTable ,
XmNlabelRenderTable , and XmNtextRenderTable which superseded the deprecated
XmNbuttonFontList , XmNlabelFontList , XmNtextFontList resources
respectively.

ComboBox

ComboBox is a new widget as of Motif 2.0, combining direct textual input with the
convenience of list selection.

Container

Container is a new widget in Motif 2.0. It organises IconGadget children in a variety of
layout styles, including a Tree format.

Display

The XmDisplay object has suffered a number of changes in order to interface Motif with a
CDE desktop. Most of the resources alter the appearance of Toggles, and the shadowing on
Buttons, and are described fully in Volume 6B.

The most important of the new resources are the XmNnoFontCallback and
XmNnoRenditionCallback lists. Whenever an attempt is made to render a compound
string, if font or rendition information is found to be absent, a callback can be supplied by
the programmer which can attempt to find an alternative. This is a significant improvement
over Motif 1.2, where the system itself would decide on an appropriate default font without
recourse to any intelligent intervention.

DrawingArea

DrawingArea now supports the new XmNconvertCallback and
XmNdestinationCallback resources associated with the Uniform Transfer Model. The
DrawingArea itself does not define any export target formats.

Motif Programming Manual 91

Chapter 3: Overview of the Motif Toolkit

FileSelectionBox

In Motif 2.0 and later, the search pattern and base directory path can be displayed in
separate text fields, as opposed to being concatenated together and displayed in a single
field. The resource XmNpathMode controls whether this new feature is enabled.

Gadget

The appearance resources XmNbackground , XmNbackgroundPixmap ,
XmNbottomShadowColor , XmNbottomShadowPixmap , XmNhighlightPixmap ,
XmNtopShadowPixmap are added so that Gadgets no longer strictly inherit their colors
from the Manager parent.

As for the Manager and Primitive base classes, Gadget also supports
XmNlayoutDirection to control the order in which components of the object are laid
out.

GrabShell

A new widget in Motif 2.0. GrabShell is a shell widget which grabs the pointer and
keyboard when it is mapped. It therefore directs focus to its child, and is used by the
ComboBox to implement its popup list.

IconGadget

New in Motif 2.0, the IconGadget can display both textual and pixmap information
simultaneously. The gadget is closely associated with the Container. Each IconGadget
supposedly represents pictorially some application object of some kind, and the Container
organises the layout and selection of the given objects. Extra “detail” data can be associated
with an IconGadget, and the Container can display this extra information in a tabular
format.

Label

The XmNfontList resource is deprecated, and is superseded by the XmNrenderTable
resource. Similarly for LabelGadget.

List

The List supports keyboard matching of items in Motif 2.0 and later. If the resource
XmNmatchBehavior is enabled, characters typed are compared with the first character of
each item, and the new currently selected item is reset accordingly. The color of the
selected item itself can now be specified through the XmNselectColor resource.

The set of selected positions can be manipulated through the new
XmNselectedPositions , XmNselectedPositionCount resources.

Chapter 3:Overview of the Motif Toolkit

92 Motif Programming Manual

The way in which the user selects items in the list is controllable through the
XmNselectionMode resource. In XmNORMAL_MODE, navigating the list using the keyboard
can select the item under the location cursor. In XmADD_MODE, navigating through the list
has no side effects with respect to the selected item set.

The List supports the XmNdestinationCallback in order to make the widget partake in
the Uniform Transfer Model.

MainWindow

From Motif 2.0, the routine XmMainWindowSetAreas () is marked as deprecated. The
programmer should set the XmNcommandWindow, XmNmenuBar, XmNmessageWindow,
XmNworkWindow, XmNhorizontalScrollBar , XmNverticalScrollBar resources
directly using the standard Xt mechanisms.

Manager

New support for automatic popup menu control is provided through the Motif 2.0
XmNpopupMenuHandlerCallback .

The Motif 2.0 XmNlayoutDirection resource facilitates automatic layout control.

MenuShell

The XmNbuttonFontList and XmNlabelFontList resources are deprecated, and are
superseded by the XmNbuttonRenderTable and XmNlabelRenderTable resources.
Similarly deprecated is the XmNdefaultFontList resource, although there is no
replacement XmNdefaultRenderTable resource.

Notebook

Notebook is a new widget in Motif 2.0. It simply lays out its children as though they are
pages in a book.

PanedWindow

As of Motif 2.0, the PanedWindow now officially supports a horizontal configuration: set
the XmNorientation resource to XmHORIZONTAL or XmVERTICAL to taste.

Primitive

The XmNlayoutDirection , XmNconvertCallback resources are added to this base
class.

To support automatic context-sensitive menus, the XmNpopupHandlerCallback has
been added to the system.

Motif Programming Manual 93

Chapter 3: Overview of the Motif Toolkit

PrintShell

The PrintShell interfaces with the X11R6 X Print (Xp) extensions. A widget hierarchy can
be printed by creating that hierarchy underneath a PrintShell, followed by appropriate code
to invoke the printing. Printing can be either synchronous, or asynchronous, and the
programmer can decide, by setting appropriate widget resources, whether the output is to
consist of the contents of the widgets concerned, or whether it is more of a screen snapshot
of the widgets themselves.

RowColumn

A new resource, XmNtearOffTitle , allows the programmer to specify a title for a tear-
off menu.

Scale

As of Motif 2.0, the Scale widget supports automatic tick marks. The function
XmScaleSetTicks () evenly spaces marks of various sizes along the edge.

The Scale can be configured as to whether it responds to user input through the new
XmNeditable resource: for a read-only scale, set the resource to false.

Arrows can be placed at either or both ends of the Scale through the XmNshowArrows
resource, and the general appearance of the slider is configurable through
XmNsliderMark : this can be configured to appear in various etched rectangle
arrangements, as a circle, or as a thumb mark.

The size of the slider is configurable through the XmNsliderSize resource. This resource
is undocumented by the official channels, and thus there is no official guidance to its usage.

The color of the slider is also tunable: it can either be based upon the foreground or
background of the Scale, or upon the existing trough color. The XmNsliderVisual
resource controls this aspect of behavior.

The Scale can behave as a thermometer, with the slider anchored at one end rather than
floating in the middle. XmNslidingMode is the resource required to configure this setting.

Lastly, as of Motif 2.0, the XmNfontList resource is deprecated, and replaced with the
newer XmNrenderTable resource. The Scale also supports the XmNconvertCallback
list in order to participate in the Uniform Transfer Model.

Screen

The XmScreen object has been enhanced to provide a greater control over the way in which
Motif allocates colors. The XmNcolorAllocationProc resource allows the programmer
to specify a procedure to perform the allocation. The default is the standard
XAllocColor () routine.

Chapter 3:Overview of the Motif Toolkit

94 Motif Programming Manual

Similarly, the algorithm by which Motif calculates default foreground, background, and
shadow colors is also now tunable through the XmNcolorCalculationProc resource.

The allocation of pixmaps can be controlled through the XmNbitmapConversionModel
resource: by default (XmMATCH_DEPTH) pixmaps are created such that the depth matches
the widget for which they are allocated. Setting the value to XmMATCH_DYNAMIC converts
loaded bitmap files to a pixmap depth of 1.

Also on the subject of pixmaps, the XmNinsensitiveStipplePixmap resource
provides a stipple to use when making widgets appear insensitive. This is mostly used
internally by the Gadget utilities.

Motif as of version 2.0 supports the notion of color objects: the XmNuseColorObject
resource enables the feature, such that if a color is dynamically altered, all widgets which
reference the color are changed as a side effect. Clearly, this resource is part of the CDE
enhancements to Motif: it allows the desktop to change the whole style of color of an
application without having to modify the entire widget hierarchy.

ScrollBar

Much of the enhancements associated with the Scale are in fact related to the ScrollBar:
XmNeditable , XmNshowArrows , XmNsliderMark , XmNsliderVisual ,
XmNslidingMode are all newly supported as of Motif 2.0.

The resource XmNsnapBackMultiple controls the behavior of the ScrollBar if the user
drags the mouse outside the bounds of the widget. It specifies a distance, which if exceeded,
causes the ScrollBar to snap back to its pre-drag settings.

ScrolledWindow

As of Motif 2.0, the ScrolledWIndow (and derived classes) supports automatic drag
through the resource XmNautoDragModel .

SpinBox and SimpleSpinBox

Two new widget classes, the first available as of Motif 2.0, the second from Motif 2.1,
which allows the user to rotate through a range of values. SpinBox is the general purpose
manager, into which any number of Text components are added. It rotates the values
associated with the Text component which currently has the focus. SimpleSpinBox is a pre-
packaged unit that contains a single built-in Text component. The range of values
associated with any Text is specified through constraint resources. Rotation of the values
is achieved by pressing on an ArrowButton which the SpinBox components automatically
add for the purpose.

Motif Programming Manual 95

Chapter 3: Overview of the Motif Toolkit

Text and TextField

The number of lines within the Text is now available through the XmNtotalLines
resource, added as of Motif 2.1.

In both widget classes, the XmNfontList resource is obsolete, replaced with the
XmNrenderTable resource, and the XmNdestinationCallback is added in order to
interface with the Uniform Transfer Model.

ToggleButton and ToggleButtonGadget

The Toggle widgets have been reworked in order to provide consistency of appearance
under the CDE environment.

The resource XmNdetailShadowThickness controls the thickness of the shadow on the
Toggle indicator.

In Motif 2.0 and later, a Toggle may be in one of three states: set, unset, and indeterminate.
By default, the Toggle holds two states, unless the resource XmNtoggleMode is set to
XmTOGGLE_INDETERMINATE, which enables the third state. The resource
XmNindeterminateInsensitivePixmap and XmNindeterminatePixmap are
pixmaps displayed when the toggle is in the third indeterminate state.

In Motif 1.2, the resource XmNindicatorOn is a Boolean value; in Motif 2.0 and later, this
becomes an enumerated type, and specifies not just whether the indicator is visible, but also
its appearance: a check box, shadowed box, check (tick) mark, cross, and so on become
available. This blurs the distinction with the resource XmNindicatorType , which is
extended to include XmONE_OF_MANY_ROUND, XmONE_OF_MANY_DIAMOND, indicating a
round or diamond shaped indicator.

The resource XmNset also changes type from Boolean to an enumeration. The valid range
is now XmUNSET, XmSET, and XmINDETERMINATE.

Lastly, an XmNunselectColor is added from Motif 2.0 onwards to complement the
XmNselectColor resource.

Changes to the Example Programs
All of the example programs in this book have been updated to Motif 2.1 and X11R6. For
example, calls to manipulate compound strings and font lists have been
replaced with calls to handle the new render table type .

Changes involving new Motif 2.1 functions and resources are described in detail when each
example is presented.

Chapter 3:Overview of the Motif Toolkit

96 Motif Programming Manual

Summary
The Motif widget set gives you a great deal of flexibility in designing an application. But
with this flexibility can come indecision, or even confusion, about the most effective way
to use these objects. If you want to give a user a set of exclusive choices, should you use a
PulldownMenu, a dialog box that contains ToggleButtons arranged in a CheckBox, or a
List widget? There is no right answer--or perhaps it is better to say that the right answer
depends on the nature of the choices and the flow of control in your application.

Designing an effective user-interface is an art. Only experience and experimentation can
teach you the most effective way to organize an application. What we can do in this book
is teach you how to use each widget class and give you a sense of the tradeoffs involved in
using different widgets. In this chapter, we’ve given you a broad overview of the Motif
toolkit. Subsequent chapters delve into each widget class in detail. You should be able to
read the chapters in any order, as the needs of your application dictate.

Motif Programming Manual 97

Chapter 1

In this chapter:
• Creating a MainWindow
• The MenuBar
• The Command and Message

Areas
• Using Resources
• Summary
• Exercises

4
The Main Window

This chapter describes the Motif MainWindow widget, which can be used to frame many
types of applications. The MainWindow is a manager widget that provides a menu bar, a
scrollable work area, and various other optional display and control areas.

As discussed in Chapter 3, Overview of the Motif Toolkit, the main window of an
application is the most visible and the most used of all the windows in an application. It is
the focal point of the user’s interactions with the program, and it is typically the place where
the application provides most of its visual feedback.To encourage consistency across the
desktop, the Motif Style Guide suggests a generic main window layout, which can vary
from application to application, but is generally followed by most Motif applications. Such
a layout is shown in Figure 4-1. As described in Section 3.4.1, a main window can provide
a menubar, a work area, horizontal and vertical scrollbars, a command area, and a message
area.

In an effort to facilitate the task of building a main window, the Motif toolkit provides the
MainWindow widget. This widget supports the different areas of the generic main window

Figure 4-1: The main window of a Motif program

MenuBar

Command Area

Work Area

Message Area

Chapter 4: The Main Window

98 Motif Programming Manual

layout. However, the MainWindow widget is not the only way to handle the layout of the
main window of your application. You are not required to use the MainWindow widget and
you should not feel that you need to follow the Motif specifications to the letter. While the
Style Guide strongly recommends using the main window layout, many applications simply
do not ?t the standard GUI design model. For example, a clock application, a terminal
emulator, a calculator, and a host of other desktop applications do not follow the Motif
specifications in this regard, but they can still have Motif elements within them and can still
be regarded as Motif-compliant. If you already have an application in mind, chances are
you already know whether or not the main window layout is suited to the application; if you
are in doubt, your best bet is to comply with the Motif Style Guide.

Before we start discussing the MainWindow widget, you should realize that this widget
class does not create any of the widgets it manages. It merely facilitates managing the
widgets in a way that is consistent with the Style Guide. In order to discuss the
MainWindow widget, we are going to have to discuss a number of other widget classes and
use them in examples. As a beginning chapter in a large book on Motif programming, this
may seem like a bit much to handle, especially if you are completely unfamiliar with the
Motif toolkit. We encourage you to branch off into other chapters whenever you find it
necessary to do so. However, it is not our intention to explain these other widgets ahead of
time, nor is it our assumption that you already understand them. The lack of an
understanding of the other widgets should not interfere with our goal of describing the
MainWindow widget and how it fits into the design of an application.

Creating a MainWindow
The MainWindow widget class is defined in <Xm/MainW.h>, which must be included
whenever you create a MainWindow widget. As mentioned in Chapter 2, The Motif
Programming Model, you should probably use a SessionShell or TopLevelShell widget as
the parent of a MainWindow*. If the MainWindow is being used as the main application
window, the SessionShell returned by XtOpenApplication() † (or another similar
toolkit initialization function) is typically used as the parent. The function
XmCreateMainWindow() can be used to create an instance of a MainWindow widget, as
shown in the following code fragment‡:

#include <Xm/Xm.h>
#include <Xm/MainW.h>

main (int argc, char *argv[])
{

Widget app_shell, main_w;

* The ApplicationShell is considered deprecated in X11R6.

† XtAppInitialize (), XtVaAppInitialize () are now considered deprecated in X11R6.

‡ XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 99

Chapter 4: The Main Window

XtAppContext app_context;
/* Resources for the MainWindow */
Arg resource_values[...];
Cardinal num_values;/* Number of resources applied */

XtSetLanguageProc (NULL, NULL, NULL);
app_shell = XtVaOpenApplication (&app_context, "App-Class", NULL, 0, &argc,

argv, NULL, sessionShellWidgetClass, NULL);
main_w = XmCreateMainWindow (app_shell, “mw”, resource_values, num_

values);
XtManageChild (main_w);
XtRealizeWidget (app_shell);
XtAppMainLoop (app_context);

}

The MainWindow class is subclassed from the ScrolledWindow class, which means that it
inherits all the attributes of a ScrolledWindow, including its resources. A ScrolledWindow
allows the user to view an arbitrary widget of any size by attaching horizontal and vertical
ScrollBars to it. You can think of a MainWindow as a ScrolledWindow with the additional
ability to have an optional menu bar, command area, and message area. Because the
MainWindow is subclassed from the ScrolledWindow widget, we will be referring to some
ScrolledWindow resources and disclosing some facts about the ScrolledWindow. For more
information about the ScrolledWindow, see Chapter 10, Scrolled Windows and ScrollBars.
You may eventually need to learn more about the ScrolledWindow widget to best make use
of the MainWindow, but this chapter tries to present the fundamentals of the MainWindow
widget, rather than focus on the ScrolledWindow.

While a MainWindow does control the sizes and positions of its widget children like any
manager widget, the geometry management it performs is not the classic management style
of other manager widgets. The MainWindow is a special-case object that handles only
certain types of children and performs only simple widget positioning. It is designed to
support the generic main window layout specified by the Motif Style Guide. Let’s take a
look at how the MainWindow can be used in an actual application. Example 1-1
demonstrates how the MainWindow widget fits into a typical application design.*

Example 1-1: The show_pix.c program

/* show_pix.c -- A minimal example of a MainWindow. Use a Label as the
* workWindow to display a bitmap specified on the command line.
*/
#include <Xm/MainW.h>
#include <Xm/Label.h>
main (int argc, char *argv[])
{

Widget toplevel, main_w, label_w;
XtAppContext app_context;
Pixmap pixmap;

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 4: The Main Window

100 Motif Programming Manual

Arg al[4];
Cardinal ac = 0;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app_context, "Demos", NULL, 0, &argc,

argv, NULL, sessionShellWidgetClass, NULL);
if (!argv[1]) {

printf ("usage: %s bitmap-file\n", argv[0]);
exit (1);

}

ac = 0;
XtSetArg(al[ac], XmNscrollBarDisplayPolicy, XmAS_NEEDED); ac++;
XtSetArg(al[ac], XmNscrollingPolicy, XmAUTOMATIC); ac++;
main_w = XmCreateMainWindow (toplevel, "main_window", al, ac);

/* Load bitmap given in argv[1] */
pixmap = XmGetPixmap (XtScreen (toplevel), argv[1], BlackPixelOfScreen

(XtScreen (toplevel)), WhitePixelOfScreen (XtScreen
(toplevel)));

if (pixmap == XmUNSPECIFIED_PIXMAP) {
printf ("can't create pixmap from %s\n", argv[1]);
exit (1);

}
/* Now create label using pixmap */
ac = 0;
XtSetArg(al[ac], XmNlabelType, XmPIXMAP); ac++;
XtSetArg(al[ac], XmNlabelPixmap, pixmap); ac++;
label_w = XmCreateLabel (main_w, "label", al, ac);

/* set the label as the "work area" of the main window */
XtVaSetValues (main_w, XmNworkWindow, label_w, NULL);
XtManageChild (label_w);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app_context);

}

In this example, the MainWindow widget is not used to its full potential. It only contains
one other widget, a Label widget, that is used to display a bitmap from the ?le specified as
the first argument on the command line (argv[1]).*The Label widget is used as the work
area window for the MainWindow. We did this intentionally to focus your attention on the
scrolled-window aspect of the MainWindow widget. The following command line:

% show_pix /usr/X11R6/include/bitmaps/xlogo64

* XtVaOpenApplication () parses the command-line arguments that are used when the program is run. The
command-line options that are specific to Xlib or Xt are evaluated and removed from the argument list. What is
not parsed is left in argv ; our program reads argv [1] as the name of a bitmap to display in the MainWindow.

Motif Programming Manual 101

Chapter 4: The Main Window

produces the output shown in Figure 4-2.

The ?le specified on the command line should contain X11 bitmap data, so that the
application can create a pixmap. The pixmap is displayed in a Label widget, which has been
specified as the XmNworkWindow of the MainWindow. As shown in Figure 4-2, the bitmap
is simply displayed in the window. However, if a larger bitmap is specified, only a portion
of the bitmap can be displayed, so ScrollBars are provided to allow the user to view the
entire bitmap. The output of the command:

% show_pix /usr/X11R6/include/bitmaps/escherknot

is shown in Figure 4-3.

The bitmap is obviously too large to be displayed in the MainWindow without either
clipping the image or enlarging the window. Rather than resize its own window to an
unreasonable size, the MainWindow can display ScrollBars. This behavior is enabled by
setting the MainWindow resources XmNscrollBarDisplayPolicy to XmAS_NEEDED
and XmNscrollingPolicy to XmAUTOMATIC. These values automate the process
whereby ScrollBars are managed when they are needed. If there is enough room for the
entire bitmap to be displayed, the ScrollBars are not provided. Try resizing the show_pix
window and see how the ScrollBars appear and disappear as needed. This behavior occurs
as a result of setting XmNscrollBarDisplayPolicy to XmAS_NEEDED.

Since we do not specify a size for the MainWindow, the toolkit sets both the width and
height to be 100 pixels. These default values are not a documented feature. Both the
MainWindow and the ScrolledWindow suffer from the same problem: if you do not

Figure 4-2: Output of show_pix xlogo64

Figure 4-3: Output of show_pix escherknot

Chapter 4: The Main Window

102 Motif Programming Manual

specifically set the XmNwidth and XmNheight resources, the default size of the widget is
not very useful.

The XmNscrollBarDisplayPolicy and XmNscrollingPolicy resources are
inherited from the ScrolledWindow widget class. Because XmNscrollingPolicy is set
to XmAUTOMATIC, the toolkit creates and manages the ScrollBars automatically. Another
possible value for the resource is XmAPPLICATION_DEFINED, which implies that the
application is going to create and manage the ScrollBars for the MainWindow and control
all of the aspects of their functionality. Application-defined scrolling is the default style for
the MainWindow widget, but it is unlikely that you will want to leave it that way in this
instance: application-defined scrolling is usually required for hand-drawn X graphics, but
since the Label widget knows how to draw itself, we can leave the scrolling policy as
XmAUTOMATIC. For complete details on the different scrolling styles, see Chapter 10.

Using the application-defined scrolling policy does not necessarily require you to provide
your own scrolling mechanisms. It simply relieves the MainWindow widget of the
responsibility of handling the scrolling functionality. If you use a ScrolledList or
ScrolledText widget as the work area, you should definitely leave the
XmNscrollingPolicy as XmAPPLICATION_DEFINED, since these widgets manage
their own ScrollBars. They will handle the scrolling behavior instead of the MainWindow.
Example 1-2 shows an example of a program that uses a ScrolledList for the work area in
a MainWindow widget.*

Example 1-2: The main_list.c program

/* main_list.c -- Use the ScrolledList window as the feature
* component of a MainWindow widget.
*/

#include <Xm/MainW.h>
#include <Xm/List.h>

main (int argc, char *argv[])
{

Widget app_shell, main_w, list_w;
XtAppContext app_context;
Pixmap pixmap;

XtSetLanguageProc (NULL, NULL, NULL);
app_shell = XtVaOpenApplication (&app_context, "Demos", NULL, 0, &argc,

argv, NULL, sessionShellWidgetClass, NULL);
main_w = XmCreateMainWindow (app_shell, "main_window", NULL, 0);
list_w = XmCreateScrolledList (main_w, "main_list", NULL, 0);
XtVaSetValues (list_w, XtVaTypedArg, XmNitems, XmRString,

"Red, Green, Blue, Orange, Maroon, Grey, Black, White", 53,
XmNitemCount, 8, XmNvisibleItemCount, 5, NULL);

* XtVaAppInitialize() is considered deprecated in X11R6.

Motif Programming Manual 103

Chapter 4: The Main Window

XtManageChild (list_w);
/* set the list_w as the "work area" of the main window */
XtVaSetValues (main_w, XmNworkWindow, XtParent (list_w), NULL);
XtRealizeWidget (app_shell);
XtAppMainLoop (app);

}

In order to simplify the application, we specified the items in the ScrolledList as a single
string:

XtVaSetValues (list_w, XtVaTypedArg, XmNitems, XmRString,
"Red, Green, Blue, Orange, Maroon, Grey, Black, White", 53,
XmNitemCount, 8, XmNvisibleItemCount, 5,
NULL);

This technique provides the easiest way to specify a list for a List widget. The items in a
List widget must be specified as an array of compound strings. If we took the time to create
each list item separately, we would have to create each compound string, assemble the array
of XmString objects and specify it as the XmNitems resource, and then free each string
separately after the widget was created. By using XtVaTypedArg , the whole list can be
created in one line using the List widget’s type converter to convert the string into a list of
compound strings. We use this form of resource specification frequently in the book to
simplify examples. See Volume 4, for a complete discussion on how this kind of type
conversion is done. See Chapter 13, The List Widget, for details on the List widget; see
Chapter 25, Compound Strings, for details on XmStrings.

It is important to note that while XmCreateScrolledList() creates both a
ScrolledWindow widget and a List widget, it returns the List widget. As a result, we must
use XtParent() to get access to the ScrolledWindow widget, so that it can be specified
as the work area of the MainWindow. A common programming error with a ScrolledText
or a ScrolledList widget is using the actual Text or List widget rather than its
ScrolledWindow parent. Again, we refer you to Chapter 10, for a complete discussion of
the use of ScrolledText and ScrolledList compound objects.

The MenuBar
Creating a MenuBar is a fairly complex operation, and one that is completely independent
of the MainWindow itself. However, one of the principal reasons for using the
MainWindow widget is that it manages the layout of a MenuBar. In this section, we
demonstrate the simplest means of creating a MenuBar. Once a MenuBar has been created,
you simply tell the MainWindow to include it in the window layout by specifying the
MenuBar as the value of the XmNmenuBar resource for the MainWindow.

In the Motif toolkit, a MenuBar is not implemented as a separate widget, but as a set of
CascadeButtons arranged horizontally in a RowColumn widget. Each CascadeButton is
associated with a PulldownMenu that can contain PushButtons, ToggleButtons, Labels,
and Separators. The managing RowColumn widget has a resource setting indicating that it

Chapter 4: The Main Window

104 Motif Programming Manual

is being used as a MenuBar.You do not need to know any specific details about any of these
widgets in order to create a functional MenuBar, since Motif provides convenience routines
that allow you to create self-sufficient menu systems. While the specifics on creating
PopupMenus, PulldownMenus, and MenuBars are covered in more detail in Chapter 20,
Interacting with the Window Manager, the basic case that we present in this section is quite
simple.

There are a variety of methods that you can use to create and manage a MenuBar, but the
easiest method is to use the convenience menu creation routine provided by the Motif
toolkit: XmVaCreateSimpleMenuBar() .*This function is demonstrated in the following
code fragment:

XmString file, edit, help;
Widget menubar, main_w;
...
/* Create a simple MenuBar that contains three menus */
file = XmStringCreateLocalized ("File");
edit = XmStringCreateLocalized ("Edit");
help = XmStringCreateLocalized ("Help");
menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",

XmVaCASCADEBUTTON, file, 'F',
XmVaCASCADEBUTTON, edit, 'E',
XmVaCASCADEBUTTON, help, 'H',
NULL);

XmStringFree (file);
XmStringFree (edit);
XmStringFree (help);

The output generated by this code is shown in Figure 4-4.

Like the functions XtVaSetValues() and XtVaCreateWidget() , the routine
XmVaCreateSimpleMenuBar() takes a variable-length argument list of configuration
parameters. In addition to resource/value pairs, it also takes special arguments that specify
the items in the MenuBar. You can specify RowColumn-specific resource/value pairs just
as you would for any varargs routine. Once all the items in a MenuBar have been created,
it must be managed using XtManageChild() .

If you are specifying an item in the MenuBar, the first parameter is a symbolic constant that
identifies the type of the item. Since CascadeButtons are the only elements that can display

* There is also a non-varargs version of this function. It requires you to create each of the buttons in the MenuBar
individually and associate it with a PulldownMenu via resources. The varargs function is often easier to use.

Figure 4-4: A simple MenuBar

Motif Programming Manual 105

Chapter 4: The Main Window

PulldownMenus, the first parameter should always be set to XmVaCASCADEBUTTON. The
label of the CascadeButton is given by the second parameter, which must be a compound
string. In the above example, the variable file contains a compound string that contains
the text File . The third parameter speci?es an optional mnemonic character for the
CascadeButton that can be used to post the menu from the keyboard. The mnemonic for the
File menu is F. By convention, the first letter of a menu or menu item label is used as the
mnemonic.

We use the compound string creation function, XmStringCreateLocalized() , to
create the compound strings for the menu labels. This function creates a compound string
with the text encoded in the current locale. For a complete discussion of compound strings,
see Chapter 25.

Since you are not creating each CascadeButton using the normal creation routines, you are
not returned a handle to each button.You might think that the label string that you assign to
each button is used as the widget’s name, but this is not the case. The buttons are created
sequentially, so the MenuBar assigns the name button_ n to each button. The value n is
the position of the button in the MenuBar, where positions are numbered starting with 0
(zero).We will discuss how you can specify resources for items on the MenuBar later in the
chapter.

Do not attempt to install callback routines on the CascadeButtons themselves. If you need
to know when a particular menu is popped up, you should use the XmNpopupCallback on
the MenuShell that contains the PulldownMenu associated with the CascadeButton. The
popup and popdown callback lists are described briefly in Chapter 7, Custom Dialogs; for
more information, see Volume 4, X Toolkit Intrinsics Programming Manual.

Creating a PulldownMenu
Every CascadeButton in a MenuBar must have a PulldownMenu associated with it. You
can create the items in a PulldownMenu using a method that is similar to the one for
creating a MenuBar. A PulldownMenu can be created using the function
XmVaCreateSimplePulldownMenu() . This routine is slightly more involved than
XmVaCreateSimpleMenuBar() . The routine takes the following form:

Widget XmVaCreateSimplePulldownMenu (Widget parent ,
String name ,
int post_from_button ,
XtCallbackProc callback ,...)

The post_from_button parameter speci?es the CascadeButton that posts the
PulldownMenu. This parameter is an index (starting at zero) into the array of
CascadeButtons in the parent widget, which should be a MenuBar. The name parameter
speci?es the widget name for the RowColumn widget that is the PulldownMenu. This name
is not the title of the CascadeButton associated with the menu. The MenuShell that contains
the PulldownMenu uses the same name with _popup appended to it. The callback

Chapter 4: The Main Window

106 Motif Programming Manual

parameter speci?es a function that is invoked whenever the user activates any of the items
in the menu. The rest of the arguments to XmVaCreateSimplePulldownMenu() are
either RowColumn resource/value pairs or special arguments that specify the items in the
PulldownMenu.

You should not manage a PulldownMenu after you create it because you do not want it to
appear until it is posted by the user. The CascadeButton that posts the menu handles
managing the menu when it needs to be displayed. The following code fragment shows the
use of XmVaCreateSimplePulldownMenu() to create a PulldownMenu:

XmString open, save, quit, quit_acc;
Widget menubar, menu;
...
/* First menu is the File menu -- callback is file_cb() */
open = XmStringCreateLocalized ("Open...");
save = XmStringCreateLocalized ("Save...");
quit = XmStringCreateLocalized ("Quit");
quit_acc = XmStringCreateLocalized ("Ctrl-C");
menu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaPUSHBUTTON, save, 'S', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, 'Q', "Ctrl<Key>c", quit_acc,
NULL);

XmStringFree (open);
XmStringFree (save);
XmStringFree (quit);
XmStringFree (quit_acc);
...

Unlike a MenuBar, which can only contain CascadeButtons, a PulldownMenu can contain
a number of different types of elements. As with XmVaCreateSimpleMenuBar() , these
elements are specified by a symbolic constant that identifies the type of the item. The
symbolic constant is followed by a variable number of additional parameters that depend
on the type of the menu item.You can use the following values to specify the items in a
PulldownMenu:

XmVaPUSHBUTTON
The item is a PushButton. It takes four additional parameters: a compound string label,
a mnemonic, an accelerator, and a compound string that contains a text representation
of the accelerator. When the PushButton is selected, thecallback routine is called.
It is passed an integer value asclient_data that indicates the item on the Pulldown-
Menu that was activated. The value is an index into the menu that ranges from0 to n-
1; if client_data is two, then the third item in the menu was selected.

XmVaTOGGLEBUTTON
The item is a ToggleButton. It takes the same four additional parameters as described
for XmVaPUSHBUTTON. When the ToggleButton is selected, the value of the button is

Motif Programming Manual 107

Chapter 4: The Main Window

toggled and thecallback routine is called. Theclient_data that is passed to the
callback routine is handled the same as for PushButtons.

XmVaCHECKBUTTON
This value is identical toXmVaTOGGLEBUTTON.

XmVaRADIOBUTTON
The item is a ToggleButton with RadioBox characteristics, which means that only one
item in the menu can be set at a time. The PulldownMenu does not enforce this behav-
ior, so you must either handle it yourself or specify other RowColumn resources to
make the menu function like a RadioBox. We demonstrate creating a menu with Radi-
oBox behavior later in the chapter. This value takes the same additional parameters and
deals with the callback routine in the same way as ToggleButtons.

XmVaCASCADEBUTTON
The item is a CascadeButton, which is usually associated with a pullright menu. The
value takes two additional parameters: a compound string label and a mnemonic. Pull-
right menus are, ironically, easier to implement and manage using the not-so-simple
menu creation routines described in Chapter 19,Menus.

XmVaSEPARATOR
The item is a Separator and it does not take any additional parameters. Since separators
cannot be selected, the callback routine is not called for this item. Adding a separator
does not affect the item count with respect to theclient_data values that are passed
to the callback routine for other menu items.

XmVaSINGLE_SEPARATOR
This value is identical toXmVaSEPARATOR.

XmVaDOUBLE_SEPARATOR
This value is identical toXmVaSEPARATOR, except that the separator widget displays
a double line instead of a single line.

XmVaTITLE
The item is a Label that is used to create a title in a menu. It takes one additional pa-
rameter: a compound string label. The item is not selectable, so it does not have a mne-
monic associated with it and it does not call the callback routine. Adding a title does
not affect the item count with respect to theclient_data values that are passed to
the callback routine for other menu items.

Just as with the CascadeButtons in a MenuBar, the labels associated with each menu item
are not the names of the widgets themselves. The names of the buttons are button_ n,
where n is the position of the button in the menu (starting with zero). Similarly, the names
of the separators and the titles are separator_ n and label_ n, respectively. We will
discuss how you can use resources to specify labels, mnemonics, and accelerators for
menus and menu items later in the chapter.

Chapter 4: The Main Window

108 Motif Programming Manual

Menus are not intended to be changed dynamically. You should not add, delete, or modify
the menus on the MenuBar or the menu items in PulldownMenus once an application is
running. Rather than delete an item on a menu when it is not appropriate, you should change
the sensitivity of the item using XmNsensitive . The menus in an application should be
static in the user’s eyes; changing the menus would be like changing the functionality of
the program while the user is running it. The one exception to this guideline involves menu
items that correspond to dynamic objects. For example, if you have a menu that contains
an item for each application that is running on a display, it is acceptable for the items on the
menu to change to reflect the current state of the display.

SimpleMenu Callback Routines
The callback routine associated with the File menu shown earlier is invoked whenever the
user selects any of the buttons in the menu. Just like any callback, the routine takes the form
of an XtCallbackProc :

void file_cb (Widget widget , XtPointer client_data , XtPointer call_data)

The widget parameter is a handle to the widget that was selected in the menu. The
client_data parameter is the index of the menu item in the menu. The call_data
parameter is a pointer to a callback structure that contains data about the callback. Both the
client_data and call_data parameters should be cast to their appropriate types before
the data that they contain is accessed.

Every Motif callback routine has a callback structure associated with it. The simplest such
structure is of type XmAnyCallbackStruct , which has the following form:

typedef struct {
int reason;
XEvent *event;

} XmAnyCallbackStruct;

All of the Motif callback structures have these two fields, but they also contain more
detailed information about why the callback function was invoked. The callback routine for
the File menu would be passed an XmPushButtonCallbackStruct , since all of the
menu items are PushButtons. This structure has the following form:

typedef struct {
int reason;
XEvent *event;
int click_count;

} XmPushButtonCallbackStruct;

The click_count field is not normally used when a PushButton is in a menu. If one of
the items in the menu were a ToggleButton, the call_data parameter would be of type
XmToggleButtonCallbackStruct , which has the following form:

typedef struct {
int reason;

Motif Programming Manual 109

Chapter 4: The Main Window

XEvent *event;
int set;

} XmToggleButtonCallbackStruct;

The set field indicates whether the item was selected (turned on) or deselected (turned
off).

When a menu contains both PushButtons and ToggleButtons, you can determine which of
the two callback structures the call_data parameter points to by examining the reason
field. Since all callback structures have this field, it is always safe to query it. As its name
implies, this field indicates why the callback routine was invoked. The value of this field
may also indicate the type of the widget that invoked the callback. While we can always
determine the type of the widget parameter by using the macro XtIsSubClass() , using
the reason field is more straightforward. The PushButton widget uses the value XmCR_
ACTIVATE to indicate that it has been activated, while the ToggleButton uses XmCR_
VALUE_CHANGED to indicate that its value has been changed. In our example, the reason
will always be XmCR_ACTIVATE, since there are only PushButtons in the menu. If there
were also ToggleButtons in the menu, we would know that the callback was invoked by a
ToggleButton if the value were XmCR_VALUE_CHANGED.

The event field in all of the callback structures is a pointer to an XEvent structure. The
XEvent identifies the actual event that caused the callback routine to be invoked. In this
example, the event is not of particular interest.

In the callback function, you can choose to do whatever is appropriate for the item that was
selected. The callback structure is probably not going to be of that much help in most cases.
However, the client_data passed to the function can be used to identify which of the
menu items was selected. The following code fragment demonstrates the use of client_
data :

/* a menu item from the "File" pulldown menu was selected */
void file_cb (Widget widget, XtPointer client_data, XtPointer call_data)
{

extern void OpenNewFile(void), SaveFile(void);
int item_no = (int) client_data;

if (item_no == 0)
/* the "new" button */
OpenNewFile ();

else if (item_no == 1)
/* the "save" button */
SaveFile();

else
/* the "Quit" button */
exit (0);

}

The callback routines for menu items should be as simple as possible from a structural point
of view. A well-designed application should have application-specific entry points such as

Chapter 4: The Main Window

110 Motif Programming Manual

OpenNewFile() and SaveFile() , as shown in the previous example. These routines
should be defined in separate files that are not necessarily associated with the user-interface
portion of the program. The use of modular programming techniques helps considerably
when an application is being maintained by a large group of people or when it needs to be
ported to other user-interface platforms.

A Sample Application
Let’s examine an example program that integrates what we have discussed so far.
Example 1-3 modifies the behavior of our first example, which displayed an arbitrary
pixmap, by allowing the user to change the bitmap dynamically using a Motif
FileSelectionDialog. The program also allows the user to dynamically change the color of
the bitmap using a PulldownMenu. As you can see by the size of the program, adding these
two simple features is not trivial. Many functions and widgets are required in order to make
the program functional. As you read the example, don’t worry about unknown widgets or
details that we haven’t addressed just yet; we will discuss them afterwards. For now, just
try to identify the familiar parts and see how everything works together.*

Example 1-3: The dynapix.c program

/* dynapix.c -- Display a bitmap in a MainWindow, but allow the user
** to change the bitmap and its color dynamically. The design of the
** program is structured on the pulldown menus of the menubar and the
** callback routines associated with them. To allow the user to choose
** a new bitmap, the "Open" button pops up a FileSelectionDialog where
** a new bitmap file can be chosen.
*/
#include <Xm/MainW.h>
#include <Xm/Label.h>
#include <Xm/MessageB.h>
#include <Xm/FileSB.h>

/* Globals: the toplevel window/widget and the label for the bitmap.
** "colors" defines the colors we use, "cur_color" is the current
** color being used, and "cur_bitmap" references the current bitmap
** file.
*/
Widget toplevel, label;
String colors[] = {"Black", "Red", "Green", "Blue"};
Pixel cur_color;
/* make large enough for full pathnames */
char cur_bitmap[1024] = "xlogo64";

main (int argc, char *argv[])
{

* XtVaAppInitialize () is considered deprecated in X11R6. XmStringGetLtoR () is deprecated in Motif 2.0,
and is replaced by XmStringUnparse ().

Motif Programming Manual 111

Chapter 4: The Main Window

Widget main_w, menubar, menu, widget;
XtAppContext app;
Pixmap pixmap;
XmString file, edit, help, open, quit, red, green, blue, black;
void file_cb(Widget, XtPointer, XtPointer);
void change_color(Widget, XtPointer, XtPointer);
void help_cb(Widget, XtPointer, XtPointer);
Arg al[10];
Cardinal ac = 0;

XtSetLanguageProc (NULL, NULL, NULL);
/* Initialize toolkit and parse command line options. */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
/* main window contains a MenuBar and a Label displaying a pixmap */
ac = 0;
XtSetArg(al[ac], XmNscrollBarDisplayPolicy, XmAS_NEEDED); ac++;
XtSetArg(al[ac], XmNscrollingPolicy, XmAUTOMATIC); ac++;
main_w = XmCreateMainWindow (toplevel, "main_window", al, ac);
/* Create a simple MenuBar that contains three menus */
file = XmStringCreateLocalized ("File");
edit = XmStringCreateLocalized ("Edit");
help = XmStringCreateLocalized ("Help");
menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",

XmVaCASCADEBUTTON, file, 'F',
XmVaCASCADEBUTTON, edit, 'E',
XmVaCASCADEBUTTON, help, 'H',
NULL);

XmStringFree (file);
XmStringFree (edit);
/* don't free "help" compound string yet -- reuse it later */
/* Tell the menubar which button is the help menu */
if ((widget = XtNameToWidget (menubar, "button_2")) != (Widget) 0)

XtVaSetValues (menubar, XmNmenuHelpWidget, widget, NULL);
/* First menu is the File menu -- callback is file_cb() */
open = XmStringCreateLocalized ("Open...");
quit = XmStringCreateLocalized ("Quit");
XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, open, 'N', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, 'Q', NULL, NULL,
NULL);

XmStringFree (open);
XmStringFree (quit);
/* Second menu is the Edit menu -- callback is change_color() */
black = XmStringCreateLocalized (colors[0]);
red = XmStringCreateLocalized (colors[1]);
green = XmStringCreateLocalized (colors[2]);
blue = XmStringCreateLocalized (colors[3]);
menu = XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 1, change_

color,
XmVaRADIOBUTTON, black, 'k', NULL, NULL,
XmVaRADIOBUTTON, red, 'R', NULL, NULL,
XmVaRADIOBUTTON, green, 'G', NULL, NULL,

Chapter 4: The Main Window

112 Motif Programming Manual

XmVaRADIOBUTTON, blue, 'B', NULL, NULL,
/* RowColumn resources to enforce */
XmNradioBehavior, True,
/* radio behavior in Menu */
XmNradioAlwaysOne, True,
NULL);

XmStringFree (black);
XmStringFree (red);
XmStringFree (green);
XmStringFree (blue);
/* Initialize menu so that "black" is selected. */
if ((widget = XtNameToWidget (menu, "button_0")) != (Widget) 0)

XtVaSetValues (widget, XmNset, XmSET, NULL);
/* Third menu is the help menu -- callback is help_cb() */
XmVaCreateSimplePulldownMenu (menubar, "help_menu", 2, help_cb,

XmVaPUSHBUTTON, help, 'H', NULL, NULL, NULL);
XmStringFree (help); /* we're done with it; now we can free it */
XtManageChild (menubar);
/* user can still specify the initial bitmap */
if (argv[1])

(void) strcpy (cur_bitmap, argv[1]);
/* initialize color */
cur_color = BlackPixelOfScreen (XtScreen (toplevel)),
/* create initial bitmap */
pixmap = XmGetPixmap (XtScreen (toplevel), cur_bitmap, cur_color,

WhitePixelOfScreen (XtScreen (toplevel)));
if (pixmap == XmUNSPECIFIED_PIXMAP) {

puts ("can't create initial pixmap");
exit (1);

}
/* Now create label using pixmap */
ac = 0;
XtSetArg(al[ac], XmNlabelType, XmPIXMAP); ac++;
XtSetArg(al[ac], XmNlabelPixmap, pixmap); ac++;
label = XmCreateLabel (main_w, "label", al, ac);
XtManageChild (label);
/* set the label as the "work area" of the main window */
XtVaSetValues (main_w, XmNmenuBar, menubar, XmNworkWindow, label, NULL);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/*
** Popdown routine for the File Selection Box
*/
void hide_fsb (Widget w, XtPointer client_data, XtPointer call_data)
{

/* This also pops down the XmDialogShell parent of the
** File Selection Box
*/
XtUnmanageChild (w);

}

Motif Programming Manual 113

Chapter 4: The Main Window

/* Any item the user selects from the File menu calls this function.
** It will either be "Open" (item_no == 0) or "Quit" (item_no == 1).
*/
void file_cb(Widget widget, /* menu item that was selected */

XtPointer client_data, /* the index into the menu */
XtPointer call_data) /* unused */

{
static Widget dialog; /* make it static for reuse */
void load_pixmap(Widget, XtPointer, XtPointer);
int item_no = (int) client_data;

if (item_no == 1) /* the "quit" item */
exit (0);

/* "Open" was selected. Create a Motif FileSelectionDialog w/callback */
if (!dialog) {

dialog = XmCreateFileSelectionDialog (toplevel, "file_sel", NULL, 0);
XtAddCallback (dialog, XmNokCallback, load_pixmap, NULL);
XtAddCallback (dialog, XmNcancelCallback, hide_fsb, NULL);

}
/* This also pops up the XmDialogShell parent of the File selection box */
XtManageChild (dialog);

}

/* The OK button was selected from the FileSelectionDialog (or, the user
** double-clicked on a file selection). Try to read the file as a bitmap.
** If the user changed colors, we call this function directly from
** change_color()to reload the pixmap. In this case, we pass NULL as the
** callback struct so we can identify this special case.
*/
void load_pixmap (Widget dialog, XtPointer client_data, XtPointer call_data)
{

Pixmap pixmap;
char *file = NULL;
XmFileSelectionBoxCallbackStruct *cbs;

cbs = (XmFileSelectionBoxCallbackStruct *) call_data;
if (cbs) {

file = (char *) XmStringUnparse (cbs->value, NULL,
XmCHARSET_TEXT, XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL);

if (file == (char *) 0)
return; /* internal error */

(void) strcpy (cur_bitmap, file);
XtFree (file); /* free allocated data from XmStringUnparse() */

}
pixmap = XmGetPixmap (XtScreen (toplevel), cur_bitmap, cur_color,

WhitePixelOfScreen (XtScreen (toplevel)));
if (pixmap == XmUNSPECIFIED_PIXMAP)

printf ("Can't create pixmap from %s\n", cur_bitmap);
else {

Pixmap old;
XtVaGetValues (label, XmNlabelPixmap, &old, NULL);
XmDestroyPixmap (XtScreen (toplevel), old);
XtVaSetValues (label, XmNlabelType, XmPIXMAP, XmNlabelPixmap, pixmap,

Chapter 4: The Main Window

114 Motif Programming Manual

NULL);
}

}
/* called from any of the "Edit" menu items. Change the color of the
** current bitmap being displayed. Do this by calling load_pixmap().
*/
void change_color (Widget widget, /* selected menu item */

XtPointer client_data, /* the index into the menu */
XtPointer call_data) /* unused */

{
XColor xcolor, unused;
Display *dpy = XtDisplay (label);
Colormap cmap = DefaultColormapOfScreen (XtScreen (label));
int item_no = (int) client_data;

if (XAllocNamedColor (dpy, cmap, colors[item_no], &xcolor, &unused) == 0
|| cur_color == xcolor.pixel)

return;

cur_color = xcolor.pixel;
load_pixmap (widget, NULL, NULL);

}

#define MSG \
"Use the FileSelection dialog to find bitmap files to\n\
display in the scrolling area in the main window. Use\n\
the edit menu to display the bitmap in different colors."

/* The help button in the help menu from the menubar was selected.
** Display help information defined above for how to use the program.
** This is done by creating a Motif information dialog box. Again,
** make the dialog static so we can reuse it.
*/
void help_cb (Widget widget, XtPointer client_data, XtPointer call_data)
{

static Widget dialog;
if (!dialog) {

Arg args[5];
int n = 0;
XmString msg = XmStringCreateLocalized (MSG);
XtSetArg (args[n], XmNmessageString, msg); n++;
dialog = XmCreateInformationDialog (toplevel, "help_dialog", args, n);

}
/* This also pops up the XmDialogShell parent of the XmMessageBox */
XtManageChild (dialog);

}

Motif Programming Manual 115

Chapter 4: The Main Window

The output of the program is shown in Figure 4-5.

The beginning of the program is pretty much as expected. After the toolkit is initialized, the
MainWindow and the MenuBar are created the same way as in the previous examples. Just
after the MenuBar is created, however, we make the following calls:

if ((widget = XtNameToWidget (menubar, "button_2")) != (Widget) 0)
XtVaSetValues (menubar, XmNmenuHelpWidget, widget, NULL);

The purpose of these statements is to inform the MenuBar which of its CascadeButtons
contains the Help menu. Setting the MenuBar’s XmNmenuHelpWidget resource to the
CascadeButton returned by XtNameToWidget() causes the MenuBar to position the
menu specially. The Help menu is placed at the far right on the MenuBar; this position is
necessary for the application to conform to Motif style guidelines. For details on how to
support a help system, see Chapter 7, Custom Dialogs and Chapter 27, Advanced Dialog
Programming.

PulldownMenus are created next in the expected manner. The only variation is for the Edit
menu, where each item in the menu represents a color. Since only one color can be used at
a time, the color that is currently being used is marked with a diamond-shape indicator*. In
order to get this radio-box behavior, each menu item in the PulldownMenu is a
XmVaRADIOBUTTON and the menu is told to treat the items as a RadioBox. The analogy is
that of an old car radio, where selecting a new station causes the other selectors to pop out.
Just as you can only have the radio tuned to one station at a time, you may only have one
color set at a time. The RadioBox functionality is managed automatically by the
RowColumn widget that is used to implement the PulldownMenu. Setting the
XmNradioBehavior and XmNradioAlwaysOne RowColumn resources to True
provides the RadioBox behavior. See Chapter 12, Labels and Buttons, for a complete

* From Motif 2.0 onwards, the shape partly depends upon the XmDisplay object XmNenableToggleVisual re-
source, and may appear round, as in Figure 4.6.

Figure 4-5: Output of dynapix.c

Chapter 4: The Main Window

116 Motif Programming Manual

description and further examples of this type of behavior. Figure 4-6 shows the RadioBox-
style Edit menu.

Although the RowColumn manages the RadioBox automatically, we need to turn the radio
on by setting the initial color. After the PulldownMenu is created, the menu (RadioBox) is
initialized so that its first item is selected, since we know that we are using black as the
initial color. XtNameToWidget() is used again to get the appropriate button from the
menu. Since the menu items were created using XmVaRADIOBUTTON, the widget that is
returned is a ToggleButton.The XmNset resource is used to turn the button on. Once the
menu has been initialized, the Motif toolkit handles everything automatically.

Note that when we create the Help menu, there is only one item in the menu. You might
think that it is redundant to have a single Help item in the Help menu, but this design is an
element of Motif style. The Motif Style Guide states that items on the MenuBar should
always post PulldownMenu, not perform application actions directly.

It is important to note that XmVaCreateSimplePulldownMenu() returns the
RowColumn widget that contains the items in the menu, even though the routine creates
both the RowColumn widget and its MenuShell parent. The routine does not return the
MenuShell widget that is actually popped up and down when the menu posted. To get a
handle to that widget, you need to use XtParent() on the RowColumn widget. This
design makes sense, since you need access to the RowColumn widget much more often
than you need access to the MenuShell.

Once all of the items have been installed, the MenuBar is managed using
XtManageChild() . The approach to creating MenuBars, PulldownMenus, menu items, and
their associated callback routines that we have described here is meant to be simple and
straightforward. In some cases, you may find that these techniques are too limiting. For
example, you cannot specify different callback routines for different items in the same
menu, you cannot pass different client data for different items, and you cannot name the
widgets individually. The most inconvenient aspect of this method, however, is that it
requires so much redundant code in order to build a realistically sized MenuBar. Our intent
here is to introduce the basic concepts of menus and to demonstrate the recommended

Figure 4-6: The Edit menu for dynapix.c

Motif Programming Manual 117

Chapter 4: The Main Window

design approach for applications. We describe how the menu creation process can be
generalized for large menu systems in Chapter 19.

The rest of Example 1-3 is composed of callback routines that are used by the
PulldownMenu items. For example, when the user selects either of the items in the File
menu, the function file_cb() is called. If the Quit item is selected, the client_data
parameter is1 and the program exits. If the Open item is selected, client_data is 0 and
a FileSelectionDialog is popped up to allow the user to select a new bitmap ?le. The dialog
is created using the convenience routine XmCreateFileSelectionDialog() , which
produces the results shown in Figure 4-7. Two callback routines are installed for the dialog:
load_pixmap() , which is called when the user presses the OK button, and hide_fsb() ,
which is called when the user selects the Cancel button. For more detailed information on
the FileSelectionDialog, see Chapter 6, Selection Dialogs.

The load_pixmap() function loads a new bitmap from a ?le and displays it in the Label
widget. This function uses the same method for loading a pixmap as was used earlier in
main() .Since the function is invoked as a callback by the FileSelectionDialog, we need to
get the value of the ?le selection. The value is taken from the value field of the
FileSelectionDialog’s callback structure, XmFileSelectionBoxCallbackStruct .
Since the filename is represented as a compound string, it must be converted to a character
string. The conversion is done using XmStringUnparse() * , which creates a regular C
string for use by XmGetPixmap() . The load_pixmap() routine is also called directly

* XmStringGetLtoR () is considered deprecated from Motif 2.0 onwards.

Figure 4-7: File FileSelectionDialog for dynapix.c

Chapter 4: The Main Window

118 Motif Programming Manual

from change_color() , so we need to check the call_data parameter. This parameter
is NULL if the routine is not invoked as a callback.

If XmGetPixmap() succeeds, we get the old pixmap and destroy it using
XmDestroyPixmap() before we install the new pixmap. XmGetPixmap() loads and
caches a pixmap. If the function is called more than once for a given image, it returns the
cached image, which saves space because a new version of the pixmap is not allocated for
each call. XmDestroyPixmap() decrements the reference count for the image; if the
reference count reaches to zero, the pixmap is actually destroyed. Otherwise, another
reference to it may exist, so nothing is done. It is important to use these two functions in
conjunction with each other. However, if you use other pixmap-loading functions to create
pixmaps, you cannot use XmDestroyPixmap() to free them.

The function change_color() is used as the callback routine for items in the Edit menu.
The names of the colors are stored in the colors array. The index of a color in this array
is the same as the index of the corresponding menu item in the menu.The color name is
parsed and loaded using XAllocNamedColor() , provided that the string exists in the
RGB database (usually /usr/X11R6/lib/rgb.txt). If the routine is successful, it returns a non-
zero status and the XColor structure is filled with the RGB data and pixel value. In this
case, load_pixmap() is called to reload the pixmap with the new color. If
XAllocNamedColor() returns zero, or if the returned pixel value is the same as the current
one, change_color() returns, as there is no point in reloading an identical pixmap. For
additional information about loading and using colors, see Volume 1, and Volume 2.

The help_cb() function is the callback routine for the Help menu item on the Help menu.
It simply displays an InformationDialog that contains a message describing how to use the
program. See Chapter 5, Introduction to Dialogs,and Chapter 27, Advanced Dialog
Programming, for a complete description of these dialogs and suggestions on
implementing a functional help system.

The Command and Message Areas
We have already covered most of what you need to know about the MainWindow of an
application in this chapter and Chapter 3, Overview of the Motif Toolkit. The material in
the rest of the chapter is considered somewhat advanced, so you could skip the remaining
sections and be relatively secure in moving onto the next chapter. The remaining material
provides details about the MainWindow widget that need to be discussed in order to make
this chapter complete.

The greatest difficulty with the command and message areas of the MainWindow is that
these objects are better defined in the Motif specification than in the Motif toolkit. The
command area is intended to support a tty-style command-line interface to an application.
The command area is not supposed to act like xterm or any sort of terminal emulator; it is
just a single-line text area for entering individually typed commands for an application.The

Motif Programming Manual 119

Chapter 4: The Main Window

message area is just an output-only area that is used for error and status messages as needed
by an application. While both of these areas are optional MainWindow elements, the
message area is usually more common than the command area. Nevertheless, let’s begin by
discussing the command area.

A command area is especially convenient for applications that are being converted from a
tty-style interface to a graphical user interface. Properly converted, such applications can
do rather well as GUI-based programs, although the conversion can be more difficult than
you might expect. For example, a PostScript interpreter could be implemented using a
command area in the MainWindow. However, since PostScript is a verbose language, it
does not work well with single-line text entry fields.

Example 1-4 shows how the command area can be used to allow the user to input standard
UNIX commands. The output of the commands is displayed in the ScrolledText object,
which is the work area of the MainWindow. For simplicity, we’ve kept the MenuBar small
so as to dedicate most of the program to the use of the command area.*

Example 1-4: The cmd_area.c program

/* cmd_area.c -- use a ScrolledText object to view the
** output of commands input by the user in a Command window.
*/

#include <Xm/Text.h>
#include <Xm/MainW.h>
#include <Xm/Command.h>
#include <stdio.h> /* For popen() */

/* main() -- initialize toolkit, create a main window, menubar,
** a Command Area and a ScrolledText to view the output of commands.
*/

main (int argc, char *argv[])
{

Widget toplevel, main_w, menubar, menu, command_w, text_w;
XtAppContext app;
XmString file, quit;
extern void exit(int);
void exec_cmd(Widget, XtPointer, XtPointer);
Arg args[5];
int n = 0;

XtSetLanguageProc (NULL, NULL, NULL);

/* initialize toolkit and create toplevel shell */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

* XtVaAppInitialize () is considered deprecated in X11R6. XmStringGetLtoR () is deprecated in Motif 2.0:
XmStringUnparse () is the preferred function.

Chapter 4: The Main Window

120 Motif Programming Manual

sessionShellWidgetClass, NULL);

(void) close (0); /* don't let commands read from stdin */

/* MainWindow for the application -- contains menubar, ScrolledText
** and CommandArea (which prompts for filename).
*/
n = 0;
XtSetArg(args[n], XmNcommandWindowLocation,

XmCOMMAND_BELOW_WORKSPACE); n++;
main_w = XmCreateMainWindow (toplevel, "main_w", args, n);

/* Create a simple MenuBar that contains one menu */
file = XmStringCreateLocalized ("File");
menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",

XmVaCASCADEBUTTON, file, 'F', NULL);
XmStringFree (file);

/* "File" menu has only one item (Quit), so make callback exit() */
quit = XmStringCreateLocalized ("Quit");
menu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0,

(void (*)()) exit,
XmVaPUSHBUTTON, quit, 'Q', NULL, NULL, NULL);

XmStringFree (quit);

/* Menubar is done -- manage it */
XtManageChild (menubar);

/* Create ScrolledText -- this is work area for the MainWindow */
n = 0;
XtSetArg (args[n], XmNrows, 24); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT);n++;
text_w = XmCreateScrolledText (main_w, "text_w", args, n);
XtManageChild (text_w);

/* store text_w as user data in "File" menu for file_cb() callback */
XtVaSetValues (menu, XmNuserData, text_w, NULL);

/* Create the command area -- this must be a Command class widget */
file = XmStringCreateLocalized ("Command:");
n = 0;
XtSetArg(args[n], XmNpromptString, file); n++;
command_w = XmCreateCommand (main_w, "command_w", args, n);
XmStringFree (file);
XtAddCallback (command_w, XmNcommandEnteredCallback, exec_cmd,

(XtPointer) text_w);
XtVaSetValues (command_w,

XmNmenuBar, menubar,
XmNcommandWindow, command_w,
XmNworkWindow, XtParent (text_w),
NULL);

XtManageChild (command_w);

Motif Programming Manual 121

Chapter 4: The Main Window

XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* execute the command and redirect output to the ScrolledText window */
voidexec_cmd (Widget cmd_widget, /* command, not Text widget */

XtPointer client_data, /* passed text_w client_data */
XtPointer call_data)

{
char *cmd, buf[BUFSIZ];
XmTextPosition pos;
FILE *pp, *popen();
Widget text_w = (Widget) client_data;
XmCommandCallbackStruct*cbs = (XmCommandCallbackStruct *) call_data;

cmd = (char *) XmStringUnparse (cbs->value, XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT, XmCHARSET_TEXT, NULL, 0, XmOUTPUT_ALL);

if (!cmd || !*cmd) {

/* nothing typed? */
if (cmd)

XtFree (cmd);
return;

}
/* make sure the file is a regular text file and open it */
if ((pp = popen (cmd, "r")) == (FILE *) 0)

perror (cmd);
XtFree (cmd);
if (pp == (FILE *) 0)

return;
/* Clear output from any previous command */
XmTextSetString (text_w, ““);

/* put the output of the command in the Text widget by reading
** until EOF (meaning that the command has terminated).
*/
for (pos = 0; fgets (buf, sizeof (buf), pp) ; pos += strlen (buf))

XmTextReplace (text_w, pos, pos, buf);

(void) pclose (pp);
}

This example uses a Command widget for the command area. The output of the program is
shown in Figure 4-8. The Command widget provides a command entry area and a
command history area. However, you do not necessarily have to use a Command widget

Chapter 4: The Main Window

122 Motif Programming Manual

for the command area. A TextField widget can be used instead to provide a simple
command area.

When we created the MainWindow, we set the XmNcommandWindowLocation resource
to XmCOMMAND_BELOW_WORKSPACE, which caused the command area to be placed below
the work window. Although the default value of the resource is XmCOMMAND_ABOVE_
WORKSPACE, the Style Guide recommends that the command area be positioned beneath the
work window, rather than above it. You need to explicitly set the value of
XmNcommandWindowLocation to ensure that the command area is positioned
appropriately.

Note that we use the ScrolledWindow that is created by XmCreateScrolledText() for
the work window, rather than the scrolling area provided by the MainWindow. Since
XmCreateScrolledText() returns a Text widget, we are careful to use the parent of the
Text widget for the XmNworkWindow resource of the MainWindow. We set the areas of the
MainWindow using the standard XtVaSetValues() routine * .

Note that it is not entirely necessary to explicitly specify the roles each child of the
MainWindow will perform. When you create a widget as a child of a MainWindow widget,
the MainWindow checks the type of the widget you are adding. If the new widget is a
RowColumn that is being used as a MenuBar (XmNrowColumnType is XmMENU_BAR), the
MainWindow automatically uses it for the menu bar.This same check is performed for a

* In Motif 2.0 and later, XmMainWindowSetAreas () is considered deprecated.

Figure 4-8: Output from the cmd_area program

Motif Programming Manual 123

Chapter 4: The Main Window

Command widget, which is automatically used as the command area. The resources you
can use to specify child roles are:

XmNmenuBar XmNcommandWindow
XmNverticalScrollBar XmNhorizontalScrollBar
XmNworkWindow XmNmessageWindow

Once one of these values is set, it cannot be reset to NULL, although it can be reset to another
widget.

The message area is important in most applications, since it is typically the place where
brief status and informational messages are displayed. The message area can be
implemented using different widgets, such as a read-only Text widget, a read-only
ScrolledText object, or a Label widget. Using a Label widget as the message area is quite
simple and really doesn’t require any explanation. Chapter 18, Text Widgets, describes how
to use a read-only text area for the message area in a MainWindow.

If you specify the XmNmessageWindow resource, the message area is positioned across the
bottom of the MainWindow. If you are not satisfied with how the MainWindow handles the
layout of the message area, you can make the message area widget a child of the work area
manager widget and handle the layout yourself.

Using Resources
Resources specific to the MainWindow and its sub-elements can be useful when
configuring the default appearance of your application. If you set these resources in an app-
defaults ?le, the specifications can also provide a framework for users to follow when they
want to set their own configuration parameters. Even users who are sophisticated enough
to figure out how X resource files work still copy existing files and modify them to their
own tastes. To assist users, the app-defaults file for an application should be informative
and complete, even though it might be lengthy.

Of course, the first step in specifying resources in an app-defaults ?le is to determine
exactly which aspects of the program you want to be configurable. Remember, consistency
is the only way to keep from completely confusing a user. Once you have decided which
portions of the application are going to be configurable, you can set resource values by
specifying complete widget hierarchies. As an example, let’s specify some resources for the
menu system from dynapix.c. The application creates the File menu in the following way:

XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,
XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, 'Q', NULL, NULL,
NULL);

We can add accelerators to both the Open and Quit menu items using the following
resource specifications:

Chapter 4: The Main Window

124 Motif Programming Manual

dynapix.main_window.menubar*button_0.accelerator: Ctrl<Key>O
dynapix.main_window.menubar*button_0.acceleratorText: Ctrl+O
dynapix.main_window.menubar*button_1.accelerator: Ctrl<Key>C
dynapix.main_window.menubar*button_1.acceleratorText: Ctrl+C

The result is shown in Figure 4-9.

These resource settings work because XmNaccelerator and XmNacceleratorText
were not hard-coded by the application. By the same token, the labels of the MenuBar titles
and the menu items in the PulldownMenus are hard-coded values that cannot be modified
through resources. To relax this restriction, you could try setting the label and mnemonic
parameters to NULL in calls to XmVaCreateSimplePulldownMenu() . Unfortunately,
this technique makes resource specification awfully messy, since the CascadeButtons in the
MenuBar and the various PulldownMenus all have names of the form button_ n. The
other alternative is to use the more advanced methods of menu creation that are described
in Chapter 19.

The MainWindow provides a few other resources that control different visual attributes:
they are XmNmainWindowMarginHeight , XmNmainWindowMarginWidth , and
XmNshowSeparator . The XmNshowSeparator resource controls whether or not
Separator widgets are displayed between the different areas of a MainWindow. The margin
resources specify the width and height of the MainWindow’s margins. Generally, these
resources should not be set by the application, but left to the user to specify. For example:

*XmMainWindow.showSeparator: True
*XmMainWindow.mainWindowMarginWidth: 10
*XmMainWindow.mainWindowMarginHeight: 10

The class name for the MainWindow widget is XmMainWindow. If these resource settings
were specified in an app-defaults ?le, they would affect all of the MainWindow widgets in
the application. If a user makes these specifications in his .Xdefaults ?le, they would apply
to all MainWindow widgets in all applications.

Figure 4-9: The File menu for dynapix.c with accelerators

Motif Programming Manual 125

Chapter 4: The Main Window

Summary
This chapter introduced you to the concepts involved in creating the main window of an
application.To a lesser degree, we showed you how the MainWindow widget can be used
to accomplish some of the necessary tasks. We identified the areas involved in a
MainWindow and used some convenience routines to build some adequate prototypes.

The MainWindow can be difficult to understand because of its capabilities as a
ScrolledWindow and because it supports the management of so many other objects. The
work area of a MainWindow usually contains a manager widget that contains other
widgets. Although the MainWindow can handle the layout of its different areas, we do not
necessarily encourage you to use all its of its features. For larger, production-style
applications, you would probably be better off using the MainWindow for the sake of the
MenuBar, while placing the rest of the layout in the hands of a more general-purpose
manager widget. These are described in Chapter 8, Manager Widgets.

You could also decide not to use the MainWindow widget at all. If done properly, you could
probably use one of the manager widget classes described in Chapter 8, Manager Widgets,
and still be Motif-compliant. Depending on your application, you might find this technique
easier to deal with than the MainWindow widget.

Exercises
Based on the material in this chapter, you should be able to do the following exercises:

1. Modify dynapix.cto have a new PulldownMenu that controls the background color of
the pixmap.

2. Modify dynapix.cso that it has a command area. The callback for the Command
widget should understand either filenames or color names. If you feel adventurous, try
to have it understand both the commandfile and the commandcolor . Each
command would take a second argument indicating the ?le or color to use.

Chapter 4: The Main Window

126 Motif Programming Manual

Motif Programming Manual 127

Chapter 1

In this chapter:
• The Purpose of Dialogs
• The Anatomy of a Dialog
• Creating Motif Dialogs
• Dialog Resources
• Dialog Callback Routines
• Piercing the Dialog

Abstraction
• Dialog Modality
• Summary

5
Introduction to

Dialogs
This chapter describes the fundamental concepts that underlie all Motif dialogs. It provides
a foundation for the more advanced material in the following chapters. In the course of the
introduction, the chapter also provides information about Motif’s predefined
MessageDialog classes.

In Chapter 4, The Main Window, we discussed the top-level windows that are managed by
the window manager and that provide the overall framework for an application. Most
applications are too complex to do everything in one main top-level window. Situations
arise that call for secondary windows, or transient windows, that serve specific purposes.
These windows are commonly referred to as dialog boxes, or more simply as dialogs.

Dialog boxes play an integral role in a GUI-based interface such as Motif.The examples in
this book use dialogs in many ways, so just about every chapter can be used to learn more
about dialogs. We’ve already explored some of the basic concepts in Chapter 2, The Motif
Programming Model, and Chapter 3, Overview of the Motif Toolkit. However, the use of
dialogs in Motif is quite complex, so we need more detail to proceed further.

The Motif Style Guide makes a set of generic recommendations about how all dialogs
should look. The Style Guide also speci?es precisely how certain dialogs should look, how
they should respond to user events, and under what circumstances the dialogs should be
used. We refer to these dialogs as predefined Motif dialogs, since the Motif toolkit
implements each of them for you. These dialogs are completely self-sufficient, opaque
objects that require very little interaction from your application. In most situations, you can
create the necessary dialog using a single convenience routine and you’re done. If you need
more functionality than what is provided by a predefined Motif dialog, you may have to
create your own customized dialog. In this case, building and handling the dialog requires
a completely different approach.

There are three chapters on basic dialog usage in this book - two on the predefined Motif
dialogs and one on customized dialogs. There is also an additional chapter later in the book
that deals with more advanced dialog topics. This first chapter discusses the most common

Chapter 5: Introduction to Dialogs

128 Motif Programming Manual

class of Motif dialogs, called MessageDialogs. These are the simplest kinds of dialogs; they
typically display a short message and use a small set of standard responses, such as OK,
Yes, or No. These dialogs are transient, in that they are intended to be used immediately and
then dismissed. MessageDialogs define resources and attributes that are shared by most of
the other dialogs in the Motif toolkit, so they provide a foundation for us to build upon in
the later dialog chapters. Although Motif dialogs are meant to be opaque objects, we will
examine their implementation and behavior in order to understand how they really work.
This information can help you understand not only what is happening in your application,
but also how to create customized dialogs.

Chapter 6, Selection Dialogs, describes another set of predefined Motif dialogs, called
SelectionDialogs. Since these dialogs are the next step in the evolution of dialogs, most of
the material in this chapter is applicable there as well. SelectionDialogs typically provide
the user with a list of choices. These dialogs can remain displayed on the screen so that they
can be used repeatedly. Chapter 7, Custom Dialogs, addresses the issues of creating
customized dialogs, and Chapter 27, Advanced Dialog Programming, discusses some
advanced topics in X and Motif programming using dialogs as a backdrop.

The Purpose of Dialogs
For most applications, it is impossible to develop an interface that provides the full
functionality of the application in a single main window. As a result, the interface is
typically broken up into discrete functional modules, where the interface for each module
is provided in a separate dialog box.

As an example, consider an electronic mail application. The broad range of different
functions includes searching for messages according to patterns, composing messages,
editing an address book, reporting error messages, and so on. Dialog boxes are used to
display simple messages, as shown in Figure 5-1. They are also used to prompt the user to

Figure 5-1: A Message dialog

Motif Programming Manual 129

Chapter 5: Introduction to Dialogs

answer simple questions, as shown in Figure 5-2. A dialog box can also present a more

complicated interaction, as shown in Figure 5-3.

In Figure 5-3, many different widget classes are used to provide an interface that allows the
user to generate code from a popular Motif GUI builder. The purpose of a dialog is to focus
on one particular task in an application. Since the scope of these tasks is usually quite
limited, an application usually provides them in dialog boxes, rather than in its main
window.

There is actually no such thing as a dialog widget class in the Motif toolkit. A dialog is
actually made up of a DialogShell widget and a manager widget child that implements the
visible part of the dialog. The DialogShell interacts with the window manager to provide

Figure 5-2: A Question dialog

Figure 5-3: A Custom dialog

Chapter 5: Introduction to Dialogs

130 Motif Programming Manual

the transient window behavior required of dialogs. When we refer to a dialog widget, we
are really talking about the manager widget and all of its children collectively.

When you write a custom dialog, you simply create and manage the children of the
DialogShell in the same way that you create and manage the children of a top-level
application shell. The predefined Motif dialogs follow the same approach, except that the
toolkit creates the manager widget and all of its children internally. Most of the standard
Motif dialogs are composed of a DialogShell and either a MessageBox or SelectionBox
widget. Each of these widget classes creates and manages a number of internal widgets
without application intervention. See Chapter 3, Overview of the Motif Toolkit, to review
the various types of predefined Motif dialogs.

All of the predefined Motif dialogs are subclassed from the BulletinBoard widget class. As
such, a BulletinBoard can be thought of as the generic dialog widget class, although it can
certainly be used as generic manager widget (see Chapter 8, Manager Widgets). Indeed, a
dialog widget is a manager widget, but it is usually not treated as such by the application.
The BulletinBoard widget provides the keyboard traversal mechanisms that support
gadgets, as well as a number of dialog-specific resources.

It is important to note that for the predefined Motif dialogs, each dialog is implemented as
a single widget class, even though there are smaller, primitive widgets under the hood.
When you create a MessageBox widget, you automatically get a set of Labels and
PushButtons that are laid out as described in the Motif Style Guide. What is not created
automatically is the DialogShell widget that manages the MessageBox widget. You can
either create the shell yourself and place the MessageBox in it or use a Motif convenience
routine that creates both the shell and its dialog widget child.

The Motif toolkit uses the DialogShell widget class as the parent for all of the predefined
Motif dialogs. In this context, a MessageBox widget combined with a DialogShell widget
creates what the Motif toolkit calls a MessageDialog. A careful look at terminology can
help you to distinguish between actual widget class and Motif compound objects. The name
of the actual widget class ends in Box, while the name of the compound object made up of
the widget and a DialogShell ends in Dialog . For example, the convenience routine
XmCreateMessageBox() creates a MessageBox widget, which you need to place inside
of a DialogShell yourself. Alternatively, XmCreateMessageDialog() creates a
MessageDialog composed of a MessageBox and a DialogShell.

Another point about terminology involves the commonly-used term dialog box. When we
say dialog box, we are referring to a compound object composed of a DialogShell and a
dialog widget, not the dialog widget alone. This terminology can be confusing, since the
Motif toolkit also provides widget classes that end in box .

One subtlety in the use of MessageBox and SelectionBox widgets is that certain types of
behavior depend on whether or not the widget is a direct child of a DialogShell. For
example, the Motif Style Guide says that clicking on the OK button in the action area of a

Motif Programming Manual 131

Chapter 5: Introduction to Dialogs

MessageDialog invokes the action of the dialog and then dismisses the dialog.
Furthermore, pressing the RETURN key anywhere in the dialog is equivalent to clicking
on the OK button. However, none of this takes place when the MessageBox widget is not
a direct child of a DialogShell.

Perhaps the most important thing to remember is how the Motif toolkit treats dialogs. Once
a dialog widget is placed in a DialogShell, the toolkit tends to treat the entire combination
as a single entity. In fact, as we move on, you’ll find that the toolkit’s use of convenience
routines, callback functions, and popup widget techniques all hide the fact that the dialog
is composed of these discrete elements. While the Motif dialogs are really composed of
many primitive widgets, such as PushButtons and TextFields, the single-entity approach
implies that you never access the subwidgets directly. If you want to change the label for a
button, you set a resource specific to the dialog class, rather than getting a handle to the
button widget and changing its resource. Similarly, you always install callbacks on the
dialog widget itself, instead of installing them directly on buttons in the control or action
areas.

This approach may be confusing for those already familiar with Xt programming, but not
yet familiar with the Motif toolkit. Similarly, those who learn Xt programming through
experiences with the Motif toolkit might get a misconception of what Xt programming is
all about. We try to point out the inconsistencies between the two approaches so that you
will understand the boundaries between the Motif toolkit and its Xt foundations.

The Anatomy of a Dialog
As described in Chapter 3, Overview of the Motif Toolkit, dialogs are typically broken
down into two regions known as the control and action areas. The control area is also
referred to as the work area. The control area contains the widgets that provide the
functionality of the dialog, such as Labels, ToggleButtons, and List widgets. The action
area contains PushButtons whose callback routines actually perform the action of the
dialog box. While most dialogs follow this pattern, it is important to realize that these two
regions represent user-interface concepts and do not necessarily reflect how Motif dialogs
are implemented.

Chapter 5: Introduction to Dialogs

132 Motif Programming Manual

Figure 5-4 shows these areas in a sample dialog box.

The Motif Style Guide describes in a general fashion how the control and action areas for
all dialogs should be laid out. For predefined Motif dialogs, the control area is rigidly
specified. For customized dialogs, there is only a general set of guidelines to follow. The
guidelines for the action area specify a number of common actions that can be used in both
predefined Motif dialogs and customized dialogs. These actions have standard meanings
that help ensure consistency between different Motif applications.

By default, the predefined Motif MessageDialogs provide three action buttons, which are
normally labelled OK, Cancel, and Help, respectively. SelectionDialogs provide a fourth
button, normally labelled Apply, which is placed between the OK and Cancel buttons. This
button is created but not managed, so it is not visible unless the application explicitly
manages it. The Style Guide specifies that the OK button applies the action of the dialog
and dismisses it, while the Apply button applies the action but does not dismiss the dialog.
The Cancel button dismisses the dialog without performing any action other than resetting

Figure 5-4: A sample dialog

Action

Control
Area

Area

Motif Programming Manual 133

Chapter 5: Introduction to Dialogs

the dialog to the initial state, and the Help button provides any help that is available for the
dialog*. When you are creating custom dialogs, or even when you are using the predefined
Motif dialogs, you may need to provide actions other than the default ones. If so, you
should change the labels on the buttons so that the actions are obvious. You should try to
use the common actions defined by the Motif Style Guide if they are appropriate, since these
actions have standard meanings. We will address this issue further as it comes up in
discussion; it is not usually a problem until you create your own customized dialogs, as
described in Chapter 7, Custom Dialogs.

Creating Motif Dialogs
Under most circumstances, creating a predefined Motif dialog box is very simple. All Motif
dialog types have corresponding convenience routines that simplify the task of creating and
managing them. For example, a standard MessageDialog can be created as shown in the
following code fragment:

#include <Xm/MessageB.h>

extern Widget parent;
Widget dialog;
Arg arg[5];
XmString xms;
int n = 0;

xms = XmStringCreateLocalized ("Hello World");
XtSetArg (arg[n], XmNmessageString, xms); n++;
dialog = XmCreateMessageDialog (parent, "message", arg, n);
XmStringFree (xms);

The convenience routine does almost everything automatically.The only thing that we have
to do is specify the message that we want to display.

Dialog Header Files
As we mentioned earlier, there are two basic types of predefined Motif dialog boxes:
MessageDialogs and SelectionDialogs. MessageDialogs present a simple message, to
which a yes (OK) or no (Cancel) response usually suffices. There are six types of
MessageDialogs: ErrorDialog, InformationDialog, QuestionDialog, TemplateDialog,
WarningDialog, and WorkingDialog. These types are not actually separate widget classes,
but rather instances of the generic MessageDialog that are configured to display different
graphic symbols. All of the MessageDialogs are compound objects that are composed of a
MessageBox widget and a DialogShell. When using MessageDialogs, you must include the
?le <Xm/MessageB.h>.

* A more complete list of the pre-defined actions is given in Section 7.2.4. Note that Figure 5-4 has a button la-
belled Close rather than Cancel, because the dialog in this instance is popped down without any reset.

Chapter 5: Introduction to Dialogs

134 Motif Programming Manual

SelectionDialogs allow for more complicated interactions. The user can select an item from
a list or type an entry into a TextField widget before acting on the dialog. There are
essentially four types of SelectionDialogs, although the situation is a bit more complex than
for MessageDialogs. The PromptDialog is a specially configured SelectionDialog; both of
these dialogs are compound objects that are composed of a SelectionBox widget and a
DialogShell. The Command widget and the FileSelectionDialog are based on separate
widget classes. However, they are both subclassed from the SelectionBox and share many
of its features. When we use the general term “selection dialogs”, we are referring to these
three widget classes plus their associated dialog shells. To use a SelectionDialog, you must
include the file <Xm/SelectioB.h>.*For FileSelectionDialogs, the appropriate include ?le is
<Xm/FileSB.h>, and for the Command widget it is <Xm/Command.h>.

Creating a Dialog
You can use any of the following convenience routines to create a dialog box.They are
listed according to the header ?le in which they are declared:

<Xm/MessageB.h>:
Widget XmCreateMessageBox(Widget, char *, ArgList, Cardinal)
Widget XmCreateMessageDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateErrorDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateInformationDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateQuestionDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateTemplateDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateWarningDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateWorkingDialog(Widget, char *, ArgList, Cardinal)

<Xm/SelectioB.h>:
Widget XmCreateSelectionBox(Widget, char *, ArgList, Cardinal)
Widget XmCreateSelectionDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreatePromptDialog(Widget, char *, ArgList, Cardinal)

<Xm/FileSB.h>:
Widget XmCreateFileSelectionBox(Widget, char *, ArgList, Cardinal)
Widget XmCreateFileSelectionDialog(Widget, char *, ArgList, Cardinal)

<Xm/Command.h>:
Widget XmCreateCommand(Widget, char *, ArgList, Cardinal)

Each of these routines creates a dialog widget. In addition, the routines that end in Dialog
automatically create a DialogShell as the parent of the dialog widget. All of the
convenience functions for creating dialogs use the standard Motif creation routine format.
For example, XmCreateMessageDialog() takes the following form:

Widget XmCreateMessageDialog (Widget parent, char *name,
ArgList arglist; Cardinal argcount)

* Yes, you read that right. It does, in fact, read SelectioB.h.The reason for the missing n is there is a fourteen-char-
acter filename limit on UNIX System V machines.

Motif Programming Manual 135

Chapter 5: Introduction to Dialogs

In this case, we are creating a common MessageDialog, which is a MessageBox with a
DialogShell parent.The parent parameter speci?es the widget that acts as the owner or
parent of the DialogShell. Note that the parent must not be a gadget, since the parent must
have a window associated with it. The dialog widget itself is a child of the DialogShell. You
are returned a handle to the newly created dialog widget, not the DialogShell parent. For
the routines that just create a dialog widget, the parent parameter is simply a manager
widget that contains the dialog.

The arglist and argcount parameters for the convenience routines specify resources
using the old-style ArgList format, just like the rest of the Motif convenience routines. A
varargs-style interface is not available for creating dialogs. However, you can use the
varargs-style interface for setting resources on a dialog after is has been created by using
XtVaSetValues() .

Setting Resources
There are a number of resources and callback functions that apply to almost all of the Motif
dialogs. These resources deal with the action area buttons in the dialogs. Other resources
only apply to specific types of dialogs; they deal with the different control area components
such as Labels, TextFields, and List widgets. The different resources are listed below,
grouped according to the type of dialogs that they affect:

General dialog resources:

XmNokLabelString XmNokCallback
XmNcancelLabelString XmNcancelCallback
XmNhelpLabelString XmNhelpCallback

MessageDialog resources:

XmNmessageString XmNsymbolPixmap

SelectionDialog resources:

XmNapplyLabelString XmNapplyCallback
XmNselectionLabelString XmNlistLabelString

FileSelectionDialog resources:

XmNfilterLabelString XmNdirListLabelString
XmNfileListLabelString

Command resources:

XmNpromptString

The labels and callbacks of the various buttons in the action area are specified by resources
based on the standard Motif dialog button names. For example, the XmNokLabelString
resource is used to set the label for the OK button. XmNokCallback is used to specify the
callback routine that the dialog should call when that button is activated. As discussed

Chapter 5: Introduction to Dialogs

136 Motif Programming Manual

earlier, it may be appropriate to change the labels of these buttons, but the resource and
callback names will always have names that correspond to their default labels.

The XmNmessageString resource speci?es the message that is displayed by the
MessageDialog. The XmNsymbolPixmap resource specifies the iconic symbol that is
associated with each of the MessageDialog types. This resource is rarely changed, so
discussion of it is deferred until Chapter 27.

The other resources apply to the different types of selection dialogs. For example,
XmNselectionLabelString sets the label that is placed above the list area in a
SelectionDialog. These resources are discussed in Chapter 6.

All of these resources apply to the Labels and PushButtons in the different dialogs. It is
important to note that they are different from the usual resources for Labels and
PushButtons. For example, the Label resource XmNlabelString would normally be used
to specify the label for both Label and PushButton widgets. Dialogs use their own resources
to maintain the abstraction of the dialog widget as a discrete user-interface object.

Another important thing to remember about the resources that refer to widget labels is that
their values must be specified as compound strings. Compound strings allow labels to be
rendered in arbitrary fonts and to span multiple lines. See Chapter 25, Compound Strings,
for more information.

The following code fragment demonstrates how to specify dialog resources and callback
routines:

Widget dialog;
XmString msg, yes, no;
extern void my_callback(Widget, XtPointer, XtPointer);

dialog = XmCreateQuestionDialog (parent, "dialog", NULL, 0);
yes = XmStringCreateLocalized ("Yes");
no = XmStringCreateLocalized ("No");
msg = XmStringCreateLocalized ("Do you want to quit?");
XtVaSetValues (dialog, XmNmessageString, msg, XmNokLabelString, yes,

XmNcancelLabelString, no, NULL);
XtAddCallback (dialog, XmNokCallback, my_callback, NULL);
XtAddCallback (dialog, XmNcancelCallback, my_callback, NULL);

XmStringFree (yes);
XmStringFree (no);
XmStringFree (msg);

Dialog Management
None of the Motif toolkit convenience functions manage the widgets that they create, so the
application must call XtManageChild() explicitly. It just so happens that managing a
dialog widget that is the immediate child of a DialogShell causes the entire dialog to pop
up. Similarly, unmanaging the same dialog widget causes it and its DialogShell parent to

Motif Programming Manual 137

Chapter 5: Introduction to Dialogs

pop down. This behavior is consistent with the Motif toolkit’s treatment of the dialog/shell
combination as a single object abstraction. The toolkit is treating its own dialog widgets as
opaque objects and trying to hide the fact that there are Dialog Shells associated with them.
The toolkit is also making the assumption that when the programmer manages a dialog, she
wants it to pop up immediately.

This practice is somewhat confusing to experienced programmers of Xt, who are used to
calling the routines XtPopup () and XtPopdown () to display and hide a dialog. You should
note that managing or unmanaging any immediate child of a Motif DialogShell will cause
the whole dialog to appear or disappear respectively: this behavior is not restricted to just
the built-in Motif dialog objects* .

For reference, XtPopup () and XtPopdown () take the following forms:

void XtPopup (Widget shell , XtGrabKind grab_kind)
void XtPopdown (Widget shell)

The shell parameter to the function must be a shell widget; in this case it happens to be a
DialogShell. If you created the dialog using one of the Motif convenience routines, you can
get a handle to the DialogShell by calling XtParent() on the dialog widget.

The grab_kind parameter can be one of XtGrabNone , XtGrabNonexclusive , or
XtGrabExclusive . We almost always use XtGrabNone , since the other values imply a
server grab, which means that other windows on the desktop are locked out. Grabbing the
server results in what is called modality; it implies that the user cannot interact with
anything but the current dialog. While a grab may be desirable in some cases, the Motif
toolkit provides some predefined resources that handle the grab for you automatically. The
advantage of using this alternate method is that it allows the client to communicate more
closely with the Motif Window Manager (mwm) and it provides for different kinds of
modality. These methods are discussed in Section 5.7.1. For detailed information on
XtPopup() and the different uses of grab_kind, see Volume 4, X Toolkit Intrinsics
Programming Manual.

Let’s take a closer look at how dialogs are really used in an application. Examining the
overall design and the mechanics that are involved will help to clarify a number of issues
about managing and unmanaging dialogs and DialogShells. The program listed in Example
5-1 displays an InformationDialog when the user presses a PushButton in the application’s
main window.†

Example 5-1: The hello_dialog.c program

/* hello_dialog.c -- your typical Hello World program using
** an InformationDialog.

* To be more precise, the ChangeManaged() method of the DialogShell calls XtPopup () and XtPopdown () in-
ternally, provided that the XmNmappedWhenManaged resource of the DialogShell is true (the default).

† XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 5: Introduction to Dialogs

138 Motif Programming Manual

*/

#include <Xm/RowColumn.h>
#include <Xm/MessageB.h>
#include <Xm/PushB.h>

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, rc, hpb, gpb;
/* callbacks for the pushbuttons -- pops up dialog */
void popup_callback(Widget, XtPointer, XtPointer);
void exit_callback(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

rc = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);

hpb = XmCreatePushButton (rc, "Hello", NULL, 0);
XtAddCallback (hpb,

XmNactivateCallback,
popup_callback,
(XtPointer) "Hello World");

gpb = XmCreatePushButton (rc, "Goodbye", NULL, 0);
XtAddCallback (gpb, XmNactivateCallback, exit_callback, NULL);

XtManageChild (hpb);
XtManageChild (gpb);
XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* callback for the “Hello” PushButton.
** Popup an InformationDialog displaying the text passed as the client
** data parameter.
*/
void popup_callback (Widget button, XtPointer client_data,

XtPointer call_data)
{

Widget dialog;
XmString xm_string;
void activate_callback(Widget, XtPointer, XtPointer);
Arg args[5];
int n = 0;
char *text = (char *) client_data;

 /* set the label for the dialog */
xm_string = XmStringCreateLocalized (text);
XtSetArg (args[n], XmNmessageString, xm_string); n++;
/* Create the InformationDialog as child of button */

Motif Programming Manual 139

Chapter 5: Introduction to Dialogs

dialog = XmCreateInformationDialog (button, "info", args, n);
 /* no longer need the compound string, free it */
XmStringFree (xm_string);
/* add the callback routine */
XtAddCallback (dialog, XmNokCallback, activate_callback, NULL);
/* manage the MessageBox: has the side effect of displaying the
XmDialogShell parent*/
XtManageChild (dialog);

}

/*
** callback routine when the user pressed the “Goodbye” button
*/
void exit_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

exit (0);
}

/* callback routine for when the user presses the OK button.
** Yes, despite the fact that the OK button was pressed, the
** widget passed to this callback routine is the dialog!
*/
void activate_callback (Widget dialog,

XtPointer client_data,
XtPointer call_data)

{
puts ("OK was pressed.");

}

The output of this program is shown in Figure 5-5.

Dialogs are often invoked from callback routines attached to PushButtons or other
interactive widgets. Once the dialog is created and popped up, control of the program is
returned to the main event-handling loop (XtAppMainLoop()),where normal event
processing resumes. At this point, if the user interacts with the dialog by selecting a control
or activating one of the action buttons, a callback routine for the dialog is invoked. In
Example 5-1, we happen to use a MessageDialog, but the type of dialog used is irrelevant
to the model.

Figure 5-5: Output of the hello_dialog program

Chapter 5: Introduction to Dialogs

140 Motif Programming Manual

When the PushButton in the main window is pressed, popup_callback() is called. A
text string that is used as the message to display in the InformationDialog is passed as client
data. The dialog uses a single callback routine, activate_callback() , for the
XmNokCallback resource. This function is invoked when the user presses the OK button.
The callback simply prints a message to standard output that the button has been pressed.
Similar callback routines could be installed for the Cancel and Help buttons through the
XmNcancelCallback and XmNhelpCallback resources.

Closing Dialogs
You might notice that activating either the OK or the Cancel button in the previous example
causes the dialog to be automatically popped down. The Motif Style Guide says that when
any button in the action area of a predefined Motif dialog is pressed, except for the Help
button, the dialog should be dismissed. The Motif toolkit takes this specification at face
value and enforces the behavior, which is consistent with the idea that Motif dialogs are
self-contained, self-sufficient objects. They manage everything about themselves from
their displays to their interactions with the user. And when it’s time to go away, they
unmanage themselves. Your application does not have to do anything to cause any of the
behavior to occur.

Unfortunately, this behavior does not take into account error conditions or other
exceptional events that may not necessarily justify the dialog’s dismissal. For example, if
pressing OK causes a ?le to be updated, but the operation fails, you may not want the dialog
to be dismissed. If the dialog is still displayed, the user can try again without having to
repeat the actions that led to popping up the dialog.

The XmNautoUnmanage resource provides a way around the situation. This resource
controls whether the dialog box is automatically unmanaged when the user selects an action
area button other than the Help button. If XmNautoUnmanage is True , after the callback
routine for the button is invoked, the DialogShell is popped down and the dialog widget is
unmanaged automatically. However, if the resource is set to False , the dialog is not
automatically unmanaged. The value of this resource defaults to True for MessageDialogs
and SelectionDialogs; it defaults to False for FileSelectionDialogs.

Since it is not always appropriate for a dialog box to unmanage itself automatically, it turns
out to be easier to set XmNautoUnmanage to False in most circumstances. This
technique makes dialog management easier, since it keeps the toolkit from indiscriminately
dismissing a dialog simply because an action button has been activated. While it is true that
we could program around this situation by calling XtPopup() or XtManageChild()
from a callback routine in error conditions, this type of activity is confusing because of the
double-negative action it implies. In other words, programming around the situation is just
undoing something that should not have been done in the first place.

Motif Programming Manual 141

Chapter 5: Introduction to Dialogs

This discussion brings up some issues about when a dialog should be unmanaged and when
it should be destroyed. If you expect the user to have an abundant supply of computer
memory, you may reuse a dialog by retaining a handle to the dialog, as shown in Example
5-4 later in this chapter. There are also performance considerations that may affect whether
you choose to destroy or reuse dialogs. It takes less time to reuse a dialog than it does to
create a new one, provided that your application is not so large that it is consuming all of
the system’s resources. If you do not retain a handle to a dialog, and if you need to conserve
memory and other resources, you should destroy the dialog whenever you pop it down.

Another method the user might use to close a dialog is to select the Close item from the
window menu. This menu can be pulled down from the title bar of a window. Since the
menu belongs to the window manager, rather than the shell widget or the application, you
cannot install any callback routines for its menu items. However, you can use the
XmNdeleteResponse resource to control how the DialogShell responds to a Close action.
* It can have one of the following values:

XmUNMAP
This value causes the dialog to be unmapped. The dialog disappears from the screen,
but it is not destroyed, nor is it iconified. The dialog widget and its windows are still
intact and can be redisplayed usingXtPopup() . This value is the default for Dia-
logShells.

XmDESTROY
This value destroys the DialogShell and calls itsXmNdestroyCallback . Note that
all of the shell’s children are also destroyed, including the dialog widget and its sub-
widgets. When the dialog is destroyed, you cannot redisplay the dialog or reference its
handle again. If you need the dialog again, you have to create another one. Examples
of using theXmNdestroyCallback are presented in Chapter 27,Advanced Dialog
Programming.

XmDO_NOTHING
This value causes the toolkit to take no action. The value should only be specified in
circumstances where you want to handle the event on your own. However, handling
the event involves much more than installing a simple callback routine. It requires
building a lower-level mechanism that interprets the proper events when they are sent
by the window manager. The most common thing to do in such cases is to activate the
default action of the dialog or to interpose a prompting mechanism to verify the user’s
action. This topic is discussed in Chapter 20, Interacting with the Window Manager.

It may be convenient for your application to know when a dialog has been popped up or
down. If so, you can install callbacks that are invoked whenever either of these events take
place. The actions of popping up and down dialogs can be monitored through the

* The Motif VendorShell, from which the DialogShell is subclassed, is responsible for trapping the notification
and determining what to do next, based on the value of the resource.

Chapter 5: Introduction to Dialogs

142 Motif Programming Manual

XmNpopupCallback and XmNpopdownCallback callback routines. For example, when
the function associated with a XmNpopupCallback is invoked, you could position the
dialog automatically, rather than allowing the window manager to control the placement.
See Chapter 7, Custom Dialogs, for more information on these callbacks.

Generalizing Dialog Creation
Posting dialogs that display informative messages is something just about every application
is going to do frequently. Rather than write a separate routine for each case where a
message needs to be displayed, we can generalize the process by writing a single routine
that handles most, if not all, cases. Example 5-2 shows the PostDialog() routine. This
routine creates a MessageDialog of a given type and displays an arbitrary message. Rather
than use the convenience functions provided by Motif for each of the MessageDialog types,
the routine uses the generic function XmCreateMessageDialog() and configures the
symbol to be displayed by setting the XmNdialogType resource.

Example 5-2: The PostDialog() routine

/*
** PostDialog() -- a generalized routine that allows the programmer
** to specify a dialog type (message, information, error, help, etc.),
** and the message to display.
*/
Widget PostDialog (Widget parent, int dialog_type, char *msg)
{

Widget dialog;
XmString text;

dialog = XmCreateMessageDialog (parent, "dialog", NULL, 0);
text = XmStringCreateLocalized (msg);
XtVaSetValues (dialog,

XmNdialogType, dialog_type,
XmNmessageString, text,
NULL);

XmStringFree (text);
XtManageChild (dialog);
return dialog;

}

This routine allows the programmer to specify several parameters: the parent widget, the
type of dialog that is to be used, and the message that is to be displayed. The function
returns the new dialog widget, so that the calling routine can modify it, unmanage it, or
keep a handle to it. You may have additional requirements that this simplified example does
not satisfy. For instance, the routine does not allow you to specify callback functions for
the buttons in the action area and it does not handle the destruction of the widget when it is
no longer needed. You could extend the routine to handle these issues, or you could control
them outside the context of the function. You may also want to extend the routine so that it
reuses the same dialog each time it is called and so that it allows you to disable the different

Motif Programming Manual 143

Chapter 5: Introduction to Dialogs

action area buttons. All of these issues are discussed again in Chapter 6, Custom Dialogs,
and in Chapter 27, Advanced Dialog Programming.

Dialog Resources
The following sections discuss resources that are specific to Motif dialogs. In most cases,
these resources are BulletinBoard widget resources, since all Motif dialogs are subclassed
from this class. However, they are not intended to be used by generic BulletinBoard
widgets. The resources only apply when the widget is an immediate child of a DialogShell
widget; they are really intended to be used exclusively by the predefined Motif dialog
classes. Remember that the resources must be set on the dialog widget, not the DialogShell.
See Chapter 8, Manager Widgets, for details on the generic BulletinBoard resources.

The Default Button
All predefined Motif dialogs have a default button in their action area. The default button
is activated when the user presses the RETURN key in the dialog. The OK button is
normally the default button, but once the dialog is displayed, the user can change the default
button by using the arrow keys to traverse the action buttons. The action button with the
keyboard focus is always the default button. Since the default button can be changed by the
user, the button that is the default is only important when the dialog is initially popped up.
The importance of the default button lies in its ability to influence the user’s default
response to the dialog.

You can change the default button for a MessageDialog by setting the
XmNdefaultButtonType resource on the dialog widget. This resource is specific to
MessageDialogs; it cannot be set for the various types of selection dialogs. The resource
can have one of the following values:

XmDIALOG_OK_BUTTON
This value speci?es that the default button is the furthest button on the left of the dialog.
By default, this button is theOK button, although its label may have been changed to
another string.

XmDIALOG_CANCEL_BUTTON
This value speci?es that theCancelbutton is the default button. This value is appropri-
ate in situations where the action of the dialog is destructive, such as for a WarningDi-
alog that is posted in order to warn the user of a possibly dangerous action.

XmDIALOG_HELP_BUTTON
This value speci?es theHelpbutton, which is always the furthest button on the right of
a Motif dialog. This button is rarely set as the default button.

XmDIALOG_NONE
This value speci?es that there is no default button.

Chapter 5: Introduction to Dialogs

144 Motif Programming Manual

The values for XmNdefaultButtonType come up again later, when we discuss
XmMessageBoxGetChild() and again in Chapter 6, when we consider the routine
XmSelectionBoxGetChild() * . An example of how the default button type can be used
is shown in Example 5-3.

Example 5-3. The WarningMsg() function

/* WarningMsg() -- Inform the user that she is about to embark on a
** dangerous mission and give her the opportunity to back out.
*/
void WarningMsg (Widget parent, XtPointer client_data, XtPointer call_data)
{

static Widget dialog;
XmString text, ok_str, cancel_str;
char *msg = (char *) client_data;

if (!dialog)
dialog = XmCreateWarningDialog (parent, "warning", NULL, 0);

text = XmStringCreateLocalized (msg);
ok_str = XmStringCreateLocalized ("Yes");
cancel_str = XmStringCreateLocalized ("No");
XtVaSetValues (dialog,XmNmessageString, text,

XmNokLabelString, ok_str,
XmNcancelLabelString, cancel_str,
XmNdefaultButtonType, XmDIALOG_CANCEL_BUTTON,
NULL);

XmStringFree (text);
XmStringFree (ok_str);
XmStringFree (cancel_str);
XtManageChild (dialog);

}

The intent of this function is to create a dialog that tries to discourage the user from
performing a destructive action. By using a WarningDialog and by making the Cancel
button the default choice, we have given the user adequate warning that the action may have
dangerous consequences.The output of a program running this code fragment is shown in
Figure 5-6.

* Strictly speaking, the *GetChild() routines are deprecated in Motif 2.0 and later. You should prefer the routine
XtNameToWidget ().

Figure 5-6: An instance of the WarningMsg() routine

Motif Programming Manual 145

Chapter 5: Introduction to Dialogs

You can also set the default button for a dialog by the setting the BulletinBoard resource
XmNdefaultButton . This technique works for both MessageDialogs and
SelectionDialogs. The resource value must be a widget ID, which means that you have to
get a handle to a subwidget in the dialog to set the resource. You can get the handle to
subwidgets using XmMessageBoxGetChild() or XmSelectionBoxGetChild() * .
Since this method breaks the Motif dialog abstraction, we describe it later in Section 5.6.3.

Initial Keyboard Focus
When a dialog widget is popped up, one of the internal widgets in the dialog has the
keyboard focus. This widget is typically the default button for the dialog, which makes
sense in most cases. However, there are situations where it is appropriate for another widget
to have the initial keyboard focus. For example, when a PromptDialog is popped up, it
makes sense for the TextField to have the keyboard focus so that the user can immediately
start typing a response.

The XmNinitialFocus resource can be used to handle this situation. Since this resource
is a Manager widget resource, it can be used for both MessageDialogs and
SelectionDialogs, although it is normally only used for SelectionDialogs. The resource
speci?es the subwidget that has the keyboard focus the first time that the dialog is popped
up. If the dialog is popped down and popped up again later, it remembers the widget that
had the keyboard focus when it was popped down and that widget is given the keyboard
focus again. The resource value must again be a widget ID. The default value of
XmNinitialFocus for MessageDialogs is the subwidget that is also the
XmNdefaultButton for the dialog. For SelectionDialogs, the text entry area is the default
value for the resource.

Button Sizes
The XmNminimizeButtons resource controls how the dialog sets the widths of the action
area buttons. If the resource is set to True , the width of each button is set so that it is as
small as possible while still enclosing the entire label, which means that each button will
have a different width. The default value of False specifies that the width of each button
is set to the width of the widest button, so that all buttons have the same width.

The Dialog Title
When a new shell widget is mapped to the screen, the window manager creates its own
window that contains the title bar, resize handles, and other window decorations and makes
the window of the DialogShell the child of this new window. This technique is called
reparenting a window; it is only done by the window manager in order to add window

* XtNameToWidget () should be used in preference in Motif 2.0 and later.

Chapter 5: Introduction to Dialogs

146 Motif Programming Manual

decorations to a shell window. The window manager reparents instances of all of the shell
widget classes except OverrideShell. These shells are used for menus and thus should not
have window manager decorations.

Most window managers that reparent shell windows display titles in the title bars of their
windows. For predefined Motif dialogs, the Motif toolkit sets the default title to the name
of the dialog widget with the string _popup appended. Since this string is almost certainly
not an appropriate title for the window, you can change the title explicitly using the
XmNdialogTitle BulletinBoard resource. (Do not confuse this title with the message
displayed in MessageDialog, which is set by XmNmessageString .) The value for
XmNdialogTitle must be a compound string. The BulletinBoard in turn sets the
XmNtitle resource of the DialogShell; the value of this resource is a regular C string.

So, you can set the title for a dialog window in one of two ways. The following code
fragment shows how to set the title using the XmNdialogTitle resource:

XmString title_string = XmStringCreateLocalized ("Dialog Box");
Widget dialog = XmCreateMessageDialog (parent, "dialog_name", NULL, 0);

XtVaSetValues (dialog, XmNdialogTitle, title_string, NULL);
XmStringFree (title_string);

This technique requires creating a compound string. If you set the XmNtitle resource
directly on the DialogShell, you can use a regular C string, as in the following code
fragment:

dialog = XmCreateMessageDialog (parent, "dialog_name", NULL, 0);
XtVaSetValues (XtParent (dialog), XmNtitle, "Dialog Box", NULL);

While the latter method is easier and does not require creating and freeing a compound
string, it does break the abstraction of treating the dialog as a single entity.

Dialog Resizing
The XmNnoResize resource controls whether or not the window manager allows the
dialog to be resized. If the resource is set to True , the window manager does not display
resize handles in the window manager frame for the dialog. The default value of False
speci?es that the window manager should provide resize handles. Since some dialogs
cannot handle resize events very well, you may find it better aesthetically to prevent the
user from resizing them.

This resource is an attribute of the BulletinBoard widget, even though it only affects the
shell widget parent of a dialog widget. The resource is provided as a convenience to the
programmer, so that she is not required to get a handle to the DialogShell. The resource
only affects the presence of resize handles in the window manager frame; it does not deal
with other window manager controls. See Chapter 20, Interacting with the Window

Motif Programming Manual 147

Chapter 5: Introduction to Dialogs

Manager, for details on how to specify the window manager controls for a DialogShell, or
any shell widget, directly.

Dialog Render Tables*

The BulletinBoard widget provides resources that enable you to specify the render tables
that are used for all of the Button, Label, and Text widget descendants of the BulletinBoard.
Since Motif dialog widgets are subclassed from the BulletinBoard, you can use these
resources to make sure that fonts and other appearance resources that are used within a
dialog are consistent. The XmNbuttonRenderTable † resource speci?es the render table
that is used for all of the button descendants of the dialog. The resource is set on the dialog
widget itself, not on its individual children. Similarly, the XmNlabelRenderTable ‡

resource is used to set the render table for all of the Label descendants of the dialog and
XmNtextRenderTable § is used for all of the Text and TextField descendants.

If one of these resources is not set, the toolkit determines the render table by searching up
the widget hierarchy for an ancestor that holds the XmQTspecifyRenderTable trait.
BulletinBoard, VendorShell, MenuShell, and derived widget classes hold this trait. If an
ancestor is found, the render table resource is set to the value of that render table resource
in the ancestor widget. See Chapter 24, for more information on render tables.

You can override the XmNbuttonRenderTable , XmNlabelRenderTable , and
XmNtextRenderTable resources on a per-widget basis by setting the
XmNrenderTable resource directly on individual widgets. Of course, you must break the
dialog abstraction and retrieve the widgets internal to the dialog itself to set this resource.
While we describe how to retrieve the widgets in Section 5.6, we do not necessarily
recommend configuring dialogs down to this level of detail.

Dialog Callback Routines
As mentioned earlier, the predefined Motif dialogs have their own resources to reference
the labels and callback routines for the action area PushButtons. Instead of accessing the
PushButton widgets in the action area to install callbacks, you use the resources
XmNokCallback , XmNcancelCallback , and XmNhelpCallback on the dialog widget
itself. These callbacks correspond to each of the three buttons, OK, Cancel, and Help.

Installing callbacks for a dialog is no different than installing them for any other type of
Motif widget; it may just seem different because the dialog widgets contain so many

* As of Motif 2.0, the XmFontList is obsolete, and is replaced by the XmRenderTable type. For backwards
compatibility, the XmFontList is implemented through an XmRenderTable

† XmNbuttonFontList is deprecated, and is replaced by XmNbuttonRenderTable

‡ XmNlabelFontList is deprecated, and is replaced by XmNlabelRenderTable

§ XmNtextFontList is deprecated, and is replaced by XmNtextRenderTable

Chapter 5: Introduction to Dialogs

148 Motif Programming Manual

subwidgets. The following code fragment demonstrates the installation of simple callback
for all of the buttons in a MessageDialog:

...
dialog = XmCreateMessageDialog (w, "notice", NULL, 0);
...
XtAddCallback (dialog, XmNokCallback, ok_pushed, (XtPointer) "Hi");
XtAddCallback (dialog, XmNcancelCallback, cancel_pushed, (XtPointer) "Bye");
XtAddCallback (dialog, XmNhelpCallback, help_pushed, NULL);
XtManageChild (dialog);
...

/* ok_pushed() --the OK button was selected. */
void ok_pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

char *message = (char *) client_data;
printf ("OK was selected: %s\n", message);

}

/* cancel_pushed() --the Cancel button was selected. */
void cancel_pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

char *message = (char *) client_data;
printf ("Cancel was selected: %s\n", message);

}

/* help_pushed() --the Help button was selected. */
void help_pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

printf ("Help was selected\n");
}

In this example, a dialog is created and callback routines for each of the three responses are
added using XtAddCallback() . We also provide simple client data to demonstrate how
the data is passed to the callback routines. These callback routines simply print the fact that
they have been activated; the messages they print are taken from the client data.

All of the dialog callback routines take three parameters, just like any standard callback
routine. The widget parameter is the dialog widget that contains the button that was
selected; it is not the DialogShell widget or the PushButton that the user selected from the
action area. The second parameter is the client_data , which is supplied to
XtAddCallback() , and the third is the call_data , which is provided by the internals
of the widget that invoked the callback.

The client_data parameter is of type XtPointer , which means that you can pass
arbitrary values to the function, depending on what is necessary. However, you cannot pass
a float or a double value or an actual data structure. If you need to pass such values, you
must pass the address of the variable or a pointer to the data structure. In keeping with the
philosophy of abstracting and generalizing code, you should use the client_data

Motif Programming Manual 149

Chapter 5: Introduction to Dialogs

parameter as much as possible because it eliminates the need for some global variables and
it keeps the structure of an application modular.

For the predefined Motif dialogs, the call_data parameter is a pointer to a data structure
that is filled in by the dialog box when the callback is invoked. The data structure contains
a callback reason and the event that invoked the callback. The structure is of type
XmAnyCallbackStruct , which is declared as follows:

typedef struct {
int reason;
XEvent *event;

} XmAnyCallbackStruct;

The value of the reason field is an integer value that can be any one of XmCR_HELP,
XmCR_OK, or XmCR_CANCEL. The value speci?es the button that the user pressed in the
dialog box. The values for the reason field remain the same, no matter how you change
the button labels for a dialog. For example, you can change the label for the OK button to
say Help, using the resource XmNokLabelString , but the reason parameter will still be
XmCR_OK when the button is activated.

Because thereason field provides information about the user’s response to the dialog in
terms of the button that was pushed, we can simplify the previous code fragment and use
one callback function for all of the possible actions. The callback function can determine
which button was selected by examiningreason. Example 5-4 demonstrates this
simplification.*

Example 5-4. The reason.c program

/* reason.c -- examine the reason field of the callback structure
** passed as the call_data of the callback function. This field
** indicates which action area button in the dialog was pressed.
*/
#include <Xm/RowColumn.h>
#include <Xm/MessageB.h>
#include <Xm/PushB.h>

/* main() --create a pushbutton whose callback pops up a dialog box */
main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, rc, pb1, pb2;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
rc = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);
pb1 = XmCreatePushButton (rc, "Hello", NULL, 0);

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 5: Introduction to Dialogs

150 Motif Programming Manual

XtAddCallback (pb1, XmNactivateCallback, pushed,
(XtPointer) "Hello World");

pb2 = XmCreatePushButton (rc, "Goodbye", NULL, 0);
XtAddCallback (pb2, XmNactivateCallback, pushed,

(XtPointer) "Goodbye World");
XtManageChild (pb1);
XtManageChild (pb2);
XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* pushed() --the callback routine for the main app's pushbuttons.
** Create and popup a dialog box that has callback functions for
** the OK, Cancel and Help buttons.
*/
void pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

static Widget dialog;
char *message = (char *) client_data;
XmString t = XmStringCreateLocalized (message);

/* See if we've already created this dialog -- if so,
** we don't need to create it again. Just set the message
** and manage it (pop it up).
*/
if (!dialog) {

void callback(Widget, XtPointer, XtPointer);
Arg args[5];
int n = 0;
XtSetArg (args[n], XmNautoUnmanage, False); n++;
dialog = XmCreateMessageDialog (widget, "notice", args, n);
XtAddCallback (dialog, XmNokCallback, callback,

(XtPointer) "Hi");
XtAddCallback (dialog, XmNcancelCallback, callback,

(XtPointer) "Foo");
XtAddCallback (dialog, XmNhelpCallback, callback,

(XtPointer) "Bar");
}
XtVaSetValues (dialog, XmNmessageString, t, NULL);
XmStringFree (t);
/* Managing child of DialogShell pops up the dialog */
XtManageChild (dialog);

}

/* callback() --One of the dialog buttons was selected.
** Determine which one by examining the "reason" parameter.
*/
void callback (Widget widget, XtPointer client_data, XtPointer call_data)
{

char *button;
char *message = (char *) client_data;
XmAnyCallbackStruct*cbs = (XmAnyCallbackStruct *) call_data;

Motif Programming Manual 151

Chapter 5: Introduction to Dialogs

switch (cbs->reason) {
case XmCR_OK : button = "OK"; break;
case XmCR_CANCEL : button = "Cancel"; break;
case XmCR_HELP : button = "Help"; break;

}
printf ("%s was selected: %s\n", button, message);

if (cbs->reason != XmCR_HELP) {
/* the ok and cancel buttons "close" the widget:.
** Unmanaging child of DialogShell pops down the dialog.
*/
XtUnmanageChild (widget);

}
}

Another interesting change in this application is the way pushed() determines if the
dialog has already been created. By making the dialog widget handle static to the
pushed() callback function, we retain a handle to this object across multiple button
presses. For each invocation of the callback, the dialog’s message is reset and it is popped
up again.

Considering style guide issues again, it is important to know when it is appropriate to
dismiss a dialog. As noted earlier, the toolkit automatically unmanages a dialog whenever
any of the action area buttons are activated, except for the Help button. This behavior is
controlled by XmNautoUnmanage, which defaults to True . However, if you set this
resource to False, the callback routines for the buttons in the action area have to control the
behavior on their own. In Example 5-4, the callback routine pops down the dialog when the
reason is XmCR_OK or XmCR_CANCEL, but not when it is XmCR_HELP.

Piercing the Dialog Abstraction
As described earlier, Motif treats dialogs as if they are single user-interface objects.
However, there are times when you need to break this abstraction and work with some of
the individual widgets that make up a dialog. This section describes how the dialog
convenience routines work, how to work directly with the DialogShell, and how to access
the widgets that are internal to dialogs.

Convenience Routines
The fact that Motif dialogs are self-sufficient does not imply that they are black boxes that
perform magic that you cannot perform yourself. For example, the convenience routines for
the MessageDialog types follow these basic steps:

1. Create a popup shell widget of typexmDialogShellWidgetClass usingXtCre-
atePopupShell() .

Chapter 5: Introduction to Dialogs

152 Motif Programming Manual

2. Create a widget of typexmMessageBoxWidgetClass as the child of the Dia-
logShell.

3. Set theXmNdialogType resource for the dialog.

4. Install a callback routine for theXmNdestroyCallback resource of the MessageBox,
so that it automatically destroys its DialogShell parent.

The XmNdialogType resource can be set to one of the following values:

XmDIALOG_ERROR XmDIALOG_INFORMATION XmDIALOG_MESSAGE
XmDIALOG_QUESTION XmDIALOG_TEMPLATE XmDIALOG_WARNING
XmDIALOG_WORKING

The type of the dialog does not affect the kind of widget that is created. The only thing the
type affects is the graphical symbol that is displayed in the control area of the dialog. The
convenience routines set the resource based on the routine that is called (e.g.
XmCreateErrorDialog() sets the resource to XmDIALOG_ERROR). The widget
automatically sets the graphical symbol based on the dialog type. You can change the type
of a dialog after it is created using XtVaSetValues() ; modifying the type also changes
the dialog symbol that is displayed.

The Motif dialog convenience routines create DialogShells internally to support the single-
object dialog abstraction. With these routines, the toolkit is responsible for the DialogShell,
so the dialog widget uses its XmNdestroyCallback to destroy its parent upon its own
destruction. If the dialog is unmapped or unmanaged, so is its DialogShell parent. The
convenience routines do not add any resources or call any functions to support the special
relationship between the dialog widget and the DialogShell, since most of the code that
handles the interaction is written into the internals of the BulletinBoard.

The DialogShell
As your programs become more complex, you may eventually have to access the
DialogShell parent of a dialog widget in order to get certain things done. This section
examines DialogShells as independent widgets and describes how they are different from
other shell widgets. There are three main features of a DialogShell that differentiate it from
a SessionShell and a TopLevelShell* .

• A DialogShell cannot be iconified by the user or by the application.

• When the parent of a DialogShell is iconified, withdrawn, unmapped, or destroyed, the
DialogShell children of that window are withdrawn or destroyed.

• A DialogShell is always placed on top of the shell widget that owns the parent of the
DialogShell.†

* The ApplicationShell is considered deprecated in X11R6.

† This is at the whim of the window manager. For mwm, this is true. See Chapter 20 for more details.

Motif Programming Manual 153

Chapter 5: Introduction to Dialogs

The DialogShell is subclassed from the TransientShell and VendorShell classes. A shell
that is subclassed from TransientShell cannot be iconified independently of its parent.
However, if the parent of a DialogShell is iconified or unmapped, the DialogShell is
unmapped as well. If the parent is destroyed, so is the DialogShell and the dialog within it.
Remember, the parent of the DialogShell is another widget somewhere in the application,
such as a Label, a PushButton, a SessionShell, or even another DialogShell. For example,
if the callback for PushButton creates a dialog, the PushButton might be designated as the
owner of the dialog. If the shell that contains the PushButton is iconified, the dialog is also
withdrawn from the screen. If the PushButton’s shell or the PushButton itself is destroyed,
the dialog is destroyed as well.

The parent-child relationship between a DialogShell and its parent is different from the
classic case, where the parent actually contains the child within its geometrical bounds. The
DialogShell widget is a popup child of its parent, which means that the usual geometry-
management relationship does not apply. Nonetheless, the parent widget must be managed
in order for the child to be displayed. If a widget has popup children, those children are not
mapped to the screen if the parent is not managed, which means that you must never make
a menu item the parent of a DialogShell.

Assuming that the parent is displayed, the window manager attempts to place the
DialogShell based on the value of the XmNdefaultPosition BulletinBoard resource.
The default value of this resource is True , which means that the window manager positions
the DialogShell so that it is centred on top of its parent. If the resource is set to False , the
application and the window manager negotiate about where the dialog is placed. This
resource is only relevant when the BulletinBoard is the immediate child of a DialogShell,
which is always the case for Motif dialogs. If you want, you can position the dialog by
setting the XmNx and XmNy resources for the dialog widget. Positioning the dialog on the
screen must be done through a XmNmapCallback routine, which is called whenever the
application calls XtManageChild() . See Chapter 7, for a discussion about dialog
positioning.

The Motif Window Manager imposes an additional constraint on the stacking order of the
DialogShell and its parent. mwm always forces the DialogShell to be directly on top of its
parent in the stacking order. The result is that the shell that contains the widget acting as
the parent of the DialogShell cannot be placed on top of the dialog. This behavior is defined
by the Motif Style Guide and is enforced by the Motif Window Manager and the Motif
toolkit. Many end-users have been known to report the behavior as an application-design
bug, so you may want to describe this behavior explicitly in the documentation for your
application, in order to prepare the user ahead of time.*

* Other window managers behave differently. See Chapter 20 for more details about window manager interaction.

Chapter 5: Introduction to Dialogs

154 Motif Programming Manual

Internally, DialogShell widgets communicate frequently with dialog widgets in order to
support the single-entity abstraction promoted by the Motif toolkit. However, you may find
that you need to access the DialogShell part of a Motif dialog in order to query information
from the shell or to perform certain actions on it. The include ?le <Xm/DialogS.h> provides
a convenient macro for identifying whether or not a particular widget is a DialogShell:

#define XmIsDialogShell(w)\
XtIsSubclass(w, xmDialogShellWidgetClass)

If you need to use this macro, or you want to create a DialogShell using
XmCreateDialogShell() , you need to include <Xm/DialogS.h>.

The macro is useful if you want to determine whether or not a dialog widget is the direct
child of a DialogShell. For example, earlier in this chapter, we mentioned that the Motif
Style Guide suggests that if the user activates the OK button in a MessageDialog, the entire
dialog should be popped down. If you have created a MessageDialog without using
XmCreateMessageDialog() and you want to be sure that the same thing happens when
the user presses the OK button in that dialog, you need to test whether or not the parent is
a DialogShell before you pop down the dialog. The following code fragment shows the use
of the macro in this type of situation:

/* traverse up widget tree until we find a dialog shell parent */
Widget GetDialogShellChild (Widget widget)
{

Widget parent;

while (widget) {
if (((parent = XtParent (widget)) != (Widget) 0)

if (XmIsDialogShell (parent))
return widget;

widget = parent;
}
return (Widget) 0;

}

/* traverse up the tree to find any shell ancestor */
Widget GetShell (Widget w)
{

while (widget && !XtIsShell (widget))
widget = XtParent (widget);

return widget;
}

void ok_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget top;
/* do whatever the callback needs to do */
...
/* if immediate parent is not a DialogShell, mimic the same
** behavior as if it were.
*/

Motif Programming Manual 155

Chapter 5: Introduction to Dialogs

/* Motif DialogShell */
if ((top = GetDialogShellChild (w)) != (Widget) 0)

XtUnmanageChild (top);
/* Probably a topLevelShellWidgetClass */
if ((top = GetShell (w)) != (Widget)))

XtPopdown (top);
}

The Motif toolkit defines similar macros for all of its widget classes. For example, the
header file <Xm/MessageB.h> defines the macro XmIsMessageBox() :

#define XmIsMessageBox(w)\
XtIsSubclass (w, xmMessageBoxWidgetClass)

This macro determines whether or not a particular widget is subclassed from the
MessageBox widget class. Since all of the MessageDialogs are really instances of the
MessageBox class, the macro covers all of the different types of MessageDialogs. If the
widget is a MessageBox, the macro returns True whether or not the widget is an immediate
child of a DialogShell. Note that this macro does not return True if the widget is a
DialogShell.

Internal Widgets
All of the Motif dialog widgets are composed of primitive subwidgets such as Labels,
PushButtons, and TextField widgets. For most tasks, it is possible to treat a dialog as a
single entity. However, there are some situations when it is useful to be able to get a handle
to the widgets internal to the dialog. For example, one way to set the default button for a
dialog is to use the XmNdefaultButton resource. The value that you specify for this
resource must be a widget ID, so this is one of those times when it is necessary to get a
handle to the actual subwidgets contained within a dialog.

You can retrieve a subwidget of any component using XtNameToWidget() *, which has
the following form:

Widget XtNameToWidget (Widget widget , char *child)

The widget parameter is a handle to a dialog widget, not its DialogShell parent. The
child parameter is the name associated with a descendant of widget . The children of a
MessageBox have the following constant names:

Symbol Message Separator
OK Cancel Help

For example, the Cancel button in a MessageDialog can be accessed as follows:

Widget cancel_b = XtNameToWidget (message_box, “Cancel”);

* The Motif convenience routines, XmMessageBoxGetChild (), XmSelectionBoxGetChild (), and so forth,
are considered deprecated in Motif 2.0. XmFileSelectionBoxGetChild () has not been maintained in par-
ticular, and Motif 2 components of the FileSelectionBox cannot be accessed using this convenience function.

Chapter 5: Introduction to Dialogs

156 Motif Programming Manual

One method that you can use to customize the predefined Motif dialogs is to unmanage the
subwidgets that are inappropriate for your purposes. To get the widget ID for a widget, so
that you can pass it to XtUnmanageChild() , you need to call XtNameToWidget() . You
can also use this routine to get a handle to a widget that you want to temporarily disable.
These techniques are demonstrated in the following code fragment:

text = XmStringCreateLocalized ("You have new mail.");
XtSetArg (args[0], XmNmessageString, text);
dialog = XmCreateInformationDialog (parent, "message", args, 1);
XmStringFree (text);
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtUnmanageChild (XtNameToWidget (dialog, “Cancel”));

The output of a program using this code fragment is shown in Figure 5-7.

Since the message in this dialog is so simple, it does not make sense to have both an OK
and a Cancel button, so we unmanage the latter. On the other hand, it does make sense to
have a Help button. However, there is currently no help available, so we make the button
unselectable by desensitizing it using XtSetSensitive() .

Dialog Modality
The concept of forcing the user to respond to a dialog is known as modality. Modality
governs whether or not the user can interact with other windows on the desktop while a
particular dialog is active. Dialogs are either modal or modeless. There are three levels of
modality: primary application modal, full application modal, and system modal. In all
cases, the user must interact with a modal dialog before control is released and normal input
is resumed. In a system modal dialog, the user is prevented from interacting with any other
window on the display. Full application modal dialogs allow the user to interact with any
window on the desktop except those that are part of the same application as the modal
window. Primary application modal dialogs allow the user to interact with any other
window on the display except for the window that is acting as the parent for this particular
dialog.

For example, if the user selected an action that caused an error dialog to be displayed, the
dialog could be primary application modal, so that the user would have to acknowledge the
error before she interacts with the same window again. This type of modality does not

Figure 5-7: MessageDialog with unmanaged Cancel, and insensitive Help buttons

Motif Programming Manual 157

Chapter 5: Introduction to Dialogs

restrict her ability to interact with another window in the same application, provided that
the other window is not the one acting as the parent for the modal dialog.

Modal dialogs are perhaps the most frequently misused feature of a graphical user interface.
Programmers who fail to grasp the concept of event-driven programming and design,
whereby the user is in control, often fall into the convenient escape route that modal dialogs
provide. This problem is difficult to detect, let alone cure, because there are just as many
right ways to invoke modal dialogs as there are wrong ways. Modality should be used in
moderation, but it should also be used consistently. Let’s examine a common scenario.
Note that this example does not necessarily favor using modal dialogs; it is presented as a
reference point for the types of things that people are used to doing in tty-based programs.

A text editor has a function that allows the user to save its text to a ?le. In order to save the
text, the program needs a filename. Once it has a filename, the program needs to check that
the user has sufficient permission to open or create the ?le and it also needs to see if there
is already some text in the ?le. If an error condition occurs, the program needs to notify the
user of the error, ask for a new filename, or get permission to overwrite the ?le’s contents.
Whatever the case, some interaction with the user is necessary in order to proceed. If this
were a typical terminal-based application, the program flow would be similar to that in the
following code fragment:

FILE *fp;
char buf [BUFSIZ], file [BUFSIZ];
extern char *index();
printf ("What file would you like to use? ");

if (!(fgets (file, sizeof (file), stdin)) || file[0] == 0) {
puts ("Cancelled."); return;

}
/* get rid of newline terminator */
*(index (file, '\n')) = 0;

/* "a+" creates file if it doesn't exist */
if (!(fp = fopen (file, "a+"))) {

perror (file); return;
}

if (ftell (fp) > 0) {
/* There's junk in the file already */
printf ("Overwrite contents of %s? ", file);
buf[0] = 0;
if (!(fgets (buf, sizeof (buf), stdin)) || buf[0] == 0 || buf[0] == 'n' ||

buf[0] == 'N') {
puts ("Cancelled.");
fclose (fp);
return;

}
}
rewind (fp);

Chapter 5: Introduction to Dialogs

158 Motif Programming Manual

This style of program flow is still possible with a graphical user interface system using
modal dialogs. In fact, the style is frequently used by engineers who are trying to port tty-
based applications to Motif. It is also a logical approach to programming, since it does one
task followed by another, asking only for information that it needs when it needs it.

However, in an event-driven environment, where the user can interact with many different
parts of the program simultaneously, displaying a series of modal dialogs is not the best
way to handle input and frequently it’s just plain wrong as a design approach. You must
adopt a new paradigm in interface design that conforms to the capabilities of the window
system and meets the expectations of the user. It is essential that you understand the event-
driven model if you want to create well-written, easy-to-use applications.

Window-based applications should be modelled on the behavior of a person filling out a
form, such as an employment application or a medical questionnaire. Under this scenario,
you are given a form asking various questions. You take it to your seat and fill it out
however you choose. If it asks for your license number, you can get out your driver’s
license and copy down the number. If it asks for your checking account number, you can
examine your check book for that information. The order in which you fill out the
application is entirely up to you. You are free to examine the entire form and fill out
whatever portions you like, in whatever order you like.

When the form is complete, you return it to the person who gave it to you. The attendant
can check it over to see if you forgot something. If there are errors, you typically take it
back and continue until it’s right. The attendant can simply ask you the question straight
out and write down whatever you say, but this prevents him from doing other work or
dealing with other people. Furthermore, if you don’t know the answer to the question right
away, then you have to take the form back and fill it out the way you were doing it before.
No matter how you look at it, this process is not an interview where you are asked questions
in sequence and must answer them that way. You are supposed to prepare the form off-line,
without requiring interaction from anyone else.

Window-based applications should be treated no differently. Each window, or dialog, can
be considered to be a form of some sort. Allow the user to fill out the form at her own
convenience and however she chooses. If she wants to interact with other parts of the
application or other programs on the desktop, she should be allowed to do so. When the user
selects one of the buttons in the action area, this action is her way of returning the form. At
this time, you may either accept it or reject it. At no point in the process so far have we
needed a modal dialog.

Once the form has been submitted, you can take whatever action is appropriate. If there are
errors in any section of the dialog, you may need to notify the user of the error. Here is
where a modal dialog can be used legitimately. For example, if the user is using a
FileSelectionDialog to specify the ?le she wants to read and the ?le is unreadable, then you
must notify her so that she can make another selection. In this case, the notification is

Motif Programming Manual 159

Chapter 5: Introduction to Dialogs

usually in the form of an ErrorDialog, with a message that explains the error and an OK
button. The user can read the message and press the button to acknowledge the error.

It is often difficult to judge what types of questions or how much information is appropriate
in modal dialogs. The rule of thumb is that questions in modal dialogs should be limited to
simple, yes/no questions. You should not prompt for any information that is already
available through an existing dialog, but instead bring up that dialog and instruct the user
to provide the necessary information there. You should also avoid posting modal dialogs
that prompt for a filename or anything else that requires typing. You should be requesting
this type of information through the text fields of modeless dialog boxes.

As for the issue of forcing the user to fill out forms in a particular order, it may be perfectly
reasonable to require this type of interaction. You should implement these restrictions by
managing and unmanaging separate dialogs, rather than by using modal dialogs to prevent
interaction with all but a single dialog.

All of these admonitions are not to suggest that modal dialogs are rare or that you should
avoid using them at all costs. On the contrary, they are extremely useful in certain
situations, are quite common, and are used in a wide variety of ways--even those that we
might not recommend. We have presented all of these warnings because modal dialogs are
frequently misused and programs that use fewer of them are usually better than those that
use more of them. Modal dialogs interrupt the user and disrupt the flow of work in an
application. There is no sanity checking to prevent you from misusing dialogs so it is up to
you to keep the use of modal dialogs to a minimum.

Implementing Modal Dialogs
Once you have determined that you need to implement a modal dialog, you can use the
XmNdialogStyle resource to set the modality of the dialog. This resource is defined by
the BulletinBoard widget class; it is only relevant when the widget is an immediate child
of a DialogShell. The resource can be set to one of the following values:

XmDIALOG_MODELESS
XmDIALOG_PRIMARY_APPLICATION_MODAL
XmDIALOG_FULL_APPLICATION_MODAL
XmDIALOG_SYSTEM_MODAL

XmDIALOG_MODELESS is the default value for the resource, so unless you change the value
any dialog that you create will be modeless.

When you use one of the modal values, the user has no choice but to respond to your dialog
box before continuing to interact with the application. If you use modality at all, you should
probably avoid using XmDIALOG_SYSTEM_MODAL, since it is rarely necessary to restrict
the user from interacting with all of the other applications on the desktop. This style of
modality is typically reserved for system-level interactions. Under the Motif Window
Manager, when a system modal dialog is popped up, if the user moves the mouse outside

Chapter 5: Introduction to Dialogs

160 Motif Programming Manual

of the modal dialog, the cursor turns into the international “do not enter” symbol. Attempts
to interact with other windows cause the server to beep.

Example 5-5 shows a sample program that displays a dialog box that the user must reply to
before continuing to interact with the application.*

Example 5-5. The modal.c program

/* modal.c -- demonstrate modal dialogs. Display two pushbuttons
** each activating a modal dialog.
*/
#include <Xm/RowColumn.h>
#include <Xm/MessageB.h>
#include <Xm/PushB.h>

/* main() --create a pushbutton whose callback pops up a dialog box */
main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, button, rowcolumn;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);
rowcolumn = XmCreateRowColumn (toplevel, "rowcolumn", NULL, 0);
button = XmCreatePushButton (rowcolumn, "Application Modal", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed,

(XtPointer) XmDIALOG_FULL_APPLICATION_MODAL);
XtManageChild (button);
button = XmCreatePushButton (rowcolumn, "System Modal", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed,

(XtPointer) XmDIALOG_SYSTEM_MODAL);
XtManageChild (button);
XtManageChild (rowcolumn);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* pushed() --the callback routine for the main app's pushbutton.
** Create either a full-application or system modal dialog box.
*/
void pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

static Widget dialog;
XmString t;
void dlg_callback(Widget, XtPointer, XtPointer);
unsigned char modality = (unsigned char) client_data;

/* See if we've already created this dialog -- if so,
** we don't need to create it again. Just re-pop it up.

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 161

Chapter 5: Introduction to Dialogs

*/
if (!dialog) {

Arg args[5];
int n = 0;
XmString ok = XmStringCreateLocalized ("OK");
XtSetArg(args[n], XmNautoUnmanage, False); n++;
XtSetArg(args[n], XmNcancelLabelString, ok); n++;
dialog = XmCreateInformationDialog (widget, "notice", args, n);
XtAddCallback (dialog, XmNcancelCallback, dlg_callback, NULL);
XtUnmanageChild (XtNameToWidget (dialog, “OK”));
XtUnmanageChild (XtNameToWidget (dialog, “Help”));

}
t = XmStringCreateLocalized ("You must reply to this message now!");
XtVaSetValues (dialog, XmNmessageString, t, XmNdialogStyle, modality,
NULL);
XmStringFree (t);
XtManageChild (dialog);

}

void dlg_callback (Widget dialog, XtPointer client_data, XtPointer call_data)
{

XtUnmanageChild (dialog);
}

The output of this program is shown in Figure 5-8.

This program demonstrates both application modal and system modal dialogs.The value for
the XmNdialogType resource is passed as client data to the callback routine that posts the
dialog.

Forcing an Immediate Response
In Example 5-5, once the dialog is posted, the function returns so that XtAppMainLoop()
can continue to process the events. If the function does not return, the application will not
respond to user events and, for that matter, the dialog will not even be displayed. Just
because a dialog is realized and managed does not mean that it is displayed on the screen,
as events must be processed in order for it to appear. See Chapter 27, Advanced Dialog

Figure 5-7: Output of modal.c

Chapter 5: Introduction to Dialogs

162 Motif Programming Manual

Programming, for a discussion of this phenomenon. (See Volume 1, Xlib Programming
Manual, for more information on event processing.)

However, there are situations where it would be nice not to have to return from the function
and break its flow of control. As an example, consider a function that allows the user to
perform a particularly dangerous action, such as removing or overwriting a ?le. What you’d
like to do is prompt the user first and allow her to reconsider the action before proceeding.
If she confirms the action, you’d like to continue from within the same function without
having to return in order to process events.

In order to write this type of function, we need to find a way to process the events that
display and manage the dialog without returning to the main loop. The user also needs to
be able to respond to the dialog, so we really need to allow normal event processing to
continue in the context of the function. Let’s assume that there is a hypothetical function,
AskUser() , that we can use in the following way:

if (AskUser ("Are you sure you want to do this?") == YES) {
/* proceed with action... */

}

The function AskUser() should post a full application modal MessageDialog, wait for the
user to respond to the dialog, and return a predefined value for either YES or NO. The magic
of the function is to get around the requirement that events can only be read and processed
directly from XtAppMainLoop() . The code for such a function is shown in Example 5-7.

Example 5-6. The AskUser() routine

#define YES1
#define NO2
/*
** AskUser() -- a generalized routine that asks the user a question
** and returns the Yes/No response.
*/
int AskUser (Widget parent, char *question)
{

static Widget dialog;
XmString text, yes, no;
static int answer;
void response(Widget, XtPointer, XtPointer);
extern XtAppContextapp;

if (!dialog) {
dialog = XmCreateQuestionDialog (parent, "dialog", NULL, 0);
yes = XmStringCreateLocalized ("Yes");
no = XmStringCreateLocalized ("No");
XtVaSetValues (dialog,

XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL,
XmNokLabelString, yes,
XmNcancelLabelString, no,
NULL);

XtSetSensitive (XtNameToWidget (dialog, “Help”), False);

Motif Programming Manual 163

Chapter 5: Introduction to Dialogs

XtAddCallback (dialog, XmNokCallback, response,
(XtPointer) &answer);

XtAddCallback (dialog, XmNcancelCallback, response,
(XtPointer) &answer);

XmStringFree (yes);
XmStringFree (no);

}
answer = 0;
text = XmStringCreateLocalized (question);
XtVaSetValues (dialog, XmNmessageString, text, NULL);
XmStringFree (text);
XtManageChild (dialog);
/* while the user hasn't provided an answer, simulate main loop.
** The answer changes as soon as the user selects one of the
** buttons and the callback routine changes its value.
*/
while (answer == 0)

XtAppProcessEvent (app, XtIMAll);
XtUnmanageChild (dialog);
return answer;

}

/* response() --The user made some sort of response to the
** question posed in AskUser(). Set the answer (client_data)
** accordingly and destroy the dialog.
*/
void response (Widget widget, XtPointer client_data, XtPointer call_data)
{

int *answer = (int *) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

switch (cbs->reason) {
case XmCR_OK : *answer = YES; break;
case XmCR_CANCEL : *answer = NO; break;
default : return;

}
}

The first parameter to the function is the widget that acts as the parent of the new dialog. It
is important to choose this widget wisely. The parent widget must not be a gadget or an
unrealized widget; it should be a widget that is currently mapped to the screen. Widgets that
are menu items are not good candidates, since they are not mapped to the screen for very
long. The top-level shell widget of the widget that caused the callback function to be
invoked is typically a good choice. The second parameter is the string that is displayed in
the dialog.

The routine is intended to be used to display a dialog that asks a Yes/No question, so we
change the OK and Cancel labels to say Yes and No, respectively. The routine creates a
QuestionDialog as a static Widget , which allows us to reuse the dialog, rather than create
it each time the function is called. This technique may improve performance on some
machines. The modality of the dialog and the labels for the PushButtons in the action area

Chapter 5: Introduction to Dialogs

164 Motif Programming Manual

are set at creation time, but the actual message string is set each time that the function is
called, since the message can change. When we install the callback routines for the buttons,
we use the address of the answer variable as the client data. As a result, when the user
responds to the question by selecting the Yes or No button, the callback routine has access
to the variable and can change its value accordingly.

The while loop is where the application waits for the user to make a selection. The loop
exits when the variable answer is changed from its initial value (0) to either YES (1) or
NO (2) by the callback routine. By using XtAppProcessEvent() , we have effectively
reproduced the XtAppMainLoop() function that is used in the main application. Rather
than returning to that level and breaking our flow of control, we have introduced a
miniature main loop in the function itself.

While the AskUser() routine in Example 5-6 is useful as it is written, there are a number
of enhancements that will make it even more useful. By using what we’ve learned in this
chapter, we can come up with a simple, yet extremely robust interface for prompting the
user for responses to questions without breaking the natural flow of control in the
application. Example 5-7 demonstrates a generalized version of AskUser() in a complete
application. The program ask_user.c allows the user to execute UNIX commands that
create and remove a temporary ?le.*

Example 5-7. The ask_user.c program

/* ask_user.c -- the user is presented with two pushbuttons.
** The first creates a file (/tmp/foo) and the second removes it.
** In each case, a dialog pops up asking for verification of the action.
**
** This program is intended to demonstrate an advanced implementation
** of the AskUser() function. This time, the function is passed the
** strings to use for the OK button and the Cancel button as well as
** the button to use as the default value.
**/
#include <Xm/DialogS.h>
#include <Xm/SelectioB.h>
#include <Xm/RowColumn.h>
#include <Xm/MessageB.h>
#include <Xm/PushB.h>

#define YES1
#define NO2
/* Generalize the question/answer process by creating a data structure
** that has the necessary labels, questions and everything needed to
** execute a command.
*/
typedef struct {

char *label; /* label for pushbutton used to invoke cmd */
char *question; /* question for dialog box to confirm cmd */

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 165

Chapter 5: Introduction to Dialogs

char *yes; /* what the "OK" button says */
char *no; /* what the "Cancel" button says */
int dflt; /* which should be the default answer */
char *cmd; /* actual command to execute (using system()) */

} QandA;

QandA touch_foo = {"Create", "Create /tmp/foo?", "Yes", "No",
YES, "touch /tmp/foo"};

QandA rm_foo = {"Remove", "Remove /tmp/foo?", "Yes", "No",
NO, "rm /tmp/foo"};

XtAppContext app;

main (int argc, char *argv[])
{

Widget toplevel, button, rowcolumn;
XmString label;
Arg args[2];
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);

rowcolumn = XmCreateRowColumn (toplevel, "rowcolumn", NULL, 0);
label = XmStringCreateLocalized (touch_foo.label);
XtSetArg(args[0], XmNlabelString, label);
button = XmCreatePushButton (rowcolumn, "button", args, 1);
XtAddCallback (button,

XmNactivateCallback, pushed, (XtPointer) &touch_foo);
XtManageChild (button);
XmStringFree (label);
label = XmStringCreateLocalized (rm_foo.label);
XtSetArg (args[0], XmNlabelString, label);
button = XmCreatePushButton (rowcolumn, "button", args, 1);
XtAddCallback (button, XmNactivateCallback, pushed,

(XtPointer) &rm_foo);
XtManageChild (button);
XmStringFree (label);
XtManageChild (rowcolumn);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* pushed() --when a button is pressed, ask the question described
** by the QandA parameter (client_data). Execute the cmd if YES.
*/
void pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

QandA *quest = (QandA *) client_data;
if (AskUser (widget, quest->question,

quest->yes, quest->no, quest->dflt) == YES) {
printf ("Executing: %s\n", quest->cmd);
system (quest->cmd);

} else

Chapter 5: Introduction to Dialogs

166 Motif Programming Manual

printf ("Not executing: %s\n", quest->cmd);
}

/* AskUser() -- a generalized routine that asks the user a question
** and returns a response. Parameters are: the question, the labels
** for the "Yes" and "No" buttons, and the default selection to use.
*/
AskUser (Widget parent, char *question, char *ans1, char *ans2, int default_
ans)
{

static Widget dialog = NULL; /* static to avoid multiple creation */
XmString text, yes, no;
static int answer;
void response(Widget, XtPointer, XtPointer);

if (!dialog) {

dialog = XmCreateQuestionDialog (parent, "dialog", NULL, 0);
XtVaSetValues (dialog, XmNdialogStyle,

XmDIALOG_FULL_APPLICATION_MODAL, NULL);
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtAddCallback (dialog, XmNokCallback, response,

(XtPointer) &answer);
XtAddCallback (dialog, XmNcancelCallback, response,

(XtPointer) &answer);
}
answer = 0;
text = XmStringCreateLocalized (question);
yes = XmStringCreateLocalized (ans1);
no = XmStringCreateLocalized (ans2);
XtVaSetValues (dialog,

XmNmessageString, text,
XmNokLabelString, yes,
XmNcancelLabelString, no,
XmNdefaultButtonType,
(default_ans == YES?

XmDIALOG_OK_BUTTON:
XmDIALOG_CANCEL_BUTTON),

NULL);
XmStringFree (text);
XmStringFree (yes);
XmStringFree (no);
XtManageChild (dialog);
while (answer == 0)

XtAppProcessEvent (app, XtIMAll);
XtUnmanageChild (dialog);
/* make sure the dialog goes away before returning. Sync with server
** and update the display.
*/
XSync (XtDisplay (dialog), 0);
XmUpdateDisplay (parent);
return answer;

}

/* response() --The user made some sort of response to the

Motif Programming Manual 167

Chapter 5: Introduction to Dialogs

** question posed in AskUser(). Set the answer (client_data)
** accordingly.
*/
void response (Widget widget, XtPointer client_data, XtPointer call_data)
{

int *answer = (int *) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

if (cbs->reason == XmCR_OK)

*answer = YES;
else if (cbs->reason == XmCR_CANCEL)

*answer = NO;
}

The new version of AskUser() is more dynamic than before, since more of the dialog is
configurable upon each invocation of the function. The routine now allows you to specify
the message, the labels for the OK and Cancel buttons, and the default button for the dialog.
The flexibility of the routine is achieved at the cost of a few more lines of source code and
additional parameters to the function. The performance of the function is completely
unaffected.

One case that the new version of AskUser() does not deal with is the need for additional
buttons in the action area of the dialog. For example, what if you need to provide a Cancel
button in addition to the Yes and No answers? Let’s say that the user has selected the Quit
menu item in a text editor application. Since the user has yet to update the changes to the
?le that she has been editing, the application posts a dialog that asks her if she wants to
update her changes before exiting. There are three possible responses:

• Yes, update the changes and exit (Yes).

• No, don’t update the changes, but exit anyway (No).

• Don’t update the changes and don’t exit the application (Cancel).

One easy way to provide these three choices is to set the label for the Help button to Cancel
using the XmNhelpLabelString resource. Then you just need to modify the callback
function so that it handles the XmCR_HELP reason and returns a new value for the Cancel
button.

However, this solution does not work if you want to provide help in addition to these
choices. The default MessageDialog only provides three buttons in the action area,
although you can add additional action area buttons to the dialog. For more information on
how to handle this situation, see Chapter 7, Custom Dialogs.

Summary
Dialogs are used extensively in all window-oriented applications and their uses are quite
diverse. As a result, it is impossible to provide numerous examples of the use of any one
particular style of dialog. This chapter introduced the implementation of Motif dialogs by

Chapter 5: Introduction to Dialogs

168 Motif Programming Manual

using the predefined MessageDialogs as examples. We described how to create the dialogs,
how to set various dialog resources, how to handle dialog callback routines, and how to
implement modal dialogs. Although our examples used MessageDialogs, much of the
discussion is applicable to other types of Motif dialogs.

The next chapter deals with the predefined Motif selection dialogs. These dialogs allow you
to provide the user with a group of choices from which to make a selection. Chapter 7,
Custom Dialogs, discusses how you can breakaway from the predefined Motif dialogs and
build dialogs on your own. Chapter 27, Advanced Dialog Programming, gets into advanced
topics in Xt and Motif programming, using various types of MessageDialogs as examples.

Motif Programming Manual 169

Chapter 1

In this chapter:
• Types of

SelectionDialogs
• SelectionDialogs
• PromptDialogs
• The Command Widget
• FileSelectionDialogs
• Summary

6
Selection Dialogs

This chapter describes the predefined Motif selection-style dialogs. These dialogs display
a list of items, such as files or commands, and allow the user to select items.

In Chapter 5, Introduction to Dialogs, we introduced the idea that dialogs are transient
windows that perform a single task in an application. Dialogs may perform tasks that range
from displaying a simple message, to asking a question, to providing a highly interactive
window that obtains information from the user. The previous chapter also introduced
MessageDialogs and discussed how they are used by the Motif toolkit.This chapter
discusses SelectionDialogs, which are at the next level of complexity in predefined Motif
dialogs.

In general, SelectionDialogs are used to present the user with a list of choices. The user can
also enter a new selection or edit an existing one by typing in a text area in the dialog.
SelectionDialogs are appropriate when the user is supposed to respond to the dialog with
more than just a simple yes or no answer. With respect to the action area, SelectionDialogs
have the same default button as MessageBoxes (e.g., OK, Cancel, and Help). The dialogs
also provide an Apply button, but the button is not always managed by default.
SelectionDialogs are meant to be less transient than MessageDialogs, since the user is
expected to do more than read a message.

Types of SelectionDialogs
As explained in Chapter 5, there are four kinds of SelectionDialogs. The SelectionDialog
and the PromptDialog are compound objects composed of a SelectionBox and a
DialogShell. To use these objects, you need to include the header file <Xm/SelectioB.h>.
The FileSelectionDialog is another compound object made up of a FileSelectionBox and a
DialogShell. The include file for this object is <Xm/FileSB.h>. The Command widget is
somewhat different, in that it is typically used as part of a larger interface, rather than as a
dialog. To use the Command widget, include the file <Xm/Command.h>. You can create
each of these dialogs using the associated convenience routines:

Widget XmCreateSelectionBox (Widget parent , char *name, ArgList args , Cardinal num_args)
Widget XmCreateSelectionDialog (Widget parent , char *name, ArgList args , Cardinal num_args)
Widget XmCreatePromptDialog (Widget parent , char *name, ArgList args , Cardinal num_args)

Chapter 6: Selection Dialogs

170 Motif Programming Manual

Widget XmCreateFileSelectionBox (Widget parent , char *name, ArgList args , Cardinal num_args)
Widget XmCreateFileSelectionDialog (Widget parent , char *name, ArgList args , Cardinal num_args)
Widget XmCreateCommand (Widget parent , char *name, ArgList args , Cardinal num_args)

Like the MessageDialog convenience routines, each of the SelectionDialog routines creates
a dialog widget. In addition, routines that end in Dialog automatically create a
DialogShell as the parent of the dialog widget. Note that the Command widget does not
provide a convenience routine that creates a DialogShell; to put a Command widget in a
DialogShell, you must create the DialogShell yourself. All of the convenience functions
use the standard format for Motif creation routines.

The SelectionBox resource XmNdialogType specifies the type of dialog that has been
created. The resource is set automatically by the dialog convenience routines. Unlike the
XmNdialogType resource for MessageDialogs, the SelectionBox resource cannot be
changed once the dialog has been created. The resource can have one of the following
values:

XmDIALOG_WORK_AREA XmDIALOG_PROMPT
XmDIALOG_SELECTION XmDIALOG_COMMAND
XmDIALOG_FILE_SELECTION

These values should be self-explanatory, with the exception of XmDIALOG_WORK_AREA.
This value is set when a SelectionBox is not the child of a DialogShell and it is not one of
the other types of dialogs. In other words, if you create a SelectionDialog using
XmCreateSelectionDialog() , the value is XmDIALOG_SELECTION, but if you use
XmCreateSelectionBox() , the value is XmDIALOG_WORK_AREA. When a
SelectionBox is created as the child of a DialogShell, the Apply button is automatically
managed, except if XmNdialogType is set to XmDIALOG_PROMPT. Otherwise, the button
is created but not managed.

The different types of SelectionDialogs are meant to be used for unique purposes. Each
dialog provides different components that the user can interact with to perform a task. In
the following sections, we examine each of the SelectionDialogs in turn.

SelectionDialogs
The SelectionDialog provides a ScrolledList that allows the user to select from a list of
choices, as well as a TextField where the user can type in choices. When the user makes a
selection from the list, the selected item is displayed in the text entry area. The user can also
type new or existing choices into the text entry area directly. The dialog does not take any
action until the user activates one of the buttons in the action area or presses the RETURN
key. If the user double-clicks on an item in the List, the item is displayed in the text area
and the OK button is automatically activated. Example 6-1 demonstrates the use of a
SelectionDialog.*

Motif Programming Manual 171

Chapter 6: Selection Dialogs

Example 6-1. The select_dlg.c program

/* select_dlg.c -- display two pushbuttons: days and months.
** When the user selections one of them, post a selection
** dialog that displays the actual days or months accordingly.
** When the user selects or types a selection, post a dialog
** the identifies which item was selected and whether or not
** the item is in the list.
**
** This program demonstrates how to use selection boxes,
** methods for creating generic callbacks for action area
** selections, abstraction of data structures, and a generic
** MessageDialog posting routine.
*/
#include <Xm/SelectioB.h>
#include <Xm/RowColumn.h>
#include <Xm/MessageB.h>
#include <Xm/PushB.h>

Widget PostDialog();
char *days[] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",

"Friday", "Saturday"};
char *months[] = {"January", "February", "March", "April", "May", "June",

"July", "August", "September", "October", "November", "December"};
typedef struct {

char *label;
char **strings;
int size;

} ListItem;

ListItem month_items = {"Months", months, XtNumber (months)};
ListItem days_items = {"Days", days, XtNumber (days)};

/* main() --create two pushbuttons whose callbacks pop up a dialog */
main (int argc, char *argv[])
{

Widgettoplevel, button, rc;
XtAppContextapp;
voidpushed();

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
rc = XmCreateRowColumn (toplevel, "rowcolumn", NULL, 0);
button = XmCreatePushButton (rc, month_items.label, NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed,

(XtPointer) &month_items);
XtManageChild (button);
button = XmCreatePushButton (rc, days_items.label, NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed,

* XtVaAppInitialize () is deprecated in X11R6. XmStringGetLtoR () is depecated in Motif 2.0: XmStrin-
gUnparse () is the preferred funtion.

Chapter 6: Selection Dialogs

172 Motif Programming Manual

(XtPointer) &days_items);
XtManageChild (button);
XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}
/* pushed() --the callback routine for the main app's pushbutton.
** Create a dialog containing the list in the items parameter.
*/
void pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget dialog;
XmString t, *str;
int i;
extern void dialog_callback();
ListItem *items = (ListItem *) client_data;

str = (XmString *) XtMalloc (items->size * sizeof (XmString));
t = XmStringCreateLocalized (items->label);

for (i = 0; i < items->size; i++)
str[i] = XmStringCreateLocalized (items->strings[i]);

dialog = XmCreateSelectionDialog (widget, "selection", NULL, 0);
XtVaSetValues (dialog,
XmNlistLabelString, t,
XmNlistItems, str,
XmNlistItemCount, items->size,
XmNmustMatch, True,
NULL);

XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtAddCallback (dialog, XmNokCallback, dialog_callback, NULL);
XtAddCallback (dialog, XmNnoMatchCallback, dialog_callback, NULL);
XmStringFree (t);

while (--i >= 0)
XmStringFree (str[i]); /* free elements of array */

XtFree ((char *) str); /* now free array pointer */
XtManageChild (dialog);

}
/* dialog_callback() --The OK button was selected or the user
** input a name by himself. Determine whether the result is
** a valid name by looking at the "reason" field.
*/
void dialog_callback (Widget widget, XtPointer client_data,

XtPointer call_data)
{

char msg[256], *prompt, *value;
int dialog_type;
XmSelectionBoxCallbackStruct *cbs =

(XmSelectionBoxCallbackStruct *) call_data;
switch (cbs->reason) {

case XmCR_OK : prompt = "Selection: ";

Motif Programming Manual 173

Chapter 6: Selection Dialogs

dialog_type = XmDIALOG_MESSAGE;
break;

case XmCR_NO_MATCH:prompt = "Not a valid selection: ";
dialog_type = XmDIALOG_ERROR;
break;

default : prompt = "Unknown selection: ";
dialog_type = XmDIALOG_ERROR;
break;

}
value = (char *) XmStringUnparse (cbs->value, XmFONTLIST_DEFAULT_TAG,

XmCHARSET_TEXT, XmCHARSET_TEXT, NULL, 0,
XmOUTPUT_ALL);

sprintf (msg, "%s%s", prompt, value);
XtFree (value);
(void) PostDialog (XtParent (XtParent (widget)), dialog_type, msg);
if (cbs->reason != XmCR_NO_MATCH) {

XtUnmanageChild (widget);
/* The shell parent of the Selection box */
XtDestroyWidget (XtParent (widget));

}
}
/*
** Destroy the shell parent of the Message box, and thus the box itself
*/
void destroy_dialog (Widget dialog, XtPointer client_data, XtPointer call_data)
{

XtDestroyWidget (XtParent (dialog));
/* The shell parent of the Message box */

}
/*
** PostDialog() -- a generalized routine that allows the programmer
** to specify a dialog type (message, information, error, help,
** etc..), and the message to show.
*/
Widget PostDialog (Widget parent, int dialog_type, char *msg)
{

Widget dialog;
XmString text;
dialog = XmCreateMessageDialog (parent, "dialog", NULL, 0);
text = XmStringCreateLocalized (msg);
XtVaSetValues (dialog, XmNdialogType, dialog_type,

XmNmessageString, text, NULL);
XmStringFree (text);
XtUnmanageChild (XtNameToWidget (dialog, “Cancel”));
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtAddCallback (dialog, XmNokCallback, destroy_dialog, NULL);
XtManageChild (dialog);
return dialog;

}

Chapter 6: Selection Dialogs

174 Motif Programming Manual

The output of the program is shown in Figure 6-1.

The program displays two PushButtons, one for months and one for the days of the week.
When either button is activated, a SelectionDialog that displays the list of items
corresponding to the button is popped up. In keeping with the philosophy of modular
programming techniques, we have broken the application into three routines - two
callbacks and one general-purpose message posting function. The lists of day and month
names are stored as arrays of strings.We have declared a data structure, ListItem , to store
the label and the items for a list. Two instances of this data structure are initialized to the
correct values for the lists of months and days. We pass these data structures as the
client_data to the callback function pushed() . This callback routine is associated with
both of the PushButtons.

The pushed() callback function creates the SelectionDialogs. Since the list of items for a
SelectionDialog must be specified as an array of XmString values, the list passed in the
client_data parameter must be converted. We create an array of compound strings the
size of the list and copy each item into the new array using
XmStringCreateLocalized() . The resulting list is used as the value for the
XmNlistItems resource. The number of items in the list is specified as the value of the
XmNlistItemCount resource. This value must be given for the list to be displayed. It
must be less than or equal to the actual number of items in the list. We also set the
XmNlistLabelString resource to specify the label for the list of items in the dialog. The
SelectionDialog also provides the XmNlistVisibleItemCount resource for specifying
the number of visible items in the list. We let the dialog use the default value for this
resource.

Figure 6-1: Output of the select_dlg program

Motif Programming Manual 175

Chapter 6: Selection Dialogs

The final resource that we set for the SelectionDialog is XmNmustMatch. This resource
controls whether an item that the user types in the text entry area must match one of the
items in the list. By setting the resource to True , we are specifying that the user cannot
make up a month or day name. When the user activates the OK button or presses the
RETURN key, the widget checks the item in the text entry area against those in the list. If
the selection doesn’t match any of the items in the list, the program pops up a dialog that
indicates the error.

Once the dialog is created, we desensitize its Help button because we are not providing
help. We install a callback routine for the OK button using the XmNokCallback . To handle
the case when the user types an item that does not match, we also install a callback routine
for the XmNnoMatchCallback . The dialog_callback() routine is used to handle both
cases. We use the reason field of the callback structure to determine why the callback
was called and act accordingly. The value field of the callback structure contains the
selected item. If the item is valid, we use the value to create a dialog that confirms the
selection. Otherwise, we post an error dialog that indicates the invalid selection. In both
cases we use the generalized function, PostDialog() , to display the MessageDialog. If
the selection is valid, the routine pops down and destroys the SelectionDialog. Otherwise,
we leave the dialog posted so that the user can make another selection.

Just as a point of discussion, you should realize that it was an arbitrary decision to have the
PostDialog() function accept char strings rather than an XmString . The routine could
be modified to use an XmString , but doing so doesn’t buy us anything. If you find that
your application deals with one string format more often than the other, you may want to
modify your routines accordingly. You should be aware that converting from one type of
string to the other is relatively expensive; if it is done frequently, you may see an effect on
performance. Another option is for your routine to accept both string types as different
parameters. You can pass a valid value for one parameter and NULL for the other parameter
and deal with them accordingly. For more information on handling compound strings, see
Chapter 25, Compound Strings.

Callback Routines
The SelectionDialog provides callbacks for its action buttons in the same way as the
MessageDialog. Instead of accessing the PushButton widgets to install callbacks, you use
the resources XmNokCallback , XmNapplyCallback , XmNcancelCallback , and
XmNhelpCallback on the dialog widget itself. These callbacks correspond to each of the
four buttons, OK, Apply, Cancel, and Help. The SelectionDialog also provides the
XmNnoMatchCallback for handling the case when the item in the text entry area does not
match an item in the list.

All of these callback routines take three parameters, just like any standard callback routine.
The callback structure that is passed to all of the callback routines in the call_data

Chapter 6: Selection Dialogs

176 Motif Programming Manual

parameter is of type XmSelectionBoxCallbackStruct . This structure is similar to the
one used by MessageDialogs, but it has more fields. The structure is declared as follows:

typedef struct {
int reason;
XEvent *event;
XmString value;
int length;

} XmSelectionBoxCallbackStruct;

The value of the reason field is an integer value that specifies the reason that the callback
routine was invoked. The field can be one of the following values:

XmCR_OK XmCR_APPLY XmCR_CANCEL
XmCR_HELP XmCR_NO_MATCH

The value and length fields represent the compound string version of the item that the
user selected from the list or typed into the text entry area. In order to get the actual
character string for the item, you have to use XmStringUnparse() * to convert the
compound string into a character string. (See Chapter 25, for a discussion of compound
strings.)

Internal Widgets
The SelectionDialog is obviously composed of primitive subwidgets, like PushButtons,
Labels, a ScrolledList, and a TextField widget. For most tasks, it is possible to treat the
dialog as a single entity because the dialog provides resources that manage the different
components. However, there are some situations where it is useful to be able to get a handle
to the widgets internal to the dialog. The XtNameToWidget() † routine allows you to
access the internal widgets. This routine takes the following form:

Widget XtNameToWidget (Widget widget , char * child _name)

The widget parameter is a handle to a dialog widget, not its DialogShell parent. The
child_name parameter specifies a particular subwidget in the dialog. For the
SelectionDialog, the following are the names of the built-in components:

OK Cancel Help Apply
Items Selection Text SeparatorItemsList

These names are fairly self-explanatory: Selection is the Label associated with the
SelectionDialog TextField widget, Items is the Label for the items list, and so forth. Note
that ItemsList is the List itself, and not the ScrolledWindow containing the List. This
means that ItemsList is not a direct child of the SelectionDialog, and hence you need to
access the widget using a wildcard specification in XtNameToWidget (), as follows:

* XmStringGetLtoR () is considered deprecated from Motif 2.0.

† XmSelectionBoxGetChild () is deprecated as of Motif 2.0.

Motif Programming Manual 177

Chapter 6: Selection Dialogs

Widget list = XtNameToWidget (dialog, “*ItemsList”);

One use of XtNameToWidget() is to get a handle to the Apply button so that you can
manage it. When you create a SelectionBox that is not a child of a DialogShell, the toolkit
creates the Apply button, but it is unmanaged by default. The Apply button is available to
the PromptDialog, but it is unmanaged by default. To use the button, you must manage it
and specify a callback routine, as in the following code fragment:

XtAddCallback (dialog, XmNapplyCallback, dialog_callback, NULL);
XtManageChild (XtNameToWidget (dialog, “Apply”));

The callback routine is the same as the one we set for the OK button, but the reason field
in the callback structure will indicate that it was called as a result of the Apply button being
activated.

PromptDialogs
The PromptDialog is unique among the SelectionDialogs, in that it does not create a
ScrolledList object. For the PromptDialog, the following are the names of the built-in
components:

OK Cancel Help Apply
Selection Text Separator

This dialog allows the user to type a text string in the text entry area and then enter it by
selecting the OK button or by pressing the RETURN key. Example 6-2 shows an example
of creating and using a PromptDialog.

Example 6-2. The prompt_dlg.c program

/* prompt_dlg.c -- prompt the user for a string. Two PushButtons
** are displayed. When one is selected, a PromptDialog is displayed
** allowing the user to type a string. When done, the PushButton's
** label changes to the string.
*/
#include <Xm/SelectioB.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, rc, button;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);

/* Initialize toolkit and create toplevel shell */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
/* RowColumn managed both PushButtons */

Chapter 6: Selection Dialogs

178 Motif Programming Manual

rc = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);
/* Create two pushbuttons -- both have the same callback */
button = XmCreatePushButton (rc, "PushMe 1", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed, NULL);
XtManageChild (button);
button = XmCreatePushButton (rc, "PushMe 2", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed, NULL);
XtManageChild (button);
XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/*
** Destroy the prompt dialog’s shell parent, and thus also the prompt
*/
void destroy_dialog (Widget w, XtPointer client_data, XtPointer call_data)
{

XtDestroyWidget (XtParent (w));
}

/* pushed() --the callback routine for the main app's pushbuttons.
** Create a dialog that prompts for a new button name.
**/
void pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget dialog;
XmString t = XmStringCreateLocalized ("Enter New Button Name:");
void read_name(Widget, XtPointer, XtPointer);
Arg args[5];
int n = 0;
/* Create the dialog -- the PushButton acts as the DialogShell's
** parent (not the parent of the PromptDialog).
*/
XtSetArg (args[n], XmNselectionLabelString, t); n++;
XtSetArg (args[n], XmNautoUnmanage, False); n++;
dialog = XmCreatePromptDialog (widget, "prompt", args, n);
XmStringFree (t);
/* always destroy compound strings when done */
/* When the user types the name, call read_name()... */
XtAddCallback (dialog, XmNokCallback, read_name, (XtPointer) widget);
/* If the user selects cancel, just destroy the dialog */
XtAddCallback (dialog, XmNcancelCallback, destroy_dialog, NULL);
/* No help is available... */
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtManageChild (dialog);

}

/* read_name() --the text field has been filled in. */
void read_name (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget push_button = (Widget) client_data;
XmSelectionBoxCallbackStruct *cbs;

Motif Programming Manual 179

Chapter 6: Selection Dialogs

cbs = (XmSelectionBoxCallbackStruct *) call_data;
XtVaSetValues (push_button, XmNlabelString, cbs->value, NULL);
/* Name's fine -- go ahead and enter it */
XtDestroyWidget (XtParent (widget));

}

The output of the program is shown in Figure 6-2.

The callback routine for each of the PushButtons, pushed() , creates a PromptDialog that
prompts the user to enter a new name for the PushButton. The PushButton is passed as the
client_data to the XmNokCallback routine, read_name() , so that the routine can set
the label of the PushButton directly from inside the callback. The read_name() function
destroys the dialog once it has set the label, since the dialog is no longer needed.

If the Cancel button is pressed, the text is not needed, so we can simply destroy the dialog,
using the destroy_dialog () callback. We set XmNautoUnmanage to False for the
dialog because the application is assuming the responsibility of managing the dialog. There
is no help for the dialog so the Help button is disabled by setting it insensitive.

The text area in the PromptDialog is a TextField widget, so you can get a handle to it and
set TextField widget resources accordingly. Use XtNameToWidget() to access the
widget. In order to promote the single-entity abstraction, the dialog provides two resources
that affect the TextField widget. You can set the XmNtextString resource to change the
value of the text string in the widget. Like other string resources, the value for this resource
must be a compound string. The XmNtextColumns resource specifies the width of the
TextField in columns.

One frustrating feature of the predefined SelectionDialogs is that when they are popped up,
the TextField widget does not necessarily receive the keyboard focus by default. If the user
is not paying attention, starts typing, and then presses the RETURN key, all of the
keystrokes will be thrown away except the RETURN, which will activate the OK button.
This problem is solved through the XmNinitialFocus resource. This resource specifies
the widget that has the keyboard focus the first time that the dialog is popped up. The text
entry area is the default value of the resource for SelectionDialogs. You can also program
around the problem by using XmProcessTraversal() to set the focus to a particular
widget.

Figure 6-2: Output of the prompt_dlg program

Chapter 6: Selection Dialogs

180 Motif Programming Manual

The Command Widget
A Command widget allows the user to enter commands and have them saved in a history
list widget for later reference. The Command widget is composed of a text entry area and
a command history list. Unlike all of the other predefined Motif dialogs, this widget does
not provide any action area buttons. The widget does provide a convenient interface for
applications that have a command-driven interface, such as a debugger.

You can use the convenience routine XmCreateCommand() to create a Command widget
or you can use XtVaCreateWidget() with the class xmCommandWidgetClass . Motif
does not provide a convenience routine for creating a Command widget in a DialogShell.
The rationale is that the Command widget is intended to be used on a more permanent basis,
since it accumulates a history of command input. A Command widget is typically used as
part of a larger interface, such as in a MainWindow, which is why it does not have action
buttons. (See Chapter 4, The Main Window, for an example.) If you want to create a
CommandDialog, you will have to create the DialogShell widget yourself and make the
Command widget its immediate child. See Chapter 5, for more information about
DialogShells.

The Command widget class is subclassed from SelectionBox. There are similarities
between the two widgets, in that the user has the ability to select items from a list. However,
the list is composed of the commands that have been previously entered. When the user
enters a command, it is added to the list. If the user selects an item from the command
history list, the command is displayed in the text entry area. Although the Command widget
inherits resources from the SelectionBox, many of the resources are not applicable since
the Command widget does not have any action area buttons. None of the SelectionBox
resources for setting the labels and callbacks of the buttons apply to the Command widget.
For the Command widget, the following are the names of the built-in components:

Selection Text ItemsList

The Command widget provides a number of resources that can be used to control the
command history list. The XmNhistoryItems and XmNhistoryItemCount resources
specify the list of commands and the number of commands in the list. The
XmNhistoryVisibleItemCount resource controls the number of items that are visible
in the command history. XmNhistoryMaxItems specifies the maximum number of items
in the history list. When the maximum value is reached, a command is removed from the
beginning of the list to make room for each new command that is entered.

The Command widget provides two callback resources, XmNcommandEnteredCallback
and XmNcommandChangedCallback , for the text entry area. When the user changes the
text in the command entry area, the XmNcommandChangedCallback is invoked. If the
user presses the RETURN key or double-clicks on an item in the command history list, the
XmNcommandEnteredCallback is called. The callback routine for each of the callbacks
takes the usual three parameters. The callback structure passed to the routines in the call_

Motif Programming Manual 181

Chapter 6: Selection Dialogs

data parameter is of type XmCommandCallbackStruct , which is identical to the
XmSelectionBoxCallbackStruct . The possible values for the reason field in the
structure are XmCR_COMMAND_ENTERED and XmCR_COMMAND_CHANGED.

You can get a handle to the subwidgets of the Command widget using function
XtNameToWidget() * .

In order to support the idea that the dialog is a single widget, the toolkit also provides a
number of convenience routines that you can use to modify the Command widget. The
function XmCommandSetValue() sets the text in the command entry area of the dialog.
The function takes the following form:

void XmCommandSetValue (Widget widget , XmString command)

The command is displayed in the command entry area. The Command widget resource
XmNcommand specifies the text for the command entry area, so you can also set this
resource directly. Alternatively, you can use XmTextSetString() on the Text widget in
the dialog to set the command. However, note that the string you specify to this function is
a regular character string, not a compound string.

If you want to append some text to the string in the command entry area, you can use the
routine XmCommandAppendValue() , which takes the following form:

void XmCommandAppendValue (Widget widget , XmString command)

The command is added to the end of the string in the command entry area. The function
XmCommandError() displays an error message in the history area of the Command
widget. The function takes the following form:

void XmCommandError (Widget widget , XmString message)

The error message is displayed until the user enters the next command.

FileSelectionDialogs
Like the Command widget, the FileSelectionBox is subclassed from SelectionBox. The
FileSelectionDialog looks somewhat different than the other selection dialogs because of
its complexity and its unusual widget layout and architecture. Functionally, the
FileSelectionDialog allows the user to move through the file system and select a file or a
directory for use by the application. The dialog also lets the user specify a filter that controls
the files that are displayed in the dialog. This filter is generally specified as a regular
expression reminiscent of the classic UNIX meta-characters (e.g., * matches all files, while
*.c matches all files that end in .c).

* XmSelectionBoxGetChild () is deprecated as of Motif 2.0.

Chapter 6: Selection Dialogs

182 Motif Programming Manual

Figure 6-3 shows a FileSelectionDialog.

The control area of the FileSelectionDialog has potentially five components*: a Filter
text area, a current Directory field, a Directories list displaying the directories in the
current directory specified by the filter, a Files list area containing files within the current
directory, and a Selection area. If the user selects a directory, the Directory field is modified
to reflect the selection. The Files list shows the files in the current directory. The Selection
text entry area specifies the file selected by the user. If the user selects a file from the Files
list, the full pathname is displayed in the Selection text entry area.

The Motif 1.2 FileSelectionBox contained only four areas: the data displayed in the Filter
and Directory fields was concatenated into a single TextField, with the filter pattern
appended onto the current directory name.

For backwards compatibility, this is also true of the Motif 2.x FileSelectionBox, depending
upon the value of the XmNpathMode resource. If XmNpathMode is XmPATH_MODE_FULL,
the FileSelectionBox has Motif 1.2 behavior; for separate filter and directory fields, set
XmNpathMode to XmPATH_MODE_RELATIVE. Figure 6-3 displays the File Selection Box
in the path relative mode.

The FileSelectionDialog has four buttons in its action area. The OK, Cancel, and Help
buttons are the same as for other SelectionDialogs. The Filter button acts on the directory
and pattern specified in the filter text entry area. For example, the user could enter /usr/src/
motif/lib/Xm as the directory and * as the filter†. When the user selects the Filter button or

* The Motif 1.2 FileSelectionBox has only four component areas.

Figure 6-3: A typical FileSelectionDialog

Directory

Filter

Directories

Selection

Files

Motif Programming Manual 183

Chapter 6: Selection Dialogs

presses RETURN in the Text widget, the directory part of the filter is searched and all of
the directories within that directory are displayed in the directories list. The pattern part is
then used to find all of the matching files in the directory and the files are shown in the files
list. Only files are placed in this list; directories are excluded since they are listed
separately.

While this process seems straightforward, it become confusing in Motif 1.2 for users and
programmers alike because of the way that the widget parsed the filter in the single Filter
field. For example, consider the following string: /usr/src/motif/lib/Xm. This pathname
appears to be a common directory path, but in fact, the widget interpreted the filter so that
the directory is /usr/src/motif/lib and the pattern is Xm. If searched, the directories list will
contain all the directories in /usr/src/motif/lib and the files list won’t contain anything
because Xm is a directory, not a pattern that matches any files. Since users frequently made
this mistake when using the FileSelectionDialog, you had to be sure to explain the
operation of the dialog in the documentation for your application. For Motif 2.1, with the
filter and directory portions placed in separate text fields, the issue is much clarified as far
as the user is concerned.

For a File Selection Box which has the path mode as full (Motif 1.2 compatible), the
convention that the widget follows is to use the last / in the filter to separate the directory
part from the pattern part. Fortunately, the FileSelectionDialog provides resources and
other mechanisms to retrieve the proper parts of the filter specification. We will
demonstrate how to use these mechanisms in the next few subsections.

Creating a FileSelectionDialog
The convenience function for creating a FileSelectionDialog is
XmCreateFileSelectionDialog() . The routine is declared in <Xm/FileSB.h>. The
function creates a FileSelectionBox widget and its DialogShell parent and returns the
FileSelectionBox. Alternatively, you can create a FileSelectionBox widget using either
XmCreateFileSelectionBox() or XtVaCreateWidget() with the widget class
specified as xmFileSelectionBoxWidgetClass . In this case, you could use the widget
as part of a larger interface, or put it in a DialogShell yourself.

Example 6-3 demonstrates how a FileSelectionDialog can be created. This program
produces the dialog shown in Figure 6-3. The intent of the program is to display a single
FileSelectionDialog and print the selection that is made. We will provide a more realistic
example shortly. For now, you should notice how little code is actually required to create
the dialog.*

† In Motif 1.2, the user would enter /usr/src/motif/lib/Xm/* in the single Filter field.

* XtVaAppInitialize () is deprecated in X11R6. XmStringGetLtoR () is deprecated in Motif 2.0: prefer Xm-
StringUnparse ().

Chapter 6: Selection Dialogs

184 Motif Programming Manual

Example 6-3. The show_files.c program

/* show_files.c -- introduce FileSelectionDialog; print the file
** selected by the user.
*/

#include <Xm/FileSB.h>

main (int argc, char *argv[])
{

Widget toplevel, text_w, dialog;
XtAppContext app;
extern void exit(int);
void echo_file(Widget, XtPointer, XtPointer);
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

/* Create a simple Motif 2.1 FileSelectionDialog */
XtSetArg (args[0], XmNpathMode, XmPATH_MODE_RELATIVE);
dialog = XmCreateFileSelectionDialog (toplevel, "filesb", args, 1);
XtAddCallback (dialog, XmNcancelCallback, (void (*)()) exit, NULL);
XtAddCallback (dialog, XmNokCallback, echo_file, NULL);
XtManageChild (dialog);
XtAppMainLoop (app);

}

/* callback routine when the user selects OK in the FileSelection
** Dialog. Just print the file name selected.
**/
void echo_file (Widget widget, /* file selection box */

XtPointer client_data,
XtPointer call_data)

{
char *filename;
XmFileSelectionBoxCallbackStruct *cbs =

(XmFileSelectionBoxCallbackStruct *) call_data;

filename = (char *) XmStringUnparse (cbs->value,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL);

if (!filename)
/* must have been an internal error */

return;
if (!*filename) {

/* nothing typed? */
puts ("No file selected.");
/* even "" is an allocated byte */
XtFree (filename);

Motif Programming Manual 185

Chapter 6: Selection Dialogs

return;
}
printf ("Filename given: \"%s\"\n", filename);
XtFree (filename);

}

The program simply prints the selected file when the user activates the OK button. The user
can change the file by selecting an item from the files list or by typing directly in the
selection text entry area. The user can also activate the dialog by double-clicking on an item
in the files list. The FileSelectionDialog itself is very simple to create; most of the work in
the program is done by the callback routine for the OK button.

Internal Widgets
A FileSelectionDialog is made up of a number of subwidgets, including Text, List, and
PushButton widgets. You can get the handles to these children using the routine
XtNameToWidget() .*

FileSelectionDialog can manage a work area child: you can customize the operation of a
FileSelectionDialog by adding a work area that contains other components. For a detailed
discussion of this technique, see Chapter 7, Custom Dialogs.

Getting the children of a FileSelectionDialog is not necessary in most cases because the
Motif toolkit provides FileSelectionDialog resources that access most of the important
resources of the children. You should only get handles to the children if you need to change
resources that are not involved in the file selection mechanisms. For the FileSelectionBox
widget, the following are the names of the built-in components:

Apply Cancel Help ItemsList
Items OK Selection Tex
Separator FilterLabel FilterText Dir
DirList DirL DirText

These values should be self-explanatory; DirL is the Label associated with the new Motif
2.1 separate Directory field (XmNpathMode equals XmPATH_MODE_RELATIVE), and
DirText is the separate Directory TextField itself. Note that as in the case of the
SelectionDialog, ItemsList is the List itself, and not the ScrolledWindow containing the
List. This means that ItemsList is not a direct child of the FileSelectionDialog, and hence
you need to access the widget using a wildcard specification in XtNameToWidget (), as
follows:

Widget list = XtNameToWidget (fsb, “*ItemsList”);

* XmFileSelectionBoxGetChild () is deprecated from Motif 2.0 onwards. It has not been maintained: there
are no bit masks to access the Motif 2.0 Directory Label (DirL) and Text (DirText) which are displayed when
XmNpathMode is XmPATH_MODE_RELATIVE.

Chapter 6: Selection Dialogs

186 Motif Programming Manual

Callback Routines
The XmNokCallback , XmNcancelCallback , XmNapplyCallback ,
XmNhelpCallback , and XmNnoMatchCallback callbacks can be specified for a
FileSelectionDialog as they are for SelectionDialog. The callback routines take the usual
parameters, but the callback structure passed in the call_data parameter is of type
XmFileSelectionBoxCallbackStruct . The structure is declared as follows:

typedef struct {
int reason;
XEvent *event;
XmString value;
int length;
XmString mask;
int mask_length;
XmString dir;
int dir_length;
XmString pattern;
int pattern_length;

} XmFileSelectionBoxCallbackStruct;

The value of the reason field is an integer value that specifies the reason that the callback
routine was invoked. The possible values are the same as those for a SelectionDialog:

XmCR_OK XmCR_APPLY XmCR_CANCEL
XmCR_HELP XmCR_NO_MATCH

The value field contains the item that the user selected from the files list or typed into the
selection text entry area. The value corresponds to the XmNdirSpec resource and it does
not necessarily have to match an item in the directories or files lists.The mask field
corresponds to the XmNdirMask resource; it represents a combination of the entire
pathname specification in the filter. The dir and pattern fields represent the two
components that make up the mask. All of these fields are compound strings; they can be
converted to character strings using XmStringUnparse() .*

File Searching
You can force a FileSelectionDialog to reinitialize the directory and file lists by calling
XmFileSelectionDoSearch() . This routine reads the directory filter and scans the
specified directory, which is useful if you set the mask directly. The function takes the
following form:

void XmFileSelectionDoSearch (XmFileSelectionBoxWidget widget ,
XmString dirmask)

When the routine is called, the widget invokes its directory search procedure and sets the
text in the filter text entry area to the dirmask parameter. Calling

* XmStringGetLtoR () is deprecated from Motif 2.0 onwards.

Motif Programming Manual 187

Chapter 6: Selection Dialogs

XmFileSelectionDoSearch() has the same effect as setting the filter and selecting the
Filter button.

By default, the FileSelectionDialog searches the directory specified in the mask according
to its internal searching algorithm. You can replace this file searching procedure with your
own routine by specifying a callback routine for the XmNfileSearchProc resource. This
resource is not a callback list, so you do not install it by calling XtAddCallback() . Since
the resource is just a single procedure, you specify it as a value like you would any other
resource, as shown in the following code fragment:

extern void my_search_proc(Widget, XtPointer, XtPointer);
XtVaSetValues (file_selection_dialog,

XmNfileSearchProc, my_search_proc, NULL);

If you specify a search procedure, it is used to generate the list of filenames for the files list.
A file search routine takes the following form:

void (* XmSearchProc) (Widget widget , XtPointer search_data)

The widget parameter is the actual FileSelectionBox widget and search_data is a
pointer to a callback structure of type XmFileSelectionBoxCallbackStruct . This
structure is just like the one used in the callback routines discussed in the previous section.
Do not be concerned with the value of the reason field in this situation because none of
the routines along the way use the value. The search function should scan the directory
specified by the dir field of the search_data parameter. The pattern should be used
to filter the files within the directory. You can get the complete filter from the mask field.

After the search procedure has determined the new list of files that it is going to use, it must
set the XmNfileListItems and XmNfileListItemCount resources to store the list
into the List widget used by the FileSelectionDialog. The routine must also set the
XmNlistUpdated resource to True to indicate that it has indeed done something, whether
or not any files are found. The function can also set the XmNdirSpec resource to reflect
the full file specification in the selection text entry area, so that if the user selects the OK
button, the specified file is used. Although this step is optional, we recommend doing it in
case the old value is no longer valid.

To understand why it may be necessary to have your own file search procedure, consider
how you would customize a FileSelectionDialog so that it only displays the writable files
in an arbitrary directory. This customization might come in handy for a save operation in
an electronic mail application, where the user invokes a Save action that displays a
FileSelectionDialog that lists the files in which the user can save messages. Files that are
not writable should not be displayed in the dialog. Example 6-4 shows an example of how
a file search procedure can be used to implement this type of dialog.*

* XtVaAppInitialize () is deprecated in X11R6. XmStringGetLtoR () is deprecated in Motif 2.0: prefer Xm-
StringUnparse ().

Chapter 6: Selection Dialogs

188 Motif Programming Manual

Example 6-4. The file_sel.c program

/* file_sel.c -- file selection dialog displays a list of all the writable
** files in the directory described by the XmNmask of the dialog.
** This program demonstrates how to use the XmNfileSearchProc for
** file selection dialog widgets.
*/
#include <stdio.h>
#include <Xm/Xm.h>
#include <Xm/FileSB.h>
#include <Xm/DialogS.h>
#include <Xm/PushBG.h>
#include <Xm/PushB.h>
#include <X11/Xos.h>
#include <sys/stat.h>

void do_search(Widget XtPointer, XtPointer);
void new_file_cb(Widget, XtPointer, XtPointer);
/* routine to determine if a file is accessible, a directory,
** or writable. Return -1 on all errors or if the file is not
** writable. Return 0 if it's a directory or 1 if it's a plain
** writable file.
*/
int is_writable (char *file)
{

struct stat s_buf;
/* if file can't be accessed (via stat()) return. */
if (stat (file, &s_buf) == -1)

return -1;
else if ((s_buf.st_mode & S_IFMT) == S_IFDIR)

return 0; /* a directory */
else if (!(s_buf.st_mode & S_IFREG) || access (file, W_OK) == -1)

/* not a normal file or it is not writable */
return -1;

/* legitimate file */
return 1;

}

/* main() -- create a FileSelectionDialog
*/
main (int argc, char *argv[])
{

Widget toplevel, dialog;
XtAppContext app;
extern void exit(int);
Arg args[5];
int n = 0;
XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

XtSetArg (args[n], XmNfileSearchProc, do_search); n++;
dialog = XmCreateFileSelectionDialog (toplevel, "Files", args, n);
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);

Motif Programming Manual 189

Chapter 6: Selection Dialogs

/* if user presses OK button, call new_file_cb() */
XtAddCallback (dialog, XmNokCallback, new_file_cb, NULL);
/* if user presses Cancel button, exit program */
XtAddCallback (dialog, XmNcancelCallback, (void (*)()) exit, NULL);
XtManageChild (dialog);
XtAppMainLoop (app);

}

/* a new file was selected -- check to see if it's readable and not
** a directory. If it's not readable, report an error. If it's a
** directory, scan it just as though the user had typed it in the mask
** Text field and selected "Search".
*/
void new_file_cb (Widget widget, XtPointer client_data,

XtPointer call_data)
{

char *file;
XmFileSelectionBoxCallbackStruct *cbs = (XmFileSelectionBoxCallbackStruct

*) call_data;
/* get the string typed in the text field in char * format */
if (!(file = (char *) XmStringUnparse (cbs->value,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL)))

return;
if (*file != '/') {

/* if it's not a directory, determine the full pathname
** of the selection by concatenating it to the "dir" part
*/
char *dir, *newfile;
if (dir = XmStringUnparse (cbs->dir,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL)) {

newfile = XtMalloc (strlen (dir) + 1 + strlen (file) + 1);
sprintf (newfile, "%s/%s", dir, file);
XtFree (file);
XtFree (dir);
file = newfile;

}
}
switch (is_writable (file)) {

case 1: puts (file); /* or do anything you want */ break;
case 0: {

/* a directory was selected, scan it */
XmString str = XmStringCreateLocalized (file);
XmFileSelectionDoSearch (widget, str);
XmStringFree (str);
break;

}
case -1:

/* a system error on this file */

Chapter 6: Selection Dialogs

190 Motif Programming Manual

perror (file);
}
XtFree (file);

}

/* do_search() -- scan a directory and report only those files that
** are writable. Here, we let the shell expand the (possible)
** wildcards and return a directory listing by using popen().
** A *real* application should -not- do this; it should use the
** system's directory routines: opendir(), readdir() and closedir().
*/
void do_search (Widget widget, /* file selection box widget */

XtPointer search_data, XtPointer call_data)
{

char *mask, buf[BUFSIZ], *p;
XmString names[256]; /* maximum of 256 files in dir */
int i = 0;
FILE *pp, *popen();
XmFileSelectionBoxCallbackStruct *cbs = (XmFileSelectionBoxCallbackStruct

*) search_data;
if (!(mask = (char *) XmStringUnparse (cbs->mask,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL)))

return; /* can't do anything */
sprintf (buf, "/bin/ls %s", mask);
XtFree (mask);
/* let the shell read the directory and expand the filenames */
if (!(pp = popen (buf, "r")))

return;
/* read output from popen() -- this will be the list of files */
while (fgets (buf, sizeof buf, pp)) {

if (p = index (buf, '\n'))
*p = 0;

/* only list files that are writable and not directories */
if (is_writable (buf) == 1 &&

(names[i] = XmStringCreateLocalized (buf))) i++;
}
pclose (pp);
if (i) {

XtVaSetValues (widget,
XmNfileListItems, names,
XmNfileListItemCount, i,
XmNdirSpec, names[0],
XmNlistUpdated, True,
NULL);

while (i > 0)
XmStringFree (names[--i]);

} else
XtVaSetValues (widget,

XmNfileListItems, NULL,
XmNfileListItemCount, 0,
XmNlistUpdated, True,

Motif Programming Manual 191

Chapter 6: Selection Dialogs

NULL);
}

The program simply displays a FileSelectionDialog that only lists the files that are writable
by the user. The directories listed may or may not be writable. We are not testing that case
here as it is handled by another routine that deals specifically with directories, which are
discussed in the next section. The XmNfileSearchProc is set to do_search() , which
is our own routine that creates the list of files for the files List widget. The function calls
is_writable() to determine if a file is accessible and if it is a directory or a regular file
that is writable.

The callback routine for the OK button is set to new_file_cb() through the
XmNokCallback resource. This routine is called when a new file is selected in from the
files list or new text is entered in the selection text entry area and the OK button is pressed.
The specified file is evaluated using is_writable() and acted on accordingly. If it is a
directory, the directory is scanned as if it had been entered in the filter text entry area. If the
file cannot be read, an error message is printed. Otherwise, the file is a legitimate selection
and, for demonstration purposes, the filename is printed to stdout .

Obviously, a real application would do something more appropriate in each case; errors
would be reported using ErrorDialogs and legitimate values would be used by the
application. An example of such a program is given in Chapter 18, Text Widgets, as file_
browser.c. This program is an extension of Example 6-4 that takes a more realistic
approach to using a FileSelectionDialog. Of course, the intent of that program is to show
how Text widgets work, but its use of dialogs is consistent with the approach we are taking
here.

Directory Searching

The FileSelectionDialog also provides a directory searching function that is analogous to
the file searching function. While file searching may be necessary for some applications, it
is less likely that customized directory searching will be as useful, since the default action
taken by the toolkit should cover all common usages. However, since it is impossible to
second-guess the requirements of all applications, Motif allows you to specify a directory
searching function through the XmNdirSearchProc resource.

The procedure is used to create the list of directories. The method used by the procedure is
virtually identical to the one used for files, except that the routine must set different
resources. The routine must set the XmNdirListItems and XmNdirListItemCount
resources to store the list of directories in the List widget. The value for XmNlistUpdated
must be set just as it was for the file selection routine and XmNdirectoryValid must also
be set to either True or False . If the directory cannot be read, XmNdirectoryValid is
set to False to prevent the XmNfileSearchProc from being called. In this way, the file
searching procedure is protected from getting invalid directories from the directory
searching procedure.

Chapter 6: Selection Dialogs

192 Motif Programming Manual

The Search Process

In order to fully customize the directory and file searching functions in a
FileSelectionDialog, it is important to understand exactly how the dialog works. This
material is advanced and is intended for programmers who need to write advanced file and/
or directory searching routines. When the user or the application invokes a directory search,
the FileSelectionDialog performs the following tasks:

1. The List widgets are unmapped to give the user immediate feedback that something is
happening. So, if a file and/or directory search takes along time, the user has a visual
cue that the application is not waiting for input.

2. All of the items are deleted from the List widgets.

3. The widget calls its qualify search procedure to construct a proper directory mask, base
directory, and file search pattern based on the text in the filter text entry area. The pro-
cedure creates a callback structure of the typeXmFileSelectionBoxCallback-
Struct for use by the directory and file search routines.

4. TheXmNdirSearchProc function is called with the callback structure constructed by
the qualify search procedure. The directory search routine checks to be sure that it can
search the specified directory and if it can, it creates the list of directories for the dialog.
If the directory cannot be searched, the routine setsXmNdirectoryValid to False .

5. TheXmNfileSearchProc function is called ifXmNdirectoryValid has been set
to True . This routine creates the list of files for the dialog. IfXmNdirectoryValid
has been set toFalse , the file list remains empty.

Just as for the directory and file search routines, you can write your own qualify search
procedure and install it as the value for the XmNqualifySearchProc resource. The
routine takes the following form:

void (* XmQualifyProc) (Widget widget ,
XtPointer input_data ,
XtPointer output_data)

The widget parameter is the actual FileSelectionBox widget; input_data and output_
data are pointers to callback structures of type XmFileSelectionBoxCallback-
Struct . input_data contains the directory information that needs to be qualified. The
routine uses this information to fill in the output_data callback structure that is then
passed to the directory and file search procedures.

The XmNfileTypeMask resource indicates the types of files for which a particular search
routine should be looking. The resource can be set to one of the following values:

XmFILE_REGULAR XmFILE_DIRECTORY XmFILE_ANY_TYPE

If you are using the same routine for both the XmNdirSearchProc and the
XmNfileSearchProc , you can query this resource to determine the type of file to search
for.

Motif Programming Manual 193

Chapter 6: Selection Dialogs

Summary
This chapter described the different types of selection dialogs provided by the Motif toolkit.
These dialogs implement some common functionality that is needed by many different
applications. This chapter builds on the material in Chapter 5, Introduction to Dialogs,
which introduced the concept of dialogs and discussed the basic mechanisms that
implement them. While the dialogs are designed to be used as single-entity abstractions,
they can be customized to provide additional functionality as necessary. We describe how
to customize the dialogs and how to create your own dialogs in Chapter 7.

Chapter 6: Selection Dialogs

194 Motif Programming Manual

Motif Programming Manual 195

Chapter 1

In this chapter:
• Modifying Motif Dialogs
• Designing New Dialogs
• Building a Dialog
• Generalizing the Action Area
• Using a TopLevelShell for a

Dialog
• Positioning Dialogs
• Summary

7
Custom Dialogs

This chapter describes how to create new types of dialogs, either by customizing Motif
dialogs or by creating entirely new dialogs.

In this chapter we examine methods for creating your own dialogs. The need for such
dialogs exists when those provided by Motif are too limited in functionality or are not
specialized enough for your application. Sometimes it is not clear when you need to create
your own dialog. In some situations, you may find that a Motif dialog would be just fine if
only they did this one little thing. Fortunately, you can often make small adjustments to a
predefined Motif dialog, rather than building an entirely new dialog box from scratch.

There are some issues to consider before you decide how you want to approach the problem
of developing custom dialogs. For example, do you want to use your own widget layout or
is the layout of one of the predefined dialogs sufficient? Do you have specialized user-
interface appearance and functionality needs that go beyond what is provided by Motif?
The answers to these questions affect the design of your dialogs. The discussion and
examples provided in this chapter address both scenarios. We provide information on how
to create dialogs that are based on the predefined Motif dialogs, as well as how to design
completely new dialogs.

Before we get started, we should mention that creating your own dialogs makes heavy use
of manager widgets, such as the Form, BulletinBoard, RowColumn, and PanedWindow
widgets. While we use and describe the manager widgets in context, you may want to
consult Chapter 8, Manager Widgets, for specific details about these widgets.

Modifying Motif Dialogs
We begin by discussing the simpler case of modifying existing Motif dialogs. In Chapter
5, Introduction to Dialogs, we showed you how to modify a dialog to some extent by
changing the default labels on the buttons in the action area or by unmanaging or
desensitizing certain components in the dialog. What we did not mention is that you can
also add new components to a dialog box to expand its functionality. All of the predefined
Motif dialog widgets let you add children. In this sense, you can treat a dialog as a manager

Chapter 7: Custom Dialogs

196 Motif Programming Manual

widget. Motif allows you to add multiple children to an existing dialog, so you can provide
additional controls, action area buttons, and even a MenuBar.

Modifying MessageDialogs
At the end of Chapter 5, we described a scenario where an application might want to have
more than three action area buttons in a MessageDialog. If the user has selected the Quit
button in a text editor but has not saved her changes, an application might want to post a
dialog that asks about saving the changes before exiting. The user could want to save the
changes and exit, not save the changes and exit anyway, cancel the exit operation, or get
help.

The MessageDialog supports three action area buttons, so creating a dialog with four
buttons requires designing a custom dialog. The MessageDialog allows you to provide
additional action area buttons. Example 7-1 demonstrates how to create a QuestionDialog
with four action area buttons.*

Example 7-1. The question.c program

/* question.c - create a QuestionDialog with four action buttons */

#include <Xm/MessageB.h>
#include <Xm/PushB.h>

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, pb;
void pushed(Widget, XtPointer, XtPointer);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

pb = XmCreatePushButton (toplevel, "Button", NULL, 0);
XtAddCallback (pb, XmNactivateCallback, pushed, NULL);
XtManageChild (pb);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void pushed (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget dialog, no_button;
void dlg_callback(Widget, XtPointer, XtPointer);
Arg args[5];
int n = 0;
XmString m;
XmString yes = XmStringCreateLocalized ("Yes");

* XtVaAppInitialize () is deprecated in X11R6.

Motif Programming Manual 197

Chapter 7: Custom Dialogs

XmString no = XmStringCreateLocalized ("No");

m = XmStringCreateLocalized ("Do you want to update your changes?");
XtSetArg (args[n], XmNautoUnmanage, False); n++;
XtSetArg (args[n], XmNmessageString, m); n++;
XtSetArg (args[n], XmNokLabelString, yes); n++;
dialog = XmCreateQuestionDialog (w, "notice", args, n);
XtAddCallback (dialog, XmNokCallback, dlg_callback, NULL);
XtAddCallback (dialog, XmNcancelCallback, dlg_callback, NULL);
XtAddCallback (dialog, XmNhelpCallback, dlg_callback, NULL);
XmStringFree (m);
XmStringFree (yes);
XtSetArg(args[0], XmNlabelString, no);
no_button = XmCreatePushButton (dialog, "no", args, 1);
XtAddCallback (no_button, XmNactivateCallback, dlg_callback, NULL);
XtManageChild (no_button);
XtManageChild (dialog);

}

void dlg_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

switch (cbs->reason) {
case XmCR_OK : /* FALLTHROUGH */
case XmCR_CANCEL : XtUnmanageChild (w); break;
case XmCR_ACTIVATE : XtUnmanageChild (XtParent (w)); break;
case XmCR_HELP : puts ("Help selected"); break;

}
}

The dialog box from the program is shown in Figure 7-1.

The extra button is added to the dialog by creating a PushButton as a child of the dialog.
We are treating the MessageDialog just like any other manager widget. The MessageDialog
inserts any additional PushButton children into the action area after the OK button, which
is why we added a No button. If you add more than one button, they are all put after the OK
button, in the order that you create them. We have also changed the label of the OK button
so that it is now the Yes button.

Since the No button is not part of the standard MessageDialog, we have to set the callback
routine on its XmNactivateCallback . For the rest of the buttons, we use the callbacks

Figure 7-1: Output of the question program

Chapter 7: Custom Dialogs

198 Motif Programming Manual

defined by the dialog. The dialog callback routine, dlg_callback (), has to handle the
various callbacks in different ways. By checking the reason field of the callback structure,
the routine can determine which button was selected. For the Yes and Cancel buttons, the
routine unposts the dialog by unmanaging the MessageDialog. For the No button, we need
to be a bit more careful about popping down the right widget. Since the widget in this case
is the PushButton, we need to call XtParent () to get the MessageDialog.

The MessageDialog also supports the addition of other children besides PushButtons. If
you add a MenuBar child, it is placed across the top of the dialog, although it is not clear
why you would want a MenuBar in a MessageDialog. Any other type of widget child is
considered the work area. The work area is placed below the message text if it exists. If
there is a symbol, but no message, the work area is placed to the right of the symbol. The
MessageDialog only supports the addition of one work area; the layout of multiple work
area children is undefined.

The XmNdialogType resource can take the value XmDIALOG_TEMPLATE. This value
creates a TemplateDialog, which is basically an empty MessageDialog that can be modified
by the programmer. By default, the dialog only contains a Separator child*. By setting
various resources on a TemplateDialog when it is created, you can cause the dialog to create
other standard children. If you set a string or callback resource for an action area button,
the button is created. If you set the XmNmessageString resource, the message is
displayed in the standard location. If you set the XmNsymbolPixmap resource, the
specified symbol appears in its normal location. If you don’t set a particular resource, then
that child is not created, which means that you cannot modify the resource later with
XtSetValues (), set a callback for the child with XtAddCallback (), or retrieve the child
through XtNameToWidget ().

Modifying SelectionDialogs
The Motif SelectionDialog supports the same types of modifications as the MessageDialog.
You can provide additional action area buttons, a work area child, and a MenuBar. Unlike
the MessageDialog, the first widget that is added is taken as the workarea, regardless of
whether it is a PushButton or a MenuBar.†If you want to add a PushButton to the action
area of a SelectionDialog, you need to add a fake unmanaged work area widget first, so that
the PushButton is placed in the action area, rather than used as the work area. After you add
a work area, if you add a MenuBar, it is placed along the top of the dialog, and PushButton

* There is a persistent bug such that attempting to unmanage the Separator (for whatever reason) before adding
any other children to the TemplateDialog causes a segmentation fault.

† The fact that the first child is always taken to be the work area is considered a bug. As a result of the bug, you
need to be careful about the order in which you add children to a SelectionDialog.

Motif Programming Manual 199

Chapter 7: Custom Dialogs

children are inserted after the OK button. The position of the work area child is controlled
by the XmNchildPlacement resource, which can take the following values:

XmPLACE_ABOVE_SELECTION XmPLACE_BELOW_SELECTION
XmPLACE_TOP

The SelectionDialog only supports the addition of one work area; the layout of multiple
work area children is undefined.

Consider providing additional controls in a PromptDialog like the one used in the program
prompt_dlg from Chapter 6, Selection Dialogs. In this program, the dialog prompts the user
for a new label for the PushButton that activated the dialog. By adding another widget to
the dialog, we can expand its functionality to prompt for either a label name or a button
color. The user enters either value in the same text input area and the RadioBox controls
how the text is evaluated. Example 7-2 shows the new program.*

Example 7-2. The modify_btn.c program

/* modify_btn.c -- demonstrate how a default Motif dialog can be
** modified to support additional items that extend the usability
** of the dialog itself. This is a modification of the prompt_dlg.c
** program.
*/

#include <Xm/SelectioB.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, rc, button;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
/* Initialize toolkit and create toplevel shell */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
/* RowColumn managed both PushButtons */
rc = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);
/* Create two pushbuttons -- both have the same callback */
button = XmCreatePushButton (rc, "PushMe 1", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed, NULL);
XtManageChild (button);
button = XmCreatePushButton (rc, "PushMe 2", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed, NULL);
XtManageChild (button);

* XtVaAppInitialize () is considered deprecated in X11R6. XmSelectionBoxGetChild () is deprecated in
Motif 2.0. The Toggle value in Motif 2.0 and later is an enumerated type, not a Boolean.XmStringGetLtoR ()
is deprecated from Motif 2.0: prefer XmStringUnparse ().

Chapter 7: Custom Dialogs

200 Motif Programming Manual

XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* pushed() --the callback routine for the main app's pushbuttons.
** Create a dialog that prompts for a new button name or color.
** A RadioBox is attached to the dialog. Which button is selected
** in this box is held as an int (0 or 1) in the XmNuserData resource
** of the dialog itself. This value is changed when selecting either
** of the buttons in the ToggleBox and is queried in the dialog's
** XmNokCallback function.
*/
void pushed (Widget pb, XtPointer client_data, XtPointer call_data)
{

Widget dialog, toggle_box;
XmString t, btn1, btn2;
void read_name(Widget, XtPointer, XtPointer);
void toggle_callback(Widget, XtPointer, XtPointer);
void destroy_callback(Widget, XtPointer, XtPointer);
Arg args[5];
int n = 0;

/* Create the dialog -- the PushButton acts as the DialogShell's
** parent (not the parent of the PromptDialog). The "userData"
** is used to store the value
*/
t = XmStringCreateLocalized ("Enter New Button Name:");
XtSetArg (args[n], XmNselectionLabelString, t); n++;
XtSetArg (args[n], XmNautoUnmanage, False); n++;
XtSetArg (args[n], XmNuserData, 0); n++;
dialog = XmCreatePromptDialog (pb, "notice_popup", args, n);
XmStringFree (t); /* always destroy compound strings when done */
/* When the user types the name, call read_name()... */
XtAddCallback (dialog, XmNokCallback, read_name, pb);
/* If the user selects cancel, just destroy the dialog */
XtAddCallback (dialog, XmNcancelCallback, destroy_callback, NULL);
/* No help is available... */
XtUnmanageChild (XtNameToWidget (dialog, “Help”));
/* Create a toggle box -- callback routine is toggle_callback() */
btn1 = XmStringCreateLocalized ("Change Name");
btn2 = XmStringCreateLocalized ("Change Color");
toggle_box = XmVaCreateSimpleRadioBox (dialog,

"radio_box", 0, toggle_callback,
XmVaRADIOBUTTON, btn1, 0, NULL, NULL,
XmVaRADIOBUTTON, btn2, 0, NULL, NULL,
NULL);

XtManageChild (toggle_box);
XtManageChild (dialog);

}

/*
** This is passed the prompt when called. We destroy the shell parent.
*/

Motif Programming Manual 201

Chapter 7: Custom Dialogs

void destroy_callback (Widget prompt, XtPointer client_data,
XtPointer call_data)

{
XtDestroyWidget (XtParent (prompt));

}

/* callback for the items in the toggle box -- the "client data" i
** the item number selected. Since the function gets called whenever
** either of the buttons changes from true to false or back again,
** it will always be called in pairs -- ignore the "False" settings.
** When cbs->set is true, set the dialog's label string accordingly.
*/
void toggle_callback (Widget toggle_box, XtPointer client_data,

XtPointer call_data)
{

Widget dialog = XtParent (XtParent (toggle_box));
XmString str;
int n = (int) client_data;
XmToggleButtonCallbackStruct *cbs;

cbs = (XmToggleButtonCallbackStruct *) call_data;

if (cbs->set == XmUNSET)
return; /* wait for the one that toggles "on" */

if (n == 0)
str = XmStringCreateLocalized ("Enter New Button Name:");

else
str = XmStringCreateLocalized ("Enter Text Color:");

XtVaSetValues (dialog, XmNselectionLabelString, str,
/* reset the user data to reflect new value */
XmNuserData, n,
NULL);

XmStringFree (str);
}

/* read_name() --the text field has been filled in. Get the userData
** from the dialog widget and set the PushButton's name or color.
*/
void read_name (Widget dialog, XtPointer client_data, XtPointer call_data)
{

char *text;
int n;
Widget push_button = (Widget) client_data;
XmSelectionBoxCallbackStruct *cbs =

(XmSelectionBoxCallbackStruct *) call_data;
/* userData: n == 0 -> Button Label, n == 1 -> Button Color */
XtVaGetValues (dialog, XmNuserData, &n, NULL);
if (n == 0)

XtVaSetValues (push_button, XmNlabelString, cbs->value, NULL);
else {

/* convert compound string into regular text string */
text = (char *) XmStringUnparse (cbs->value,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,

Chapter 7: Custom Dialogs

202 Motif Programming Manual

XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL);

XtVaSetValues (push_button,
XtVaTypedArg, XmNforeground, XmRString, text,
strlen (text) + 1, NULL);

XtFree (text); /* must free text gotten from XmStringUnparse() */
}

}

The new dialog is shown in Figure 7-2.

We add a RadioBox as the work area child of the PromptDialog. The ToggleButtons in the
RadioBox indicate whether the input text is supposed to change the label of the PushButton
or its text color. To determine which of these attributes to change, we use the callback
routine toggle_callback ().

Rather than storing the state of the RadioBox in a global variable, we store the value in the
XmNuserData resource of the dialog widget. Using this technique, we can retrieve the
value any time we wish and minimize the number of global variables in the program. The
XmNuserData resource is available for all Motif widgets except shells, so it is a convenient
storage area for arbitrary values. The type of value that XmNuserData takes is any type
whose size is less than or equal to the size of an XtPointer, which is typically defined as a
char pointer. As a result, storing an int works just fine. If you want to store a data structure
in this resource, you need to store a pointer to the structure. The size or type of the structure
is irrelevant, since pointers are the same size.*

When the user enters new text and presses RETURN or activates the OK button, read_
name() is called. This callback routine gets the XmNuserData from the dialog widget. If
the value is 0, the label of the PushButton is reset using the XmNlabelString resource.
Since the callback routine provides the text in compound string format, it is already in the

* You might run into problems with unusual architectures where pointers of different types are not the same size,
like DOS.

Figure 7-2: Output of the modify_btn program

Motif Programming Manual 203

Chapter 7: Custom Dialogs

correct format for the label. If the XmNuserData is 1, then the text describes a color name
for the PushButton.

Rather than converting the string into a color explicitly, we use the XtVaTypedArg feature
of XtVaSetValues () to do the conversion for us. This feature converts a value to the
format needed by the specified resource. The XmNforeground resource takes a variable
of type Pixel as a value. The conversion works provided there is an underlying conversion
function to support it.* Motif does not supply a conversion function to change a compound
string into a Pixel value, but there is one for converting a C string into a Pixel. We convert
the compound string into a C string using XmStringUnparse () and then set the
foreground color as follows:

XtVaSetValues (push_button, XtVaTypedArg, XmNforeground, XmRString, text,
strlen (text) + 1, NULL);

So far, we’ve described the possibilities for both MessageDialogs and SelectionDialogs. If
the layouts that are possible do not meet your needs, you should consider building your own
dialogs from scratch.

Designing New Dialogs
In this section, we introduce the methods for building a dialog entirely from scratch. To
create a new dialog, you need to follow basically the same steps that are used by the Motif
convenience routines, which we described in Chapter 5. We’ve modified the list a bit to
reflect the flexibility that you have in controlling the kind of dialog that you make. Here are
the steps that you need to follow:

1. Choose a shell widget that best fits the needs of your dialog. You may continue to use
a DialogShell if you like.

2. Choose an appropriate manager widget to control the layout of the components of the
dialog. This manager is a child of the shell widget. The manager widget you choose
greatly affects how the dialog is laid out. You do not have to use a BulletinBoard or
Form widget, but you can if you like.†

3. Create the control area, which may include any of the Motif primitive or manager
widgets. This step is the one that gives you the most flexibility, as you have complete
control over the contents and layout of the control area.

* For more information on conversion functions, how to write them, or how to install your own, see Volume 4, X
Toolkit Intrinsics Programming Manual.

† If you do want to use a DialogShell with either a Form or a BulletinBoard widget as the manager, you can use
one of the Motif convenience routines: XmCreateBulletinBoardDialog () or XmCreateFormDialog ().
These routines give you a starting point for creating a custom dialog. However, in this chapter, we create each
of the widgets explicitly, so that you have a complete sense of what goes into a dialog.

Chapter 7: Custom Dialogs

204 Motif Programming Manual

4. Create an action area with PushButtons such asOK, Cancel, andHelp. Since you are
creating the control area yourself, you cannot useXmNokCallback and the other re-
sources specific to the predefined Motif dialogs. Instead, you use the callback resourc-
es appropriate for the widgets that you use in the dialog.

5. Pop up the shell created in the first step.

The Shell
In Chapter 4, The Main Window, we demonstrated the purpose of a main window in an
application and the kinds of widgets that you use in a top-level window. Dialog boxes, as
introduced in Chapter 5, are thought of as transient windows that act as satellites to a top-
level shell. A transient dialog should use a DialogShell widget. However, not all dialogs are
transient. A dialog may act as a secondary application window that remains on display for
an extended period of time. This usage is especially common in large applications. The
MainWindow widget can even be used in a dialog box*. For dialogs of this type, you may
want to use a TopLevelShell, or a SessionShell.†

Choosing the appropriate shell widget for a dialog depends on the activities carried out in
the dialog, so it is difficult to provide rules or even heuristics to guide you in your choice.
As discussed in Chapter 5, a DialogShell cannot be iconified, it is always placed on top of
the shell widget that owns the parent of the dialog, and it is always destroyed or withdrawn
from the screen if its parent is destroyed or withdrawn. These three characteristics may
influence your decision to use a DialogShell. A SessionShell or a TopLevelShell, on the
other hand, is always independent of other windows, so you can change its stacking order,
iconify it separately, and not worry about it being withdrawn because of another widget.
The main difference between an SessionShell and a TopLevelShell is that a SessionShell is
designed to start a completely new widget tree, as if it were a completely separate
application. It is recommended that an application only have one SessionShell.‡

For some applications, you may want a shell with characteristics of several of the available
shell classes. Unfortunately, it is difficult to intermix the capabilities of a DialogShell with
those of a SessionShell or a TopLevelShell because it involves doing quite a bit of intricate
window manager interaction. Having ultimate control over the activities of a shell widget
requires setting up a number of event handlers on the shell and monitoring certain window
property event state changes. Aside from being very complicated, you run the risk of

* Creating multiple MainWindow widgets in a single application has some problems associated with it, and has
not found to be entirely robust.

† In X11R6, the simple ApplicationShell is considered deprecated: you should use the SessionShell in its place.
SessionShell is derived from ApplicationShell. Programs using an ApplicationShell will still work, although
their participation in X11R6 Session Management is limited.

‡ Multiple Application Shells (or derived classes) in a single application can be difficult to handle correctly: all
sorts of focus issues can arise. There is poor guidance on the use of multiple ApplicationShell widgets in any
case. Where the application shells occupy multiple screens, the issues are much less problematic.

Motif Programming Manual 205

Chapter 7: Custom Dialogs

breaking Motif compliance. See Chapter 20, Interacting with the Window Manager, for
details on how you might handle this situation.

Once you have chosen the shell widget that you want to use, you need to decide how to
create it. A DialogShell can be created using the routines XtCreatePopupShell () or
XtVaCreatePopupShell (), or the Motif toolkit convenience routine,
XmCreateDialogShell (). A SessionShell or a TopLevelShell can be created using either
of the popup shell routines, XtAppCreateShell () or XtVaAppCreateShell (). The
difference between the two types of routines involves whether the newly-created shell is
treated like a popup shell or as a more permanent window on the desktop. If you create the
shell as a popup shell, you need to select an adequate parent. The parent for a popup shell
must be an initialized and realized widget. It can be any kind of widget, but it may not be a
gadget because the parent must have a window. A dialog that uses a popup shell inherits
certain attributes from its parent. For example, if the parent is insensitive (XmNsensitive
is set to False), the entire dialog is insensitive as well.

The Manager Child
The manager widget that you choose for a dialog is the only managed child of the shell
widget, which means that the widget must contain both the control area and the action area
of the dialog and manage the relationship between them. Recall that the Motif Style Guide
suggests that a dialog be composed of two main areas: the control area and the action area.
Both of these areas extend to the left and right sides of a dialog and are stacked vertically,
with the control area on the top. The action area usually does not fluctuate in size as the
shell is resized, while the control area may be resized in any way. Figure 7-3 illustrates the
general layout of a dialog.

Motif dialog widgets handle this layout automatically. When you create your own dialog,
you are responsible for managing the layout. You could consider using the PanedWindow
widget as the manager widget for a dialog. The PanedWindow supports both vertically and
horizontally stacked windows*, each of which may or may not be resizable, which allows

Control Area

Action Area
(Constant Height)

(Height may

Figure 7-3: Layout of a dialog

fluctuate)

Chapter 7: Custom Dialogs

206 Motif Programming Manual

you to create the suggested layout. If you use a PanedWindow as the manager widget for a
dialog, it can manage other managers that act as the control and action areas. The control
area can be resizable, while the action area is not. The PanedWindow also provides a
separator between the panes, which fulfills the Style Guide recommendation that there be a
Separator widget between the control and action areas.

Of course you can use whatever manager widget you like for a dialog. If you use a
BulletinBoard or a Form widget, you may be able to take advantage of the special
interaction these widgets have with a DialogShell. The RowColumn widget can also lay out
its children vertically, so you could use one to manage the control and action areas of a
dialog. The difficulty with using a RowColumn involves resizing, in that there is no way to
tell the widget to keep the bottom partition a constant height while allowing the top to
fluctuate as necessary. The same problem can also arise with other manager widgets, so you
need to be sure that the resizing behavior is appropriate.

The Control Area
The control area of a dialog box contains the widgets that provide the functionality of the
dialog, such as Labels, ToggleButtons, and List widgets. Creating the control area of a
dialog is entirely application-defined. You can use any of the Motif primitive and manager
widgets in the control area to implement the functionality of the dialog. The ability to
design your own control area is the main reason to create your own dialog as opposed to
using one of the predefined Motif dialogs.

The Action Area
The action area of a dialog contains PushButtons whose callback routines actually perform
the action of the dialog box. Constructing the action area for a dialog involves specifying
labels and callback routines for the buttons and determining the best way to get information
from the control area of the dialog. The Motif Style Guide defines a number of common
dialog box actions. The common actions are designed to provide consistency between
different Motif applications. You are not required to use the common actions, but you
should consider them before creating your own arbitrary actions. The button labels and
their corresponding actions are shown in the following list.

Yes
Indicates an affirmative response and causes the dialog to be dismissed.

No
Indicates a negative response and causes the dialog to be dismissed.

* Horizontal orientation for the PanedWindow was officially supported in Motif 2.0.

Motif Programming Manual 207

Chapter 7: Custom Dialogs

OK
Applies any changes reflected in the control area, performs any related actions, and
causes the dialog box to be dismissed.

Close
Closes the dialog box without performing any action.

Apply
Applies any changes reflected in the control area, performs any related actions, and
leaves the dialog open for further interaction.

Retry
Tries the task in progress again. This action is commonly found in dialog boxes that
report errors.

Stop
Stops the task in progress at the next possible breaking point. This action is often found
in dialog boxes that indicate that the application is “busy.”

Pause
Pauses the task in progress. This action is used in combination withResume.

Resume
Resumes the task in progress. This action is used in combination withPause.

Reset
Resets the controls in the work area to the values they had at the time the dialog was
originally opened.

Cancel
Resets the controls in the work area and causes the dialog to be dismissed.

Help
Provides help for the dialog box.

The following heuristics can help in designing the action area for a dialog box:

• Lay out the action area as a single horizontal row at the bottom of the dialog.

• Set the action area apart from the rest of the dialog using a Separator.

• Use single-word button labels.

• Choose command-style verbs over nouns when possible. Since some words can be
interpreted in more than one way, be careful to avoid ambiguity.

• Affirmative actions should be placed farthest to the left (in a left-to-right language
environment), followed by negative actions, followed by cancelling actions. For
example, Yes should always be placed to the left of No.

• Help, if available, should always be placed farthest to the right (in a left-to-right
language environment).

Chapter 7: Custom Dialogs

208 Motif Programming Manual

Depending on your application, you may want to create your own actions and overlook
some of these guidelines. Figure 7-4 shows a custom dialog that demonstrates some of the
issues involved in designing an action area.

In this dialog, the Help and Close buttons are the only ones with a label recommended by
Motif. Since the other common actions did not effectively represent the actions of the
dialog, we chose our own labels. The Find... and Search list... buttons popup further dialogs
without closing the window.

We do not use the OK action in the dialog because it doesn’t work with the desired usage
of the dialog. By definition, OK should perform the action and dismiss the dialog. Here we
have in effect two actions: perform a search according to the current criteria, and popup the
results of previous searches. In neither case is the current dialog dismissed. It was felt that
neither OK nor Apply were appropriate in these circumstances.

Building a Dialog
Now that we’ve explained the design process for a dialog, let’s create a real dialog and
identify each of the steps in the process. Consider the problem of providing help. While the
Motif InformationDialog is adequate for brief help messages, a customized dialog may be
more appropriate for displaying large amounts of text. Our custom dialog displays the text
in a scrolling region which is capable of handling arbitrarily large amounts of data.

Example 7-3 shows a program that uses a main application window as a generic backdrop.
The MainWindow widget contains a MenuBar that has two menus: File and Help. The Help
menu contains several items that, when selected, pop up a dialog window that displays the

Figure 7-4: A custom dialog

Motif Programming Manual 209

Chapter 7: Custom Dialogs

associated help text. The text that we provide happens to be predefined in the program, but
you could incorporate information from other sources, such as a database or an external file.
*

Example 7-3. The help_text.c program

/* help_text.c:
** Create a simple main window that contains a sample (dummy) work
** area and a menubar. The menubar contains two items: File and Help.
** The items in the Help pulldown call help_cb(), which pops up a
** home-made dialog that displays predefined help texts. The purpose
** of this program is to demonstrate how one might approach the
** problem displaying a large amount of text in a dialog box.
*/
#include <stdio.h>
#include <ctype.h>
#include <Xm/DialogS.h>
#include <Xm/MainW.h>
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <Xm/Text.h>
#include <Xm/PushBG.h>
#include <Xm/LabelG.h>
#include <Xm/PanedW.h>

/* The following help text information is a continuous stream of characters
** that will all be placed in a single ScrolledText object. If a specific
** newline is desired, you must do that yourself. See "index_help" below.
*/
String context_help[] = {

"This is context-sensitive help. Well, not really, but such",
"help text could easily be generated by a real help system.",
"All you really need to do is obtain information from the user",
"about the widget from which he needs help, or perhaps prompt",
"for other application-specific contexts.",
NULL};

String window_help[] = {
"Each of the windows in your application should have an",
"XmNhelpCallback associated with it so you can monitor when",
"the user presses the Help key over any particular widget.",
"This is another way to provide context-sensitive help.",
"The MenuBar should always have a Help entry at the far right",
"that provides help for most aspects of the program, including",
"the user interface. By providing different levels of help",
"indexing, you can provide multiple stages of help, making the",
"entire help system easier to use.",
NULL};

String index_help[] = {

* XtVaAppInitialize () is deprecated in X11R6.

Chapter 7: Custom Dialogs

210 Motif Programming Manual

"This is a small demonstration program, so there is very little",
"material to provide an index. However, an index should contain",
"a summary of the type of help available. For example, we have:\n",
" Help On Context\n",
" Help On Windows\n",
" This Index\n",
"\n",
"Higher-end applications might also provide a tutorial.",
NULL};

String *help_texts[] = {context_help, window_help, index_help};

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, rc, main_w, menubar, w, label_g;
void help_cb(Widget, XtPointer, XtPointer);
void file_cb(Widget, XtPointer, XtPointer);
XmString str1, str2, str3;
Widget *cascade_btns;
int num_btns;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
/* the main window contains the work area and the menubar */
main_w = XmCreateMainWindow (toplevel, "main_w", NULL, 0);
/* Create a simple MenuBar that contains two cascade buttons */
str1 = XmStringCreateLocalized ("File");
str2 = XmStringCreateLocalized ("Help");
menubar = XmVaCreateSimpleMenuBar (main_w, "main_w",

XmVaCASCADEBUTTON, str1, 'F',
XmVaCASCADEBUTTON, str2, 'H',
NULL);
XmStringFree (str1);

XmStringFree (str2);
/* create the "File" pulldown menu -- callback is file_cb() */
str1 = XmStringCreateLocalized ("New");
str2 = XmStringCreateLocalized ("Open");
str3 = XmStringCreateLocalized ("Quit");
XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, str1, 'N', NULL, NULL,
XmVaPUSHBUTTON, str2, 'O', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, str3, 'Q', NULL, NULL,
NULL);

XmStringFree (str1);
XmStringFree (str2);
XmStringFree (str3);
/* create the "Help" menu -- callback is help_cb() */
str1 = XmStringCreateLocalized ("On Context");
str2 = XmStringCreateLocalized ("On Window");
str3 = XmStringCreateLocalized ("Index");

Motif Programming Manual 211

Chapter 7: Custom Dialogs

w = XmVaCreateSimplePulldownMenu (menubar, "help_menu", 1, help_cb,
XmVaPUSHBUTTON, str1, 'C', NULL, NULL,
XmVaPUSHBUTTON, str2, 'W', NULL, NULL,
XmVaPUSHBUTTON, str3, 'I', NULL, NULL,
NULL);

XmStringFree (str1);
XmStringFree (str2);
XmStringFree (str3);
/* Identify the Help Menu for the MenuBar */
XtVaGetValues (menubar, XmNchildren, &cascade_btns,

XmNnumChildren, &num_btns, NULL);
XtVaSetValues (menubar, XmNmenuHelpWidget, cascade_btns[num_btns-

1], NULL);
XtManageChild (menubar);
/* the work area for the main window -- just create dummy stuff */
rc = XmCreateRowColumn (main_w, "rc", NULL, 0);
str1 = XmStringCreateLocalized (

"\n This is an Empty\nSample Control Area\n");
XtSetArg (args[0], XmNlabelString, str1);
label_g = XmCreateLabelGadget (rc, "label", args, 1);
XtManageChild (label_g);
XmStringFree (str1);
XtManageChild (rc);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* callback for all the entries in the File pulldown menu. */
void file_cb (Widget w, XtPointer client_data, XtPointer call_data)
{

int item_no = (int) client_data;
if (item_no == 2)

/* the Quit menu button */
exit (0);

printf ("Item %d (%s) selected\n", item_no + 1, XtName (w));
}

/* climb widget tree until we get to the top. Return the Shell */
Widget GetTopShell (Widget w)
{

while (w && !XtIsWMShell (w))
w = XtParent (w);

return w;
}

#include "info.xbm"
/* bitmap data used by our dialog */
/* callback for all the entries in the Help pulldown menu.
** Create a dialog box that contains control and action areas.
*/
void help_cb (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget help_dialog, pane, text_w, form, sep, widget, label;

Chapter 7: Custom Dialogs

212 Motif Programming Manual

void DestroyShell(Widget, XtPointer, XtPointer);
Pixmap pixmap;
Pixel fg, bg;
Arg args[10];
int n = 0;
int i;
char *p, buf[BUFSIZ];
int item_no = (int) client_data;
Dimension h;
/* Set up a DialogShell as a popup window. Set the delete
** window protocol response to XmDESTROY to make sure that
** the window goes away appropriately. Otherwise, it's XmUNMAP
** which means it'd be lost forever, since we're not storing
** the widget globally or statically to this function.
*/
i = 0;
XtSetArg (args[i], XmNdeleteResponse, XmDESTROY); i++
help_dialog = XmCreateDialogShell (GetTopShell(w), "Help", args, i);

/* Create a PanedWindow to manage the stuff in this dialog. */
/* PanedWindow won't let us set these to 0! */
XtSetArg (args[0], XmNsashWidth, 1);
/* Make small so user doesn't try to resize */
XtSetArg (args[1], XmNsashHeight, 1);
pane = XmCreatePanedWindow (help_dialog, "pane", args, 2);
/* Create a RowColumn in the form for Label and Text widgets.
** This is the control area.
*/
form = XmCreateForm (pane, "form1", NULL, 0);
XtVaGetValues (form, /* once created, we can get its colors */

XmNforeground, &fg,
XmNbackground, &bg,
NULL);

/* create the pixmap of the appropriate depth using the colors
** that will be used by the parent (form).
*/
pixmap = XCreatePixmapFromBitmapData (XtDisplay (form),

RootWindowOfScreen (XtScreen (form)),
(char *) info_bits, info_width, info_height,
fg, bg,
DefaultDepthOfScreen (XtScreen (form)));

/* Create a label gadget using this pixmap */
n = 0;
XtSetArg (args[n], XmNlabelType, XmPIXMAP); n++;
XtSetArg (args[n], XmNlabelPixmap, pixmap); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
label = XmCreateLabelGadget (form, "label", args, n);
XtManageChild (label);
/* prepare the text for display in the ScrolledText object
** we are about to create.
*/
for (p = buf, i = 0; help_texts[item_no][i]; i++) {

Motif Programming Manual 213

Chapter 7: Custom Dialogs

p += strlen (strcpy (p, help_texts[item_no][i]));
if (!isspace (p[-1]))

/* spaces, tabs and newlines are spaces. */
p++ = ' '; / lines are concatenated together, insert space */

}
--p = 0; / get rid of trailing space... */
n = 0;
XtSetArg (args[n], XmNscrollVertical,True); n++;
XtSetArg (args[n], XmNscrollHorizontal,False); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
XtSetArg (args[n], XmNwordWrap, True); n++;
XtSetArg (args[n], XmNvalue, buf); n++;
XtSetArg (args[n], XmNrows, 5); n++;
text_w = XmCreateScrolledText (form, "help_text", args, n);
/* Attachment values must be set on the Text widget's PARENT,
** the ScrolledWindow. This is the object that is positioned.
*/
XtVaSetValues (XtParent (text_w),

XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, label,
XmNtopAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
NULL);

XtManageChild (text_w);
XtManageChild (form);
/* Create another form to act as the action area for the dialog */
XtSetArg (args[0], XmNfractionBase, 5);
form = XmCreateForm (pane, "form2", args, 1);
/* The OK button is under the pane's separator and is
** attached to the left edge of the form. It spreads from
** position 0 to 1 along the bottom (the form is split into
** 5 separate grids via XmNfractionBase upon creation).
*/
widget = XmCreatePushButtonGadget (form, "OK", NULL, 0);
XtVaSetValues (widget,

XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 1,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 2,
XmNshowAsDefault, True,
XmNdefaultButtonShadowThickness, 1,
NULL);

XtManageChild (widget);
XtAddCallback (widget, XmNactivateCallback, DestroyShell,

(XtPointer) help_dialog);
/* This is created with its XmNsensitive resource set to False
** because we don't support "more" help. However, this is the
** place to attach it to if there were any more.
*/

Chapter 7: Custom Dialogs

214 Motif Programming Manual

widget = XmCreatePushButtonGadget (form, "More", NULL, 0);
XtVaSetValues (widget,

XmNsensitive, False,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 3,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 4,
XmNshowAsDefault, False,
XmNdefaultButtonShadowThickness, 1,
NULL);

XtManageChild (widget);
/* Fix the action area pane to its current height -- never let it resize */
XtManageChild (form);
XtVaGetValues (widget, XmNheight, &h, NULL);
XtVaSetValues (form, XmNpaneMaximum, h, XmNpaneMinimum, h, NULL);
/* This also pops up the dialog, as it is the child of a DialogShell */
XtManageChild (pane);

}

/* The callback function for the "OK" button. Since this is not a
** predefined Motif dialog, the "widget" parameter is not the dialog
** itself. That is only done by Motif dialog callbacks. Here in the
** real world, the callback routine is called directly by the widget
** that was invoked. Thus, we must pass the dialog as the client
** data to get its handle. (We could get it using GetTopShell(),
** but this way is quicker, since it's immediately available.)
*/
void DestroyShell (Widget widget, XtPointer client_data,

XtPointer call_data)
{

Widget shell = (Widget) client_data;
XtDestroyWidget (shell);

}

The output of the program is shown in Figure 7-5.

Figure 7-5: Output of help_text program

Motif Programming Manual 215

Chapter 7: Custom Dialogs

The function help_cb() is the callback routine that is invoked by all of the Help menu items.
This routine follows the steps that we outlined earlier to create the dialog box.

The Shell
Since the dialog is a transient dialog, we use a DialogShell widget for the shell. We create
the shell as follows:

i = 0;
XtSetArg (args[i], XmNdeleteResponse, XmDESTROY); i++;
help_dialog = XmCreateDialogShell (GetTopShell (w), "Help", args, i);

Instead of using the Motif convenience function, we could have used
XtVaCreatePopupShell (), instead, as shown in the following code fragment:

help_dialog = XtVaCreatePopupShell ("Help", xmDialogShellWidgetClass,
GetTopShell (w),
XmNdeleteResponse, XmDESTROY, NULL);

Both methods return a DialogShell. The XmNdeleteResponse resource is set to
XmDESTROY because we want the Close item from the window menu in the window
manager’s titlebar for the shell to destroy the shell and its children. The default value for
this resource is XmUNMAP; had we wanted to reuse the same dialog upon each invocation,
we would have used XmUNMAP and retained a handle to the dialog widget.

The name of the dialog is Help, since that is the first parameter in the call to
XtVaCreatePopupShell (). Resource specifications in a resource file that pertain to this
dialog should use Help as the widget name, as shown below:

*Help*foreground: green

The string displayed in the title bar of a dialog defaults to the name of the dialog. Since the
name of the dialog is Help, the title defaults to the same value. However, this method of
setting the title does not prevent the value from being changed by the user in a resource file.
For example, the following specification changes the title:

*Help.title: Help Dialog

The title can also be set using the XmNtitle resource, as shown in the following code
fragments:*

help_dialog = XtVaCreatePopupShell ("Help", xmDialogShellWidgetClass, parent,
XmNtitle, "Help Dialog", NULL);

i = 0;
XtSetArg (args[i], XmNtitle, “Help Dialog”); i++;
help_dialog = XmCreateDialogShell (parent, “Help”, args, i);

* XmNtitle is defined identically to XtNtitle , which is an Xt resource, which means that the value is a regular
character string, not a compound string.

Chapter 7: Custom Dialogs

216 Motif Programming Manual

When the title is hard-coded in the application, any resource specifications in a resource file
are ignored.

The Manager Child
The next task is to create a manager widget that acts as the sole child of the DialogShell,
since shell widgets can have only one managed child. This section deals heavily with
manager widget issues, so if you have problems keeping up, you should look ahead to
Chapter 8, Manager Widgets. However, the main point of the section is to provide enough
context for you to understand Example 7-3. We are using a PanedWindow widget as the
child of the DialogShell. The PanedWindow is created as follows:

...
XtSetArg (args[0], XmNsashWidth, 1);
XtSetArg (args[1], XmNsashHeight, 1);
pane = XmCreatePanedWindow (help_dialog, "pane", help_dialog, args, 2);

The PanedWindow manages two Form widget children, one each for the control area and
the action area. These children are also called the PanedWindow’s panes. Normally, in a
PanedWindow, the user can resize the panes by moving the control sashes that are placed
between the panes. Because the action area is not supposed to grow or shrink in size, we
don’t want to allow the user to adjust the sizes of the panes. There are really two issues
involved here: the user might try to resize the panes individually or she might resize the
entire dialog, which would cause the PanedWindow itself to resize them.

You can prevent the PanedWindow from resizing the action area when it is itself resized by
setting the pane constraint resource XmNskipAdjust to True. However, this technique
still allows the user to resize the individual panes, which means that you need to disable the
control sashes. The best way to prevent both undesirable resize possibilities is to set the
action area pane constraints maximum and minimum allowed heights to the same value.
These settings should cause the PanedWindow to disable the sashes for that particular pane,
but due to a bug in the PanedWindow widget class, the sashes are rarely disabled. To
compensate, we try to make the sashes invisible by setting their sizes to a minimum value.
Unfortunately, the PanedWindow won’t let you set the size of a sash to 0 (a design error),
so we set the values for XmNsashWidth and XmNsashHeight to 1.*

The PanedWindow widget is created unmanaged using XmCreatePanedWindow (). As
pointed out in Chapter 8, manager widgets should not be managed until all of their children
have been created and managed. Using this order allows the children’s desired sizes and
positions to be specified before the manager widget tries to negotiate other sizes and
positions.

* The only other problem that might arise is that keyboard traversal still allows the user to reach the sashes, so you
may want to remove them from the traversal list by setting their XmNtraversalOn resources to False . This
issue is described in detail in Chapter 8.

Motif Programming Manual 217

Chapter 7: Custom Dialogs

The Control Area
The Form widget is the control area, so it is created as a child of the PanedWindow, as
shown in the following fragment:

form = XmCreateForm (pane, "form1", NULL, 0);

As far as the PanedWindow is concerned, the Form widget is a single child whose width is
stretched to the left and right edges of the shell. Within the Form, we add two widgets: a
Label widget that contains the help pixmap and a ScrolledText for the help information.

In order to create the Label, we must first create the pixmap it is going to use. The following
code fragment shows how we create the pixmap and then create the Label:

XtVaGetValues (form, XmNforeground, &fg, XmNbackground, &bg, NULL);
pixmap = XCreatePixmapFromBitmapData (XtDisplay (form),

RootWindowOfScreen (XtScreen (form)),
bitmap_bits,
bitmap_width,
bitmap_height,
fg,
bg,
DefaultDepthOfScreen (XtScreen (form)));

n = 0;
XtSetArg (args[n], XmNlabelType, XmPIXMAP); n++;
XtSetArg (args[n], XmNlabelPixmap, pixmap); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
label = XmCreateLabelGadget (form, "label", args, n);
XtManageChild (label);

We cannot create the pixmap until we know the foreground and background colors, so we
retrieve these colors from the Form, since it has a valid window and colormap. This
approach works for either monochrome or color screens. We use these values as the
foreground and background for the pixmap we create in the call to
XCreatePixmapFromBitmapData ().* The bits for the bitmap, the width, and the height
are predefined in the X bitmap file included earlier in the program (info.xbm). The Label
uses the pixmap by setting the XmNlabelType and XmNlabelPixmap resources (see
Chapter 12, Labels and Buttons, for more information on these resources).

The attachment resources we specified for the Label are constraint resources for the Form
widget that describe how the Form should lay out its children. These constraint resources
are ignored by the Label widget itself. See Chapter 8, Manager Widgets, for a complete
description of how constraint resources are handled by widgets. In this case, the top,

* We could have used XmGetPixmap() to create a pixmap, but this routine does not allow us to load a pixmap
directly from bitmap data, as we have done here. For us to use XmGetPixmap (), the file that contains the bitmap
data would have to exist at run-time, or we would have to load the bitmap data directly into a static XImage . For
more information on this technique, see Section 3.4.5 in Chapter 3, Overview of the Motif Toolkit.

Chapter 7: Custom Dialogs

218 Motif Programming Manual

bottom, and left sides of the Label are all attached to the edge of the Form, which causes
the Label to position itself relative to the Form.

Next, we create a ScrolledText compound object to display the help text, as shown in the
following fragment:

n = 0;
XtSetArg (args[n], XmNscrollVertical, True); n++;
XtSetArg (args[n], XmNscrollHorizontal, False); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
XtSetArg (args[n], XmNwordWrap, True); n++;
XtSetArg (args[n], XmNvalue, buf); n++;
XtSetArg (args[n], XmNrows,5); n++;
text_w = XmCreateScrolledText (form, "help_text", args, n);
XtVaSetValues (XtParent (text_w),

XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, label,
XmNtopAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
NULL);

XtManageChild (text_w);

In order to use XmCreateScrolledText (), we must use the old-style XtSetArg ()
method of setting the resources that are passed to the function. The routine actually creates
two widgets that appear to be a single interface object. A ScrolledWindow widget and a
Text widget are created so that the Text widget is a child of the ScrolledWindow. The
toolkit returns a handle to the Text widget, but since the ScrolledWindow widget is the
direct child of the Form, we set the constraint resources on the ScrolledWindow, not the
Text widget. The top, right, and bottom sides of the ScrolledWindow are attached to the
Form, while the left side is attached to the Label widget, so that the two widgets are always
positioned next to each other.

We could have passed these resource/value pairs in the args list, but then the resources
would have been set on both the ScrolledWindow widget and the Text widget. Since the
attachment constraints would be ignored by the Text widget, there would be no real harm
in setting them on both widgets. However, it is better programming style to set the
resources directly on the ScrolledWindow. Details on the Text widget and the ScrolledText
object can be found in Chapter 18, Text Widgets. Chapter 10, ScrolledWindows and
ScrollBars, discusses the ScrolledWindow widget and its resources.

The text for the widget is set using the XmNvalue resource. The value for this resource is
the appropriate help text taken from the help_texts array declared at the beginning of the
program. We set the XmNeditable resource to False so that the user cannot edit the help
text.

Motif Programming Manual 219

Chapter 7: Custom Dialogs

The Text and Label widgets are the only two items in the Form widget. Once these children
are created and managed, the Form can be managed using XtManageChild ().

The Action Area
At this point, the control area of the dialog has been created, so it is time to create the action
area. In our example, the action area is pretty simple, as the only action needed is to close
the dialog. We use the OK button for this action. For completeness, we have also provided
a More button to support additional or extended help. Since we don’t provide any additional
help, we set this button insensitive (although you can extend this example by providing it).

The action area does not have to be contained in a separate widget, although it is generally
much easier to do so. We use a Form widget in order to position the buttons evenly across
the width of the dialog. We create the Form as follows:

XtSetArg (args[0], XmNfractionBase, 5);
form = XmCreateForm (pane, "form2", args, 1);

The XmNfractionBase resource of the Form widget is set to five, so that the Form is
broken down into five equal units, as shown in Figure 7-6.

Position zero is the left edge of the form and position five is the right edge of the form. We
chose five because it gave us the best layout aesthetically. The region is divided up equally,
so you can think of the sections as percentages of the total width (or height) of the Form.
By using this layout method, we don’t have to be concerned with the width of the Form or
of the DialogShell itself, since we know that the placement of the buttons will always be
proportional. We create the OK button as shown in the following code fragment:

widget = XmCreatePushButtonGadget (form, "OK", NULL, 0);
XtVaSetValues (widget,

XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 1,
XmNrightAttachment, XmATTACH_POSITION,

0 1 2 3 4 5

Figure 7-6: The XmNfractionBase resource divides the form into equal units

Positions

Chapter 7: Custom Dialogs

220 Motif Programming Manual

XmNrightPosition, 2,
XmNshowAsDefault, True,
XmNdefaultButtonShadowThickness, 1,
NULL);

The left and right sides of the button are placed at positions one and two, respectively. Since
this button is the default button for the dialog, we want the button to be displayed as such.
We set XmNshowAsDefault to True, and XmNdefaultButtonShadowThickness to 1.
The value for the XmNdefaultButtonShadowThickness resource is a pixel value that
specifies the width of an extra three-dimensional border that is placed around the default
button to distinguish it from the other buttons. An alternative to specifying the
XmNshowAsDefault resource is to set the XmNdefaultButton resource on the
containing Form to the value of the PushButton widget* . For example,

XtVaSetValues (form, XmNdefaultButton, push_button, NULL);

If XmNshowAsDefault is False , the button is not shown as the default, regardless of the
value of any default shadow thickness.†

Because the dialog is not reused, we want the callback for the OK button to destroy the
DialogShell. We use the XmNactivateCallback of the PushButton to implement the
functionality. The callback routine is DestroyShell (), which is shown below:

void DestroyShell (Widget widget, XtPointer client_data,
XtPointer call_data)

{
Widget shell = (Widget) client_data;
XtDestroyWidget (shell);

}

Since the dialog is not a predefined Motif dialog, the widget parameter to the callback
routine is not the dialog, but the PushButton that caused the callback to be invoked. This
difference is subtle and it is often overlooked by programmers who are breaking away from
the predefined dialogs to build their own dialogs. We pass the DialogShell, help_dialog ,
as client data to the callback routine, so that the callback can destroy the widget.

The More button is not used in the application, since we do not provide any additional help
for the dialog. We create the button as follows:

widget = XmCreatePushButtonGadget (form, "More", NULL, 0);
XtVaSetValues (widget,

XmNsensitive, False,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,

* Setting the XmNdefaultButton resource is generally to be preferred, although if the Form concerned is not
the child of the containing Shell, the Button may not initially show the required visuals until it gains the key-
board focus.

† The XmNshowAsDefault resource can also take a numeric value that indicates the shadow thickness to use, but
its value is only interpreted in this way if XmNdefaultButtonShadowThickness is set to 0. This function-
ality is for backwards compatibility with Motif 1.0 and should not be used.

Motif Programming Manual 221

Chapter 7: Custom Dialogs

XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 3,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 4,
XmNshowAsDefault, False,
XmNdefaultButtonShadowThickness, 1,
NULL);

In this case, the XmNshowAsDefault resource is set to False . We have also set
XmNsensitive to False so that the widget is insensitive to user input.

Once the buttons in the action area have been created, we need to fix the size of the action
area. We manage the Form and then we retrieve the height of one of the action area buttons,
so that we can use the value as the minimum and maximum height of the pane. We set the
XmNpaneMaximum and XmNpaneMinimum constraint resources on the Form, so that the
PanedWindow sets the action area to a constant height.

Once the control area and the action area have been created and managed, the
PanedWindow is managed using XtManageChild (), which has the side effect of popping
up the parent DialogShell* . See Chapter 5, for a complete discussion of the posting of
dialogs.

Generalizing the Action Area
While dialogs can vary in many respects, the structure of the action area usually remains
consistent for all dialogs. Most large programs are going to make use of many customized
dialogs. In the general case, you do not want to rewrite the code to generate an action area
for each special case. It is much easier and more efficient to write a generalized routine that
creates an action area for any dialog.

Whenever we generalize any procedure, we first identify how the situation may change
from one case to the next. For example, not all action areas have only two buttons; you may
have any number from one to, say, ten. As a result, you need to be able to change the
number of partitions in the Form widget to an arbitrary value depending on the number of
actions in the dialog. The positions to which the left and right sides of each action button
are attached also need to be adjusted.

Some known quantities in this equation are that the action area must be at the bottom of a
dialog and it must contains PushButtons. While the PushButtons may be either widgets or
gadgets, you should probably choose one or the other and use them consistently throughout
your application. In general, all of the buttons in the action area should be from the same
class, and all of the action areas in an application should be consistent with one another.

* In Motif 1.2, the special behavior to automatically popup a DialogShell relied upon the child being a Bullet-
inBoard or derivative for proper operation. This is no longer the case in Motif 2.x: the ChangeManaged() method
of the DialogShell is less sensitive to a particular child class.

Chapter 7: Custom Dialogs

222 Motif Programming Manual

Each button in an action area has its own label, its own callback routine, and its own
associated client data. To create a general action area, we need a data structure that abstracts
this information. The ActionAreaItem structure is defined as follows:

typedef struct {
char *label; /* PushButton's Label */
void (*callback)(); /* pointer to a callback routine */
XtPointer data; /* client data for the callback routine */

} ActionAreaItem;

This data structure contains all of the information that we need to know in order to create
an action area; the rest of the information is known or it can be derived.

Now we can write a routine that creates an action area. The purpose of the function is to
create and return a composite widget that contains the specified number of PushButtons,
where the buttons are arranged horizontally and evenly spaced. The
CreateActionArea () routine is used in Example 7-4. This program does not do anything
substantial, but it does present a generalized architecture for creating dialogs for an
application.*

Example 7-4. The action_area.c program

/* action_area.c -- demonstrate how CreateActionArea() can be used
** in a real application. Create what would otherwise be identified
** as a PromptDialog, only this is of our own creation. As such,
** we provide a TextField widget for input. When the user presses
** Return, the OK button is activated.
*/
#include <Xm/DialogS.h>
#include <Xm/PushBG.h>
#include <Xm/PushB.h>
#include <Xm/LabelG.h>
#include <Xm/PanedW.h>
#include <Xm/Form.h>
#include <Xm/RowColumn.h>
#include <Xm/TextF.h>

typedef struct {
char *label;
void (*callback)();
XtPointer data;

} ActionAreaItem;

static void do_dialog(Widget, XtPointer, XtPointer);
static void close_dialog(Widget, XtPointer, XtPointer);
static void activate_cb(Widget, XtPointer, XtPointer);
static void ok_pushed(Widget, XtPointer, XtPointer);
static void clear_pushed(Widget, XtPointer, XtPointer);
static void help(Widget, XtPointer, XtPointer);

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 223

Chapter 7: Custom Dialogs

main (int argc, char *argv[])
{

Widget toplevel, button;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
button = XmCreatePushButton (toplevel, "Push Me", NULL, 0);
XtManageChild (button);
XtAddCallback (button, XmNactivateCallback, do_dialog, NULL);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* callback routine for "Push Me" button. Actually, this represents
** a function that could be invoked by any arbitrary callback. Here,
** we demonstrate how one can build a standard customized dialog box.
** The control area is created here and the action area is created in
** a separate, generic routine: CreateActionArea().
*/
static void do_dialog (Widget w, XtPointer client_data,

XtPointer call_data)
{

Widget dialog, pane, rc, text_w, action_a, label_g;
XmString string;
Arg args[6];
int n;
Widget CreateActionArea(Widget, ActionAreaItem *, int);
static ActionAreaItem action_items[] = {

{"OK",ok_pushed,NULL},
{"Clear", clear_pushed, NULL},
{"Cancel", close_dialog, NULL},
{"Help",help, "Help Button"},

};
/* The DialogShell is the Shell for this dialog. Set it up so
** that the "Close" button in the window manager's system menu
** destroys the shell (it only unmaps it by default).
*/
n = 0;
/* give arbitrary title in wm */
XtSetArg (args[n], XmNtitle, “Dialog Shell”); n++;
/* system menu "Close" action */
XtSetArg (args[n], XmNdeleteResponse, XmDESTROY); n++;
dialog = XmCreateDialogShell (XtParent (w), "dialog", args, n);
/* now that the dialog is created, set the Cancel button's
** client data, so close_dialog() will know what to destroy.
*/
action_items[2].data = (XtPointer) dialog;
/* Create the paned window as a child of the dialog. This will
** contain the control area and the action area
** (created by CreateActionArea() using the action_items above).
*/

Chapter 7: Custom Dialogs

224 Motif Programming Manual

n = 0;
XtSetArg (args[n], XmNsashWidth, 1); n++;
XtSetArg (args[n], XmNsashHeight, 1); n++;
pane = XmCreatePanedWindow (dialog, "pane", args, n);
/* create the control area which contains a
** Label gadget and a TextField widget.
*/
rc = XmCreateRowColumn (pane, "control_area", NULL, 0);
string = XmStringCreateLocalized ("Type Something:");
n = 0;
XtSetArg (args[n], XmNlabelString, string); n++;
label_g = XmCreateLabelGadget (rc, "label", args, n);
XmStringFree (string);
XtManageChild (label_g);
text_w = XmCreateTextField (rc, "text-field", NULL, 0);
XtManageChild (text_w);
/* RowColumn is full -- now manage */
XtManageChild (rc);
/* Set the client data for the "OK" and "Cancel" buttons */
action_items[0].data = (XtPointer) text_w;
action_items[1].data = (XtPointer) text_w;
/* Create the action area. */
action_a = CreateActionArea (pane, action_items,

XtNumber (action_items));
/* callback for Return in TextField. Use action_a as client data */
XtAddCallback (text_w, XmNactivateCallback, activate_cb,

(XtPointer) action_a);
XtManageChild (pane);

}

/* The next four functions are the callback routines for the buttons
** in the action area for the dialog created above. Again, they are
** simple examples, yet they demonstrate the fundamental design approach.
*/
static void close_dialog (Widget w, XtPointer client_data,

XtPointer call_data)
{

Widget shell = (Widget) client_data;
XtDestroyWidget (shell);

}

/* The "ok" button was pushed or the user pressed Return */
static void ok_pushed (Widget w, XtPointer client_data,

XtPointer call_data)
{

Widget text_w = (Widget) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
char *text = XmTextFieldGetString (text_w);
printf ("String = %s\n", text);
XtFree (text);

}

static void clear_pushed (Widget w, XtPointer client_data,
XtPointer call_data)

Motif Programming Manual 225

Chapter 7: Custom Dialogs

{
Widget text_w = (Widget) client_data;
XmAnyCallbackStruct*cbs = (XmAnyCallbackStruct *) call_data;
/* cancel the whole operation; reset to NULL. */
XmTextFieldSetString (text_w, "");

}

static void help (Widget w, XtPointer client_data, XtPointer call_data)
{

String string = (String) client_data;
puts (string);

}

/* When Return is pressed in TextField widget, respond by getting
** the designated "default button" in the action area and activate
** it as if the user had selected it.
*/
static void activate_cb (Widget text_w, XtPointer client_data,

XtPointer call_data)
{

XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
Widget dflt, action_area = (Widget) client_data;

/* get the "default button" from the action area... */
XtVaGetValues (action_area, XmNdefaultButton, &dflt, NULL);
if (dflt) /* sanity check -- this better work */

/* make the default button think it got pushed using
** XtCallActionProc(). This function causes the button
** to appear to be activated as if the user pressed it.
*/
XtCallActionProc (dflt, "ArmAndActivate", cbs->event, NULL, 0);

}

#define TIGHTNESS 20
Widget CreateActionArea (Widget parent, ActionAreaItem *actions,

int num_actions)
{

Widget action_area, widget;
int i;
action_area = XmCreateForm (parent, "action_area", NULL, 0);
XtVaSetValues (action_area,

XmNfractionBase, TIGHTNESS*num_actions - 1,
XmNleftOffset, 10,
XmNrightOffset, 10,
NULL);

for (i = 0; i < num_actions; i++) {
widget = XmCreatePushButton (action_area, actions[i].label,

NULL, 0);
XtVaSetValues (widget,

XmNleftAttachment,
i? XmATTACH_POSITION: XmATTACH_FORM,

XmNleftPosition,TIGHTNESS*i,
XmNtopAttachment,XmATTACH_FORM,
XmNbottomAttachment,XmATTACH_FORM,

Chapter 7: Custom Dialogs

226 Motif Programming Manual

XmNrightAttachment,
i != num_actions - 1 ?

XmATTACH_POSITION :
XmATTACH_FORM,

XmNrightPosition, TIGHTNESS * i + (TIGHTNESS - 1),
XmNshowAsDefault,i == 0,
XmNdefaultButtonShadowThickness, 1,
NULL);

if (actions[i].callback)
XtAddCallback (widget, XmNactivateCallback, actions[i].callback,

(XtPointer) actions[i].data);
XtManageChild (widget);
if (i == 0) {

/* Set the action_area's default button to the first widget
** created (or, make the index a parameter to the function
** or have it be part of the data structure). Also, set the
** pane window constraint for max and min heights so this
** particular pane in the PanedWindow is not resizable.
*/
Dimension height, h;
XtVaGetValues (action_area, XmNmarginHeight, &h, NULL);
XtVaGetValues (widget, XmNheight, &height, NULL);
height += 2 * h;
XtVaSetValues (action_area,

XmNdefaultButton, widget,
XmNpaneMaximum, height,
XmNpaneMinimum, height,
NULL);

}
}
XtManageChild (action_area);
return action_area;

}

The application uses a PushButton to create and pop up a customized dialog. The control
area is composed of a RowColumn widget that contains a Label gadget and a TextField
widget. The action area is created using CreateActionArea (). The actions and the
number of actions are specified in the actions and num_actions parameters. We use a
Form widget to lay out the actions. We give the Form the name action_area, since it is

Motif Programming Manual 227

Chapter 7: Custom Dialogs

descriptive and it makes it easy for the user to specify the area in a resource file. The output
of the program in shown in Figure 7-7.

In order to distribute the PushButtons evenly across the action area, we use the
XmNfractionBase resource of the Form widget to segment the widget into equal
portions. The value of the resource is based on the value of the TIGHTNESS definition,
which controls the spacing between buttons. A higher value causes the PushButtons to be
closer together, while a lower value spaces them further apart. We use the value 20 for
purely aesthetic reasons. As each button is created, its attachments are set. The left side of
the first button and right side of the last button are attached to the left and right edges of the
Form, respectively, while all of the other left and right edges are attached to positions.

The callback routine and associated client data for each button are added using
XtAddCallback (). The first button in the action area is specified as the default button for
the dialog. The XmNdefaultButton resource indicates which button is designated as the
default button for certain actions that take place in the control area of the dialog. The
XmNactivateCallback of the TextField widget in the control area uses the resource to
activate the default button when the user presses the RETURN key in the TextField.

The CreateActionArea () function also sets XmNpaneMaximum and XmNpaneMinimum
constraint resources on the action area. These are PanedWindow constraint resources that
are used to specify the height of the action area. The assumption, of course, is that the parent
of the action area is a PanedWindow. If that is not true, these resource specifications have
no effect.

Using a TopLevelShell for a Dialog
You don’t have to use a DialogShell widget to implement a dialog. In fact, it is quite
common to use a TopLevelShell or even a SessionShell* in cases where the particular
functionality is an important part of a larger application. For example, an e-mail application
has a variety of functions that range from reading messages to composing new ones. As

* The ApplicationShell is considered deprecated in X11R6.

Figure 7-7: Output of the action_area program

Chapter 7: Custom Dialogs

228 Motif Programming Manual

shown in Figure 7-8, you can have a separate TopLevelShell, complete with a MenuBar,
that looks and acts like a separate application, but is still considered a dialog, since it is only
a sub-part of the whole application.

As you can see, this dialog uses the same elements as other dialogs. The control area is
complete with a ScrolledText region and other controls, while the action area contains
action buttons. The principal difference between this dialog (which uses a TopLevelShell)
and a dialog implemented with a DialogShell is that this dialog that uses a TopLevelShell
may be iconified separately from the other windows in the program.

When you need to implement a dialog with a TopLevelShell, you should not regard or
implement it as a popup dialog. But for the most part, there is little difference from this
approach and the method discussed for regular dialogs. You may still use BulletinBoards,
Forms, and RowColumns to manage the inner controls. You still need an action area
(provided you want to look and act like a dialog), and you still need to handle the cases
where the dialog is popped up and down. You can create the TopLevelShell with
XtVaAppCreateShell (). The shell is automatically mapped onto the screen when you
call XtPopup (). You may also want to call XMapRaised () on the shell, in case it is already
popped up but is not at the top of the window hierarchy.

In direct contrast to the DialogShell widget, managing the immediate child of a
TopLevelShell does not cause the dialog to pop up automatically. Even if that child is
subclassed from the BulletinBoard widget, this type of behavior only happens if the shell

Figure 7-8: An editor dialog from a workbench application

Motif Programming Manual 229

Chapter 7: Custom Dialogs

is a DialogShell widget. Because you are using a TopLevelShell, you cannot rely on the
special communication that happens between a DialogShell and child widgets.

If you want to use one of the standard Motif dialogs, such as a MessageDialog or a
FileSelectionDialog, in a shell widget that can be iconified separately from its primary
window shell, you can put the dialog in a TopLevelShell. Create the shell using
XtVaAppCreateShell () and then use one of the Motif convenience routines to create a
MessageBox or a FileSelectionBox, rather than the corresponding dialog widget. The
following code fragment shows an example of this usage:

shell = XtVaAppCreateShell (NULL, "Class", topLevelShellWidgetClass, dpy,
XtNtitle, "Dialog Shell Title", NULL);

dialog = XmCreateMessageBox (shell, "MessageDialog", NULL, 0);
XtAddCallback (dialog, XmNokCallback, callback_func, NULL);
XtAddCallback (dialog, XmNcancelCallback, callback_func, NULL);
XtAddCallback (dialog, XmNhelpCallback, help_func, NULL);

Positioning Dialogs
In all of the dialog examples that you have seen so far, the toolkit has handled the
positioning of the dialog. For dialogs that use the DialogShell widget with a subclass of
BulletinBoard as the immediate child, the XmNdefaultPosition resource controls this
behavior. If the resource is True , the dialog is centered relative to the parent of the
DialogShell and placed on top of the parent. If the resource is set to False , the application
is responsible for positioning the dialog. It is easy to position a dialog using the
XmNmapCallback resource that is supported by all of the Motif manager widgets, as
shown in Example 7-5.*

Example 7-5. The map_dlg.c program

/* map_dlg.c -- Use the XmNmapCallback to automatically position
** a dialog on the screen. Each time the dialog is displayed, it
** is mapped down and to the right by 200 pixels in each direction.
*/
#include <Xm/MessageB.h>
#include <Xm/PushB.h>
/* main() --create a pushbutton whose callback pops up a dialog box */
main (int argc, char *argv[])
{

Widget toplevel, button;
XtAppContext app;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

* XtVaAppInitialize () is deprecated in X11R6.

Chapter 7: Custom Dialogs

230 Motif Programming Manual

sessionShellWidgetClass, NULL);
button = XmCreatePushButton (toplevel, "Push Me", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed,

(XtPointer) "Hello World");
XtManageChild (button);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* callback function for XmNmapCallback. Position dialog in 200 pixel
** "steps". When the edge of the screen is hit, start over.
*/
static void map_dialog (Widget dialog, XtPointer client_data,

XtPointer call_data)
{

static Position x, y;
Dimension w, h;
XtVaGetValues(dialog, XmNwidth, &w, XmNheight, &h, NULL);
if ((x + w) >= WidthOfScreen (XtScreen (dialog)))

x = 0;
if ((y + h) >= HeightOfScreen (XtScreen (dialog)))

y = 0;
XtVaSetValues (dialog, XmNx, x, XmNy, y, NULL);
x += 200;
y += 200;

}
/* pushed() --the callback routine for the main app's pushbutton.
** Create and popup a dialog box that has callback functions for
** the Ok, Cancel and Help buttons.
*/
void pushed (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget dialog;
Arg arg[5];
int n = 0;
char *message = (char *) client_data;

XmString t = XmStringCreateLocalized (message);
XtSetArg (arg[n], XmNmessageString, t); n++;
XtSetArg (arg[n], XmNdefaultPosition, False); n++;
dialog = XmCreateMessageDialog (w, "notice", arg, n);
XmStringFree (t);
XtAddCallback (dialog, XmNmapCallback, map_dialog, NULL);
XtManageChild (dialog);

}

Each time the dialog is mapped to the screen, the map_dialog () routine is invoked. The
routine merely places the dialog at a location that is 200 pixels from its previous position.
Obviously, this example is meant to demonstrate the technique of positioning a dialog,
rather than providing any useful functionality. The XmNwidth , XmNheight , XmNx, and
XmNy resources are retrieved from the DialogShell widget since the dialog is a predefined
Motif dialog. Similarly, the position of the DialogShell is set by calling XtVaSetValues ()
using the same resources.

Motif Programming Manual 231

Chapter 7: Custom Dialogs

If you are using a SessionShell* or a TopLevelShell, rather than a DialogShell, the position
of the dialog is subject to various resources that are controlled by the user and/or the
window manager. For example, if the user is using mwm, she can set the resource
interactivePlacement , which allows her to position the shell interactively. While it is
acceptable for an application to control the placement of a DialogShell, it should not try to
control the placement of a TopLevelShell or a SessionShell because that is the user’s
domain. However, if you feel you must, you can position any shell widget directly by
setting its XmNx and XmNy resources to the desired position when the shell is created or later
using XtVaSetValues (). The Motif toolkit passes the coordinate values to the window
manager and allows it to position the dialog at the intended location.

This issue is an important dilemma in user-interface design. If you are going to hard-code
the position of a dialog on the screen, you probably do not want to position the dialog at
that location each time that it is popped up. Imagine that you pop up a dialog, move it to an
uncluttered area on your screen, interact with it for a while, and then pop it down. If you
use the dialog again, you would probably like it to reappear in the location where you put
it previously. The best way to handle this dilemma is to avoid doing any of your own dialog
placement, with the possible exception of the first time that a dialog is popped up.

Whether or not you want to position a dialog when it is displayed, you may still find it
useful to be informed about when a dialog is popped up or down. The XmNmapCallback
is not the best tool for this purpose, since it is not called each time the popped-up state of
the dialog changes. The XmNpopupCallback and XmNpopdownCallback callbacks are
meant for this purpose. These resources are defined and implemented by X Toolkit
Intrinsics for all shell widgets. The XmNpopupCallback is invoked each time XtPopup ()
is called on a shell widget, while the XmNpopdownCallback is called for XtPopdown ().

People often get confused by the terminology of a dialog being popped down and a shell
being iconified. Remember that whether or not a shell is popped up is independent of its
iconic state. Although a DialogShell cannot be iconified separately, other shells can. These
shells may also be popped up and down using XtPopup () and XtPopdown () independent
of their iconic state. XtPopup () causes a shell to be deiconified, while XtPopdown ()
causes the dialog and its icon to be withdrawn from the screen, regardless of its iconic state.
The subject of window iconification is discussed in Chapter 20, Interacting with the
Window Manager.

Summary
Obviously, it is impossible to cover all of the possible scenarios of how dialogs can and
should be used in an application. If nothing else, you should come away from the chapters
on dialogs with a general feeling for the design approach that we encourage. You should

* The ApplicationShell is considered deprecated in X11R6.

Chapter 7: Custom Dialogs

232 Motif Programming Manual

also understand the steps that are necessary to create and use both predefined Motif dialogs
and customized dialogs. For a final look at some particularly thorny issues in using dialogs,
see Chapter 27, Advanced Dialog Programming.

Motif Programming Manual 233

Chapter 1

In this chapter:
• Types of Manager Widgets
• Creating Manager Widgets
• The BulletinBoard Widget
• The Form Widget
• The RowColumn Widget
• The Frame Widget
• The PanedWindow Widget
• Keyboard Traversal
• Summary

8
Manager Widgets

This chapter provides detailed descriptions of the various classes of Motif manager
widgets. Examples explore the various methods of positioning children within the
BulletinBoard, Form, and RowColumn widgets.

As their name implies, manager widgets manage other widgets, which means that they
control the size and location (geometry) and input focus policy for one or more widget
children. The relationship between managers and the widgets that they manage is
commonly referred to as the parent-child model. The manager acts as the parent and the
other widgets are its children. Since manager widgets can also be children of other
managers, this model produces the widget hierarchy, which is a framework for how widgets
are laid out visually on the screen and how resources are specified in the resource database.

While managers are used and explained in different contexts throughout this book, this
chapter discusses the details of the different manager widget classes. Chapter 3, Overview
of the Motif Toolkit, discusses the general concepts behind manager widgets and how they
fit into the broader application model. You are encouraged to review the material in this
and other chapters for a wider range of examples, since it is impossible to deal with all of
the possibilities here. For an in-depth discussion of the X Toolkit Composite and Constraint
widget classes, from which managers are subclassed, see Volume 4, X Toolkit Intrinsics
Programming Manual.

Types of Manager Widgets
The Manager widget class is a metaclass for a number of functional subclasses. The
Manager widget class is never instantiated; the functionality it provides is inherited by each
of its subclasses. In this chapter, we describe the general-purpose Motif manager widgets,
which are introduced below:

BulletinBoard
The BulletinBoard is the most basic of the manager widgets. The geometry manage-
ment is, as the class name implies, like a bulletin board. A child is pinned up on the
BulletinBoard in a particular location and remains there until it moves itself or some-

Chapter 8: Manager Widgets

234 Motif Programming Manual

one else moves it. The BulletinBoard widget does not impose any layout policy on its
children, but it does support keyboard traversal. The BulletinBoard is a superclass for
more sophisticated and useful managers. The BulletinBoard is also designed to be used
as the container for dialog boxes, so it has translation tables and callback routines for
this purpose. The predefined Motif dialogs use the BulletinBoard widget class to han-
dle all of their input mechanisms; each dialog widget class handles its own geometry
management. See Chapter 5,Introduction to Dialogs, for a complete discussion of di-
alogs.

Form
The Form widget is subclassed from the BulletinBoard. The Form extends the capabil-
ities of the BulletinBoard by introducing a sophisticated geometry management policy
that involves both absolute and relative positioning and sizing of its children. For ex-
ample, a Form may lay out its children in a grid-like manner, anchoring the edges of
each child to specific positions on the grid, or it may attach the children to one another
in a chain-like fashion.

RowColumn
The RowColumn widget lays out its children in rows and columns. Resources control
the number of rows or columns and the packing of widgets into those rows and col-
umns. The Motif toolkit uses the RowColumn internally to implement many objects
that are not implemented as individual widgets, such as PopupMenus, PulldownMen-
us, MenuBars, RadioBoxes, and CheckBoxes. There are a number of RowColumn re-
sources that are specific to these objects.

Frame
The purpose of the Frame widget is to provide a visible, three-dimensional border for
objects such as RowColumns or Labels that do not provide a border for themselves.
The Frame widget may have two children: a work area child and a label child. The
Frame sizes itself just big enough to contain its children.

PanedWindow
The PanedWindow manages its children in a vertically or horizontally* tiled format. In
a vertical orientation, the widget takes its width from the widest widget in its list of
children. When horizontally oriented, the PanedWindow takes its height from the
height of the tallest child. The PanedWindow also provides control sashes or grips that
enable the user to adjust the individual heights of the PanedWindow’s children. Con-
straint resources for the PanedWindow allow each child to specify its desired maxi-
mum and minimum height and whether it may be resized.

DrawingArea
Although the DrawingArea widget is subclassed from the Manager widget class, it is
not generally used in the way that conventional managers are used. The widget does

* Horizontal layout was introduced in Motif 2.0.

Motif Programming Manual 235

Chapter 8: Manager Widgets

not do any drawing itself, and it doesn’t define any keyboard or mouse behavior, al-
though it does provide callbacks for user input. It is basically a free-form widget that
can be used for application-specific purposes. The widget provides callback resources
to handle keyboard, mouse, exposure, and resize events. While the DrawingArea
widget can have children, it does not manage them in any defined way. Since the
DrawingArea widget is typically used for application drawing, rather than for manag-
ing other widgets, it is discussed separately in Chapter 11,The Drawing Area.

ScrolledWindow
The ScrolledWindow widget provides a viewing area into another widget. The user can
adjust the viewing area using ScrollBars that are attached to the ScrolledWindow. The
ScrolledWindow can handle scrolling automatically, so that the application does not
have to do any work. The widget also has an application-defined mode, which allows
an application to control all of the aspects of scrolling. Since the operation of the
ScrolledWindow is tied to the operation of ScrollBars, the two widgets are discussed
together in Chapter 10,ScrolledWindows and ScrollBars.

MainWindow
The MainWindow widget is subclassed from the ScrolledWindow widget. The Main-
Window is the standard layout manager for the main application window in a Motif
application. The widget is designed to lay out a MenuBar, a work area, ScrollBars, a
command area, and a message area. Since the MainWindow is central to many Motif
applications, it is discussed separately in Chapter 4,The Main Window.

Scale
The Scale widget displays a slider object that has a specific value in a range of values.
The user can adjust the value of the widget by moving the slider. The Scale creates and
manages its own widgets. In Motif 1.2, the only sensible children that you could add
to a Scale were Label widgets that represent tick marks, and these would have to be
laid out by the programmer. However, in Motif 2.0, the functionXmScaleSet-
Ticks () was introduced which automatically places marks at calculated positions
along the Scale edge. The widget class is therefore not meant to be a general-purpose
manager, so it is described separately in Chapter 16,The Scale Widget.

The MessageBox, SelectionBox, FileSelectionBox, and Command widgets are also Motif
manager widgets. These widgets are used for predefined Motif dialogs and are discussed in
Chapter 5, Introduction to Dialogs, Chapter 6, Selection Dialogs, and Chapter 7, Custom
Dialogs.

Creating Manager Widgets
A manager widget may be created and destroyed like any other widget. The main difference
between using a manager and other widgets involves when the widget is declared to be
managed in the creation process. We normally suggest that you create manager widgets

Chapter 8: Manager Widgets

236 Motif Programming Manual

using the appropriate convenience function or XtVaCreateWidget() , rather than using
XtVaCreateManagedWidget() , and then manage it later using XtManageChild() . To
understand why this technique can be important, you need to understand how a manager
widget manages its children.

A manager widget manages its children by controlling the sizes and positions of the
children. The process of widget layout only happens when the child and the parent are both
in the managed state. If a child is created as an unmanaged widget, the parent skips over
that widget when it is determining the layout until such time as the child is managed.
However, if a manager widget is not itself managed, it does not perform geometry
management on any of its children regardless of whether those children are managed.*

To demonstrate the problems that you are trying to avoid, consider creating a manager as a
managed widget before any of its children are created. The manager is going to have a set
of PushButtons as its children. When the first child is added using
XtVaCreateManagedWidget() , the manager widget negotiates the size and position of
the PushButton. Depending on the type of manager widget being used, the parent either
changes its size to accommodate the new child or it changes the size of the child to its own
size. In either case, these calculations are not necessary because the geometry needs to
change as more buttons are added. The problem becomes complicated by the fact that when
the manager’s size changes, it must also negotiate its new size with its own parent, which
causes that parent to negotiate with its parent all the way up to the highest-level shell. If the
new size is accepted, the result goes back down the widget tree with each manager widget
resizing itself on the way down. Repeating this process each time a child is added almost
certainly affects performance.

Because of the different geometry management methods used by the different manager
widgets, there is the possibility that all of this premature negotiation can result in a different
layout than you intended. For example, as children are added to a RowColumn widget, the
RowColumn checks to see if there is enough room to place the new child on the same row
or column. If there isn’t, then a new row or column is created. This behavior depends
heavily on whether the RowColumn is managed and also on whether its size has been
established by being realized. If the manager parent is not managed when the children are
added, the whole process can be avoided, yet you still have the convenience of using
XtVaCreateManagedWidget() for all of the widget children should you so wish. When

* To be precise, a manager does not actually manage its children until it is both managed and realized. If you re-
alize all of your widgets at once, by calling XtRealizeWidget () on the top-level widget of the application,
as described in Chapter 2, The Motif Programming Model, it should not make a difference whether a manager
is managed before or after its children are created. However, if you are adding widgets to a tree of already-real-
ized widgets, the principles set forth in this section are important. If you are adding children to an already-real-
ized parent, the child is automatically realized when it is managed. If you are adding a manager widget as a child
of a realized widget, you should explicitly manage all children before managing the parent. The performance
implications can be quite severe otherwise, and can be exponential to the number of already managed children.
The code examples all explicitly manage the child before the parent to demonstrate the correct technique, even
though the application shell may not as yet be realized.

Motif Programming Manual 237

Chapter 8: Manager Widgets

the manager is itself managed, it queries its children for their size and position requests,
calculates its own size requirements, and communicates that size back up the widget tree.

For best results, you should use the appropriate Motif convenience function,
XtCreateWidget () or XtVaCreateWidget() to create manager widgets, reserving
XtVaCreateManagedWidget() for primitive widgets. Creating a primitive widget as an
unmanaged widget serves no purpose, unless you explicitly want the widget’s parent to
ignore it for some reason. If you are adding another manager as a child, the same principle
applies; you should also create it as an unmanaged widget until all its children are added as
well. The idea is to descend as deeply into the widget tree and create as many children as
possible before managing the manager parents as you ascend back up. Once all the children
have been added, XtManageChild() can be called for the managers so that they only
have to negotiate with their parents once, thus saving time, improving performance, and
probably producing better results.

Despite all we’ve just said, realize that the entire motivating factor behind this principle is
to optimize the method by which managers negotiate sizes and positions of their children.
If a manager only has one child, it does not matter if you create the manager widget as
managed or not. Also, the geometry management constraints of some widgets are such that
no negotiation is required between the parent and the children. In these situations, it is not
necessary to create the manager as an unmanaged widget, even though it has children. We
will explain these cases as they arise.

In the rest of this chapter, we examine the basic manager widget classes and present
examples of how they can be used. While geometry management is the most obvious and
widely used aspect of the widget class, managers are also responsible for keyboard
traversal, gadget display, and gadget event handling. Many of the resources of the Manager
metaclass are inherited by each of its subclasses for handling these tasks.

The BulletinBoard Widget
The BulletinBoard is the most basic of the manager widget subclasses. The BulletinBoard
widget does not enforce position or size policies on its children, so it is rarely used by
applications as a general geometry manager for widgets. The BulletinBoard is the
superclass for the Form widget and all of the predefined Motif dialog widgets. To support
these roles, the BulletinBoard has a number of resources that are used specifically for
communicating with DialogShells.

The BulletinBoard has callback resources for FocusIn , FocusOut , and MapNotify
events. These callbacks are invoked when the user moves the mouse or uses the TAB key
to traverse the widget hierarchy. The events do not require much visual feedback and they
only require application-specific callback routines when an application needs to set internal
states based on the events. The XmNfocusCallback and XmNmapCallback resources
are used extensively by DialogShells.

Chapter 8: Manager Widgets

238 Motif Programming Manual

Despite the low profile of the BulletinBoard as a manager widget, there is a lot to be learned
from it, since the principles also apply to most other manager widgets. In this spirit, let’s
take a closer look at the BulletinBoard widget and examine the different things that can be
done with it as a manager widget. If you want to use a BulletinBoard directly in an
application, you must include the file <Xm/BulletinB.h>. The following code fragment
shows the two recommended ways to create a BulletinBoard:

Widget bboard = XtVaCreateWidget ("name", xmBulletinBoardWidgetClass, parent ,
resource-value-list , NULL);

/* Create children */
...
XtManageChild (bboard);

Widget bboard = XmCreateBulletinBoard (parent, “name”,
resource-value-array ,
resource-value-count);

/* Create children */
...
XtManageChild (bboard);

The parent parameter is the parent of the BulletinBoard, which may be another manager
widget or a shell widget. You can specify any of the resources that are specific to the
BulletinBoard, but unless you are using the widget as a dialog box, your choices are quite
limited.

Resources
Of the few BulletinBoard resources not tied to DialogShells, the only visual one is
XmNshadowType. When used in conjunction with the XmNshadowThickness resource,
you can control the three-dimensional appearance of the widget. There are four possible
values for XmNshadowType:

XmSHADOW_IN XmSHADOW_OUT
XmSHADOW_ETCHED_IN XmSHADOW_ETCHED_OUT

The default value for XmNshadowThickness is 0, except when the BulletinBoard is the
child of a DialogShell, in which case the default value is 1. In either case, the value can be
changed by the application or by the user.

The XmNbuttonRenderTable * resource may be set to a render table as described in
Chapter 24, Render Tables. This render table is used for each of the button children of the
BulletinBoard, when the button does not specify its own render table. If the resource is not
specified, its value is taken from the XmNbuttonRenderTable of the nearest ancestor
which holds the XmQTspecifyRenderTable Trait. BulletinBoard, VendorShell, and

* The XmFontList is obsolete as of Motif 2.0, and is replaced by the XmRenderTable . XmNbuttonFontList ,
XmNlabelFontList , and XmNtextFontList are deprecated, and the resources XmNbuttonRenderTable ,
XmNlabelRenderTable , XmNtextRenderTable are preferred respectively.

Motif Programming Manual 239

Chapter 8: Manager Widgets

MenuShell hold this Trait. Similarly, the XmNlabelRenderTable and
XmNtextRenderTable resources can be set for Label and Text widgets, respectively,
that are direct children of the BulletinBoard.

Geometry Management
Since the BulletinBoard does not provide any geometry management by default, you must
be prepared to manage the positions and sizes of the widgets within a BulletinBoard. As a
result, you must set the XmNx and XmNy resources for each child. You may also have to set
the XmNwidth and XmNheight resources if you need consistent or predetermined sizes for
the children. In order to maintain the layout, you must add an event handler for resize
(ConfigureNotify) events, so that the new sizes and positions of the children can be
calculated. Example 8-1 shows the use of an event handler with the BulletinBoard.*

Example 8-1. The corners.c program

/* corners.c -- demonstrate widget layout management for a
** BulletinBoard widget. There are four widgets each labelled
** top-left, top-right, bottom-left and bottom-right. Their
** positions in the bulletin board correspond to their names.
** Only when the widget is resized does the geometry management
** kick in and position the children in their correct locations.
*/
#include <Xm/BulletinB.h>
#include <Xm/PushB.h>

char *corners[] = { "Top Left", "Top Right",
"Bottom Left", "Bottom Right" };

static void resize(Widget, XEvent *, String *, Cardinal *);

main (int argc, char *argv[])
{

Widget toplevel, bboard, button;
XtAppContext app;
XtActionsRec rec;
int i;

XtSetLanguageProc (NULL, NULL, NULL);
/* Initialize toolkit and create toplevel shell */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
/* Create your standard BulletinBoard widget */
bboard = XmCreateBulletinBoard (toplevel, "bboard", NULL, 0);
/* Set up a translation table that captures "Resize" events
** (also called ConfigureNotify or Configure events). If the
** event is generated, call the function resize().
*/
rec.string = "resize";

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 8: Manager Widgets

240 Motif Programming Manual

rec.proc = resize;
XtAppAddActions (app, &rec, 1);
XtOverrideTranslations (bboard,

XtParseTranslationTable ("<Configure>: resize()"));
/* Create children of the dialog -- a PushButton in each corner. */
for (i = 0; i < XtNumber (corners); i++) {

button = XmCreatePushButton (bboard, corners[i], NULL, 0);
XtManageChild (button);

}
XtManageChild (bboard);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* resize(), the routine that is automatically called by Xt upon the
** delivery of a Configure event. This happens whenever the widget
** gets resized.
*/
static void resize (Widget w, /* Widget that resized */

XEvent *event,
String args[], /* unused */
Cardinal *num_args) /* unused */

{
WidgetList children;
Dimension w_width, w_height;
short margin_w, margin_h;
XConfigureEvent *cevent = (XConfigureEvent *) event;
int width = cevent->width;
int height = cevent->height;

/* get handle to BulletinBoard's children and marginal spacing */
XtVaGetValues (w, XmNchildren, &children, XmNmarginWidth, &margin_w,

XmNmarginHeight, &margin_h, NULL);
/* place the top left widget */
XtVaSetValues (children[0], XmNx, margin_w,

XmNy, margin_h, NULL);
/* top right */
XtVaGetValues (children[1], XmNwidth, &w_width, NULL);
XtVaSetValues (children[1], XmNx, width - margin_w - w_width,

XmNy, margin_h, NULL);
/* bottom left */
XtVaGetValues (children[2], XmNheight, &w_height, NULL);
XtVaSetValues (children[2], XmNx, margin_w,

XmNy, height - margin_h - w_height,
NULL);

/* bottom right */
XtVaGetValues (children[3], XmNheight, &w_height,

XmNwidth, &w_width, NULL);
XtVaSetValues (children[3], XmNx, width - margin_w - w_width,

XmNy, height - margin_h - w_height,
NULL);

}

Motif Programming Manual 241

Chapter 8: Manager Widgets

The program uses four widgets, labelled Top Left, Top Right, Bottom Left, and Bottom
Right. The positions of the buttons in the BulletinBoard correspond to their names. Since
the widgets are not positioned when they are created, the geometry management only
happens when the widget is resized. Figure 8-1 shows the application before and after a
resize event.

When a resize event occurs, X generates a ConfigureNotify event. This event is
interpreted by Xt and the translation table of the widget corresponding to the resized
window is searched to see if the application is interested in being notified of the event. We
have indicated interest in this event by calling XtAppAddActions() and
XtOverrideTranslations() , as shown below:

XtActionsRec rec;
...
rec.string = "resize";
rec.proc = resize;
XtAppAddActions (app, &rec, 1);
XtOverrideTranslations (bboard,

XtParseTranslationTable ("<Configure>: resize()"));

As described in Volume 4, X Toolkit Intrinsics Programming Manual, a translation table
pairs a sequence of one or more events with a sequence of one or more functions that are
called when the event sequence occurs. In this case, the event is a ConfigureNotify
event and the function is resize() . Translations are specified as strings and then parsed
into an internal format with the function XtParseTranslationTable() . The routine
creates an internal structure of events and the functions to which they correspond. Xt
provides the table for translating event strings such as <Configure> to the actual
ConfigureNotify event, but Xt cannot convert the string resize() to an actual

expand window

Figure 8-1: Output of the corners program before and after a resize event

Chapter 8: Manager Widgets

242 Motif Programming Manual

function unless we provide a lookup table.The XtActionsRec type performs this task.
The structure is defined as follows:

typedef struct {
Stringstring;
XtActionProcproc;

} XtActionsRec;

The action list is initialized to map the string resize to the actual function resize()
using XtAppAddActions() . We install the translation table on the widget using
XtOverrideTranslations() so that when a ConfigureNotify event occurs, the
resize() function is called.

The resize() function takes four arguments. The first two arguments are a pointer to the
widget in which the event occurred and the event structure. The args and num_args
parameters are ignored because we did not specify any extra parameters to be passed to the
function when we installed it. Since the function is called as a result of the event happening
on the BulletinBoard widget, we know that we are dealing with a composite widget. We
also know that there is only one event type that could have caused the function to be called,
so we cast the event parameter accordingly.

The task of the function is to position the children so that there is one per corner in the
BulletinBoard. We get a handle to all of the children of the BulletinBoard. Since we are
going to place the children around the perimeter of the widget, we also need to know how
far from the edge to place them. This distance is taken from the values for
XmNmarginWidth and XmNmarginHeight . All three resource values are retrieved in the
following call:

XtVaGetValues (w, XmNchildren, &children,
XmNmarginWidth, &margin_w,
XmNmarginHeight, &margin_h,
NULL);

The remainder of the function simply places the children at the appropriate positions within
the BulletinBoard. The routine uses a very simple method for geometry management, but
it does demonstrate the process.

The general issue of geometry management for composite widgets is not trivial. If you plan
on doing your own geometry management for a BulletinBoard or any other composite
widget, you should be very careful to consider all the resources that could possibly affect
layout. In our example, we considered the margin width and height, but there is also
XmNallowOverlap , XmNborderWidth (which is a general Core widget resource),
XmNshadowThickness (a general manager widget resource) and the same values
associated with the children of the BulletinBoard.

There are also issues about what to do if a child decides to resize itself, such as if a Label
widget gets wider. In this case, you must first evaluate what the geometry layout of the
widgets would be if you were to grant the Label permission to resize itself as it wants. This

Motif Programming Manual 243

Chapter 8: Manager Widgets

evaluation is done by asking each of the children how big they want to be and calculating
the hypothetical layout. The BulletinBoard either accepts or rejects the new layout. Of
course, the BulletinBoard may have to make itself bigger too, which requires asking its
parent for a new size, and so on. If the BulletinBoard cannot resize itself, then you have to
decide whether to force other children to be certain sizes or to reject the resize request of
the child that started all the negotiation. Geometry management is by no means a simple
task; it is explained more completely in Volume 4, X Toolkit Intrinsics Programming
Manual.

The Form Widget
The Form widget is subclassed from the BulletinBoard class, so it inherits all of the
resources that the BulletinBoard has to offer. Accordingly, the children of a Form can be
placed at specific x, y coordinates and geometry management can be performed as in
Example 8-1. However, the Form provides additional geometry management features that
allow its children to be positioned relative to one another and relative to specific locations
in the Form.

In order to use a Form, you must include the file <Xm/Form.h>. A Form is created in a
similar way to other manager widgets, either through a convenience routine or using the
general purpose Xt mechanisms, as shown below:

Widget form = XtVaCreateWidget ("name", xmFormWidgetClass, parent, resource-
value-list , NULL);

/* create children */
XtManageChild (form);

Widget form = XmCreateForm (parent, “name”, resource-value-array , resource-
value-count);

/* create children */
XtManageChild (form);

Form Attachments
Geometry management in a Form is done using attachment resources. These resources are
constraint resources, which means that they are specified for the children of the Form. The
resources provide various ways of specifying the position of a child of a Form by attaching
each of the four sides of the child to another entity. The side of a widget can be attached to
another widget, to a fixed position in the Form, to a flexible position in the Form, to the

Chapter 8: Manager Widgets

244 Motif Programming Manual

Form itself, or to nothing at all. These attachments can be considered hooks, rods, and
anchor points, as shown in Figure 8-2.

In this figure, there are three widgets. The sizes and types of the widgets are not important.
What is important is the relationship between the widgets with respect to their positions in
the Form. Widget 1 is attached to the top and left sides of the Form by creating two
attachments. The top side of the widget is hooked to the top of the Form. It can slide from
side to side, but it cannot be moved up or down (just like a shower curtain). The left side
can slide up and down, but not to the right or to the left. Given these two attachment
constraints, the top and left sides of the widget are fixed. The right and bottom edges of the
widget are not attached to anything, but other widgets are attached to those edges.

The left side of Widget 2 is attached to the right side of Widget 1. Similarly, the top side of
Widget 2 is attached to the top side of Widget 1. As a result, the top and left sides of the
widget cannot be moved unless Widget 1 moves. The same kind of attachments hold for
Widget 3. The top side of this widget is attached to the bottom of Widget 1 and its left side
is attached to the left side of Widget 1. Given these constraints, no matter how large each
of the widgets may be, or how the Form may be resized, the positional relationship of the
widgets is maintained.

In general, you must attach at least two adjacent edges of a widget to keep it from moving
unpredictably. If you only attach one edge of a widget, you are only specifying relative
position: both opposing sides must be attached for potential resize behavior.

Figure 8-2: Attachments in a Form

Widget 2

Widget 3Widget 1

Motif Programming Manual 245

Chapter 8: Manager Widgets

The following resources represent the four sides of a widget:

XmNtopAttachment XmNbottomAttachment
XmNrightAttachment XmNleftAttachment

For example, if we want to specify that the top of a widget is attached to something, we use
the XmNtopAttachment resource. Each of the four resources can be set to one of the
following values:

XmATTACH_FORM XmATTACH_OPPOSITE_FORM
XmATTACH_WIDGET XmATTACH_OPPOSITE_WIDGET
XmATTACH_NONE
XmATTACH_SELF XmATTACH_POSITION

XmATTACH_FORM

When an attachment is set to XmATTACH_FORM, the specified side is attached to the Form
as shown in Figure 8-3. If the resource that has this value is XmNtopAttachment , then the
top side of the widget is attached to the top of the Form. The top attachment does not
guarantee that the widget will not move from side to side. If XmNbottomAttachment is
also set to XmATTACH_FORM, the bottom of the widget is attached to the bottom side of the
Form. With both of these attachments, the widget is resized to the height of the Form itself.
The same would be true for the right and left edges of the widget if they were attached to
the Form.

XmATTACH_OPPOSITE_FORM

When an attachment is set to XmATTACH_OPPOSITE_FORM, the specified side of the
widget is attached to the opposite side of the Form. For example, if XmNtopAttachment
is set to XmATTACH_OPPOSITE_FORM, the top side of the widget is attached to the bottom
side of the Form. This value must be used with a negative offset value (discussed in the next
section) or the widget is placed off of the edge of the Form and it is not visible. While it
may seem confusing, this value is the only one that can be applied to an attachment resource
that allows you to specify a constant offset from the edge of a Form.

Figure 8-3: XmNtopAttachment set to XmATTACH_FORM

Widget 1

Chapter 8: Manager Widgets

246 Motif Programming Manual

XmATTACH_WIDGET

The XmATTACH_WIDGET value indicates that the side of a widget is attached to another
widget. The other widget must be specified using the appropriate resource from the
following list:

XmNtopWidget XmNbottomWidget
XmNleftWidget XmNrightWidget

The value for one of these resources must be the widget ID. For example, Figure 8-4 shows
how to attach the right side of Widget 1 to the left side of Widget 2. This attachment method
is commonly used to chain together a series of adjacent widgets. Chaining widgets
horizontally does not guarantee that the widgets will be aligned vertically, or vice versa.

XmATTACH_OPPOSITE_WIDGET

The XmATTACH_OPPOSITE_WIDGET value is just like XmATTACH_WIDGET, except
that the widget is attached to the same edge of the specified widget, as shown in Figure 8-
5. In this case, the right side of Widget 1 is attached to the right side of Widget 3. This
attachment method allows you to align the edges of a group of widgets. As with

Widget 2Widget 1

Figure 8-4: XmNrightAttachment set to XmATTACH_WIDGET

XmNrightAttachment :

XmNrightWidget: Widget 2XmATTACH_WIDGET

Motif Programming Manual 247

Chapter 8: Manager Widgets

XmATTACH_WIDGET, the other widget must be specified using XmNtopWidget ,
XmNbottomWidget , XmNleftWidget , or XmNrightWidget .

XmATTACH_NONE

XmATTACH_NONE specifies that the side of a widget is not attached to anything, which is
the default value*. This case could be represented by a dangling hook that is not attached
to anything. If the entire widget moves because another side is attached to something, then
this side gets dragged along with it so that the widget does not need resizing. Unless a
particular side of a widget is attached to something, that side of the widget is free-floating
and moves proportionally with the other parts of the widget.

XmATTACH_POSITION

When the side of a widget is attached using XmATTACH_POSITION, the side is anchored to
a relative position in the Form. This value works by segmenting the Form into a fixed
number of equally-spaced horizontal and vertical positions, based on the value of the

* This is true for any individual edge. However, a widget which has no attachments specified on any side will have
an implicit XmATTACH_FORM attachment on the top and left edges assigned by the containing Form.

Figure 8-5: XmNrightAttachment set to XmATTACH_OPPOSITE_WIDGET

Widget 1

Widget 3

20

0 5 10 15 25 3520 30

Widget 1

Widget 3

The right
sides are
aligned

XmNrightAttachment:
XmATTACH_OPPOSITE_WIDGET

XmNrightWidget: Widget 3

Form

Chapter 8: Manager Widgets

248 Motif Programming Manual

XmNfractionBase resource. The position of the side must be specified using the
appropriate resource from the following list:

XmNtopPosition XmNbottomPosition
XmNleftPosition XmNrightPosition

See Section 8.4.3 for a complete discussion of position attachments.

XmATTACH_SELF

When an attachment is set to XmATTACH_SELF, the side of the widget is attached to its
initial position in the Form. You position the widget initially by specifying its x,y location
in the Form. After the widget has been placed in the Form, the attachment for the side
reverts to XmATTACH_POSITION, with the corresponding position resource set to the
relative position of the x,y coordinate in the Form.

Some Examples

Now that we have explained the concept of Form attachments, we can reimplement the four
corners example from the previous section. Unlike in the previous version, we no longer
need a resize procedure to calculate the positions of the widgets. By specifying the correct
attachments, as shown in Example 8-2, the widgets are placed and managed correctly by
the Form when it is resized.*

Example 8-2. The form_corners.c program

/* form_corners.c -- demonstrate form layout management. Just as
** in corners.c, there are four widgets each labelled top-left,
** top-right, bottom-left and bottom-right. Their positions in the
** form correspond to their names. As opposed to the BulletinBoard
** widget, the Form manages this layout management automatically by
** specifying attachment types for each of the widgets.
*/
#include <Xm/PushB.h>
#include <Xm/Form.h>

char *corners[] = {"Top Left", "Top Right", "Bottom Left", "Bottom Right"};

main (int argc, char *argv[])
{

Widget toplevel, form, button;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);
form = XmCreateForm (toplevel, "form", NULL, 0);
/* Attach the edges of the widgets to the Form. Which edge of

* XtVaAppInitialize() is considered deprecated in X11R6.

Motif Programming Manual 249

Chapter 8: Manager Widgets

** the widget that's attached is relative to where the widget is
** positioned in the Form. Edges not attached default to having
** an attachment type of XmATTACH_NONE.
*/
button = XmCreatePushButton (form, corners[0], NULL, 0);
XtVaSetValues (button, XmNtopAttachment, XmATTACH_FORM, XmNleftAttachment,

XmATTACH_FORM, NULL);
XtManageChild (button);
button = XmCreatePushButton (form, corners[1], NULL, 0);
XtVaSetValues (button, XmNtopAttachment, XmATTACH_FORM,

XmNrightAttachment, XmATTACH_FORM, NULL);
XtManageChild (button);
button = XmCreatePushButton (form, corners[2], NULL, 0);
XtVaSetValues (button, XmNbottomAttachment, XmATTACH_

FORM,XmNleftAttachment, XmATTACH_FORM, NULL);
XtManageChild (button);
button = XmCreatePushButton (form, corners[3], NULL, 0);
XtVaSetValues (button, XmNbottomAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM, NULL);
XtManageChild (button);
XtManageChild (form);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

In this example, two sides of each widget are attached to the Form. It is not necessary to
attach the other sides of the widgets to anything else. If we attach the other sides to each
other, the widgets would have to be resized so that they could stretch to meet each other.
With the specified attachments, the output of the program looks just like the output in
Figure 8-1.

A more complex example of Form attachments is shown in Example 8-3. This example
implements the layout shown in Figure 8-2*

Example 8-3. The attach.c program

/* attach.c -- demonstrate how attachments work in Form widgets. */
#include <Xm/PushB.h>
#include <Xm/Form.h>

main (int argc, char *argv[])
{

Widgettoplevel, parent, one, two, three;
XtAppContextapp;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
parent = XmCreateForm (toplevel, "form", NULL, 0);
one = XmCreatePushButton (parent, "One", NULL, 0);

* XtVaAppInitialize() is considered deprecated in X11R6.

Chapter 8: Manager Widgets

250 Motif Programming Manual

two = XmCreatePushButton (parent, “Two”, NULL, 0);
three = XmCreatePushButton (parent, “Three”, NULL, 0);
XtVaSetValues (one,

XmNtopAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_FORM,
NULL);

XtVaSetValues (two,
XmNleftAttachment, XmATTACH_WIDGET,
/* attach top to same y coordinate as top of "one" */
XmNleftWidget, one,
XmNtopAttachment, XmATTACH_OPPOSITE_WIDGET,
XmNtopWidget, one,
NULL);

XtVaSetValues (three,
XmNtopAttachment, XmATTACH_WIDGET,
/* attach left to same x coordinate as left of "one" */
XmNtopWidget, one,
XmNleftAttachment, XmATTACH_OPPOSITE_WIDGET,
XmNleftWidget, one,
NULL);

XtManageChild (one);
XtManageChild (two);
XtManageChild (three);
XtManageChild (parent);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The example uses three PushButton gadgets inside of a Form widget. The output of the
program is shown in Figure 8-6.

You should notice that the widgets are packed together quite tightly, which might not be
how you expected them to appear. In order to space the widgets more reasonably, we need
to specify some distance between them using attachment offsets.

Expand Window

Figure 8-6: Output of the attach program

Motif Programming Manual 251

Chapter 8: Manager Widgets

Attachment Offsets
Attachment offsets control the spacing between widgets and the objects to which they are
attached. The following resources represent the attachment offsets for the four sides of a
widget:

XmNleftOffset XmNrightOffset
XmNtopOffset XmNbottomOffset

Figure 8-7 shows the graphic representation of attachment offsets.

By default, offsets are set to 0 (zero), which means that there is no offset* , as shown in the
output for Example 8-3. To make the output more reasonable, we need only to set the left
offset between widgets One and Two and the top offset to between widgets One and Three.
The resources values can be hard-coded in the application or set in a resource file, using the
following specification:

*form.One.leftOffset: 10
*form.One.topOffset: 10
*form.Two.leftOffset: 10

* Not strictly true: if no offset is specified, the value depends upon the Form XmNhorizontalSpacing and Xm-
NverticalSpacing resources, which are zero by default. An explicit offset of zero overrides any Form spac-
ing resources. See Section 8.4.4.

Widget

Figure 8-7: Attachment offsets

XmNtopOffset

XmNrightOffset

XmNbottomOffset

XmNleftOffset XmNtopAttachment

XmNright-
Attachment

XmNbottomAttachment

XmNleftAttachment

Chapter 8: Manager Widgets

252 Motif Programming Manual

*form.Three.topOffset: 10

Our choice of the value 10 was arbitrary. The widgets are now spaced more appropriately,
as shown in Figure 8-8.

While the layout of the widgets can be improved by setting offset resources, it is also
possible to disrupt the layout. Consider the following resource specifications:

*form*leftOffset: 10
*form*topOffset: 10

While it might seem that these resource values are simply a terser way to specify the offsets
shown earlier, Figure 8-9 makes it clear that these specifications do not produce the desired
effect.

An application should hard-code whatever resources may be necessary to prevent the user
from setting values that would make the application non-functional or aesthetically
unappealing. Offset resource values can be tricky because they apply individually to each
side of each widget in a Form. The problem with the resource specifications used to
produce Figure 8-9 is that the offsets are being applied to each side of every widget, when
some of the alignments need to be precise. In order to prevent this problem, we need to
hard-code the offsets for particular attachments, as shown in the following code fragment:

two = XmCreatePushButton (parent, "Two", NULL, 0);
XtVaSetValues (two, XmNleftAttachment, XmATTACH_WIDGET,

XmNleftWidget, one,
XmNtopAttachment,XmATTACH_OPPOSITE_WIDGET,
XmNtopWidget, one,
XmNtopOffset, 0,
NULL);

three = XmCreatePushButton (parent, "Three", NULL, 0);
XtVaSetValues (three,XmNtopAttachment, XmATTACH_WIDGET,

XmNtopWidget, one,
XmNleftAttachment, XmATTACH_OPPOSITE_WIDGET,

Figure 8-8: Output of the attach program with offset resources set to 10

Figure 8-9: Output of the attach program with inappropriate offset resources

Motif Programming Manual 253

Chapter 8: Manager Widgets

XmNleftWidget, one,
XmNleftOffset, 0,
NULL);

The use of zero-length offsets guarantees that the widgets they are associated with are
aligned exactly with the widgets to which they are attached, regardless of any resource
specifications made by the user. A general rule of thumb is that whenever you use
XmATTACH_OPPOSITE_WIDGET, you should also set the appropriate offset to zero so that
the alignment remains consistent.

In some situations it is necessary to use negative offsets to properly arrange widgets in a
Form. The most common example of this situation occurs when using the XmATTACH_
OPPOSITE_FORM attachment . Unless you use a negative offset, as shown in
Figure 8-10, the widgets are placed off the edge of the Form and are not visible.

Position Attachments
Form positions provide another way to position widgets within a Form. The concept is
similar to the hook and rod principle described earlier, but in this case the widgets are
anchored on at positions that are based on imaginary longitude and latitude lines that are
used to segment the Form into equal pieces. The resource used to partition the Form into
segments is XmNfractionBase . Although the name of this resource may suggest
complicated calculations, you just need to know that the Form is divided horizontally and

Figure 8-10: XmNleftAttachment of XmATTACH_OPPOSITE_WIDGET

Widget 1
XmNbottomOffset: (-5)

Widget 1

Form

195

205

200

210

215

220

195

205

200

210

215

220

with negative offset

Chapter 8: Manager Widgets

254 Motif Programming Manual

vertically into the number of partitions represented by its value. For example, Figure 8-11
shows how a Form is partitioned if XmNfractionBase is set to 5.

As you can see, there are an equal number of horizontal and vertical partitions, but the size
of the horizontal partitions is not the same as the size of the vertical partitions. It is currently
not possible to set the number of horizontal partitions separately from the number of
vertical ones, although it is possible to work around this shortcoming, as we will describe
shortly.

Widgets are placed at the coordinates that represent the partitions by specifying
XmATTACH_POSITION for the attachment resource and by specifying a coordinate value
for the corresponding position resource. The position resources are XmNtopPosition ,
XmNbottomPosition , XmNleftPosition , and XmNrightPosition . For example, if
we wanted to attach the top and left sides of a PushButton to position 1, we could use the
following code fragment:

button = XmCreatePushButton (form, "name", NULL, 0);
XtVaSetValues (button, XmNtopAttachment, XmATTACH_POSITION,

XmNtopPosition, 1,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 1,

Figure 8-11: Form with XmNfractionBase set to 5

0 1 2 3 4 5
0

1

2

3

4

5

One

Two

0 1 2 3 4 5
0

1

2

3

4

5

Two

One

0 1 2 3 4 5
0

1

2

3

4

5

One

Two

Motif Programming Manual 255

Chapter 8: Manager Widgets

NULL);

The right and bottom attachments are left unspecified, so those edges of the widget are not
explicitly positioned by the Form. If attachments had been specified for these edges, the
widget would have to be resized by the Form in order to satisfy all the attachment
constraints.

One obvious example of using position attachments is to create a tic-tac-toe board layout,
as is done in Example 8-4.*

Example 8-4. The ticktactoe.c program

/* tictactoe.c -- demonstrate how fractionBase and XmATTACH_POSITIONs
** work in Form widgets.
*/
#include <Xm/PushB.h>
#include <Xm/Form.h>

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, parent, w;
int x, y, n;
Arg args[10];
/* callback for each PushButton */
extern void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
n = 0;
XtSetArg (args[n], XmNfractionBase, 3); n++;
parent = XmCreateForm (toplevel, "form", args, n);

for (x = 0; x < 3; x++)
for (y = 0; y < 3; y++) {

n = 0;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNtopPosition, y); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNleftPosition, x); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNrightPosition, x+1); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNbottomPosition, y+1); n++;
w = XmCreatePushButton (parent, " ", args, n);
XtAddCallback (w, XmNactivateCallback, pushed, NULL);
XtManageChild (w);

}

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 8: Manager Widgets

256 Motif Programming Manual

XtManageChild (parent);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void pushed (Widget w, /* PushButton that got activated */
XtPointer client_data, /* unused */
XtPointer call_data)

{
char buf[2];
XmString str;
XmPushButtonCallbackStruct*cbs =

(XmPushButtonCallbackStruct *) call_data;

/* Shift key gets an O. (xbutton and xkey happen to be similar) */
if (cbs->event->xbutton.state & ShiftMask)

buf[0] = '0';
else

buf[0] = 'X';
buf[1] = 0;
str = XmStringCreateLocalized (buf);
XtVaSetValues (w, XmNlabelString, str, NULL);
XmStringFree (str);

}

The output of this program is shown in Figure 8-12.

As you can see, the children of the Form are equally sized because their attachment
positions are segmented equally. If the user resizes the Form, all of the children maintain
their relationship to one another. The PushButtons simply grow or shrink to fill the form.

One common use of positional attachments is to lay out a number of widgets that need to
be of equal size and equal spacing. For example, you might use this technique to arrange
the buttons in the action area of a dialog. Chapter 7, Custom Dialogs, provides a detailed
discussion of how to arrange buttons in this manner.

There may be situations where you would like to attach widgets to horizontal positions that
do not match up with how you’d like to attach their vertical positions. Since the fraction
base cannot be set differently for the horizontal and vertical orientations, you have to use
the least common multiple as the fraction base value. For example, say you want to position
the tops and bottoms of all of your widgets to the 2nd and 4th positions, as if the Form were
segmented vertically into 5 parts. But, you also want to position the left and right edges of
those same widgets to the 3rd, 5th, 7th, and 9th positions, as if it were segmented into 11

Figure 8-12: Output of the tictactoe program

Motif Programming Manual 257

Chapter 8: Manager Widgets

parts. You would have to apply some simple arithmetic and set the value for
XmNfractionBase to 55 (5x11). The top and bottom edges would be set to the 22nd
(2x11) and 44th (4x11) positions and the left and right edges would be set to the 15th
(3x5), 25th (5x5), 35th (7x5), and 45th (9x5) positions.

Additional Resources
There are a few other useful Form resources that we have not covered so far. The
XmNhorizontalSpacing resource can be used to specify the distance between
horizontally adjacent widgets, while XmNverticalSpacing specifies the distance
between vertically adjacent widgets. These values only apply when the left and right offset
values are not specified, so they are intended to be used as global offset values global for a
Form. The following resource specification:

*horizontalSpacing: 10

is equivalent to:

*leftOffset: 10
*rightOffset: 10

The XmNrubberPositioning resource specifies the default attachments for widgets in
the Form. The default value of False indicates that the top and left edges are attached to
the form by default. If XmNrubberPositioning is set to True , the top and left
attachments are set to XmATTACH_POSITION by default. If the XmNtopAttachment or
XmNleftAttachment resource is explicitly set for a widget, then the default attachment
has no effect.

The XmNresizable resource is another constraint resource that can be set on the children
of a Form widget. This resource indicates whether or not the Form tries to grant resize
requests from the child.

Nested Forms
Some widget layouts are difficult to create using a single Form widget. Since a manager
widget can contain other managers, it is often possible to generate the desired layout by
using a Form within a Form. One common problem is that there are no Form attachments
available to align two widgets horizontally if they have different heights. We need a middle
attachment resource, but one doesn’t exist. For example, if you have a series of Labels and
Text widgets that you want to pair off and stack vertically, it would be nice to align each
pair of widgets at their mid sections.

To solve this problem, we can place each Label-Text widget pair in a separate Form. If the
top and bottom edges of the widgets are attached to the Form, the widgets are stretched to
satisfy the constraints, which means that they are aligned horizontally. All of these smaller

Chapter 8: Manager Widgets

258 Motif Programming Manual

Form widgets can be placed inside of a larger Form widget. Example 8-5 shows an
implementation of this idea.*

Example 8-5. The text_form.c program

/* text_form.c -- demonstrate how attachments work in Form widgets
* by creating a text-entry form type application.
*/
#include <Xm/LabelG.h>
#include <Xm/Text.h>
#include <Xm/Form.h>

char *prompts[] = {"Name:", "Phone:", "Address:",
"City:", "State:", "Zip Code:"};

main (int argc, char *argv[])
{

Widget toplevel, mainform, subform, last_subform, label, text;
XtAppContext app;
char buf[32];
int i;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
mainform = XmCreateForm (toplevel, "mainform", NULL, 0);
last_subform = NULL;
for (i = 0; i < XtNumber (prompts); i++) {

subform = XmCreateForm (mainform, "subform", NULL, 0);
XtVaSetValues (subform,
/* first one should be attached for form */

XmNtopAttachment, last_subform ? XmATTACH_WIDGET :
XmATTACH_FORM,

/* others are attached to the previous subform */
XmNtopWidget, last_subform,
XmNleftAttachment, XmATTACH_FORM,
XmNrightAttachment,XmATTACH_FORM,
NULL);

/* Note that the label here contains a colon from the prompts
** array above. This makes it impossible for external resources
** to be set on these widgets. Here, that is intentional, but
** be careful in the general case.
*/
label = XmCreateLabelGadget (subform, prompts[i], NULL, 0);
XtVaSetValues (label,

XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_FORM,
XmNalignment, XmALIGNMENT_BEGINNING,
NULL);

XtManageChild (label);

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 259

Chapter 8: Manager Widgets

sprintf (buf, "text_%d", i);
text = XmCreateText (subform, buf, NULL, 0);
XtVaSetValues (text,

XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, label,
NULL);

XtManageChild (text);
XtManageChild (subform);
last_subform = subform;

}
/* Now that all the forms are added, manage the main form */
XtManageChild (mainform);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of the program is shown in Figure 8-13.

Notice that the Labels are centered vertically with respect to their corresponding Text
widgets. This arrangement happened because each Label was stretched vertically in order
to attach it to the top and bottom of the respective Form. Of course, if the Labels were
higher than the Text widgets, the Text widgets would be stretched instead.

Later, we’ll show another version of this program that gives better results. As you can
imagine, there are many different ways for a Form, or any other manager widget, to manage
the geometry of its children to produce the same layout. Later, when we discuss the
RowColumn widget, we will show you another solution to the problem of horizontal
alignment. It is important to remember that there is no right or wrong way to create a layout,
as long as it works for your application. However, you should be very careful to experiment
with resizing issues as well as with resources that can beset by the user that might affect
widget layout, such as fonts and strings.

Figure 8-13: Output of the text_form program

Chapter 8: Manager Widgets

260 Motif Programming Manual

Common Problems
With a Form widget, you can specify a virtually unlimited number of attachments for its
children. The dependencies inherent in these attachments can lead to various errors in the
layout of the widgets. One common problem involves circular dependencies. The following
code fragment shows a very simple example of a circular dependency:

w1 = XmCreateLabel (form, "w1", NULL, 0);
w2 = XmCreateLabel (form, "w2", NULL, 0);
XtVaSetValues (w1, XmNrightAttachment, XmATTACH_WIDGET,

XmNrightWidget, w2,
NULL);

XtVaSetValues (w2, XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, w1,
NULL);

In this example, the left widget is attached to the right widget and the right widget is
attached to the left one. If you do mistakenly specify a circular dependency, it is unlikely
that it will be as obvious as this example. Fortunately, in most cases, the Motif toolkit
catches circular dependencies and displays an error message if one is found. When this
situation occurs, you need to reconsider your widget layout and try to arrange things such
that the relationship between widgets is less complex. One rule to remember is that adjacent
widgets should generally only be attached in one direction.

When you attach the side of a widget to another widget in a Form, you need to be careful
about how you specify the attached widget. If you specify this widget in the application
code, you need to make sure that the widget has been created before you specify it as a
resource value. Alternatively, the toolkit provides a name-to-widget converter, so you can
also specify widget IDs in a resource file. (See Volume 4, X Toolkit Intrinsics
Programming Manual for information about resource converters.)

Another common problem arises with certain Motif compound objects, such as
ScrolledList and ScrolledTextobjects. XmCreateScrolledText() and
XmCreateScrolledList() return the corresponding Text or List widget, but it is the
parent of this widget that needs to be positioned within a Form. The following code
fragment shows an example of positioning a ScrolledList incorrectly:

form = XmCreateForm (parent, "form", NULL, 0);
list = XmCreateScrolledList (form, "scrolled_list", NULL, 0);
XtVaSetValues (list, /* <- WRONG */

XmNleftAttachment, XmATTACH_FORM,
XmNtopAttachment, XmATTACH_FORM,
NULL);

Since the List is a child of the ScrolledWindow, not the Form, specifying attachments for
the List has no effect on the position of the List in the Form. The attachments need to be
specified on the ScrolledWindow, as shown in the following code fragment:

XtVaSetValues (XtParent (list),

Motif Programming Manual 261

Chapter 8: Manager Widgets

XmNleftAttachment, XmATTACH_FORM,
XmNtopAttachment, XmATTACH_FORM,
NULL);

If you specify attachments for two opposing sides of a widget, the Form resizes the widget
as needed, so that the default size of the widget is ignored. In most cases, the Form can
resize the widget without a problem. However, one particular case that can cause a problem
is a List widget that has its XmNvisibleItemCount resource set. This resource implies a
specific size requirement, so that when the List is laid out in the Form widget, the
negotiation process between the Form and the List may not be resolved. See Chapter 13,
The List Widget, for a complete discussion of the List widget.

Attachments in Form widgets can be delicate specifications, which means that you must be
specific and, above all, complete in your descriptions of how widgets should be aligned and
positioned. Since resources can be set from many different places, the only way to
guarantee that you get the layout you want is to hard-code these resource values explicitly.
Even though it is important to allow the user to specify as many resources as possible, you
do not want to compromise the integrity of your application. Attachments and attachment
offsets are probably not in the set of resources that should be user-definable.

Although attachments can be delicate, they also provide a powerful, convenient, and
flexible way to lay out widgets within a Form, especially when the widgets are grouped
together in some abstract way. Attachments make it easy to chain widgets together, to bind
them to the edge of a Form, and to allow them to be fixed on specific locations. You do not
need to use a single attachment type exclusively; it is perfectly reasonable, and in most
cases necessary, to use a variety of different types of attachments to achieve a particular
layout. If you specify too few attachments, you may end up with misplaced widgets or
widgets that drift when the Form is resized, while too many attachments may cause the
Form to be too inflexible. In order to determine the best way to attach widgets to one
another, you may find it helpful to a draw picture first, with all of the hooks and offset
values considered.

The RowColumn Widget
The RowColumn widget is a manager widget that, as its name implies, lays out its children
in a row and/or column format. The widget is also used internally by the Motif toolkit to
implement a number of special objects, such as the Motif menus, including PopupMenus,
PulldownMenus, MenuBars, and OptionMenus. Many of the resources for the RowColumn
widget are used to control different aspects of these objects. The Motif convenience
functions for creating these objects set most of these resources automatically, so they are
generally hidden from the programmer. The resources are not useful when you are using
the RowColumn as a simple manager widget anyway, so we do not discuss them here. The
header file <Xm/RowColumn.h> is required if you are using this widget.

Chapter 8: Manager Widgets

262 Motif Programming Manual

The XmNrowColumnType resource controls how a particular instance of the RowColumn
is used. The resource can be set to the following values:

XmWORK_AREA XmMENU_BAR XmPULLDOWN
XmMENU_POPUP XmMENU_OPTION

The default value is XmWORK_AREA; this value is also the one that you should use whenever
you want to use a RowColumn widget as a manager. The rest of the values are for the
different types of Motif menus. If you want to create a particular menu object, you should
use the appropriate convenience function, rather than try to create the menu yourself using
a RowColumn directly. We discuss menu creation in Chapter 4, The Main Window, and
Chapter 20, Interacting with the Window Manager. The RowColumn widget is also used to
implement RadioBoxes and CheckBoxes, which are collections of ToggleButtons. See
Chapter 12, Labels and Buttons, for more information on these objects.

The RowColumn is useful for generic geometry management because it requires less fine
tuning than is necessary for a Form or a BulletinBoard widget. Although the RowColumn
has a number of resources, you can create a usable layout without specifying any resources.
In this case, the children of the RowColumn are automatically laid out vertically. In
Example 8-6, we create several PushButtons as children of a RowColumn, without
specifying any RowColumn resources.*

Example 8-6. The rowcol.c program

/* rowcol.c -- demonstrate a simple RowColumn widget. Create one
** with 3 pushbutton gadgets. Once created, resize the thing in
** all sorts of contortions to get a feel for what RowColumns can
** do with its children.
*/
#include <Xm/PushB.h>
#include <Xm/RowColumn.h>

main (int argc, char *argv[])
{

Widget toplevel, rowcol, button;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
rowcol = XmCreateRowColumn (toplevel, "rowcolumn", NULL, 0);
button = XmCreatePushButton (rowcol, "One", NULL, 0);
XtManageChild (button);
button = XmCreatePushButton (rowcol, "Two", NULL, 0);
XtManageChild (button);
button = XmCreatePushButton (rowcol, "Three", NULL, 0);
XtManageChild (button);
XtManageChild (rowcol);

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 263

Chapter 8: Manager Widgets

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

What makes the RowColumn widget unique is that it automates much of the process of
widget layout and management. If you display the application and resize it in a number of
ways, you can get a better feel for how the RowColumn works. Figure 8-14 shows a few
configurations of the application; the first configuration is the initial layout of the
application. As you can see, if the application is resized just so, the widgets are oriented
horizontally rather than vertically.

The orientation of the widgets in a RowColumn is controlled by the XmNorientation
resource. The default value of the resource is XmVERTICAL. If we want to arrange the
widgets horizontally, we can set the resource to XmHORIZONTAL. The orientation can be
hard-coded in the application, or we can specify the value of the resource in a resource file.
The following resource specification sets the orientation to horizontal:

*RowColumn.orientation: horizontal

Alternatively, we can specify the resource on the command line as follows:

% rowcol -xrm "*orientation: horizontal"

Figure 8-15 shows the output of Example 8-6 with a horizontal orientation. As before, the
figure shows a few different configurations of the application, with the first configuration
being the initial one.

If you use a RowColumn widget to manage more objects than can be arranged in a single
row or column, you can specify that the widgets should be arranged in both rows and
columns. You can also specify whether the widgets should be packed together tightly, so
that the rows and columns are not necessarily the same size, or whether the objects should
be placed in identically-sized boxes. As with the Form and BulletinBoard widgets, objects

Figure 8-14: Output of the rowcol program

Figure 8-15: Output of the rowcol program with a horizontal orientation

Chapter 8: Manager Widgets

264 Motif Programming Manual

can also be placed at specific x,y locations in a RowColumn widget. The RowColumn
widget does not provide a three-dimensional border, so if you want to provide a visual
border for the widget, you should create it as a child of a Frame widget.

Rows and Columns
The RowColumn widget can be quite flexible in terms of how it lays out its children. The
advantage of this flexibility is that all of its child widgets are arranged in an organized
fashion, regardless of their widget types. The widgets remain organized when the
RowColumn is resized and in spite of constraints imposed by other widgets or by resources.
One disadvantage of the flexibility is that sometimes the children need to be arranged in a
specific layout so that the user interface is intuitive.

Example 8-7 shows how to lay out widgets in a spreadsheet-style format using a
RowColumn. This layout requires that each of the widgets be the same size and be spaced
equally in a predetermined number of rows and columns.*

Example 8-7. The spreadsheet.c program

/* spreadsheet.c -- This demo shows the most basic use of the RowColumn
** It displays a table of widgets in a row-column format similar to a
** spreadsheet. This is accomplished by setting the number ROWS and
** COLS and setting the appropriate resources correctly.
*/
#include <Xm/LabelG.h>
#include <Xm/PushB.h>
#include <Xm/RowColumn.h>

#define ROWS 8
#define COLS 10

main (int argc, char *argv[])
{

Widget toplevel, parent, child;
XtAppContext app;
char buf[16];
int i, j;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
parent = XmCreateRowColumn (toplevel, "rowcolumn", NULL, 0);
XtVaSetValues (parent, XmNpacking, XmPACK_COLUMN,

XmNnumColumns, COLS,
XmNorientation, XmVERTICAL,
NULL);

/* simply loop through the strings creating a widget for each one */
for (i = 0; i < COLS; i++)

* XtVaAppInitialize() is considered deprecated in X11R6.

Motif Programming Manual 265

Chapter 8: Manager Widgets

for (j = 0; j < ROWS; j++) {
sprintf (buf, "%d-%d", i+1, j+1);
if (i == 0 || j == 0)

child = XmCreateLabelGadget (parent, buf, NULL, 0);
else

child = XmCreatePushButton (parent, "", NULL, 0);
XtManageChild (child);

}

XtManageChild (parent);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of this example is shown in Figure 8-16.

The number of rows is specified by the ROWS definition and the number of columns is
specified by COLS. In order to force the RowColumn to lay out its children in the
spreadsheet format, we set the XmNpacking , XmNnumColumns, and XmNorientation
resources.

The value for XmNpacking is set to XmPACK_COLUMN, which specifies that each of the
cells should be the same size. The heights and widths of the widgets are evaluated and the
largest height and width are used to determine the size of the rows and columns. All of the
widgets are resized to this size. If you are mixing different widget types in a RowColumn,
you may not want to use XmPACK_COLUMN because of size variations. XmPACK_COLUMN is
typically used when the widgets are exactly the same, or at least similar in nature. The
default value of XmPACK_TIGHT for XmNpacking allows each widget to keep its specified
size and packs the widgets into rows and columns based on the size of the RowColumn
widget.

Since we are packing the widgets in a row/column format, we need to specify how many
columns (or rows) we are using by setting the value of XmNnumColumns to the number of
columns. In this case, the program defines COLS to be 10, which indicates that the
RowColumn should pack its children such that there are 10 columns. The widget creates as
many rows as necessary to provide enough space for all of the child widgets.

Figure 8-16: Output of the spreadsheet program

Chapter 8: Manager Widgets

266 Motif Programming Manual

Whether XmNnumColumns specifies the number of columns or the number of rows
depends on the orientation of the RowColumn. In this program, XmNorientation is set
to XmVERTICAL to indicate that the value of XmNnumColumns specifies the number of
columns to use. If XmNorientation is set to XmHORIZONTAL, XmNnumColumns
indicates the number of rows. If we wanted to use a horizontal orientation in our example,
we would set XmNnumColumns to ROWS and XmNorientation to XmHORIZONTAL. The
orientation also dictates how children are added to the RowColumn; when the orientation
is vertical, children are added vertically so that each column is filled up before the next one
is started.*

In our example, we explicitly set the value of XmNorientation to the default value of
XmVERTICAL. If we do not hard-code this resource, an external resource specification can
reset it. Since the orientation and the value for XmNnumColumns need to be consistent, you
should always specify these resources together. Whether you choose to hard-code the
resources, to use the fallback mechanism, or to use a specification in a resource file, you
should be sure that both of the resources are specified in the same place.

In the spreadsheet example, we can use either a horizontal or vertical orientation. However,
orientation may be significant in other situations, since it affects how the RowColumn adds
its children. For example, if we want to implement the text-entry form from Example 8-5
using a RowColumn, the order of the widgets is important. In this case, there are two
columns and the number of rows depends on the number of text entry fields provided by
the application. We specify the orientation of the RowColumn as XmHORIZONTAL and set
XmNnumColumns to the number of entries provided by the application, as shown in
Example 8-8.†

Example 8-8. The text_entry.c program

/* text_entry.c -- This demo shows how the RowColumn widget can be
** configured to build a text entry form. It displays a table of
** right-justified Labels and Text widgets that extend to the right
** edge of the Form.
*/
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
#include <Xm/Text.h>

char *text_labels[] = {"Name:", "Phone:", "Address:",
"City:", "State:", "Zip Code:"};

main (int argc, char *argv[])
{

* If you need to insert a child in the middle of an existing RowColumn layout, you can use the XmNposition-
Index constraint resource to specify the position of the child. Since this resource is used most often with menus,
it is discussed in Chapter 19, Menus.

† XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 267

Chapter 8: Manager Widgets

Widget toplevel, rowcol, child;
XtAppContext app;
char buf[8];
int i;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);
rowcol = XmCreateRowColumn (toplevel, "rowcolumn", NULL, 0);
XtVaSetValues (rowcol, XmNpacking, XmPACK_COLUMN,

XmNnumColumns, XtNumber (text_labels),
XmNorientation, XmHORIZONTAL,
XmNisAligned, True,
XmNentryAlignment, XmALIGNMENT_END,
NULL);

/* simply loop through the strings creating a widget for each one */
for (i = 0; i < XtNumber (text_labels); i++) {

child = XmCreateLabelGadget (rowcol, text_labels[i],NULL, 0);
XtManageChild (child);
sprintf (buf, "text_%d", i);
child = XmCreateText (rowcol, buf, NULL, 0);
XtManageChild (child);

}
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of this example is shown in Figure 8-17.

The labels for the text fields are initialized by the text_labels string array. When the
RowColumn is created, it is set to a horizontal orientation and the number of rows is set to
the number of items in text_labels . As you can see, the output of this program is
slightly different from the output for the text_form example.

The example uses the XmNisAligned and XmNentryAlignment resources to control the
positioning of the Labels in the RowColumn.These resources control the alignment of
widgets that are subclasses of Label and LabelGadget. When XmNisAligned is True (the
default), the alignment is taken from the XmNentryAlignment resource. The possible

Figure 8-17: Output of the text_entry program

Chapter 8: Manager Widgets

268 Motif Programming Manual

alignment values are the same as those that can be set for the Label’s XmNalignment
resource:

XmALIGNMENT_BEGINNING XmALIGNMENT_CENTER XmALIGNMENT_END

By default, the text is left justified. While the alignment of the Labels could also be
specified using the XmNalignment resource for each widget, it is convenient to be able to
set the alignment for the RowColumn and have it propagate automatically to its children.
In our example, we use XmALIGNMENT_END to right justify the Labels so that they appear
to be attached to the Text widgets.

There is an additional resource for controlling the alignment of various children. The
XmNentryVerticalAlignment resource controls the vertical positioning of children
that are subclasses of Label, LabelGadget, and Text. The possible values for this resource
are:

XmALIGNMENT_BASELINE_BOTTOM XmALIGNMENT_BASELINE_TOP
XmALIGNMENT_CENTER XmALIGNMENT_CONTENTS_BOTTOM
XmALIGNMENT_CONTENTS_TOP

In the example, we do not specify this resource because the default value, XmALIGNMENT_
CENTER, produces the layout that we want.

Homogeneous Children
The RowColumn can be set up so that it only manages one particular type of widget or
gadget. In many cases, this feature facilitates layout and callback management. For
example, a MenuBar consists entirely of CascadeButtons that all act the same way and a
RadioBox contains only ToggleButtons. The XmNisHomogeneous resource indicates
whether or not the RowColumn should only allow one type of widget child. The widget
class that is allowed to be managed is specified by the XmNentryClass resource.
XmNisHomogeneous can be set at creation-time only. Once a RowColumn is created, you
cannot reset this resource, although you can always get its value. These resources are useful
for ensuring consistency; if you attempt to add a widget as a child of a RowColumn that
does not permit that widget class, an error message is printed and the widget is not accepted.

The Motif toolkit uses these mechanisms to ensure consistency in certain compound
objects, to prevent you from doing something like adding a List widget to a MenuBar, for
example. In this case, the XmNentryClass is set to xmCascadeButtonWidgetClass .
As another example, when XmNradioBehavior is set, the RowColumn only allows
ToggleButton widgets and gadgets to be added. The XmCreateRadioBox() convenience
function creates a RowColumn widget with the appropriate resources set automatically.
(See Chapter 12, Labels and Buttons.)

You probably do not need to use XmNisHomogeneous unless you are providing a
mechanism that is exported to other programmers. If you are writing an interactive user-
interface builder or a program that creates widgets by scanning text files, you may want to

Motif Programming Manual 269

Chapter 8: Manager Widgets

ensure that new widgets are of a particular type before they are added to a RowColumn
widget. In such cases, you may want to use XmNisHomogeneous and XmNentryClass .
Unless there is some way for a user to dynamically create widgets while an application is
running, these resources are not particularly useful.

Callbacks
The RowColumn does not provide any specific callback routines that react to user input.
While there are no callbacks for FocusIn and FocusOut events, the widget does have
XmNmapCallback and XmNunmapCallback callback resources. These callbacks are
invoked when the window for the RowColumn is mapped and unmapped. The callbacks
are similar to those for the BulletinBoard, but since the RowColumn is not designed
specifically to be a child of a DialogShell, the routines are invoked regardless of whether
the parent of the RowColumn is a DialogShell.

The XmNentryCallback is the only other callback that is associated specifically with the
RowColumn widget. This callback resource makes it possible to install a single callback
function that acts as the activation callback for each of the children of a RowColumn
widget. The routine specified for the XmNentryCallback overrides the
XmNactivateCallback functions for any PushButton or CascadeButton children and
the XmNvalueChangedCallback functions for ToggleButtons. The
XmNentryCallback is a convenience to the programmer; if you use it, you don’t have to
install separate callbacks for each widget in the RowColumn. XmNentryCallback
functions must be installed before children are added to the RowColumn, so be sure you
call XtAddCallback() before you create any child widgets.

The callback procedure takes the standard form of an XtCallbackProc . The call_data
parameter is an XmRowColumnCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
Widget widget;
char *data;
char *callbackstruct;

} XmRowColumnCallbackStruct;

The reason field of this data structure is set to XmCR_ACTIVATE when the
XmNentryCallback is invoked. The event indicates the event that caused the
notification. The entry callback function is called regardless of which widget within the
RowColumn was activated. Since an entry callback overrides any previously-set callback
lists for PushButtons, CascadeButtons, and ToggleButtons, the parameters that would have
been passed to these callback routines are provided in the RowColumn callback structure.
The widget field specifies the child that was activated, the widget-specific callback
structure is placed in the callbackstruct field, and the client data that was set for the
widget is passed in the data field.

Chapter 8: Manager Widgets

270 Motif Programming Manual

Example 8-9 shows the installation of an entry callback and demonstrates how the normal
callback functions are overridden.*

Example 8-9. The entry_cb.c program

/* entry_cb.c -- demonstrate how the XmNentryCallback resource works
** in RowColumn widgets. When a callback function is set for this
** resource, all the callbacks for the RowColumn's children are reset
** to point to this function. Their original functions are no longer
** called had they been set in favor of the entry-callback function.
*/
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>

char *strings[] = {"One", "Two", "Three", "Four", "Five", "Six", "Seven",
"Eight", "Nine", "Ten"};

void called (Widget widget, XtPointer client_data, XtPointer call_data)
{

XmRowColumnCallbackStruct *cbs =
(XmRowColumnCallbackStruct *) call_data;

Widget pb = cbs->widget;
printf ("%s: %d\n", XtName (pb), cbs->data);

}

static void never_called (Widget widget, XtPointer client_data,
XtPointer call_data)

{
puts ("This function is never called");

}

main (int argc, char *argv[])
{

Widget toplevel, parent, w;
XtAppContext app;
int i;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
parent = XmCreateRowColumn (toplevel, "rowcolumn", NULL, 0);
XtAddCallback (parent, XmNentryCallback, called, NULL);

/* simply loop through the strings creating a widget for each one */
for (i = 0; i < XtNumber (strings); i++) {

w = XmCreatePushButtonGadget (parent, strings[i], NULL, 0);
/* Call XtAddCallback() to install client_data only! */
XtAddCallback (w, XmNactivateCallback, never_called,

(XtPointer) (i+1));
XtManageChild (w);

}

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 271

Chapter 8: Manager Widgets

XtManageChild (parent);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The RowColumn is created and its XmNentryCallback is set to called() . This routine
ignores the client_data parameter, as none is provided. However, we do use the data
field of the callback structure because this is the data that is specified in the call to
XtAddCallback() for each of the children. We install the never_called() routine for
each PushButton and pass the position of the button in the RowColumn as the client_
data . Even though the entry callback overrides the activate callback, the client_data
is preserved.

Our example is a bit contrived, so it may seem pointless to call XtAddCallback() for
each PushButton and specify an XmNentryCallback as well. The most compelling
reason for using an entry callback is that you may want to provide client data for the
RowColumn as a whole, as well as for each child widget.

Remember that the RowColumn widget is also used for a number of objects implemented
internally by the Motif toolkit, such as the Motif menu system, RadioBoxes, and
CheckBoxes. Many of the resources for the widget are specific to these objects, so they are
not discussed here. For more information on menus, see Chapter 4, The Main Window, and
Chapter 19, Menus; for information on RadioBoxes and CheckBoxes, see Chapter 12,
Labels and Buttons.

The Frame Widget
The Frame is a simple manager widget; the purpose of the Frame is to draw a three-
dimensional border around its child. The widget can have two children: a work area child
and a title child. The Frame shrink wraps itself around its work area child, adding space for
a title if one is specified. The children are responsible for setting the size of the Frame.

The Frame is useful for grouping related control elements, so that they are separated
visually from other elements in a window. The Frame is commonly used as the parent of
RadioBoxes and CheckBoxes, since the RowColumn widget does not provide a three-

Chapter 8: Manager Widgets

272 Motif Programming Manual

dimensional border. Figure 8-18 shows a portion of a dialog box that uses Frames to
segregate three groups of ToggleButtons.

To use Frame widgets in an application, you must include the file <Xm/Frame.h>. Creating
a Frame widget is just like creating any other manager widget, as shown in the following
code fragment:

Widget frame = XmCreateFrame (parent, "name", resource-value-array ,
resource-value-count);

Since the Frame performs only simple geometry management, you can also create a Frame
widget as managed using XtVaCreateManagedWidget() and not worry too much about
a performance loss. The Frame widget is an exception to the guidelines about creating
manager widgets that we presented earlier in the chapter.

The principal resource used by the Frame widget is XmNshadowType. This resource
specifies the style of the three-dimensional border that is placed around the work area child
of the Frame. The value may be any of the following:

XmSHADOW_IN XmSHADOW_OUT
XmSHADOW_ETCHED_IN XmSHADOW_ETCHED_OUT

If the parent of the Frame is a shell widget, the default value for XmNshadowType is set to
XmSHADOW_OUT and the value for XmNshadowThickness is set to 1. Otherwise, the
default shadow type is XmSHADOW_ETCHED_IN and the thickness is 2. Of course, these
values may be overridden by the application or the user.

The Frame provides some constraint resources that can be specified for its children. The
XmNframeChildType * resource indicates whether the child is the work area or the title
child for the Frame. The default value is XmFRAME_WORKAREA_CHILD. To specify that a
child is the title child, use the value XmFRAME_TITLE_CHILD.

* XmNchildType is deprecated as of Motif 2.0.

Figure 8-18: Frame widgets used to provide borders

Motif Programming Manual 273

Chapter 8: Manager Widgets

The XmNchildHorizontalAlignment and XmNchildHorizontalSpacing
resources control the horizontal positioning of the title. The possible values for horizontal
alignment are:

XmALIGNMENT_BEGINNING XmALIGNMENT_END XmALIGNMENT_CENTER

The XmNchildVerticalAlignment resource specifies the vertical positioning of the
title child relative to the top shadow of the Frame. The possible values for this resource are:

XmALIGNMENT_BASELINE_BOTTOM XmALIGNMENT_BASELINE_TOP
XmALIGNMENT_CENTER XmALIGNMENT_WIDGET_TOP
XmALIGNMENT_WIDGET_BOTTOM

Example 8-10 demonstrates many of the different shadow and alignment styles that are
possible with the Frame widget.*

Example 8-10. The frame.c program

/* frame.c -- demonstrate the Frame widget by creating
** four Labels with Frame widget parents.
*/
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
#include <Xm/Frame.h>

main (int argc, char *argv[])
{

Widget toplevel, rowcol, frame, label;
XtAppContext app;
Arg args[10];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
/* Initialize toolkit and create TopLevel shell widget */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
/* Make a RowColumn to contain all the Frames */
n = 0;
XtSetArg (args[n], XmNspacing, 5); n++;
rowcol = XmCreateRowColumn (toplevel, "rowcolumn", args, n);

/* Some informative labelling */
label = XmCreateLabelGadget (rowcol, "Frame Types:", NULL, 0);
XtManageChild (label);

/* Create different Frames each containing a unique shadow type */
/* First frame: Shadow in */
n = 0;
XtSetArg (args[n], XmNshadowType, XmSHADOW_IN); n++;
frame = XmCreateFrame (rowcol, "frame1", args, n);

* XtVaAppInitialize () s considered deprecated in X11R6. XmNchildType is deprecated as of Motif 2.0, and
XmNframeChildType is preferred.

Chapter 8: Manager Widgets

274 Motif Programming Manual

label = XmCreateLabelGadget (frame, "XmSHADOW_IN", NULL, 0);
XtManageChild (label);
n = 0;
XtSetArg (args[n], XmNframeChildType, XmFRAME_TITLE_CHILD); n++;
XtSetArg (args[n], XmNchildVerticalAlignment, XmALIGNMENT_CENTER); n++;
label = XmCreateLabelGadget (frame, "XmALIGNMENT_CENTER", args, n);
XtManageChild (label);
XtManageChild (frame);

/* Second frame: Shadow out */
n = 0;
XtSetArg (args[n], XmNshadowType, XmSHADOW_OUT); n++;
frame = XmCreateFrame (rowcol, "frame2", args, n);
label = XmCreateLabelGadget (frame, "XmSHADOW_OUT", NULL, 0);
XtManageChild (label);

n = 0;
XtSetArg (args[n], XmNframeChildType, XmFRAME_TITLE_CHILD); n++;
XtSetArg (args[n], XmNchildVerticalAlignment,

XmALIGNMENT_BASELINE_TOP); n++;
label = XmCreateLabelGadget (frame, "XmALIGNMENT_BASELINE_TOP",

args, n);
XtManageChild (label);
XtManageChild (frame);

/* Third frame: Etched in */
n = 0;
XtSetArg (args[n], XmNshadowType, XmSHADOW_ETCHED_IN); n++;
frame = XmCreateFrame (rowcol, "frame3", args, n);
label = XmCreateLabelGadget (frame, "XmSHADOW_ETCHED_IN", NULL, 0);
XtManageChild (label);

n = 0;
XtSetArg (args[n], XmNframeChildType, XmFRAME_TITLE_CHILD); n++;
XtSetArg (args[n], XmNchildVerticalAlignment, XmALIGNMENT_WIDGET_TOP);
n++;
label = XmCreateLabelGadget (frame, "XmALIGNMENT_WIDGET_TOP", args, n);
XtManageChild (label);
XtManageChild (frame);

/* Fourth frame: Etched out */
n = 0;
XtSetArg (args[n], XmNshadowType, XmSHADOW_ETCHED_OUT); n++;
frame = XmCreateFrame (rowcol, "frame4", args, n);
label = XmCreateLabelGadget (frame, "XmSHADOW_ETCHED_OUT", NULL, 0);
XtManageChild (label);

n = 0;
XtSetArg (args[n], XmNframeChildType, XmFRAME_TITLE_CHILD); n++;
XtSetArg (args[n], XmNchildVerticalAlignment,

XmALIGNMENT_WIDGET_BOTTOM); n++;
label = XmCreateLabelGadget (frame, "XmALIGNMENT_WIDGET_BOTTOM",

args, n);
XtManageChild (label);

Motif Programming Manual 275

Chapter 8: Manager Widgets

XtManageChild (frame);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of this example is shown in Figure 8-19.

The program creates four Frame widgets. Each Frame has two Label children, one for the
work area and one for the title. Each Frame uses a different value for the XmNshadowType
and XmNchildVerticalPlacement resources, where these values are indicated by the
text of the Labels. Although we have used a Label as the work area child of a Frame in this
example, it is not a good idea to put a border around a Label. The shadow border implies
selectability, which can confuse the user.

The PanedWindow Widget
The PanedWindow widget lays out its children in a horizontal or vertically-tiled format.*

The idea behind the PanedWindow is that the user can adjust the individual panes to
provide more or less space as needed on a per-child basis. For example, if the user wants to
see more text in a Text widget, he can use the control sashes (sometimes called grips) to
resize the area for the Text widget. For a horizontal PanedWindow, set the
XmNorientation resource to XmHORIZONTAL; a vertical pane has XmNorientation
set to XmVERTICAL, which is the default . When the user moves the sash, the
widget above or below (or, for horizontal layout, to the left or right) the one being resized
is resized smaller to compensate for the size change.

In a vertical layout, the width of the widget expands to that of its widest managed child and
all of the other children are resized to match that width. The height of the PanedWindow is

* Horizontal orientation is available from Motif 2.0.

Figure 8-19: Output of the frame program

Chapter 8: Manager Widgets

276 Motif Programming Manual

set to the sum of the heights of all of its children, plus the spacing between them and the
size of the top and bottom margins.

In a horizontal layout, the height of the widget depends on the height of its tallest managed
child. Similarly to the vertical case, the width of the PanedWindow depends upon the sum
of the managed child widths, plus spacing and left/right margins.

By default, children are arranged in the PanedWindow in the order in which they are added.
You can set the XmNpositionIndex constraint resource to control the position of a child
in a PanedWindow if you do not want to use the default order.

An application that wants to use the PanedWindow widget must include the header file
<Xm/PanedW.h>. An instance of the widget may be created as usual for manager widgets,
as shown in the following code fragment:

Widget paned_w = XmCreatePanedWindow (parent, "name", resource-value-array,
resource-value-count);

...
XtManageChild (paned_w);

The PanedWindow widget provides constraint resources that allow its children to indicate
their preferred maximum and minimum sizes. Example 8-11 shows a pair of
PanedWindows, each containing three widgets. One PanedWindow is in a vertical
orientation, the other is horizontal.*

Example 8-11. The paned_win1.c program

/* paned_wind1.c -- two possible orientations of a PanedWindow.
** In the vertical PanedWindow, there are two Label widgets that are
** positioned above and below a Text widget.
** The Labels' minimum and maximum
** sizes are set to 25 and 45 respectively, preventing those
** panes from growing beyond those bounds. The Text widget has its
** minimum size set to 35 preventing it from becoming so small that
** its text cannot be read.
** In the horizontal orientation, the Label’s minimum are set to 60
** to prevent the label from being truncated
*/
#include <Xm/Label.h>
#include <Xm/PanedW.h>
#include <Xm/Text.h>

Widget CreatePaneGroup (Widget parent, unsigned char orientation)
{

Widget pane, child;
XmString xms;
Arg args[6];
int n = 0;

* XtVaAppInitialize () is considered deprecated in X11R6. The PanedWindow resource XmNorientation
is only properly supported from Motif 2.0 onwards.

Motif Programming Manual 277

Chapter 8: Manager Widgets

XtSetArg (args[n], XmNorientation, orientation); n++;
pane = XmCreatePanedWindow (parent, “pane”, args, n);

n = 0;
if (orientation == XmVERTICAL) {

XtSetArg (args[n], XmNpaneMinimum, 25); n++;
XtSetArg (args[n], XmNpaneMaximum, 45); n++;

}
else {

XtSetArg (args[n], XmNpaneMinimum, 60); n++;
}
child = XmCreateLabel (pane, “Hello”, args, n);
XtManageChild (child);

n = 0;
XtSetArg (args[n], XmNpaneMinimum, 35); n++;
XtSetArg (args[n], XmNrows, 5); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNvalue,

“This is a test of the PanedWindow widget”); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
child = XmCreateText (pane, “text”, args, n);
XtManageChild (child);

n = 0;
if (orientation == XmVERTICAL) {

XtSetArg (args[n], XmNpaneMinimum, 25); n++;
XtSetArg (args[n], XmNpaneMaximum, 45); n++;

}
else {

XtSetArg (args[n], XmNpaneMinimum, 60); n++;
}
child = XmCreateLabel (pane, “Goodbye”, args, n);
XtManageChild (child);

return pane;
}

main (int argc, char *argv[])
{

Widget toplevel, pane;
XtAppContextapp;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
pane = CreatePaneGroup (toplevel, (argc > 1 ? XmHORIZONTAL : XmVERTICAL));
XtManageChild (pane);
XtRealizeWidget (toplevel);
XtAppMainLoop(app);

}

Chapter 8: Manager Widgets

278 Motif Programming Manual

In the vertical layout, the two Label widgets are positioned above and below a Text widget.
The minimum and maximum sizes of the Labels are set to 25 and 45 pixels respectively,
using the resources XmNpaneMinimum and XmNpaneMaximum. No matter how the
PanedWindow or any of the other widgets are resized, the two Labels cannot grow or shrink
vertically beyond these bounds. The Text widget, however, only has a minimum size
restriction, so it maybe resized as tall or as short as the user prefers, provided that it does
not get smaller than the 35-pixel minimum. Similar constraints are placed on the Labels
and Text in the horizontally oriented PanedWindow: the XmNpaneMinimum of each Label
is set to 60 to prevent the user truncating the label string. The program creates the
PanedWindow in the horizontal layout if the program parameter list is arbitrarily not empty
(argc > 1). Figure 8-20 shows the horizontal and vertical configurations of this application.

XmNorientation

XmNorientation

XmVERTICAL

XmHORIZONTAL

Figure 8-20: Horizontal and vertical PanedWindows

Motif Programming Manual 279

Chapter 8: Manager Widgets

Figure 8-21 shows how the PanedWindow behaves when a child is resized using the Sash.

Pane Constraints
One problem with setting the maximum and minimum resources for a widget involves
determining exactly what those extents should be. The maximum size of 45 for the Label
widgets in Example 8-11 is an arbitrary value that was selected for demonstration purposes
only. If other resources had been set on one of the Labels such that the widget needed to be
larger, the application would definitely look unbalanced. For example, an extremely high
resolution monitor might require the use of unusually large fonts in order for text to appear
normal. There are two choices available at this point. One is to specify the maximum and
minimum values in a resolution-independent way and the other is to ask the Label widget
itself what height it wants to be.

Specifying resolution-independent dimensions requires you to carefully consider the type
of application you are creating. When you specify resolution-independent values, you must
specify the values in either millimeters, inches, points, or font units. The value of the
XmNunitType Manager resource controls the type of units that are used. Example 8-12
demonstrates the use of resolution-independent dimensions.*

Example 8-12. The unit_types.c program

/* unit_types.c --the same as paned_win1.c except that the

* XtVaAppInitialize () is considered deprecated in X11R6.

Variable
Height

Constant
Height

Constant
Height

Variable
Height

Move Sash

Figure 8-21: Output of paned_win1 program

Chapter 8: Manager Widgets

280 Motif Programming Manual

** Labels' minimum and maximum sizes are set to 1/4 inch and
** 1/2 inch respectively. These measurements are retained
** regardless of the pixels-per-inch resolution of the user's
** display.
*/
#include <Xm/Label.h>
#include <Xm/PanedW.h>
#include <Xm/Text.h>

main (int argc, char *argv[])
{

Widget toplevel, pane, child;
XtAppContext app;
Arg args[6];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

n = 0;
XtSetArg (args[n], XmNunitType, Xm1000TH_INCHES); n++;
pane = XmCreatePanedWindow (toplevel, "pane", args, n);

n= 0;
XtSetArg (args[n], XmNpaneMinimum, 250); n++; /* quarter inch */
XtSetArg (args[n], XmNpaneMaximum, 500); n++; /* half inch */
child = XmCreateLabel (pane, "Hello",args, n);
XtManageChild (child);

n = 0;
XtSetArg (args[n], XmNrows, 5); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNpaneMinimum, 250); n++; /* quarter inch */
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNvalue,

"This is a test of the paned window widget."); n++;
child = XmCreateText (pane, "text", args, n);
XtManageChild (child);

n = 0;
XtSetArg (args[n], XmNpaneMinimum, 250); n++; /* quarter inch */
XtSetArg (args[n], XmNpaneMaximum, 500); n++; /* half inch */
child = XmCreateLabel (pane, "Goodbye", args, n);
XtManageChild (child);

XtManageChild (pane);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The second technique that we can use is to query the Label widgets about their heights. This
technique requires the use of the Xt function XtQueryGeometry() , as shown in Example
8-13.*

Motif Programming Manual 281

Chapter 8: Manager Widgets

Example 8-13. The paned_win2.c program

/* paned_wind2.c --there are two label widgets that are positioned
** above and below a Text widget. The labels' desired heights are
** queried using XtQueryGeometry() and their corresponding maximum
** and minimum sizes are set to the same value. This effectively
** prevents those panes from being resized. The Text widget has its
** minimum size set to 35 preventing it from becoming so small that
** its text cannot be read.
*/
#include <Xm/Label.h>
#include <Xm/PanedW.h>
#include <Xm/Text.h>

main (int argc, char *argv[])
{

Widget toplevel, pane, label, text;
XtWidgetGeometry size;
XtAppContext app;
Arg args[8];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
pane = XmCreatePanedWindow (toplevel, "pane", NULL, 0);

label = XmCreateLabel (pane, "Hello", NULL, 0);
XtManageChild (label);
size.request_mode = CWHeight;
XtQueryGeometry (label, NULL, &size);
XtVaSetValues (label, XmNpaneMaximum, size.height,

XmNpaneMinimum, size.height, NULL);
printf ("hello's height: %d\n", size.height);

n = 0;
XtSetArg (args[n], XmNrows, 5); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNresizeWidth, False); n++;
XtSetArg (args[n], XmNresizeHeight, False); n++;
XtSetArg (args[n], XmNpaneMinimum, 35); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNvalue, "This is a test of the paned widget."); n++;
text = XmCreateText (pane, "text", args, n);
XtManageChild (text);

label = XmCreateLabel (pane, "Goodbye", NULL, 0);
XtManageChild (label);
size.request_mode = CWHeight;
XtQueryGeometry (label, NULL, &size);
XtVaSetValues (label, XmNpaneMaximum, size.height, XmNpaneMinimum, size.

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 8: Manager Widgets

282 Motif Programming Manual

height, NULL);
printf ("goodbye's height: %d\n", size.height);

XtManageChild (pane);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

XtQueryGeometry() asks a widget what size it would like to be. This routine takes the
following form:

XtGeometryResult XtQueryGeometry (Widget widget ,
XtWidgetGeometry * intended ,
XtWidgetGeometry * preferred_return)

Since we do not want to resize the widget, we pass NULL for the intended parameter.
We are not interested in the return value of the function, since the information that we want
is returned in the preferred_return parameter. This parameter is of type
XtWidgetGeometry , which is defined as follows:

typedef struct {
XtGeometryMask request_mode;
Position x, y;
Dimension width, height, border_width;
Widget sibling;
int stack_mode;

} XtWidgetGeometry;

We tell the widget what we want to know by setting the request_mode field of the size
variable that we pass to the routine. The request_mode field is checked by the query_
geometry function within the called widget. Depending on which bits that are specified,
the appropriate fields are set within the returned data structure. In Example 8-13, we set
request_mode to CWHeight , which tells the Label widget’s query_geometry method
to return the desired height in the height field of the data structure. If we had wanted to
know the width as well, we could have set request_mode as follows:

size.request_mode = (CWHeight | CWWidth);

In this case, the width and height fields would be filled in by the Label widget.

Once we have the Label’s desired height, we can set the constraint resources
XmNpaneMaximum and XmNpaneMinimum to the height of the Label. By making these two
values the same, the pane associated with the Label cannot be resized. In most cases, the
XtQueryGeometry() method can be used reliably to determine proper values for
minimum and maximum pane extents. Setting extents is useful, since without them, the
user can adjust a PanedWindow so that the size of a widget is unreasonable or unaesthetic.
If you are setting the extents for a scrolled object (ScrolledText or ScrolledList), you do not
need to be as concerned about the maximum extent, since these objects handle larger sizes
appropriately. Minimum states are certainly legitimate though. For example, you could use
the height of a font as a minimum extent for Text or a List.

Motif Programming Manual 283

Chapter 8: Manager Widgets

The PanedWindow widget can be useful for building your own dialogs because you can
control the size of the action area. The action area is always at the bottom of the dialog and
its size should never be changed. See Chapter 7, Custom Dialogs, for a complete discussion
of how a PanedWindow can be used in in this manner.

Sashes
The Sashes in a PanedWindow widget are in fact widgets, even though they are not
described or defined publicly. While the Motif Style Guide says that the Sash is part of the
PanedWindow widget, the Motif toolkit defines the object privately, which means that
technically the Sash is not supported and it may change in the future. However, it is possible
to get a handle to a Sash if you absolutely need one. In order to retrieve a Sash, you need
to include the header file <Xm/SashP.h>. The fact that the file ends in an upper case P
indicates that it is a private header file, which means that an application program should not
include it. However, there is no public header file for the Sash widget, so unless you include
the private header file, you cannot access the Sashes in a PanedWindow.

If you retrieve all of the children from a PanedWindow using XtVaGetValues() on the
XmNchildren resource, you can use the XmIsSash() macro to locate the Sash children.
This macro is defined as follows:

#define XmIsSash (w) XtIsSubclass (w, xmSashWidgetClass)

Although XtIsSubclass() is a public function, xmSashWidgetClass is not declared
publicly. One reason that you might want to get handles to the Sashes in a PanedWindow
is to turn off keyboard traversal to the Sashes, as described in the next section.

Keyboard Traversal
The Motif Style Guide specifies methods by which the user can interact with an application
without using the mouse. These methods provide a way for the user to navigate through an
application and activate user-interface elements on the desktop using only the keyboard.
Such activity is known as keyboard traversal and is based on the Common User Access
(CUA) interface specifications from Microsoft Windows and Presentation Manager.

These specifications make heavy use of the TAB key to move between elements in a user
interface; related interface controls are grouped into what are called tab groups. Some
examples of tab groups are a set of ToggleButtons or a collection of PushButtons. Just as
only one shell on the screen can have the keyboard focus, only one widget at a time can
have the input focus. When keyboard activity occurs in a window, the toolkit knows which
tab group is current and directs the input focus to the active item within that group.

The user can move from one item to the next within a tab group using the arrow keys. The
user can move from one tab group to the next using the TAB key. To traverse the tab groups
in the reverse direction, the user can use SHIFT-TAB. The CTRL key can be used with the

Chapter 8: Manager Widgets

284 Motif Programming Manual

TAB key in a Text widget to differentiate between a traversal operation and the use of the
TAB key for input. The SPACEBAR activates the item that has the keyboard focus.

To illustrate the keyboard traversal mechanisms, let’s examine tictactoe.c from Example 8-
4. This program contains one tab group, the Form widget. Because the PushButtons inside
of it are elements in the tab group, the user can move between the items in the tic-tac-toe
board using the arrow keys on the keyboard, as illustrated in Figure 8-22.

Pressing the TAB key causes the input focus to be directed to the next tab group and set to
the first item in the group, which is known as the home element. Since there is only one tab
group in this application, the traversal mechanism moves the input focus to the first element
in the same group. Thus, pressing the TAB key in this program always causes the home
item to become the current input item.

The conceptual model of the tab group mechanism corresponds to the user’s view of an
application. With tab groups, the widget tree is flattened out into two simple layers: the first
layer contains tab groups and the second layer contains the elements of those groups. In this
model, there is no concept of managers and children or any sort of widget hierarchy. But as
you know, an application is based on a very structured widget hierarchy. The
implementation of tab groups is based on lists of widget pointers that refer to existing
widgets in the widget tree. These lists, known as navigation groups, are maintained by the
VendorShell and MenuShell widgets and are accessed by the input-handling mechanisms
of the Motif toolkit.

Each widget class in the Motif toolkit is initialized either as a tab group itself or as a
member of a tab group. Manager widgets, Lists, and Text widgets are usually tagged as tab
groups, since they typically contain sub-elements that can be traversed. For example, the
elements in a List can be traversed using the arrow keys on the keyboard; the up arrow
moves the selection to the previous element in the List widget. In a Text widget, the arrow
keys move the insertion cursor. The other primitive widgets, such as PushButtons and

Figure 8-22: Keyboard traversal for the tictactoe program

Motif Programming Manual 285

Chapter 8: Manager Widgets

ToggleButtons, are usually tagged as tab group members. Output-only widgets are not
tagged at all and are excluded from the tab group mechanism, since you cannot traverse to
an output-only widget.These default settings are not permanent. For example, a PushButton
or a ToggleButton can be a tab group, although this setting is uncommon and should only
be done when you have a special reason for forcing the widget to be recognized as a
separate tab group.

When the TAB key is pressed, the next tab group in the list of tab groups becomes the
current tab group. Since manager widgets are normally tab groups, the order of tab group
traversal is typically based on the order in which the manager widgets are created. This
entire process is automated by the Motif toolkit, so an application does not have to do
anything unless it wants to use a different system of tab groups for some reason.In order to
maintain Motif compliance, we recommend that you avoid interfering with the default
behavior.

We are discussing keyboard traversal in the chapter on manager widgets because managers
play the most visible role in keyboard traversal from the application programmer’s
perspective. Managers, by their nature, contain other widgets, which are typically primitive
widgets that act as tab group members. Furthermore, manager widgets must handle all of
the input events for gadgets, so there is a great deal of functionality that supports keyboard
traversal written into the Manager widget class.

Before we discuss the details of dealing with tab groups, there are a few things we should
mention. The implementation of tab groups has changed from earlier versions of the toolkit;
to maintain backwards compatibility, remnants of the older implementation are still
resident in the current implementation, which may cause some confusion in the current
API. The technology of keyboard traversal is still being improved. Although later
implementations may not change the existing API, new versions of the toolkit may
optimize the process substantially. Since the current implementation of tab groups is not
perfect, some people want to change the default behavior and control it entirely on their
own. We do not recommend this approach. You should avoid interfering with the keyboard
traversal mechanisms, as it will make it easier to maintain compatibility with other Motif
applications and it won’t require any changes for new versions of the toolkit. If you are
going to modify the operation of keyboard traversal, you should be careful and test your
changes thoroughly.

Turning Traversal Off
You can prevent a widget from participating in keyboard traversal by removing the widget
from the traversal list. To remove a widget from the traversal list, set its XmNtraversalOn
resource to False . If the widget is a member of a tab group, it is simply removed from the
list and the user cannot traverse to it. If the widget is a tab group, it is removed and all of
its elements are also all removed.

Chapter 8: Manager Widgets

286 Motif Programming Manual

Let’s experiment with tab group members by modifying tictactoe.c . We can modify
the pushed() callback routine to remove the selected PushButton from the traversal list
when it is selected. If the keyboard is used to traverse and select the items on the tic-tac-toe
board, the toolkit automatically skips over those that have already been selected. The new
callback routine is shown in Example 8-14.*

Example 14. The pushed() routine

void pushed (Widget w, XtPointer client_data, XtPointer call_data)
{

char buf[2];
XmString str;
int letter;

XmPushButtonCallbackStruct *cbs =
(XmPushButtonCallbackStruct *) call_data;

XtVaGetValues (w, XmNuserData, &letter, NULL);
if (letter) {

XBell (XtDisplayOfObject (w), 50);
return;

}
/* Shift key gets an O. (xbutton and xkey happen to be similar) */
if (cbs->event->xbutton.state & ShiftMask)

letter = buf[0] = '0';
else

letter = buf[0] = 'X';
buf[1] = 0;
str = XmStringCreateLocalized (buf);
XtVaSetValues (w, XmNlabelString, str,

XmNuserData, letter,
XmNshadowThickness, 0,
XmNtraversalOn,False,
NULL);

XmStringFree (str);
}

The user can still click on a previously-selected item with the mouse button, but the routine
causes an error bell to sound in this situation.

Output-only widgets, like Labels and Separators, always have their XmNtraversalOn
resource initialized to False . In most cases, setting the value to True would be annoying
to the user, since these objects cannot respond to keyboard input anyway. The user would
have to traverse many unimportant widgets to get to a desired item. However, it is
commonly overlooked that a Label can have a XmNhelpCallback routine associated with
it. If the keyboard traversal mechanism allows the user to traverse to Labels, he could get
help on them by pressing the HELP or F1 keys. It may be considered a design flaw in Motif
that a non-mouse-driven interface is not supported for getting help for these objects.

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 287

Chapter 8: Manager Widgets

However, this situation is not generally a problem, since most people do not try to get help
on Labels and most programmers do not install help for them.

A general problem that people tend to have with the PanedWindow widget is that the
Sashes are included in the traversal list. Since the PanedWindow is a manager widget, it is
a tab group, which means that all of its children are members of the tab group. If you run
the program from Example 8-13 and use the TAB key to move from one widget to the next,
you’ll find that the traversal also includes the Sash widgets. Many users find it annoying to
traverse to Sashes, since it is more likely that they want to skip the Sashes when using
keyboard traversal, rather than use them to resize any of the panes. While it is common to
resize panes, people usually do so using the mouse, not the keyboard.

It is possible to turn off Sash traversal using the following resource specification in a
resource file:

*XmSash.traversalOn: False

There are some applications that might actually have to be used without a mouse, just as
there are some users who prefer to use the keyboard, so you should be careful about turning
off keyboard traversal for the Sashes in a PanedWindow widget. If you do turn off Sash
traversal, we recommend that you document the behavior and provide a way for the user to
control this behavior. For example, you could provide an application-specific resource that
controls whether or not Sashes can be traversed using the keyboard.

As noted earlier, XmNtraversalOn can be set on tab groups (which tend to be manager
widgets) as well as tab group members. If traversal is off for a tab group, none of its
members can be traversed. If keyboard traversal is something that you need to modify in
your application, you should probably hard-code XmNtraversalOn values directly into
individual widgets as you create them. Turning off traversal is typically not something that
is done on a per-widget-class basis. When you turn traversal off in application code, be
careful to make sure that there is no reason that a user would want to traverse to the
particular widgets because once you hard-code the resource values, they cannot be
modified by the user in a resource file.

Modifying Tab Groups
The XmNnavigationType resource controls whether a widget is a tab group itself or is a
member of a tab group. When this resource is set to XmNONE, the widget is not a tab group,
so it defaults to being a member of one. As a member, its XmNtraversalOn resource
indicates whether or not the user can direct the input focus to the widget using the keyboard.
This value is the default for most primitive widgets. When the resource is set to XmTAB_
GROUP, the widget is a tab group itself, so it is included in keyboard navigation. This value
is the default for managers, Lists, and Text widgets. By modifying the default value of the
XmNnavigationType resource for a widget, you can specify that a primitive widget is a
tab group. As a result, the user traverses to the widget using the TAB key rather than one

Chapter 8: Manager Widgets

288 Motif Programming Manual

of the arrow keys. For example, you can modify tictactoe.c by setting the
XmNnavigationType to XmTAB_GROUP for each PushButton.

There are two other values for XmNnavigationType that are used for backwards
compatibility with old Motif 1.0 versions of the toolkit. In this version of the toolkit, there
is an application called XmAddTabGroup() to make a widget a tab group. Calling
XmAddTabGroup() is equivalent to setting XmNnavigationType to XmEXCLUSIVE_
TAB_GROUP. If this value is set on a widget, new widgets are no longer added as tab groups
automatically. An exclusive tab group is much the same as a normal tab group, but Motif
recognizes this special value and ignores all widgets that have the newer XmTAB_GROUP
value set. You can think of this value as setting exclusivity on the tab group behavior.

The value XmSTICKY_TAB_GROUP can also be used for XmNnavigationType . If this
value is used on a widget, the widget is included automatically in keyboard traversal, even
if another widget has its navigation type set to XmEXCLUSIVE_TAB_GROUP or if
XmAddTabGroup() has been called.

You can ignore these two values for all intents and purposes. You should use XmNONE and
XmTAB_GROUP to control whether or not a widget is a tab group or a member of one. To
control whether the widget is part of the whole keyboard traversal mechanism, use the
XmNtraversalOn resource. XmEXCLUSIVE_TAB_GROUP, XmSTICKY_TAB_GROUP, and
XmAddTabGroup() should be considered deprecated as far as the application programmer
is concerned.

Handling Event Translations
In order for manager widgets to implement keyboard traversal, they have their own event
translation tables that specify what happens when certain events occur. As discussed in
Chapter 2, The Motif Programming Model, a translation table specifies a series of one or
more events and an action that is invoked if the event occurs. The X Toolkit Intrinsics
handles event translations automatically; when the user presses the TAB key, Xt looks up
the event <Key> Tab in the table and invokes the corresponding action procedure. In this
case, the procedure changes the input focus from the current tab group to the next one on
the list.

This mechanism is dependent on the window hierarchy of the widget tree. Events are first
delivered to the widget associated with the window where the event took place. If that
widget (or its window) does not handle the type of event delivered, it passes the event up
the window tree to its parent, which then has the option of dealing with the event. Assuming
that the parent is a manager widget of some kind, it now has the option to process the event.
If the event is a keyboard traversal event, the appropriate action routine moves the input
focus. The default event translations that manager widgets use to handle keyboard traversal
are currently specified as follows:

<Key>osfBeginLine: ManagerGadgetTraverseHome()

Motif Programming Manual 289

Chapter 8: Manager Widgets

<Key>osfUp: ManagerGadgetTraverseUp()
<Key>osfDown: ManagerGadgetTraverseDown()
<Key>osfLeft: ManagerGadgetTraverseLeft()
<Key>osfRight: ManagerGadgetTraverseRight()
Shift ~Meta ~Alt <Key>Tab: ManagerGadgetPrevTabGroup()
~Meta ~Alt <Key>Tab: ManagerGadgetNextTabGroup()
<EnterWindow>: ManagerEnter()
<LeaveWindow>: ManagerLeave()
<FocusOut>: ManagerFocusOut()
<FocusIn>: ManagerFocusIn()

The OSF-specific keysyms are vendor-defined, which means that the directional arrows
must be defined by the user’s system at run-time. Values like <Key>osfUp and <Key>
osfDown may not be the same as <Key>Up and <Key>Down.

The routines that handle keyboard traversal are prefixed by ManagerGadget . Despite
their names, these functions are not specific to gadgets; they are used to handle keyboard
traversal for all of the children in the manager. If a primitive widget inside of a manager
widget specifies an event translation that conflicts with one of the manager’s translations,
the primitive widget can interfere with keyboard traversal. If the primitive widget has the
input focus, the user cannot use the specified event to move the input focus with the
keyboard. The following code fragment shows how the translation table for a PushButton
can interfere with the keyboard traversal mechanism in its parent:

Widget pb;
XtActionRec action;
extern XtAppContext app_context;
extern Widget parent;
extern void do_tab(Widget, XEvent *, String *, Cardinal *);

actions.string = "do_tab";
actions.proc = do_tab;
XtAppAddActions (app_context, &actions, 1);

pb = XmCreatePushButton (parent, "name", resource-value-array ,
resource-value-coumt);

XtOverrideTranslations (pb, XtParseTranslationTable ("<Key>Tab: do_tab"));

The translation table is merged into the existing translations for the PushButton widget.
This translation table does not interfere with the translation table in the manager widget,
but it does interfere with event propagation to the manager. When the TAB key is pressed,
the action routine do_tab() is called and the event is consumed by the PushButton widget.
The event is not propagated up to the manager widget so that it can perform the appropriate
keyboard traversal action. The work around for this problem is to have do_tab() process
the keyboard traversal action on its own, in addition to performing its own action. This
technique is discussed in the next section.

Since a manager can also contain gadgets, the manager widget must also handle input that
is destined for gadgets. Since gadgets do not have windows, they cannot receive events.
Only the manager widget that is the parent of a gadget can receive events for the gadget.

Chapter 8: Manager Widgets

290 Motif Programming Manual

The manager widget has the following additional translations to handle input on behalf of
gadgets:

<Key>osfActivate: ManagerParentActivate()
<Key>osfCancel: ManagerParentCancel()
<Key>osfSelect: ManagerGadgetSelect()
<Key>osfHelp: ManagerGadgetHelp()
~Shift ~Meta ~Alt <Key>Return: ManagerParentActivate()
~Shift ~Meta ~Alt <Key>space: ManagerGadgetSelect()
<Key>: ManagerGadgetKeyInput()
<BtnMotion>: ManagerGadgetButtonMotion()
<Btn1Down>: ManagerGadgetArm()
<Btn1Down>,<Btn1Up>: ManagerGadgetActivate()
<Btn1Up>: ManagerGadgetActivate()
<Btn1Down>(2+): ManagerGadgetMultiArm()
<Btn1Up>(2+): ManagerGadgetMultiActivate()
<Btn2Down>: ManagerGadgetDrag()

Unlike with keyboard traversal translations, widget translations cannot interfere with the
manager translations that handle events destined for gadgets. If a widget had the input
focus, the user’s actions cannot be destined for a gadget, since the user would have to
traverse to the gadget first, in which case the manager would really have the input focus.

In Chapter 10, The DrawingArea Widget, we discuss the problems involved in handling
input events on the DrawingArea widget. The problems arise because the widget can be
used for interactive drawing, as well as serve as a manager. There may be events that you
want to process in your application, but they could also be processed by the DrawingArea
itself. The problem is really a semantic one, as there is no way to determine which action
procedure should be invoked for each event if the DrawingArea has a manager-based action
and the application defines its own action. For more information on translation tables and
action routines, see Chapter 2, The Motif Programming Model, and Volume 4, The X
Toolkit Intrinsics Programming Manual.

Processing Traversal Manually
At times, an application may want to move the input focus as a result of something that the
user has done. For example, you might have an action area where each PushButton invokes
a callback function and then sets the input focus to the home item in the tab group,
presumably to protect the user from inadvertently selecting the same item twice. Example
8-15 demonstrates how this operation can be accomplished.*

Example 8-15. The proc_traverse.c program

/* proc_traverse.c -- demonstrate how to process keyboard traversal
** from a PushButton's callback routine. This simple demo contains
** a RowColumn (a tab group) and three PushButtons. If any of the

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 291

Chapter 8: Manager Widgets

** PushButtons are activated (selected), the input focus traverses
** to the "home" item.
*/

#include <Xm/PushB.h>
#include <Xm/RowColumn.h>

main (int argc, char *argv[])
{

Widget toplevel, rowcol, pb;
XtAppContext app;
Arg args[2];
void do_it(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

XtSetArg (args[0], XmNorientation, XmHORIZONTAL);
rowcol = XmCreateRowColumn (toplevel, "rowcolumn", args, 1);

pb = XmCreatePushButton (rowcol, "OK", NULL, 0);
XtManageChild (pb);

pb = XmCreatePushButton (rowcol, "Cancel", NULL, 0);
XtAddCallback (pb, XmNactivateCallback, do_it, NULL);
XtManageChild (pb);

pb = XmCreatePushButton (rowcol, "Help", NULL, 0);
XtAddCallback (pb, XmNactivateCallback, do_it, NULL);
XtManageChild (pb);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* callback for pushbuttons */
void do_it (Widget widget, XtPointer client_data, XtPointer call_data)
{

/* do stuff here for PushButton widget */
XmProcessTraversal(widget, XmTRAVERSE_HOME);

}

Chapter 8: Manager Widgets

292 Motif Programming Manual

The three frames in Figure 8-23 show the movement of keyboard focus in the program. In
the figure, the current input focus is on the Cancel button; when it is selected, the input
focus is changed to the OK button.

The callback routine associated with the PushButtons does whatever it needs and then calls
XmProcessTraversal() to change the input item to the home item, which happens to
be the OK button. This function can be used when an application needs to set the current
item in the tab group to another widget or gadget or it can be used to traverse to a new tab
group. The function takes the following form:

Boolean XmProcessTraversal (Widget widget , int direction)

The function returns False if the VendorShell associated with the widget has no tab
groups, the input focus policy doesn’t make sense, or if there are other extenuating
circumstances that would be considered unusual. It is unlikely that you’ll ever have this
problem.

The direction parameter specifies where the input focus should be moved. This
parameter can take any of the following values:*

XmTRAVERSE_CURRENT XmTRAVERSE_NEXT
XmTRAVERSE_PREV XmTRAVERSE_HOME
XmTRAVERSE_UP XmTRAVERSE_DOWN
XmTRAVERSE_LEFT XmTRAVERSE_RIGHT

XmTRAVERSE_GLOBALLY_FORWARD XmTRAVERSE_GLOBALLY_BACKWARD
XmTRAVERSE_NEXT_TAB_GROUP XmTRAVERSE_PREV_TAB_GROUP

All but the last four values are for traversing to items within the current tab group; the last
two are for traversing to the next or previous tab group relative to the current one. The
values XmTRAVERSE_GLOBALLY_FORWARD and XmTRAVERSE_GLOBALLY_BACKWARD
primarily exist in order to implement the XmDisplay object resource
XmNenableButtonTab †. In this scheme, navigation using the arrow keys proceeds within
a tab group as normal, except that if the end (or beginning, if traversing backwards) of the
group is reached, navigation does not cycle round the group members but jumps to the next
(or preceding) tab group. The interpretation of “forwards” and “backwards” in a group

* XmTRAVERSE_GLOBALLY_FORWARD and XmTRAVERSE_GLOBALLY_BACKWARD are available from Motif 2.0
onwards.

† XmNenableButtonTab is available from Motif 2.0 onwards.

Figure 8-23: Output of the proc_traversal program

Motif Programming Manual 293

Chapter 8: Manager Widgets

depends upon the XmNlayoutDirection * resource: if this is XmRIGHT_TO_LEFT, the
natural interpretation of “forwards” and “backwards” is reversed.

In Example 8-16, the call to XmProcessTraversal() forces the home element to be the
current item in the current tab group. For a more sophisticated example of manipulating the
input focus, see Section 18.5.1 in Chapter 18, Text Widgets. One problem with
XmProcessTraversal() is that you can only move in a relative direction from the item
that has the input focus. This functionality is sufficient in most cases, since the logic of your
application should not rely on the user following any particular input sequence. If you need
to traverse to a specific widget regardless of the current item, in most cases you can make
the following call:

XmProcessTraversal (desired_widget , XmTRAVERSE_CURRENT);

This calling sequence specifies that the desired_widget takes the input focus, but only
if the shell that contains the widget already has the keyboard focus. If the shell does not
have the focus, nothing happens until the shell obtains the keyboard focus. When it does,
the desired_widget should have the input focus.

Under certain conditions, this function may appear not to work. For example, if you create
a dialog and want to set the input focus to one of its subwidgets, you may or may not get
this to happen, depending on whether or not the dialog has been realized and mapped to the
screen and whether or not keyboard focus has been accepted. Unfortunately, there is no
general solution to this problem because the Motif toolkit isn’t very robust about the
programmer changing input focus out from under it. You cannot call generic X functions
like XSetInputFocus() to force a widget to take input focus or you will undermine
Motif’s attempt at monitoring and controlling the input policy on its own.

There are some functions that make it easier for an application to try to control keyboard
traversal. The XmGetFocusWidget() routine returns the widget that has the input focus,
while XmGetTabGroup() returns the widget that is the tab group for the specified widget.
You can also call XmIsTraversable() to determine whether or not a particular widget
is eligible to receive the input focus.

Summary
Manager widgets are the backbone of an application. Without them, primitive widgets have
no way of controlling their size, layout, and input focus. While the Motif toolkit provides
many different manager widget classes, you may find that there are some things that you
cannot do with them. Experienced toolkit programmers have found that it is possible to port
Constraint class widgets from other toolkits to the Motif toolkit, by subclassing them from
the generic Manager widget class. This topic is beyond the scope of this book.

* XmNlayoutDirection is available from Motif 2.0 onwards.

Chapter 8: Manager Widgets

294 Motif Programming Manual

This chapter introduces the Motif manager widgets, but it does not discuss in detail some
of the basic issues of geometry management. If the basic concepts presented in this chapter
are still somewhat foreign to you, see Volume 4, The X Toolkit Intrinsics Programming
Manual, for a more in-depth discussion of composite widgets and geometry management.

Motif Programming Manual 295

Chapter 1

In this chapter:
• Creating a Container
• Creating IconGadgets
• Container Resources
• IconGadget Resources
• Container Constraints
• Container Callbacks
• Container Functions
• Summary
• Exercises

9
Containers and

IconGadgets
The Container was possibly the most complex widget introduced into Motif 2. The
Container is a Constraint Manager widget which is designed to work alongside the
IconGadget. The idea is that IconGadgets are meant to pictorially represent application
objects in some abstract way, and the Container lays them out in a variety of formats
appropriate to the underlying data model. The Container can lay out its children in Tree,
Multi-column Table, Grid, or Free-Floating formats; it is possible to dynamically switch
layout in order to provide alternative presentations of the objects which it contains, and thus
the widget is an approximation to a Model-View-Controller (MVC) component for the
Motif widget set.

IconGadgets are derived from the Gadget class, as the name suggests. Although not derived
from the LabelGadget class, they are similar to LabelGadgets in that they can display a
Label string and an image Pixmap, the difference being that the IconGadget can display
these simultaneously. It is also possible to associate with an IconGadget an array of
compound strings which represents additional information about the object. This additional
information is known as Detail, and the Container widget knows how to lay the Detail of
its various IconGadget children out so that it is all arranged in columns. Each column may
be assigned a heading label, much like a Table. Figure 9-1 shows a Container widget with
IconGadget children laid out in the Detail style. The column headers are simply specified
through Container resources.

Figure 9-1: A Container in Detail layout, with IconGadget children

Chapter 9: Containers and IconGadgets

296 Motif Programming Manual

Since the Container and IconGadget widget classes fully support Render Table resources,
and since the Detail information is held in the form of compound strings, each of the
columns and column headers could appear in distinct colors and fonts, although Figure 9-
1 does not make use of this feature. Render Tables are discussed in more detail in Chapter
24.

IconGadgets support not one but two image Pixmap resources: the programmer can specify
a large and a small image, and then switch between the two views of the IconGadget
dynamically. This could be used for displaying both a representative thumbnail and a
detailed picture of the application object which the IconGadget represents. A typical usage
of the small image display is when the IconGadget is placed in a Container which is
configured to lay out its children in a Tree (or more properly, Outline) format. Figure 9-2
has such an example, which is a simplified file system browser. In this example only small

images are required in order to represent the general type of the objects concerned. The
Tree layout is effected through simple constraints placed on the IconGadget children: a
given IconGadget A is placed as a child of IconGadget B if the XmNentryParent
constraint of A has the value B. The order of children can be controlled using the
XmNpositionIndex constraint, although the Container will lay them out in child order
by default.

The Detail column format is not restricted to a particular view of the application object
relationships. That is, it is possible to combine a Tree layout with multi-column Detail
information. Since the relationships between the application objects is expressed using
Container constraints on each of the IconGadget children, this is independent of the current
Container layout style. For example, Figure 9-3 shows a Container where the IconGadgets

Figure 9-2: A Container in the Outline layout style

Motif Programming Manual 297

Chapter 9: Containers and IconGadgets

are laid out in a Tree format because their XmNentryParent constraints are set, with the
extra IconGadget information still visible because the Container layout style is set to Detail.

The remaining Container layout to consider is known as the Spatial style. In this style, the
Container does not attempt to attach Detail to the IconGadget children. The Spatial style is
really two styles, which is configured by further resources. Either the IconGadget children
are simply placed at the coordinates specified by their XmNx, XmNy resources, very much
like a BulletinBoard, or the IconGadget children are laid out in a Grid formation. In the Grid
formation, the layout is considered to consist of cells in a rectangular arrangement, and the
IconGadget children are aligned within the cells, although it is possible for an IconGadget
to span multiple cells. Only one IconGadget may occupy any given cell, however, at any
one time. The Grid arrangement behaves very much like a RowColumn in that if the
Container is resized, the IconGadgets are automatically laid out to maintain a suitable
rectangular arrangement in the space available.

The difference to a BulletinBoard or RowColumn is that the Container in the Spatial layout
style supports dynamic selection and drag-and-drop of the IconGadget children: the user
can move the IconGadget children around the Container using the mouse. A simple
application using the Spatial style would be an Icon Box, or a Tool launch site, where each
IconGadget represents pictorially a separate tool.

Figure 9-4 shows such an application in a free-format arrangement - the only positioning is
by the x, y coordinate resources of each IconGadget as the Container is initialized, and any

Figure 9-3: A Container in Detail layout, with IconGadgets in a Tree format

Chapter 9: Containers and IconGadgets

298 Motif Programming Manual

movement which the user makes of each IconGadget thereafter. This time, the IconGadgets
are configured to display the large images.

Figure 9-5 is also in the Spatial style, except that the same data has been configured into a
Grid format. The x, y coordinates of the IconGadget children is ignored, and the user may

only move IconGadgets into empty cells of the grid.

The Container in Spatial layout supports single, multiple, browse, and extended selection
of the IconGadget children. Selection can be effected either by directly clicking on an
IconGadget, or by drawing a rectangle around the items to be selected. The rubberband
rectangle which the user describes using the mouse is formally known as a marquee. An
alternative selection method is to simply swipe the mouse over the IconGadget to be
selected. The style of selection preferred is controlled through the
XmNselectionTechnique resource. Note that the user may only move Container items
if the layout style is Spatial.

Notification of selection is through callbacks of the Container: the IconGadget does not
support any callback resources of its own. The Container supports both the

Figure 9-4: A Container in Spatial layout using coordinate placement

Figure 9-4: A Container in Spatial layout using Grid placement

Motif Programming Manual 299

Chapter 9: Containers and IconGadgets

XmNconvertCallback and XmNdestinationCallback resources, and so fully
participates in the Uniform Transfer Model, which is described in Chapter 23.

Creating a Container
Applications that wish to use the Container need to include the file <Xm/Container.h>. This
file defines the types and functions associated with the widget, as well as defining the
widget class name xmContainerWidgetClass . A Container can be created in either of
the ways shown in the following code fragment:

Widget container = XmCreateContainer (parent , name, resource-value-array ,
resource-value-count)

Widget container = XtCreateWidget ("name", xmContainerWidgetClass, parent ,
resource-value-list , NULL);

The Container can potentially contain a very large number of IconGadget children, and
some of the layout algorithms which it applies are quite complex, and so it is probably best
not to create the widget in a managed state (XtCreateManagedWidget()) otherwise
performance may suffer. See Chapter 8, Manager Widgets, for a discussion of when
widgets should be created in the managed or unmanaged state.

The parent of the Container can be any Shell or Manager widget. Once the Container has
been instantiated, the next step is to add IconGadget children.

Creating IconGadgets
The data types and functions associated with the IconGadget object are defined in the
header file <Xm/IconG.h>, which should be included in any Application which uses the
gadget. The header file also defines the gadget class xmIconGadgetClass . The following
code fragment illustrates how to create an IconGadget:

Widget icon = XmCreateIconGadget (parent , name, resource-value-array ,
resource-value-count)

Widget icon = XtCreateWidget ("name", xmIconGadgetClass, parent ,
resource-value-list , NULL);

The parent of an IconGadget can be any Manager widget, although only the Container
widget has sufficient knowledge of the IconGadget to display any Detail information
associated with the object, or to provide IconGadget selection. The IconGadget can
successfully be used outside the Container context if all that you require is the ability to
display a label and a Pixmap simultaneously.

Container Resources
The resources of the Container can be logically divided into four groups; those which
control the general layout of the IconGadget children, those related to visual aspects of the

Chapter 9: Containers and IconGadgets

300 Motif Programming Manual

Container, those associated with any Detail to be displayed, and those which control the
selection mechanisms.

Layout Resources
The general layout policy of the Container is controlled through the XmNlayoutType
resource, which has the following possible values:

XmOUTLINE XmSPATIAL XmDETAIL

The default value is XmSPATIAL, which results in the BulletinBoard or Grid-style layout.
The Tree layout is specified through the value XmOUTLINE, and the IconGadget Detail is
made visible using the value XmDETAIL. The XmDETAIL layout may also logically appear
as a Tree if the relationship between the IconGadget children has been specified using the
XmNentryParent constraint. This is described in Section 9.5 below.

Spatial Layout

In a Spatial layout, the specific Container layout algorithm depends upon a further resource,
XmNspatialStyle . If the XmNspatialStyle is XmNONE, layout depends only upon the
XmNx, XmNy values of the IconGadget children. If XmNspatialStyle is XmGRID, the
Container is laid out in a grid of same-sized cells, and an IconGadget may occupy only once
cell. If the spatial style is XmCELLS, the Container is also laid out in same-sized cells, except
that this time an IconGadget may span multiple cells.

How the IconGadget is placed within a cell depends upon the XmNspatialSnapModel
resource.The value XmCENTER centers the IconGadget within the cell. The resource value
XmSNAP_TO_GRID positions the IconGadget at the upper left or right of the cell, depending
upon any specified XmNlayoutDirection . The value XmNONE places the IconGadget
within the cell using the XmNx, XmNy resources of the object, provided that these
coordinates fall within the bounds of the cell - otherwise the IconGadget is laid out in the
cell as though the value is XmSNAP_TO_GRID.

The size of a logical cell is specified using the XmNsmallCellHeight ,
XmNsmallCellWidth , XmNlargeCellHeight , and XmNlargeCellWidth resources.
Which of these is operative depends upon whether the Container is configured to display
IconGadgets using the large or small Pixmap of the object. This is described in the
following Section 9.3.2, Visual Resources. The Container in the spatial style is like a
RowColumn in that it creates a logically rectangular arrangement of cells. The difference
is that for a RowColumn you have to specify the number of columns and not the size of the
cells.

The manner in which the IconGadget children fill the cells depends upon the
XmNspatialIncludeModel . If the value is XmFIRST_FIT , the cells are filled in the
order that they are free, although this may be in a right to left sense depending upon the
XmNlayoutDirection . The value XmAPPEND places an IconGadget into the first free cell

Motif Programming Manual 301

Chapter 9: Containers and IconGadgets

after the last filled cell. XmFIRST_FIT and XmAPPEND may well have the same effect when
the Container is first displayed, but will have different behavior if a new IconGadget is
added after the user has moved the existing objects around. The value XmCLOSEST places
an IconGadget into the nearest free cell to the x, y coordinates specified for the IconGadget.

Lastly on the subject of Spatial layout, the XmNspatialResizeModel controls the way
in which the Container attempts to grow when there is insufficient space to contain a new
IconGadget child. The value XmGROW_BALANCED causes the Container to request both new
width and height from its parent as required. The other possible values, XmGROW_MAJOR
and XmGROW_MINOR, depend for their interpretation on the value of the
XmNlayoutDirection resource. The major dimension is width if the layout policy is
horizontally oriented, and height if the policy is vertically oriented. The minor dimension
is the reverse: height for a horizontal layout, width for the vertical. Assuming that the layout
policy is horizontally aligned, then XmGROW_MAJOR will cause the Container only to ask
for more width from its parent. The default is XmGROW_MINOR.

Outline Layout

Whether or not to create a PushButtonGadget used for folding/unfolding portions of the
outline Tree is controlled through the XmNoutlineButtonPolicy resource. The default
value, XmOUTLINE_BUTTON_PRESENT, creates the button for every container item which
has logical children, specified by the constraint resource XmNentryParent . Folding
buttons can be disabled by specifying the value XmOUTLINE_BUTTON_ABSENT.

Connecting lines and indentation between portions of the Tree can be configured in a
number of ways. The resource XmNoutlineLineStyle can be used to completely disable
line drawing - so that indentation is the only clue of the logical parent/child relationships -
by specifying the value XmNO_LINE. The default value, XmSINGLE, draws a single line
between related Container items. The indentation level, and thus indirectly the length of the
lines, depends upon the XmNoutlineIndentation resource. The line length is also
partially controlled by the XmNoutlineColumnWidth resource, which specifies preferred
width of the first column. The default value, zero, causes the Container to deduce a default
value based upon the width of the widest item and the XmNoutlineIndentation
specification.

Visual Resources
The Container can specify whether the IconGadget children are forced to display large or
small Pixmaps through the XmNentryViewType resource. The default value, XmANY_
ICON, leaves the decision to each individual Container item. However, the values
XmLARGE_ICON and XmSMALL_ICON can be used to override the settings on each
IconGadget in order to give a consistent logical size to all the Container items.

Chapter 9: Containers and IconGadgets

302 Motif Programming Manual

The Container has two Pixmap resources associated with it which control the appearance
of the fold/unfold buttons when displaying an Outline layout. The
XmNexpandedStatePixmap resource specifies the unfolded state image, and the
resource XmNcollapsedStatePixmap specifies the folded image. The default image for
the folded state is a sideways pointing arrow, the direction of which depends upon the
XmNlayoutDirection resource. The default for the collapsed (folded) state is a
downwards pointing arrow.

In common with all other widgets in the Motif set, the Container supports the
XmNrenderTable resource, which controls the rendering of compound strings in the
widget. Render Tables are described fully in Chapter 24, Compound Strings in Chapter 25.

Detail Resources
The heading labels which appear at the top of each column of the Container are specified
through the XmNdetailColumnHeading and XmNdetailColumnHeadingCount
resources. These resources specify an array of compound strings. Each separate compound
string in the array forms a distinct column header. The first column header is placed over
the IconGadget children themselves.

By default, the order of compound strings in the XmNdetailColumnHeading resource
corresponds to the order in which the logical columns appear in the Detail. That is, the first
compound string in the XmNdetailColumnHeading array appears above the first
column, and so forth. But this need not be the case. The resources XmNdetailOrder and
XmNdetailOrderCount specify an array of Cardinal values which represents the order
of the columns. If this is not NULL, then column ordering depends on the index values
specified. For example, suppose we have three heading labels, A, B, and C. In the absence
of any XmNdetailOrder , the headings will appear A, B, C from left to right at the top of
the Container. If however we construct a list of Cardinal values, 2, 3, 1, and apply this as
the XmNdetailOrder value, then the column headings will appear in the order B, C, A.

By default, the Container works out for itself where each column of the Detail is to begin.
It is possible to override the internal algorithm by constructing a Tab List, and then
specifying this as the XmNdetailTabList resource. Tab Lists are described in Section 24.
3 of Chapter 24, Render Tables, although in this unique instance the required Tab List is
used outside the context of a Render Table. Possibly confusing is the fact that the Container
and IconGadget also support the XmNrenderTable resource, however both the
IconGadget and the Container use the XmNdetailTabList value when calculating the
column header layout, although in the case of the IconGadget the value is fetched from the
Container parent.

Motif Programming Manual 303

Chapter 9: Containers and IconGadgets

Selection Resources
The XmNselectionPolicy resource specifies the way in which IconGadget children
may be selected in the Container. The possible values are:

XmSINGLE_SELECT XmBROWSE_SELECT
XmMULTIPLE_SELECT XmEXTENDED_SELECT

The default is XmEXTENDED_SELECT, which allows for a discontiguous range of
IconGadget children to be selected. Discontiguous in this context means that the children
are not necessarily contained within adjacent cells in the Spatial layout. The value
XmMULTIPLE_SELECT forces selection from adjacent cells.

The way in which multiple selection is performed using a marquee is configured through
the XmNselectionTechnique resource. If an IconGadget must be wholly contained
within the marquee rectangle for selection to take place, the value XmMARQUEE should be
specified. If the value is XmMARQUEE_EXTEND_START, it is sufficient for the starting
coordinates of the marquee to fall within the IconGadget bounds for selection to take effect.
The value XmMARQUEE_EXTEND_BOTH includes in the selected set any IconGadget which
falls partially within either the start or the end coordinates of the marquee. If selection
should take place only if the mouse directly passes over an IconGadget when describing the
marquee, the value XmTOUCH_OVER should be specified. Lastly, XmTOUCH_ONLY only
selects items which fall between the marquee start and end coordinates. The default is
XmTOUCH_OVER.

The set of selected objects for the Container is described by the XmNselectedObjects
and XmNselectedObjectCount resources. These specify an array of Widget IDs
corresponding to the selected IconGadgets.

The way in which selection callbacks are invoked depends upon the
XmNautomaticSelection resource. If the value is XmAUTO_SELECT, callbacks are
invoked every time and immediately that an item is selected. The value XmNO_AUTO_
SELECT delays callback invocation until the user has finished her current action.

Whether the Container takes control of the Primary Selection when the user selects
IconGadget children depends upon the XmNprimaryOwnership resource. The possible
values are:

XmOWN_NEVER XmOWN_ALWAYS
XmOWN_MULTIPLE XmOWN_POSSIBLE_MULTIPLE

The default value is XmOWN_POSSIBLE_MULTIPLE, which indicates that Primary
Selection is owned if multiple selection is possible (the XmNselectionPolicy is
XmMULTIPLE_SELECT or XmEXTENDED_SELECT). XmOWN_MULTIPLE is similar, except
that ownership takes place only if multiple selection has occurred. The difference is that
XmOWN_POSSIBLE_MULTIPLE would allow ownership of the selection even if a single

Chapter 9: Containers and IconGadgets

304 Motif Programming Manual

IconGadget is selected (although the selection policy allows for more). The other values
have a natural interpretation.

Lastly, the color of a selected IconGadget can be specified using the XmNselectColor
resource, which takes a Pixel as its value. Since this is specified on a Container-wide basis,
it is not possible to control the selection color of IconGadget children separately.

IconGadget Resources
The IconGadget has two logical sets of resources: those which control the visual aspects of
the gadget, and those which specify the Detail information. The Detail resources are only
operative in the context of a Container - no other Motif widget knows how to lay out an
IconGadget Detail.

Visual Resources

The label of the IconGadget is specified using the XmNlabelString resource: this is a
compound string. If the value is NULL, the IconGadget label is derived from the name of
the widget as passed to the widgets create routine.*

The image which the IconGadget displays is specified in two halves: a Pixmap representing
the foreground image, and a Pixmap controlling the background Mask. Since the
IconGadget in fact supports two logical images - small and a large - there are therefore four
resources to consider. These are the resources XmNsmallIconPixmap ,
XmNsmallIconMask , XmNlargeIconPixmap , and XmNlargeIconMask . The Mask
resources should only have a depth of 1 - they should be bitmaps. Since the IconGadget
only displays one image at a time, the choice of large or small icon is controlled through
the XmNviewType resource, which has the possible values XmLARGE_ICON (the default)
or XmSMALL_ICON. This may be overridden by a Container parent if the Container resource
XmNentryViewType is not set to XmANY_ICON.

The XmNalignment resource specifies the relative alignment of the image and label of the
IconGadget. Possible values are:

XmALIGNMENT_BEGINNING XmALIGNMENT_CENTER XmALIGNMENT_END

* If, however, the value is an empty compound string (no text components), the widget displays only the image,
not both image and label. This can be achieved by creating a simple compound string consisting of a single di-
rection component.

Motif Programming Manual 305

Chapter 9: Containers and IconGadgets

The vertical distance between the image and the label is controlled through the resource
XmNspacing . Figure 9-5 shows the effect of setting the alignment and spacing resources.

In common with other widgets in the Motif set, the IconGadget supports the
XmNrenderTable resource which controls the appearance of compound strings in the
object. Render Tables are covered in detail in Chapter 24.

Detail Resources

The resources XmNdetail and XmNdetailCount specify an array of compound strings
which represents the Detail of the IconGadget. Each entry in the compound string array
represents a single column entry in the Container parent. Only the Container knows how to
lay IconGadget detail out - the resource has no effect in any other parent context.

Container Constraints
There are three constraint resources defined by the Container: XmNentryParent ,
XmNoutlineState , and XmNpositionIndex . The constraints have no effect in a Spatial
layout - they are used to specify the logical Tree arrangement for Outline and Detail
layouts.

The XmNentryParent resource is used to specify the parent-child relationships between
IconGadget children in the Container. An IconGadget A is considered to be a logical child
of IconGadget B if the XmNentryParent constraint resource of A has the value B. If the
value is NULL, the IconGadget is considered to be a root object, and is not indented in the
layout.

XmALIGNMENT_BEGINNING

XmALIGNMENT_CENTER

XmALIGNMENT_END

XmALIGNMENT_CENTER,
XmNspacing = 20

Figure 9-5: The effect of IconGadget alignment and spacing resources

Chapter 9: Containers and IconGadgets

306 Motif Programming Manual

The XmNoutlineState resource controls whether a given IconGadget is visible in an
Outline or Detail layout - the value XmCOLLAPSED hides the object, XmEXPANDED displays
it.

The order in which IconGadgets are laid out is controlled through the
XmNpositionIndex resource. This is not the same thing as specifying the level of
indentation, as specified through the XmNentryParent . The XmNpositionIndex
resource sorts children at the same level of indentation. For example, suppose objects A and
B both have the same XmNentryParent value. A will appear first in the Container if the
XmNpositionIndex constraint is less than that of B.

Example 9-1 is a simple application which constructs a partial view of the file system from
the current working directory. It does this by creating a Container in the Outline layout
style, and adds file system entries in the form of IconGadget children. The file system
structure is specified through XmNentryParent resources. The program is not meant to
be a full working application, but a demonstration of how the Tree structure is specified for
an Outline layout. Output from the program is identical in effect to that of Figure 9-2.

Example 9-1. The outline.c program

/* outline.c -- demonstrate the container and icon gadget
** in an outline layout
*/

#include <Xm/Xm.h>
#include <Xm/Form.h>
#include <Xm/Container.h>
#include <Xm/IconG.h>
#include <Xm/ScrolledW.h>
#include <Xm/XmosP.h>
#include <sys/stat.h>
#include <dirent.h>

static Pixmap small_folder_icon = XmUNSPECIFIED_PIXMAP;
static Pixmap small_folder_mask = XmUNSPECIFIED_PIXMAP;
static Pixmap small_file_icon = XmUNSPECIFIED_PIXMAP;
static Pixmap small_file_mask = XmUNSPECIFIED_PIXMAP;

/*
** Adds one level of directory entries to the Container, using
** parent_entry as the XmNentryParent value
*/
static void add_directory(char *path,

Widget parent_entry,
Widget container)

{
DIR *dir;
struct dirent *entry;
Arg args[8];
int n;

Motif Programming Manual 307

Chapter 9: Containers and IconGadgets

/* Loop through the directory entries */
dir = opendir (path);

while ((entry = readdir (dir)) != NULL) {
char name[256];
struct stat sb;

/* Get the file details. Note: no real error checking */
(void) sprintf (name, “%s/%s”, path, entry->d_name);

if (stat (name, &sb) == 0) {
XmString s;
Widget item;
int isDirectory;

if ((strcmp (entry->d_name, “.”) == 0) ||
(strcmp (entry->d_name, “..”) == 0)) {

continue;
}

s = XmStringCreateLocalized (entry->d_name);

isDirectory = ((sb.st_mode & S_IFDIR) != 0);

/* Create the IconGadget */
n = 0;
XtSetArg (args[n], XmNlabelString, s); n++;

if (isDirectory) {
XtSetArg (args[n], XmNsmallIconPixmap, small_folder_icon);
n++;
XtSetArg (args[n], XmNsmallIconMask, small_folder_mask);
n++;

}
else {

XtSetArg (args[n], XmNsmallIconPixmap, small_file_icon);
n++;
XtSetArg (args[n], XmNsmallIconMask, small_file_mask);
n++;

}

/* This gives the Tree its structure */
XtSetArg (args[n], XmNentryParent, parent_entry); n++;

item = XmCreateIconGadget (container, “icon”, args, n);
XtManageChild (item);

/* Recurse to subdirectories */
/* This item becomes the new XmNentryParent */
if (entry->d_name[0] != ‘.’) {

if (isDirectory) {
add_directory (name, item, container);

}
}

Chapter 9: Containers and IconGadgets

308 Motif Programming Manual

}
}

(void) closedir (dir);
}

/* Utility: set up a path to find bitmaps and pixmaps */
static char *GetBitmapPath (Display *display, char *file)
{

char *bmPath = (char *) 0;
char *name = (char *) 0;
Boolean user_path = False;
SubstitutionRec subs;

subs.substitution = file;

bmPath = (char *) _XmOSInitPath (file, “XBMLANGPATH”, &user_path);

if (user_path) subs.match = ‘B’;
else subs.match = ‘P’;

name = XtResolvePathname (display, “bitmaps”, file, NULL, bmPath, &subs,
1, NULL);

if (bmPath) {
/* Some XtResolvePathname() return non-heap copy of parameter */
/* This causes serious memory corruption if freed inadvertently */

if (name != bmPath) {
XtFree (bmPath);

}
}

return name;
}

/* Utility: load a Pixmap file for the IconGadget image */
static Pixmap GetPixmap (Widget widget, char *file)
{

Screen *screen = XtScreen (widget);
char *path = GetBitmapPath (XtDisplay (widget), file);

return XmGetPixmap (screen,
path,
BlackPixelOfScreen (screen),
WhitePixelOfScreen (screen));

}

/* Utility: load a Bitmap file for the IconGadget image mask */
static Pixmap GetBitmap (Widget widget, char *file)
{

Pixmap pixmap = XmUNSPECIFIED_PIXMAP;
unsigned int width;
unsigned int height;

Motif Programming Manual 309

Chapter 9: Containers and IconGadgets

int hotx;
int hoty;
char *path = GetBitmapPath (XtDisplay (widget), file);

XReadBitmapFile (XtDisplay (widget), XtWindow (widget), path, &width,
&height, &pixmap, &hotx, &hoty);

return pixmap;
}

main (int argc, char *argv[])
{

Widget toplevel, form, scrolled_win, container;
XtAppContext app;
int n;
Arg args[8];

XtSetLanguageProc (NULL, NULL, NULL);

/* Create the top-level shell and two RowColumns */
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

XtVaSetValues (toplevel,
XmNtitle, “XmContainer - Outline Layout”, NULL);

form = XmCreateForm (toplevel, “form”, NULL, 0);

n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
scrolled_win = XmCreateScrolledWindow (form, “scrolled_win”, args, n);

/* Create the Container */

n = 0;
XtSetArg (args[n], XmNwidth, 600); n++;
XtSetArg (args[n], XmNheight, 500); n++;
XtSetArg (args[n], XmNlayoutType, XmOUTLINE); n++;
XtSetArg (args[n], XmNentryViewType, XmSMALL_ICON); n++;
container = XmCreateContainer (scrolled_win, “container”, args, n);

XtManageChild (container);
XtManageChild (scrolled_win);
XtManageChild (form);
XtRealizeWidget (toplevel);

/* Read in the icons and their masks */
/* The bitmaps require a window, therefore must be done post-realize */
small_folder_icon = GetPixmap (container, “folder_small.xbm”);
small_file_icon = GetPixmap (container, “file_small.xbm”);

Chapter 9: Containers and IconGadgets

310 Motif Programming Manual

small_folder_mask = GetBitmap (container, “folder_small_mask.xbm”);
small_file_mask = GetBitmap (container, “file_small_mask.xbm”);

/* Load the Icon Gadgets */
add_directory(“.”, NULL, container);

XtAppMainLoop (app);
}

Container Callbacks
The Container supports a number of callback resources: not all callback types will be
invoked in all contexts since some callbacks depend upon the layout policy of the widget.

Firstly, the Container, supporting as it does the dragging and dropping of IconGadget
children, defines the XmNconvertCallback and XmNdestinationCallback
resources, which are fully described in Chapter 23, Uniform Transfer Model. They will not
otherwise be discussed here.

Outline Callbacks

In Outline layout style, the Container calls the XmNoutlineChangedCallback
whenever an item in the Tree changes from a collapsed or expanded state. Each callback of
this type is passed a pointer to an XmContainerOutlineCallbackStruct data
structure, which is defined as follows:

typedef struct
{

int reason;
XEvent *event;
Widget item;
unsigned char new_outline_state;

} XmContainerOutlineCallbackStruct;

The reason element will be either XmCR_COLLAPSED or XmCR_EXPANDED, depending
upon the new state of the IconGadget item . The new_outline_state element will be
either XmCOLLAPSED or XmEXPANDED, logically matching the reason element. However,
the new_outline_state element can be changed by the programmer to force a particular
state for the changed item .

Selection Callbacks

There are two selection callbacks supported by the Container. The
XmNdefaultActionCallback is invoked whenever an IconGadget item is double
clicked on using the mouse, or if the user presses the ACTIVATE key over the item. The
XmNselectionCallback is invoked if the user selects an item otherwise. Both types of

Motif Programming Manual 311

Chapter 9: Containers and IconGadgets

callback are passed a pointer to an XmContainerSelectCallbackStruct structure,
which is specified as follows:

typedef struct
{

int reason;
XEvent *event;
WidgetList selected_items;
int selected_item_count;
unsigned char auto_selection_type;

} XmContainerSelectCallbackStruct;

The reason element will reflect the current selection policy: it will be either the value
XmCR_SINGLE_SELECT, XmCR_BROWSE_SELECT, XmCR_MULTIPLE_SELECT, or
XmCR_EXTENDED_SELECT.

The set of selected Container IconGadget children is specified by the selected_items
and selected_item_count elements.

If automatic selection is operative, the auto_selection_type element specifies the
current user action state: it will be either XmAUTO_BEGIN (the user has started a new
selection), XmAUTO_CANCEL (the user cancels the current selection action), XmAUTO_
CHANGE (a new item has been added to the selected set), XmAUTO_MOTION (a new item has
been added by a button drag action), or XmAUTO_NO_CHANGE (the user action has not
modified the current selected set). If automatic selection is inoperative, the value is
XmAUTO_UNSET.

Example 9-2 extends the code of Example 9-1 to include both Detail information and a
selection callback which prints out the file system path for the currently selected
IconGadget.

Example 9-2. The detail.c program

/* detail.c -- demonstrate the container and icon gadget
** in Detail layout, with a selection callback printing
** out the selected IconGadget data
*/

#include <Xm/Xm.h>
#include <Xm/Form.h>
#include <Xm/Container.h>
#include <Xm/IconG.h>
#include <Xm/ScrolledW.h>
#include <Xm/XmosP.h>
#include <sys/stat.h>
#include <dirent.h>
#include <time.h>

static char *column_headings[] = { “Name”, “Size”, “Modified” };

static Pixmap large_folder_icon = XmUNSPECIFIED_PIXMAP;

Chapter 9: Containers and IconGadgets

312 Motif Programming Manual

static Pixmap small_folder_icon = XmUNSPECIFIED_PIXMAP;
static Pixmap large_folder_mask = XmUNSPECIFIED_PIXMAP;
static Pixmap small_folder_mask = XmUNSPECIFIED_PIXMAP;
static Pixmap large_file_icon = XmUNSPECIFIED_PIXMAP;
static Pixmap small_file_icon = XmUNSPECIFIED_PIXMAP;
static Pixmap large_file_mask = XmUNSPECIFIED_PIXMAP;
static Pixmap small_file_mask = XmUNSPECIFIED_PIXMAP;

/* Create the Icongadget children at a given level in the
** file system. This time, Detail is added about the files.
*/
static void add_directory(char *path,

Widget parent_entry,
Widget container)

{
DIR *dir;
struct dirent *entry;
Arg args[12];
int n;

/* Loop through the directory entries */
dir = opendir (path);

while ((entry = readdir (dir)) != NULL) {
char name[256];
struct stat sb;

/* Get the file details. Note: no real error checking */
(void) sprintf (name, “%s/%s”, path, entry->d_name);

if (stat (name, &sb) == 0) {
XmString s;
XmStringTable details;
char buf[20];
Widget item;
int isDirectory;

if ((strcmp (entry->d_name, “.”) == 0) ||
(strcmp (entry->d_name, “..”) == 0)) {

continue;
}

s = XmStringCreateLocalized (entry->d_name);

isDirectory = ((sb.st_mode & S_IFDIR) != 0);

/* Create the details array */
details = (XmStringTable) XtMalloc(2 * sizeof (XmString *));

(void) sprintf (buf, “%d”, sb.st_size);
details[0] = XmStringCreateLocalized (buf);
details[1] = XmStringCreateLocalized (

(char *) ctime(&sb.st_mtim.tv_sec));

Motif Programming Manual 313

Chapter 9: Containers and IconGadgets

/* Create the IconGadget */
n = 0;
XtSetArg (args[n], XmNlabelString, s); n++;

if (isDirectory) {
XtSetArg (args[n], XmNlargeIconPixmap, large_folder_icon);
n++;

}
else {

XtSetArg (args[n], XmNlargeIconPixmap, large_file_icon);
n++;

}

if (isDirectory) {
XtSetArg (args[n], XmNlargeIconMask, large_folder_mask);
n++;

}
else {

XtSetArg (args[n], XmNlargeIconMask, large_file_mask);
n++;

}

if (isDirectory) {
XtSetArg (args[n], XmNsmallIconPixmap, small_folder_icon);
n++;

}
else {

XtSetArg (args[n], XmNsmallIconPixmap, small_file_icon);
n++;

}

if (isDirectory) {
XtSetArg (args[n], XmNsmallIconMask, small_folder_mask);
n++;

}
else {

XtSetArg (args[n], XmNsmallIconMask, small_file_mask);
n++;

}

XtSetArg (args[n], XmNentryParent, parent_entry); n++;
XtSetArg (args[n], XmNdetail, details); n++;
XtSetArg (args[n], XmNdetailCount, 2); n++;

item = XmCreateIconGadget (container, “icon”, args, n);
XtManageChild (item);

XmStringFree(details[0]);
XmStringFree(details[1]);
XtFree ((char *) details);

/* Recurse to subdirectories */
if (entry->d_name[0] != ‘.’) {

if (isDirectory) {

Chapter 9: Containers and IconGadgets

314 Motif Programming Manual

add_directory (name, item, container);
}

}
}

}

(void) closedir (dir);
}

/* For brevity, these are copied from Example 9-1 */
extern char *GetBitmapPath (Display *display, char *file);
extern Pixmap GetPixmap (Widget widget, char *file);
extern Pixmap GetBitmap (Widget widget, char *file);

/* Construct a file system path from the selected IconGadget */
/* This is crude, but it works. Optimization is a reader exercise */
static char *GetPath (Widget w, char *sofar)
{

static char buffer[512];
char temp[512], *leaf;
Widget parent = NULL;
XmString xms;

if (sofar == NULL) {
(void) strcpy (buffer, ““);

}

if (w == NULL) {
return buffer;

}

(void) strcpy (temp, buffer);

XtVaGetValues (w, XmNentryParent, &parent, XmNlabelString, &xms, NULL);

leaf = (char *) XmStringUnparse (xms, NULL,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL);

(void) sprintf (buffer,
“%s%s%s”, leaf, (sofar ? “/” : ““), temp);

XtFree (leaf);

return GetPath (parent, buffer);
}

/* The selection callback: simply prints out
** the selected IconGadget file system path
*/
static void select_callback (Widget w,

XtPointer client_data,

Motif Programming Manual 315

Chapter 9: Containers and IconGadgets

XtPointer call_data)
{

XmContainerSelectCallbackStruct *cptr;
int i;
char *path;

cptr = (XmContainerSelectCallbackStruct *) call_data;

for (i = 0; i < cptr->selected_item_count; i++) {
printf (“Selected: %s\n”,

GetPath (cptr->selected_items[i], NULL));
}

}

main (int argc, char *argv[])
{

Widget toplevel, form, scrolled_win, container;
XtAppContext app;
int i, n, count;
Arg args[12];
XmStringTable column_headings_table;

XtSetLanguageProc (NULL, NULL, NULL);
/* Create the top-level shell and two RowColumns */
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

XtVaSetValues (toplevel,
XmNtitle, “XmContainer - Detail Layout”, NULL);

form = XmCreateForm (toplevel, “form”, NULL, 0);

n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
scrolled_win = XmCreateScrolledWindow (form, “scrolled_win”, args, n);

/* Create the Container */
count = XtNumber (column_headings);
column_headings_table = (XmStringTable) XtMalloc(

count * sizeof (XmString *));
for (i = 0; i < count; i++)

column_headings_table[i] =
XmStringCreateLocalized (column_headings[i]);

n = 0;
XtSetArg (args[n], XmNwidth, 600); n++;
XtSetArg (args[n], XmNheight, 500); n++;
XtSetArg (args[n], XmNdetailColumnHeading, column_headings_table);
n++;
XtSetArg (args[n], XmNdetailColumnHeadingCount, count); n++;

Chapter 9: Containers and IconGadgets

316 Motif Programming Manual

XtSetArg (args[n], XmNlayoutType, XmDETAIL); n++;
XtSetArg (args[n], XmNentryViewType, XmSMALL_ICON); n++;
XtSetArg (args[n], XmNselectionPolicy, XmSINGLE_SELECT); n++;
container = XmCreateContainer (scrolled_win, “container”, args, n);

/* Register a Selection Callback for the Container */
XtAddCallback (container,

XmNselectionCallback, select_callback, NULL);

/* Reclaim Memory which the widgets have copied */
for (i = 0; i < count; i++)

XmStringFree (column_headings_table[i]);
XtFree ((char *) column_headings_table);

XtManageChild (container);
XtManageChild (scrolled_win);
XtManageChild (form);
XtRealizeWidget (toplevel);

/* Read in the icons and their masks */
/* The bitmaps require a window, therefore must be done post-realize */
large_folder_icon = GetPixmap (container, “folder_large.xbm”);
small_folder_icon = GetPixmap (container, “folder_small.xbm”);
large_file_icon = GetPixmap (container, “file_large.xbm”);
small_file_icon = GetPixmap (container, “file_small.xbm”);

large_folder_mask = GetBitmap (container, “folder_large_mask.xbm”);
small_folder_mask = GetBitmap (container, “folder_small_mask.xbm”);
large_file_mask = GetBitmap (container, “file_large_mask.xbm”);
small_file_mask = GetBitmap (container, “file_small_mask.xbm”);

add_directory(“.”, NULL, container);

XtAppMainLoop (app);
}

The example output is logically the same as Figure 9-3, although the contents of the Tree
will naturally depend upon your file system.

Container Functions
The Container support utilities fall into two groups: those concerned with transferring
Container selected items to and from the Clipboard, and general purpose utilities. It is
probably best to start in the reverse order and describe the utility functions first, as these are
generally the more useful for typical application programming.

Forcing Container Layout

The convenience function XmContainerRelayout () forces the widget to recalculate the
layout of all its IconGadget children. This only takes effect if the layout style is Spatial, and
if the Container is managed. The routine could be used if some kind of sorting of the

Motif Programming Manual 317

Chapter 9: Containers and IconGadgets

IconGadget children has taken place, either by respecifying the XmNx, XmNy coordinates of
each or through manipulation of the XmNpositionIndex resource. The routine has the
following functional signature:

void XmContainerRelayout (Widget container)

XmContainerRelayout () does not cause geometry management side effects: the routine
will not result in the Container requesting size changes from its parent in turn.

Sorting Container Items

After a set of Container items has their XmNpositionIndex resource modified, the
routine XmContainerReorder () can be used to force the Container to internally update
its knowledge of the layout. If the layout style is Detail or Outline, the Container will also
refresh the display. Note that XmContainerRelayout () is required for an update to the
Spatial style - XmContainerReorder () has no effect on this layout style.
XmContainerReorder() has the following specification:

void XmContainerReorder (Widget container ,
WidgetList items ,
int item_count)

The function simply reorders the items in the layout of the given container according
to the XmNpositionIndex of each, using a quicksort algorithm.

Fetching Container Items

Given an arbitrary Container item in a Detail or Outline layout, presumably as a result of a
selection operation, we can deduce the logical parent of that item simply by inspecting the
XmNentryParent constraint. If however we wanted to know the logical children of the item,
there is no resource which will provide the required information. This is where the routine
XmContainerGetItemChildren () is useful. The routine returns the list of IconGadgets
whose XmNentryParent resource points at a given item, and it is defined as follows:

int XmContainerGetItemChildren (Widget container ,
Widget icon_gadget ,
WidgetList * item_children)

The set of logical children of the icon_gadget is returned at the address specified by
icon_children . The routine allocates memory for this, and it is the responsibility of the
programmer to reclaim the memory using XtFree () at an appropriate point. The number
of items in the array is returned by the function.

Container Clipboard Routines

There are five routines defined for copying and pasting container items into the clipboard.
They are XmContainerCut (), XmContainerCopy (), XmContainerCopyLink (),
XmContainerPaste (), and XmContainerPasteLink (). They are defined as follows:

Chapter 9: Containers and IconGadgets

318 Motif Programming Manual

Boolean XmContainerCut (Widget container , Time timestamp);
Boolean XmContainerCopy (Widget container , Time timestamp)
Boolean XmContainerCopyLink (Widget container , Time timestamp)
Boolean XmContainerPaste (Widget container)
Boolean XmContainerPasteLink (Widget container)

In each case, the timestamp parameter should simply be specified using the routine
XtLastTimestampProcessed ().

The routines are fully integrated with the Uniform Transfer Model - they do not actually
cut or copy data to and from the clipboard, but internally invoke convert and destination
callbacks to perform these tasks. The Uniform Transfer Model is covered in detail in
Chapter 23.

A typical usage of these routines is where an Edit menu has been defined for the Container:
the cut/copy/paste actions of the menu entries will be a simple interface onto the above
functions, and is appropriate if the programmer is presenting an interface where the user
can edit a Tree or reorder a Detail layout by moving items around through the clipboard.

Summary
The Container is the most flexible layout Manager in Motif. It offers multiple views of the
same data by allowing the programmer to switch layout dynamically. The selection
mechanisms whereby the Container reports actions in the widget are simple to understand
and easy to program. By separating the functionality whereby the Container performs the
layout and selection and the IconGadget represents the application object, the widget can
be considered as an approximation to a Model-View-Controller architecture. Whether the
application data needs to be viewed in Tabular, Tree, Grid, or free-floating format, the
Container provides the necessary layout.

Exercises
The following exercises expand upon concepts presented in this chapter.

1. Modify the program of Example 9-2 to display file ownership, permissions, and other
status information amongst the Detail. Remember to expand the column headings for
the Container. Add options to the program to allow the user to display or hide particu-
lar columns of detail, and to change the order of the columns.

2. Add new images to the program to represent different types of file: binary, source files,
objects. Add a default action callback, and make the callback spawn an appropriate ac-
tion for the selected object: binaries could be executed, source files edited.

Motif Programming Manual 319

Chapter 1

In this chapter:
• The ScrolledWindow Design Model
• Creating a ScrolledWindow
• Working Directly With ScrollBars
• Implementing True Application-

defined Scrolling
• Working With Keyboard Traversal

in ScrolledWindows
• Summary
• Exercises

10
ScrolledWindows

and ScrollBars
This chapter describes the ins and outs of scrolling. It pays particular attention to
application-defined scrolling, which is often required when the simple scrolling provided
by the ScrolledWindow widget is insufficient.

The ScrolledWindow widget provides a viewing area into another, usually larger, visual
object. The viewport may be adjusted by the user through the use of ScrollBars that are
attached to the ScrolledWindow. The Motif MainWindow, ScrolledList, and ScrolledText
objects use ScrolledWindows to implement scrolling for their respective contents. The
ScrolledWindow can also be used independently to provide a viewport into another large
object, such as a DrawingArea or a manager widget that contains a large group of widgets.
All of these scenarios are explored in this chapter.

The ScrolledWindow Design Model
The user always interacts with a ScrolledWindow through ScrollBars. Internally, however,
there are several ways to implement what the user sees. These methods are based on two
different scrolling models: automatic scrolling and application-defined scrolling. In either
case, the application gives the ScrolledWindow a work window that contains the visual data
to be viewed. Although the two models are different, they share many of the same concepts
and features.

In automatic scrolling mode, the ScrolledWindow operates entirely on its own, adjusting
the viewport as necessary in response to ScrollBar activity. The application simply creates
the desired data, such as a Label widget that contains a large pixmap, and makes that widget
the work window for the ScrolledWindow. When the user operates the ScrollBars to change
the visible area, the ScrolledWindow adjusts the Label so that the appropriate portion is
visible. This design is demonstrated in Chapter 4, The Main Window, and Chapter 11, The
DrawingArea.

With application-defined scrolling, the ScrolledWindow operates under the assumption
that the work window is not complete. The widget assumes that another entity, such as the

Chapter 10: ScrolledWindows and ScrollBars

320 Motif Programming Manual

application or the internals of another widget, controls the data within the work window and
that the data may change dynamically as the user scrolls. In order to control scrolling, the
application must control all aspects of the ScrollBars. This level of control is necessary
when it is impossible or impractical for an application to provide the ScrolledWindow with
a sufficiently large work window (or the data for it) at any one time.

The Automatic Scrolling Model
Most of the time, the ScrolledWindow widget is used in automatic scrolling mode. When
it is used in this mode, the ScrolledWindow contains at most three internal widgets: two
ScrollBars and a clip window* . The ScrolledWindow creates these widgets automatically.
The work area is an external widget (specified by the XmNworkWindow resource) that is
clipped by the clip window. This work window is a child of the ScrolledWindow that is
provided by the application; it is not created automatically by the ScrolledWindow. When
the user interacts with the ScrollBars, the work window is adjusted so that the appropriate
part is visible through the clip window. The general design of the ScrolledWindow in
automatic scrolling mode is illustrated in Figure 10-1.

* In Motif 1.2, the clip window is implemented as a DrawingArea. In Motif 2.x, the clip window is a specialized
sub-class of the DrawingArea., called xmClipWindowWidgetClass There is no public header file for the
subclass.

Figure 10-1: Design of an automatic ScrolledWindow

ScrollBars

Clip Window

Work Window

Motif Programming Manual 321

Chapter 10: ScrolledWindows and ScrollBars

The work window can be almost any widget, but there can be only one work window per
ScrolledWindow. If you want to have more than one widget inside of a ScrolledWindow,
you can place all of the widgets in a manager widget and make that manager the work
window. The clip window is always the size of the viewport portion of the
ScrolledWindow, which is the size of the ScrolledWindow minus the size of the ScrollBars
and any borders and margins. The clip window is not adjusted in size unless the
ScrolledWindow is resized. The clip window is always positioned at the origin, which
means that you cannot use XtMoveWidget() or change its XmNx and XmNy resources to
reposition it in the ScrolledWindow. The internals of the ScrolledWindow are solely
responsible for changing the view in the clip window, although you can affect this behavior.
While you can get a handle to the clip window, you must not remove it or replace it with
another window.

Be warned: the ScrolledWindow internally reparents the work window to be a child of the
clip window. A call of XtParent () on the work window is not going to return the
ScrolledWindow even though you specify the ScrolledWindow as parent when you add the
work area.

The Application-defined Scrolling Model
In the application-defined scrolling model, which is the default model, the ScrolledWindow
always makes itself the same size as the work window. Just as for automatic scrolling, the
application must provide the work window as a child of the ScrolledWindow. The main
reason to use application-defined scrolling is if the work window contains more data than
can possibly be loaded in the automatic scrolling mode. An application may also require
different scrolling behavior than the default pixel-by-pixel increments provided by the
automatic scrolling mode. Application-defined scrolling is also the best option when the
contents of the work window changes dynamically and the application does not want to rely
on the ScrolledWindow to scroll new data into view.

The disadvantage of application-defined scrolling is that the application, not the
ScrolledWindow, is responsible for the ScrollBars. The application must create and
manage the ScrollBars, as well as respond to the scrolling actions initiated by the user.
Since what is displayed in the clip window and the work window are identical, the
ScrolledWindow widget does not bother to create a clip window*. However, there are still
some limitations as to what the ScrolledWindow can support. It is important that you
understand the limitations before designing your application, so let’s look at two examples.

A Text widget that displays the contents of an arbitrarily large file provides a classic
example of application-defined scrolling. Under the automatic scrolling model, the
application might have to provide the ScrolledWindow with a work window that is large

* A call of XtParent () on the work window in the application-defined scrolling model does return the Scrolled-
Window because the work area is not reparented.

Chapter 10: ScrolledWindows and ScrollBars

322 Motif Programming Manual

enough to render thousands of lines of text, so that all of the text is immediately available
to the user. An object of such proportions is prohibitive for reasonable performance and
resource consumption. Since the work window cannot be as large as it would need to be for
automatic scrolling, it might as well be as small as possible, which is the size of the clip
window. When the Text widget is a child of a ScrolledWindow, the Text widget creates its
own ScrollBars and attaches callback routines to them so that it can be notified of scrolling
actions.When the user scrolls, the Text widget changes the text in the work window to the
text that corresponds to the new region that just scrolled into view. The user has the illusion
that scrolling is taking place, but in reality, the data in the work window has simply
changed, thereby saving a great deal of overhead in system and server resources. The List
widget uses the same method when it is the child of a ScrolledWindow. The Text and List
widgets are the only examples of application-defined scrolling that are supported by the
current implementation of the ScrolledWindow.

There is another scenario in which a large amount of data is retrieved dynamically and is
not all available at the same time. Even though the ScrolledWindow does not really support
this scenario, you should be familiar with the situation, since it may come up in a large
application. There are some possible work arounds that we’ll discuss later in the chapter.
Let’s say that the Pacific Gas and Electric Company has an online database that contains
all of the pipeline information for California and that an operator wants to view the data for
San Francisco county. To display this information, the application must read the data from
the database and convert that data into an image that can be presented in a ScrolledWindow.

Although the database cannot get all the information for the whole county all at once, it can
get more information than the window can display. Let’s say that the window can display
10% of the county and the database can return information on 20% of the county in a
reasonable amount of time. The application needs to use the application-defined
mechanisms because 100% of the data is not available for automatic scrolling. The fact that
more than what can be displayed is available just means that the application could optimize
performance by avoiding unnecessary retrieval of data from the database whenever
scrolling takes place. The application could reuse the existing work window as a cache, so
that if the user scrolls by an amount that is small enough, the work window is redisplayed
in a way similar to the automatic scrolling mechanism. The application would still have to
control this behavior manually, though.

Unfortunately, the ScrolledWindow does not support this type of behavior. The
ScrolledWindow always expands to the size of its work window in application-defined
scrolling mode. In other words, you cannot have a work window that is a different size from
the clip window. This situation leaves you with several design decisions. You could reduce
the amount of data obtained from a database query, throw away excess information not
used in your display, or make the viewport of an automatic ScrolledWindow large enough
for each query. In any case, the best approach is to use some method that makes the size of
the work window the same as the clip window. While this requirement may present some

Motif Programming Manual 323

Chapter 10: ScrolledWindows and ScrollBars

logistical problems with the design of your application, we’ll discuss some work arounds
for the situation later in the chapter.

In the two preceding examples, we have defined two fundamentally similar methods of
scrolling: semi-automatic scrolling and true application-defined scrolling. In the first case,
Text and List widgets handle their own scrolling internally through special-case routines
attached to the ScrollBars. We call this method semi-automatic scrolling, since the
application programmer is not responsible for the scrolling of these widgets. Nevertheless,
the ScrolledWindow is in the application-defined scrolling mode. This situation is in
contrast to true application-defined scrolling, where you must handle the ScrollBars and the
associated scrolling actions entirely on your own. This method is more intricate and
requires a significant amount of code to be implemented properly.

Obviously, the automatic scrolling mechanism provided by the ScrolledWindow is much
simpler than the application-defined mechanism and it requires much less application
intervention. However, there are some drawbacks in the implementation of automatic
scrolling. Automatic ScrolledWindows only scroll in single-pixel increments. If other
scrolling behavior is required, you must use application-defined scrolling. And while
application-defined scrolling is far more complicated, the advantage is that it provides more
flexibility in the ways that the object is scrolled.

Creating a ScrolledWindow
Creating a ScrolledWindow is no different from creating other kinds of Motif widgets.
Applications that wish to use ScrolledWindows must include the header file <Xm/
ScrolledW.h>. The process of creating a ScrolledWindow is shown in the following code
fragments:

Widget scroll_w = XmCreateScrolledWindow (parent, "name", resource-value-
array , resource-value-count);

Widget scroll_w = XtCreateWidget ("name", xmScrolledWindowWidgetClass, parent,
resource-value-list , NULL);

The parent can be a Shell or any manager widget. The ScrolledWindow could be created
as a managed widget, since the addition of its child does not cause it to renegotiate its size.
(See Chapter 8, Manager Widgets, for a discussion of when manager widgets should be
created as managed or unmanaged widgets.) The resource-value pairs control the behavior
of the ScrolledWindow, as well as its visual effects. The most important resources are
XmNscrollingPolicy , XmNvisualPolicy , and XmNscrollBarDisplayPolicy .
The value for XmNscrollingPolicy can be set to either XmAUTOMATIC or
XmAPPLICATION_DEFINED, depending on which scrolling method you want to use. The
use of other ScrolledWindow resources varies depending on the scrolling behavior that is
specified.

Chapter 10: ScrolledWindows and ScrollBars

324 Motif Programming Manual

Automatic Scrolling
In automatic scrolling mode, the ScrolledWindow assumes that all of the data is already
available in the work window and that the size of the work window represents the entire
size of the viewable data. Even if the data changes and the size of work window is modified,
the ScrolledWindow can still manage its display automatically. The ScrolledWindow
should never resize itself due to changes in the work windows, so XmNvisualPolicy is
typically set to XmCONSTANT. This value tells the ScrolledWindow not to resize itself when
the work window grows or shrinks. If XmNvisualPolicy is set to XmVARIABLE, the
ScrolledWindow always sizes itself to contain the entire work window, which nullifies the
need for an automatic ScrolledWindow. Like any other widget, the only time that a
ScrolledWindow should change size is when the parent resizes it, presumably for one of the
following reasons:

• The shell has been resized.

• The ScrolledWindow is a child of a PanedWindow that the user has resized.

• Adjacent, sibling widgets have been resized, added, removed, etc.

• Application-controlled changes in widget size have been made.

The default size of the ScrolledWindow is never the same size as the work area, unless it’s
a coincidence*. The default size is not very useful, so you should probably specify the
XmNwidth and XmNheight resources for a ScrolledWindow. A problem arises if you want
the ScrolledWindow to initialize itself to the size of the work window and have it be in
automatic scrolling mode. To make the ScrolledWindow the same size as the work
window, you must use application-defined scrolling.

For automatic scrolling, the only thing left to decide is how you want the ScrollBars to be
displayed if the work window dynamically grows or shrinks. There may be situations where
the work window is the same size as or smaller than the clip window. In this case, you may
not want to display the ScrollBars, since they are not needed. If so, you can set
XmNscrollBarDisplayPolicy to XmAS_NEEDED. If you always want the ScrollBars to
be visible, whether or not they are needed, you can set the resource to XmSTATIC. Some
people prefer static ScrollBars, so that consistency is maintained in the interface; having
ScrollBars appear and disappear frequently may be confusing. Perhaps the best thing to do
is to allow the user to specify the XmNscrollBarDisplayPolicy . You can always set
your preference in the application defaults file, as shown below:

*XmScrolledWindow.scrollBarDisplayPolicy: STATIC

* The internals to the ScrolledWindow widget happen to set the width and height to 100 pixels, although this fact
is not officially documented by OSF.

Motif Programming Manual 325

Chapter 10: ScrolledWindows and ScrollBars

Application-defined Scrolling
In the application-defined scrolling mode, XmNscrollingPolicy is set to
XmAPPLICATION_DEFINED. In this case, the work window must be the same size as the
clip window, so the size of the work window is set by the toolkit. As a result, the
XmNvisualPolicy resource has the value of XmVARIABLE, which indicates that the work
window grows and shrinks with the ScrolledWindow. Since the two windows are the same
size, the ScrolledWindow doesn’t need to have a clip window, so it doesn’t create one.

Because application-defined scrolling implies that you are responsible for the creation and
management of the ScrollBars, the toolkit forces the XmNscrollBarDisplayPolicy to
XmSTATIC, which means that the ScrolledWindow always displays the ScrollBars if they
are managed. Since the ScrolledWindow cannot know the size of the entire data, it cannot
automate the visibility of the ScrollBars. If you want your application to emulate the XmAS_
NEEDED behavior, you must monitor the size of the ScrolledWindow and the work area and
manage the ScrollBars manually.

Additional Resources
Another ScrolledWindow resource is the XmNworkWindow, which is used to identify the
widget that acts as the ScrolledWindow’s work window. A ScrolledWindow can have only
one work window and a work window can be associated with only one ScrolledWindow.
In other words, you cannot assign the same widget ID to multiple ScrolledWindows to get
multiple views into the same object. There are ways of achieving this effect, though, that
will become apparent as we go through the chapter.

The XmNclipWindow resource specifies the widget ID for the clip window. This resource
is read-only, so it is illegal to set the clip window manually or to reset it to NULL. For
practical purposes, this resource should be left alone. The XmNverticalScrollBar and
XmNhorizontalScrollBar resources specify the widget IDs of the ScrollBars in the
ScrolledWindow. These resources allow you to set and retrieve the ScrollBars, which is
useful for monitoring scrolling actions and setting up application-defined scrolling. Like
any other manager, the ScrolledWindow also has resources that control the margin height
and width and other visual attributes.

An Automatic ScrolledWindow Example
Automatic scrolling is the simpler of the two types of scrolling policies available.
Fortunately, it is also the more common of the two. You shouldn’t let this simplicity sway
you too much, though, as it is a common design error for programmers to use the automatic
scrolling mechanisms for designs that are better suited to the application-defined model. On
the other hand, if you merely want to monitor scrolling without necessarily controlling it,
you can install your own callback routines on the ScrollBars in an automatic
ScrolledWindow, as we’ll describe in the next section

Chapter 10: ScrolledWindows and ScrollBars

326 Motif Programming Manual

In automatic mode, a ScrolledWindow automatically creates its own ScrollBars and
handles their callback procedures to position the work window in the clip window. All of
the examples that use ScrolledWindows in the rest of the chapters in this book (such as
those in Chapter 4, The Main Window, and Chapter 11, The DrawingArea Widget) use the
automatic scrolling mode. The only exceptions are the ScrolledList and ScrolledText
objects, but the List and Text widgets handle application-defined scrolling internally.

Example 10-1 shows a large panel of Labels, ToggleButtons, and Text widgets that are
arranged in a collection of Form and RowColumn widgets and managed by a
ScrolledWindow widget.*

Example 10-1. The getusers.c program

/* getusers.c -- demonstrate a simple ScrolledWindow by showing
** how it can manage a RowColumn that contains a vertical stack of
** Form widgets, each of which contains a Toggle, two Labels and
** a Text widget. The program fills the values of the widgets
** using various pieces of information from the password file.
** Note: there are no callback routines associated with any of the
** widgets created here -- this is for demonstration purposes only.
*/
#include <Xm/PushBG.h>
#include <Xm/LabelG.h>
#include <Xm/ToggleB.h>
#include <Xm/ScrolledW.h>
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <Xm/Text.h>
#include <pwd.h>

typedef struct {
String login;
int uid;
String name;
String homedir;

} UserInfo;

/* use getpwent() to read data in the password file to store
** information about all the users on the system. The list is
** a dynamically grown array, the last of which has a NULL login.
*/

UserInfo *getusers(void)
{

/* extern struct *passwd getpwent(); */
extern char *strcpy();
struct passwd *pw;
UserInfo *users = NULL;
int n;

* XtVaAppInitialize() is considered deprecated in X11R6.

Motif Programming Manual 327

Chapter 10: ScrolledWindows and ScrollBars

setpwent();

/* getpwent() returns NULL when there are no more users */
for (n = 0; pw = getpwent(); n++) {

/* reallocate the pointer to contain one more entry. You may choose
** to optimize by adding 10 entries at a time, or perhaps more?
*/
users = (UserInfo *) XtRealloc ((char *) users,

(n+1) * sizeof (UserInfo));
users[n].login = strcpy (XtMalloc (strlen (pw->pw_name)+1),

pw->pw_name);
users[n].name = strcpy (XtMalloc (strlen (pw->pw_gecos)+1),

pw->pw_gecos);
users[n].homedir = strcpy (XtMalloc (strlen (pw->pw_dir)+1),

pw->pw_dir);
users[n].uid = pw->pw_uid;

}

/* allocate one more item and set its login string to NULL */
users = (UserInfo *) XtRealloc ((char *) users,

(n+1) * sizeof (UserInfo));
users[n].login = NULL;
endpwent();

return users; /* return new array */
}

main (int argc, char *argv[])
{

Widget toplevel, sw, main_rc, form, toggle, child;
XtAppContext app;
UserInfo *users;
Arg args[10];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
/* Create a 500x300 scrolled window. This value is arbitrary,
** but happens to look good initially. It is resizable by the user.
*/
n = 0;
XtSetArg (args[n], XmNwidth, 500); n++;
XtSetArg (args[n], XmNheight, 300); n++;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
sw = XmCreateScrolledWindow (toplevel, "scrolled_w", args, n);

/* RowColumn is the work window for the widget */
main_rc = XmCreateRowColumn (sw, "main_rc", NULL, 0);

/* load the users from the passwd file */
if (!(users = getusers())) {

perror ("Can't read user data info");

Chapter 10: ScrolledWindows and ScrollBars

328 Motif Programming Manual

exit (1);
}

/* for each login entry found in the password file, create a
** form containing a toggle button, two labels and a text widget.
*/
while (users->login) {

/* NULL login terminates list */
char uid[8];

form = XmCreateForm (main_rc, ““, NULL, 0);

n = 0;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_BEGINNING); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNrightPosition, 15); n++;
child = XmCreateToggleButton (form, users->login, args, n);
XtManageChild (child);

sprintf (uid, "%d", users->uid);
n = 0;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_END); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNleftPosition, 15); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNrightPosition, 20); n++;
child = XmCreateLabelGadget (form, uid, args, n);
XtManageChild (child);

n = 0;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_BEGINNING); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNleftPosition, 20); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNrightPosition, 50); n++;
child = XmCreateLabelGadget (form, users->name, args, n);
XtManageChild (child);

/* Although the home directory is readonly, it may be longer
** than expected, so don't use a Label widget. Use a Text widget
** so that left-right scrolling can take place.
*/
n = 0;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNleftPosition, 50); n++;

Motif Programming Manual 329

Chapter 10: ScrolledWindows and ScrollBars

XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNvalue, users->homedir); n++;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
child = XmCreateText (form, users->homedir, args, n);
XtManageChild (child);

XtManageChild (form);
users++;

}

XtManageChild (main_rc);
XtManageChild (sw);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

Those of you who are familiar with UNIX programming techniques should find the use of
getpwent() and endpwent() quite familiar. If you are not aware of these functions, you
should consult the documentation for your UNIX system. In short, they can be used to
return information about the contents of the password file (typically /etc/passwd), which
contains information about all of the users on the system. The first call to getpwent()
opens the password file and returns a data structure describing the first entry. Subsequent
calls return consecutive entries. When the entries have been exhausted, getpwent()
returns NULL and endpwent() closes the password file. In Example 10-1, the information
from the password file is represented using ToggleButtons, Labels, and Text widgets, as
shown in Figure 10-2.

The components in the program do not have any functionality; the program is used solely
to demonstrate how panels of arbitrary widgets can be displayed in a ScrolledWindow. The

Figure 10-2: Output of the getusers program

Chapter 10: ScrolledWindows and ScrollBars

330 Motif Programming Manual

widget hierarchy is irrelevant to the operation of the ScrolledWindow. In this particular
case, the ScrolledWindow is a child of the top-level shell. We could have used a
MainWindow widget in place of a ScrolledWindow; these two components are
interchangeable because the MainWindow is subclassed from the ScrolledWindow. See
Chapter 4, The Main Window, for more details on how the MainWindow widget fits into
the design of an application.

We used arbitrary values for the width and height of the ScrolledWindow; they were chosen
because they seemed to work best. If you are using a ScrolledWindow with a number of
other widgets in an interface, you do not need to specify an initial size for the
ScrolledWindow. Since the ScrolledWindow is extremely flexible, you can allow its parent
or its siblings to control its size. ScrolledWindows work well with PanedWindows because
they can be adjusted easily. However, the ScrolledWindow does not have a sensible default
size, so you should provide an initial geometry if the ScrolledWindow is going to control
its own size. In this case, the size that you choose for the widget should be based on the
aesthetics of the data that is being displayed.

In the example, the child of the ScrolledWindow is the main_rc widget, which is a
RowColumn that contains all of the children that represent the password file information.
After getusers() is called, the program loops through each item in the array of
UserInfo structures and creates a Form widget that contains a ToggleButton, two Labels,
and a Text widget. All of the Forms are stacked vertically on top of one another in the
RowColumn.Once complete, the user can scroll around and access any of the elements
without the application having to support any of the scrolling mechanisms because they are
completely automated by the toolkit. In most cases, an application does not need to do
anything other than what we described in this section to take advantage of automatic
scrolling.

Working With ScrollBars
The ScrollBar is the backbone of the ScrolledWindow. Although the ScrollBar is a stand
alone widget that can be created and manipulated without being the child of a
ScrolledWindow, we are not going to discuss this usage because it is not consistent with
the Motif Style Guide . The kinds of things that you can do with a ScrollBar
individually are no more interesting than the sorts of things that you can do with them as
children of ScrolledWindows, anyway. We are going to discuss how to control a ScrollBar
directly from an application in the context of a ScrolledWindow widget. This information
is useful if you want to monitor scrolling, if you want to fine-tune the way that automatic
scrolling is handled, or if you want to implement application-defined scrolling.

Before we begin, it is important to understand that the ScrollBar does not handle scrolling
itself. The widget merely reports scrolling actions through its callback routines. It is up to
the internals of an application or a widget to install callback procedures on the ScrollBar

Motif Programming Manual 331

Chapter 10: ScrolledWindows and ScrollBars

that adjust the work window appropriately. The ScrollBar manages its own display in
accordance with scrolling actions, so you do not need to update the ScrollBar’s display
unless the underlying data of the object being scrolled changes. To change the display, you
can set resources that are associated with the different elements of the ScrollBar. Figure 10-
3 illustrates the design of a ScrollBar and identifies its elements. This figure represents a
vertical ScrollBar; a ScrollBar can also be oriented horizontally.

The appearance and behavior of a ScrollBar is directly related to the object that it scrolls.
The relationship between the ScrollBar and the object it scrolls is proportional, so that the
size of the slider in the ScrollBar represents how much of the object that is being scrolled
is visible in the clip window. The size of the object being scrolled is broken down into
equally sized units; the size of the units is called the unit length. When the user clicks on
one of the incremental arrows (also called directional arrows), the ScrollBar scrolls in the
direction indicated by the arrow in unit increments. It is important to realize that the unit
length is stored and interpreted internally by the object being scrolled; it is of no interest to
the ScrollBar itself, since it does not affect the display of the ScrollBar. While this value is
not set on the ScrollBar itself, it plays a key role in understanding how ScrollBars work. All
of the other resource values for the ScrollBar are measured in terms of the unit length. A
Text widget might set its unit length for the vertical ScrollBar to the height of the tallest
character in the widget’s font set, plus some margin for whitespace on the top and bottom
of the character. As a result, vertical scrolling adjusts the window so that the text is always
displayed without lines being partially obscured. However, it is the Text widget’s
responsibility to know the unit length value. The unit length for the horizontal ScrollBar
unit length might be the average width of the characters in the font that is being used.

The value of a ScrollBar is the offset, measured in unit lengths, of the data in the clip
window from the object’s origin. For example, if the top of the clip window displays the
fourth line of text in a Text widget, the ScrollBar is said to have a value of 3, since it is
offset from 0. Clicking and dragging the slider directly changes the ScrollBar’s value to an
absolute number; clicking on either of the directional arrows changes the ScrollBar’s value

Figure 10-3: Elements of a ScrollBar

Incremental Arrow

SliderScrolling Region

Chapter 10: ScrolledWindows and ScrollBars

332 Motif Programming Manual

incrementally; clicking in the scrolling region, but not on the slider itself changes the
ScrollBar’s value by page lengths. The value is measured in units, not pixels.

The view length is the size of the viewable area (clip window), as measured in unit lengths.
The vertical ScrollBar for a Text widget that is displaying 15 lines of text would have a
view length of 15. The horizontal ScrollBar’s view length would be the number of columns
that the clip window can display.

The page length is measured in unit lengths and is usually one less than the view length. If
the user scrolls the window by a page increment, the first line from the old view is retained
as the last line in the new view for visual reference because otherwise, the user might lose
her orientation.

Resources
Figure 9-4 illustrates the relationship between the elements listed above and introduces the
ScrollBar resources that correspond to these values.

The XmNincrement resource represents the number of units that the ScrollBar reports
having scrolled when the user clicks on its incremental arrows. The value for
XmNincrement in Figure 10-4 is 1 because each incremental scroll on the vertical
ScrollBar should scroll the text one line. Internally, the Text widget knows that the number
of pixels associated with XmNincrement is the height of a line. For an automatic
ScrolledWindow, it is rare to set the resource to any value other than 1.

The XmNpageIncrement resource specifies the number of units that the ScrollBar should
report having scrolled when the user moves the ScrollBar by a page. Again, the ScrollBar
doesn’t actually perform the scrolling, it just reports the scrolling action. However, the

Figure 10-4: Conceptual relationship between a ScrollBar and the object that it scrolls

1
2

3

1 Length (XmNmaximum)
2 Page Length (XmNpageIncrement)
3 View Length (XmNsliderSize)

line height is (one)
unit length
(XmNincrement)

Value
(XmNvalue)

Motif Programming Manual 333

Chapter 10: ScrolledWindows and ScrollBars

ScrollBar does use this value to calculate the new visual position for the slider within the
scrolling area and to update its display. The application can use this value, multiplied by
pixels-per-unit, to determine the new data to display in the work window.

The XmNmaximum resource is the largest size, measured in unit increments, that the object
can have. For the Text widget shown above, the value for XmNmaximum is 9.* The
XmNminimum resource is the smallest size, measured in unit increments, that the object will
ever have. The XmNsliderSize resource corresponds to the view length. The resource
specifies the size of the clip window in unit lengths. For example, in Figure 10-4, the clip
window can display six lines, so XmNsliderSize is 6.

The XmNvalue is the number of units that the data in the clip window is offset from the
beginning of the work window. For example, if the Text widget has been scrolled down by
four lines from the top, the value of the vertical ScrollBar’s XmNvalue resource would be
4.

Example 10-2 demonstrates how the vertical ScrollBar resources get their values from a
typical ScrolledText object.†

Example 10-2. The simple_sb.c program

/* simple_sb.c -- demonstrate the Scrollbar resource values from
** a ScrolledText object. This is used as an introductory examination
** of the resources used by Scrollbars.
*/
#include <Xm/ScrolledW.h>
#include <Xm/RowColumn.h>
#include <Xm/PushBG.h>
#include <Xm/Text.h>

/* print the "interesting" resource values of a scrollbar */
void get_sb (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget scrollbar = (Widget) client_data;
int increment=0, maximum=0, minimum=0;
int page_incr=0, slider_size=0, value=0;

XtVaGetValues (scrollbar, XmNincrement,&increment,
XmNmaximum, &maximum,
XmNminimum, &minimum,
XmNpageIncrement,&page_incr,
XmNsliderSize, &slider_size,
XmNvalue, &value,
NULL);

printf ("increment=%d, max=%d, min=%d, page=%d, slider=%d, value=%d\
n",

* The Motif Text widget sets its horizontal ScrollBar’s XmNmaximum to the number of characters in its widest vis-
ible line, rather than the widest of all of its lines.

† XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 10: ScrolledWindows and ScrollBars

334 Motif Programming Manual

increment, maximum, minimum, page_incr, slider_size, value);
}

main (int argc, char *argv[])
{

Widget toplevel, rowcol, text_w, pb, sb;
XtAppContext app;
Arg args[10];
int n = 0;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
/* RowColumn contains ScrolledText and PushButton */
rowcol = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);

XtSetArg (args[n], XmNrows, 10); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNscrollHorizontal, False); n++;
XtSetArg (args[n], XmNwordWrap, True); n++;
text_w = XmCreateScrolledText (rowcol, "text_w", args, n);
XtManageChild (text_w);

/* get the scrollbar from ScrolledWindow associated with Text widget */
XtVaGetValues (XtParent (text_w), XmNverticalScrollBar, &sb, NULL);

/* provide a pushbutton to obtain the scrollbar's resource values */
pb = XmCreatePushButtonGadget (rowcol, "Print ScrollBar Values", NULL,

0);
XtAddCallback (pb, XmNactivateCallback, get_sb, sb);
XtManageChild (pb);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

Motif Programming Manual 335

Chapter 10: ScrolledWindows and ScrollBars

This program simply displays a ScrolledText object and a PushButton. The ScrolledText
object does not contain any text by default; you can cut and paste some text into the object.
The graphical output of the program is displayed in Figure 10-5.

When the PushButton is activated, it retrieves some resource values from the vertical
ScrollBar of the Text widget’s ScrolledWindow. These values are output to stdout. The
following output shows some possible values for the different resources:

increment=1, max=12, min=0, page=9, slider=10, value=0
increment=1, max=12, min=0, page=9, slider=10, value=1
increment=1, max=25, min=0, page=9, slider=10, value=6
increment=1, max=25, min=0, page=9, slider=10, value=12
increment=1, max=25, min=0, page=9, slider=10, value=15

The value for XmNincrement is always 1, which indicates that the incremental arrow
buttons scroll the text by one unit in either direction. The value for XmNmaximum changes
according to the number of lines of text that there are in the window. The value of
XmNminimum is always 0 because this object can have as few as zero lines of text.

The values for XmNsliderSize and XmNpageIncrement are10 and 9, respectively. The
values never changed because the ScrolledWindow was not resized. If it had been, the
slider size and page increment values would have changed to match the new number of
lines displayed in the window. The page increment is one less than the number of lines that
can be displayed in the clip window, so that if the user scrolls by a page, the new view
contains at least one of the previously-viewed lines for reference.

The value for XmNvalue varies depending on the line that is displayed at the top of the clip
window. If the beginning of the text is displayed, XmNvalue is 0. As the user scrolls
through the text, the value for XmNvalue increases or decreases, but it is always a positive
value.

Incidentally, you can adjust these resource values to get some different results. For
example, you could set the XmNincrement resource to 2 in order to modify the number of
lines that are scrolled when the user selects the incremental arrows. However, you should
not change these resources arbitrarily, as you could really confuse the user.

Figure 10-5: Output of the simple_sb program

Chapter 10: ScrolledWindows and ScrollBars

336 Motif Programming Manual

As mentioned at the beginning of this section, the most important thing to remember about
the ScrollBar widget is that it does not cause any actual scrolling of the object in the work
window. The widget merely reports scrolling activity through its callback routines. When
scrolling occurs, it is the callback routines that are responsible for modifying the data in the
work window, by adjusting elements or redrawing the image. The ScrollBar updates its
own display according to the scrolling action. If the widget or the application that owns the
callback routines fails to modify the display, the user will see an inconsistency between the
ScrollBar display and the data in the clip window.

Orientation
Two ScrollBar resources that are closely related are XmNorientation and
XmNprocessingDirection . These resources specify the horizontal or vertical
orientation of the ScrollBar and its normal processing direction. The value for
XmNorientation can be either XmHORIZONTAL or XmVERTICAL. When a ScrollBar is
oriented horizontally, the normal processing direction for it is such that the minimum value
is on the left and the maximum is on the right. When the orientation is vertical, the
minimum is on the bottom and the maximum is on the top. You can change the processing
direction using the XmNprocessingDirection resource. This resource can have the
following values:

XmMAX_ON_LEFT XmMAX_ON_RIGHT
XmMAX_ON_TOP XmMAX_ON_BOTTOM

These values only need to be changed when the user’s environment is such that the natural
language for the locale is read from right-to-left. In this case, the
XmNscrollBarPlacement resource for the ScrolledWindow needs to be changed to
match the processing direction. This resource can have the following values:

XmTOP_LEFT XmTOP_RIGHT
XmBOTTOM_LEFT XmBOTTOM_RIGHT

Visual and Input Resources
The ScrollBar is generally used as an input-output component: the slider displays the
relationship between the viewport and the underlying work area, the user moves the slider
to move the viewport. The ScrollBar however can be used as a read-only component, and
has resources to modify its visuals depending upon the required presentation. A read-only
ScrollBar can be effected by setting the XmNeditable resource to False .

Usually, a ScrollBar has a slider which moves unattached to the ends of the trough. It is
possible to make one end of the slider attached so that the ScrollBar behaves like an old-
fashioned spirit thermometer. The resource to modify for this behavior is
XmNslidingMode * : the default is XmSLIDER, which gives the familiar unfixed slider. A
value of XmTHERMOMETER fixes the slider at one end.

Motif Programming Manual 337

Chapter 10: ScrolledWindows and ScrollBars

The general appearance of the slider itself can be modified through the XmNsliderMark *

resource. The possible values are: XmETCHED_LINE, XmNONE, XmROUND_MARK,
XmTHUMB_MARK. XmNONE simply draws a rectangle in the foreground color of the widget.

Figure 10-6 shows the effect of setting this resource to the various values.

The coloration algorithm of the slider is configurable through the XmNsliderVisual †

resource. The choices are between painting in the widget’s trough color (XmTROUGH), in the
background color (XmBACKGROUND_COLOUR), in the foreground (XmFOREGROUND), or in
a shadowed background (XmSHADOWED_BACKGROUND).

The arrows at the ends of the ScrollBar can also be configured. The resource
XmNshowArrows‡ can be set to display arrows on either end (XmEACH_SIDE), the arrows

* XmNslidingMode is available from Motif 2.0 onwards.

* XmNsliderMark is available from Motif 2.0 onwards.

† XmNsliderVisual is available fro Motif 2.0 onwards.

‡ In Motif 1.2, XmNshowArrows is a simple Boolean: show both arrows, or neither.

XmNONE XmROUND_MARK

XmTHUMB_MARKXmETCHED_LINE

Figure 10-6: The various settings of the XmNsliderMark resource

Chapter 10: ScrolledWindows and ScrollBars

338 Motif Programming Manual

at the maximum end (XmMAX_SIDE), the arrows at the minimum end (XmMIN_SIDE), or no
arrows at all (XmNONE). Figure 10-7 shows the various arrangements.

Most of the visual resources mentioned in this section are utilized by the Scale widget,
which internally uses a ScrollBar to display the widget value.

Callback Routines
The callback routines associated with the ScrollBar are its only links into the internal
mechanisms that actually scroll the data. You can use these callback routines in various
contexts, depending on what you want to accomplish. For example, you can monitor
scrolling in an automatic or semi-automatic ScrolledWindow, such as a ScrolledText or
ScrolledList object. These two activities are identical when it comes to the implementation
of what we are about to describe. You can also implement application-defined scrolling,
which requires intimate knowledge of the internals of the object being scrolled.

There are different parts of a ScrollBar that the user can manipulate to cause a scrolling
action. In fact, each part of the ScrollBar has a separate callback routine associated with it.
These callback routines are used both to monitor automatic (or semi-automatic) scrolling
and to implement application-defined scrolling. As with all Motif callbacks, the callback
routines take the form of an XtCallbackProc . All of the ScrollBar callbacks pass a
structure of type XmScrollBarCallbackStruct for the third parameter. This structure
takes the following form:

typedef struct {
int reason;
XEvent *event;
int value;
int pixel;

} XmScrollBarCallbackStruct;

XmEACH_SIDE

XmMIN_SIDE

XmMAX_SIDE

XmNONE

Figure 10-7: The various settings of the XmNshowArrows resource

Motif Programming Manual 339

Chapter 10: ScrolledWindows and ScrollBars

The reason field specifies the scrolling action performed by the user. Each callback has a
corresponding reason that indicates the action. Table 10-1 lists the callback name, reason,
and scrolling action for each ScrollBar callback resource.

The scrolling action that invokes the various increment and decrement callbacks depends
on the value of the XmNprocessingDirection resource; the table shows the actions for
a left-to-right environment. The XmNvalueChangedCallback is invoked when the user
releases the mouse button after dragging the slider. The callback is also invoked for any of
the other scrolling actions if the corresponding callback resource is not set, with the
exception of the XmNdragCallback . This feature is convenient for cases where you are
handling your own scrolling and you are not concerned with the type of scrolling the user
invoked.

The value field of the callback structure indicates the new position of the ScrollBar. This
value can range from XmNminimum to XmNmaximum. The pixel field indicates the x or y
coordinate of the mouse location relative to the origin of the ScrollBar for the
XmNtoTopCallback , XmNtoBottomCallback , and XmNdragCallback routines. The
origin is the top of a vertical ScrollBar or the left side of a horizontal ScrollBar, regardless
of the value of XmNprocessingDirection .

Example 10-3 demonstrates how a callback routine can be hooked up to each of the
callback resources to allow you to monitor the scrolling in a List widget more precisely. For
Text and List widgets, you really should not be using the callback routines to change the
default scrolling behavior.*

Table 1-1. Callback Resources for the ScrollBar Widget

Resource Name Reason Action

XmNincrementCallback XmCR_INCREMENT Top or right directional arrow
clicked

XmNdecrementCallback XmCR_DECREMENT Bottom or left directional ar-
row clicked

XmNpageIncrementCallback XmCR_PAGE_INCREMENT Area above or right of slider
clicked

XmNpageDecrementCallback XmCR_PAGE_DECREMENT Area below or left of slider
clicked

XmNtoTopCallback XmCR_TO_TOP Top or right directional arrow
CTRL-clicked

XmNtoBottomCallback XmCR_TO_BOTTOM Bottom or left directional ar-
row CTRL-clicked

XmNdragCallback XmCR_DRAG Slider dragged

XmNvalueChangedCallback XmCR_VALUE_CHANGED Value changed (see explana-
tion)

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 10: ScrolledWindows and ScrollBars

340 Motif Programming Manual

Example 10-3. The monitor_sb.c program

/* monitor_sb.c -- demonstrate the ScrollBar callback routines by
** monitoring the ScrollBar for a ScrolledList. Functionally, this
** program does nothing. However, by tinkering with the Scrolled
** List and watching the output from the ScrollBar's callback routine,
** you'll see some interesting behavioral patterns. By interacting
** with the *List* widget to cause scrolling, the ScrollBar's callback
** routine is never called. Thus, monitoring the scrolling actions
** of a ScrollBar should not be used to keep tabs on exactly when
** the ScrollBar's value changes!
*/
#include <Xm/List.h>

/* print the interesting resource values of a scrollbar */
void scroll_action (Widget scrollbar, XtPointer client_data,

XtPointer call_data)
{

XmScrollBarCallbackStruct *cbs =
(XmScrollBarCallbackStruct *) call_data;

printf ("cbs->reason: %s, cbs->value = %d, cbs->pixel = %d\n",
cbs->reason == XmCR_DRAG? "drag" :
cbs->reason == XmCR_VALUE_CHANGED? "value changed" :
cbs->reason == XmCR_INCREMENT? "increment" :
cbs->reason == XmCR_DECREMENT? "decrement" :
cbs->reason == XmCR_PAGE_INCREMENT? "page increment" :
cbs->reason == XmCR_PAGE_DECREMENT? "page decrement" :
cbs->reason == XmCR_TO_TOP? "top" :
cbs->reason == XmCR_TO_BOTTOM? "bottom" : "unknown",
cbs->value, cbs->pixel);

}

main (int argc, char *argv[])
{

Widget toplevel, list_w, sb;
XtAppContext app;
char *items = "choice0, choice1, choice2, choice3, choice4, \

choice5, choice6, choice7, choice8, choice9, \
choice10, choice11, choice12, choice13, \
choice14";

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL, 0);
list_w = XmCreateScrolledList (toplevel, "list_w", NULL, 0);
XtVaSetValues (list_w,

/* Rather than convert the entire list of items into an array
** of compound strings, let's just let Motif's type converter
** do it and save lots of effort (although not much time).
*/
XtVaTypedArg, XmNitems, XmRString, items, strlen (items)+1,
XmNitemCount, 15,
XmNvisibleItemCount, 5,

Motif Programming Manual 341

Chapter 10: ScrolledWindows and ScrollBars

NULL);
XtManageChild (list_w);

/* get the scrollbar from ScrolledWindow associated with Text widget */
XtVaGetValues (XtParent (list_w), XmNverticalScrollBar, &sb, NULL);

XtAddCallback (sb, XmNvalueChangedCallback, scroll_action, NULL);
XtAddCallback (sb, XmNdragCallback, scroll_action, NULL);
XtAddCallback (sb, XmNincrementCallback, scroll_action, NULL);
XtAddCallback (sb, XmNdecrementCallback, scroll_action, NULL);
XtAddCallback (sb, XmNpageIncrementCallback, scroll_action, NULL);
XtAddCallback (sb, XmNpageDecrementCallback, scroll_action, NULL);
XtAddCallback (sb, XmNtoTopCallback, scroll_action, NULL);
XtAddCallback (sb, XmNtoBottomCallback, scroll_action, NULL);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The program displays a simple ScrolledList that contains 15 entries, as shown in Figure 10-
8.

The entries in the List are not important; the way that the ScrollBar reacts to the user’s
interaction is what is interesting. The following output shows what happens when the user
scrolls the List:

cbs->reason: increment, cbs->value = 1, cbs->pixel = 0
cbs->reason: page increment, cbs->value = 5, cbs->pixel = 0
cbs->reason: drag, cbs->value = 6, cbs->pixel = 46
cbs->reason: drag, cbs->value = 7, cbs->pixel = 50
cbs->reason: value changed, cbs->value = 7, cbs->pixel = 50
cbs->reason: decrement, cbs->value = 6, cbs->pixel = 0
cbs->reason: top, cbs->value = 0, cbs->pixel = 11

If you use the keyboard to select elements or scroll around in the list, you’ll notice that the
callbacks for the ScrollBar are not invoked because the List widget is taking all of the
keyboard events from the ScrollBar. Like any other widget, the ScrollBar can receive
keyboard events, and it even has translations to map certain key sequences to scrolling
actions. However, the List widget sets XmNtraversalOn to False for the ScrollBar, so
that the List can process its own keyboard actions, some of which scroll the window. The
Text widget does the same thing with its ScrollBars. As a result, there is a limit to what you

Figure 10-8: Output of the monitor_sb program

Chapter 10: ScrolledWindows and ScrollBars

342 Motif Programming Manual

can accomplish by monitoring ScrollBar actions on semi-automatic scrolling objects like
List and Text widgets.

Implementing True Application-defined
Scrolling

In this section, we pull together what we’ve learned in this chapter and put it to work to
implement application-defined scrolling. We are going to use an example that displays a
large number of individual bitmaps in a ScrolledWindow, so that the user can view all of
the bitmaps by scrolling the window. The intent is to make the appearance and functionality
of the ScrolledWindow mimic the automatic scrolling mode as much as possible.

There are actually several ways to go about writing this program, depending on the
constraints that we impose. The simplest method is to render each bitmap into one large
pixmap and use that pixmap as the XmNlabelPixmap for a Label widget. The Label
widget can then be used as the work window for an automatic ScrolledWindow. This
design is similar to most of the other examples of ScrolledWindows used throughout the
book. However, we want to add a constraint such that each incremental scrolling action
causes the display to shift by one bitmap cell, so that the top and left sides of the viewport
always show a full bitmap. In other words, no partially-displayed bitmaps are allowed.
Furthermore, when the user drags the slider, we want the display to scroll in cell-
increments, not pixel-by-pixel.

The constraints that we just described define the behavior that the List and Text widgets use
for their own displays. Like those widgets, our example program has a conceptual unit size
that is represented by the object being scrolled. For the Text and List widgets, the unit size
is the height and width of the font used by the entries. For our bitmap viewer, the heights
and widths of the bitmaps vary more dramatically than the characters in a font, so for
consistency, the unit size is set to the largest of all of the bitmaps. The design of our
program is based on the same principles used by the ScrolledWindow’s automatic scrolling
method. Only in this case, we are going to do the work ourselves. The reason that we need
to use application-defined scrolling is that the automatic scrolling method cannot support
the scrolling constraints described above; there is no way to change the number of pixels
per scrolling unit with an automatic ScrolledWindow.

In our implementation, the work window is a DrawingArea widget whose size is
constrained by the size of the viewport in the ScrolledWindow. Initially, the
ScrolledWindow sizes itself to the size of the DrawingArea widget, but once the program
is running, the size of the DrawingArea is changed by the ScrolledWindow as it is resized.
The bitmaps are rendered into a large pixmap, which is rendered into the DrawingArea in
connection with scrolling actions. The offset of the pixmap and how much of it is copied
into the DrawingArea is controlled by the application, following the same algorithm that
the ScrolledWindow uses in automatic scrolling mode. The only difference is that we can

Motif Programming Manual 343

Chapter 10: ScrolledWindows and ScrollBars

adjust for the pixels-per-unit value, whereas the automatic ScrolledWindow is only aware
of single-pixel units.

Proper scrolling is not a particularly difficult problem to solve, as it only involves simple
arithmetic. The real problem is handling the case where the user or the application causes
the ScrolledWindow to resize, since this action changes all of the variables in the
calculation. When resizing happens, the ScrolledWindow passes that resizing onto the
DrawingArea widget, which must recalculate its size and update the ScrollBar resources so
that the display and the graphic representation match. Basically, the program has to solve
four independent problems:

1. Read the bitmaps and load them into a sufficiently large pixmap.

2. Create the ScrolledWindow, a DrawingArea widget, and two ScrollBars; the program
must initialize each of these widgets’ resources so that the ratio between their sizes and
the size of the pixmap is consistent.

3. Set up a callback routine for the ScrollBars to respond to scrolling actions.

4. Provide a callback routine for the DrawingArea widget’sXmNresizeCallback that
updates all of the widgets’ resources according to the new ratio between the widgets
and the pixmap.

Although each of these problems has a simple solution, when combined the general
solution becomes quite complex. Rather than trying to solve each problem individually, a
well-designed application integrates the solutions to the problems into a single, elegant
design. Example 10-4 demonstrates our implementation of the bitmap viewer. Although the
program is quite long, you can follow along with the comments embedded in the code to
understand what is going on.*

Example 10-4. The app_scroll.c program

/* app_scroll.c - Displays bitmaps specified on the command line. All
** bitmaps are drawn into a pixmap, which is rendered into a DrawingArea
** widget, which is used as the work window for a ScrolledWindow. This
** method is only used to demonstrate application-defined scrolling for
** the motif ScrolledWindow. Automatic scrolling is much simpler, but
** does not allow the programmer to impose incremental scrolling units.
**
** Bitmaps are displayed in an equal number of rows and columns if possible.
**
** Example:
** app_scroll /usr/X11R6/include/X11/bitmaps/*
*/

#include <stdio.h>
#include <strings.h>

* XtVaAppInitialize () is considered deprecated in X11R6. XmScrolledWindowSetAreas () is deprecated
in Motif 2.0.

Chapter 10: ScrolledWindows and ScrollBars

344 Motif Programming Manual

#include <Xm/ScrolledW.h>
#include <Xm/DrawingA.h>
#include <Xm/ScrollBar.h>

#ifdef max /* just in case--we don't know, but these are commonly set */
#undef max /* by arbitrary unix systems. Also, we cast to int! */
#endif

/* redefine "max" and "min" macros to take into account "unsigned" values */
#define max(a,b) ((int)(a)>(int)(b)?(int)(a):(int)(b))
#define min(a,b) ((int)(a)<(int)(b)?(int)(a):(int)(b))

/* don't accept bitmaps larger than 100x100.. This value is arbitrarily
** chosen, but is sufficiently large for most images. Handling extremely
** large bitmaps would eat too much memory and make the interface awkward.
**/

#define MAX_WIDTH 100
#define MAX_HEIGHT 100
typedef struct {

char *name;
int len; /* strlen(name) */
unsigned int width, height;
Pixmap bitmap;

} Bitmap;

/* get the integer square root of n -- used to calculate an equal
** number of rows and columns for a given number of elements.
*/
int int_sqrt (register int n)
{

register int i, s = 0, t;
for (i = 15; i >= 0; i--) {

t = (s | (1L << i));
if (t * t <= n)

s = t;
}
return s;

}

/* Global variables */
Widget drawing_a, vsb, hsb;
Pixmap pixmap; /* used as the image for DrawingArea widget */
Display *dpy;
Dimension view_width = 300, view_height = 300;
int rows, cols;
unsigned int cell_width, cell_height;
unsigned int pix_hoffset, pix_voffset, sw_hoffset, sw_voffset;
void redraw(Window);

main (int argc, char *argv[])
{

extern char *strcpy();
XtAppContext app;

Motif Programming Manual 345

Chapter 10: ScrolledWindows and ScrollBars

Widget toplevel, scrolled_w;
Bitmap *list = (Bitmap *) NULL;
GC gc;
char *p;
XFontStruct *font;
int i = 0, j = 0, k = 0, total = 0;
unsigned int bitmap_error;
Arg args[6];
void scrolled(Widget, XtPointer, XtPointer);
void expose_resize(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, argv[0], NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
dpy = XtDisplay (toplevel);
font = XLoadQueryFont (dpy, "fixed");
/* load bitmaps from filenames specified on command line */
while (*++argv) {

printf ("Loading \"%s\"...", *argv), fflush (stdout);
if (i == total) {

total += 10; /* allocate bitmap structures in groups of 10 */
if (!(list = (Bitmap *) XtRealloc ((char *) list,

total * sizeof (Bitmap))))
XtError ("Not enough memory for bitmap data");

}
/* read bitmap file using standard X routine. Save the resulting
** image if the file isn't too big.
*/
if ((bitmap_error = XReadBitmapFile (dpy, DefaultRootWindow (dpy),

*argv, &list[i].width, &list[i].height,
&list[i].bitmap, &j, &k)) ==
BitmapSuccess) {

/* Get just the base filename (minus leading pathname)
** We save this value for later use when we caption the bitmap.
*/
if (p = rindex (*argv, '/'))

p++;
else

p = *argv;

if (list[i].width > MAX_WIDTH || list[i].height > MAX_HEIGHT) {
printf ("%s: bitmap too big\n", p);
XFreePixmap (dpy, list[i].bitmap);
continue;

}

list[i].len = strlen (p);
list[i].name = p; /* we'll be getting it later */
printf ("Size: %dx%d\n", list[i].width, list[i].height);
i++;

} else {
printf ("Couldn't load bitmap: \"%s\": ", *argv);

switch (bitmap_error) {

Chapter 10: ScrolledWindows and ScrollBars

346 Motif Programming Manual

case BitmapOpenFailed : puts ("Open failed."); break;
case BitmapFileInvalid : puts ("Bad file format."); break;
case BitmapNoMemory : puts ("Not enough memory.");
break;

}
}

}

if ((total = i) == 0) {
puts ("Couldn't load any bitmaps.");
exit (1);

}
printf ("Total bitmaps loaded: %d\n", total);
/* calculate size for pixmap by getting the dimensions of each. */
printf ("Calculating sizes for pixmap..."),fflush (stdout);
for (i = 0; i < total; i++) {

if (list[i].width > cell_width) cell_width = list[i].width;
if (list[i].height > cell_height) cell_height = list[i].
height;
/* the bitmap's size is one thing, but its caption may exceed it */
if ((j = XTextWidth (font, list[i].name,

list[i].len)) > cell_width)
cell_width = j;

}
/* compensate for font in vertical dimension; add a 6 pixel padding */
cell_height += 6 + font->ascent + font->descent;
cell_width += 6;
cols = int_sqrt (total);
rows = (total + cols-1)/cols;
printf ("Creating pixmap area of size %dx%d (%d rows, %d cols)\n",

cols * cell_width, rows * cell_height, rows, cols);

/* Create a single, 1-bit deep pixmap */
if (!(pixmap = XCreatePixmap (dpy, DefaultRootWindow (dpy),

cols * cell_width + 1,
rows * cell_height + 1, 1)))

XtError ("Can't Create pixmap");
if (!(gc = XCreateGC (dpy, pixmap, NULL, 0)))

XtError ("Can't create gc");
XSetForeground (dpy, gc, 0); /* 1-bit deep pixmaps use 0 as background
*/
/* Clear the pixmap by setting the entire image to 0's */
XFillRectangle (dpy, pixmap, gc, 0, 0,

cols * cell_width, rows * cell_height);
XSetForeground (dpy, gc, 1); /* Set the foreground to 1 (1-bit deep) */
XSetFont (dpy, gc, font->fid); /* print bitmap filenames (captions) */

/* Draw the grid lines between bitmaps */
for (j = 0; j <= rows * cell_height; j += cell_height)

XDrawLine (dpy, pixmap, gc, 0, j, cols * cell_width, j);
for (j = 0; j <= cols * cell_width; j += cell_width)

XDrawLine (dpy, pixmap, gc, j, 0, j, rows*cell_height);
/* Draw each of the bitmaps into the big picture */
for (i = 0; i < total; i++) {

Motif Programming Manual 347

Chapter 10: ScrolledWindows and ScrollBars

int x = cell_width * (i % cols);
int y = cell_height * (i / cols);
XDrawString (dpy, pixmap, gc, x + 5, y + font->ascent,

list[i].name, list[i].len);
XCopyArea (dpy, list[i].bitmap, pixmap, gc, 0, 0, list[i].width,

list[i].height, x + 5,
y + font->ascent + font->descent);

/* Once we copy it into the big picture, we don't need the bitmap */
XFreePixmap (dpy, list[i].bitmap);

}
XtFree ((char *) list); /* don't need the array of structs anymore */
XFreeGC (dpy, gc); /* nor do we need this GC */

/* Create automatic Scrolled Window */
i = 0;
XtSetArg (args[i], XmNscrollingPolicy, XmAPPLICATION_DEFINED); i++;
XtSetArg (args[i], XmNvisualPolicy, XmVARIABLE); i++;
scrolled_w = XmCreateScrolledWindow (toplevel, "scrolled_w", args, i);

/* Create a drawing area as a child of the ScrolledWindow.
** The DA's size is initialized (arbitrarily) to view_width and
** view_height. The ScrolledWindow will expand to this size.
*/
i = 0;
XtSetArg (args[i], XmNwidth, view_width); i++;
XtSetArg (args[i], XmNheight, view_height); i++;
drawing_a = XmCreateDrawingArea (scrolled_w, "drawing_a", args, i);
XtAddCallback (drawing_a, XmNexposeCallback, expose_resize, NULL);
XtAddCallback (drawing_a, XmNresizeCallback, expose_resize, NULL);
XtManageChild (drawing_a);

/* Application-defined ScrolledWindows won't create their own
** ScrollBars. So, we create them ourselves as children of the
** ScrolledWindow widget. The vertical ScrollBar's maximum size is
** the number of rows that exist (in unit values). The horizontal
** ScrollBar's maximum width is represented by the number of columns.
*/
i = 0;
XtSetArg (args[i], XmNorientation, XmVERTICAL); i++;
XtSetArg (args[i], XmNmaximum, rows); i++;
XtSetArg (args[i], XmNsliderSize,

min (view_height / cell_height, rows));
i++;
XtSetArg (args[i], XmNpageIncrement,

max ((view_height / cell_height) - 1, 1));
i++;
vsb = XmCreateScrollBar (scrolled_w, "vsb", args, i);
XtManageChild (vsb);

if (view_height / cell_height > rows)
sw_voffset = (view_height - rows * cell_height) / 2;

i = 0;
XtSetArg (args[i], XmNorientation, XmHORIZONTAL); i++;
XtSetArg (args[i], XmNmaximum, cols); i++;

Chapter 10: ScrolledWindows and ScrollBars

348 Motif Programming Manual

XtSetArg (args[i], XmNsliderSize,
min (view_width / cell_width, cols));

i++;
XtSetArg (args[i], XmNpageIncrement,

max ((view_width / cell_width) - 1, 1));
i++;
hsb = XmCreateScrollBar (scrolled_w, "hsb", args, i);
XtManageChild (hsb);

if (view_width / cell_width > cols)
sw_hoffset = (view_width - cols * cell_width) / 2;

/* Allow the ScrolledWindow to initialize itself accordingly...*/
XtVaSetValues (scrolled_w, XmNhorizontalScrollBar, hsb,

XmNverticalScrollBar, vsb,
XmNworkWindow, drawing_a,
NULL);

/* use same callback for both ScrollBars and all callback reasons */
XtAddCallback (vsb, XmNvalueChangedCallback,

scrolled, (XtPointer) XmVERTICAL);
XtAddCallback (hsb, XmNvalueChangedCallback,

scrolled, (XtPointer) XmHORIZONTAL);
XtAddCallback (vsb, XmNdragCallback,

scrolled, (XtPointer) XmVERTICAL);
XtAddCallback (hsb, XmNdragCallback,

scrolled, (XtPointer) XmHORIZONTAL);

XtManageChild (scrolled_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* React to scrolling actions. Reset position of ScrollBars; call redraw()
** to do actual scrolling. cbs->value is ScrollBar's new position.
*/
void scrolled (Widget scrollbar, XtPointer client_data,

XtPointer call_data)
{

int orientation = (int) client_data; /* XmVERTICAL or XmHORIZONTAL */
XmScrollBarCallbackStruct *cbs =

(XmScrollBarCallbackStruct *) call_data;

if (orientation == XmVERTICAL) {
pix_voffset = cbs->value * cell_height;
if (((rows * cell_height) - pix_voffset) > view_height)

XClearWindow (dpy, XtWindow (drawing_a));
} else {

pix_hoffset = cbs->value * cell_width;
if (((cols * cell_width) - pix_hoffset) > view_width)

XClearWindow (dpy, XtWindow (drawing_a));
}
redraw (XtWindow (drawing_a));

}

Motif Programming Manual 349

Chapter 10: ScrolledWindows and ScrollBars

/* This function handles both expose and resize (configure) events.
** For XmCR_EXPOSE, just call redraw() and return. For resizing,
** we must calculate the new size of the viewable area and possibly
** reposition the pixmap's display and position offsets. Since we
** are also responsible for the ScrollBars, adjust them accordingly.
*/
void expose_resize (Widget drawing_a, XtPointer client_data,

XtPointer call_data)
{

Dimension new_width, new_height, oldw, oldh;
Boolean do_clear = False;
XmDrawingAreaCallbackStruct*cbs =

(XmDrawingAreaCallbackStruct *) call_data;

if (cbs->reason == XmCR_EXPOSE) {
redraw (cbs->window);
return;

}
oldw = view_width;
oldh = view_height;
/* Unfortunately, the cbs->event field is NULL, so we have to have
** get the size of the drawing area manually. A mis-design of
** the DrawingArea widget--not a bug (technically).
*/
XtVaGetValues (drawing_a, XmNwidth, &view_width,

XmNheight, &view_height, NULL);
/* Get the size of the viewable area in "units lengths" where
** each unit is the cell size for each dimension. This prevents
** rounding error for the pix_voffset and pix_hoffset values later.
*/
new_width = view_width / cell_width;
new_height = view_height / cell_height;
/* When the user resizes the frame bigger, expose events are generated,
** so that's not a problem, since the expose handler will repaint the
** whole viewport. However, when the window resizes smaller, no
** expose event is generated. The window does not need to be
** redisplayed if the old viewport was smaller than the pixmap.
** (The existing image is still valid--no redisplay is necessary.)
** The window WILL need to be redisplayed if:
** 1) new view size is larger than pixmap (pixmap needs to be centered).
** 2) new view size is smaller than pixmap, but the OLD view size was
** larger than pixmap.
*/
if ((int) new_height >= rows) {

/* The height of the viewport is taller than the pixmap, so set
** pix_voffset = 0, so the top origin of the pixmap is shown,
** and the pixmap is centered vertically in viewport.
*/
pix_voffset = 0;
sw_voffset = (view_height - rows * cell_height)/2;
/* Case 1 above */
do_clear = True;
/* scrollbar is maximum size */

Chapter 10: ScrolledWindows and ScrollBars

350 Motif Programming Manual

new_height = rows;
} else {

/* Pixmap is larger than viewport, so viewport will be completely
** redrawn on the redisplay. (So, we don't need to clear window.)
** Make sure upper side has origin of a cell (bitmap).
*/
pix_voffset = min (pix_voffset, (rows-new_height) * cell_height);
sw_voffset = 0; /* no centering is done */
/* Case 2 above */
if (oldh > rows * cell_height)

do_clear = True;
}
XtVaSetValues (vsb, XmNsliderSize, max (new_height, 1),

XmNvalue, pix_voffset / cell_height,
XmNpageIncrement, max (new_height-1, 1),
NULL);

/* identical to vertical case above */
if ((int) new_width >= cols) {

/* The width of the viewport is wider than the pixmap, so set
** pix_hoffset = 0, so the left origin of the pixmap is shown,
** and the pixmap is centered horizontally in viewport.
*/
pix_hoffset = 0;
sw_hoffset = (view_width - cols * cell_width)/2;
/* Case 1 above */
do_clear = True;
/* scrollbar is maximum size */
new_width = cols;

} else {
/* Pixmap is larger than viewport, so viewport will be completely
** redrawn on the redisplay. (So, we don't need to clear window.)
** Make sure left side has origin of a cell (bitmap).
*/
pix_hoffset = min (pix_hoffset, (cols-new_width)*cell_width);
sw_hoffset = 0;
/* Case 2 above */
if (oldw > cols * cell_width)

do_clear = True;
}
XtVaSetValues (hsb, XmNsliderSize, max (new_width, 1),

XmNvalue, pix_hoffset / cell_width,
XmNpageIncrement, max (new_width-1, 1),
NULL);

if (do_clear) {
/* XClearWindow() doesn't generate an ExposeEvent */
/* all 0's means the whole window */
XClearArea (dpy, cbs->window, 0, 0, 0, 0, True);

}
}

void redraw (Window window)
{

static GC gc; /* static variables are *ALWAYS* initialized to NULL */
if (!gc) {

Motif Programming Manual 351

Chapter 10: ScrolledWindows and ScrollBars

/* !gc means that this GC hasn't yet been created. */
/* We create our own gc because the other one is based on a 1-bit
** bitmap and the drawing area window might be color (multiplane).
** Remember, we're rendering a multiplane pixmap, not the original
** single-plane bitmaps!
*/
gc = XCreateGC (dpy, window, NULL, 0);
XSetForeground (dpy, gc,

BlackPixelOfScreen (XtScreen (drawing_a)));
XSetBackground (dpy, gc,

WhitePixelOfScreen (XtScreen (drawing_a)));
}

if (DefaultDepthOfScreen (XtScreen (drawing_a)) > 1)
XCopyPlane (dpy, pixmap, window, gc, pix_hoffset, pix_voffset,

view_width, view_height, sw_hoffset, sw_voffset, 1L);
else

XCopyArea (dpy, pixmap, window, gc, pix_hoffset, pix_voffset,
view_width, view_height, sw_hoffset, sw_voffset);

}

The bitmaps to be displayed are specified on the command line, as shown in the following
command:

% app_scroll /usr/X11R6/include/X11/bitmaps/*

The output of this command is shown in Figure 10-9.

The program begins by loading the bitmaps into an array of Bitmap structures that are
specially designed for this application. Since each bitmap can have a different size, we save
all of the information about them for comparison after they are all loaded. At that time, the

Figure 10-9: Output of the app_scroll program

Chapter 10: ScrolledWindows and ScrollBars

352 Motif Programming Manual

largest bitmap is found and its size is used as the cell size for the viewer. The pixmap is
created with a single-plane (a bitmap), since color is not used to render the standard X11
bitmaps when they are created. This pixmap is used as a virtual work window; its contents
are rendered into the real DrawingArea work window.

After the bitmaps are loaded, the ScrolledWindow and DrawingArea are created. The
DrawingArea has XmNexposeCallback and XmNresizeCallback callbacks installed
so that the pixmap can be rendered or repositioned within the DrawingArea at any time.
Resizing does not change the pixmap, but it may cause its origin to be repositioned relative
to the DrawingArea widget. We create the ScrollBars explicitly, since they are not created
automatically when XmNscrollingPolicy is set to XmAPPLICATION_DEFINED. The
ScrollBars are created as children of the ScrolledWindow, as shown in the following
fragment:

XtSetArg (args[i], XmNorientation, XmVERTICAL); i++;
XtSetArg (args[i], XmNmaximum, rows); i++;
XtSetArg (args[i], XmNsliderSize,

min (view_height / cell_height, rows));
i++;
XtSetArg (args[i], XmNpageIncrement,

max ((view_height / cell_height) - 1, 1));
i++;
vsb = XmCreateScrollBar (scrolled_w, "vsb", args, i);
XtManageChild (vsb);

if (view_height / cell_height > rows)
sw_voffset = (view_height - rows * cell_height) / 2;

The ScrollBars are initialized so that the XmNmaximum values are set to the number of rows
and columns in the pixmap. Similarly, XmNsliderSize is set to the number of bitmap
cells that can fit in the viewport in the horizontal and vertical dimensions. Internally, the
application knows how many pixels each scrolling unit represents, since there is no
ScrollBar resource for this value. The variables sw_hoffset and sw_voffset are used
when the pixmap is smaller than the actual ScrolledWindow. In this case, the variables

Motif Programming Manual 353

Chapter 10: ScrolledWindows and ScrollBars

indicate the origin of the pixmap in the DrawingArea, so that the pixmap appears centered,
as shown in Figure 10-10.

The call to XtVaSetValues() specifying the XmNhorizontalScrollBar ,
XmNverticalScrollBar , and XmNworkWindow resources initializes the
ScrolledWindow appropriately. This function assigns the ScrollBars and the DrawingArea
widget to internal variables within the ScrolledWindow, so that the widget functions
properly. While this call is opaque for automatic scrolling, it must be done for application-
defined scrolling.

The ScrollBars are assigned a callback routine for the XmNvalueChangedCallback and
XmNdragCallback callbacks. The scrolled() routine handles all of the scrolling
actions, including incremental and page scrolling, that cause the value of the ScrollBar to
change. We pass the values XmHORIZONTAL and XmVERTICAL as client_data , so that
the routine knows which of the two ScrollBars invoked it. The routine determines the
portion of the pixmap that should be rendered in the DrawingArea by calculating offsets
into the pixmap. These offsets are calculated by multiplying the value of the ScrollBar by
the pixels-per-unit value for the pixmap.

Finally, the top-level widget is realized and the main loop is started. At this point, the
DrawingArea is realized, so the XmNexposeCallback is activated, which causes the
DrawingArea to draw itself and display the first image of the pixmap. The function
expose_resize() handles both the Expose and ConfigureNotify (resize) events.
The function determines which event was delivered by checking the reason field of the
callback structure passed to the function. When the DrawingArea is resized, we need to
adjust a number of resources so that the pixmap is scrolled properly. For Expose events,

Figure 10-10: Output of the app_scroll program when
the viewport is larger than the pixmap

Chapter 10: ScrolledWindows and ScrollBars

354 Motif Programming Manual

no recalculation of variables is necessary, so all we need to do is redraw the display using
redraw() .

The position at which the pixmap is rendered into the DrawingArea’s window is somewhat
complicated to calculate. If the pixmap is larger than the clip window, the clip window acts
as a view into the pixmap, so only a portion of the pixmap can be seen. If the pixmap is
smaller than the clip window, the entire pixmap can be seen, so the pixmap should be
centered in the middle of the viewable area. The application controls this behavior using a
number of global variables.

The view_width and view_height variables represent the dimensions of the
ScrolledWindow, which are also the dimensions of the DrawingArea window. The area
specified by these values is the area of the pixmap that is going to be copied into the
window. The pix_hoffset and pix_voffset variables represent the horizontal and
vertical offsets into the pixmap when it is rendered into the DrawingArea. If the pixmap is
larger than the clip window, these values are calculated in the scrolled() callback
routine when the user performs a scrolling action. If the pixmap is smaller than the
DrawingArea, these values are set to 0 because the origin of the pixmap is always visible.
The sw_hoffset and sw_voffset variables are used when the pixmap is smaller than
the DrawingArea. The values indicate the offsets into the DrawingArea where the entire
pixmap is rendered so that it appears centered in the viewport.

The redraw() routine depends on these variables being set. In order to maintain the
values, the application monitors the sizeof the DrawingArea. When a ConfigureNotify
event occurs on the DrawingArea, the expose_resize() callback routine is invoked.
The routine gets the new dimensions of the DrawingArea so that it can update the six
variables mentioned above. Normally, we can get the new dimensions directly from the
event field of the callback structure. However, the DrawingArea widget invokes the
XmNresizeCallback from within the Resize() method, instead of from an action
routine, so the callback does not have an XEvent structure associated with it.* Since the
event field of the callback structure is set to NULL, we have to get the window’s size in
another way. We use XtVaGetValues() , as shown in the following code fragment:

XtVaGetValues (drawing_a, XmNwidth, &view_width, XmNheight, &view_height,
NULL);

Once we have the dimensions, we need to recalculate the value of the other four variables.
Since our variables represent pixel values, while the ScrollBar resources that we need to set
use an abstract unit size, we must convert between the two types of values using the cell_
width and cell_height values. The variables new_width and new_height represent
the new viewport width and height in ScrollBar units.

* All widget internals have methods that are invoked automatically by the X Toolkit Intrinsics and are not asso-
ciated with the translation tables normally used to handle events. Resize () is one such method. See Volume 4,
X Toolkit Intrinsics Programming Manual, for more information.

Motif Programming Manual 355

Chapter 10: ScrolledWindows and ScrollBars

If the new viewport height exceeds the number of rows in the pixmap, we know that the
height of the viewport exceeds the height of the pixmap. In this case, the value for sw_
voffset is calculated to determine the offset that causes the pixmap to be centered
vertically in the viewport. Since the viewport needs to be completely redisplayed, we set
the local variable do_clear to True . We use this variable instead of calling
XClearWindow() directly because we may have to do it again later when we calculate the
values for the horizontal ScrollBar. The value for new_height is going to be used to set
the XmNsliderSize for the vertical ScrollBar, so we make sure that it does not exceed its
XmNmaximum value.

On the other hand, if the new viewport height does not exceed the total number of rows, we
know that the pixmap is larger than the viewport vertically. The pixmap is not going to be
centered in the DrawingArea, so sw_voffset is set to 0. pix_voffset is set to the
minimum of its existing value and the difference between the total number of rows and the
new height of the viewport. If the viewport used to be bigger than the pixmap, but is now
smaller, we need to clear the window and do a complete redisplay. If the pixmap was bigger
than the viewport and it still is, then we do not need to clear the window because the current
view is still accurate. The different between these two cases is subtle and it is the sort of
thing that you catch only when you test your program thoroughly.

After the calculations are performed, the application sets the XmNsliderSize ,
XmNvalue , and XmNpageIncrement resources for the vertical ScrollBar. The exact
same calculations are done for the horizontal dimension and the same resources are set on
the horizontal ScrollBar. With these resources set, scrolling continues to function properly
when the DrawingArea is resized. When redraw() is called, it uses the global variables
to copy the relevant portion of the full pixmap directly into the DrawingArea. If the
program is running on a color screen, the routine uses XCopyPlane() because the
DrawingArea cannot create a 1-bit deep window on a color screen. (Motif widgets always
create windows of the same depth as the screen on which they reside.) If the application is
run on a monochrome screen, the routine uses XCopyArea() . We determine the depth of
the screen using DefaultDepthOfScreen() .

Incidentally, while we did not use it, XmScrollBarSetValues() could have been used
to set the resources on the ScrollBars. This function takes the following form:

void XmScrollBarSetValues (Widget widget , int value , int slider_size , int
increment , int page_increment , Boolean notify)

The notify parameter specifies whether you want the XmNvalueChangedCallback for
the ScrollBar to be invoked. Using this interface is probably slightly faster than using the
XtVaSetValues() method, but only by a small margin, so we chose to maintain
consistency with our own style. The companion function for XmScrollBarSetValues()
is XmScrollBarGetValues() . This function retrieves the values from the ScrollBar
widget and takes the following form:

Chapter 10: ScrolledWindows and ScrollBars

356 Motif Programming Manual

void XmScrollBarGetValues (Widget widget ;, int * value , int * slider_size , int
* increment , int * page_increment)

Before closing this section, let’s examine what the Text and List widgets do and compare
it with what we have done in Example 10-4. We stated earlier that while we mimic much
of what these widgets do internally, the implementation is quite different. The major
difference is that we are fortunate enough to have all of the bitmaps loaded into a large,
statically-sized pixmap that we can render at will using the redraw() function. This
function is clearly a convenience, since it simply calls XCopyArea() or XCopyPlane()
to copy the pixmap into the DrawingArea using pre-calculated internal variables. The Text
and List widgets do not have this luxury; they must redraw their respective data directly
into the work windows each time they need to redisplay.

If we were to implement the bitmap viewer using this technique, we would have to move
the functionality of the main for loop in main() into redraw() and calculate the location
of each individual bitmap in the DrawingArea. This process is quite painstaking and very
error-prone. If you do not take into account multiple exposures, exposure regions, and other
low-level Xlib functionality, you might run into X performance issues. We didn’t even take
these issues into account in our program. For example, our redraw() routine completely
repaints the entire window for every Expose event. Strictly speaking, repainting is
inefficient and may not perform adequately for all applications, especially graphic-
intensive ones. To avoid this problem, you could come up with a generic set of routines to
handle exposures, so that of all your applications could use the same methodology, but
that’s the point of a toolkit.

Let’s take another look at the PG&E scenario that we discussed at the beginning of the
chapter. As you recall, the problem with that particular situation was that the database could
retrieve 20% of the county (the work window), but the graphic resolution was such that
only 10% of it could be displayed at one time (the viewport). The fundamental problem
with the application-defined scrolling mode is that the work window cannot be a different
size from the viewport. However, we can work around this problem by complying with the
restriction that the work window and viewport are the same size, but we can use the
enlarged pixmap idea from Example 10-4 to accomplish the task. Each database query can
be converted and rendered into a sufficiently large pixmap, which can then be rendered into
the work window as necessary. If the scrolling is small enough, another part of the pixmap
can be rendered into the work window, instead of performing a completely new database
lookup.

Working With Keyboard Traversal in
ScrolledWindows

As we described in Chapter 8, Manager Widgets, manager widgets play a significant role
in handling keyboard traversal mechanisms. As a manager, the ScrolledWindow supports

Motif Programming Manual 357

Chapter 10: ScrolledWindows and ScrollBars

keyboard traversal. However, one significant difference is that the widgets in a
ScrolledWindow may not be visible at all times. There is a callback for the
ScrolledWindow that supports keyboard traversal in a ScrolledWindow. The
XmNtraverseObscuredCallback is invoked when the user attempts to traverse to a
widget that is not visible in a ScrolledWindow. If there is no routine specified for this
callback, an obscured widget cannot be traversed to. An application can use the callback to
cause the ScrolledWindow to make a widget visible, so that it can receive the input focus.
Example 10-5 shows the use of the XmNtraverseObscuredCallback .*

Example 10-5. The traversal.c program

/* traversal.c -- demonstrate keyboard traversal in a ScrolledWindow
** using the XmNtraverseObscuredCallback.
*/
#include <Xm/PushB.h>
#include <Xm/ToggleB.h>
#include <Xm/ScrolledW.h>
#include <Xm/RowColumn.h>

main (int argc, char *argv[])
{

Widget toplevel, sw, rc, child;
XtAppContext app;
void traverse(Widget, XtPointer, XtPointer);
int i;
char name[10];
Arg args[4];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
i = 0;
XtSetArg (args[i], XmNscrollingPolicy, XmAUTOMATIC); i++;
sw = XmCreateScrolledWindow (toplevel, "scrolled_w", args, i);
XtAddCallback (sw, XmNtraverseObscuredCallback, traverse, NULL);

/* RowColumn is the work window for the widget */
i = 0;
XtSetArg (args[i], XmNorientation, XmHORIZONTAL); i++;
XtSetArg (args[i], XmNpacking, XmPACK_COLUMN); i++;
XtSetArg (args[i], XmNnumColumns, 10); i++;
rc = XmCreateRowColumn (sw, "rc", args, i);

for (i = 0; i < 10; i++) {
sprintf (name, "Toggle %d", i);
child = XmCreateToggleButton (rc, name, NULL, 0);
XtManageChild (child);
sprintf (name, "Button %d", i);
child = XmCreatePushButton (rc, name, NULL, 0);

* XtVaAppInitialize() is considered deprecated in X11R6.

Chapter 10: ScrolledWindows and ScrollBars

358 Motif Programming Manual

XtManageChild (child);
}

XtManageChild (rc);
XtManageChild (sw);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void traverse (Widget widget, XtPointer client_data, XtPointer call_data)
{

XmTraverseObscuredCallbackStruct *cbs =
(XmTraverseObscuredCallbackStruct *) call_data;

XmScrollVisible (widget, cbs->traversal_destination, 10, 10);
}

This program creates a bunch of ToggleButtons and PushButtons in a RowColumn widget
that is the work area for a ScrolledWindow. The traverse() routine is installed as the
XmNtraverseObscuredCallback . The call_data parameter to the callback is an
XmTraverseObscuredCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
Widget traversal_destination;
XmTraversalDirection direction;

} XmTraverseObscuredCallbackStruct;

The reason field contains the value XmCR_OBSCURED_TRAVERSAL. The traversal_
destination field specifies the widget that is to receive the input focus and direction
specifies the direction of traversal. The traverse() routine calls XmScrollVisible()
to make the traversal_destination widget visible. This routine takes the following
form:

void XmScrollVisible (Widget scrollw , Widget widget , Dimension hor_margin ,
Dimension ver_margin)

The scrollw parameter specifies the ScrolledWindow widget, while the widget
parameter specifies the widget that is to be made visible. The hor_margin and ver_
margin arguments indicate the margins that are used if the viewport of the
ScrolledWindow needs to be adjusted to make the widget visible. If you run the program
in Example 10-5, you can use the arrow keys to traverse all of the widgets in the
ScrolledWindow.

Summary
The ScrolledWindow provides a convenient interface for displaying large amounts of data
when you have limited screen real estate. For most situations, the automatic scrolling mode
is all that you really need. In this mode, a ScrolledWindow requires very little care and
feeding. By installing callback routines on the ScrollBars, you can even monitor the

Motif Programming Manual 359

Chapter 10: ScrolledWindows and ScrollBars

scrolling actions. However, there are some drawbacks to the automatic scrolling mode: all
of the data must be rendered into the work window widget and scrolling occurs in single-
pixel increments. If the size of the work window that you need is prohibitively large or if
you need to support scrolling in other than single-pixel increments, you must use
application-defined scrolling.

As demonstrated in Example 10-4, there is quite a bit of work involved in supporting real
application-defined scrolling because of the different states in the relationship between the
size of the work window and the underlying data. You must be able to support not only the
underlying data, but also the way it is rendered into the work window, the ScrollBars, and
all of the auxiliary variables required for the scrolling calculations. And that work is just to
support the scrolling functionality. When you introduce the complexity of a real
application, there is a greater chance of a poor design model. The xshowbitmap.c program
in the Appendix A, Additional Example Programs, is fundamentally the same program as
app_scroll.c, but it has been enhanced into more of a real-world program.

Exercises
The following exercises focus on the concepts and methods described in this chapter.

1. In Chapter 11, the programcolor_draw.cused a ScrolledWindow to support a Draw-
ingArea widget that allows the user to draw different colored lines. Although this pro-
gram uses an automatic ScrolledWindow, the work window is constantly updated as
new lines are drawn. However, the lines are actually drawn into a background pixmap,
rather than into the drawing area. The pixmap is copied into the DrawingArea dynam-
ically, which gives the illusion that the user is drawing directly into it. This method of
indirection can be used to provide a way for the user to have two different views into
the same pixmap. Write a program that uses two automatic ScrolledWindows and two
DrawingArea widgets to draw into a single pixmap.

2. The getusers.cexample uses an automatic ScrolledWindow to display a manager
widget that contains many widgets and gadgets. Modify the program to use applica-
tion-defined scrolling, so that the scrolling increment for the vertical ScrollBar is the
sizeof the height of one of the Forms. The Forms all have the same height.

Chapter 10: ScrolledWindows and ScrollBars

360 Motif Programming Manual

Motif Programming Manual 361

Chapter 1

In this chapter:
• Creating a DrawingArea

Widget
• Using DrawingArea

Callback Functions
• Using Translations on a

DrawingArea
• Using Color in a

DrawingArea
• Summary
• Exercises

11
The DrawingArea

Widget
This chapter describes the Motif DrawingArea widget, which provides a canvas for
interactive drawing. The chapter does not try to teach Xlib drawing, but rather it highlights,
with numerous code examples, the difficulties that may be encountered when working with
this widget. The chapter assumes some knowledge of Xlib. See Volume 1, Xlib
Programming Manual, for additional information.

The DrawingArea widget provides a blank canvas for interactive drawing using basic Xlib
drawing primitives. The widget does no drawing of its own, nor does it define or support
any Motif user-interface design style. Since it is subclassed from the Manager widget class,
the DrawingArea widget may also contain other widgets as children, although there is no
regimented layout policy. In short, the DrawingArea is a free-form widget that you can use
for interactive drawing or object placement when conventional user-interface rules do not
apply.

The most intuitive use of the DrawingArea is for a drawing or painting program. Here, the
user can interactively draw geometric objects and paint arbitrary colors. Another
application might used a DrawingArea widget to display a map of a country with
dynamically-drawn line segments representing the flight paths taken by aeroplanes. The
actual aeroplanes could be represented by PushButton widgets displaying pixmaps. Each
aeroplane icon moves dynamically along its flight path unless the user grabs and moves it
interactively in order to change the flight path. Both of these examples demonstrate how
certain applications require visual or interactive interfaces that go beyond the scope of the
structured interface provided by Motif.

In order to support the widest range of uses for the DrawingArea widget, the toolkit
provides callback resources for exposure, configure (resize), and input (button and key
presses) events. Each of these callbacks allows you to install very simple drawing routines
without doing substantial event-handling of your own. Unfortunately, this level of event-
handling support is usually insufficient for most robust applications. As a result, most
applications install direct event handlers or action routines to manage user input. The free-
form nature of the DrawingArea makes it one of the few Motif widgets where you can do

Chapter 11: The DrawingArea Widget

362 Motif Programming Manual

handle events at this level without risking non-compliance with the Motif Style Guide.
(Most Motif widgets either do not allow programmer-installed translations or (silently)
accept only a few override translations for fear that you might inadvertently interfere with
Motif GUI specifications.)

If you are using a DrawingArea as a manager widget, there are two important things to keep
in mind: translation tables and widget layout management. As a Manager widget subclass,
the DrawingArea inherits certain translation and action tables that pass events to gadget
children and handle tab group traversal. Because of the inherited translations, you must be
careful about application-specific translations that you may introduce into particular
instances of the DrawingArea. If you are planning to use the DrawingArea to contain
children and to have those children follow the standard Motif keyboard traversal motions,
you must be careful not to override the existing translations.

However, if you need a manager widget in the conventional sense, you should probably
choose something other than a DrawingArea widget, since the widget has no geometry
management policy of its own. The DrawingArea should probably only be used to manage
children when no structured widget layout policy is needed, as in the airline application. In
this situation, the widget assumes the dual responsibility of managing children and
allowing for application-defined interaction. As a result, there are going to be some
complexities and inconveniences with event handling, since the application is trying to take
advantage of both aspects of the widget simultaneously.

Creating a DrawingArea Widget
Applications that wish to create DrawingArea widgets must include the standard header file
<Xm/DrawingA.h>. To create a DrawingArea widget, you can use the following calls:

Widget drawing_a = XmCreateDrawingArea (parent, "name", resource-value-
array , resource-value-count);

Widget drawing_a = XtCreateWidget (“name”, xmDrawingAreaWidgetClass, parent,
resource-value-list , NULL);

The parent of a DrawingArea must be either some type of Shell or a manager widget. It is
quite common to find a DrawingArea widget as a child of a ScrolledWindow or a
MainWindow, since drawing surfaces tend to be quite large, or at least dynamic in their
growth potential.

If the DrawingArea widget is to have children, you might want to follow the guidelines set
forth in Chapter 8, Manager Widgets, about creating the widget in an unmanaged state. The
widget can be managed with a call to XtManageChild() after its children have been
created. Here we are not going to use the widget as a traditional manager and there is not
going to be a great deal of parent-child interaction involving geometry management.

Motif Programming Manual 363

Chapter 11: The DrawingArea Widget

Using DrawingArea Callback Functions
The DrawingArea widget provides virtually no visual resources and very few functional
ones. The most important resources are those that allow you to provide callback functions
for handling expose, resize, and input events. The DrawingArea is typically input-intensive
and, unlike most of the other Motif widgets, requires the application to provide all of the
necessary redrawing.

The callback routine for the XmNexposeCallback is invoked whenever an Expose event
is generated for the widget. In this callback function, an application must repaint all or part
of the contents of the DrawingArea widget. If an application does not redraw the contents
of the widget, it appears empty, as the widget is cleared automatically. Similarly, the
XmNresizeCallback is called whenever a ConfigureNotify event occurs as a result
of the DrawingArea being resized. The generalized XmNinputCallback is invoked as a
result of every keyboard and button event except button motion events.

As discussed in Chapter 2, The Motif Programming Model, callback routines are invoked
by internal action routines that are an integral part of all Motif widgets. Translation tables
are used to specify X event sequences that invoke the action routines. Action functions
typically invoke the appropriate application callback functions associated with the widget’s
resources.

Most Motif widgets do not allow the application to override or replace their default
translations; the input model that allows the application to conform to the Motif
specifications is not to be overridden by the application. However, because of the free-form
nature of the DrawingArea widget, you are free to override or replace the default translation
tables used for event-handling and notification without non-compliant behavior. If you
install your own translation tables, you can have your action routines invoke callback
routines as is done by the existing DrawingArea actions, or you can have your action
functions do the drawing directly. For even tighter control over event-handling, you can
install event handlers at the X Toolkit Intrinsics level.

There are a number of techniques available for doing event management and we only
demonstrate a few of them in this chapter. The technique you choose is a matter of personal
preference and the intended extensibility of your application. Event handlers involve less
overhead, but translations are user-configurable. Either approach provides more flexibility
than using the default translation table and callback resources of the DrawingArea. See
Volume 4, X Toolkit Intrinsics Programming Manual, for a detailed discussion of
translation tables and action routines and how they are associated with callback functions.

Handling Input Events
Since the callback approach to event handling is the simplest, we’ll begin by discussing that
approach. Example 11-1 shows an extremely simple drawing program that associates a line

Chapter 11: The DrawingArea Widget

364 Motif Programming Manual

drawing function with the XmNinputCallback resource. Pressing any of the pointer
buttons marks the starting point of a line; releasing the button marks the end point. You can
only draw straight lines. Even though the default translation table for the DrawingArea
widget selects key events and these events are passed to the callback function, the callback
function itself ignores them and thus key events have no effect.

To demonstrate the complications inherent in using the DrawingArea widget as a manager,
the program also displays a PushButton gadget that clears the window. A single callback
function, drawing_area_callback() , uses both the reason and the event fields of
the XmDrawingAreaCallbackStruct to determine whether to draw a line or to clear
the window.

This simple application draws directly into the DrawingArea widget; the contents of its
window is not saved anywhere. The program does not support redrawing, since its purpose
is strictly to demonstrate the way input handling can be managed using the
XmNinputCallback . If the window is exposed due to the movement of other windows,
the contents of the window is not redrawn. A more realistic drawing application would need
code to handle both expose and resize actions. The current application simply clears the
window on resize to further illustrate that the DrawingArea does not retain what is in its
window.*

Example 11-1. The drawing.c program

/* drawing.c -- extremely simple drawing program that introduces
** the DrawingArea widget. This widget provides a window for
** drawing and some callbacks for getting input and other miscellaneous
** events. It's also a manager, so it can have children.
** There is no geometry management, though.
*/
#include <Xm/DrawingA.h>
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>

main (int argc, char *argv[])
{

Widget toplevel, drawing_a, pb;
XtAppContext app;
XGCValues gcv;
GC gc;
void drawing_area_callback(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, XmNwidth,
400, XmNheight, 300, NULL);

/* Create a DrawingArea widget. */
drawing_a = XmCreateDrawingArea (toplevel, "drawing_a", NULL, 0);

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 365

Chapter 11: The DrawingArea Widget

/* add callback for all mouse and keyboard input events */
XtAddCallback (drawing_a, XmNinputCallback, drawing_area_callback,

NULL);

/* Since we're going to be drawing, we will be using Xlib routines
** and therefore need a graphics context. Create a GC and attach
** to the DrawingArea's XmNuserData to avoid having to make global
** variable. (Avoiding globals is a good design principle to follow.)
*/
gcv.foreground = BlackPixelOfScreen (XtScreen (drawing_a));
gc = XCreateGC (XtDisplay (drawing_a),

RootWindowOfScreen (XtScreen (drawing_a)),
GCForeground, &gcv);

XtVaSetValues (drawing_a, XmNuserData, gc, NULL);

/* add a pushbutton the user can use to clear the canvas */
pb = XmCreatePushButtonGadget (drawing_a, "Clear",NULL, 0);

/* if activated, call same callback as XmNinputCallback. */
XtAddCallback (pb, XmNactivateCallback, drawing_area_callback, NULL);

XtManageChild (pb);
XtManageChild (drawing_a);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Callback routine for DrawingArea's input callbacks and the
** PushButton's activate callback. Determine which it is by
** testing the cbs->reason field.
*/
void drawing_area_callback (Widget widget, XtPointer client_data,

XtPointer call_data)
{

static Position x, y;
XmDrawingAreaCallbackStruct *cbs =

(XmDrawingAreaCallbackStruct *) call_data;
XEvent *event = cbs->event;

if (cbs->reason == XmCR_INPUT) {
/* activated by DrawingArea input event -- draw lines.
** Button Down events anchor the initial point and Button
** Up draws from the anchor point to the button-up point.
*/
if (event->xany.type == ButtonPress) {

/* anchor initial point (i.e., save its value) */
x = event->xbutton.x;
y = event->xbutton.y;

}
else if (event->xany.type == ButtonRelease) {

/* draw full line; get GC and use in XDrawLine() */
GC gc;

Chapter 11: The DrawingArea Widget

366 Motif Programming Manual

XtVaGetValues (widget, XmNuserData, &gc, NULL);
XDrawLine (event->xany.display, cbs->window, gc, x, y,

event->xbutton.x, event->xbutton.y);
x = event->xbutton.x;
y = event->xbutton.y;

}
}

if (cbs->reason == XmCR_ACTIVATE)
/* activated by pushbutton -- clear parent's window */
XClearWindow (event->xany.display, XtWindow (XtParent (widget)));

}

The output of the program is shown in Figure 11-1.

The callback routine that is used for the XmNinputCallback takes the form of a standard
callback routine. The DrawingArea provides a XmDrawingAreaCallbackStruct for all
of its callbacks. This structure is defined as follows:

typedef struct {
int reason;
XEvent *event;
Window window;

} XmDrawingAreaCallbackStruct;

The reason field identifies the type of occurrence that caused the callback to be invoked.
For the XmNinputCallback , the value is XmCR_INPUT. The event field of the callback
structure describes the event that caused the callback to be invoked. The window field is
the window associated with the DrawingArea widget - this is the same value returned by
calling XtWindow() on the widget.

Since the event itself is passed in as part of the callback structure, we can look at the type
field of the event for more information than is provided by the callback reason alone. (See

Figure 11-1: Output of the drawing program

Motif Programming Manual 367

Chapter 11: The DrawingArea Widget

Volume 1, Xlib Programming Manual, for a detailed description of XEvent structures and
how to use them.) In fact, since there are many possible events that can be associated with
the reason XmCR_INPUT, you have to look at the event structure if you need any detail
about what actuallyhappened. Table 11-1 shows the possible event types for each of the
DrawingArea callbacks.

A common convention we’ve included in this program is the double use of the drawing_
area_callback() function. This technique is known as function overloading, since the
same function is used by more than one source. We are using the routine as the input
callback for the DrawingArea widget, as well as the activate callback for the PushButton
gadget. Whenever the PushButton is activated, the callback function is invoked and passed
an XmPushButtonCallbackStruct with the reason field set to XmCR_ACTIVATE.

It is beyond the scope of this book to discuss at length or even introduce the use of Xlib;
for that, see Volume 1, Xlib Programming Manual. However, there are a couple of details
concerning the use of Xlib functions that are noteworthy. For efficiency in use of the X
protocol, Xlib drawing calls typically do not carry a lot of information about the drawing
to be done. Instead, drawing characteristics such as the foreground and background colors,
fill style, line weight, and so on, are defined in a graphics context (GC), which is cached in
the X server. Any drawing function that wishes to use a particular GC must include the
handle returned by a GC creation call.

If many different routines are going to use the same GC, the programmer should try to make
the handle to it generally available. The natural tendency is to declare the GC as a global
variable. However, as a program gets large, it is easy to get carried away with the use of
global variables. As a result, programs tend to get over complicated and decentralized. To
avoid this problem, you can use the XmNuserData resource (inherited from the Manager
widget class) as a temporary holding area for arbitrary pointers and values. Since this
program is small, it may not be worth the overhead of a call to XtGetValues() to avoid
a global variable. It is up to you if you want to use the XmNuserData resource; this
particular example just shows one way of avoiding global variables.

If you play with the program a little, you will soon find that you can draw right through the
PushButton gadget in the DrawingArea. Because gadgets do not have windows, the
DrawingArea widget indiscriminately allows you to draw through any gadget children it
may be managing. Similarly, activating the PushButton clears the DrawingArea window,

Table 1-1. Callback Reasons and Event Types

Callback Reason Event Type(s)

XmNexposeCallback XmCR_EXPOSE Expose

XmNresizeCallback XmCR_RESIZE ConfigureNotify

XmNinputCallback XmCR_INPUT ButtonPress, ButtonRelease,

KeyPress, KeyRelease

Chapter 11: The DrawingArea Widget

368 Motif Programming Manual

but it does not repaint the PushButton. None of the manager widgets, including the
DrawingArea, check if the user (or the application) is overwriting or erasing gadgets.
Changing the PushButton from a gadget to a widget solves the immediate problem.
However, it is generally not a good idea to use a DrawingArea widget as both a drawing
canvas and as a place to have user-interface elements such as PushButtons.

For conventional geometry management involving DrawingArea widgets, you have two
choices. You can write your own geometry management routine (as demonstrated for
BulletinBoard widgets in Section 8.3 in Chapter 8, Manager Widgets) or you can place the
DrawingArea inside another manager that does more intelligent geometry management.
The nice part about this alternative is that the other manager widgets are no more or less
intelligent about graphics and repainting than the DrawingArea widget. They don’t provide
a callback for Expose events, but you can always add translations for those events, if you
need them.

Redrawing a DrawingArea
In Example 11-1, when an Expose event or a Resize event occurs, the drawing is not
retained and as a result the DrawingArea is always cleared. This problem was intentional
for the first example because we wanted to focus on the use of the input callback routine.
However, when you use the DrawingArea widget, you must always be prepared to repaint
whatever is supposed to be displayed in the widget at any time.

As you may already know, most X servers support a feature called backing store, which
saves the contents of windows, even when they are obscured by other windows, and
repaints them when they are exposed. When backing store is enabled and there is enough
memory available for the server, X will repaint all damaged windows without ever
notifying the application that anything happened. However, you should never rely on this
behavior, since you never know if the X server supports backing store, or if it has enough
memory to save the contents of your windows. All applications are ultimately responsible
for redrawing their windows’ contents whenever necessary.

For a painting application like that in Example 11-1, the easiest way to make sure that a
window can be repainted whenever necessary is to draw both into the window and into an
off screen pixmap. The contents of the pixmap can be copied back into the window as
needed. Example 11-2 demonstrates such a program. The off screen pixmap is copied back
to the window with XCopyArea() to redisplay the drawing when the
XmNexposeCallback is called.*

Example 11-2. The draw2.c program

/* draw2.c -- extremely simple drawing program that demonstrates

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 369

Chapter 11: The DrawingArea Widget

** how to draw into an off screen pixmap in order to retain the
** contents of the DrawingArea widget. This allows us to redisplay
** the widget if it needs repainting (expose events).
*/
#include <Xm/DrawingA.h>
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>

#define WIDTH 400 /* arbitrary width and height values */
#define HEIGHT 300
Pixmap pixmap; /* used to redraw the DrawingArea */

main (int argc, char *argv[])
{

Widget toplevel, drawing_a, pb;
XtAppContext app;
GC gc;
void drawing_area_callback(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass,
XmNwidth, WIDTH, XmNheight, HEIGHT,
NULL);

/* Create a DrawingArea widget. */
drawing_a = XmCreateDrawingArea (toplevel, "drawing_a", NULL, 0);

/* add callback for all mouse and keyboard input events */
XtAddCallback (drawing_a, XmNinputCallback, drawing_area_callback,

NULL);
XtAddCallback (drawing_a, XmNexposeCallback, drawing_area_callback,

NULL);
gc = XCreateGC (XtDisplay (drawing_a),

RootWindowOfScreen (XtScreen (drawing_a)), 0, NULL);
XtVaSetValues (drawing_a, XmNuserData, gc, NULL);
XSetForeground (XtDisplay (drawing_a), gc,

WhitePixelOfScreen (XtScreen (drawing_a)));

/* create a pixmap the same size as the drawing area. */
pixmap = XCreatePixmap (XtDisplay (drawing_a),

RootWindowOfScreen (XtScreen (drawing_a)),
WIDTH, HEIGHT,
DefaultDepthOfScreen (XtScreen (drawing_a)));

/* clear pixmap with white */
XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0, WIDTH,

HEIGHT);

/* drawing is now drawn into with "black"; change the gc for future */
XSetForeground (XtDisplay (drawing_a), gc,

BlackPixelOfScreen (XtScreen (drawing_a)));

/* add a pushbutton the user can use to clear the canvas */

Chapter 11: The DrawingArea Widget

370 Motif Programming Manual

pb = XmCreatePushButtonGadget (drawing_a, "Clear", NULL, 0);
XtManageChild (pb);

/* if activated, call same callback as XmNinputCallback. */
XtAddCallback (pb, XmNactivateCallback, drawing_area_callback, NULL);
XtManageChild (drawing_a);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Callback routine for DrawingArea's input and expose callbacks
** as well as the PushButton's activate callback. Determine which
** it is by testing the cbs->reason field.
*/
void drawing_area_callback (Widget widget, XtPointer client_data,

XtPointer call_data)
{

static Position x, y;
XmDrawingAreaCallbackStruct *cbs =

(XmDrawingAreaCallbackStruct *) call_data;
XEvent *event = cbs->event;
Display *dpy = event->xany.display;

if (cbs->reason == XmCR_INPUT) {
/* activated by DrawingArea input event -- draw lines.
** Button Down events anchor the initial point and Button
** Up draws from the anchor point to the button-up point.
*/
if (event->xany.type == ButtonPress) {

/* anchor initial point (i.e., save its value) */
x = event->xbutton.x;
y = event->xbutton.y;

} else if (event->xany.type == ButtonRelease) {
/* draw full line; get GC and use in XDrawLine() */
GC gc;

XtVaGetValues (widget, XmNuserData, &gc, NULL);
XDrawLine (dpy, cbs->window, gc, x, y,

event->xbutton.x, event->xbutton.y);

/* draw into the pixmap as well for redrawing later */
XDrawLine (dpy, pixmap, gc, x, y,

event->xbutton.x, event->xbutton.y);
x = event->xbutton.x;
y = event->xbutton.y;

}
}

if (cbs->reason == XmCR_EXPOSE || cbs->reason == XmCR_ACTIVATE) {
GC gc;
if (cbs->reason == XmCR_ACTIVATE) /* Clear button pushed */

widget = XtParent (widget);
/* get the DrawingArea widget */
XtVaGetValues (widget, XmNuserData, &gc, NULL);

Motif Programming Manual 371

Chapter 11: The DrawingArea Widget

if (cbs->reason == XmCR_ACTIVATE) {/* Clear button pushed */
/* to clear a pixmap, reverse foreground and background */
XSetForeground (dpy, gc,

WhitePixelOfScreen (XtScreen (widget)));
/* ...and fill rectangle the size of the pixmap */
XFillRectangle (dpy, pixmap, gc, 0, 0, WIDTH, HEIGHT);
/* don't forget to reset */
XSetForeground (dpy, gc,

BlackPixelOfScreen (XtScreen (widget)));
}
/* Note: we don't have to use WIDTH and HEIGHT--we could pull the
** exposed area out of the event structure, but only if the reason
** was XmCR_EXPOSE... make it simple for the demo; optimize as needed.
*/
XCopyArea (dpy, pixmap, event->xany.window, gc, 0, 0,

WIDTH, HEIGHT, 0, 0);
}

}

A frequent problem encountered in using the DrawingArea widget is the need to redraw
after every Resize event. When you enlarge the DrawingArea window, an Expose event
is automatically generated since more of the window becomes exposed. But, if you shrink
the window, no Expose event is generated since no new part of the window is being
exposed.

The reason why no Expose event is generated when you shrink a DrawingArea widget is
deep inside Xlib. The bit gravity of a window indicates where new bits are placed
automatically by X when a window is resized. If you resize a window larger, then the data
in the window remains in the top-left corner and the application gets a Resize event and
an Expose event. The Expose event just identifies the newly exposed area, not the entire
window. If you make the window smaller, all of the data in the window gets pushed to the
top left; there is no newly exposed area, so there is no Expose event.

The solution is to make the window forget about bit gravity, so every Resize event causes
all of the bits to be cleared. As a result, the Expose event identifies the entire window as
being exposed, instead of just the newly exposed region. This technique has the side effect
of generating an Expose event even when the window is resized smaller.

There is no routine to set the bit gravity of a window individually. It can be set only with
XChangeWindowAttributes() , as in the following code fragment:

XSetWindowAttributes attrs;
attrs.bit_gravity = ForgetGravity;
XChangeWindowAttributes (XtDisplay (drawing_area),

XtWindow (drawing_area), CWBitGravity, &attrs);

Once you do this, the DrawingArea widget gets Expose events when you resize it to be
smaller.

Chapter 11: The DrawingArea Widget

372 Motif Programming Manual

Using Translations on a DrawingArea
As mentioned earlier, it is generally permissible to override or replace the default
translation table of the DrawingArea widget with new translations. The only potential
problem is if you plan to use the DrawingArea as a manager for other widgets and you
expect it to follow the keyboard traversal mechanisms described by the Motif Style Guide.
In fact, handling keyboard traversal is pretty much all that the default translations for the
DrawingArea do. For example, the following is a subset of the default translations for the
DrawingArea widget:*

<Key>osfSelect: DrawingAreaInput() ManagerGadgetSelect()
<Key>osfActivate: DrawingAreaInput() ManagerParentActivate()
<Key>osfHelp: DrawingAreaInput() ManagerGadgetHelp()
<KeyDown>: DrawingAreaInput() ManagerGadgetKeyInput()
<KeyUp>: DrawingAreaInput()
<BtnMotion>: ManagerGadgetButtonMotion()
<Btn1Down>: DrawingAreaInput() ManagerGadgetArm()
<Btn1Down>,<Btn1Up>: DrawingAreaInput() ManagerGadgetActivate()

These translations show that the manager widget part of the DrawingArea is responsible for
tracking events for its gadget children. It is not necessary to support these translations if you
are not going to use the DrawingArea to manage children. Most user-generated events also
invoke DrawingAreaInput() , which does not do any drawing, but simply invokes the
XmNinputCallback .

As you can see, the BtnMotion translation is not passed to DrawingAreaInput() ,
which means that the XmNinputCallback is not called for pointer motion events. When
it comes to more complex drawing than that done in Example 11-2, this omission is a
serious deficiency. To support rubber banding or free-hand drawing techniques, which
require pointer motion events, you must install either an event handler or a translation entry
to handle motion events.

The simplest approach would be to replace the translation table entry for <BtnMotion>
events. However, this is not possible, due to a bug in the X Toolkit Intrinsics. The correct
thing to do is the following:

String translations =
"<Btn1Motion>: DrawingAreaInput() ManagerGadgetButtonMotion()";

...
drawing_a = XmCreateDrawingArea (main_w, "drawing_a", NULL, 0);
XtOverrideTranslations (drawing_a,

XtParseTranslationTable (translations));
XtAddCallback (drawing_a, XmNinputCallback, draw, NULL);

* This translation table lists only a subset of the current translations in the DrawingArea widget; there is no guar-
antee that the translations will remain the same in future revisions of the toolkit.

Motif Programming Manual 373

Chapter 11: The DrawingArea Widget

With this new translation, the XmNinputCallback function (draw()) would be notified
of pointer motion while Button 1 is down.

XtOverrideTranslations() is the preferred method for installing a new translation
into the DrawingArea widget because it is non destructive. The routine only replaces
translations for which identical events are specified and leaves all other translations in
place. However, this routine does not work in this case because there is already a translation
for the Button 1 down-up sequence in the DrawingArea translation table. In the current
implementation, once Button 1 goes down, the Xt event translator waits for the Button 1 up
event to match the partially finished translation. Therefore, no Button 1 motion events can
be caught.If we want to get pointer motion events while the button is down, we have to
resort to other alternatives.

One such alternative is to replace the entire translation table, regardless of whether we are
adding new entries or overriding existing ones. This is known as a destructive override
because the existing translation table is thrown out. This action has the desired effect
because the offending Button 1 translation is thrown out. However, we must then take steps
to re-install any other default translations that are still required. To completely replace the
existing translations, the XmNtranslations resource can be set as shown in the following
code fragment:

String translations =
"<Btn1Motion>: DrawingAreaInput() ManagerGadgetButtonMotion()";

XtTranslations parsed_translations =
XtParseTranslationTable (translations);

...
XtSetArg (args[n], XmNtranslations, parsed_translations); n++;
drawing_a = XmCreateDrawingArea (main_w, "drawing_a", args, n);
XtAddCallback (drawing_a, XmNinputCallback, draw, NULL);

Once you go to the trouble of replacing the translation table, you may as well install your
own action functions as well. Doing so allows you to do the drawing directly from the
action functions, rather than using it as an intermediate function to call an application
callback. This direct-drawing approach is demonstrated in Example 11-3. The program
uses pointer motion to draw lines as the pointer is dragged with the button down, rather than
when the button is pressed and released. You’ll notice that we have used much the same
design as in Example 11-2, but have moved some of the code into different callback
routines and have placed the DrawingArea widget into a MainWindow widget for
flexibility. None of these changes are required nor do they enhance performance in any
way. They merely point out different ways of providing the same functionality.*

Example 11-3. The free_hand.c program

/* free_hand.c -- simple drawing program that does freehand
** drawing. We use translations to do all the event handling

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 11: The DrawingArea Widget

374 Motif Programming Manual

** for us rather than using the drawing area's XmNinputCallback.
*/
#include <Xm/MainW.h>
#include <Xm/DrawingA.h>
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>

/* Global variables */
GC gc;
Pixmap pixmap;
Dimension width, height;

main (int argc, char *argv[])
{

Widget toplevel, main_w, drawing_a, pb;
XtAppContext app;
XGCValues gcv;
void draw(Widget, XEvent *, String *, Cardinal *);
void redraw(Widget, XtPointer, XtPointer);
void clear_it(Widget, XtPointer, XtPointer);
XtActionsRec actions;
Arg args[10];
int n;
String translations = /* for the DrawingArea widget */

/* ManagerGadget* functions are necessary for DrawingArea widgets
** that steal away button events from normal translation tables.
*/
"<Btn1Down>: draw(down) ManagerGadgetArm()\n\
<Btn1Up>: draw(up) ManagerGadgetActivate()\n\
<Btn1Motion>: draw(motion) ManagerGadgetButtonMotion()";

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Create a MainWindow to contain the drawing area */
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
main_w = XmCreateMainWindow (toplevel, "main_w", args, n);

/* Add the "draw" action/function used by the translation table */
actions.string = "draw";
actions.proc = draw;
XtAppAddActions (app, &actions, 1);

/* Create a DrawingArea widget. Make it 5 inches wide by 6 inches tall.
** Don't let it resize so the Clear Button doesn't force a resize.
*/
n = 0;
XtSetArg (args[n], XmNtranslations,

XtParseTranslationTable (translations)); n++;
XtSetArg (args[n], XmNunitType, Xm1000TH_INCHES); n++;
XtSetArg (args[n], XmNwidth, 5000); n++; /* 5 inches */
XtSetArg (args[n], XmNheight, 6000); n++; /* 6 inches */

Motif Programming Manual 375

Chapter 11: The DrawingArea Widget

/* remain this a fixed size */
XtSetArg (args[n], XmNresizePolicy, XmRESIZE_NONE); n++;
drawing_a = XmCreateDrawingArea (main_w, "drawing_a", args, n);

/* When scrolled, the drawing area will get expose events */
XtAddCallback (drawing_a, XmNexposeCallback, redraw, NULL);

/* convert drawing area back to pixels to get its width and height */
XtVaSetValues (drawing_a, XmNunitType, XmPIXELS, NULL);
XtVaGetValues (drawing_a, XmNwidth, &width, XmNheight, &height, NULL);

/* create a pixmap the same size as the drawing area. */
pixmap = XCreatePixmap (XtDisplay (drawing_a),

RootWindowOfScreen (XtScreen (drawing_a)),
width, height,
DefaultDepthOfScreen (XtScreen (drawing_a)));

/* Create a GC for drawing (callback). Used a lot -- make global */
gcv.foreground = WhitePixelOfScreen (XtScreen (drawing_a));
gc = XCreateGC (XtDisplay (drawing_a),

RootWindowOfScreen (XtScreen (drawing_a)),
GCForeground, &gcv);

/* clear pixmap with white */
XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0, width,

height);

/* drawing is now drawn into with "black"; change the gc */
XSetForeground (XtDisplay (drawing_a), gc,

BlackPixelOfScreen (XtScreen (drawing_a)));
pb = XmCreatePushButtonGadget (drawing_a, "Clear",NULL, 0);
XtManageChild (pb);

/* Pushing the clear button calls clear_it() */
XtAddCallback (pb, XmNactivateCallback, clear_it, (XtPointer) drawing_a);

XtManageChild (drawing_a);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Action procedure to respond to any of the events from the
** translation table declared in main(). This function is called
** in response to Button1 Down, Up and Motion events. Basically,
** we're just doing a freehand draw -- not lines or anything.
*/
void draw (Widget widget, XEvent *event, String *args, Cardinal *num_args)
{

static Position x, y;
XButtonEvent *bevent = (XButtonEvent *) event;

if (*num_args != 1)
XtError ("Wrong number of args!");

Chapter 11: The DrawingArea Widget

376 Motif Programming Manual

if (strcmp (args[0], "down")) {
/* if it's not "down", it must either be "up" or "motion"
** draw full line from anchor point to new point.
*/
XDrawLine (bevent->display, bevent->window, gc, x, y,

bevent->x, bevent->y);
XDrawLine (bevent->display, pixmap, gc, x, y,

bevent->x, bevent->y);
}
/* freehand is really a bunch of line segments; save this point */
x = bevent->x;
y = bevent->y;

}

/* Clear the window by clearing the pixmap and calling XCopyArea() */
void clear_it (Widget pb, XtPointer client_data, XtPointer call_data)
{

Widget drawing_a = (Widget) client_data;
XmPushButtonCallbackStruct *cbs =

(XmPushButtonCallbackStruct *) call_data;

/* clear pixmap with white */
XSetForeground (XtDisplay (drawing_a), gc,

WhitePixelOfScreen (XtScreen (drawing_a)));
XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0,

width, height);
/* drawing is now done using black; change the gc */
XSetForeground (XtDisplay (drawing_a), gc,

BlackPixelOfScreen (XtScreen (drawing_a)));
XCopyArea (cbs->event->xbutton.display, pixmap, XtWindow (drawing_a),

gc, 0, 0, width, height, 0, 0);
}

/* redraw is called whenever all or portions of the drawing area is
** exposed. This includes newly exposed portions of the widget resulting
** from the user's interaction with the scrollbars.
*/
void redraw (Widget drawing_a, XtPointer client_data, XtPointer call_data)
{

XmDrawingAreaCallbackStruct *cbs =
(XmDrawingAreaCallbackStruct *) call_data;

XCopyArea (cbs->event->xexpose.display, pixmap, cbs->window, gc, 0, 0,
width, height, 0, 0);

}

Motif Programming Manual 377

Chapter 11: The DrawingArea Widget

The output of the program is shown in Figure 11-2.

In Example 11-3, the DrawingArea widget uses the following translation string:

String translations =
"<Btn1Down>:draw(down) ManagerGadgetArm()\n\
 <Btn1Up>:draw(up) ManagerGadgetActivate()\n\
 <Btn1Motion>:draw(motion) ManagerGadgetButtonMotion()";

For each of the specified events, the translation describes two actions. The draw() action
is our own function that actually draws into the DrawingArea. The ManagerGadget
actions are standard DrawingArea actions (inherited from the Manager widget class) for
passing events to a gadget child, as described earlier. We keep them in place because we
are still using the PushButton gadget. We are not keeping the routines for managing
keyboard traversal, but simply those required to arm and activate the button.

The draw() action routine tests whether it has been called from a button up event, a button
down event, or a motion event. Since the action function is passed the event that invoked
it, we could simply test the type field of the event. However, this example gives us a chance
to exercise the Xt feature that supports string arguments passed to action functions.
Accordingly, the draw() function determines what action to take by examining its
args[0] parameter, which contains the string passed as the single parameter in the
translation table. For example, draw(up) passes the string "up" as the args[0]
parameter in response to a <Btn1Up > event.

Lines are drawn for both ButtonRelease and ButtonMotion events, but not for
ButtonPress events. A line is drawn from the last anchor point to the current location of
the mouse. As the pointer moves from one point to the next, the anchor point is always one
step behind, so a line segment is drawn from that location to the current location. The only
time that a line segment is not drawn is on the initial button press (and any motion events
that occur while the button is not down). The coordinate values are relative to the current
location of the pointer within the DrawingArea widget, no matter how it is positioned in the
MainWindow.

Figure 11-2: Output of the free_hand program

Chapter 11: The DrawingArea Widget

378 Motif Programming Manual

The draw() function draws into the window and also into a pixmap. The MainWindow
widget is configured to have its XmNscrollingPolicy set to XmAUTOMATIC, so
ScrollBars are automatically installed over the DrawingArea when it is larger than the
MainWindow, which allows the user to view different parts of the canvas interactively.
Scrolling actions cause the contents of the newly exposed portions of the canvas to be
erased by default. Unless we provide a mechanism by which the DrawingArea can redraw
itself, scrolling the DrawingArea loses previously drawn contents. To handle this problem,
we employ the same principle we used in Example 11-2. We install a pixmap that is used
by both the draw() and redraw() functions.

The redraw() routine is installed as the callback function for the XmNexposeCallback .
The function merely uses XCopyArea() to copy the pixmap onto the window of the
DrawingArea. We are not concerned with the position of the DrawingArea with respect to
the MainWindow in this routine. All we need to do is copy the pixmap directly into the
window. X ensures that the visible portion of the window is clipped as necessary.

In this example, the ManagerGadget actions don’t do anything unless the pointer is inside
the Clear button, so the translation is relatively safe. However, you should be sure to
remember that both actions are called. If you press Button 1 inside the PushButton and
doodle around a bit before releasing it, the drawing is still done, even though the result is
hidden by the gadget. In another application, the fact that actions for both the drawing area
itself and its gadget children are both called might lead to indeterminate results.

The draw() action does not (and cannot) know if the gadget is also going to react to the
button event. This problem does not exist with the standard DrawingAreaInput() action
routine used in the previous examples because that routine is implemented by the Motif
toolkit and it uses its own internal mechanisms to determine if the gadget is activated as
well. If the DrawingArea does process the event on the gadget, the
DrawingAreaInput() action knows that it should not invoke the callback function.
However, this internal mechanism is not available outside of the widget code. Reordering
the action functions does not help, since there is still no way to know, without making an
educated guess, whether or not the DrawingArea acted upon an event on behalf of a gadget
child.

As a result of this problem, draw() starts drawing a line, even if it starts in the middle of
the PushButton, because the DrawingArea processes all of the action functions in the list.
If you drag the pointer out of the gadget before releasing the mouse button, the starting
point of the line is inside the gadget, but it is hidden when the gadget repaints itself.
However, in this particular situation, you can do some guesswork. By installing an
XmNarmCallback function, you can tell whether or not the DrawingArea activated a
button, and by setting an internal state variable, you can decide whether or not the draw()
action routine should do its drawing.

Motif Programming Manual 379

Chapter 11: The DrawingArea Widget

This confusing behavior is yet another reason why it is best not to include children in
DrawingArea widgets that are intended for interactive graphics. If the DrawingArea does
not have any gadget children, installing these auxiliary actions in the translation table is not
necessary.

Using Color in a DrawingArea
In this section, we expand on our previous examples by incorporating color. The choice of
colors is primarily supported by a function we define called set_color() , which takes a
widget and an arbitrary color name and sets the global GC’s foreground color. By providing
an array of colors in the form of colored PushButtons, we’ve got a color paint program. We
have removed the PushButton gadget from the DrawingArea and created a proper control
panel to the left of the DrawingArea. The program uses a RowColumn widget (see Section
8.5 in Chapter 8, Manager Widgets, to manage a set of eighteen colored PushButtons.* The
program that demonstrates these techniques is shown in Example 11-4.†

Example 11-4. The color_draw.c program

/* color_draw.c -- simple drawing program using predefined colors.*/
#include <Xm/MainW.h>
#include <Xm/DrawingA.h>
#include <Xm/PushBG.h>
#include <Xm/PushB.h>
#include <Xm/RowColumn.h>
#include <Xm/ScrolledW.h>
#include <Xm/Form.h>

GC gc;
Pixmap pixmap;

/* dimensions of drawing area (pixmap) */
Dimension width, height;

String colors[] = {"Black", "Red", "Green", "Blue", "White", "Navy", "Orange",
"Yellow", "Pink", "Magenta", "Cyan", "Brown", "Grey",
"LimeGreen", "Turquoise", "Violet", "Wheat", "Purple"};

main (int argc, char *argv[])
{

Widget toplevel, main_w, sw, rc, form, drawing_a, pb;
XtAppContext app;
XGCValues g cv;
Arg args[12];
void draw(Widget, XEvent *, String *, Cardinal *);

* On a monochrome screen, the program runs, but the buttons are either black or white, depending on which is
closer to the RGB values corresponding to the color names chosen. You can only draw with the black buttons,
since the background is already white.

† XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 11: The DrawingArea Widget

380 Motif Programming Manual

void redraw(Widget, XtPointer, XtPointer);
void set_color(Widget, XtPointer, XtPointer);
void exit(int);
void clear_it(Widget, XtPointer, XtPointer);
int i, n;
XtActionsRec actions;
XtTranslations parsed_xa;
String translations = /* for the DrawingArea widget */

"<Btn1Down>: draw(down)\n\
<Btn1Up>: draw(up)\n\
<Btn1Motion>: draw(motion)";

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
/* Create a MainWindow to contain the drawing area */
main_w = XmCreateForm (toplevel, "main_w", NULL, 0);

/* Create a GC for drawing (callback). Used a lot -- make global */
gcv.foreground = WhitePixelOfScreen (XtScreen (main_w));
gc = XCreateGC (XtDisplay (main_w),

RootWindowOfScreen (XtScreen (main_w)),
GCForeground, &gcv);

/* Create a 3-column array of color tiles */
n = 0;
XtSetArg (args[n], XmNpacking, XmPACK_COLUMN); n++;
XtSetArg (args[n], XmNnumColumns, 3); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
rc = XmCreateRowColumn (main_w, "rc", args, n);

for (i = 0; i < XtNumber (colors); i++) {
/* Create a single tile (pixmap) for each color */
pixmap = XCreatePixmap (XtDisplay (rc),

RootWindowOfScreen (XtScreen (rc)), 16, 16,
DefaultDepthOfScreen (XtScreen (rc)));

set_color (rc, colors[i]); /* set gc's color according to name */
XFillRectangle (XtDisplay (main_w), pixmap, gc, 0, 0, 16, 16);
n = 0;
XtSetArg (args[n], XmNlabelType, XmPIXMAP); n++;
XtSetArg (args[n], XmNlabelPixmap, pixmap); n++;
pb = XmCreatePushButton (rc, colors[i], args, n);

/* callback for this pushbutton sets the current color */
XtAddCallback (pb, XmNactivateCallback, set_color,

(XtPointer) colors[i]);
XtManageChild (pb);

}

XtManageChild (rc);

n = 0;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;

Motif Programming Manual 381

Chapter 11: The DrawingArea Widget

XtSetArg (args[n], XmNtopAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNtopWidget, rc); n++;
pb = XmCreatePushButton (main_w, "Quit", args, n);
XtAddCallback (pb, XmNactivateCallback, (void (*)()) exit, NULL);
XtManageChild (pb);

/* Clear button -- wait till DrawingArea is created so we can use
** it to pass as client data.
*/
n = 0;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNleftWidget, pb); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNtopWidget, rc); n++;
pb = XmCreatePushButton (main_w, "Clear", args, n);
XtManageChild (pb);

n = 0;
XtSetArg (args[n], XmNwidth, 300); n++;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
XtSetArg (args[n], XmNscrollBarDisplayPolicy, XmAS_NEEDED); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNleftWidget, rc); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
sw = XmCreateScrolledWindow (main_w, "scrolled_win", args, n);

/* Add the "draw" action/function used by the translation table
** parsed by the translations resource below.
*/
actions.string = "draw";
actions.proc = draw;
XtAppAddActions (app, &actions, 1);
/* Create a DrawingArea widget. Make it 5 inches wide by 6 inches tall.
** Don't let it resize so the Clear Button doesn't force a resize.
*/
parsed_xa = XtParseTranslationTable (translations);
n = 0;
XtSetArg (args[n], XmNunitType, Xm1000TH_INCHES); n++;
XtSetArg (args[n], XmNwidth, 5000); n++; /* 5 inches */
XtSetArg (args[n], XmNheight, 6000); n++; /* 6 inches */
/* remain this a fixed size */
XtSetArg (args[n], XmNresizePolicy, XmNONE); n++;
XtSetArg (args[n], XmNtranslations, parsed_xa); n++;
drawing_a = XmCreateDrawingArea (sw, "drawing_a", args, n);

/* When scrolled, the drawing area will get expose events */
XtAddCallback (drawing_a, XmNexposeCallback, redraw, NULL);
XtManageChild (drawing_a);

/* Pushing the clear button clears the drawing area widget */
XtAddCallback (pb, XmNactivateCallback, clear_it,

(XtPointer) drawing_a);

Chapter 11: The DrawingArea Widget

382 Motif Programming Manual

/* convert drawing area back to pixels to get its width and height */
XtVaSetValues (drawing_a, XmNunitType, XmPIXELS, NULL);
XtVaGetValues (drawing_a, XmNwidth, &width, XmNheight, &height, NULL);

/* create a pixmap the same size as the drawing area. */
pixmap = XCreatePixmap (XtDisplay (drawing_a),

RootWindowOfScreen (XtScreen (drawing_a)),
width, height,
DefaultDepthOfScreen (XtScreen (drawing_a)));

/* clear pixmap with white */
set_color (drawing_a, "White");
XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0, width,

height);

XtManageChild (sw);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Action procedure to respond to any of the events from the
** translation table declared in main(). This function is called
** in response to Button1 Down, Up and Motion events. Basically,
** we're just doing a freehand draw -- not lines or anything.
*/
void draw (Widget widget, XEvent *event, String *args, Cardinal *num_args)
{

static Position x, y;
XButtonEvent *bevent = (XButtonEvent *) event;

if (*num_args != 1)
XtError ("Wrong number of args!");

if (strcmp (args[0], "down")) {
/* if it's not "down", it must either be "up" or "motion"
** draw full line from anchor point to new point.
*/
XDrawLine (bevent->display, bevent->window, gc, x, y,

bevent->x, bevent->y);
XDrawLine (bevent->display, pixmap, gc, x, y, bevent->x,

bevent->y);
}
/* freehand is really a bunch of line segments; save this point */
x = bevent->x;
y = bevent->y;

}

/* Clear the window by clearing the pixmap and calling XCopyArea() */
void clear_it (Widget pb, XtPointer client_data, XtPointer call_data)
{

Widget drawing_a = (Widget) client_data;
XmPushButtonCallbackStruct *cbs =

(XmPushButtonCallbackStruct *) call_data;

Motif Programming Manual 383

Chapter 11: The DrawingArea Widget

/* clear pixmap with white */
XSetForeground (XtDisplay (drawing_a), gc,

WhitePixelOfScreen (XtScreen (drawing_a)));
/* this clears the pixmap */
XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0,

width, height);
/* drawing is now done using black; change the gc */
XSetForeground (XtDisplay (drawing_a), gc,

BlackPixelOfScreen (XtScreen (drawing_a)));
/* render the newly cleared pixmap onto the window */
XCopyArea (cbs->event->xbutton.display, pixmap, XtWindow (drawing_a),

gc, 0, 0, width, height, 0, 0);
}

/* redraw is called whenever all or portions of the drawing area is
** exposed. This includes newly exposed portions of the widget resulting
** from the user's interaction with the scrollbars.
*/
void redraw (Widget drawing_a, XtPointer client_data, XtPointer call_data)
{

XmDrawingAreaCallbackStruct *cbs =
(XmDrawingAreaCallbackStruct *) call_data;

XCopyArea (cbs->event->xexpose.display, pixmap, cbs->window,
gc, 0, 0, width, height, 0, 0);

}

/* callback routine for when any of the color tiles are pressed.
** This general function may also be used to set the global gc's
** color directly. Just provide a widget and a color name.
*/
void set_color (Widget widget, XtPointer client_data, XtPointer call_data)
{

String color = (String) client_data;
Display *dpy = XtDisplay (widget);
Colormap cmap = DefaultColormapOfScreen (XtScreen (widget));
XColor col, unused;

if (!XAllocNamedColor (dpy, cmap, color, &col, &unused)) {
char buf[32];
sprintf (buf, "Can't alloc %s", color);
XtWarning (buf);
return;

}
XSetForeground (dpy, gc, col.pixel);

}

Chapter 11: The DrawingArea Widget

384 Motif Programming Manual

The output of the program in shown in Figure 11-3.

One thing to note about the program is that the callback routine for the Clear button is
passed the DrawingArea widget as the client data. This technique saves us from having to
declare a global variable, while still providing a handle to the DrawingArea in the callback
routine.

Summary
The DrawingArea widget is probably most useful when it is used as a canvas for displaying
raster images, animation, or a mixture of text and graphics. It is also well-suited for tasks
that require interactive user input. The widget provides some rudimentary input
mechanisms in the form of callbacks that are invoked by button events.

The translation and action tables supported by the X Toolkit Intrinsics provide a simple
mechanism for notifying applications of user events such as double-mouse clicks, keyboard
events, and so on. By creatively modifying the default translations and actions, you could
build a rather intricate system of action functions that produces interesting graphics based
on various forms of user input sequences.

However, what you can do with actions is simplistic given the complexities that are
involved in true paint or draw applications. Applications that require a graphic front end
should probably dig deeper into the lower levels of Xt for event handling and into Xlib for
image rendering.

Exercises
There are a number of different possibilities you could explore in extending the
DrawingArea widget. The following exercises are intended to shine the light down some
interesting paths that you can take.

Figure 11-3: Output of the color_draw program

Motif Programming Manual 385

Chapter 11: The DrawingArea Widget

1. As we have demonstrated, a DrawingArea widget needs to be able to redisplay the con-
tents of its window. For the programs in this chapter, we implemented redisplay by du-
plicating in a pixmap all of the drawing done in the window. When the window needs
to be repainted, the pixmap is simply copied into it. However, this technique does not
take resizing into account. If thedraw2application is resized bigger, parts of the win-
dow are not properly redrawn because the pixmap is not resized. If you wanted to sup-
port a canvas that can grow dynamically, you also have to resize the off-screen pixmap.
Modify draw2.cso that the pixmap resizes along with the DrawingArea. You need to
add a callback forXmNresizeCallback . The callback should query the size of the
DrawingArea, create a new pixmap, useXCopyArea() to copy the old pixmap into
the new one, and destroy the old pixmap.

2. The resourceXmNcolormap can be used to set and get the colormap associated with
a DrawingArea widget, usingXtVaSetValues() andXtVaGetValues() . Modify
color_draw.cto use colormap values rather than predefined colors.

3. A paint program and a draw program differ in the way they internally represent their
graphical displays. A paint program usually maintains a background pixmap as dem-
onstrated byfree_hand, whereas a draw program stores geometric information about
the shapes that are drawn. For example, circles can be represented using a center (x, y
coordinate) and a radius; rectangles can be represented by an origin coordinate with
width and height values; and freehand drawings can be represented by a list of coordi-
nates (line segments). Entire pictures can be represented by a list of geometric shape
definitions.

Modify free_hand.c or color_draw.c to use a list of XSegment structures to represent
the lines that are drawn by the user. Instead of using a pixmap and XCopyArea() to
repaint the DrawingArea widget on Expose events, repaint the picture by calling
XDrawSegments() and using the data stored in the internal list of XSegment struc-
tures.

4. In the previous exercise, we gave you some hints about how you might build an inter-
active drawing application. For those of you who really want to dig into this subject,
you can extend the program by giving the user a choice of geometric shapes to draw.
You need to provide a user interface to support an array of object types: arcs, circles,
squares, rectangles, lines, and freehand drawings. Based on the user’s choice, you have
to maintain a state machine that indicates how much of a geometric figure has been
drawn. Use a translation table to monitor the events that correspond to the state ma-
chine and store the coordinates of key geometric points in internal data structures.
Granted, this exercise is no small feat, but it is a great way to kill a weekend!

Chapter 11: The DrawingArea Widget

386 Motif Programming Manual

Motif Programming Manual 387

Chapter 1

In this chapter:
• Labels
• PushButtons
• ToggleButtons
• ArrowButtons
• DrawnButtons
• Summary
• Exercise

12
Labels and Buttons

This chapter contains an in-depth look at the label and button widgets provided by the Motif
toolkit. These widgets are the most commonly used primitive widgets.

Labels and buttons are among the most widely used interface objects in GUI-based
applications. They are also the simplest in concept and design. Labels provide the basic
resources necessary to render and manage text or images (pixmaps) by controlling color,
alignment, and other visual attributes. PushButtons are subclassed from Label; they extend
its capabilities by adding callback routines that respond to user interaction from the mouse
or keyboard. These visual and interactive features provide the cornerstone for many
widgets in the Motif toolkit, such as CascadeButtons, DrawnButtons, and ToggleButtons.

This chapter also discusses ArrowButtons. While the ArrowButton is not subclassed from
Label like the other buttons, it does provide a subset of the interactive capabilities of the
other buttons. ArrowButtons do not contain text or graphical labels; they simply display
directional arrows that point up, down, left, or right. These widgets are meant to act as
companions to other interface objects whose values or displays can be controlled or
changed incrementally by the user. An example might be four ArrowButtons that are used
to represent directional movement for the display of a bitmap editor.

Although CascadeButtons are subclassed from the Label widget, they are specifically used
in Motif menus and are not addressed in this chapter. The menu systems that are provided
by Motif are separate entities and are treated separately in Chapter 4, The Main Window,
and Chapter 20, Interacting with the Window Manager. Since the Motif menus use Labels
and PushButtons for menu items, these widgets have certain resources that only take effect
when the widgets are used in menus. These resources are not discussed in this chapter
either.

Labels and buttons have a wide range of uses and they are used in many of the compound
objects provided by the Motif toolkit. As a result, these widgets are discussed throughout
this book. This chapter provides a basic discussion of the main resources and callbacks used
by the objects. It also provides examples of common usage and attempts to address problem
areas.

Chapter 12: Labels and Buttons

388 Motif Programming Manual

Labels
Labels are simply props for the stage. They are not intended to respond to user interaction,
although a help callback can be attached in case the HELP key is pressed. It is equally
common to find Labels displaying either text or graphics, yet they cannot display both
simultaneously in the conventional sense.

Since Labels can display text, it may not always be obvious whether to use a Label or a Text
widget to display textual information. The Motif Style Guide suggests that Labels should
always be used when non editable text is displayed, even if the text is longer than what you
might think of as a label. If a Label is large, you can always place it in the work area of an
automatic ScrolledWindow widget, as discussed in Chapter 10, ScrolledWindows and
ScrollBars. Even if the text is expected to change frequently, your needs can often be
accommodated by a Label widget or gadget.

Another issue that affects the choice between a Label widget and a Text widget is the ability
to select the text. Even if you have text that is not editable by the user, you may wish to
allow the user to select all or part of the text. The Label widget acts as a drag source for
drag and drop operations, which means that the full text of a Label can be manipulated
using drag and drop.* However, this capability does not allow the user to manipulate only
part of the text. For that type of interaction, and with previous versions of the toolkit, you
need to use a Text widget rather than a Label to provide selection capabilities.

Labels have a number of added visual advantages over Text widgets. The text in a Label
can be greyed out when it is insensitive and it can display text using multiple fonts. The
Text widgets, however, do not support multiple fonts†. An insensitive Text widget also
greys out its text. Labels are also lighter-weight objects than Text widgets. There is little
overhead in maintaining or displaying a Label and there is no need to handle event
processing on a Label to the same degree as for a Text widget. All things considered, we
would recommend using Label widgets over Text widgets for read-only information,
except where the user needs to be able to select and copy the value.

However, when it comes to interactive objects, Labels are not the best choice. In most cases
where you want to allow the user to click on a Label, it is more appropriate to use a
PushButton or a ToggleButton, since they are designed to support user interaction.
Furthermore, users who are familiar with other Motif applications will not expect to have
to interact with Labels. In short, the best thing to do with Label widgets is simple and
obvious: use them to display labels.

* All of the button subclasses of Label inherit the drag source capability, so the text labels for PushButtons and
ToggleButtons can also be manipulated using drag and drop. From Motif 2.0, dragging from a Label may be
disabled if the XmDisplay resource XmNenableUnselectableDrag is False .

† The Motif 2.0 CSText widget had a compound text interface, and as such could display multiple fonts. However,
this widget had serious performance and other problems, and was removed from the widget set in Motif 2.1.

Motif Programming Manual 389

Chapter 12: Labels and Buttons

There are a number of resources associated with Labels that are used by other Motif objects
(or by widget classes that are subclassed from Label). For example, since Labels (and
PushButtons) are used extensively as menu items in menus, they can have accelerators,
mnemonics, and other visual resources set to provide the appropriate functionality for
menus. These resources do not apply to Labels (and PushButtons) that are not used as menu
items, so we do not discuss them here.

The only callback routine for the Label widget is the XmNhelpCallback associated with
all Primitive widgets. If the user presses the HELP key on a Label widget, its help callback
is called.*

Creating a Label
Applications that use Labels must include the header file <Xm/Label.h>, which defines the
xmLabelWidgetClass type. This type is a pointer to the actual widget structure used by
XtVaCreateWidget () or XtVaCreateManagedWidget() routines. Motif as usual
defines a convenience function, and thus you can create a Label in any of the following
ways:

Widget label = XmCreateLabel (parent, "name", resource-value-array ,
resource-value-count);

...
XtManageChild (label);

Widget label = XtVaCreateWidget ("name", xmLabelWidgetClass, parent,
resource-value-list, NULL);

...
XtManageChild (label);

Widget label = XtVaCreateManagedWidget ("name", xmLabelWidgetClass,
parent,

resource-value-list , NULL);

Since Labels do not have children, there is very little reason in terms of performance to
create them as unmanaged widgets first and then manage them later. For consistency, we
will prefer the Motif convenience functions, and subsequently manage the widget at the
appropriate point.

Label gadgets are also available. Recall that a gadget is a windowless object that relies on
its parent to provide it with events generated either by the system or by the user†.

* Whether a Label receives Help events depends on the input policy the user is using and whether or not keyboard
traversal is on. Since it may not be possible for the user to use the HELP key on Labels, we don’t recommend
providing help callbacks for them.

† Gadgets in Motif 1.2 also rely on their parent for inherited visual characteristics. From Motif 2.0, however, a
gadget can be painted independently of its parent.

Chapter 12: Labels and Buttons

390 Motif Programming Manual

The Label gadget is an entirely different class from its widget counterpart. To use the
gadget variant, you must include the header file <Xm/LabelG.h> and use the
xmLabelGadgetClass pointer in XtVaCreateManagedWidget() or
XtVaCreateWidget() calls, otherwise use the Motif convenience routine
XmCreateLabelGadget (), as in the following examples:

Widget label = XmCreateLabelGadget (parent, "name", resource-value-array ,
resource-value-count);

...
XtManageChild (label);

Widget label = XtVaCreateWidget ("name", xmLabelGadgetClass, parent,
resource-value-list , NULL);

...
XtManageChild (label);

Widget label = XtVaCreateManagedWidget ("name", xmLabelGadgetClass,
parent,

resource-value-list , NULL);

Text Labels
A Label widget or gadget can display either text or an image. The XmNlabelType resource
controls the type of label that is displayed; the resource can be set to XmSTRING or
XmPIXMAP. The default value is XmSTRING, so if you want to display text in a Label, you
do not need to set this resource explicitly.

The resource that specifies the string that is displayed in a Label is XmNlabelString . The
value for this resource must be a Motif compound string; common C character strings are
not allowed. The following code fragment shows the appropriate way to specify the text for
a Label:

Widget label;
Arg args[...];
int n= 0;
XmString str = XmStringCreateLocalized ("A Label");

XtSetArg (args[n], XmNlabelString, str); n++;
label = XmCreateLabel (parent, "label", args, n);
XmStringFree (str);

If the XmNlabelString resource is not specified, the Label automatically converts its
name into a compound string and uses that as its label. Therefore, the previous example
could also be implemented as follows:

Widget label = XmCreateLabel (parent, "A Label", NULL, 0);

This method of specifying the label string for the widget is much simpler than using a
compound string. It avoids the overhead of creating and destroying a compound string,

Motif Programming Manual 391

Chapter 12: Labels and Buttons

which is expensive in terms of allocating and freeing memory. The problem with the name
of the widget shown above is that it is illegal as a widget name. Technically, widget names
should only be composed of alphanumerics (letters and numbers), hyphens, and
underscores. Characters such as space, dot (.), and the asterisk (*) are disallowed because
they make it impossible for the user to specify these widgets in resource files. On the other
hand, using names that contain these characters in your code can be to your advantage if
you want to try to prevent users from externally changing the resource values of certain
widgets. You can achieve the same result by hard-coding the label or by using an illegal
widget name. The first method is more elegant, so the decision you make here should be
well-informed.

If you are going to hard-code the label string, you can avoid the overhead of creating a
compound string by using the XtVaTypedArg feature of Xt, as shown in the following
example:

label = XtVaCreateManagedWidget ("widget_name", xmLabelWidgetClass,
parent, XtVaTypedArg, XmNlabelString,
XmRString,
"A Label", 8, /* strlen("A Label") + 1 */
NULL);

The C string "A Label" (which is 7 chars long, plus 1 NULL byte) is automatically
converted into a compound string by the toolkit using a pre-installed type converter. This
method can also be used to change the label for a widget using XtVaSetValues() .

Since compound strings are dynamically created and destroyed, you cannot statically
declare an argument list that contains a pointer to a compound string. For example, it would
be an error to do the following:

static Arg list[] = {... XmNlabelString,
XmStringCreateLocalized ("A label"), ...};

label = XmCreateLabel (parent, "name", list, XtNumber (list));

This technique causes an error because you cannot create a compound string in a statically
declared array. For a complete discussion of compound strings, see Chapter 25, Compound
Strings.

Images as Labels
A Label widget or gadget can display an image instead of text by setting the
XmNlabelType resource to XmPIXMAP. As a result of this resource setting, the Label
displays the pixmap specified for the XmNlabelPixmap resource. Example 12-1
demonstrates how pixmaps can be used as labels.*

Example 12-1. The pixmaps.c program

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 12: Labels and Buttons

392 Motif Programming Manual

/* pixmaps.c -- Demonstrate simple label gadgets in a row column
** Each command line argument represents a bitmap filename. Try
** to load the corresponding pixmap and store in a RowColumn.
*/
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>

main (int argc, char *argv[])
{

XtAppContext app;
Pixel fg, bg;
Widget toplevel, rowcol, pb;
Arg args[6];
int n;
int int_sqrt();

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

if (argc < 2) {
puts ("Specify bitmap filenames.");
exit (1);

}
/* create a RowColumn that has an equal number of rows and
** columns based on the number of pixmaps it is going to
** display (this value is in "argc").
*/
n = 0;
XtSetArg (args[n], XmNpacking, XmPACK_COLUMN); n++;
XtSetArg (args[n], XmNnumColumns, int_sqrt (argc)); n++;
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, n);
/* Get the foreground and background colors of the rowcol to make
** all the pixmaps appear using a consistent color.
*/
XtVaGetValues (rowcol, XmNforeground, &fg, XmNbackground, &bg, NULL);

while (*++argv) {
Pixmap pixmap = XmGetPixmap (XtScreen (rowcol), *argv, fg, bg);
if (pixmap == XmUNSPECIFIED_PIXMAP)

printf ("Couldn't load %s\n", *argv);
else {

n = 0;
XtSetArg (args[n], XmNlabelType, XmPIXMAP); n++;
XtSetArg (args[n], XmNlabelPixmap, pixmap); n++;
pb = XmCreateLabelGadget (rowcol, *argv, args, n);
XtManageChild (pb);

}
}
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

Motif Programming Manual 393

Chapter 12: Labels and Buttons

/* get the integer square root of n -- used to determine the number
** of rows and columns of pixmaps to use in the RowColumn widget.
*/
int int_sqrt (register int n)
{

register int i, s = 0, t;
for (i = 15; i >= 0; i--) {

t = (s | (1 << i));
if (t * t <= n)

s = t;
}
return s;

}

The program displays a two-dimensional array of pixmaps based on the bitmap files listed
on the command line. For example, the following command produces the output shown in
Figure 12-1.

% pixmaps flagup letters wingdogs xlogo64 calculator tie_fighter

To optimize the use of space by the RowColumn widget, the number of rows and columns
is set to the square root of the number of images. For example, if there are nine pixmaps to
load, there should be a 3× 3 grid of images. Since the number of files to be loaded
corresponds to the number of arguments in argv , argc is passed to int_sqrt() to get
the integer square root of its value. This value tells us the number of columns to specify for
the XmNnumColumns resource of the RowColumn.

The bitmap files are read using XmGetPixmap() , which is a function that creates a pixmap
from the specified file. This file must be in X11 bitmap format. Since the function needs
foreground and background colors for the pixmap, we use the colors of the RowColumn. If
the specified file cannot be found or if it does not contain a bitmap, the function returns the
constant XmUNSPECIFIED_PIXMAP.* If this error condition is returned, the program skips
the file and goes on to the next one. For more detailed information on XmGetPixmap()

Figure 12-1: Output of the pixmaps program

Chapter 12: Labels and Buttons

394 Motif Programming Manual

and other supporting functions, see Section 3.4.5 in Chapter 3, Overview of the Motif
Toolkit.

Label Sensitivity
A Label can be made inactive by setting the XmNsensitive resource to False . While it
may seem frivolous to set a Label insensitive, since Labels are never really active, it is quite
common to associate a Label with another interactive element, such as a List, a TextField,
or even a composite item such as RadioBox. In these situations, it is useful to desensitize
the Label along with its corresponding user-interface element, to emphasise that the
component is inactive. In the same vein, if XtSetSensitive() is applied to a Manager
widget, the routine sensitizes or desensitizes all of the children of the widget, including
Labels.

If a Label is displaying text, setting the widget insensitive causes the text to be greyed out.
This effect is achieved by stippling the text label. If a Label is displaying an image, you can
specify the XmNlabelInsensitivePixmap resource to indicate the image that is
displayed when the Label is inactive. By default, the resource is set to the value
XmUNSPECIFIED_PIXMAP, and the Label will use the XmNlabelPixmap resource
value, automatically applying an opaque stippling mask operation on the pixmap image
concerned.*

Label Alignment
Within the boundaries of a Label widget or gadget, the text or image that is displayed can
be left justified, right justified, or centered. The alignment depends on the value of the
XmNalignment resource†, which can have one of the following values:

XmALIGNMENT_BEGINNING XmALIGNMENT_END XmALIGNMENT_CENTER

The default value is XmALIGNMENT_CENTER, which causes the text or pixmap to be
centered vertically and horizontally within the widget or gadget. The XmALIGNMENT_
BEGINNING and XmALIGNMENT_END values refer to the left and right edges of the widget
or gadget when the value for XmNlayoutDirection is set to XmLEFT_TO_RIGHT. If the
text used within a Label is read from left-to-right (the default), the beginning of the string
is on the left. However, if the text used is read from right-to-left, the alignment values are
inverted, as should be the value for XmNlayoutDirection . These values also apply to
Labels that display pixmaps.

* XmUNSPECIFIED_PIXMAP is not 0 or NULL. Many people have a tendency to test for these values upon return
of functions that return opaque objects. The literal value is 2.

* In Motif 1.2, the Label will not display a pixmap when it is insensitive and the XmNlabelInsensitivePix-
map is XmUNSPECIFIED_PIXMAP. Any pixmap specified for the resource is not stippled by the toolkit: the pro-
grammer has to construct or supply an appropriate stippled pixmap herself.

† In Motif 2.0 and later, XmNstringDirection is superseded by the XmNlayoutDirection resource.

Motif Programming Manual 395

Chapter 12: Labels and Buttons

If you have a set of Labels that are associated with strings of text that are right justified, all
of the Labels should use the same alignment and string direction settings for consistency.
One way to handle this situation is to set the resources universally (as a class-based
resource) for all Labels and subclasses of Labels. For example, if your application is written
for a language that displays text from right-to-left, you may choose to have the following
lines in the application defaults file:

XmLabel.layoutDirection: RIGHT_TO_LEFT
*XmLabelGadget.layoutDirection: RIGHT_TO_LEFT

Note that the resource must be set for both the widget and gadget classes. You should also
be aware that setting the layout direction does not cause the compound strings for the
Labels to be automatically converted to the right direction. Similarly, a Label that uses a
compound string with a right-to-left string direction does not automatically set the
XmNlayoutDirection resource appropriately. These are internationalization issues if
you are thinking of supporting languages that are justified either left-to-right or right-to-
left.

The RowColumn manager widget can also be used to enforce consistency by controlling
the geometry management of its children. If you are using a RowColumn to lay out a group
of Labels (or objects subclassed from Label, such as PushButtons), you can tell the
RowColumn to align each of its children in a consistent manner using the
XmNentryAlignment resource. This resource takes the same values as the
XmNalignment resource for Labels. If the parent of a Label widget or gadget is a
RowColumn with its XmNisAligned resource set to True , the XmNalignment resource
of each of the Label children is forced to the same value as the XmNentryAlignment
resource.

You should note that the alignment is only enforced when the RowColumn resource
XmNrowColumnType is XmWORK_AREA. If you are using a RowColumn to arrange
components in your application, its type should always be a work area. The other types of
the widget are used by the internals of Motif for creating special objects like MenuBars and
PulldownMenus. If you set the XmNentryAlignment resource for other types of
RowColumn widgets, you may or may not see the alignment effects.

There is also a RowColumn resource that affects the vertical alignment of its children that
are Labels, subclasses of Label, and Text widgets. The XmNentryVerticalAlignment
resource can take one of the following values:

XmALIGNMENT_BASELINE_BOTTOM XmALIGNMENT_BASELINE_TOP
XmALIGNMENT_CONTENTS_BOTTOM XmALIGNMENT_CONTENTS_TOP
XmALIGNMENT_CENTER

The resource only takes effect when the children of the RowColumn are arranged in rows,
which means that the XmNorientation is XmHORIZONTAL. The default value is
XmALIGNMENT_CENTER, which causes the center of all of the children in a row to be
aligned.

Chapter 12: Labels and Buttons

396 Motif Programming Manual

Multi-line and Multi-font Labels
The fonts used within a Label are directly associated with the rendition element tags used
in the compound string specified for the XmNlabelString resource. The
XmNrenderTable * resource for a Label specifies the mapping between rendition tags and
fonts that are used when displaying the text. Since a compound string may use multiple
character sets, a Label can display any number of fonts, as specified in the
XmNlabelString for the Label. A compound string may also contain embedded newlines
and tabs, and color specifications. Example 12-2 shows the use of a Label to display a
single compound string that contains a monthly calendar.†

Example 12-2. The xcal.c program

/* xcal.c -- display a monthly calendar. The month displayed is a
** single Label widget whose text is generated from the output of
** the "cal" program found on any UNIX machine. popen() is used
** to run the program and read its output. Although this is an
** inefficient method for getting the output of a separate program,
** it suffices for demonstration purposes. A List widget displays
** the months and the user can provide the year as argv[1].
*/
#include <stdio.h>
#include <X11/Xos.h>
#include <Xm/Xm.h>
#include <Xm/List.h>
#include <Xm/Frame.h>
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
#include <Xm/SeparatoG.h>

int year;
XmStringTable ArgvToXmStringTable(int, char **);
void FreeXmStringTable(XmStringTable);
char *months[] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September",
"October", "November", "December"};

main (int argc, char *argv[])
{

Widget toplevel, frame, rowcol, label, w;
XtAppContext app;
extern void set_month(Widget, XtPointer, XtPointer);
XmRenderTable render_table;
XmRendition rendition;

* In Motif 2.0 and later, the XmFontList type is obsolete, replaced by the XmRenderTable . Accordingly, the
XmNfontList resource is deprecated. For backwards compatibility, a font lists is internally re-implemented as
a render table.

† XtVaAppInitialize () is considered deprecated in X11R6. XmFontListEntryCreate (), Xm-
FontListAppendEntry (), XmFontListCreate () and XmFontListAdd () are all deprecated from Motif 2.0
onwards. The XmFontList is deprecated, and replaced with the XmRenderTable and XmRendition objects.

Motif Programming Manual 397

Chapter 12: Labels and Buttons

Arg args[10];
int n;
XmStringTable strs;
int month_no;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Create a render table based on the fonts we're using. These are the
** fonts that are going to be hardcoded in the Label and List widgets.
*/

n = 0;
XtSetArg (args[n], XmNfontName, "-*-courier-bold-r-*--18-*"); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_IMMEDIATE); n++;
rendition = XmRenditionCreate (toplevel, "tag1", args, n);
render_table = XmRenderTableAddRenditions (NULL, &rendition, 1,

XmMERGE_NEW);
XmRenditionFree (rendition);

n = 0;
XtSetArg (args[n], XmNfontName, "-*-courier-medium-r-*--18-*"); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_IMMEDIATE); n++;
rendition = XmRenditionCreate (toplevel, "tag2", args, n);
render_table = XmRenderTableAddRenditions (render_table, &rendition,

1,XmMERGE_NEW);
XmRenditionFree (rendition);

if (argc > 1) {
month_no = 1;year = atoi (argv[1]);

} else {
extern long time(long *);
long t = time ((long *) 0);
struct tm *today = localtime (&t);
year = 1900 + today->tm_year;
month_no = today->tm_mon+1;

}
/* The RowColumn is the general layout manager for the application.
** It contains two children: a Label gadget that displays the calendar
** month, and a ScrolledList to allow the user to change the month.
*/
n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, n);

/* enclose the month in a Frame for decoration. */
frame = XmCreateFrame (rowcol, "frame", NULL, 0);

n = 0;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_BEGINNING); n++;
XtSetArg (args[n], XmNrenderTable, render_table); n++;

Chapter 12: Labels and Buttons

398 Motif Programming Manual

label = XmCreateLabelGadget (frame, "month", args, n);
XtManageChild (label);
XtManageChild (frame);

/* create a list of month names */
strs = ArgvToXmStringTable (XtNumber (months), months);
w = XmCreateScrolledList (rowcol, "list", NULL, 0);
XtVaSetValues (w,

XmNitems, strs,
XmNitemCount, XtNumber (months),
XmNrenderTable, render_table,
NULL);

FreeXmStringTable (strs);
XmRenderTableFree (render_table);
XtAddCallback (w, XmNbrowseSelectionCallback, set_month,

(XtPointer) label);
XtManageChild (w);
XmListSelectPos (w, month_no, True);

/* initialize month */
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* callback function for the List widget -- change the month */
void set_month (Widget w, XtPointer client_data, XtPointer call_data)
{

register FILE *pp;
extern FILE *popen();
char text[BUFSIZ];
register char *p = text;
XmString str;
Widget label = (Widget) client_data;
XmListCallbackStruct *list_cbs = (XmListCallbackStruct *) call_data;

/* Ask UNIX to execute the "cal" command and read its output */
sprintf (text, "cal %d %d", list_cbs->item_position, year);

if (!(pp = popen (text, "r"))) {
perror (text);
return;

}
*p = 0;

while (fgets (p, sizeof (text) - strlen (text), pp))
p += strlen (p);

pclose (pp);

/* display the month using the "tag1" rendition from the
** Label gadget's XmNrenderTable
*/
str = XmStringGenerate ((XtPointer) text, "tag1",

XmCHARSET_TEXT, NULL);

Motif Programming Manual 399

Chapter 12: Labels and Buttons

XtVaSetValues (label, XmNlabelString, str, NULL);
XmStringFree (str);

}

/* Convert an array of string to an array of compound strings */
XmStringTable ArgvToXmStringTable (int argc, char **argv)
{

XmStringTable new =
(XmStringTable) XtMalloc ((argc+1) * sizeof (XmString));

if (!new)
return (XmStringTable) 0;

new[argc] = (XmString) 0;
while (--argc >= 0)

new[argc] = XmStringGenerate ((XtPointer) argv[argc], "tag2",
XmCHARSET_TEXT, NULL);

return new;
}

/* Free the table created by ArgvToXmStringTable() */
void FreeXmStringTable (XmStringTable argv)
{

register int i;
if (!argv)

return;
for (i = 0; argv[i]; i++)

XmStringFree (argv[i]);
XtFree ((char *) argv);

}

The output of this program is shown in Figure 12-2.

The principal function in Example 12-2 is set_month() . In this function, we call
popen() to run the UNIX program cal and read its input into a buffer. Since we know ahead
of time about how much text we are going to read, text is declared with ample space
(BUFSIZ). Each line is read consecutively until fgets() returns NULL, at which time we
close the opened process using pclose() and convert the text buffer into a compound
string. This compound string specifies a render table element tag and it includes newlines
because fgets() does not strip newline characters from the strings it retrieves.

The program displays the calendar for the month corresponding to the selected item in the
List, but only as a single Label widget. If we wanted to display individual days using

Figure 12-2: Output of the xcal program

Chapter 12: Labels and Buttons

400 Motif Programming Manual

different fonts (with Sundays greyed out, for example), then the text buffer would have to
be parsed. In this case, separate compound strings would be created using a different
rendition for the Sunday dates only. Since this exercise is more about manipulating
compound strings than it is about Label widgets, we refer you to Chapter 24, Render
Tables, and Chapter 25, Compound Strings, for a detailed discussion of the use of multiple
fonts in compound strings. If you want to provide the user with the ability to select
individual days from the month displayed, you must parse the dates from the text buffer and
you probably want to use separate PushButton widgets for each date. See the Appendix A,
Additional Example Programs, for an example of this technique.

PushButtons
Since the PushButton is subclassed from Label, a PushButton can do everything that a
Label can. However, unlike Labels, PushButtons can interact with the user and invoke
functions internal to the underlying application through callback routines. This interactivity
is the principal difference between PushButtons and Labels. There are other visual
differences, but these are adjusted automatically by the PushButton widget using Label
resources.

<Xm/PushB.h> and <Xm/PushBG.h> are the header files for PushButton widgets and
gadgets, respectively. These objects can be created using XtCreateWidget(),
XtVaCreateManagedWidget() , or the appropriate Motif convenience routine, as in the
following code fragments:

Widget pushb_w = XtVaCreateWidget ("name", xmPushButtonWidgetClass, parent,
resource-value-list , NULL);

Widget pushb_g = XtVaCreateWidget ("name", xmPushButtonGadgetClass, parent,
resource-value-list , NULL);

Widget pushb_w = XmCreatePushButton (parent, “name”, resource-value-array,
resource-value-count);

Widget pushb_g = XmCreatePushButtonGadget (parent, “name”,
resource-value-array,
resource-value-count);

PushButton Callbacks
The major callback routine associated with the PushButton widget is the
XmNactivateCallback . The functions associated with this resource are called whenever
the user activates the PushButton by pressing the left mouse button over it or by pressing
the SPACEBAR when the widget has the keyboard focus.

The other callback routines associated with the PushButton are the XmNarmCallback and
the XmNdisarmCallback . Each function in an arm callback list is called whenever the
user presses the left mouse button when the pointer is over the PushButton. When the
PushButton is armed, the top and bottom shadows are inverted and the background of the

Motif Programming Manual 401

Chapter 12: Labels and Buttons

button changes to the arm color. The arm callback does not indicate that the button has been
released. If the user releases the mouse button within the widget, then the activate callback
list is invoked. The arm callback is always called before the activate callback, whether or
not the activate callback is even called.

When the user releases the button, the disarm callback list is invoked. When the button is
disarmed, its shadow colors and the background return to their normal state. Like the arm
callback, the disarm callback does not guarantee that the activate callback has been
invoked. If the user changes her mind before releasing the mouse button, she can move the
mouse outside of the widget area and then release the button. In this case, only the arm and
disarm callbacks are called. However, the most common case is that the user actually
selects and activates the button, in which case the arm callback is called first, followed by
the activate callback and then the disarm callback.

The activate callback function is by far the most useful of the PushButton callbacks. It is
generally unnecessary to register arm and disarm callback functions, unless your
application has a specific need to know when the button is pushed and released, even if it
is not activated. Example 12-3 demonstrates the use of the various PushButton callbacks.*

Example 12-3. The pushb.c program

/* pushb.c -- demonstrate the pushbutton widget. Display one
** PushButton with a single callback routine. Print the name
** of the widget and the number of "multiple clicks". This
** value is maintained by the toolkit.
*/

#include <Xm/PushB.h>

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, button;
void my_callback(Widget, XtPointer, XtPointer);
XmString btn_text;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
btn_text = XmStringCreateLocalized ("Push Here");
XtSetArg (args[0], XmNlabelString, btn_text);
button = XmCreatePushButton (toplevel, "button", args, 1);
XmStringFree (btn_text);

XtAddCallback (button, XmNarmCallback, my_callback, NULL);
XtAddCallback (button, XmNactivateCallback, my_callback, NULL);

* XtVaAppInitialize() is considered deprecated in X11R6.

Chapter 12: Labels and Buttons

402 Motif Programming Manual

XtAddCallback (button, XmNdisarmCallback, my_callback, NULL);
XtManageChild (button);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void my_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

XmPushButtonCallbackStruct *cbs =
(XmPushButtonCallbackStruct *) call_data;

if (cbs->reason == XmCR_ARM)
printf ("%s: armed\n", XtName (w));

else if (cbs->reason == XmCR_DISARM)
printf ("%s: disarmed\n", XtName (w));

else
printf ("%s: pushed %d times\n", XtName (w), cbs->click_count);

}

The callback structure associated with the PushButton callback routines is
XmPushButtonCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
int click_count;

} XmPushButtonCallbackStruct;

The reason parameter is set to XmCR_ACTIVATE, XmCR_ARM, or XmCR_DISARM
depending on the callback that invoked the callback routine. We use this value to decide
what action to take in the callback routine. The event that caused the callback routine to be
invoked is referenced by the event field.

The value of the click_count field reflects how many times the PushButton has been
clicked repeatedly. A repeated button click is one that occurs during a predefined time
segment since the last button click. Repeated button clicks can only be done using the
mouse. The time segment that determines whether a button click is repeated is defined by
the resource multiClickTime * . This resource is not defined in the widget class hierarchy
but on a per-display basis; the value should be left to the user to specify independently from
the application. You can get or set this value using the functions
XtGetMultiClickTime() or XtSetMultiClickTime() . The time interval is used by
Xt’s translation manager to determine when multiple events are interpreted as a repeat
event. The default value is 200 milliseconds (1/5 of a second).

* There is no definition of this resource in any public header file, Motif, Xt, or otherwise.

Motif Programming Manual 403

Chapter 12: Labels and Buttons

Multiple Button Clicks
Unfortunately, there is no way to determine whether you are about to receive multiple
button clicks from a PushButton. Each time the user activates the PushButton, the arm
callback is invoked, followed by the activate callback, followed by the disarm callback.
These three callbacks are invoked regardless of whether multiple clicks have occurred.

The best way to determine whether multiple button clicks have occurred would be for the
disarm callback to be called only when there are no more button clicks queued. Under this
scenario, the same callback function can be used to determine the end of a multiple button
click sequence. However, since the Motif toolkit does not operate this way, we must
approach the task of handling multiple button clicks differently. We handle the situation by
setting up our own timeout routines independently of Motif and handling multiple clicks
through the timeout function. Even though we are going to use an alternate method for
handling multiple clicks, we can still use the click_count parameter in the callback
structure provided by the PushButton callback routine. Our technique is demonstrated in
Example 12-4.*

Example 12-4. The multi_click.c program

/* multi_click.c -- demonstrate handling multiple PushButton clicks.
** First, obtain the time interval of what constitutes a multiple
** button click from the display and pass this as the client_data
** for the button_click() callback function. In the callback, single
** button clicks set a timer to expire on that interval and call the
** function process_clicks(). Double clicks remove the timer and
** just call process_clicks() directly.
*/

#include <Xm/PushB.h>
XtAppContext app;

main (int argc, char *argv[])
{

Widget toplevel, button;
void button_click(Widget, XtPointer, XtPointer);
XmString btn_text;
int interval;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* get how long for a double click */
interval = XtGetMultiClickTime (XtDisplay (toplevel));
printf ("Interval = %d\n", interval);

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 12: Labels and Buttons

404 Motif Programming Manual

btn_text = XmStringCreateLocalized ("Push Here");
XtSetArg (args[0], XmNlabelString, btn_text);
button = XmCreatePushButton (toplevel, "button", args, 1);
XtManageChild (button);
XmStringFree (btn_text);
XtAddCallback (button, XmNactivateCallback, button_click,

(XtPointer) interval);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Process button clicks. Single clicks set a timer, double clicks
** remove the timer, and extended clicks are ignored.
*/
void button_click (Widget w, XtPointer client_data, XtPointer call_data)
{

static XtIntervalId id;
void process_clicks(XtPointer, XtIntervalId *);
int interval = (int) client_data;
XmPushButtonCallbackStruct *cbs =

(XmPushButtonCallbackStruct *) call_data;

if (cbs->click_count == 1)
id = XtAppAddTimeOut (app, (unsigned long) interval,

process_clicks, (XtPointer) False);
else if (cbs->click_count == 2) {

XtRemoveTimeOut (id);
process_clicks ((XtPointer) True, (XtIntervalId *) 0);

}
}

/* This function won't be called until we've established whether
** or not a single or a double click has occurred.
*/
void process_clicks (XtPointer client_data, XtIntervalId *id)
{

int double_click = (int) client_data;

if (double_click)
puts ("Double click");

else
puts ("Single click");

}

The program displays the same basic PushButton widget. First, it obtains the time interval
that constitutes a multiple button click from the display. This value is passed as the
client_data to the PushButton’s callback function, button_click() . When the user
first clicks on the PushButton, the callback function is called, and since it is a single-click
at this point, a timer is set to expire on the given time interval. If the timer expires, the
function process_clicks() is called with False as its parameter, which means that a
single-click has indeed occurred. However, if a second button click occurs before the timer

Motif Programming Manual 405

Chapter 12: Labels and Buttons

expires, the timer is removed and process_clicks() is called directly with True as its
data, to indicate that a double-click has occurred. The function process_clicks() can
be any function that processes single, double, or multiple clicks, depending on how you
modify the example we’ve provided.

If you run Example 12-4, you may find that you get mixed messages about whether an
action is a single or double mouse click. A multiple mouse click means that the user has
both pressed and released the mouse button more than once. It is very common for a user
to intend to double click on a button only to find that she really invoked a double press; she
quickly pressed the mouse button twice, but she failed to release it before the required time
interval. This problem makes it difficult to interpret double (multiple) button clicks. It is
important that you inform the user of the proper double-clicking method in any
accompanying documentation you provide with your application, as attempting to program
around this problem will definitely cause you great distress.

If you are going to use multiple button clicks for PushButtons, it is important that the
multiple-click actions perform a more global version of the single-click actions. The reason
for this recommendation is that if the user intends to perform a double click but doesn’t
click fast enough, the single-click action is invoked instead of the double-click action. If
the two actions are completely different, it can make an application difficult to use.You
might also consider displaying some visual cue to the user about the availability of double-
click actions. For example, you could use a multi-lined label in a PushButton, where the
first line indicates the single-click action and the second line specifies the double-click
action. If you use this technique, make sure that your documentation informs the user how
to invoke either of the two actions.

While double-clicking is a popular interface technique among application programmers
and it is certainly useful for computers with single-button mice, it may not be the best
interface for all occasions. Possible error conditions may arise when the user is unfamiliar
with single and double-clicking techniques. Users often trip on mouse buttons, causing
unintentional multiple clicks. Also, users frequently intend to do one double click yet
succeed in doing two single clicks. As a result, they get very upset because the application
invokes the wrong action twice as opposed to the right action once. Rather than subjecting
your users to possible misinterpretation, it may be better to define an alternate method for
providing separate actions for the same PushButton widget.

For example, you could define an action for a SHIFT-modified button click. This action is
easy enough for the user to do, it is less subject to ambiguity or accidental usage, and it is
much easier to program. The callback function only needs to check the event data
structure and see if the SHIFT key is down when the button is activated.

The PushButton looks for and reports multiple button-click actions by default, so if you are
not interested in multiple button clicks, you should set the resource XmNmultiClick to
XmMULTICLICK_DISCARD. When multiple clicks are discarded, only the first of a series

Chapter 12: Labels and Buttons

406 Motif Programming Manual

of clicks are processed; the rest are discarded without notifying the callback routine. To
turn multiple clicks back on, set the resource to XmMULTICLICK_KEEP.

ToggleButtons
A ToggleButton is a simple user-interface element that represents application state in some
way, usually a Boolean value. The widget consists of an indicator (a square, diamond, or
circle) with either text or a pixmap on one side of it* . The indicator is optional, however,
since the text or pixmap itself can provide the state information of the button. The
ToggleButton widget is subclassed from Label, so ToggleButtons can have their labels set
to compound strings or pixmaps and can be aligned in the same ways and under the same
restrictions as Label widgets.

Individually, a ToggleButton might be used to indicate whether a file should be opened in
overwrite mode or append mode, or whether a mail application should update a folder upon
process termination. But for the most part, it is when ToggleButtons are grouped together
that they become interesting components of a user interface. A RadioBox is a group of
ToggleButtons in which only one may be on at any given time. Like the old AM car radios,
when one button is pressed in, all of the others are popped out. A CheckBox is a group of
ToggleButtons in which each ToggleButton may be set independently of the others. In a
RadioBox the selection indicator is represented by a diamond shape, and in a CheckBox it
is represented by a square. In either case, when the button is on, the indicator appears to be
pressed in, and when it is off, the indicator appears to be popped out. The indicator can also
be configured to internally display a cross or check (tick) mark†, and there are resources
specifically to configure the color of the indicator in the on and off state‡.

A CheckBox or a RadioBox can often present a set of choices to the user more effectively
than a List widget, a PopupMenu, or a row of PushButtons. In fact, these configurations are
so common that Motif provides convenience routines for creating them:
XmCreateRadioBox() and XmCreateSimpleCheckBox() . RadioBoxes and
CheckBoxes are really specialized instances of the RowColumn manager widget that
contain ToggleButton children.

Creating ToggleButtons
Applications that use ToggleButtons must include the header file <Xm/ToggleB.h>.
ToggleButtons may be created using t he following code fragment:

Widget toggle = XtVaCreateWidget ("name", xmToggleButtonWidgetClass,
parent, resource-value-list , NULL);

* The range of indicators is extended in Motif 2.0: Motif 1.2 can only display squares and diamonds.

† Crosses, Checks and the like are only available from Motif 2.0 onwards.

‡ Coloration for the off state can only be specified in Motif 2.0 and later.

Motif Programming Manual 407

Chapter 12: Labels and Buttons

Widget toggle = XmCreateToggleButton (parent, “name”, resource-value-
array , resource-value-count);

ToggleButtons are also available in the form of gadgets. To use a ToggleButton gadget, you
must include the header file <Xm/ToggleBG.h>. ToggleButton gadgets may be created as
follows:

Widget toggle = XtVaCreateWidget ("name", xmToggleButtonGadgetClass,
parent, resource-value-list , NULL);

Widget toggle = XmCreateToggleButtonGadget (parent, “name”,
resource-value-array , resource-value-count);

As we’ll show you later in this section, it is also possible to create ToggleButtons at the
same time as you create their RowColumn parent. This technique is commonly used when
you create a RadioBox or a CheckBox.

Figure 12-3 shows an example of several different ToggleButtons in various states.

ToggleButton Resources
Since ToggleButtons are fairly simple objects, there are only a few resources associated
with them aside from those inherited from the Label class. Probably one of the most
important of these resources is XmNindicatorType , which controls the general shape of
the selection indicator that shows whether the ToggleButtons are part of a CheckBox or a
RadioBox. Table 12-1 lists the available possibilities and their meanings.*

. Table 12-1: The various settings for the XmNindicatorType resource

XmN_OF_MANY A square button

XmONE_OF_MANY A round or diamond shaped button

XmONE_OF_MANY_ROUND A round button

XmONE_OF_MANY_DIAMOND A diamond-shaped button

Figure 12-3: ToggleButton widgets and gadgets

Chapter 12: Labels and Buttons

408 Motif Programming Manual

The value XmONE_OF_MANY resource can result in either a round or diamond shape,
depending upon the XmDisplay object XmNenableToggleVisual resource. If this is
True , then the result is round, otherwise a diamond. The diamond shape is consistent with
a Motif 1.2 appearance.

When you are grouping ToggleButtons together in a single manager widget, the Motif
toolkit expects you to use a RowColumn widget. The RowColumn widget has several
resources intrinsic to its class that control the behavior of ToggleButton children. Setting
the RowColumn resource XmNradioBehavior to True automatically changes the
XmNindicatorType resource of every ToggleButton managed by the RowColumn to
XmONE_OF_MANY, which provides the exclusive RadioBox behavior. Setting
XmNradioBehavior to False sets the XmNindicatorType to XmN_OF_MANY and
gives the CheckBox behavior. If you want to use ToggleButtons in a manager widget other
than a RowColumn, you need to set the XmNindicatorType resource for each
ToggleButton individually, as well as manage the state of each button.

Whilst XmNindicatorType configured the general geometric shape of the indicator, the
resource XmNindicatorOn configures the contents*. Table 12-2 lists the possibilities:

The value XmINDICATOR_FILL depends upon the XmDisplay object
XmNenableToggleVisual resource. If False , the toggle indicator is a box, which is the
Motif 1.2 appearance. If True , the indicator has a check mark.

Toggles are usually thought of as Boolean in nature: they are either on, or off. A Motif 2.x
toggle can, however, be tri-state. The third state is the indeterminate state, which is neither
on, nor off. To configure a Toggle for three states, the XmNtoggleMode resource is set to
XmTOGGLE_INDETERMINATE; the default, XmTOGGLE_BOOLEAN, is the normal two-
state toggle. In order to programmatically set the Toggle into a given state, the XmNset

* XmONE_OF_MANY_ROUND, XmONE_OF_MANY_DIAMOND are only available from Motif 2.0 onwards.

. Table 12-2: The XmNindicatorOn resource and associated values

XmINDICATOR_NONE No indicator

XmINDICATOR_FILL A check box, or box

XmINDICATOR_BOX A Shadowed Box

XmINDICATOR_CHECK A check (tick) mark

XmINDICATOR_CHECK_BOX A check (tick) enclosed in a box

XmINDICATOR_CROSS A cross

XmINDICATOR_CROSS_BOX A cross enclosed in a box

* XmNindicatorOn in Motif 1.2 is a simple Boolean: display the indicator, or not. We feel that extending the
meaning to also encompass the visual appearance itself is possibly confusing, and it is no longer intuitive that
this is the resource to set if you want a Cross in a box. There should possibly have been an XmNindicator-
Style resource instead of overloading XmNindicatorOn .

Motif Programming Manual 409

Chapter 12: Labels and Buttons

resource is used: XmSET, XmUNSET, and XmINDETERMINATE are the relevant values*.
Figure 12-4 shows some Toggles in the three states.

Many of the remaining resources are intended mostly for fine-tuning the details of the
indicator shape. These details are straightforward and do not require a great deal of
discussion. For example, the XmNindicatorSize resource can be used to set the width
and height of the indicator. There is nothing magical about these sorts of resources or their
side effects, so most are either set automatically by the ToggleButton or they should be left
to the user to configure for herself.

ToggleButton Pixmaps
The XmNselectPixmap resource specifies the pixmap to use when a ToggleButton is on
(the resource XmNset has the value XmSET). The selected pixmap only applies if the
XmNlabelType resource is set to XmPIXMAP. XmNlabelType is a Label class resource,
but it applies to ToggleButtons since they are subclassed from Label. The resource
XmNindeterminatePixmap specifies the pixmap to use when the Toggle is in the
indeterminate state. Example 12-5 demonstrates the creation of a ToggleButton and the use
of the XmNselectPixmap and XmNindeterminatePixmap resources.†

Example 12-5. The toggle.c program

/* toggle.c -- demonstrate a simple toggle button.
*/

* In Motif 1.2, XmNset is a Boolean-valued resource. for backwards compatibility, XmSET is equivalent to True,
XmUNSET is equivalent to False.

† XtVaAppInitialize () is considered deprecated in X11R6. XmNindeterminatePixmap is available from
Motif 2.0 and later.

Figure 12-4: ToggleButton states and indicator appearance

Chapter 12: Labels and Buttons

410 Motif Programming Manual

#include <Xm/ToggleB.h>
#include <Xm/RowColumn.h>

void toggled (Widget widget, XtPointer client_data, XtPointer call_data)
{

XmToggleButtonCallbackStruct *state =
(XmToggleButtonCallbackStruct *) call_data;

printf ("%s: %s\n", XtName (widget),
state->set == XmSET? "on" : state->set == XmOFF ? "off" :
“indeterminate”);

}

main (int argc, char *argv[])
{

Widget toplevel, rowcol, toggle;
XtAppContext app;
Pixmap on, off, unknown;
Pixel fg, bg;
Arg args[6];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, n);
XtVaGetValues (rowcol, XmNforeground, &fg, XmNbackground, &bg, NULL);
on = XmGetPixmap (XtScreen (rowcol), "switch_on.xbm", fg, bg);
off = XmGetPixmap (XtScreen (rowcol), "switch_off.xbm", fg, bg);
unknown = XmGetPixmap (XtScreen (rowcol),

"switch_unknown.xbm", fg, bg);
if (on == XmUNSPECIFIED_PIXMAP ||

off == XmUNSPECIFIED_PIXMAP ||
unknown == XmUNSPECIFIED_PIXMAP) {

puts ("Couldn't load pixmaps");
exit (1);

}

n = 0;
XtSetArg (args[n], XmNlabelType, XmPIXMAP); n++;
XtSetArg (args[n], XmNtoggleMode, XmTOGGLE_INDETERMINATE); n++;
XtSetArg (args[n], XmNlabelPixmap, off); n++;
XtSetArg (args[n], XmNselectPixmap, on); n++;
XtSetArg (args[n], XmNindeterminatePixmap, unknown); n++;

toggle = XmCreateToggleButton (rowcol, "toggle", args, n);
XtAddCallback (toggle, XmNvalueChangedCallback, toggled, NULL);
XtManageChild (toggle);

toggle = XmCreateToggleButton (rowcol, "toggle",args, n);
XtAddCallback (toggle, XmNvalueChangedCallback, toggled, NULL);
XtManageChild (toggle);

Motif Programming Manual 411

Chapter 12: Labels and Buttons

toggle = XmCreateToggleButton (rowcol, "toggle",args, n);
XtAddCallback (toggle, XmNvalueChangedCallback, toggled, NULL);
XtManageChild (toggle);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output for this program is shown in Figure 12-5. The button on the left shows the
ToggleButton when it is in the XmUNSET state, the button in center is the
XmINDETERMINATE state, and the button on the right shows it in the XmSET state. The
pixmaps illustrate the movement of a simple mechanical switch. Since the pixmaps make
the state of the toggle clear, the square indicator is not really necessary. It can be turned off
by setting XmNindicatorOn to XmINDICATOR_NONE (its default value is
XmINDICATOR_FILL).

In order to create the pixmaps for the ToggleButtons, we use the function
XmGetPixmap() , which is a general-purpose pixmap loading and caching function. The
function needs a foreground and background color for the pixmap it creates, so we retrieve
and use the colors from the RowColumn that is the parent of the ToggleButton.
XmGetPixmap() loads the pixmaps stored in the files switch_on.xbm, switch_off.xbm, and
switch_unknown.xbm in the current directory.*Those files contain the following bitmap
definitions:

#define switch_on_width 16
#define switch_on_height 16
static unsigned char switch_on_bits[] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x00, 0x3c,
0x00, 0x1e, 0x00, 0x0f, 0x80, 0x07, 0xc0, 0x03, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};

#define switch_off_width 16
#define switch_off_height 16
static unsigned char switch_off_bits[] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x00, 0x3c, 0x00,
0x78, 0x00, 0xf0, 0x00, 0xe0, 0x01, 0xc0, 0x03, 0xff, 0xff, 0xff, 0xff,

* The fact that the pixmap files happen to reside in the current directory is not necessarily the recommended meth-
od for using XmGetPixmap() . For a complete discussion of the function, see Section 3.4.5 in Chapter 3, Over-
view of the Motif Toolkit.

Figure 12-5: Output of the toggle program

Chapter 12: Labels and Buttons

412 Motif Programming Manual

0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

#define switch_unknown_width 16
#define switch_unknown_height 16
static unsigned char switch_unknown_bits[] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x01, 0x80, 0x01, 0x80, 0x01,
0x80, 0x01, 0x80, 0x01, 0x80, 0x01, 0x80, 0x01, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};

The XmNselectInsensitivePixmap resource can be used to specify a pixmap to be
used when the widget or gadget is insensitive, but in a selected state. When a ToggleButton
is insensitive, the user cannot change its value interactively. Similarly,
XmNindeterminateInsensitivePixmap can be used to display the indeterminate
state when the Toggle is insensitive* .

ToggleButton Callbacks
The primary callback routine associated with the ToggleButton is the
XmNvalueChangedCallback , which is invoked when the value of the ToggleButton
changes. The ToggleButton also has arm and disarm callbacks that are analogous to the
callbacks in PushButtons. The callback structure associated with the ToggleButton
callback routines is XmToggleButtonCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
int set;

} XmToggleButtonCallbackStruct;

When the value of the ToggleButton has changed, the reason field is set to XmCR_VALUE_
CHANGED and the set field indicates the current state of the widget.

You can determine the state of a ToggleButton at any time using either
XmToggleButtonGetState() or XmToggleButtonGadgetGetState() . These
functions take the following form:

Boolean XmToggleButtonGetState (Widget toggle_w)
Boolean XmToggleButtonGadgetGetState (Widget toggle_w)

Both of the routines return the state of the specified ToggleButton.
XmToggleButtonGetState() determines if the toggle_w parameter is a widget or a
gadget, so you can use the routine on either a ToggleButton widget or a ToggleButton
gadget. XmToggleButtonGadgetSetState() can only be used on a gadget.

* XmNindeterminateInsensitivePixmap is only available from Motif 2.0 onwards.

Motif Programming Manual 413

Chapter 12: Labels and Buttons

You can explicitly set the state of a ToggleButton using similar functions:
XmToggleButtonSetState() and XmToggleButtonGadgetSetState() . These
functions take the following form:

void XmToggleButtonSetState (Widget toggle_w , Boolean state ,
Boolean notify)

void XmToggleButtonGadgetSetState (Widget toggle_w , Boolean state ;
Boolean notify)

The state argument specifies the state of the ToggleButton. The notify parameter
allows you to specify whether or not the XmNvalueChangedCallback of the
ToggleButton is called when the state is changed. Just like the corresponding get function,
XmToggleButtonSetState() determines if its parameter is a widget or gadget
internally, so you can use it on either a ToggleButton widget or a ToggleButton gadget.
XmToggleButtonGadgetSetState() can only be used on a gadget.

The XmToggleButtonGetState () and XmToggleButtonSetState () functions
assume the Motif 1.2 model: the Toggle is a Boolean switch. It is not possible to query or
set the Toggle into an indeterminate state using the routines. For a tri-state Toggle, the
following functions set the widget state:

Boolean XmToggleButtonSetValue (Widget toggle_w,
XmToggleButtonState state,
Boolean notify)

Boolean XmToggleButtonGadgetSetValue (Widget toggle_w;
XmToggleButtonState state;
Boolean notify)

If the Toggle has the resource XmNtoggleMode set to XmTOGGLE_INDETERMINATE,
XmToggleButtonSetValue () and XmToggleButtonGadgetSetValue () set the
Toggle to the requested state, call the XmNvalueChangedCallback if notify is True ,
and thereafter return the value True . If XmNtoggleMode is set otherwise, the routines
simply return False .

One important point to make about ToggleButtons is that, unlike PushButtons and
DrawnButtons, the callback is not typically used to take an action in the application. This
point becomes clearer with groups of ToggleButtons, which are commonly used to set the
state of various variables. When the user has set the state as desired, she might tell the
application to apply the settings by clicking on an associated PushButton. For this reason,
the callback routine for a ToggleButton may simply set the state of a global variable; the
value can then be used by other application functions.

Of course, like almost every object in Motif, a ToggleButton can be put to many uses. For
example, a single ToggleButton could be used to swap the foreground and background
colors of a window as soon as the user selects the button. An application that controls a CD
player could have a Pause button represented by a ToggleButton.

Chapter 12: Labels and Buttons

414 Motif Programming Manual

RadioBoxes
When a group of ToggleButtons are used as part of an interface, it is in the form of a
RadioBox or a CheckBox. The primary difference between the two is the selection of the
ToggleButtons within. In a RadioBox, only one item may be selected at a time (analogous
to old-style AM car radios). You push one button and the previously set button pops out.
Examples of exclusive settings in a RadioBox might be baud rate settings for a
communications program or U.S. versus European paper sizes in the page setup dialog of
a word processing program.

A RadioBox is implemented using a combination of ToggleButton widgets or gadgets and
a RowColumn manager widget. As discussed in Chapter 8, Manager Widgets, the
RowColumn widget is a general-purpose composite widget that manages the layout of its
children. The RowColumn has special resources that allow it to act as a RadioBox for a
group of ToggleButtons.

In a RadioBox, only one of the buttons may be set at any given time. This functionality is
enforced by the RowColumn when the resource XmNradioBehavior is set to True . For
true RadioBox effect, the XmNradioAlwaysOne resource can also be set to tell the
RowColumn that one of the ToggleButtons should always be set. Whenever
XmNradioBehavior is set, the RowColumn automatically sets the XmNindicatorType
resource to XmONE_OF_MANY and the XmNvisibleWhenOff resource to True for all of
its ToggleButton children. Furthermore, the XmNisHomogeneous resource on the
RowColumn is forced to True to ensure that no other kinds of widgets can be contained in
that RowColumn instance.

Motif provides the convenience function XmCreateRadioBox() to automatically create
a RowColumn widget that is configured as a RadioBox. This routine creates a RowColumn
widget with XmNisHomogeneous set to True , XmNentryClass set to
xmToggleButtonGadgetClass , XmNradioBehavior set to True , and XmNpacking
set to XmPACK_COLUMN. Keep in mind that unless XmNisHomogeneous is set to True ,
there is nothing restricting a RadioBox from containing other classes as well as
ToggleButtons. Whether the RowColumn is homogeneous or not, the toggle behavior is not
affected. Although the Motif convenience function sets the homogeneity, it is not a
requirement. For example, you might want a RadioBox to contain a Label, or perhaps even
some other control area, like a Command widget.

Example 12-6 contains a program that creates and uses a RadioBox.*

Example 12-6. The radio.c program

/* radio.c -- demonstrate a simple radio box. Create a
** box with 3 toggles: "one", "two" and "three". The callback

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 415

Chapter 12: Labels and Buttons

** routine prints the most recently selected choice. Maintain
** a global variable that stores the most recently selected.
*/
#include <Xm/ToggleBG.h>
#include <Xm/RowColumn.h>

int toggle_item_set;

void toggled (Widget widget, XtPointer client_data, XtPointer call_data)
{

int which = (int) client_data;
XmToggleButtonCallbackStruct *state =

(XmToggleButtonCallbackStruct *) call_data;
printf ("%s: %s\n", XtName (widget),

state->set == XmSET ? "on" : state->set == XmOFF ? "off" :
“indeterminate”);

if (state->set == XmSET)
toggle_item_set = which;

else
toggle_item_set = 0;

}

main (int argc, char *argv[])
{

Widget toplevel, radio_box, one, two, three;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);

radio_box = XmCreateRadioBox (toplevel, "radio_box", NULL, 0);

one = XmCreateToggleButtonGadget (radio_box, "One", NULL, 0);
XtAddCallback (one, XmNvalueChangedCallback, toggled, (XtPointer) 1);
XtManageChild (one);

two = XmCreateToggleButtonGadget (radio_box, "Two", NULL, 0);
XtAddCallback (two, XmNvalueChangedCallback, toggled, (XtPointer) 2);
XtManageChild (two);

three = XmCreateToggleButtonGadget (radio_box, "Three", NULL, 0);
XtAddCallback (three, XmNvalueChangedCallback, toggled,

(XtPointer) 3);
XtManageChild (three);

XtManageChild (radio_box);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The program creates three ToggleButtons inside of a RadioBox. When the user selects one
of the buttons, the previously-set widget is toggled off, and the
XmNvalueChangedCallback routine is called. Notice that the routine is called twice for

Chapter 12: Labels and Buttons

416 Motif Programming Manual

each selection: the first time to notify that the previously set widget has been turned off, and
the second time to notify that the newly set widget has been turned on. The output of the
program is shown in Figure 12-6.

The global variable toggle_item_set indicates which of the three selections is on. The
value of toggle_item_set is accurate at any given time because it is either set to the
most currently selected object or it is set to 0. In a real application, this global variable
would be used to store the state of the buttons, so that other application functions could
reference them.

You should beware of lengthy callback lists, however. If you have more than one function
in the callback list for the ToggleButtons (unlike the situation shown above), the entire list
is going to be called twice. A zero value for toggle_item_set indicates that you are in
the first of two phases of the toggling mechanism. In this case, you can fall through your
callback lists, as the list is called again with the value set to the recently selected toggle
item.

Motif provides another RadioBox creation routine, XmVaCreateSimpleRadioBox() ,
for creating simple RadioBoxes. If a RadioBox only has one callback associated with it and
you only need to know which button has been selected, this routine may be used. The form
of the function is:

XmVaCreateSimpleRadioBox (Widget parent , String name, int button_set ,
void (* callback)(), ..., NULL)

In addition to the specified parameters, the function also accepts a NULL terminated list of
resource-value pairs that apply to the RowColumn widget that acts as the RadioBox. You
can specify any normal RowColumn resources in this list, as well as the value
XmVaRADIOBUTTON, which is a convenient method for specifying a button that is to be
created inside the RadioBox. This parameter is followed by four additional arguments: a
label of type XmString , a mnemonic of type XmKeySym, an accelerator of type
String , and accelerator_text (also of type XmString) that is used to display the
accelerator in the widget. You can use XmVaRADIOBUTTON multiple times in the same call
to XmVaCreateSimpleRadioBox() , so that you can create an entire group of
ToggleButtons in one function call.

Example 12-7 contains an example of XmVaCreateSimpleRadioBox() . This program
is functionally identical to the previous example.*

Figure 12-6: Output of the simple_radio program

Motif Programming Manual 417

Chapter 12: Labels and Buttons

 Example 12-7. The simple_radio.c program

/* simple_radio.c -- demonstrate a simple radio box by using
** XmVaCreateSimpleRadioBox(). Create a box with 3 toggles:
** "one", "two" and "three". The callback routine prints
** the most recently selected choice.
*/

#include <Xm/RowColumn.h>

void toggled (Widget widget, XtPointer client_data, XtPointer call_data)
{

int which = (int) client_data;
XmToggleButtonCallbackStruct *state =

(XmToggleButtonCallbackStruct *) call_data;
printf ("%s: %s\n", XtName (widget),

state->set == XmSET? "on" : state->set == XmOFF ? "off" :
“indeterminate”);

}

main (int argc, char *argv[])
{

Widget toplevel, radio_box;
XtAppContext app;
XmString one, two, three;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);

one = XmStringCreateLocalized ("One");
two = XmStringCreateLocalized ("Two");
three = XmStringCreateLocalized ("Three");

radio_box = XmVaCreateSimpleRadioBox (toplevel,
"radio_box",
0, /* the initial choice */
toggled, /* the callback routine */
XmVaRADIOBUTTON, one, NULL, NULL, NULL,
XmVaRADIOBUTTON, two, NULL, NULL, NULL,
XmVaRADIOBUTTON, three, NULL, NULL, NULL,
NULL);

XmStringFree (one);
XmStringFree (two);
XmStringFree (three);

XtManageChild (radio_box);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 12: Labels and Buttons

418 Motif Programming Manual

CheckBoxes
A CheckBox is similar to a RadioBox, except that there is no restriction on how many items
may be selected at once. A word processing program might use a CheckBox for
nonexclusive settings, such as whether font smoothing, bitmap smoothing, or both, should
be applied.

Like RadioBoxes, CheckBoxes are implemented using RowColumn widgets and
ToggleButton children. To allow multiple items to be selected, the XmNradioBehavior
resource is set to False . The convenience routine XmVaCreateSimpleCheckBox()
works just like the radio box creation routine, except that it turns off the
XmNradioBehavior resource. Rather than using this function, we can simply create a
common RowColumn widget and add ToggleButton children. With this technique, we have
more direct control over the resources that are set in the RowColumn, since we can specify
exactly which ones we want using the varargs interface for creating the widget.

Example 12-8 demonstrates how to create a CheckBox using a RowColumn widget.*

Example 12-8. The toggle_box.c program

/* toggle_box.c -- demonstrate a home-brew ToggleBox. A static
** list of strings is used as the basis for a list of toggles.
** The callback routine toggled() is set for each toggle item.
** The client data for this routine is set to the enumerated
** value of the item with respect to the entire list. This value
** is treated as a bit which is toggled in "toggles_set" -- a
** mask that contains a complete list of all the selected items.
** This list is printed when the PushButton is selected.
*/

#include <Xm/ToggleBG.h>
#include <Xm/PushBG.h>
#include <Xm/SeparatoG.h>
#include <Xm/RowColumn.h>

unsigned long toggles_set; /* has the bits of which toggles are set */
char *strings[] = {"One", "Two", "Three", "Four", "Five", "Six", "Seven",

"Eight", "Nine", "Ten"};
/* A RowColumn is used to manage a ToggleBox (also a RowColumn) and
** a PushButton with a separator gadget in between.
*/
main (int argc, char *argv[])
{

Widget toplevel, rowcol, toggle_box, w;
XtAppContext app;
void toggled(Widget, XtPointer, XtPointer);
void check_bits(Widget, XtPointer, XtPointer);
int i;

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 419

Chapter 12: Labels and Buttons

Arg args[4];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

i = 0;
XtSetArg (args[i], XmNpacking, XmPACK_TIGHT); i++;
rowcol = XmCreateRowColumn (toplevel, "rowcolumn", args, i);

i = 0;
XtSetArg (args[i], XmNpacking, XmPACK_COLUMN); i++;
XtSetArg (args[i], XmNnumColumns, 2); i++;
toggle_box = XmCreateRowColumn (rowcol, "togglebox", args, i);

/* simply loop through the strings creating a widget for each one */
for (i = 0; i < XtNumber (strings); i++) {

w = XmCreateToggleButtonGadget (toggle_box, strings[i], NULL, 0);
XtAddCallback (w, XmNvalueChangedCallback, toggled,

(XtPointer) i);
XtManageChild (w);

}

w = XmCreateSeparatorGadget (rowcol, "sep",NULL, 0);
XtManageChild (w);
w = XmCreatePushButtonGadget (rowcol, "Check Toggles",NULL, 0);
XtAddCallback (w, XmNactivateCallback, check_bits, NULL);
XtManageChild (w);

XtManageChild (rowcol);
XtManageChild (toggle_box);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* callback for all ToggleButtons.*/
void toggled (Widget widget, XtPointer client_data, XtPointer call_data)
{

int bit = (int) client_data;
XmToggleButtonCallbackStruct *toggle_data =

(XmToggleButtonCallbackStruct *) call_data;

if (toggle_data->set == XmSET)
/* if the toggle button is set, flip its bit */
toggles_set |= (1 << bit);

else /* if the toggle is "off", turn off the bit. */
toggles_set &= ~(1 << bit);

}

void check_bits (Widget widget, XtPointer client_data, XtPointer call_data)
{

int i;

printf ("Toggles set:");

Chapter 12: Labels and Buttons

420 Motif Programming Manual

for (i = 0; i < XtNumber (strings); i++)
if (toggles_set & (1<<i))

printf (" %s", strings[i]);
putchar ('\n');

}

The output of this program is shown in Figure 12-7.

This example is similar to the previous RadioBox examples, except that since more than
one of the buttons may be set at a time in a CheckBox, we can no longer use toggle_
item_set the way we did in the previous examples. Instead, we are going to change its
name to toggles_set and its type to unsigned long . This time we are going to use the
variable as a mask, which means that its individual bits have meaning, rather than the
combined value of the variable. The bits indicate which of the ToggleButtons have been
set. Each time a ToggleButton changes its value, the callback routine flips the
corresponding bit in the mask. We can therefore determine at any given time which buttons
are set and which are not.*

The PushButton in the program provides a way to check the state of all of the
ToggleButtons. The callback routine for the PushButton prints the strings of those buttons
that are selected by looping through the toggles_set variable and checking for bits that have
been set.

One interesting aspect of this program is that it works just as well if the CheckBox is a
RadioBox. To test this statement, we can run the program again with the
XmNradioBehavior resource set to True via the -xrm command-line option:

toggle_box -xrm "*radioBehavior: True"

* The unsigned long type can only represent up to 32 ToggleButtons. If more buttons are used within the
CheckBox, a new mechanism is needed, although the basic design presented here can still be used.

Figure 12-7: Output of the toggle_box program

Motif Programming Manual 421

Chapter 12: Labels and Buttons

The result is shown in Figure 12-8.

As you can see, simply changing this single RowColumn resource completely changes the
appearance of all the ToggleButtons.

ArrowButtons
An ArrowButton is just like a PushButton, except that it only displays a directional arrow
symbol. The arrow can point up, down, left, or right. Motif provides both widget and gadget
versions of the ArrowButton; the associated header files are <Xm/ArrowB.h>and <Xm/
ArrowBG.h>. Example 12-9 shows a program that creates four ArrowButtons, one for each
direction.*

 Example 12-9. The arrow.c program

/* arrow.c -- demonstrate the ArrowButton widget.
** Have a Form widget display 4 ArrowButtons in a
** familiar arrangement.
*/

#include <Xm/ArrowBG.h>
#include <Xm/Form.h>

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, form, arrow;
Arg args[6];
int n;
XrmDatabase xrm_db;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);

* XtVaAppInitialize () is considered deprecated in X11R6.

Figure 12-8: Output of the toggle_box program with XmNradioBehavior set True

Chapter 12: Labels and Buttons

422 Motif Programming Manual

xrm_db = XrmGetDatabase(XtDisplay (toplevel));
/* Rather than listing all these resources in an app-defaults file,
** add them directly to the database for this application only. This
** would be virtually equivalent to hard-coding values, since these
** resources will override any other specified external to this file.
*/

XrmPutStringResource (&xrm_db,
"*form*topAttachment", "attach_position");

XrmPutStringResource (&xrm_db,
"*form*leftAttachment", "attach_position");

XrmPutStringResource (&xrm_db,
"*form*rightAttachment", "attach_position");

XrmPutStringResource (&xrm_db,
"*form*bottomAttachment","attach_position");

n = 0;
XtSetArg (args[n], XmNfractionBase, 3); n++;
form = XmCreateForm (toplevel, "form",args, n);

n = 0;
XtSetArg (args[n], XmNtopPosition, 0); n++;
XtSetArg (args[n], XmNbottomPosition, 1); n++;
XtSetArg (args[n], XmNleftPosition, 1); n++;
XtSetArg (args[n], XmNrightPosition, 2); n++;
XtSetArg (args[n], XmNarrowDirection, XmARROW_UP); n++;
arrow = XmCreateArrowButtonGadget (form, "arrow1", args, n);
XtManageChild (arrow);

n = 0;
XtSetArg (args[n], XmNtopPosition, 1); n++;
XtSetArg (args[n], XmNbottomPosition, 2); n++;
XtSetArg (args[n], XmNleftPosition, 0); n++;
XtSetArg (args[n], XmNrightPosition, 1); n++;
XtSetArg (args[n], XmNarrowDirection, XmARROW_LEFT); n++;
arrow = XmCreateArrowButtonGadget (form, "arrow2", args, n);
XtManageChild (arrow);

n = 0;
XtSetArg (args[n], XmNtopPosition, 1); n++;
XtSetArg (args[n], XmNbottomPosition, 2); n++;
XtSetArg (args[n], XmNleftPosition, 2); n++;
XtSetArg (args[n], XmNrightPosition, 3); n++;
XtSetArg (args[n], XmNarrowDirection, XmARROW_RIGHT); n++;
arrow = XmCreateArrowButtonGadget (form, "arrow3", args, n);
XtManageChild (arrow);

n = 0;
XtSetArg (args[n], XmNtopPosition, 2); n++;
XtSetArg (args[n], XmNbottomPosition, 3); n++;
XtSetArg (args[n], XmNleftPosition, 1); n++;
XtSetArg (args[n], XmNrightPosition, 2); n++;
XtSetArg (args[n], XmNarrowDirection, XmARROW_DOWN); n++;

Motif Programming Manual 423

Chapter 12: Labels and Buttons

arrow = XmCreateArrowButtonGadget (form, "arrow3", args, n);
XtManageChild (arrow);

XtManageChild (form);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

Figure 12-9 shows the output of this program.

The size of the arrow-shaped image is calculated dynamically based on the size of the
widget itself. If the widget is resized for some reason, the directional arrow grows or
shrinks to fill the widget. The XmNarrowDirection resource controls the direction of the
arrow displayed by an ArrowButton. This resource may have one of the following values:

XmARROW_UP XmARROW_DOWN XmARROW_LEFT XmARROW_RIGHT

ArrowButtons are useful if you want to provide redundant interface methods for certain
widgets. For example, you could use ArrowButtons to move the viewport of a
ScrolledWindow. Redundancy, when used appropriately, can be an important part of a
graphical user interface. Many users may not adapt well to certain interface controls, such
as PulldownMenus in MenuBars or keyboard accelerators, while they are perfectly
comfortable with iconic controls such as ArrowButtons and PushButtons displaying
pixmaps. ArrowButtons are also useful if you want to build your own interface for an object
that is not part of the Motif widget set.

ArrowButton widgets and gadgets work in the same way as PushButtons. ArrowButtons
have an XmNactivateCallback , an XmNarmCallback , an XmNdisarmCallback , and
a XmNmultiClick resource. The callback routines all take a parameter of type
XmArrowButtonCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
int click_count;

} XmArrowButtonCallbackStruct;

This callback structure is identical to the one used for PushButtons.

Figure 12-9: Output of the arrow program

Chapter 12: Labels and Buttons

424 Motif Programming Manual

ArrowButtons are commonly used to increment and decrement a value, a position, or
another type of data by some arbitrary amount. If the amount being incremented or
decremented is sufficiently small in comparison to the total size of the object, it is
convenient for the user if you give her the ability to change the value quickly. For example,
we can emulate the activate callback routine being called continuously when the user holds
down the mouse button over an ArrowButton widget. This functionality is not a feature of
the ArrowButton; it is something we have to add ourselves. To implement this feature, we
use an Xt timer as demonstrated in Example 12-10.*

Example 12-10. The arrow_timer.c program

/* arrow_timer.c -- demonstrate continuous callbacks using
** ArrowButton widgets. Display up and down ArrowButtons and
** attach arm and disarm callbacks to them to start and stop timer
** that is called repeatedly while the button is down. A label
** that has a value changes either positively or negatively
** by single increments while the button is depressed.
*/

#include <Xm/ArrowBG.h>
#include <Xm/Form.h>
#include <Xm/RowColumn.h>
#include <Xm/LabelG.h>

XtAppContext app;
Widget label;
XtIntervalId arrow_timer_id;

typedef struct value_range {
int value, min, max;

} ValueRange;

main (int argc, char *argv[])
{

Widget w, toplevel, rowcol;
void start_stop(Widget, XtPointer, XtPointer);
ValueRange range;
Arg args[6];
int n;
XmString xms;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, n);

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 425

Chapter 12: Labels and Buttons

n = 0;
XtSetArg (args[n], XmNarrowDirection, XmARROW_UP); n++;
w = XmCreateArrowButtonGadget (rowcol, "arrow_up", args, n);
XtAddCallback (w, XmNarmCallback, start_stop, (XtPointer) 1);
XtAddCallback (w, XmNdisarmCallback, start_stop, (XtPointer) 1);
XtManageChild (w);

n = 0;
XtSetArg (args[n], XmNarrowDirection, XmARROW_DOWN); n++;
w = XmCreateArrowButtonGadget (rowcol, "arrow_dn", args, n);
XtAddCallback (w, XmNarmCallback, start_stop, (XtPointer) -1);
XtAddCallback (w, XmNdisarmCallback, start_stop, (XtPointer) -1);
XtManageChild (w);

range.value = 0;
range.min = -50;
range.max = 50;

n = 0;
xms = XmStringCreateLocalized(“3”);
XtSetArg (args[n], XmNlabelString, xms); n++;
XtSetArg (args[n], XmNuserData, &range); n++;
label = XmCreateLabelGadget (rowcol, "label", args, n);
XmStringFree (xms);
XtManageChild (label);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* start_stop is used to start or stop the incremental changes to
** the label's value. When the button goes down, the reason is
** XmCR_ARM and the timer starts. XmCR_DISARM disables the timer.
*/

void start_stop (Widget w, XtPointer client_data, XtPointer call_data)
{

int incr = (int) client_data;
XmArrowButtonCallbackStruct *cbs =

(XmArrowButtonCallbackStruct *) call_data;
void change_value(XtPointer, XtIntervalId *);

if (cbs->reason == XmCR_ARM)
change_value ((XtPointer) incr, (XtIntervalId *) 1);

else if (cbs->reason == XmCR_DISARM)
XtRemoveTimeOut (arrow_timer_id);

}

/* change_value is called each time the timer expires. This function
** is also used to initiate the timer. The "id" represents that timer
** ID returned from the last call to XtAppAddTimeOut(). If id == 1,
** the function was called from start_stop(), not a timeout. If the value

Chapter 12: Labels and Buttons

426 Motif Programming Manual

** has reached its maximum or minimum, don't restart timer, just return.
** If id == 1, this is the first timeout so make it be longer to allow
** the user to release the button and avoid getting into the "speedy"
** part of the timeouts.
*/
void change_value (XtPointer client_data, XtIntervalId *id)
{

ValueRange *range;
char buf[8];
int incr = (int) client_data;
XmString xms;

XtVaGetValues (label, XmNuserData, &range, NULL);

if (range->value + incr > range->max || range->value + incr < range->min)
return;

range->value += incr;
sprintf (buf, "%d", range->value);
xms = XmStringCreateLocalized (buf);
XtVaSetValues (label, XmNlabelString, xms, NULL);
XmStringFree (xms);

arrow_timer_id = XtAppAddTimeOut (app,
(unsigned long) (id == (XtIntervalId *) 1? 500: 100),
change_value,
incr);

}

The output of this program is shown in Figure 12-10.

The program creates up and down ArrowButtons and attaches arm and disarm callbacks
that start and stop an internal timer. Each time the timer expires, the value displayed by the
Label changes incrementally by one. The timer remains on as long as the button is down.
We know that the button has been released when the disarm event occurs.

The function responsible for this behavior is start_stop() ; it is installed for both the
arm and disarm callback. When the button is pressed, the reason is XmCR_ARM, and the
timer starts. When the button is released, the disarm callback is invoked, the reason is
XmCR_DISARM, and the timer is disabled. The start_stop() routine initiates the timer
by calling change_value() . Each time the timer expires, change_value() is also
called, which means that the function is called repeatedly while the button is pressed. The
id represents the ID of the timer that recently expired from the last call to

Figure 12-10: Output of the arrow_timer program

Motif Programming Manual 427

Chapter 12: Labels and Buttons

XtAppAddTimeOut() . If the value is one, the function was called from start_stop() ,
not as a timeout. We don’t restart the timer if the value has reached its maximum or
minimum value. If id is one, we know that this is the initiating call, so we make the first
timeout last longer to allow the user to release the button before getting into the “speedy”
timeouts. Otherwise, the time out occurs every 100 milliseconds.

If you experiment with the program, you can get a feel for how the functions work and
modify some of the hard-coded values, such as the timeout values. While we demonstrate
this technique with ArrowButtons, it can also be applied to a PushButton or any other
widget that provides arm and disarm callbacks.*

DrawnButtons
DrawnButtons are similar to PushButtons, except that they also have callback routines for
Expose and ConfigureNotify events. Whenever a DrawnButton is exposed or resized,
the corresponding callback routine is responsible for redisplaying the contents of the
button. The widget does not handle its own repainting. These callbacks are invoked any
time the widget needs to redraw itself, even if it is a result of a change to a resource such
as XmNshadowType, XmNshadowThickness , or the foreground or background color of
the widget.

The purpose of the DrawnButton is to allow you to draw into it while maintaining complete
control over what the widget displays. Unlike with a PushButton, you are in control of the
repainting of the surface area of the widget, not including the bevelled edges that give it a
3D effect. To provide a dynamically changing pixmap using a PushButton widget, you
would have to change the XmNlabelPixmap resource using XtVaSetValues() .
Unfortunately, this method results in an annoying flickering effect because the PushButton
redisplays itself entirely whenever its pixmap changes. By using the DrawnButton widget,
you can dynamically change its display by rendering graphics directly onto the window of
the widget using any Xlib routines such as XDrawLine() or XCopyArea() . This tight
control may require more work on your part, but the feedback to the user is greatly
improved over the behavior of the PushButton.

DrawnButtons are created similarly to PushButtons and ArrowButtons. However, because
the widget provides you with its own drawing area, there is no corresponding gadget
version of this object. The associated header file is <Xm/DrawnB.h> and it must be
included by files that create the widget. Example 12-11 shows a simple example of how a
DrawnButton can be created.†

Example 12-11. The drawn.c program

* The kind of input arrangement outlined in Example 12-10 is more likely to be implemented as a SpinBox in
Motif 2.0 (or, in Motif 2.1, a SimpleSpinBox).

† XtVaAppInitialize() is considered deprecated in X11R6.

Chapter 12: Labels and Buttons

428 Motif Programming Manual

/* drawn.c -- demonstrate the DrawnButton widget by drawing a
** common X logo into its window. This is hardly much different
** from a PushButton widget, but the DrawnButton isn't much
** different, except for a couple more callback routines...
*/

#include <Xm/DrawnB.h>
#include <Xm/BulletinB.h>

Pixmap pixmap;

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, bb, button;
Pixel fg, bg;
Dimension ht, st;
void my_callback(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

bb = XmCreateBulletinBoard (toplevel, "bb", NULL, 0);
XtVaGetValues (bb, XmNforeground, &fg, XmNbackground, &bg, NULL);
pixmap = XmGetPixmap (XtScreen (bb), "xlogo64", fg, bg);
button = XmCreateDrawnButton (bb, "button", NULL, 0);
XtManageChild (button);

XtVaGetValues (button, XmNhighlightThickness, &ht,
XmNshadowThickness, &st, NULL);

XtVaSetValues (button, XmNwidth, 2 * ht + 2 * st + 64,
XmNheight, 2 * ht + 2 * st + 64, NULL);

XtAddCallback (button, XmNactivateCallback, my_callback, NULL);
XtAddCallback (button, XmNexposeCallback, my_callback, NULL);
XtAddCallback (button, XmNresizeCallback, my_callback, NULL);

XtManageChild (bb);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void my_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

XmDrawnButtonCallbackStruct *cbs =
(XmDrawnButtonCallbackStruct *) call_data;

if (cbs->reason == XmCR_ACTIVATE)
printf ("%s: pushed %d times\n", XtName (w), cbs->click_count);

else if (cbs->reason == XmCR_EXPOSE) {
Dimension ht, st;

Motif Programming Manual 429

Chapter 12: Labels and Buttons

XtVaGetValues (w, XmNhighlightThickness, &ht,
XmNshadowThickness, &st, NULL);

XtVaSetValues (w, XmNwidth, 2 * ht + 2 * st + 64,
XmNheight, 2 * ht + 2 * st + 64, NULL);

XCopyArea (XtDisplay (w), pixmap, XtWindow (w),
XDefaultGCOfScreen (XtScreen (w)), 0, 0, 64,
64, ht + st, ht + st);

}
else /* XmCR_RESIZE */

puts ("Resize");
}

The program simply displays the X Window System logo as shown in Figure 12-11.

A single callback routine, my_callback() , is specified for the
XmNactivateCallback , XmNexposeCallback , and XmNresizeCallback callbacks.
The callback structure associated with the DrawnButton is called the
XmDrawnButtonCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
Window window;
int click_count;

} XmDrawnButtonCallbackStruct;

The window field of the structure is the window ID of the DrawnButton widget. This value
is the same as that returned by XtWindow() . The my_callback() callback routine
checks the value of the reason field to determine which action to take. The reason can
be one of the following values:

XmCR_ACTIVATE XmCR_ARM XmCR_DISARM
XmCR_EXPOSE XmCR_RESIZE

When the reason is XmCR_EXPOSE, the callback routine handles drawing the X Window
System logo in the DrawnButton. Since the widget takes care of drawing its own highlight
and shadow, we have to be careful not to draw over these areas.

Since all of the rendering in a DrawnButton is the responsibility of the application, you
must decide whether you want to render the graphics differently when the button is
insensitive. Since the DrawnButton is subclassed from the Label class, you can provide a

Figure 12-11: Output of the drawn program

Chapter 12: Labels and Buttons

430 Motif Programming Manual

XmNlabelPixmap and XmNlabelInsensitivePixmap if you like, but in this case you
might as well use a PushButton instead of a DrawnButton.

In Chapter 26, Signal Handling, we present an example that shows how DrawnButtons can
be used to construct an application manager* . An application manager is a program that
contains a set of icons, where each icon corresponds to a program. When the user pushes
one of the buttons, the corresponding program is run. The button deactivates itself so that
only one instance of each application can run at a time. There is no particular reason for this
design restriction aside from the fact that it demonstrates the use of the visual resources of
the DrawnButton widget.

The XmNpushButtonEnabled resource of the DrawnButton indicates whether or not the
DrawnButton should look and act like a PushButton. When the value is False (the
default), the DrawnButton displays whatever contents you put in it as well as a shadow
border. The style of the shadow is specified by the XmNshadowType resource, which can
be set to one of the following values:

XmSHADOW_IN XmSHADOW_OUT
XmSHADOW_ETCHED_IN XmSHADOW_ETCHED_OUT

When XmNpushButtonEnabled is False , the button does not provide any feedback to
the user when the button is activated.

When the value of XmNpushButtonEnabled is set to True , the DrawnButton behaves
like a PushButton and does provide feedback to the user when the button is activated. The
shadow border for the button is always drawn in the XmSHADOW_IN style, regardless of the
setting of the XmNshadowType resource. When the button is activated, the shadow is
reversed, just as for a PushButton.

Summary
The Label class acts as a superclass for more widgets than any other widget in the Motif
toolkit and as a result, its use is rather broad. We have presented the fundamentals of
Labels, PushButtons, ToggleButtons, ArrowButtons, and DrawnButtons in this chapter.
For additional information on these widgets, especially their uses in menu systems, see
Chapter 4, The Main Window, and Chapter 19, Menus. Examples of all these widgets are
also liberally spread throughout the rest of the book.

Exercise
The following exercise is intended to stimulate and encourage other creative uses of labels
and buttons.

* This is not the natural manner of performing this task in Motif 2.0 or later: the Container and IconGadget com-
bination are specifically designed for this task.

Motif Programming Manual 431

Chapter 12: Labels and Buttons

1. Generic X windows have a background pixmap property that can be set using
XSetWindowBackgroundPixmap() .* Whenever the background pixmap is set, the
image is tiled on the window. If the window is larger than the image, the image is rep-
licated in a checkerboard fashion until the window’s background is filled; if the win-
dow is the same size or smaller than the image, the image is centered in the window.
The image is automatically rendered into the window appropriately by the server
whenever necessary. Since widgets have windows, the X Toolkit Intrinsics provides a
resource for the Core widget class that allows you to set the background pixmap using
XtNbackgroundPixmap . (Motif’s XmNbackgroundPixmap resource is identical
except that the naming convention provides consistency among resource names.)
Write a program that displays a Label that contains both graphics and a text label by
setting bothXmNlabelString andXmNbackgroundPixmap to appropriate values.

* See Volume 1, for details on XSetWindowBackgroundPixmap ().

Chapter 12: Labels and Buttons

432 Motif Programming Manual

Motif Programming Manual 433

Chapter 1

In this chapter:
• Creating a List Widget
• Using ScrolledLists
• Manipulating Items
• Positioning the List
• Navigating the List
• List Callback Routines
• Summary
• Exercises

13
The List Widget

This chapter describes another control that the user can manipulate. The List widget
displays a number of text choices that the user can select interactively.

Almost every application needs to display lists of choices to the user. This task can be
accomplished in many ways, depending on the nature of the choices. For example, a group
of ToggleButtons is ideal for displaying configuration settings that can be individually set
and unset and then applied all at once. A list of commands can be displayed in a
PopupMenu, or for a more permanent command palette, a RowColumn or Form widget can
manage a group of PushButton widgets. But for displaying a list of text choices, such as a
list of files to be opened or a list of fonts to be applied to text, the List widget is the optimal
choice.

A List widget displays a single column of text choices that can be selected or deselected
using either the mouse or the keyboard. Each choice is represented by a single-line text
element specified as a compound string. Figure 13-1 shows a typical List widget.

Internally, the List widget operates on an array of compound strings that are defined by the
application. (See Chapter 25, Compound Strings, for a discussion of how to create and
manage compound strings. Each string is an element of the array, with the first position
starting at one, as opposed to position zero, which is used in C-style arrays. The user can
select a particular choice by clicking and releasing the left mouse button on the item. All of

Figure 13-1: A List widget with a selected item

Chapter 13: The List Widget

434 Motif Programming Manual

the items in the list are available to the user for selection at all times; you cannot make
individual items unselectable. What happens when an item is selected is up to the
application callback routines invoked by the List widget.

A List widget is typically a child of a ScrolledWindow, so that the List is displayed with
ScrollBars attached to it. The selection mechanism for the List does not change, so the user
can still select items as before, but the user can now use the ScrollBars to adjust the items
in the list that are visible.

The List widget supports four different selection policies:

• In single selection mode, selecting an item toggles its selection state and deselects any
other selected item. Single selection Lists should be used when only one of many
choices maybe selected at a time, although under this policy there may also be no items
selected. Some possible uses for a single selection List include choosing a font family
or style for text input and choosing a color for a bitmap editor.

• In browse selection mode, selecting a new item deselects any other selected item, but
there can never be a state where no items are selected. From the user’s perspective,
browse selection is similar to single selection, except that there is an initial selected
item. There are also differences with respect to callback routines. This issue is
addressed in Section 13.5.

• In multiple selection mode, any number of items can be selected atone time. When an
item is selected, the selection state of the item is toggled; the selection states of the rest
of the items are not changed. The List can be in a state where none of the items are
selected or all of the items are selected. Multiple selection mode is advantageous in
situations where an action may be taken on more than one item at a time, such as in an
electronic mail application, where the user might choose to delete, save, or print
multiple messages simultaneously.

• In extended selection mode, the user can select discontiguous ranges of items. This
selection policy is an extension of the multiple selection policy that provides more
flexibility.

Creating a List Widget
Using List widgets is fairly straightforward. An application that uses the List widget must
include the header file <Xm/List.h>. This header file declares the types of the public List
functions and the widget class name xmListWidgetClass . A List widget can be created
as shown in the following code fragment:

Widget list = XmCreateList (parent, "name", resource-value-array ,
resource-value-count);

Widget list = XtCreateWidget ("name", xmListWidgetClass, parent,
resource-value-list , NULL);

Motif Programming Manual 435

Chapter 13: The List Widget

Example 13-1 shows a program that creates a simple List widget.*

Example 13-1. The simple_list.c program

/* simple_list.c -- introduce the List widget. Lists present
** a number of compound strings as choices. Therefore, strings
** must be converted before set in lists. Also, the number of
** visible items must be set or the List defaults to 1 item.
*/
#include <Xm/List.h>

char *months[] = {"January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November",
"December"};

main (int argc, char *argv[])
{

Widget toplevel, list;
XtAppContext app;
int i, n = XtNumber (months);
XmStringTable str_list;
Arg args[4];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

str_list = (XmStringTable) XtMalloc (n * sizeof (XmString));

for (i = 0; i < n; i++)
str_list[i] = XmStringCreateLocalized (months[i]);

i = 0;
XtSetArg (args[i], XmNvisibleItemCount, n); i++;
XtSetArg (args[i], XmNitemCount, n); i++;
XtSetArg (args[i], XmNitems, str_list); i++;
list = XmCreateList (toplevel, "Hello", args, i);

for (i = 0; i < n; i++)
XmStringFree (str_list[i]);

XtFree ((char *) str_list);

XtManageChild (list);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 13: The List Widget

436 Motif Programming Manual

The program simply creates a List widget as the child of the top level widget. The List
contains the names of the months as its choices. The output of the program is shown in
Figure 13-2.

The selection policy of the List is controlled by the XmNselectionPolicy resource. The
possible values for this resource are:

XmSINGLE_SELECT XmBROWSE_SELECT
XmMULTIPLE_SELECT XmEXTENDED_SELECT

XmBROWSE_SELECT is the default selection policy for the List widget. Since this policy is
the one that we want to use, we do not need to set the XmNselectionPolicy resource.
You should be aware that the user could change this policy with a resource specification.
If you want to enforce this selection policy, you can program defensively and hard-code the
value for XmNselectionPolicy , despite its default.

The program demonstrates the use of three basic elements of the List widget: the list of
items, the number of items in the list, and the number of visible items. Because the items
in a List must be compound strings, each of the choices must be converted from a C string
to a compound string. The application allocates an array of XmStrings , creates a
compound string for each month name, and stores the string in the str_list . The List
widget is created with str_list as the value for the XmNitems resource and
XmNitemCount is set to n.

Just like other widgets that use compound strings, the List widget copies the entire table of
compound strings into its own internal storage. As a result, the list of strings needs to be
freed after you have used it to set the XmNitems resource. When you set the items using
this resource, you also need to set the XmNitemCount resource to specify the number of
items in the list. If this resource is not set, the List does not know how many items to copy.
The value of XmNitemCount should never be larger than the number of items in
XmNitems . If the value for XmNitemCount is less than the number of items, the additional
items are not put in the list.

Figure 13-2: Output of the simple_list program

Motif Programming Manual 437

Chapter 13: The List Widget

To retrieve the list of items, you can call XtVaGetValues() on these resources, as shown
in the following code fragment:

extern Widget list;
XmStringTable choices;
int n_choices;
XtVaGetValues (list, XmNitems, &choices, XmNitemCount, &n_choices, NULL);

Since the items that the area returned are compound strings, you must convert them to C-
style strings if you need to use any of the standard C library functions to view or manipulate
the strings. You can also use any of the compound string functions described in Chapter 25,
Compound Strings, for this purpose. Since we used XtVaGetValues() to obtain the
values for the resources, the returned data should, as always, be considered read-only. You
should not change any of the items in the list or attempt to free them (or the pointer to them)
when you are done examining their values.

Example 13-1 also makes use of the XmNvisibleItemCount resource, which sets the
height of the list to match the number of items that should be visible. If you want all the
items to be visible, you simply set the value to the total number of items in the list. Setting
the visible item count to a higher value is acceptable, assuming that the list is expected to
grow to at least that size. If you want to set the number of visible items to be less than the
number of items actually in the list, you should use a ScrolledList as described in the next
section.

Using ScrolledLists
Most applications use List widgets in conjunction with ScrolledWindows. By creating a
List widget as the child of a ScrolledWindow, we create what Motif calls a ScrolledList.
The ScrolledList is not a widget, but a compound object. While this chapter describes most
of the common resources and functions that deal with ScrolledLists, more detailed
information about ScrolledWindows and ScrollBars can be found in Chapter 10,
ScrolledWindows and ScrollBars.

A ScrolledList is built from two widget classes, so we could create and manage the widgets
separately. However, since ScrolledLists are used so frequently, Motif provides a
convenience function to create this compound object. XmCreateScrolledList() takes
the following form:

Widget XmCreateScrolledList (Widget parent , char * name, ArgList arglist ,
Cardinal argcount)

The arglist parameter is an array of size argcount that contains resources to be passed
to both the ScrolledWindow widget and the List widget. Generally, the two widgets use
different resources that are specific to the widgets themselves, so there isn’t any confusion
about which resources apply to which widget. However, common resources, such as Core
resources, are interpreted by both widgets, so caution is advised. If you want to set some

Chapter 13: The List Widget

438 Motif Programming Manual

resources on one widget, while ensuring that the values are not set on the other widget, you
should avoid passing the values to the convenience routine. Instead, you can set resources
separately by using the routine XtVaSetValues() on each widget individually.
XmCreateScrolledList() returns the List widget; if you need a handle to the
ScrolledWindow, you can use XtParent() on the List widget. When you use the
convenience routine, you need to manage the object explicitly with XtManageChild() .

ScrolledLists are useful because they can display a portion of the entire list provided by the
widget. For example, we can modify the previous example, simple_list.c, to use a
ScrolledList by using the following code fragment:

...
/* Create the ScrolledList */
list_w = XmCreateScrolledList (toplevel, "Months", NULL, 0);
/* set the items, the item count, and the visible items */
XtVaSetValues (list_w, XmNitems, str_list, XmNitemCount, n,

XmNvisibleItemCount, 5, NULL);
/* Convenience routines don't create managed children */
XtManageChild (list_w);
...

The size of the viewport into the entire List widget is controlled by the
XmNvisibleItemCount resource. The resource calculates its default value based on the
XmNheight of the List. We set the resource to 5. The output resulting from these changes
is shown in Figure 13.3.

The XmNscrollBarDisplayPolicy and XmNlistSizePolicy resources control the
display of the ScrollBars in a ScrolledList widget. The value for
XmNscrollBarDisplayPolicy controls the display of the vertical ScrollBar; the
resource can be set to either XmAS_NEEDED (the default) or XmSTATIC. If the policy is
XmAS_NEEDED, when the entire list is visible, the vertical ScrollBar is not displayed. When
the resource is set to XmSTATIC, the vertical ScrollBar is always displayed. The
XmNlistSizePolicy resource reflects how the ScrolledList manages its horizontal
ScrollBar. The default setting is XmVARIABLE, which means that the ScrolledList attempts
to grow horizontally to contain its widest item and a horizontal ScrollBar is not displayed.
This policy may present a problem if the parent of the ScrolledList constrains its horizontal
size. If the resource is set to XmRESIZE_IF_POSSIBLE, the ScrolledList displays a

Figure 13-3: Output of the simple_list program modified to use a ScrolledList

Motif Programming Manual 439

Chapter 13: The List Widget

horizontal ScrollBar only if it cannot resize itself accordingly. If the value XmCONSTANT is
used, the horizontal ScrollBar is displayed at all times, whether it is needed or not.

The size of a ScrolledList is ultimately controlled by its parent. In most cases, a manager
widget such as a RowColumn or Form allows its children to be any size they request. If a
ScrolledList is a child of a Form widget, its size is whatever you specify with either the
XmNheight resource or the XmNvisibleItemCount . However, certain constraints, such
as the XmNresizePolicy in a Form widget, may affect the height of its children
unexpectedly. For example, if you set XmNresizePolicy to XmRESIZE_NONE, the
ScrolledList widget’s height request is ignored, which makes it look like
XmNvisibleItemCount is not working.

The List widget accepts keyboard input to select items in the list, browse the list, and scroll
the list. Like all other Motif widgets, the List has translation functions that facilitate this
process. The translations are hard-coded into the widget and we do not recommend
attempting to override this list with new translations. For ScrolledLists, the List widget
automatically sets the ScrollBar’s XmNtraversalOn resource to False so that the
ScrollBar associated with the ScrolledList does not get keyboard input. Instead, the List
widget handles the input that affects scrolling. We recommended that you do not interfere
with this process, so users are not confused by different applications on the desktop
behaving in different ways.

If a List widget is sensitive, all of the items in the List are selectable. If it is insensitive, none
of them are selectable. You cannot set certain items to be insensitive to selection at any
given time. Furthermore, you cannot set the entire List to be insensitive and allow the user
to manipulate the ScrollBars. It is not entirely possible to make a read-only List widget; the
user always has the ability to select items in the List, providing that it is sensitive. Of
course, you can always choose not to hook up callback procedures to the widget, but this
can lead to more confusion than anything else because if the user selects an object and the
toolkit provides the visual feedback acknowledging the action, the user will expect the
application to respond as well.

Manipulating Items
From the programmer’s perspective, much of the power of the List widget comes from
being able to manipulate its items. The toolkit provides a number of convenience functions
for dealing with the items in a List. While the items are accessible through the XmNitems
resource, the convenience routines are designed to deal with many common operations,
such as adding items to the List, removing items, and locating items.

Chapter 13: The List Widget

440 Motif Programming Manual

Adding Items
The entire list of choices may not always be available at the time the List is created. In fact,
it is not uncommon to have no items available for a new list. In these situations, items can
be added to the list dynamically using the following toolkit functions: XmListAddItem() ,
XmListAddItemsUnselected() , XmListAddItems() , and XmListAddItemsUn-
selected() . These functions take the following form:

void XmListAddItem (Widget list_w , XmString item , int position)
void XmListAddItemUnselected (Widget list_w , XmString item , int position)
void XmListAddItems (Widget list_w , XmString * items , int item_count ,

int position)
void XmListAddItemsUnselected (Widget list_w , XmString * items ,

int item_count , int position)

These routines allow you to add one or more items to a List widget at a specified position.
Remember that list positions start at 1, not 0. The position 0 indicates the last position in
the List; specifying this position appends the item or items to the end of the list. If the new
item(s) are added to the list in between existing items, the rest of the items are moved down
the list.

The difference between XmListAddItem() and XmListAddItemUnselected() is that
XmListAddItem() compares each new item to each of the existing items. If a new item
matches an existing item and if the existing item is selected, the new item is also selected.
XmListAddItemUnselected() simply adds the new item without performing this
check. In most situations, it is clear which routine you should use. If you know that the new
item does not already exist, you should add it unselected. If the List is a single selection list,
you should add new items as unselected. The only time that you should really add new
items to the list using XmListAddItem() is when there could be duplicate entries, the list
supports multiple selections, and you explicitly want to select all new items whose
duplicates are already selected. The same is true of the routines that add multiple items.

Example 13-2 shows how items can be added to a ScrolledList dynamically using
XmListAddItemUnselected() .*

Example 13-2. The alpha_list.c program

/* alpha_list.c -- insert items into a list in alphabetical order.
*/

#include <Xm/List.h>
#include <Xm/RowColumn.h>
#include <Xm/TextF.h>

main (int argc, char *argv[])

* XtVaAppInitialize () is considered deprecated in X11R6. XmStringGetLtoR () is deprecated from Motif
2.0 onwards. XmStringUnparse () is only available from Motif 2.0 onwards.

Motif Programming Manual 441

Chapter 13: The List Widget

{
Widget toplevel, rowcol, list_w, text_w;
XtAppContext app;
Arg args[5];
int n = 0;
void add_item(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

rowcol = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);
XtSetArg (args[n], XmNvisibleItemCount, 5); n++;
list_w = XmCreateScrolledList (rowcol, "scrolled_list", args, n);
XtManageChild (list_w);

n = 0;
XtSetArg (args[n], XmNcolumns, 25); n++;
text_w = XmCreateTextField (rowcol, "text", args, n);
XtAddCallback (text_w, XmNactivateCallback, add_item,

(XtPointer) list_w);
XtManageChild (text_w);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Add item to the list in alphabetical order. Perform binary
** search to find the correct location for the new item position.
** This is the callback routine for the TextField widget.
*/
void add_item (Widget text_w, XtPointer client_data, XtPointer call_data)
{

Widget list_w = (Widget) client_data;
char *text, *newtext = XmTextFieldGetString (text_w);
XmString str, *strlist;
int u_bound, l_bound = 0;

/* newtext is the text typed in the TextField widget */
if (!newtext || !*newtext) {

/* non-null strings must be entered */
XtFree (newtext); /* XtFree() checks for NULL */
return;

}

/* get the current entries (and number of entries) from the List */
XtVaGetValues (list_w, XmNitemCount, &u_bound,

XmNitems, &strlist, NULL);
u_bound--;

/* perform binary search */
while (u_bound >= l_bound) {

int i = l_bound + (u_bound - l_bound) / 2;

Chapter 13: The List Widget

442 Motif Programming Manual

/* convert the compound string into a regular C string */
if (!(text = (char *) XmStringUnparse (strlist[i],

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL)))

break;

if (strcmp (text, newtext) > 0)
u_bound = i - 1; /* newtext comes before item */

else
l_bound = i + 1; /* newtext comes after item */

XtFree (text);/* XmStringUnparse() allocates memory */
}

str = XmStringCreateLocalized (newtext);
XtFree (newtext);

/* positions indexes start at 1, so increment accordingly */
XmListAddItemUnselected (list_w, str, l_bound+1);
XmStringFree (str);
XmTextFieldSetString (text_w, "");

}

In Example 13-2, the ScrolledList is created with no items. However, we do specify
XmNvisibleItemCount , in anticipation of items being added to the list. A TextField
widget is used to prompt for strings that are added to the list using the add_item()
callback. This function performs a binary search on the list to determine the position where
the new item is to be added. A binary search can save time, as it is expensive to scan an
entire List widget and convert each compound string into a C string. When the position for
the new item is found, it is added using XmListAddItemUnselected() . The output of
this program is shown in Figure 13-4.

Finding Items
It is often useful to be able to determine whether or not a List contains a particular item.
The simplest function for determining whether a particular item exists is
XmListItemExists() , which takes the following form:

Figure 13-4: Output of the alpha_list program

Motif Programming Manual 443

Chapter 13: The List Widget

Boolean XmListItemExists (Widget list_w ;, XmString item)

This function performs a linear search on the list for the specified item. If you are
maintaining your list in a particular order, you may want to search the list yourself using
another type of search to improve performance. The List’s internal search function does not
convert the compound strings to C strings. The search routine does a direct byte-by-byte
comparison of the strings using XmStringByteCompare() , which is much more efficient
than converting the compound strings to C strings for comparison. However, the linear
search is still slower than a binary search by orders of magnitude. And unfortunately,
XmStringByteCompare() does not return which string is of greater or lesser value. The
routine just returns whether the strings are different, so we cannot use it to alphabetize the
items in a List.

If you need to know the position of an item in the List, you can use XmListItemPos() .
This routine takes the following form:

int XmListItemPos (Widget list_w , XmString item)

This function returns the position of the first occurrence of item in the List, with 1 being
the first position. If the function returns 0, the element is not in the List. If a List contains
duplicate entries, you can find all of the positions of a particular item using
XmListGetMatchPos() , which takes the following form:

Boolean XmListGetMatchPos (Widget list_w , XmString item , int ** pos_list ,
int * pos_cnt)

This function returns True if the specified item is found in the List in one or more
locations. The pos_list parameter is allocated to contain the array of positions of the
item and the number of items found is returned in pos_cnt . When you are done using
pos_list , you should free it using XtFree() . The function returns False if there are no
items in the List, if memory cannot be allocated for pos_list , or if the specified item isn’t
in the List. In these cases, pos_list does not point to allocated space and should not be
referenced or freed and the value of pos_cnt is not specified. The following code fragment
shows the use of XmListGetMatchPos() to get the positions of an item in a List:

extern Widget list_w;
int *pos_list;
int pos_cnt, i;
char *choice = "A Sample Text String";
XmString str = XmStringCreateLocalized (choice);

if (!XmListGetMatchPos (list_w, str, &pos_list, &pos_cnt))
XtWarning ("Can't get items in list");

else {
printf ("%s exists in positions %d:", choice, pos_cnt);

for (i = 0; i < pos_cnt; i++)
printf (" %d", pos_list[i]);

puts ("");
XtFree ((char *) pos_list);

Chapter 13: The List Widget

444 Motif Programming Manual

}

Replacing Items
There are also a number of functions for replacing items in a List. To replace a contiguous
sequence of items, use either XmListReplaceItemsPos() or XmListReplaceItem-
sPosUnselected() . These functions take the following form:

void XmListReplaceItemsPos (Widget list_w , XmString * new_items ,
int item_count , int position ;)

void XmListReplaceItemsPosUnselected (Widget list_w , XmString * new_items ,
int item_count , int position)

These functions replace the specified number of items with the new items starting at
position . The difference between the two functions is the same as the difference between
the List routines that add items selected and unselected.

You can also replace arbitrary elements in the list with new elements, using
XmListReplaceItems() or XmListReplaceItemsUnselected() . These routines
take the following form:

void XmListReplaceItems (Widget list_w , XmString * old_items ,
int item_count , XmString * new_items)

void XmListReplaceItemsUnselected (Widget list_w , XmString * old_items ,
int item_count , XmString * new_items)

These functions work by searching the entire list for each element in old_items . Every
occurrence of each element that is found is replaced with the corresponding element from
new_items . The search continues for each element in old_items until item_count has
been reached. The difference between the two functions is the same as the difference
between the List routines that add items selected and unselected.

There is another routine that allows you to replace items in a List based upon position. The
XmListReplacePositions() routine takes the following form:

void XmListReplacePositions (Widget list_w , int * pos_list ,
XmString * new_items , int item_count)

This routine replaces the item at each position specified in pos_list with the
corresponding item in new_items until item_count has been reached.

Deleting Items
You can delete items from a List widget in many ways. First, to delete a single item, you
can use either XmListDeleteItem() or XmListDeletePos() . These functions take
the following form:

void XmListDeleteItem (Widget list_w , XmString item)
void XmListDeletePos (Widget list_w , int position)

Motif Programming Manual 445

Chapter 13: The List Widget

XmListDeleteItem() finds the given item and deletes it from the list, while
XmListDeletePos() removes an item directly from the given position. If you know the
position of an item, you can avoid creating a compound string and use
XmListDeletePos() . After an item is deleted, the items following it are moved up one
position.

You can delete multiple items using either XmListDeleteItems() ,
XmListDeleteItemsPos() , or XmListDeletePositions() . These routines take the
following form:

void XmListDeleteItems (Widget list_w , XmString * items , int item_count)
void XmListDeleteItemsPos (Widget list_w , int item_count , int position)
void XmListDeletePositions (Widget list_w , int * pos_list , int pos_count)

XmListDeleteItems() deletes each of the items in the items array from the List;
there are item_count strings in the array. You must create and initialize this array before
calling the function and you must free it afterwards. If you already know the positions of
the items you want to delete, you can avoid creating an array of compound strings and use
either of the routines XmListDeleteItemsPos() and XmListDeletePositions() .
XmListDeleteItemsPos() deletes item_count items from the List starting at
position . XmListDeletePositions() deletes the item at each position specified in
pos_list until item_count has been reached.

You can delete all of the items in a List widget using XmListDeleteAllItems() . This
routine takes the following form:

void XmListDeleteAllItems (Widget list_w)

Selecting Items
Since the main purpose of the List widget is to allow a user to make a selection from a set
of choices, one of the most important tasks for the programmer is to determine which items
have been selected by the user. In this section, we present an overview of the resources and
functions available to set or get the actual items that are selected in the List widget. Later
in Section 13.5, we discuss how to determine the items that are selected by the user when
they are selected. The resources and functions used to set and get the selected items in the
List widget are directly analogous to those that set the actual items in the list. Just as
XmNitems represents the entire list, the XmNselectedItems resource represents the list
of selected items. The XmNselectedItemCount resource specifies the number of items
that are selected.

There are convenience routines that allow you to modify the items that are selected in a
List. The functions XmListSelectItem() and XmListSelectPos() can be used to
select individual items. These functions take the following form:

void XmListSelectItem (Widget list_w , XmString item , Boolean notify)
void XmListSelectPos (Widget list_w , int position , Boolean notify)

Chapter 13: The List Widget

446 Motif Programming Manual

These functions cause the specified item to be selected. If you know the position in the list
of the item to be selected, you should use XmListSelectPos() rather than
XmListSelectItem() . The latter routine uses a linear search to find the specified item.
The search can take a long time in a large list, which can affect performance if you are
performing frequent list operations.

When the specified item is selected, any other items that have been previously selected are
deselected, except when XmNselectionPolicy is set to XmMULTIPLE_SELECT. In this
case, the specified item is added to the list of selected items. Even though the extended
selection policy allows multiple items to be selected, the previous selection is deselected
when one of these routines is called. If you want to add an item to the list of selected items
in an extended selection list, you can set the selection policy to XmMULTIPLE_SELECT, use
one of the routines, and then set the selection policy back to XmEXTENDED_SELECT.

The notify parameter indicates whether or not the callback routine for the List widget
should be called. If your callback routine does special processing of list items, then you can
avoid having redundant code by passing True . As a result, the callback routine is called
just as if the user had made the selection himself. If you are calling either of these functions
from the callback routine, you probably want to pass False to avoid a possible infinite
loop.

There are no functions available for selecting multiple items at the same time. To select
multiple items, use XtVaSetValues() and set the XmNselectedItems and
XmNselectedItemCount resources to the entire list of selected items. From Motif 2.0
onwards, it is also possible to set the XmNselectedPositions and
XmNselectedPositionCount resources. Another alternative is to temporarily set
XmNselectionPolicy to XmMULTIPLE_SELECT. You can call the above routines
repeatedly to select the desired items individually and then set the selection policy back to
XmEXTENDED_SELECT.

Items can be deselected in the same manner that they are selected using the routines
XmListDeselectItem() and XmListDeselectPos() . These functions take the
following form:

void XmListDeselectItem (Widget list_w , XmString item)
void XmListDeselectPos (Widget list_w , int position)

These routines modify the list of selected items, but they do not have a notify parameter,
so they do not invoke the callback routine for the List. You can deselect all items in the list
by calling XmListDeselectAllItems() , which takes the following form:

void XmListDeselectAllItems (Widget list_w)

There are also convenience routines that allow you to check on the selected items in a List.
You can use XmListPosSelected() to determine whether an item is selected. It takes
the following form:

Motif Programming Manual 447

Chapter 13: The List Widget

Boolean XmListPosSelected (Widget list_w , int position)

The routine returns True if the item at the specified position is selected and False
otherwise. You can get the positions of all of the selected items in a List using
XmListGetSelectedPos() , which takes the following form:

Boolean XmListGetSelectedPos (Widget list_w , int ** pos_list , int * pos_cnt)

This in Motif 2.0 and later does little more than return the value of the
XmNselectedPositions and XmNselectedPositionCount resources, which as an
alternative may as well be fetched directly using XtGetValues ().

The use of the XmListGetSelectedPos () function is identical to that of
XmListGetMatchPos() . The pos_list parameter is allocated to contain the array of
positions of selected items and the number of items selected is returned in pos_cnt . When
you are done using pos_list , you should free it using XtFree() . The function returns
False if there are no selected items in the List or if memory cannot be allocated for pos_
list . In these cases, pos_list does not point to allocated space and should not be
referenced or freed and the value of pos_cnt is not specified.

An Example
In this section, we pull together all of the functions we have described in the preceding
sections. This example builds on alpha_list.c, the program that adds items that are input by
the user to a ScrolledList in alphabetical order. Using another Text widget, the user can also
search for items in the list. The searching method uses regular expression pattern-matching
functions intrinsic to UNIX systems. Example 13-3 shows the new application.*

Example 13-3. The search_list.c program

/* search_list.c -- search for items in a List and select them
*/

#include <stdio.h>
#include <Xm/List.h>
#include <Xm/LabelG.h>
#include <Xm/Label.h>
#include <Xm/RowColumn.h>
#include <Xm/PanedW.h>
#include <Xm/TextF.h>

main (int argc, char *argv[])
{

Widget toplevel, rowcol, list_w, text_w, label_w;
XtAppContext app;
Arg args[5];

* XtVaAppInitialize () is considered deprecated in X11R6. XmStringGetLtoR () is deprecated from Motif
2.0. XmStringUnparse () is only available from Motif 2.0 onwards.

Chapter 13: The List Widget

448 Motif Programming Manual

int n = 0;
XmString label;
void add_item(Widget, XtPointer, XtPointer);
void search_item(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

rowcol = XmCreatePanedWindow (toplevel, "rowcol", NULL, 0);

label = XmStringCreateLocalized ("List:");
n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
label_w = XmCreateLabel (rowcol, "list_lable", args, n);
XmStringFree (label);
XtManageChild (label_w);

n = 0;
XtSetArg (args[n], XmNvisibleItemCount, 10); n++;
XtSetArg (args[n], XmNselectionPolicy, XmEXTENDED_SELECT); n++;
list_w = XmCreateScrolledList (rowcol, "scrolled_list", args, n);
XtManageChild (list_w);

label = XmStringCreateLocalized ("Add:");
n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
label_w = XmCreateLabel (rowcol, "add_label", args, n);
XmStringFree (label);
XtManageChild (label_w);

n = 0;
XtSetArg (args[n], XmNcolumns, 25); n++;
text_w = XmCreateTextField (rowcol, "add_text",args, n);
XtAddCallback (text_w, XmNactivateCallback, add_item,

(XtPointer) list_w);
XtManageChild (text_w);

label = XmStringCreateLocalized ("Search:");
n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
label_w = XmCreateLabel (rowcol, "search_label", args, n);
XmStringFree (label);
XtManageChild (label_w);

n = 0;
XtSetArg (args[n], XmNcolumns, 25); n++;
text_w = XmCreateTextField (rowcol, "search_text", args, n);
XtAddCallback (text_w, XmNactivateCallback, search_item,

(XtPointer) list_w);
XtManageChild (text_w);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);

Motif Programming Manual 449

Chapter 13: The List Widget

XtAppMainLoop (app);
}

/* Add item to the list in alphabetical order. Perform binary
** search to find the correct location for the new item position.
** This is the callback routine for the Add: TextField widget.
*/
void add_item (Widget text_w, XtPointer client_data, XtPointer call_data)
{

Widget list_w = (Widget) client_data;
char *text, *newtext = XmTextFieldGetString (text_w);
XmString str, *strlist;
int u_bound, l_bound = 0;

if (!newtext || !*newtext) {
/* non-null strings must be entered */
XtFree (newtext);
return;

}

XtVaGetValues (list_w, XmNitemCount, &u_bound,
XmNitems, &strlist, NULL);

u_bound--;

/* perform binary search */
while (u_bound >= l_bound) {

int i = l_bound + (u_bound - l_bound)/2;

if (!(text = (char *) XmStringUnparse (strlist[i],
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL)))

break;
if (strcmp (text, newtext) > 0)

u_bound = i-1; /* newtext comes before item */
else

l_bound = i+1; /* newtext comes after item */
XtFree (text);

}

str = XmStringCreateLocalized (newtext);
XtFree (newtext);

/* positions indexes start at 1, so increment accordingly */
XmListAddItemUnselected (list_w, str, l_bound+1);
XmStringFree (str);
XmTextFieldSetString (text_w, "");

}

/* find the item in the list that matches the specified pattern */
void search_item (Widget text_w, XtPointer client_data,

XtPointer call_data)

Chapter 13: The List Widget

450 Motif Programming Manual

{
Widget list_w = (Widget) client_data;
char *exp, *text, *newtext = XmTextFieldGetString (text_w);
XmString *strlist, *selectlist = NULL;
int matched, cnt, j = 0;

#ifndef SYSV
extern char *re_comp();

#endif /* SYSV */

if (!newtext || !*newtext) {
/* non-null strings must be entered */
XtFree (newtext);
return;

}

/* compile expression into pattern matching library */
#ifdef SYSV

if (!(exp = regcmp (newtext, NULL))) {
printf ("Error with regcmp(%s)\n", newtext);
XtFree (newtext);
return;

}
#else /* BSD */

if (exp = re_comp (newtext)) {
printf ("Error with re_comp(%s): %s\n", newtext, exp);
XtFree (newtext);
return;

}
#endif /* SYSV */

/* get all the items in the list... we're going to search each one */
XtVaGetValues (list_w, XmNitemCount, &cnt, XmNitems, &strlist, NULL);

while (cnt--) {
/* convert item to C string */
if (!(text = (char *) XmStringUnparse (strlist[cnt],

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL)))

break;

/* do pattern match against search string */
#ifdef SYSV

/* returns NULL if match failed */
matched = regex (exp, text, NULL) != NULL;

#else /* BSD */
/* -1 on error, 0 if no-match, 1 if match */
matched = re_exec (text) > 0;

#endif /* SYSV */
if (matched) {

selectlist = (XmString *) XtRealloc ((char *) selectlist, (j+1)
* (sizeof (XmString *)));

Motif Programming Manual 451

Chapter 13: The List Widget

selectlist[j++] = XmStringCopy (strlist[cnt]);
}
XtFree (text);

}
#ifdef SYSV

free (exp);
/* this must be freed for regcmp() */

#endif /* SYSV */

XtFree (newtext);

/* set the actual selected items to be those that matched */
XtVaSetValues (list_w, XmNselectedItems, selectlist,
XmNselectedItemCount, j, NULL);

while (j--)
XmStringFree (selectlist[j]);

XmTextFieldSetString (text_w, "");
}

The output of this program is shown in Figure 13-5. The TextField widget that is used to
search for items in the List widget works identically to the one that is used to add new items.
Its callback routine, search_item() , searches the list for the specified pattern. The
version of UNIX you are running (System V or BSD) dictates which kind of regular
expression matching is done. System V machines use the function regcmp() to compile
the pattern and regex() to search for the pattern within another string, while BSD UNIX
systems use the function sre_comp() and re_exec() to do the same thing.*

Figure 13-5: Output of the search_list program

Chapter 13: The List Widget

452 Motif Programming Manual

The items in the list are retrieved using XtVaGetValues() and the strlist parameter.
This variable points to the internal list used by the List widget, so it is important that we do
not change any of these elements or free these pointers when we are through with them.
Changing the value of XmNselectedItems causes the internal list to change. Since the
internal list is referenced by strlist , it is important to copy any values that we want to
use elsewhere. If the pattern matches a list item, the item is copied using
XmStringCopy() and is later added to the List’s XmNselectedItems .

Positioning the List
The items within a List can be positioned such that an arbitrary element is placed at the top
or bottom of the List. If the List is being used as part of a ScrolledList, the item is placed at
the top or bottom of the viewport of the ScrolledWindow. To position a particular item at
the top or bottom of the window, use either XmListSetItem() or
XmListSetBottomItem() . These routines take the following form:

void XmListSetItem (Widget list_w , XmString item)
void XmListBottomItem (Widget list_w , XmString item)

Both of these functions require an XmString parameter to reference a particular item in
the list. However, if you know the position of the item, you can use XmListSetPos() or
XmListSetBottomPos() instead. These functions take the following form:

void XmListSetPos (Widget list_w , int position)
void XmListSetBottomPos (Widget list_w , int position)

The position parameter can be set to 0 to specify that the last item be positioned at the
bottom of the viewport. Through a mixture of resource values and simple calculations, you
can position any particular item anywhere in the list. For example, if you have an item that
you want to be sure is visible, but you are not concerned about where in the viewport it is
displayed, you can write a function to make the item visible. Example 13-4 shows the
MakePosVisible() routine, which makes sure that the item at a specified position is
visible.

Example 13-4. The MakePosVisible() routine

void MakePosVisible (Widget list_w, int item_no)
{

int top, visible;

XtVaGetValues (list_w, XmNtopItemPosition, &top,
XmNvisibleItemCount, &visible, NULL);

if (item_no < top)

* Systems that support both BSD and System V may support one, the other, or both methods of regular expression
handling. You should consult your system’s documentation for more information on these functions.

Motif Programming Manual 453

Chapter 13: The List Widget

XmListSetPos (list_w, item_no);
else if (item_no >= top + visible)

XmListSetBottomPos (list_w, item_no);
}

The function gets the number of visible items and the position of the item at the top of the
viewport. The XmNtopItemPosition resource stores this information. If the item comes
before top, item_no is set to the top of the List using XmListSetPos() . If it comes after
top + visible , the item is set at the bottom of the List using
XmListSetBottomPos() . If you don’t know the position of the item in the List, you can
write a function that makes a specified item visible, as shown in Example 13-5.

Example 13-5. The MakeItemVisible() routine

void MakeItemVisible (Widget list_w, XmString item)
{

int item_no = XmListItemPos (list_w, item);

if (item_no > 0)
MakePosVisible (list_w, item_no);

}

The MakeItemVisible() routine simple gets the position of the given item in the list
using XmListItemPos() and calls MakePosVisible() .

There are some other routines that deal with positions in a List widget. The
XmListGetKbdItemPos() and XmListSetKbdItemPos() routines retrieve and set
the item in the List that has the location cursor. These routines take the following form:

int XmListGetKbdItemPos (Widget list_w)
Boolean XmListSetKbdItemPos (Widget list_w , int position)

XmListGetKbdItemPos() returns the position of the item that has the location cursor,
while XmListSetKbdItemPos() provides a way to specify the position of this item.

The XmListPosToBounds() and XmListYToPos() functions in provide a way to
translate list items to x, y coordinates and vice versa. XmListPosToBounds() returns the
bounding box of the item at a specified position in a List. This routine takes the following
form:

Boolean XmListPosToBounds (Widget list_w ,
int position ,
Position * x,
Position * y,
Dimension * width ,
Dimension * height)

This routine returns True if the item at the specified position is visible and False
otherwise. If the item is visible, the return parameters specify the bounding box of the item.
This information can be useful if you need to perform additional event processing or draw

Chapter 13: The List Widget

454 Motif Programming Manual

special graphics for the item. The XmListYToPos() routine returns the position of the List
item at a specified y-coordinate. This function takes the following form:

int XmListYToPos (Widget list_w , Position y)

The position information returned by this routine can be useful if you are processing events
that report a pointer position and you need to convert the location of the event into an item
position.

Navigating the List
In Motif 2.0 and later, the user can navigate through items in the List simply by typing
characters which match the first character of an item. The resource XmNmatchBehavior
controls this aspect of the List. Match behavior is enabled by default. To disable, set
XmNmatchBehavior to XmNONE, and to re-enable, use the value XmQUICK_NAVIGATE.

Navigation proceeds cyclically: when the user types a character, it is compared against List
items starting below the current item. If no item below the current item matches the
keyboard input, the search proceeds from the top of the List. If a match is found, the
matching item becomes the new current item. Figure 13-6 shows how this all works.

If no match is found, XBell () is called automatically: there is no way to configure the List
otherwise. Note that matching is case sensitive: in the example, typing a lower case “t”
would not have matched against any items in the List.

List Callback Routines
While the callback routines associated with the List widget are not affected by whether the
List is scrollable, they do depend on the selection policy currently in use. There is a separate
callback resource for each selection policy, plus a callback for the default action. The

User types ‘T’ User types ‘T’

Figure 13-6: XmNmatchBehavior set to XmQUICK_NAVIGATE

Motif Programming Manual 455

Chapter 13: The List Widget

default action is invoked when the left mouse button is double-clicked on an item or the
RETURN key is pressed. The callback resources are:

XmNbrowseSelectionCallback XmNdefaultActionCallback
XmNextendedSelectionCallback XmNmultipleSelectionCallback
XmNsingleSelectionCallback

The Default Action
In all of the selection modes there is the concept of the default action. This term refers to
the action that is taken when the user double clicks the left mouse button on an item or
presses the RETURN key when an item has the location cursor. The default action always
indicates that the active item should be selected, regardless of the selection policy. The
XmNdefaultActionCallback is invoked for the default action.

The default selection is activated when the user double clicks on a List item. The time
interval between two consecutive button clicks determines whether the clicks are
interpreted as individual clicks or as a double click. You can set or get the time interval
using the XmNdoubleClickInterval resource. The value is stored as milliseconds, so a
value of 500 is half a second. If the resource is not set, the value of the multiClickTime
resource is used instead. This resource is a fundamental X resource that is understood by
all X applications; it is not an Xt or Motif toolkit resource. You should let the user specify
the double-click interval in a resource file; the value should be set using the more global
multiClickTime resource.

Browse and Single Selection Callbacks
The browse and single selection modes only allow the selection of a single item. The
browsing mode is regarded as a simpler interface for the user. Interactively, browse
selection allows the user to drag the selection over many items; the selection is not made
till the mouse button is released. In the single selection mode, the selection is made as soon
as the mouse button is pressed. For browse selection, the callback list associated with the
XmNbrowseSelectionCallback is used, while the XmNsingleSelectionCallback
is used for the single selection mode.

Keyboard traversal in the List is also different between the two modes. If the user uses the
keyboard to move from one item to the next in single selection mode, the
XmNsingleSelectCallback is not invoked until the SPACEBAR is pressed. In browse
selection, the XmNbrowseSelectionCallback is invoked for each item the user
traverses. Since these two modes for the List widget are visually similar, your treatment of
the callbacks is very important for maintaining consistency between Lists that use different
selection modes.

A simple example of using callbacks with a List widget is shown in Example 13-6.*

Chapter 13: The List Widget

456 Motif Programming Manual

Example 13-6. The browse.c program

/* browse.c -- specify a browse selection callback for a simple List. */

#include <Xm/List.h>

char *months[] = {"January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November",
"December"};

main (int argc, char *argv[])
{

Widget toplevel, list_w;
XtAppContext app;
int i, n = XtNumber (months);
XmStringTable str_list;
void sel_callback(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

str_list = (XmStringTable) XtMalloc (n * sizeof (XmString *));
for (i = 0; i < n; i++)

str_list[i] = XmStringCreateLocalized (months[i]);

list_w = XmCreateScrolledList (toplevel, "months", NULL, 0);
XtVaSetValues (list_w, XmNvisibleItemCount, n,

XmNitemCount, n,
XmNitems, str_list, NULL);

XtManageChild (list_w);
XtAddCallback (list_w, XmNdefaultActionCallback, sel_callback, NULL);
XtAddCallback (list_w, XmNbrowseSelectionCallback, sel_callback,

NULL);

for (i = 0; i < n; i++)
XmStringFree (str_list[i]);

XtFree ((char *) str_list);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void sel_callback (Widget list_w, XtPointer client_data,
XtPointer call_data)

{
XmListCallbackStruct *cbs = (XmListCallbackStruct *) call_data;
char *choice;

if (cbs->reason == XmCR_BROWSE_SELECT)

* XtVaAppInitialize () is considered deprecated in X11R6. XmStringGetLtoR () is deprecated in Motif 2.0
and later.

Motif Programming Manual 457

Chapter 13: The List Widget

printf ("Browse selection -- ");
else

printf ("Default action -- ");

choice = (char *) XmStringUnparse (cbs->item,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL);

printf ("selected item: %s (%d)\n", choice, cbs->item_position);
XtFree (choice);

}

For this example, we modified our previous example that uses a ScrolledList to display the
months of the year. We have added the same callback routine, sel_callback() , to the
XmNbrowseSelectionCallback and XmNdefaultActionCallback resources.
Since the default action may happen for any List widget, it is advisable to set this callback,
even if there are other callbacks. The callback routine prints the type of action performed
by the user and the selection that was made. The callback structure is used to get
information about the nature of the List widget and the selection made.

The List callbacks provide a callback structure of type XmListCallbackStruct , which
is defined as follows:

typedef struct {
int reason;
XEvent *event;
XmString item;
int item_length;
int item_position;
XmString *selected_items;
int selected_item_count;
int *selected_item_positions;
char selection_type;
char auto_selection_type; *

} XmListCallbackStruct;

The reason field specifies the reason that the callback was invoked, which corresponds to
the type of action performed by the user. The possible values for this field are:

XmCR_BROWSE_SELECT XmCR_DEFAULT_ACTION
XmCR_EXTENDED_SELECT XmCR_MULTIPLE_SELECT
XmCR_SINGLE_SELECT

The reason field is important with List callbacks because not all of the fields in the
callback structure are valid for every reason. For the browse and single selection policies,
the reason , event , item , item_length , and item_position fields are valid. For the
default action, all of the fields are valid. List items are stored as compound strings in the

* The auto_selection_type field is only available from Motif 2.0 onwards.

Chapter 13: The List Widget

458 Motif Programming Manual

callback structure, so to print an item using printf() , we must convert the string with the
compound string function XmStringUnparse() .

Multiple Selection Callback
When XmNselectionPolicy is set to XmMULTIPLE_SELECT, multiple items can be
selected in the List widget. When the user selects an item, its selection state is toggled. Each
time the user selects an item, the callback routine associated with the
XmNmultipleSelectionCallback is invoked. Example 13-7 shows the sel_
callback() routine that could be used with a multiple selection List.*

Example 13-7. The sel_callback() routine for a multiple selection list

void sel_callback (Widget list_w, XtPointer client_data,
XtPointer call_data)

{
XmListCallbackStruct *cbs = (XmListCallbackStruct *) call_data;
char *choice;
int i;

if (cbs->reason == XmCR_MULTIPLE_SELECT) {
printf ("Multiple selection -- %d items selected:\n", cbs->
selected_item_count);

for (i = 0; i < cbs->selected_item_count; i++) {
choice = (char *) XmStringUnparse (cbs->selected_items[i],

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,NULL, 0,
XmOUTPUT_ALL);

printf ("%s (%d)\n", choice, cbs->selected_item_positions[i]);
XtFree (choice);

}
} else {

choice = (char *) XmStringUnparse (cbs->item,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL);

printf ("Default action -- selected item %s (%d)\n",
choice, cbs->item_position);

XtFree (choice);
}

}

The routine tests the callback structure’s reason field to determine whether the callback
was invoked as a result of a multiple selection action or the default action. When the

* XmStringGetLtoR () is deprecated from Motif 2.0.

Motif Programming Manual 459

Chapter 13: The List Widget

reason is XmCR_MULTIPLE_SELECT, we print the list of selected items by looping
through selected_items and selected_item_positions . With this reason, all of
the fields in the callback structure except selection_type are valid. If the reason is
XmCR_DEFAULT_ACTION, there is only one item selected, since the default selection action
causes all of the other items to be deselected.

Extended Selection Callback
With the extended selection model, the user has the greatest flexibility to select and deselect
individual items or ranges of items. The XmNextendedSelectionCallback is invoked
whenever the user makes a selection or modifies the selection. Example 13-8 demonstrates
the sel_callback() routine that could be used with an extended selection List.*

Example 13-8. The sel_callback() routine for extended selection

void sel_callback (Widget list_w, XtPointer client_data,
XtPointer call_data)

{
XmListCallbackStruct *cbs = (XmListCallbackStruct *) call_data;
char *choice;
int i;

if (cbs->reason == XmCR_EXTENDED_SELECT) {
if (cbs->selection_type == XmINITIAL)

printf ("Extended selection -- initial selection: ");
else if (cbs->selection_type == XmMODIFICATION)

printf ("Extended selection -- modification of selection: ");
else /* selection type = XmADDITION */

printf ("Extended selection -- additional selection: ");

printf ("%d items selected\n", cbs->selected_item_count);

for (i = 0; i < cbs->selected_item_count; i++) {
choice = (char *) XmStringUnparse (cbs->selected_items[i],

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL);

printf ("%s (%d)\n", choice, cbs->selected_item_positions[i]);
XtFree (choice);

}
} else {

choice = (char *) XmStringUnparse (cbs->item,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,

* XmStringGetLtoR () is deprecated in Motif 2.0.

Chapter 13: The List Widget

460 Motif Programming Manual

XmOUTPUT_ALL);
printf ("Default action -- selected item %s (%d)\n",

choice, cbs->item_position);
XtFree (choice);

}
}

Most of the callback routine is the same as it was for multiple selection mode. With an
extended selection callback, the selection_type field is also valid. This field can have
the following values:

XmINITIAL XmMODIFICATION XmADDITION

The XmINITIAL value indicates that the selection is an initial selection for the List. All
previously-selected items are deselected and the items selected with this action comprise
the entire list of selected items. The value is XmMODIFICATION when the user modifies the
selected list by using the SHIFT key in combination with a selection action. In this case,
the selected item list contains some items that were already selected before this action took
place. XmADDITION indicates that the items that are selected are in addition to what was
previously selected. The user can select additional items by using the CTRL key in
combination with a selection action. Regardless of the value for selection_type , the
selected_items and selected_item_positions fields always reflect the set of
currently selected items.

Automatic Selection
A List which is configured for browse or extended selection does not normally invoke
callbacks until the user completes the selection by releasing the mouse. This means that
notification of selection change does not take place until after the event. If the resource
XmNautomaticSelection is set to XmAUTO_SELECT, however, notification is
immediate as soon as the user moves over a new item in the List. Automatic selection is
disabled by setting XmNautomaticSelection to XmNO_AUTO_SELECT.* The auto_
selection_type field in the XmListCallbackStruct indicates the state of the change to
the selection. The field takes the following values:

XmAUTO_UNSET XmAUTO_BEGIN XmAUTO_MOTION
XmAUTO_NO_CHANGE XmAUTO_CHANGE XmAUTO_CANCEL

Summary
The List widget is a powerful user interface tool that has a simple design. The programming
interface to the widget is mostly mechanical. The List allows you to present a vast list of

* In Motif 1.2, XmNautomaticSelection is a simple Boolean resource. In Motif 2.0 and later, the resource
changes to the enumerated type. For backwards compatibility, XmNO_AUTO_SELECT is equivalent to False ,
XmAUTO_SELECT to True .

Motif Programming Manual 461

Chapter 13: The List Widget

choices to the user, although the choices themselves must be textual in nature. Lists are not
suitable for all situations however, as they cannot display choices other than text (pixmaps
cannot be used as selection items). Even with these shortcomings, the List widget is still a
visible and intuitive object that can be used in designing a graphical user interface.

In Motif 1.2, individual List items could not be colored independently. With the advent of
Render Tables in Motif 2.0, this is no longer the case. See Chapter 24, Render Tables, for
more information on this subject. Example 24.1 is a sample application which creates a
multi-colored ScrolledList.

Exercises
The following exercises expand on some of the concepts presented in this chapter.

1. Write a program that reads each word from the file/usr/dict/wordsinto a ScrolledList.
Provide a TextField widget whose callback routine searches for the word typed into it
from the entries in the List. Once found, make the List widget scroll so that each item
is centered in the ScrolledList’s viewport. (Hint: convert the C string from the Text-
Field into a compound string and use one of the List search routines to find the element.
)

2. ScrolledLists frequently confuse the unsuspecting programmer who forgets that the
parent of the List widget is a ScrolledWindow. For example, if you create a Scroll-
edList as a child of a Form widget, and want to specify attachment constraints on the
ScrolledList, you should set these resources on the ScrolledWindow, not the List widg-
et. Write a program that places two ScrolledList widgets next to each other in a single
Form widget. (For more information on the role of the ScrolledWindow widget in a
ScrolledList object, see the similar discussion on ScrolledText objects in Chapter 18,
Text Widgets, and more discussion in Chapter 10,ScrolledWindows and ScrollBars.)

3. Consider two List widgets whose items are somewhat dependent on one another.For
example, the one List contains login names and the other List contains the correspond-
ing user-IDs.Write a program where theXmNdefaultActionCallback routine for
each list selects the dependent/corresponding item in the other list.Since the user ID
for “root” is always0,selecting “root” from the login name list should cause the item
0in the user-ID list to be selected.

Chapter 13: The List Widget

462 Motif Programming Manual

Motif Programming Manual 463

Chapter 1

In this chapter:
• The ComboBox Widget
• Creating a ComboBox
• ComboBox Resources
• ComboBox Functions
• ComboBox Callbacks
• Summary
• Exercises

14
The ComboBox

Widget
A ComboBox is a component which combines direct textual entry with the convenience of
list selection. The user can either type directly into a TextField, or choose from a set of
predefined values available from a popup ScrolledList. The ComboBox widget was
introduced in Motif 2.0, and is thus not available in earlier versions of the toolkit.

The Motif ComboBox is a manager widget. It automatically creates a TextField and
ScrolledList for direct textual entry and list selection respectively. The ComboBox layout
can be configured in a limited number of ways, depending upon whether the list of items is
to be permanently visible, or whether the ScrolledList is hidden and only displayed on user
request. Figure 14-1 displays a ComboBox with the List set to be permanently visible. In

this configuration, the ScrolledList is simply placed directly underneath the ComboBox,
and is sized so that the width of the List is the same as the ComboBox built-in TextField.
The user can either type directly into the TextField, or select an item from the List.
Selecting from the ScrolledList automatically places the selected item into the TextField,
replacing any previous contents. This configuration is perhaps not the usual one associated
with a ComboBox. More familiar is the arrangement shown in Figure 14-2. The ComboBox

Figure 14-1: A ComboBox widget with the List permanently visible

TextField

Scrolled
List

Chapter 14: The ComboBox Widget

464 Motif Programming Manual

in this case does not display the Scrolled List until requested by the user. In order to display
the List, the user clicks on an arrow which the ComboBox adds to the side of the TextField.

There are three basic kinds of ComboBox supported by Motif. The default ComboBox
creates a permanently visible Scrolled List, and a TextField which is editable, which means
that the user is not restricted in choice by the set of items in the List. A Drop-down-
ComboBox, on the other hand, hides the Scrolled List until required, but again the
TextField is editable. A ComboBox which is configured as a Drop-down-List also hides the
built-in Scrolled List until required, but this time the TextField is not editable, and thus the
user must choose from the Scrolled List in order to change the current selection.

The ComboBox is not meant to be used as a general purpose manager, and you are not
expected to add any additional children to the widget over and above the built-in
components.

Creating a ComboBox
Creating a ComboBox is performed in precisely the same kind of way that other Motif
widgets are instantiated. Applications must include the header file associated with the
widget class, which in this case is <Xm/ComboBox.h>. A ComboBox can be created in one
of the following ways, either using a Motif convenience routine, or the general purpose Xt
methods; note that the ComboBox supports more than one convenience routine for its
creation:

Widget combo = XmCreateComboBox (parent, “name”, resource-value-array ,
resource-value-count);

...

Figure 14-2: A ComboBox widget with the List visible on request

User clicks
on Arrow

TextField Arrow

Popup
Scrolled
List

Motif Programming Manual 465

Chapter14: The ComboBox Widget

Widget combo = XmCreateDropDownComboBox (parent, “name”,
resource-value-array , resource-value-count);

...
Widget combo = XmCreateDropDownList (parent, “name”, resource-value-array ,

resource-value-count);
...
Widget combo = XtCreateWidget ("name", xmComboBoxWidgetClass, parent, resource-

value-list , NULL);

The parent can be a Shell or any manager widget. Since the geometry management
involved in creating a ComboBox is minimal, the widget could be created as managed
using XtCreateManagedWidget () or similar without incurring a significant performance
overhead. See Chapter 8, Manager Widgets, for a discussion of when manager widgets
should be created in the managed or unmanaged state. The resource-value parameters
control the behavior and visual effects of the ComboBox, as well as its built-in TextField
and List children.

The most important resource for configuring the layout of the ComboBox is
XmNcomboBoxType. If the value is XmCOMBO_BOX, the ComboBox creates a permanently
visible Scrolled List, and the built-in TextField is set to be editable. If the value is XmDROP_
DOWN_COMBO_BOX, the Scrolled List is hidden until required, an arrow is drawn by the
ComboBox to facilitate List popup, and the TextField is set to be editable. The value
XmDROP_DOWN_LIST is similar to XmDROP_DOWN_COMBO_BOX, except that the TextField
is not editable, thus forcing the user to display and subsequently select from the Scrolled
List in order to change the current selection. The XmNcomboBoxType resource is a create-
only attribute: you cannot change the value dynamically, and must specify the type within
the resource-value-array argument to the widget creation routine if you are using a
general purpose Xt widget creator. The default value is XmCOMBO_BOX; this might be
considered somewhat inconvenient since the usual requirement is for a ComboBox with a
hidden List.

However, Motif does provide three convenience routines to create the widget, and these
internally set the XmNcomboBoxType resource appropriately for the required
configuration. The function XmCreateComboBox () is equivalent to setting
XmNcomboBoxType to XmCOMBO_BOX, which displays the List permanently. For a hidden
List, use either XmCreateDropDownComboBox () or XmCreateDropDownList (),
depending on whether you need the TextField to be editable.
XmCreateDropDownComboBox () is equivalent to setting XmNcomboBoxType to
XmDROP_DOWN_COMBO_BOX, which creates an editable TextField.
XmCreateDropDownList () creates a read-only TextField, and is equivalent to setting
XmNcomboBoxType to XmDROP_DOWN_LIST.

Example 14-1 creates a ComboBox for selecting from a range of color names.*

Example 14-1. The simple_combobox.c program

Chapter 14: The ComboBox Widget

466 Motif Programming Manual

/* simple_combobox.c -- demonstrate the combobox widget */

#include <Xm/Xm.h>
#include <Xm/ComboBox.h>

/* the list of colors */
char *colors[] = {

“red”, “green”, “blue”, “orange”, “purple”,
“pink”, “white”, “black”, “yellow”

};

main (int argc, char *argv[])
{

Widget toplevel, combo;
XtAppContext app;
Arg args[4];
int count = XtNumber (colors);
int i, n;
XmStringTable str_list;

/* initialize the toolkit */
XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

/* create the List items */
str_list = (XmStringTable) XtMalloc (count * sizeof (XmString *));

for (i = 0; i < count; i++)
str_list[i] = XmStringCreateLocalized (colors[i]);

/* create the combobox */
n = 0;
XtSetArg (args[n], XmNitems, str_list); n++;
XtSetArg (args[n], XmNitemCount, count); n++;
combo = XmCreateDropDownList (toplevel, “combo”, args, n);

for (i = 0; i < n; i++)
XmStringFree (str_list[i]);

XtFree ((XtPointer) str_list);

XtManageChild (combo);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

In the example, we create the ComboBox using the convenience routine
XmCreateDropDownList (). If we wanted the user to be able to directly supply a different
value to the colors we add to the ComboBox, we would use the routine
XmCreateDropDownComboBox () instead. The appearance of the application is identical

* XtVaOpenApplication () and the SessionShell widget class are only available in X11R6. XmCreateDrop-
DownList () is only available from Motif 2.0 onwards.

Motif Programming Manual 467

Chapter14: The ComboBox Widget

in this case; only the editability of the built-in TextField changes. We specify the contents
of the ComboBox built-in List through the XmNitems and XmNitemCount resources.
These are mirrored resources: the ComboBox arranges to set the items on the List on our
behalf, and thus we do not need to gain access to the underlying List component in order to
program the set of available choices. The XmNitems resource specifies an array of
compound strings, which topic is covered in detail in Chapter 25, Compound Strings.

The output from the program is given in Figure 14-3.

ComboBox Resources
The ComboBox provides what is known as a mirror; that is, for each of the important
resources which can be set on the built-in TextField and Scrolled List children there is an
equivalent implemented in the ComboBox resource table itself, so that access to the
underlying children is not necessary for the majority of tasks.

List Resources

The contents of the ComboBox popup List can be set using the XmNitems and
XmNitemCount resources of the ComboBox. XmNitems specifies an array of compound
strings, and XmNitemCount is the number of such strings in the array. The following code
fragment shows how to create a ComboBox which displays the names of the days of the
week:

extern Widget parent;

char *month_names[] = {
“Monday”, “Tuesday”, “Wednesday”, “Thursday”,
“Friday”, “Saturday”, “Sunday”

};

int count, i, n;
XmString *xms;
Arg args[4];
Widget combo;

Figure 14-3: Output of the simple_combobox program

Chapter 14: The ComboBox Widget

468 Motif Programming Manual

count = XtNumber (month_names);
xms = (XmString *) XtMalloc ((unsigned) count * sizeof (XmString));

for (i = 0; i < count; i++) {
xms[i] = XmStringCreateLocalized (month_names[i]);

}

n = 0;
XtSetArg (args[n], XmNitems, xms); n++;
XtSetArg (args[n], XmNitemCount, count); n++;
combo = XmCreateComboBox (parent, “days”, args, n);

for (i = 0; i < count; i++)
XmStringFree (xms[i]);

XtFree ((char *) xms);

The vertical size of the ComboBox List is controlled through the XmNvisibleItemCount
resource. If the visible item count is less than the number of items in the list, the List
automatically displays ScrollBars for navigating to hidden items.

Just as a List supports automatic keyboard selection through the XmNmatchBehavior
resource, so this is mirrored in the ComboBox resource set. If the value is XmQUICK_
NAVIGATE, the user can select an item in the List simply by typing the first character of the
item. This behaviour is disabled if the value is XmNONE.

The widget ID of the built-in List is available through the ComboBox XmNlist resource.
You may fetch, but not set the value of this resource.

TextField Resources

The TextField contains the current selection. This can be fetched or set through the
XmNselectedItem resource. Note that this resource specifies a compound string, even
though the internals of the Motif Text widgets are not compound-string based.

The width of the built-in TextField is controlled by the XmNcolumns resource. This also
controls the width of the ComboBox itself, although allowance should be made for the
additional space required to draw an arrow.

The widget ID of the built-in TextField can be fetched using the XmNtextField resource.
This resource is read-only in nature.

ComboBox Resources

The type of the ComboBox is specified through the XmNcomboBoxType resource. The
possible values are:

XmCOMBO_BOX XmDROP_DOWN_COMBO_BOX XmDROP_DOWN_LIST

Note that these are create-only resources, so you need to decide in advance whether or not
to allow the user to type directly into the TextField.

Motif Programming Manual 469

Chapter14: The ComboBox Widget

The way in which the ComboBox reports the current selection is controlled through a
resource called XmNpositionMode . Normally, a List is manipulated by specifying
indexes starting at 1. That is to say, the first item in a List is at position 1, the second item
at position 2, and so forth. Position zero is reserved to mean “the end of the list”, whatever
that index may be. However, the CDE DtComboBox widget was based around a different
model: the first item is at position zero, the second at position 1, and so forth. Since CDE
pre-dates the release of Motif 2.x, applications may well have included the DtComboBox
widget well before the Motif ComboBox became available. For this reason, the resource
XmNpositionMode was implemented. If XmNpositionMode is XmONE_BASED, the
ComboBox reports positions in its callbacks starting at position 1, which is consistent with
normal Motif List behavior. If on the other hand, XmNpositionMode is XmZERO_BASED,
positions are reported offset from zero for CDE compatibility. Note that this resource does
not affect any of the ComboBox functions described within Section 14.3: it only affects the
way in which the various elements of a ComboBox XmNselectionCallback is
interpreted, and the value of the resource XmNselectedPosition .

The index of the current selection in the List of choices is given by the
XmNselectedPosition resource. As described in the previous paragraph, the
interpretation of this resource depends upon the XmNpositionMode value. If
XmNpositionMode is XmONE_BASED, an XmNselectedPosition of 1 means that the
first item in the List is the selected item. In this mode, a position of zero is reserved to mean
that no List items were selected. If XmNpositionMode is XmZERO_BASED, an
XmNselectedPosition of zero means that the first List item is selected, a position of 1
means the second was selected, and so forth. It is difficult in these circumstances to work
out if no List items were selected other than by directly querying the XmNselectedItems
of the internal List itself.

ComboBox Functions
Just as you can program the contents of a List widget either by manipulating the XmNitems
and XmNselectedItem resources or by calling any of a whole range of routines for
selectively adding or deleting items, so also the ComboBox comes with a set of
convenience routines for changing its List contents over and above any manipulations to
the ComboBox XmNitems resource you may care to make.*

Adding ComboBox Items
An item can be inserted into the ComboBox built-in List through the function
XmComboBoxAddItem(), which takes the following form:

* With the exception of XmComboBoxUpdate(), all of the ComboBox convenience routines are only available as
of Motif 2.1. XmComboBoxUpdate() is available from Motif 2.0.

Chapter 14: The ComboBox Widget

470 Motif Programming Manual

void XmComboBoxAddItem (Widget combo,
XmString item ,
int position ,
Boolean unique)

The position parameter specifies an index into the ComboBox List where the item is to
be inserted. The first item in the List is at position 1. If position is zero, item is
appended to the bottom of the List. If unique is True , item is only inserted if it does not
already exist in the ComboBox List.

Deleting ComboBox Items
You can delete an item at a given position in the ComboBox List through the function
XmComboBoxDeletePos (). This routine has the following prototype:

void XmComboBoxDeletePos (Widget combo, int position)

Again, the position parameter is interpreted such that the first item in the ComboBox
List is at position 1. Deleting position zero deletes the last ComboBox List item. An error
message is displayed by the Motif toolkit if no item exists at the specified position .

Selecting ComboBox Items
You can programmatically set the current choice in the ComboBox through the routine
XmComboBoxSelectItem (). This has the following signature:

void XmComboBoxSelectItem (Widget combo, XmString item)

The routine selects the first occurrence of item in the ComboBox internal List. This also
resets the contents of the built-in TextField. There is a side effect such that if item is not
amongst the ComboBox List choices, an error message is displayed by the Motif toolkit.

The routine XmComboBoxSetItem () is very similar to XmComboBoxSelectItem () in
that it sets the current selection. It also makes the selected choice the first visible item in
the ComboBox List. The routine has the following format:

void XmComboBoxSetItem (Widget combo, XmString item)

Whether using XmComboBoxSetItem () or XmComboBoxSelectItem (), no callbacks are
invoked by the ComboBox as a result of changing the current selection.

Updating the ComboBox
If you change the state of the ComboBox built-in components other than through the
convenience routines, it is possible for the ComboBox to get out of step with what it
believes is the current contents and state of its children. For example, you might fetch the
built-in List through the XmNlist resource of the ComboBox, and set various resources
directly on the child rather than going through the ComboBox mirror. This might be

Motif Programming Manual 471

Chapter14: The ComboBox Widget

performed because the set of ComboBox convenience routines for manipulating the
contents of the internal List is considerably smaller than the set provided for directly
manipulating a normal List, and so by fetching the widget ID of the List child a much
greater range of toolkit functionality becomes available for use. In these circumstances, the
ComboBox may need to be synchronized with the state of its children after you have
finished manipulating them. The routine XmComboBoxUpdate() is provided for this
purpose, and the ComboBox resets its state by refreshing its values read directly from the
children. This routine is specified as follows:

void XmComboBoxUpdate (Widget combo)

ComboBox Callbacks
The only callback defined specifically by the ComboBox widget class is the
XmNselectionCallback . This is called when the user changes the current selection,
either by typing into the built-in TextField, or by selecting from the built-in Scrolled List.
Each callback of this type is associated with the structure XmComboBoxCallbackStruct ,
which is defined as follows:

typedef struct
{

int reason;
XEvent *event;
XmString item_or_text;
int item_position;

} XmComboBoxCallbackStruct;

The reason element of an XmNselectionCallback will have the value XmCR_SELECT.
The item_or_text element is a compound string which represents the current selection.
This is temporarily allocated only for the duration of the callback, and so if you need to
cache the current choice, you need to copy the element using XmStringCopy () or similar.

The interpretation of the item_position element depends upon the value of the
XmNpositionMode resource. If the mode is XmONE_BASED, an item_position of 1
refers to the first item in the ComboBox List, an item_position of 2 is the second List
item, and so forth. An item_position of zero indicates that there was no List selection
- in other words, the item_or_text element value must have resulted from the user
directly typing into the ComboBox TextField. If the XmNpositionMode resource is
XmZERO_BASED, an item_position of zero could either have resulted from direct text
entry, or the first List item was selected. An item_position of 1 indicates selection of
the second List item, and so forth. In this mode, it can be very difficult to distinguish
between the cases where the user has selected the first item in the List, and when the user
has directly typed, simply by inspection of the callback data, particularly when the user
navigates the built-in List using the keyboard. In both cases, the item_position element
is zero, and the event element will report a KeyEvent of some description. If you need to

Chapter 14: The ComboBox Widget

472 Motif Programming Manual

know the difference between List and TextField selection, you should consider switching
to a position mode of XmONE_BASED.

Note that the XmNselectionCallback is called every time the selection changes, even
if the user has not finished with the current action. For example, if the user browses up and
down the List of choices using the arrow keys, the XmNselectionCallback will be
invoked each time the choice is moved, even though the user has not made the final
selection. Fortunately it is possible to distinguish between browsing around the List and
actual selection because the event element of the callback structure is NULL when the user
browses the List, and points to a proper KeyPress or ButtonRelease event otherwise.

Example 14-2 is a simple program which prints out the current selection, using an
XmNselectionCallback for the purpose.*

Example 14-2. The combo_cb.c program

/* combo_cb.c -- demonstrate the combobox widget selection callback */

#include <Xm/Xm.h>
#include <Xm/ComboBox.h>

/* the list of colors */
char *colors[] = {

"red", "green", "blue", "orange", "purple",
"pink", "white", "black", "yellow"

};

/* selection_callback: simply prints out the current ComboBox selection */
void selection_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

XmComboBoxCallbackStruct *cb = (XmComboBoxCallbackStruct *) call_data;

char *choice = (char *) XmStringUnparse (cb->item_or_text,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT, XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL);

if (cb->event == NULL) {
printf ("Browsing: potential choice is %s\n", choice);

}
else {

printf ("New current choice is %s\n", choice);
}

XtFree (choice);
}

main (int argc, char *argv[])

* XtVaOpenApplication () and the SessionShell widget class are only available in X11R6. XmCreateDrop-
DownComboBox() and XmStringUnparse () are only available from Motif 2.0 onwards.

Motif Programming Manual 473

Chapter14: The ComboBox Widget

{
Widget toplevel, combo;
XtAppContext app;
Arg args[4];
int count = XtNumber (colors);
int i, n;
XmStringTable str_list;

/* initialize the toolkit */
XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

/* create the List items */
str_list = (XmStringTable) XtMalloc ((unsigned) count *

sizeof (XmString *));

for (i = 0; i < count; i++)
str_list[i] = XmStringCreateLocalized (colors[i]);

/* create the combobox */
n = 0;
XtSetArg (args[n], XmNitems, str_list); n++;
XtSetArg (args[n], XmNitemCount, count); n++;
combo = XmCreateDropDownComboBox (toplevel, "combo", args, n);

for (i = 0; i < n; i++)
XmStringFree (str_list[i]);

XtFree ((XtPointer) str_list);

XtAddCallback (combo, XmNselectionCallback, selection_callback, NULL);

XtManageChild (combo);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

Summary
 The beauty of the ComboBox is the fact that it provides the convenience of List selection
while only occupying the screen space of a TextField when inactive. The user normally
sees just the current selection, and only needs to inspect the full set of values when the
choice is to be changed. Changing the choice is simply a matter of displaying and selecting
from the List, or typing the new value. It is the conjunction of economy of space with ease
of use which makes this one of the single most important additions to the Motif 2.x widget
set.

Chapter 14: The ComboBox Widget

474 Motif Programming Manual

Exercises
1. Create a program which displays a date using a combination of three ComboBoxes for

each of the day, month, and year elements. The year ComboBox should offer a simple
range of choices for the years 1990 through to 2010.

2. Modify your program such that the current date is displayed in the ComboBoxes when
the program first starts.

Motif Programming Manual 475

Chapter 1

In this chapter:
• Creating a SimpleSpinBox
• Creating a SpinBox
• SpinBox Resources
• SpinBox Callbacks
• Summary
• Exercises

15
The SpinBox and

SimpleSpinBox Widgets
This chapter describes two components which allow the user to chose from a group of
values that occur in a predefined set: the SpinBox, and the SimpleSpinBox widgets* .

The SimpleSpinBox consists of a TextField, and two arrows. The programmer associates a
set of values with the SimpleSpinBox; the TextField displays the current selection from the
set, and the user can chose the next or previous value in the set by pressing on an arrow.
Think of the widget as a kind of ComboBox which, when an arrow is pressed, automatically
selects the next value for the user, rather than the user selecting from a popdown List of
choices. Figure 15-1 displays a typical SimpleSpinBox. In this case, the widget is
associated with the names of the months, and the user simply chooses the previous or next
month by pressing the increment or decrement arrow.

The SpinBox is similar to the SimpleSpinBox: it provides two arrows for rotating the
current selection. The difference is that the SpinBox is a general purpose manager: the
programmer can add multiple TextFields to the widget, and the arrows simply manipulate
the set of values associated with the current TextField child which has the focus. Figure 15-

* The SpinBox is only available from Motif 2.0 onwards. The SimpleSpinBox is only available from Motif 2.1.

Increment Arrow

Decrement Arrow

TextField

Figure 15-1: A SimpleSpinBox widget

Chapter 15: The SpinBox and SimpleSpinBox Widgets

476 Motif Programming Manual

2 display a SpinBox which contains three TextField children, used in this instance for
displaying the day, month, and year components of a date.

SpinBoxes, and SimpleSpinBoxes, assume that their TextField children come in two
different flavors: numeric, and string. A numeric SpinBox TextField allows the user to
select from a range: the programmer specifies the lower and upper bounds of the range, as
well as the interval between selections. Clearly, a TextField in a SpinBox displaying days
of the month would have a lower bound of 1, and an upper bound variously of 28, 29, 30,
or 31, The interval would be 1, because you would expect that pressing the increment or
decrement arrow should change the value to an adjacent day. A string SpinBox TextField,
on the other hand, simply has an ordered array of strings from which the user can
sequentially select.

In either flavor, when the last value in the set of choices is reached, and the user presses the
increment arrow, the new current value is the first value in the range: the choice wraps
around to the start of the set. This wrapping behavior is also true when going in the other
direction: pressing the decrement arrow when the first value is current causes the last value
to become the current choice. If the programmer does not want this kind of wrapping
behavior, it can be configured through resources.

The differences between the SpinBox and SimpleSpinBox widgets as far as the user is
concerned are minimal: each presents the current choice to the user in the same way
through a TextField or TextFields, and each allows the user to modify the choice through
increment and decrement arrows automatically provided for the purpose.

As far as programming the two widgets is concerned, there are subtle differences.

Firstly, the SimpleSpinBox comes with a built-in TextField ready-prepared to display the
current choice: the programmer only needs to specify the valid set of values through
appropriate resources. The general purpose SpinBox manager, on the other hand, comes
unprepared: the programmer must add all the necessary TextField children herself, as well
as specifying the value ranges. Although derived from SpinBox, the SimpleSpinBox is not

Figure 15-2: A SpinBox widget with three TextField children

TextFields

Increment Arrow

Decrement Arrow

Motif Programming Manual 477

Chapter 15: The SpinBox and SimpleSpinBox Widgets

meant to be used as a general purpose manager, and you should not put additional children
into the widget: use the SpinBox instead if you need to modify the structure in this way.

The second and most important difference is the fact that the SpinBox widget is a constraint
manager pure and simple: the set of values associated with the various TextField children
is specified by setting constraints on each. By contrast, the SimpleSpinBox provides
mirrored resources for the built-in TextField child; you do not have to specify the set of
values by setting constraints on the TextField: instead you set the same constraint resources
defined by the SpinBox directly onto the SimpleSpinBox widget itself. The
SimpleSpinBox thereafter arranges to apply the values to the built-in child on your behalf.
In other words, the set of resources you can use to program a SpinBox and a
SimpleSpinBox is the same in each case; what is different is where you apply them.

The notion of a set is important when considering using a SpinBox or SimpleSpinBox. If it
is not obvious what the “next” or “previous” value means in a given context, then the
SpinBox is probably not the correct widget to use. For example, if the set consists of days
of the week, it is fairly intuitive what “next” means if the current value is Monday. On the
other hand, if the set consists of arbitrary data such as a list of color names, it is not
necessarily obvious what “next” means if the current value is Orange. Unless there is an
imposed order on the set, for example, an alphabetical listing, then this usage of the
SpinBox could well be entirely inappropriate and confusing to the user, who would not
know whether to increment or decrement to find the required new current value. A simple
List or ComboBox presentation should therefore be preferred if the data is unordered, or if
the next or previous choice is not obvious given an arbitrary current selection.

In passing, note that the increment and decrement arrows are drawn by the SpinBoxes; they
are not real widgets, and thus there is little which can be done to manipulate their
appearance other than through resources which are directly provided by the SpinBoxes
themselves.

Creating a SimpleSpinBox
Creating a SimpleSpinBox is performed in precisely the same kind of way that other Motif
widgets are instantiated. Applications must include the header file associated with the
widget class, which in this case is <Xm/SSpinB.h>. A SimpleSpinBox can be created in one
of the following ways, either using a Motif convenience routine, or the general purpose Xt
methods:

Widget sspin_b = XmCreateSimpleSpinBox (parent, “name”,
resource-value-array , resource-value-count);

Widget sspin_b = XtCreateWidget ("name", xmSimpleSpinBoxWidgetClass,
parent, resource-value-list , NULL);

The parent can be a Shell or any manager widget. Since the geometry management
involved in creating a SimpleSpinBox is minimal, involving as it does just a single

Chapter 15: The SpinBox and SimpleSpinBox Widgets

478 Motif Programming Manual

TextField, the widget could be created managed using XtCreateManagedWidget () or
similar without incurring a significant performance overhead. See Chapter 8, Manager
Widgets, for a discussion of when manager widgets should be created in the managed or
unmanaged state. The resource-value parameters control the behavior and visual effects of
the SimpleSpinBox, as well as its built-in TextField child. The most important resource is
XmNspinBoxChildType , which specifies whether the widget is numerical or string-based
in behavior. The value of the resource is either XmNUMERIC, or XmSTRING.

The Numerical SimpleSpinBox
Numerical SimpleSpinBoxes are created by specifying the XmNspinBoxChildType
resource as XmNUMERIC* . Once we have made our SimpleSpinBox numerical, we need to
specify the range of values from which the user can chose. We do this by supplying a lower
bound, an upper bound, and an increment value. Example 15-1 shows how to create a
numerical SimpleSpinBox which lets the user select an even number which falls between
zero and twenty.

Example 15-1. The numeric_simplespin.c program

/* numeric_simplespin.c -- demonstrate the simple spin box widget */

#include <Xm/Xm.h>
#include <Xm/SSpinB.h>

main (int argc, char *argv[])
{

Widget toplevel, simple_b;
XtAppContext app;
int n;
Arg args[8];

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNminimumValue, 0); n++;
XtSetArg (args[n], XmNmaximumValue, 20); n++;
XtSetArg (args[n], XmNincrementValue, 2); n++;
XtSetArg (args[n], XmNeditable, TRUE); n++;
XtSetArg (args[n], XmNcolumns, 10); n++;
XtSetArg (args[n], XmNwrap, FALSE); n++;
simple_b = XmCreateSimpleSpinBox (toplevel, "simple", args, n);

* Note that this is really a SpinBox constraint resource, and we are in reality making the SimpleSpinBox built-in
TextField numerical, rather than making the SimpleSpinBox numerical. We can apply it to the SimpleSpinBox
because of the way it applies constraints on our behalf.

Motif Programming Manual 479

Chapter 15: The SpinBox and SimpleSpinBox Widgets

XtManageChild (simple_b);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

We specify the minimum bounds to the range of selectable values through the
XmNminimumValue resource. The upper bound is given by the XmNmaximumValue
resource, and the gap between selectable values is specified using the
XmNincrementValue resource. For the sake of example, we also explicitly allow the user
to directly type into the built-in TextField by setting the XmNeditable resource to True .
We also explicitly specify that the SimpleSpinBox is not to wrap around to the start (or end)
of the range of values when the user increments at the end of the range (or decrements at
the beginning) by forcing the XmNwrap resource to False . The user will either have to type
the value in directly, or cycle right through the set of values in the opposite direction. This
may or may not be anti-social programming in any given circumstance: you should think
carefully before turning either or both XmNeditable and XmNwrap behavior off. In the
example, it makes some kind of sense to turn XmNwrap off so that the user is more aware
of the upper bound; if XmNwrap is False , the bell is automatically rung if the user attempts
to exceed the bounds of the data set.

The numeric SimpleSpinBox is not confined to situations where the data is integral in
character: the XmNdecimalPoints resource can be specified so that the widget appears to
handle real numbers. Supposing that we wanted to allow the user to chose from within the
range 2.75 through to 3.45, incrementing by 0.05 on each click of the arrow. The following
code fragment shows the way to do this: since there are two decimal places, we need to
multiply all our bound resources by 10 to the power of two. This is consistent with the way
that the XmNdecimalPoints resource behaves in the Scale widget.

n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNminimumValue, 275); n++;
XtSetArg (args[n], XmNmaximumValue, 345); n++;
XtSetArg (args[n], XmNdecimalPoints, 2); n++;
XtSetArg (args[n], XmNincrementValue, 5); n++;
XtSetArg (args[n], XmNpositionType, XmPOSITION_VALUE); n++;
XtSetArg (args[n], XmNposition, 275); n++;
...
simple_b = XmCreateSimpleSpinBox (toplevel, "simple", args, n);
...

The XmNpositionType and XmNposition resources are used to initialize the current
value of the SimpleSpinBox. XmNposition specifies the current value of the
SimpleSpinBox; XmNpositionType specifies whether the XmNposition resource is
interpreted as an absolute value, or as an index into the set of values. They will be further
discussed in Section 15.1.3.

Chapter 15: The SpinBox and SimpleSpinBox Widgets

480 Motif Programming Manual

The String SimpleSpinBox
A string-based SimpleSpinBox is created by specifying the XmNspinBoxChildType
resource as XmSTRING*. The set of data associated with the string SimpleSpinBox is
defined by the XmNvalues and XmNnumValues resources. The XmNvalues resource is
internally represented by an array of compound strings; you are referred to Chapter 25,
Compound Strings, if you require more details on the creation and manipulation of these
objects.

Example 15-2 creates a string-based SimpleSpinBox, which allows the user to select from
the names of the months.

Example 15-2. The string_simplespin.c program

/* string_simplespin.c -- demonstrate the simple spin box widget */

#include <Xm/Xm.h>
#include <Xm/SSpinB.h>

char *months[] = {
"January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"

};

main (int argc, char *argv[])
{

Widget toplevel, simple_b;
XtAppContext app;
int i, n = XtNumber (months);
Arg args[8];
XmStringTable str_list;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

str_list = (XmStringTable) XtMalloc (n * sizeof (XmString *));

for (i = 0; i < n; i++)
str_list[i] = XmStringCreateLocalized (months[i]);

i = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmSTRING); i++;
XtSetArg (args[i], XmNeditable, FALSE); i++;
XtSetArg (args[i], XmNnumValues, n); i++;
XtSetArg (args[i], XmNvalues, str_list); i++;
XtSetArg (args[i], XmNwrap, TRUE); i++;

* Again, note that this is really a SpinBox constraint resource, and we are in reality making the SimpleSpinBox
built-in TextField string-based, rather than making the SimpleSpinBox string-based.

Motif Programming Manual 481

Chapter 15: The SpinBox and SimpleSpinBox Widgets

simple_b = XmCreateSimpleSpinBox (toplevel, "simple", args, i);

for (i = 0; i < n; i++)
XmStringFree (str_list[i]);

XtFree ((XtPointer) str_list);

XtManageChild (simple_b);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output from the program is the same as that of Figure 15-1. We allocate an array of
compound strings for use with the XmNvalues resource. We also specify XmNwrap to
True , because the notion of a “next month” after December does make sense. We also set
the XmNeditable resource False : allowing the user to directly type in an abbreviated or
other style could give us some minor parsing problems, and we probably have better things
to do with our time than writing verification callbacks for this.

The SimpleSpinBox Value
Now that we have created our SimpleSpinBox, we need to know how to explicitly set and
fetch the current value. We could fetch the value using a simplistic algorithm: find the
TextField which is built-in to the SimpleSpinBox, then retrieve the value using
XmTextFieldGetString (). The name of the TextField is given by spin _TF, where
spin is the name of the SimpleSpinBox parent. The following code fragment demonstrates
this scheme:

char *FetchSimpleSpinValue (Widget simple_spin)
{

char *pname = XtName (simple_spin);
char *tname = XtMalloc ((unsigned) strlen (pname) + 4);
Widget textf;

(void) sprintf (tname, “%s_TF”, pname);

textf = XtNameToWidget (simple_spin, tname);
XtFree (tname);
return XmTextFieldGetString (textf); /* Caller frees */

}

Whilst this would work, the method is somewhat heavy handed. Added to which, we would
probably have to convert the fetched value into another form, particularly if the
SimpleSpinBox is numeric in behavior. We most certainly could not use this kind of
method for setting the value. The SimpleSpinBox internally keeps track of the selection
through an index into the set of possible values, and directly writing the value into the
TextField is not going to update the index correctly.

Chapter 15: The SpinBox and SimpleSpinBox Widgets

482 Motif Programming Manual

The correct way to fetch and store the current selection is to manipulate the XmNposition
and XmNpositionType resources. XmNpositionType defines the way in which
XmNposition is interpreted. If XmNpositionType is XmPOSITION_VALUE, the
XmNposition resource represents an absolute value, bounded by the XmNmaximumValue
and XmNminimumValue resource settings. If the position type is XmPOSITION_INDEX,
then the XmNposition resource represents an index into the set of possible values. Clearly
how we set the position type depends on the type of the SimpleSpinBox itself: if the widget
is numeric, we probably want to fetch or set the current choice using an absolute value, but
if the widget is string-based, we would prefer an index into the array of compound strings
stored behind the XmNvalue resource. XmNpositionType is a create only-resource; by
default, it is XmPOSITION_VALUE. This needs not concern us if we are using a string
SimpleSpinBox: since the default value of XmNposition is zero, we set and fetch the
resource as though the value of XmNposition is indeed an index into the array of
compound strings. Example 15-3 creates a pair of SimpleSpinBoxes, one string based, the
other numeric, and a pair of PushButtons. Pressing a PushButton prints out the current
value of a SimpleSpinBox, and increments the value as a side effect.

Example 15-3. The simplespin_value.c program

/* simplespin_value.c -- demonstrate the simple spin box widget */

#include <Xm/Xm.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>
#include <Xm/SSpinB.h>

char *months[] = {
“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”,
“Jul”, “Aug”, “Sep”, “Oct”, “Nov”, “Dec”

};

/*
** Callback which prints out, then increments,
** the SimpleSpinBox value
*/
void increment_spinbox (Widget w, XtPointer client_data,

XtPointer call_data)
{

Widget spin = (Widget) client_data;
unsigned char type;
int position;

XtVaGetValues (spin, XmNspinBoxChildType, &type,
XmNposition, &position, NULL);

printf (“type: %s current position: %d\n”,
(type == XmNUMERIC ? “numeric” : “string”),
position);

if (type == XmNUMERIC) {

Motif Programming Manual 483

Chapter 15: The SpinBox and SimpleSpinBox Widgets

int max;
int min;

XtVaGetValues (spin, XmNmaximumValue, &max,
XmNminimumValue, &min, NULL);

if (position == max) /* Wrap */
position = min;

else
position++;

XtVaSetValues (spin, XmNposition, position, NULL);
}
else {

XmStringTable values;
int count;

XtVaGetValues (spin, XmNvalues, &values,
XmNnumValues, &count, NULL);

if (position == count - 1) /* Wrap */
position = 0;

else
position++;

XtVaSetValues (spin, XmNposition, position, NULL);
}

}

main (int argc, char *argv[])
{

Widget toplevel, simple_b, push_b, rowcol, rc;
XtAppContext app;
int i, n = XtNumber (months);
Arg args[8];
XmStringTable str_list;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

rowcol = XmCreateRowColumn (toplevel, “rowcol”, NULL, 0);

i = 0;
XtSetArg (args[i], XmNorientation, XmHORIZONTAL); i++;
rc = XmCreateRowColumn (rowcol, “rowcol”, args, i);

/* Create a numeric SimpleSpinBox */
i = 0;
XtSetArg (args[i], XmNmaximumValue, 31); i++;
XtSetArg (args[i], XmNminimumValue, 1); i++;
XtSetArg (args[i], XmNincrementValue, 1); i++;
XtSetArg (args[i], XmNpositionType, XmPOSITION_VALUE); i++;
XtSetArg (args[i], XmNposition, 1); i++;

Chapter 15: The SpinBox and SimpleSpinBox Widgets

484 Motif Programming Manual

XtSetArg (args[i], XmNspinBoxChildType, XmNUMERIC); i++;
simple_b = XmCreateSimpleSpinBox (rc, “simple”, args, i);
XtManageChild (simple_b);

push_b = XmCreatePushButton (rc, “Push me”, NULL, 0);
XtAddCallback (push_b, XmNactivateCallback, increment_spinbox,
(XtPointer) simple_b);
XtManageChild (push_b);
XtManageChild (rc);

i = 0;
XtSetArg (args[i], XmNorientation, XmHORIZONTAL); i++;
rc = XmCreateRowColumn (rowcol, “rowcol”, args, i);

/* Create a string SimpleSpinBox */
str_list = (XmStringTable) XtMalloc (

(unsigned) n * sizeof (XmString *));

for (i = 0; i < n; i++)
str_list[i] = XmStringCreateLocalized (months[i]);

i = 0;
XtSetArg (args[i], XmNcolumns, 3); i++;
XtSetArg (args[i], XmNeditable, FALSE); i++;
XtSetArg (args[i], XmNnumValues, n); i++;
XtSetArg (args[i], XmNvalues, str_list); i++;
XtSetArg (args[i], XmNwrap, TRUE); i++;
XtSetArg (args[i], XmNpositionType, XmPOSITION_INDEX); i++;
XtSetArg (args[i], XmNspinBoxChildType, XmSTRING); i++;
simple_b = XmCreateSimpleSpinBox (rc, “simple”, args, i);
XtManageChild (simple_b);

for (i = 0; i < n; i++)
XmStringFree (str_list[i]);

XtFree((char *) str_list);

push_b = XmCreatePushButton (rc, “Push me”, NULL, 0);
XtAddCallback (push_b, XmNactivateCallback, increment_spinbox,
(XtPointer) simple_b);
XtManageChild (push_b);

XtManageChild (rc);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

Motif Programming Manual 485

Chapter 15: The SpinBox and SimpleSpinBox Widgets

The output of the program is given in Figure 15-3.

Creating a SpinBox
Applications must include the header file associated with the SpinBox widget class, which
is <Xm/SpinB.h>. A SpinBox can be created in one of the following ways, either using a
Motif convenience routine, or the general purpose Xt methods:

Widget sspin_b = XmCreateSpinBox (parent, “name”, resource-value-array ,
resource-value-count);

...
Widget sspin_b = XtCreateWidget ("name", xmSpinBoxWidgetClass, parent,

resource-value-list , NULL);

The parent can be a Shell or any manager widget. The widget could probably be created
managed using XtCreateManagedWidget () or similar without incurring a significant
performance overhead since the layout which the widget performs for its children is very
simplistic: it simply lays them out in a line. See Chapter 8, Manager Widgets, for a
discussion of when manager widgets should be created in the managed or unmanaged state.

The SpinBox widget is a constraint manager. Unlike the SimpleSpinBox which provides a
mirror for resources which are applied to the built-in TextField child, the SpinBox is
programmed by directly applying resources to each textual child, which must be
individually added by the programmer. The SpinBox behavior will work equally well with
either Text or TextField children; in the examples which follow, we use a TextField
throughout, but this should not be taken as in any way necessary. Example 15-4 creates a
SpinBox which displays the time.

Example 15-4. The date_spinbox.c program

/* date_spinbox.c -- demonstrate the spin box widget */
#include <Xm/Xm.h>
#include <Xm/RowColumn.h>
#include <Xm/SpinB.h>
#include <Xm/TextF.h>
#include <Xm/Label.h>
#include <sys/types.h>
#include <sys/time.h>

Widget hours_t, mins_t, ampm_t;

Figure 15-3: Output of the simplespin_values program

Chapter 15: The SpinBox and SimpleSpinBox Widgets

486 Motif Programming Manual

main (int argc, char *argv[])
{

Widget toplevel, spin, child;
XtAppContext app;
XmStringTable ampm;
Arg args[8];
int n;
/* Initialize the spinbox to the current time */
long tick = time ((long *) 0);
struct tm *tm = localtime (&tick);
/* 12 hour clock */
int hours = ((tm->tm_hour > 12) ? (tm->tm_hour - 12) : tm->tm_hour);

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

/* Create the SpinBox */
spin = XmCreateSpinBox (toplevel, “spin”, NULL, 0);

/* Create the Hours field */
n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 1); n++;
XtSetArg (args[n], XmNmaximumValue, 12); n++; /* 12 hour clock */
XtSetArg (args[n], XmNposition, hours); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
hours_t = XmCreateTextField (spin, “hourText”, args, n);
XtManageChild (hours_t);

/* Hours/Minutes separator */
child = XmCreateLabel (spin, “:”, NULL, 0);
XtManageChild (child);

/* Create the Minutes field */
n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 0); n++;
XtSetArg (args[n], XmNmaximumValue, 59); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
XtSetArg (args[n], XmNposition, tm->tm_min); n++;
mins_t = XmCreateTextField (spin, “minuteText”, args, n);
XtManageChild (mins_t);

/* Create the am/pm indicator field */
ampm = (XmStringTable) XtMalloc(2 * sizeof (XmString *));
ampm[0] = XmStringCreateLocalized (“am”);
ampm[1] = XmStringCreateLocalized (“pm”);

Motif Programming Manual 487

Chapter 15: The SpinBox and SimpleSpinBox Widgets

n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmSTRING); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNnumValues, 2); n++;
XtSetArg (args[n], XmNvalues, ampm); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
XtSetArg (args[n], XmNposition, (tm->tm_hour > 12) ? 1 : 0); n++;
ampm_t = XmCreateTextField (spin, “ampmText”, args, n);
XtManageChild (ampm_t);
XmStringFree (ampm[0]);
XmStringFree (ampm[1]);
XtFree ((char *) ampm);

XtManageChild (spin);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of the date_spinbox.c program is given in Figure 15-4.

In the example, we create a SpinBox, and add four children: three TextFields to display the
hours, minutes, and time-of-day, and a Label used to separate the hours and minutes fields.
The SpinBox simply lays the children out horizontally in the order of creation. The widget
is not sensitive to the XmNlayoutDirection resource in this respect: it is not possible to
lay the children out vertically. The SpinBox itself is created very simply:

spin = XmCreateSpinBox (toplevel, “spin”, NULL, 0);

The TextField to display the hours is programmed using SpinBox constraints: the
XmNspinBoxChildType is set to XmNUMERIC, and the XmNmaximumValue and
XmNminimumValue resources are set appropriately for a 12 hour clock. As a gloss, we
initialize the value of the TextField from the current time, by using the XmNposition
resource. The current time is fetched through the standard UNIX system calls time () and
localtime (). You should refer to your system documentation if you are unfamiliar with
these routines.

/* Initialize the spinbox to the current time */
long tick = time ((long *) 0);
struct tm *tm = localtime (&tick);
/* 12 hour clock */
int hours = ((tm->tm_hour > 12) ? (tm->tm_hour - 12) : tm->tm_hour);
...
n = 0;

Figure 15-4: Output of the date_spinbox program

Chapter 15: The SpinBox and SimpleSpinBox Widgets

488 Motif Programming Manual

XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 1); n++;
XtSetArg (args[n], XmNmaximumValue, 12); n++; /* 12 hour clock */
XtSetArg (args[n], XmNposition, hours); n++; /* The current time */
XtSetArg (args[n], XmNwrap, TRUE); n++;
hours_t = XmCreateTextField (spin, “hourText”, args, n);
XtManageChild (hours_t);

Although the SpinBox works by rotating the values of the TextField which currently has
the input focus, the SpinBox will layout any widget class which is added as a child. In the
example, we add a Label after the first TextField to act as a logical separator between the
hours and minutes field.

/* Hours/Minutes separator */
child = XmCreateLabel (spin, “:”, NULL, 0);
XtManageChild (child);

The TextField to display the minutes field is created in a similar fashion to the hours field;
the XmNspinBoxChildType resource is set to XmNUMERIC, the XmNmaximumValue and
XmNminimumValue constraint resources are set appropriately for the range of values to
display, and the XmNposition resource is initialized to the current time.

The last TextField, used to display the morning or afternoon indicator, is created
differently. In this case, the XmNspinBoxChildType constraint is set to XmSTRING, and
the XmNvalues and XmNnumValues resources are used to specify an array of compound
strings which contain the am/pm labels. Again, we initialize the TextField to display the
current time using the XmNposition resource. Since the XmNspinBoxChildType is
XmSTRING, the XmNposition resource in this case represents an index into the array of
compound strings, rather than an absolute value.

/* Create the am/pm indicator field */
ampm = (XmStringTable) XtMalloc(2 * sizeof (XmString *));
ampm[0] = XmStringCreateLocalized ("am");
ampm[1] = XmStringCreateLocalized ("pm");

n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmSTRING); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNnumValues, 2); n++;
XtSetArg (args[n], XmNvalues, ampm); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
/* Current time of day */
XtSetArg (args[n], XmNposition, (tm->tm_hour > 12) ? 1 : 0); n++;
ampm_t = XmCreateTextField (spin, “ampmText”, args, n);
XtManageChild (ampm_t);

Clearly, this arrangement of widgets could trivially be used to create a simple clock. We
would only need to add a looping timeout handler, and adjust the XmNposition resources

Motif Programming Manual 489

Chapter 15: The SpinBox and SimpleSpinBox Widgets

of each TextField appropriately as the timer expires. A program to create a clock using
the SpinBox is listed amongst the Exercises section at the end of the chapter.

SpinBox and SimpleSpinBox Resources
The SpinBox, and SimpleSpinBox, resources for configuring the range of values associated
with TextField children have already been mentioned in previous sections and examples of
this chapter. In the paragraphs which follow, SpinBox is to include SimpleSpinBox unless
otherwise stated. For a SimpleSpinBox, resources which are specified as constraints should
be applied to the SimpleSpinBox itself, rather than on the SimpleSpinBox built-in
TextField.

To recap, TextField children of SpinBoxes are considered to come in two flavors: numeric,
and string.

A numeric TextField child of the SpinBox is configured by specifying the constraint
resource XmNspinBoxChildType as XmNUMERIC. The range of possible values is
programmed by specifying the XmNmaximumValue and XmNminimumValue constraints,
and the current value is specified by the XmNposition constraint.

A string SpinBox TextField is configured by specifying the constraint resource
XmNspinBoxChildType as XmSTRING. The values associated with the SpinBox is
controlled through the XmNvalues and XmNnumValues constraints, which specify an
array of compound strings. The current value is given by the XmNposition constraint,
which represents an index into the array of compound strings.

In addition to specifying the range of values, it is also possible to control the way in which
the user can activate the arrows for spinning through these values. The constraint resource
XmNarrowSensitivity controls which of the arrows is currently sensitive to user input.
The value XmARROWS_DECREMENT_SENSITIVE makes it possible for the user to only
decrement the current value of the SpinBox. Similarly, XmARROWS_INCREMENT_
SENSITIVE only allows an increase in SpinBox value. If neither action is currently
allowed, the value XmARROWS_INSENSITIVE can be used to turn off spinning altogether.
The default value, XmARROWS_SENSITIVE, allows both increase and decrease actions. In
addition, a SpinBox, but not a SimpleSpinBox, supports the resource
XmNdefaultArrowSensitivity , which specifies a default layout for TextField
children which do not have the XmNarrowSensitivity constraint explicitly set.
XmNdefaultArrowSensitivity can hold the same values as the XmNarrowLayout
resource, and as a normal non-constraint resource should be applied to the SpinBox and not
the TextField children.

The SpinBox supports the notion of automatic spin. That is, if the user presses an arrow,
and holds the mouse button down, the SpinBox will automatically rotate through the values
as though the user clicked multiple times. Automatic spin is configured through the

Chapter 15: The SpinBox and SimpleSpinBox Widgets

490 Motif Programming Manual

XmNinitialDelay and XmNrepeatDelay resources. XmNinitialDelay specifies a
time interval which is to elapse since the mouse button was first held down before
automatic spinning becomes operative. XmNrepeatDelay specifies the time interval
between successive spins of the value. If XmNrepeatDelay is zero, automatic spinning is
disabled.

The location of the arrows relative to the SpinBox TextFields can be configured through
the XmNarrowLayout resource. The arrows can be placed either horizontally or vertically
aligned, both before and after the TextField children. Possible values for the
XmNarrowLayout resource are:

XmARROWS_BEGINNING XmARROWS_END
XmARROWS_FLAT_BEGINNING XmARROWS_FLAT_END XmARROWS_SPLIT

Figure 15-5 shows the effect of the various XmNarrowLayout values.

SpinBox and SimpleSpinBox Callbacks
The callback routines associated with the SpinBox and SimpleSpinBox widgets give the
programmer control both over the value to display, and whether to allow spinning of the
value, in any given instant. The callback model for the SpinBox widgets is analogous to
those for the Text and TextField widgets, which is not surprising since the SpinBoxes
simply manage the contents of child Text components.

The XmNmodifyVerifyCallback of the SpinBox can be used to verify the contents of a
SpinBox TextField child after the user has requested a new selection, but before the actual
contents are changed in the TextField itself. In the callback, the programmer can accept,
reject, or otherwise alter the new proposed choice in any way which she feels fit by
modifying suitable elements in the structure passed to the callback.

Figure 15-5: The various settings of the XmNarrowLayout resource

XmARROWS_BEGINNING

XmARROWS_END

XmARROWS_FLAT_BEGINNING

XmARROWS_FLAT_END

XmARROWS_SPLIT

Motif Programming Manual 491

Chapter 15: The SpinBox and SimpleSpinBox Widgets

The XmNvalueChangedCallback is called after any XmNmodifyVerifyCallback has
completed, provided that the XmNmodifyVerifyCallback did not reject the new
SpinBox TextField value.

These two callbacks are typically used in conjunction; the XmNmodifyVerifyCallback
polices the validity of the user selection, and the XmNvalueChangedCallback blindly
processes the new value, safe in the knowledge that the value has been validated.

Both XmNmodifyVerifyCallback and XmNvalueChangedCallback functions are
passed a structure in the following form:

typedef struct
{

int reason;
XEvent *event;
Widget widget;
Boolean doit;
int position;
XmString value;
Boolean crossed_boundary;

} XmSpinBoxCallbackStruct;

The reason field specifies the action performed by the user. Table 15-1 lists the callback
name, reason, and associated user action for all values of the reason field:

The widget element is set to whichever Text or TextField child of the SpinBox currently
has the input focus.

The doit element is the key to performing validation of the user’s action. If the
programmer sets this field to False , the SpinBox action is cancelled, and no change takes
place to the current selection.

The position element is the callback equivalent of the XmNposition resource. The
SpinBox sets the element to what it believes should be the newly displayed value before
calling any XmNmodifyVerifyCallback : the programmer can subsequently alter the
element inside the callback if an alternative position is required.

. Table 15-1. Callback resources for the SpinBox Widget

Resource Name Reason Action

XmNmodifyVerifyCallback,
XmNvalueChangedCallback

XmCR_SPIN_FIRST The SpinBox is at the lower end of
the range of values

XmNmodifyVerifyCallback,
XmNvalueChangedCallback

XmCR_SPIN_LAST The SpinBox is at the upper end of
the range of values

XmNmodifyVerifyCallback,
XmNvalueChangedCallback

XmCR_SPIN_PRIOR The user has armed the decrement
arrow

XmNmodifyVerifyCallback,
XmNvalueChangedCallback

XmCR_SPIN_NEXT The user has armed the increment
arrow

XmNvalueChangedCallback XmCR_OK The user has changed the value

Chapter 15: The SpinBox and SimpleSpinBox Widgets

492 Motif Programming Manual

The value field contains a compound string representation of the newly selected value. If
the SpinBox TextField which is being modified is numeric in nature, the value field
contains the position of the SpinBox converted into a temporary compound string allocated
only for the duration of the callback. The conversion process takes into account the
XmNdecimalPoints resource of the changed TextField. On the other hand, if the
SpinBox TextField is string-based, then the value field is not allocated - it merely points
directly into the array of compound strings associated with the XmNvalue resource. In
either case, if the programmer wishes to store the value field for use outside the callback,
she must allocate a separate copy. The value field should not be freed by the programmer
under any circumstances.

The crossed_boundary field indicates whether the user action wraps around the set of
values associated with the current TextField. For example, if the user in a numeric
TextField selects the decrement action and the currently displayed position is equal to
XmNminimum, or if in a string-based TextField the user selects the increment action and the
currently displayed choice is the last item in the XmNvalues array.

Example 15-5 is a program which utilizes both the XmNmodifyVerifyCallback and this
XmNvalueChangedCallback resources. It creates a SpinBox with three TextFields for
day, month, year fields. The XmNmodifyVerifyCallback ensures that the date
displayed is valid. For example, if February is the current month then the day field cannot
exceed 28 or 29, depending on whether the year field represents a leap year. The
XmNvalueChangedCallback simply prints out the new current date as it changes.

Example 15-5. The date_spinbox_cb.c program

/* date_spinbox_cb.c -- demonstrate the spin box widget callbacks */

#include <Xm/Xm.h>
#include <Xm/RowColumn.h>
#include <Xm/SpinB.h>
#include <Xm/TextF.h>
#include <Xm/Label.h>

Widget day_t, month_t, year_t;

char *months[] = {
“January”, “February”, “March”, “April”, “May”, “June”,
“July”, “August”, “September”, “October”, “November”, “December”

};

int month_days[2][12] =
{

{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

};

/* check_days: the XmNmodifyVerifyCallback for the SpinBox */
void check_days (Widget w, XtPointer client_data, XtPointer call_data)

Motif Programming Manual 493

Chapter 15: The SpinBox and SimpleSpinBox Widgets

{
XmSpinBoxCallbackStruct *sb = (XmSpinBoxCallbackStruct *) call_data;
int year;
int month;
int day;
int leap;

if (sb->widget == day_t) {
/* Make sure that the new day never exceeds the maximum
** for the current month
*/
XtVaGetValues (year_t, XmNposition, &year, 0);

leap = (((year % 4) == 0) ? ((year % 400) == 0 ? 1 : 0) : 0);

XtVaGetValues (month_t, XmNposition, &month, 0);

if (sb->position > month_days[leap][month]) {
if (sb->crossed_boundary)

/* Going backwards */
sb->position = month_days[leap][month];

else
/* Going forwards */
sb->position = 1;

}
}
else {

/* The month or year has changed.
** Recheck the day field to ensure it does not exceed the
** maximum for the new month or year.
*/
if (sb->widget == month_t) {

month = sb->position;

XtVaGetValues (year_t, XmNposition, &year, 0);
}
else {

year = sb->position;

XtVaGetValues (month_t, XmNposition, &month, 0);
}

leap = (((year % 4) == 0) ? ((year % 400) == 0 ? 1 : 0) : 0);

XtVaGetValues (day_t, XmNposition, &day, 0);

if (day > month_days[leap][month]) {
XtVaSetValues (day_t,

XmNposition, month_days[leap][month],
NULL);

}
}

}

Chapter 15: The SpinBox and SimpleSpinBox Widgets

494 Motif Programming Manual

/* print_date: the XmNvalueChangedCallback for the SpinBox */
void print_date (Widget w, XtPointer client_data, XtPointer call_data)
{

XmSpinBoxCallbackStruct *sb = (XmSpinBoxCallbackStruct *) call_data;
int day;
int month;
int year;

if (sb->reason == XmCR_OK) {
XtVaGetValues (day_t, XmNposition, &day, 0);
XtVaGetValues (month_t, XmNposition, &month, 0);
XtVaGetValues (year_t, XmNposition, &year, 0);

printf (“New date: %d/%s/%d\n”, day, months[month], year);
}

}

main (int argc, char *argv[])
{

Widget toplevel, spin;
XtAppContext app;
XmStringTable ampm;
Arg args[8];
int i, n;
XmStringTable str_list;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

/* Create the SpinBox */
spin = XmCreateSpinBox (toplevel, “spin”, NULL, 0);

/* Create the Day field */
n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 1); n++;
XtSetArg (args[n], XmNmaximumValue, 31); n++;
XtSetArg (args[n], XmNposition, 1); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
day_t = XmCreateTextField (spin, “dayText”, args, n);
XtManageChild (day_t);

/* Create the Month field */
n = XtNumber (months);
str_list = (XmStringTable) XtMalloc (n * sizeof (XmString *));

for (i = 0; i < n; i++)
str_list[i] = XmStringCreateLocalized (months[i]);

n = 0;

Motif Programming Manual 495

Chapter 15: The SpinBox and SimpleSpinBox Widgets

XtSetArg (args[n], XmNspinBoxChildType, XmSTRING); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNcolumns, 10); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
XtSetArg (args[n], XmNvalues, str_list); n++;
XtSetArg (args[n], XmNnumValues, XtNumber (months)); n++;
month_t = XmCreateTextField (spin, “monthText”, args, n);
XtManageChild (month_t);

for (i = 0; i < XtNumber (months); i++)
XmStringFree (str_list[i]);

XtFree((XtPointer) str_list);

/* Create the Year field */

n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 4); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 1990); n++;
XtSetArg (args[n], XmNmaximumValue, 2010); n++;
XtSetArg (args[n], XmNposition, 2000); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
year_t = XmCreateTextField (spin, “yearText”, args, n);
XtManageChild (year_t);

XtManageChild (spin);
XtAddCallback (spin, XmNmodifyVerifyCallback, check_days, NULL);
XtAddCallback (spin, XmNvalueChangedCallback, print_date, NULL);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of the program is similar to Figure 15-2. The XmNmodifyVerifyCallback
check_days is straightforward: if a field changes, we variously fetch the day, month and
year field positions to ensure that the day number does not exceed the maximum allowed
for the given date. If it is the day field that has changed, we only need to reset the
position element of the callback structure to the new valid day, and we know if a day is
invalid simply by comparing the callback position against the month_days array.
Otherwise, if the month or year has changed, we must perform an explicit
XtVaSetValues () call on the day_t field if we need to change the value. The
XmNvalueChangedCallback is also straight forwards: format and print out the value of
all three fields, but only if this callback is being called for the right reason and we know
that any prior verification process has succeeded. This is the case if the reason field of the
callback structure is set to XmCR_OK.

Chapter 15: The SpinBox and SimpleSpinBox Widgets

496 Motif Programming Manual

Summary
The SpinBox and SimpleSpinBox widgets can be used whenever there is a choice from a
well-defined set of items. They are the natural choice of interface component if the data is
in an ordered sequence. The next or previous item in the sequence of choices should be
intuitive and obvious to the user at all times. Whenever the data meets these requirements,
the SpinBox widgets provide a simple, compact, and natural method of selection.
Remember that the user only sees the current value: if the next or previous selection is not
entirely obvious, then the SpinBox or SimpleSpinBox is probably the wrong choice of
interface component to present the choices to the user in the first place.

When to use a SpinBox, and when a SimpleSpinBox, can be a tricky choice. We could just
as easily present the day/month/year components of a date through three SimpleSpinBoxes
rather than using a SpinBox with three TextFields. Each component of the date would have
individually associated increment and decrement arrows, which the user may, or may not,
find more convenient than making sure the right SpinBox TextField child has the focus
when using the arrows. On the other hand, the SpinBox manager method is slightly more
compact, using a single set of arrows for all of the TextField children. It may well be that
in any given situation, the choice of a SpinBox or multiple SimpleSpinBoxes makes little
difference in terms of ease of use.

We recommend the SpinBox should be used in preference when you need to emphasize the
fact that the components of the value are to be considered as parts of a single entity. This
may well be the deciding factor: whether the data is, when considered logically, a single
unit. In the example of a date, this is likely to be manipulated and stored as one, rather than
each component being separated out and used in differing calculations, and thus here the
SpinBox method is probably preferable to multiple SimpleSpinBoxes. Probably is an
important word: we would not like to put hard and fast rules on when to use a SpinBox, and
when to use multiple SimpleSpinBoxes; this is a judgement call the interface designer is
going to have to make for herself, involving as it does all kinds of application-specific and
human-computer interaction considerations.

Exercises
1. Create a simple working clock using the SpinBox widget. The clock should be in 12-

hour format, and should display hours, minutes, seconds, and the time-of-day indicator
appropriately as the time changes. Hint: you will need to use the functionXtAppAd-
dTimeOut () to effect the ticking of the clock.

2. Modify thedate_spinbox_cb program so that if the user wraps round the day field,
the month changes automatically, and similarly if the months field wraps round, the
year changes. For example, if the current date is 31 December 1999, incrementing the

Motif Programming Manual 497

Chapter 15: The SpinBox and SimpleSpinBox Widgets

day field should display 1 January 2000, and decrementing the day thereafter should
revert to the original 31 December 1999 date.

Chapter 15: The SpinBox and SimpleSpinBox Widgets

498 Motif Programming Manual

Motif Programming Manual 499

Chapter 1

In this chapter:
• Creating a Scale Widget
• Scale Values
• Scale Orientation and

Movement
• Scale Resources
• Scale Callbacks
• Scale Tick Marks
• Summary

16
The Scale Widget

This chapter describes how to use the Scale widget to represent a range of values. The
widget can be manipulated to change the value.

The Scale widget displays a numeric value that falls within upper and lower bounds. The
widget allows the user to change that value interactively using a slider mechanism similar
to that of a ScrollBar. This style of interface is useful when it is inconvenient or
inappropriate to have the user change a value using the keyboard. The widget is also
extremely intuitive to use; inexperienced users often understand how a Scale works when
they first see one. Figure 16-1 shows how Scale widgets can be used with other widgets in
an application.

Figure 16-1: Scale widgets in an application dialog

Chapter 16: The Scale Widget

500 Motif Programming Manual

A Scale can be oriented either horizontally or vertically. The values given to a Scale are
stored as integers, but decimal representation of values is possible through the use of a
resource that allows you to place a decimal point in the value. A Scale can be put in output-
only mode, in which it is sometimes called a gauge. When a Scale is read-only, it implies
that the value is controlled by another widget or that it is being used to report status
information specific to the application. In Motif 1.2, the standard way to create a read-only
Scale is to specify that it is insensitive. Unfortunately, this technique has the side-effect of
greying out the widget. In Motif 2.0 and later, the widget supports the XmNeditable
resource: setting this to False effects the required gauge behavior without the described
side-effect.

Creating a Scale Widget
Applications that use the Scale widget must include the header file <Xm/Scale.h>. You can
then create a Scale widget as follows:

Widget scale = XtVaCreateWidget ("name", xmScaleWidgetClass, parent,
resource-value-list , NULL);

Widget scale = XmCreateScale (parent, “name”, resource-value-array ,
resource-value-count);

Even though the Scale widget functions as a primitive widget, it is actually subclassed from
the Manager widget. All the parts of a Scale are really other primitive widgets, but these
subwidgets are not directly accessible through the Motif toolkit. The fact that the Scale is
a Manager widget means that you can create widgets that are children of a Scale. The
children are arranged so that they are evenly distributed along the vertical or horizontal axis
parallel to the slider, depending on the orientation of the Scale. In Motif 1.2, this technique
is used primarily to provide “tick marks” for the Scale. In Motif 2.0 and later, tick marks
can be added automatically through the function XmScaleSetTicks (), which will be
described later in the chapter. In all other respects, a Scale can be treated just like other
primitive widgets. Example 16-1 shows a program that creates some Scale widgets.*

Example 16-1. The simple_scale.c program

/* simple_scale.c -- demonstrate a few scale widgets. */

#include <Xm/Scale.h>
#include <Xm/RowColumn.h>

Widget create_scale (Widget parent, char *title,
int max, int min, int value)

{
Arg args[8];
int n = 0;
XmStringxms = XmStringCreateLocalized (title);

* XtVaAppInitialize() is considered deprecated in X11R6.

Motif Programming Manual 501

Chapter 16: The Scale Widget

void new_value(); /* callback for Scale widgets */
Widget scale;

XtSetArg (args[n], XmNtitleString, xms); n++;
XtSetArg (args[n], XmNmaximum, max); n++;
XtSetArg (args[n], XmNminimum, min); n++;
XtSetArg (args[n], XmNvalue, value); n++;
XtSetArg (args[n], XmNshowValue, True); n++;

scale = XmCreateScale (parent, title, args, n);
XtAddCallback (scale, XmNvalueChangedCallback, new_value, NULL);
XtManageChild (scale);

return scale;
}

main (int argc, char *argv[])
{

Widget toplevel, rowcol, scale;
Arg args[2];
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

XtSetArg (args[0], XmNorientation, XmHORIZONTAL);
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, 1);

scale = create_scale (rowcol, "Days", 7, 1, 1);
scale = create_scale (rowcol, "Weeks", 52, 1, 1);
scale = create_scale (rowcol, "Months", 12, 1, 1);
scale = create_scale (rowcol, "Years", 20, 1, 1);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void new_value (Widget scale_w, XtPointer client_data, XtPointer call_data)
{

XmScaleCallbackStruct *cbs = (XmScaleCallbackStruct *) call_data;

printf("%s: %d\n", XtName (scale_w), cbs->value);
}

Chapter 16: The Scale Widget

502 Motif Programming Manual

The output of this program is shown in Figure 16-2.

The four Scales represent the number of days, weeks, months, and years, respectively. Each
Scale displays a title that is specified by the XmNtitleString resource. Just as with other
Motif widgets that display strings, the XmNtitleString must be set as a compound
string, not a normal C string. Conversion between C strings and compound strings is
described in detail in Chapter 25, Compound Strings.

A Scale cannot have a pixmap as its label. Since real estate for the label is limited in a Scale
widget, you should take care to use small strings. If you need to use a longer string, you
should include a separator so that the text is printed on two lines. If the string is too long,
the label may be too wide and look awkward as a result. For a horizontal Scale, the label is
displayed beneath the slider, while for a vertical Scale it is shown to the side of the slider.

The maximum and minimum values are set with the XmNmaximum and XmNminimum
resources, respectively. The minimum values are set to 1 for the user’s benefit; the
minimum value of a Scale defaults to 0. Note that if you set a minimum value other than 0,
you must also provide a default value for XmNvalue that is at least as large as the value of
XmNminimum, as we have done in our example. Each Scale displays its current value
because the XmNshowValue resource is set to True .

Scale Values
The value of a Scale can only be stored as an integer. This restriction is largely based on
the fact that variables of type float and double cannot trivially be passed through
XtVaSetValues() , XtVaGetValues() , or any of the widget creation functions.*If you
need to represent fractional values, you must use the XmNdecimalPoints resource. This
resource specifies the number of places to move the decimal point to the left in the
displayed value, which gives the user the impression that the value displayed is fractional.

For example, a Scale widget used to display the value of a barometer might range from 29
to 31, with a granularity of 1-100th. The necessary widget could be created as shown in the
following code fragment:

* While the Xt functions mentioned do allow the passing of the address of a variable of type float or double ,
the Scale widget does not support this type of value representation.

Figure 16-2: Output of the simple_scale program

Motif Programming Manual 503

Chapter 16: The Scale Widget

Widget scale;
Arg args[...];
int n;
...
XtSetArg (args[n], XmNmaximum, 3100); n++;
XtSetArg (args[n], XmNminimum, 2900); n++;
XtSetArg (args[n], XmNdecimalPoints, 2);n++;
XtSetArg (args[n], XmNvalue, 3000); n++;
XtSetArg (args[n], XmNshowValue, True); n++;
scale = XmCreateScale (parent, "barometer",args, n);

The value for XmNdecimalPoints is 2, so that the value displayed is 30.00 , rather than
3000 . If you are using a Scale to represent fractional values, it is probably a good idea to
set XmNshowValue to True since fine tuning is probably necessary.

There is no limit to the values that can be specified for the XmNmaximum, XmNvalue , and
XmNminimum resources, provided they can be represented by the int type, which includes
negative numbers. In the previous example, the initial value of the Scale (XmNvalue) is set
arbitrarily; the value must be set within the minimum and maximum values. If the value of
the Scale is retrieved using XtVaGetValues() or through a callback routine, the integer
value is returned. To get the appropriate decimal value, you need to divide the value by 10
to the power of the value of XmNdecimalPoints . For example, since
XmNdecimalPoints is 2, the value needs to be divided by 10 to the power of 2, or 100.

The value of a Scale can be set and retrieved using XtVaSetValues() and
XtVaGetValues() on the XmNvalue resource. Motif also provides the functions
XmScaleSetValue() and XmScaleGetValue() to serve the same purpose. These
functions take the following form:

void XmScaleSetValue (Widget scale_w , int value)
void XmScaleGetValue (Widget scale_w , int * value)

The advantage of using the Motif convenience routines, rather than the Xt routines, is that
the Motif routines manipulate data in the widget directly, rather than using the set and get
methods of the Scale. As a result, there is less overhead involved, although the added
overhead of the Xt methods are negligible.

Scale Orientation and Movement
A Scale can be either vertical or horizontal and the maximum and minimum values can be
on either end of the Scale. By default, as shown in the examples so far, the Scale is oriented
vertically with the maximum on the top and the minimum on the bottom. The
XmNorientation resource can be set to XmHORIZONTAL to produce a horizontal Scale.
The XmNprocessingDirection resource controls the location of the maximum and
minimum values. The possible values for the resource are:

XmMAX_ON_TOP XmMAX_ON_BOTTOM
XmMAX_ON_LEFT XmMAX_ON_RIGHT

Chapter 16: The Scale Widget

504 Motif Programming Manual

Unfortunately, you cannot set the processing direction unless you know the orientation of
the Scale, so if you hard-code one resource, you should set both of them. If the Scale is
oriented vertically, the default value is XmMAX_ON_TOP, but if it is horizontal, the default
depends on the value of XmNlayoutDirection * . If you use a font that is read from right
to left, then the maximum value is displayed on the left rather than on the right.

As the user drags the slider, the value of the Scale changes incrementally in the direction
of the movement. If the user clicks the middle mouse button inside the Scale widget, but
not on the slider itself, the slider moves to the location of the click. Unfortunately, in a small
Scale widget, the slider takes up a lot of space, so this method provides very poor control
for moving the slider close to its current location.

If the user clicks the left mouse button inside the slider area, but not on the slider itself, the
slider moves in increments determined by the value of XmNscaleMultiple . The value of
this resource defaults to the difference between the maximum and minimum values divided
by 10.†For example, a Scale widget whose maximum value is 250 has a scale increment of
25. If the user presses the left mouse button over the area above or below the slider, the
Scale’s value increases or decreases by 25. If the button is held down, the movement
continues until the button is released, even if the slider moves past the location of the
pointer.

Scale Resources
The Scale widget is internally implemented using a ScrollBar: many of the ScrollBar
resources listed in Section 10.3.3 in Chapter 10, ScrolledWindows and ScrollBars, are
explicitly implemented to support Scale visuals: the ScrollBar resources
XmNslidingMode , XmNsliderMark , XmNsliderVisual are mirrored in the Scale
widget class‡. For example, setting the XmNslidierVisual resource on the Scale
internally sets the resource for the constituent ScrollBar.

Probably the most interesting of the mirrored resources is the XmNslidingMode resource.
The default value, XmSLIDER, gives the familiar Scale behavior, whereby the slider moves
freely between the maximum and minimum points at the Scale ends. The Scale can,
however, behave like a classic thermometer, with the slider anchored at one end.

* As of Motif 2.0, XmNstringDirection is obsolete, and is replaced by the XmNlayoutDirection resource.

† You should set XmNscaleMultiple explicitly if the difference between XmNmaximum and XmNminimum is
less than 10. Otherwise, incremental scaling does not work.

‡ XmNsliderMark , XmNsliderVisual , XmNslidingMode are available only from Motif 2.0 onwards.

Motif Programming Manual 505

Chapter 16: The Scale Widget

XmTHERMOMETER is the required value of XmNslidingMode for this effect. Figure 16-3
shows the difference between the two settings.

Each of the two Scales have identical XmNmaximum, XmNminimum, XmNvalue resources:
they differ only in the value of XmNslidingMode . In the right-hand thermometer Scale,
the slider is anchored at one end. Note that when the Scale is configured as a thermometer,
directly setting the XmNsliderSize resource has no effect.

Scale Callbacks
The Scale widget provides two callbacks that can be used to monitor the value of the Scale.
The XmNdragCallback callback routines are invoked whenever the user drags the slider.
This action does not mean that the value of the Scale has actually changed or that it will
change; it just indicates that the slider is being moved.

The XmNvalueChangedCallback is invoked when the user releases the slider, which
results in an actual change of the Scale’s value. It is possible for the
XmNvalueChangedCallback to be called without the XmNdragCallback having been
called. For example, when the user adjusts the Scale using the keyboard or moves the slider
incrementally by clicking in the slider area, but not on the slider itself, only the
XmNvalueChangedCallback is invoked.

These callback routines take the form of an XtCallbackProc , just like any other callback.
As with all Motif callback routines, Motif defines a callback structure for the Scale widget
callbacks.The XmScaleCallbackStruct is defined as follows:

typedef struct {
int reason;
XEvent *event;
int value;

} XmScaleCallbackStruct;

The reason field of this structure is set to XmCR_DRAG or XmCR_VALUE_CHANGED,
depending on the action that invoked the callback. The value field represents the current
value of the Scale widget.

Example 16-2 shows another example of how the Scale widget can be used. In this case,
we create a color previewer that uses Scales to control the red, green, and blue values of the

XmNslidingModeXmNslidingMode
== XmTHERMOMETER== XmSLIDER

Figure 16-3: The XmNslidingMode resource and its effects

Chapter 16: The Scale Widget

506 Motif Programming Manual

color that is being edited. This example demonstrates how the XmNdragCallback can be
used to automatically adjust colors as the slider is being dragged. The
XmNvalueChangedCallback is also used to handle the cases where the user adjusts the
Scale without dragging the slider. For a discussion of the Xlib color setting routines used
in this program, see Volume 1, Xlib Programming Manual.*

Example 16-2. The color_slide.c program

/* color_slide.c -- Use scale widgets to display the different
** colors of a colormap.
*/

#include <Xm/LabelG.h>
#include <Xm/Scale.h>
#include <Xm/RowColumn.h>
#include <Xm/DrawingA.h>

Widget colorwindow; /* the window the displays a solid color */
XColor color; /* the color in the colorwindow */

Widget create_scale (Widget parent, char *name, int mask)
{

Arg args[8];
int n = 0;
Widget scale;
XrmValue from;
XrmValue to;
XmString xms = XmStringCreateLocalized (name);
void new_value();

to.addr = NULL;
from.addr = name;
from.size = strlen (name) + 1;
XtConvertAndStore (parent, XmRString, &from, XmRPixel, &to);

XtSetArg (args[n], XmNforeground, (*(Pixel *) to.addr)); n++;
XtSetArg (args[n], XmNtitleString, xms); n++;
XtSetArg (args[n], XmNshowValue, True); n++;
XtSetArg (args[n], XmNmaximum, 255); n++;
XtSetArg (args[n], XmNscaleMultiple, 5); n++;
scale = XmCreateScale (parent, name, args, n);
XmStringFree (xms);

XtAddCallback (scale, XmNdragCallback, new_value, (XtPointer) mask);
XtAddCallback (scale, XmNvalueChangedCallback, new_value, (XtPointer)
mask);
XtManageChild (scale);

return scale;
}

* XtVaAppInitialize() is considered deprecated in X11R6.

Motif Programming Manual 507

Chapter 16: The Scale Widget

main (int argc, char *argv[])
{

Widget toplevel, rowcol, rc, scale;
XtAppContext app;
Arg args[8];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

if (DefaultDepthOfScreen (XtScreen (toplevel)) < 2) {
puts ("You must be using a color screen.");
exit (1);

}

color.flags = DoRed | DoGreen | DoBlue;

/* initialize first color */
XAllocColor (XtDisplay (toplevel),

DefaultColormapOfScreen (XtScreen (toplevel)),
&color);

rowcol = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);

/* create a canvas for the color display */
n = 0;
XtSetArg (args[n], XmNheight, 100); n++;
XtSetArg (args[n], XmNbackground, color.pixel); n++;
colorwindow = XmCreateDrawingArea (rowcol, "colorwindow", args, n);
XtManageChild (colorwindow);

/* create another RowColumn under the 1st */
n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
rc = XmCreateRowColumn (rowcol, "rc", args, n);

/* create the scale widgets */
scale = create_scale (rc, "Red", DoRed);
scale = create_scale (rc, "Green", DoGreen);
scale = create_scale (rc, "Blue", DoBlue);

XtManageChild (rc);
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void new_value (Widget scale_w, XtPointer client_data, XtPointer call_data)
{

int rgb = (int) client_data;
XmScaleCallbackStruct *cbs = (XmScaleCallbackStruct *) call_data;
Colormap cmap = DefaultColormapOfScreen (XtScreen (scale_w));

Chapter 16: The Scale Widget

508 Motif Programming Manual

switch (rgb) {
case DoRed : color.red = (cbs->value << 8); break;
case DoGreen : color.green = (cbs->value << 8); break;
case DoBlue : color.blue = (cbs->value << 8);

}
/* reuse the same color again and again */
XFreeColors (XtDisplay (scale_w), cmap, &color.pixel, 1, 0);

if (!XAllocColor (XtDisplay (scale_w), cmap, &color)) {
puts ("Couldn't XAllocColor!"); exit(1);

}

XtVaSetValues (colorwindow, XmNbackground, color.pixel, NULL);
}

The output of this program is shown in Figure 16-4. Obviously, a black and white book
makes it difficult to show how this application really looks. However, when you run the
program, you should get a feel for using Scale widgets.

One interesting aspect of the color_slide.c program is the use of XtConvertAndStore() .
We use this function to convert from a string representation of a color name to a Pixel value,
so that the toolkit handles the type conversion. For a discussion on type conversion and the
use of XtConvertAndStore() , see Volume 4, X Toolkit Intrinsics Programming
Manual.

Scale Tick Marks
The Motif Style Guide suggests that a Scale widget can have “tick marks” that represent the
incremental positions of the Scale. The Scale widget does not provide these marks by
default, but you can add them yourself, either by creating Labels or Separators as children
of a Scale widget, or through the routine XmScaleSetTicks ()*. This convenience

* XmScaleSetTicks () is only available from Motif 2.0 onwards.

Figure 16-4: Output of the color_slide program

Motif Programming Manual 509

Chapter 16: The Scale Widget

function considers ticks to be of three kinds: small, medium, and big. Medium ticks are
evenly spaced between the big ticks, and small ticks are evenly spaced between the medium
ticks. The function takes the following form:

void XmScaleSetTicks (Widget scale ,
int big_every ,
Cardinal num_medium,
Cardinal num_small ,
Dimension size_big ,
Dimension size_medium ,
Dimension size_small)

The function works by creating SeparatorGadget children along the edges of the Scale. The
parameter big_every specifies the number of scale values between big ticks. The number
of medium ticks between big ticks is given by num_medium, and the number of small ticks
between the medium ticks is given by num_small . The size_* parameters refer to the
size of each tick in Pixels. Example 16-5 creates a Scale with tick marks: the code places
big ticks every 100 units of scale value, medium ticks at every 10 units in between, and
small ticks in the intervening 5 unit mark*. This means that there are 9 (not ten) medium
ticks between the big ticks, and only one small tick between the medium ticks.

Example 16-3. The tick_marks.c program

/* tick_marks.c -- demonstrate a scale widget with tick marks. */
#include <Xm/Scale.h>

main (int argc, char *argv[])
{

Widget toplevel, scale;
XtAppContextapp;
int n;
Arg args[8];
XmString xms;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

xms = XmStringCreateLocalized ("Process Load");
n = 0;
XtSetArg (args[n], XmNtitleString, xms); n++;
XtSetArg (args[n], XmNminimum, 0); n++;
XtSetArg (args[n], XmNmaximum, 200); n++;
XtSetArg (args[n], XmNvalue, 100); n++;
XtSetArg (args[n], XmNshowValue, True); n++;
scale = XmCreateScale (toplevel, "load", args, n);

* XtVaAppInitialize () is considered deprecated in X11R6. XmScaleSetTicks () is only available from Mo-
tif 2.0 onwards.

Chapter 16: The Scale Widget

510 Motif Programming Manual

XmScaleSetTicks(scale, 100, 9, 1, 16, 8, 4);

XtManageChild (scale) ;
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of this program is shown in Figure 16-5.

The Scale can have any kind of widget as a child. All of the children are evenly distributed
along the axis of the slider. As you can see in Figure 16-5, the tick marks are placed all the
way to the left of the Scale widget to leave space for the value indicator. If you wanted to
add ticks using XmScaleSetTicks () as well as adding other children, it could be rather
difficult to achieve any kind of sensible layout without some particularly non-trivial
coding.

Summary
The Scale widget is a simple widget, both in concept and in practical use. In this chapter,
we have showed a few possible uses of the Scale to represent a range of values. The range
of a Scale, as well as its orientation, are customizable. The widget also provides callbacks
that allow an application to keep track of the value of the Scale as the user changes it. These
features make the Scale quite versatile.

Figure 16-5: Output of the tick_marks program

Motif Programming Manual 511

Chapter 1

In this chapter:
• Creating a Notebook
• Notebook Resources
• Notebook Constraints
• Notebook Callbacks
• Notebook Functions
• Summary

17
The Notebook Widget

This chapter describes the Notebook widget, introduced in Motif 2.0.

The Notebook is a Constraint Manager which organises its children as though they are
pages in a book. At any given time, only one child is visible. The Notebook has visuals so
that it appears as though the children are stacked on top of each other like real pages; a
spiral binding and overlapping back pages complete the appearance.

Continuing the analogy, the pages of a Notebook can be divided into sections and sub-
sections by creating tabs which are inserted along the edges of the Notebook pages, just as
real notebooks have tab inserts. Tabs can be associated with pages, so that activating a tab
causes a specific child (page) to be displayed. Each section involves the creation of a Major
Tab - this is simply a button with a particular constraint resource set, and each sub-section
is added by creating a Minor Tab, which again is simply a button with an appropriate
constraint. Minor Tabs appear on a different edge to the Major Tabs along the Notebook
sides, which is possibly the one aspect of behavior which is not the same as a real notebook.
The Notebook automatically creates a Tab Scroller, consisting of a pair of
ArrowButtonGadgets, for scrolling along the set of Tabs when there are more Tabs than
can be displayed along the Notebook edge.

The Notebook can also contain a Page Scroller, so that logical pages can be displayed by
rotating through the values of a SpinBox, rather than having to manually select each tab
individually.

Any given page can also be assigned a Status Area, which is a region of the Notebook
display which can be used for information such as the current page number, date, and so
forth.

Typically, pages are added to a Notebook simply by adding a Manager child to the widget:
the various elements of the page are added to this Manager in turn. The Notebook has a
default algorithm which takes a note of each child as it is added: it assumes that any added
Manager is supposed to represent a page, a button will form a Major Tab, a textual widget
will form a Status Area, and a SpinBox will form a Page Scroller. These are usually valid
assumptions, and so it is not normally necessary to assign roles to each of the children as
they are added to the Notebook by assigning the relevant constraint resource. For typical

Chapter 17: The Notebook Widget

512 Motif Programming Manual

usage, only the role of Minor Tab need to be explicitly coded by the programmer. As for
associating Tabs with pages, again the Notebook has a default algorithm which assigns
ascending page numbers to objects in the order in which they are added. The first Page child
is assigned the logical page number 1 by default. The programmer is free to explicitly
assign logical pages to each of the various Tab and Page children: there can even be gaps
in the numbering scheme, so that a Tab can refer to a number for which no corresponding
Page child exists. In this case, the Notebook simply displays a blank background when the
Tab is activated. It is also possible to assign logical page numbers to Tabs and Pages out of
order to child widget creation: logical page numbers can be assigned in any order, although
in this case the programmer should of course make sure that his own code does not
implicitly rely on the order of child creation in any way. The Notebook will automatically
sort the children into ascending page order.

This all seems to indicate that a Notebook needs to be fully loaded with all pages before
displaying the widget to the user. This is not the case: it is possible to create pages
dynamically by associating a callback with the Notebook which is called whenever a Tab
is activated: the relevant page associated with the Tab can then be created on demand.

Figure 17-1 shows a Notebook with all the various elements indicated.

The Notebook is highly configurable. Each of the various components of the Notebook are
fully under programmer control, so that it is possible to convert the Notebook into a
traditional Tab Manager, simply through setting appropriate resources to disable some of
the more florid aspects of the illusion and to rotate the Tabs onto the top of the pages. The
Spiral Binding can be configured for various styles of presentation, including a
programmer-supplied pixmap; it can also be removed, as can the overlapping page illusion.
The Page Scroller, Status Area, and Tabs are entirely optional, although it is difficult to
imagine the usefulness of a Notebook which contained neither Page Scroller nor Tabs:

Figure 17-1: The Notebook widget and its constituent parts

Page Scroller

Tabs

Tab Scroller

Binding Status Area
Back Pages

Tab Scroller

Motif Programming Manual 513

Chapter 17: The Notebook Widget

selecting between pages would then become problematic as far as the user is concerned,
although this arrangement would make some sense if page display is fully under program
control.

Figure 17-2 is an example of this kind of traditional Tab Manager configuration., where the
spiral binding and overlapping page illusions have been removed, the Tabs rotated to the

top of the Notebook, and the Page Scroller disabled.

Creating a Notebook
Incorporating the Notebook widget into your code is straightforward. An application which
uses the Notebook widget must include the header file <Xm/Notebook.h>. The header file
declares the types of the public Notebook functions and the widget class name
xmNotebookWidgetClass . A Notebook can be created in either of the ways as shown in
the following code fragment:

Widget notebook = XmCreateNotebook (parent , name, resource-value-array ,
resource-value-count)

Widget notebook = XtCreateWidget ("name", xmNotebookWidgetClass, parent ,
resource-value-list , NULL);

The Notebook can potentially manage a very large number of children, and so it is probably
best not to create the widget in a managed state (XtCreateManagedWidget ()) otherwise
performance may suffer. See Chapter 8, Manager Widgets, for a discussion of when
widgets should be created in the managed or unmanaged state.

The parent of the Notebook can be any Shell or Manager widget. Once the Notebook has
been created, the next step is to add logical Pages to the Notebook, and thereafter add Tab
inserts when and if required. The Notebook is a constraint widget: as children are added,
the role which the child is to take is specified using a constraint resource,
XmNnotebookChildType . The possible values of the resource are as follows:

Figure 17-2. A Notebook configured to behave like a traditional Tab Manager

Chapter 17: The Notebook Widget

514 Motif Programming Manual

XmMAJOR_TAB XmMINOR_TAB
XmPAGE_SCROLLER XmSTATUS_AREA
XmPAGE

The Notebook has a default algorithm for assigning roles to children. Unless specified
otherwise, any Manager child is assigned the XmNnotebookChildType constraint value
XmPAGE, any PushButton is assigned the value XmMAJOR_TAB, any Textual component is
given the value XmSTATUS_AREA, and any SpinBox or derivative is given the role
XmPAGE_SCROLLER. If no page scroller is added to the Notebook, the widget creates one
for its own use automatically.

Creating Notebook Pages

As stated above, any Manager child which is added to the Notebook is assumed to be a
logical page. Logical page numbers are assigned by the Notebook in ascending order as
required. Adding a Page to the Notebook is therefore simple: create a Form or other
Manager widget as child of the Notebook, and then add the page contents by way of adding
extra children to the Form. The following code in Example 17-1 creates a Notebook with
four pages.

Example 17-1. The simple_notebook.c program

/* simple_notebook - create a Notebook with four pages
*/

#include <Xm/Xm.h>
#include <Xm/Notebook.h>
#include <Xm/RowColumn.h>
#include <Xm/Label.h>

/* Arbitrary data for the first “page” */
char *page1_labels[] =
{

“Introduction”,
““,
“The Motif Programming Model”,
“Overview of the Motif Toolkit”,
“The Main Window”,
“Introduction to Dialogs”,
(char *) 0

};
/* Arbitrary data for the second “page” */
char *pane2_;labels[] =
{

“Selection Dialogs”,
“Custom Dialogs”,
“Manager Widgets”,
“The Container and IconGadget Widgets”,
“Scrolled Windows and ScrollBars”,
(char *) 0

};

Motif Programming Manual 515

Chapter 17: The Notebook Widget

/* Arbitrary data for the third “page” */
char *page3_labels[] =
{

“The DrawingArea”,
“Labels and Buttons”,
“The List Widget”,
“The ComboBox Widget”,
“The SpinBox and SimpleSpinBox Widgets”,
(char *) 0

};
/* Arbitrary data for the fourth “page” */
char *page4_labels[] =
{

“The Scale Widget”,
“The Notebook Widget”,
“Text Widgets”,
“Menus”,
(char *) 0

};

/* A pointer to all the “page” data */
char **pages[] =
{

page1_labels,
page2_labels,
page3_labels,
page4_labels,
(char **) 0

};

void main (int argc, char **argv)
{

Widget toplevel, notebook, page, label;
XtAppContext app;
Arg args[4];
XmString xms;
int i, j, n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Create the Notebook */
notebook = XmCreateNotebook (toplevel, “notebook”, NULL, 0);

/* Create the “pages” */
for (i = 0; pages[i] != (char **) 0; i++) {

page = XmCreateRowColumn (notebook, “page”, NULL, 0);

for (j = 0; pages[i][j] != (char *) 0; j++) {
xms = XmStringGenerate (pages[i][j], XmFONTLIST_DEFAULT_TAG,

XmCHARSET_TEXT, NULL);

n = 0;

Chapter 17: The Notebook Widget

516 Motif Programming Manual

XtSetArg (args[n], XmNlabelString, xms); n++;
label = XmCreateLabel (page, “label”, args, n);
XtManageChild (label);
XmStringFree (xms);

}
XtManageChild (page);

}

XtManageChild (notebook);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of the program is given in Figure 17-3.

Creating Notebook Tabs

Just as the Notebook assumes that Manager children are pages, so it assumes that
PushButton children are to form Tab inserts. Tabs are considered to be of two kinds: Major
Tabs, which presumably separate the important sections of the Notebook children, and
Minor Tabs, which mark less important boundaries between the Major Tabs. The Notebook
by default assumes that any Tab child is a Major Tab, and so explicit action must always
be taken by the programmer when providing the Minor Tab inserts by specifying the
appropriate constraint resources. A Major Tab has the XmNnotebookChildType
constraint set to XmMAJOR_TAB, and a Minor Tab has the value XmMINOR_TAB. The
following additional code given in Example 17-4 adds a Major and a Minor Tab to the
Example 17-3.

Widget tab;
char buffer[32];
...
/* Create the “pages” */
for (i = 0; pages[i] != (char **) 0; i++) {

page = XmCreateRowColumn (notebook, “page”, NULL, 0);

for (j = 0; pages[i][j] != (char *) 0; j++) {
...

}

Figure 17-3. Output of the simple_notebook program

Activate
Page
Scroller

Motif Programming Manual 517

Chapter 17: The Notebook Widget

/* An even page is a Major Tab */
/* And an odd page is a Minor Tab */
n = 0;
if ((i % 2) == 0) {

XtSetArg (args[n], XmNnotebookChildType, XmMAJOR_TAB); n++;
}
else {

XtSetArg (args[n], XmNnotebookChildType, XmMINOR_TAB); n++;
}
(void) sprintf (buffer, “%s %d”, ((i % 2) == 0) ? “Major” : “Minor”, i);
tab = XmCreatePushButton (notebook, buffer, args, n);
XtManageChild (tab);
XtManageChild (page);

}

The output of the modifications results in the dialog shown in Figure 17-4.

Clearly there is a difference in the way that the Notebook displays Major and Minor Tabs.
All the Major Tabs are displayed along one edge of the Notebook. However, only the Minor
Tabs which logically are associated with a page number between the current active Major
Tab and the next Major Tab are displayed. If in the Figure Major Tab “Page 2” is activated,
only the Minor Tab “Page 3” is displayed along the bottom.

Manipulating the Page Scroller

The Notebook creates a SpinBox with a single TextField child to act as a Page Scroller
automatically, unless the programmer takes steps to provide her own Page Scroller when
the Notebook is created. This means that in principle trying to create Notebook pages which
are only accessible through the Tab mechanisms looks a little tricky. In practice, the default
Page Scroller can be removed simply enough by accessing the built-in SpinBox widget, and
then unmanaging it. The Notebook creates the SpinBox using the constant name
“PageScroller”, and so the following code fragment will effectively hide the Page Scroller
from view:

extern Widget notebook;
Widget scroller;

Major Tab Inser

Figure 17-4. The Notebook with added Tabs

Minor Tab Inser

Chapter 17: The Notebook Widget

518 Motif Programming Manual

scroller = XtNameToWidget (notebook, “PageScroller”);
XtUnmanageChild (scroller);

If you wanted to add your own Page Scroller, you would need to create the widget as a child
of the Notebook, setting the XmNnotebookChildType constraint to XmPAGE_SCROLLER.

Notebook Resources
The resources associated with the Notebook fall into three basic sets: those which configure
the current pages on view, those which controls the visuals associated with the binding and
page illusions, and those which configure the Tab placement.

Page Resources

The current logical page displayed by the Notebook is specified using the resource
XmNcurrentPageNumber . This can be used to programmatically display a given page. If
the programmer wishes to set lower and upper bounds upon the pages in view, the resources
XmNfirstPageNumber and XmNlastPageNumber resources can be specified. The
Notebook will not display any Tabs or Pages whose logical page assignments fall outside
the range falling between the two values. How logical page numbers are assigned to
children is covered in the following Section 17.3, Notebook Constraints. Any Page which
has an assigned page number outside the range can only be displayed if the programmer
either modifies the range, or re-assigns the logical number associated with the Page so that
it falls within the first/last page bounds. By default, the XmNlastPageNumber value is
maintained by the Notebook itself as page children are added to the widget. However, if the
programmer sets this XmNlastPageNumber value herself, the Notebook no longer
maintains the value, and it becomes the programmers responsibility to maintain the value
from then on. The automatic page numbering scheme uses the XmNfirstPageNumber
resource to seed the counting algorithm. By default, the first page number is 1.

Visual Resources

The page illusion can be configured through a variety of resources, both to configure the
general layout, and to specify the appearance.

The color of the back page is controlled using XmNbackPageForeground and
XmNbackPageBackground , which are Pixel -valued resources. The number of
overlapping pages which constitute the back page (or rather, the number of lines drawn to
give the appearance of overlapping pages) is controlled through the XmNbackPageNumber
resource, the thickness of the lines drawn being specified using the XmNbackPageSize
resource.

The size of the binding drawn along the Notebook is bounded by the value of the
XmNbindingWidth resource, the binding style itself is specified through
XmNbindingType . This has the following possible values:

Motif Programming Manual 519

Chapter 17: The Notebook Widget

XmSPIRAL XmNONE XmPIXMAP XmPIXMAP_OVERLAP_ONLY
XmSOLID

The default is XmSPIRAL, which displays a spiral binding down the edge of the Notebook.
XmSOLID draws a solid binding using the foreground color of the widget. The binding can
be removed using the value XmNONE: this would be done if you wanted to turn the Notebook
into something more along the lines of a traditional Tab Manager. You can also supply your
own binding in the form of a Pixmap using the XmNbindingPixmap resource. If you do
this, you need to also specify that the XmNbindingType is either XmPIXMAP or
XmPIXMAP_OVERLAP_ONLY. The difference is that if the type is XmPIXMAP, your image
will not be clipped by any XmNbindingWidth resource - the binding will grow if your
Pixmap is wider than the current XmNbindingWidth . On the other hand, if the binding
type is XmPIXMAP_OVERLAP_ONLY, the size of the binding drawn is bounded by the
XmNbindingWidth value.

Figure 17-5 shows the effect of setting the various binding appearance resources.

XmSPIRAL

XmNONE XmPIXMAP_OVERLAP_ONLY

Figure 17-5. The Notebook binding styles

XmSOLID

XmPIXMAP

Chapter 17: The Notebook Widget

520 Motif Programming Manual

The general layout of the Notebook is configured using the XmNbackPagePlacement
resource. This is probably misnamed, in that although the resource does indeed configure
the placement of the back page illusion, it also configures the location of the Tabs and the
binding as a side effect. The resource has the following possible values:

XmBOTTOM_RIGHT XmBOTTOM_LEFT
XmTOP_RIGHT XmTOP_LEFT

The default value is sensitive to the XmNlayoutDirection and XmNorientation
resources. Figure 17-6 shows the effects of setting the various values:

Clearly the XmNbackPagePlacement resource also affects the binding and Tabs, because
the binding is always opposite the overlapping back page illusion, and the Major Tabs are
placed along the back page opposite the binding.

The orientation of the Notebook can be configured through the XmNorientation
resource, which has the possible values XmHORIZONTAL and XmVERTICAL. Figure 17-6
shows a vertically-oriented Notebook. The spiral binding has also been removed so that the

XmBOTTOM_LEFT XmBOTTOM_RIGHT

XmTOP_LEFT XmTOP_RIGHT

Figure 17-6. The Notebook binding placements

Motif Programming Manual 521

Chapter 17: The Notebook Widget

Notebook looks more like a traditional Tab Manager.The Tabs, however, appear along the

top as opposed to the sides, which happens with the horizontal arrangement. If you wanted
the Major Tabs to appear on the bottom of the Notebook, you would need to set the
XmNorientation to XmVERTICAL, and the XmNbackPagePlacement to XmBOTTOM_
LEFT or XmBOTTOM_RIGHT to choice.

Tab Resources

Tab placement has already been discussed in the previous paragraphs - the
XmNbackPagePlacement resource configures the Tab placement as a side effect. All that
remains which can potentially be configured is the spacing between the Tabs and the
Notebook pages. The distance between Major Tabs and the page border is specified using
the XmNmajorTabSpacing resource, and the distance between Minor Tabs and the page
is specified through the XmNminorTabSpacing resource. Setting these values to zero, as
well as specifying the XmNbackPageNumber resource as zero, gives an appearance which
is more consistent with a normal Tab Manager.

Notebook Constraints
The roles which each child can take in the various Notebook operations is controlled
through the XmNnotebookChildType resource. This can take the following values:

XmPAGE
XmMAJOR_TAB XmMINOR_TAB
XmSTATUS_AREA XmPAGE_SCROLLER

The XmNnotebookChildType resource is create-only, which means that you must
specify the resource when you add the child if the required role differs from the default
which would be assigned by the Notebook. Formally, the default algorithm assumes that
if the child supports the XmQTactivatable Trait, then the child is assigned the constraint
value XmMAJOR_TAB. The PushButton, DrawnButton, ArrowButton and derived classes
support this Trait. If the child widget supports the XmQTnavigator Trait, then the child
by default is assigned the constraint value XmPAGE_SCROLLER. The ScrollBar, SpinBox,

Figure 17-7. The Notebook with a vertical orientation

Chapter 17: The Notebook Widget

522 Motif Programming Manual

and derived widget classes support this Trait. If the child widget supports the
XmQTaccessTextual Trait, then the role XmSTATUS_AREA is the default. The Label,
LabelGadget, Text, TextField, and derived classes support the XmQTaccessTextual
Trait. Everything else is assigned the default role XmPAGE. It follows that all Minor Tabs
must be explicitly set by the programmer since the default algorithm does not assign this
role. The internals of the Trait mechanisms are beyond the scope of this book.

The association between Tabs and Pages is specified using the XmNpageNumber
constraint. A Tab will display a given Page when activated if the Tab and Page child share
the same XmNpageNumber constraint value.

The last constraint defined by the Notebook is the XmNresizable resource, which simply
specifies whether the Notebook will process resize requests from the given child.

Notebook Callbacks
The Notebook defines a single callback, the XmNpageChangedCallback . This is called
whenever there is a request to change the current Logical Page, whether through the
activation of a Tab or through selection using a Page Scroller. Each callback when invoked
is passed a pointer to an XmNotebookCallbackStruct structure, which is defined as
follows:

typedef struct
{

int reason;
XEvent *event;
int page_number;
Widget page_widget;
int prev_page_number;
Widget prev_page_widget;

} XmNotebookCallbackStruct;

The reason element specifies the cause of callback invocation. It may have any of the
following possible values:

XmCR_NONE XmCR_MAJOR_TAB XmCR_MINOR_TAB
XmCR_PAGE_SCROLLER_INCREMENT XmCRPAGE_SCROLLER_DECREMENT

The value will be XmCR_NONE on Notebook invocation, as the widget chooses the first
current page. It will also be XmCR_NONE if the XmNcurrentPageNumber resource is
changed programmatically. Otherwise, the value will reflect a user action, depending upon
whether a Tab of some kind has been activated, or the Page Scroller selected.

The page_number field represents the new logical page number. This may, or may not, be
associated with a real Page. If the page_number does refer to a child with a matching
XmNpageNumber constraint value, then the page_widget element will be set to this
child. Otherwise, the page_widget element will be NULL, and the Notebook will display
a blank page.

Motif Programming Manual 523

Chapter 17: The Notebook Widget

The prev_page_number and prev_page_widget elements specify the old current
page. At Notebook initialisation, prev_page_number is the value XmUNSPECIFIED_
PAGE_NUMBER, and prev_page_widget is NULL. The prev_page_widget element
will also be NULL if the Notebook is currently displaying a blank Page - no child widget has
the constraint XmNpageNumber which matches the prev_page_number value.

The fields of the callback structure are not used by the Notebook routines when the
XmNpageChangedCallback terminates. This means that in effect the elements are all
read-only and purely notificatory in effect: modifying the page_number or page_
widget element in the hope of programmatically setting the next page will have no effect.
The resource XmNcurrentPageNumber should be set directly if this is the required
behavior.

The following code fragment simply prints out the state information as various changes
take place to the Notebook current page:

void notebook_changed_callback (Widget w,
XtPointer client_data,
XtPointer call_data)

{
XmNotebookCallbackStruct *nptr;
nptr = (XmNotebookCallbackStruct *) call_data;

if (nptr->reason == XmCR_NONE) {
if (nptr->prev_page_number == XmUNSPECIFIED_PAGE_NUMBER) {

printf (“Notebook initialisation: first page %d\n”,
nptr->page_number);

}
else {

printf (“Program request: new page %d\n”,
nptr->page_number);

}
}
else {

printf (“New Page: %d %s Old page: %d %s\n”,
nptr->page_number,
(nptr->page_widget ?

XtName(nptr->page_widget) :
“(blank)”),

nptr->prev_page_number,
(nptr->prev_page_widget ?

XtName(nptr->prev_page_widget) :
“(blank)”));

}
}

Notebook Functions
A programmer can request information about a logical page of the Notebook using the
routine XmNotebookGetPageInfo (), which has the following signature:

Chapter 17: The Notebook Widget

524 Motif Programming Manual

XmNotebookPageStatus XmNotebookGetPageInfo (Widget notebook ,
int page_number ,
XmNotebookPageInfo * page_info)

The return value is an XmNotebookPageStatus , which is an enumerated type. Possible
values are:

XmPAGE_FOUND XmPAGE_EMPTY
XmPAGE_INVALID XmPAGE_DUPLICATED

If the requested page_number falls outside the bounds between the notebook
XmNfirstPageNumber and XmNlastPageNumber resources, the function returns
XmPAGE_INVALID. Otherwise, if exactly one child which has an XmNpageNumber
constraint which matches page_number is found, the return value is XmPAGE_FOUND. If
more than one child shares the given page number, the return value is XmPAGE_
DUPLICATED. Otherwise, the return value is XmPAGE_EMPTY.

The page_info parameter specifies an address where data about the requested page_
number is returned. The data is filled in by the XmNotebookGetPageInfo () routine
except if the return value is XmPAGE_INVALID. Where there are duplicate pages with the
requested page_number , the information will refer to the last child found. The
XmNotebookPageInfo data type is defined as follows:

typedef struct
{

int page_number;
Widget page_widget;
Widget status_area_widget;
Widget major_tab_widget;
Widget minor_tab_widget;

} XmNotebookPageInfo;

If the matching child found is a Status Area, the status_area_widget element will be
filled in with the widget ID of the child. Similarly, a matching Major Tab child is placed
into the major_tab_widget element, a matching Minor Tab is stored in the minor_
tab_widget element, and a matching Page child is stored in the page_widget field.

In addition, Major Tabs and Minor Tabs are stored into the major_tab_widget and
minor_tab_widget fields as they are encountered regardless of whether the page
number matches. Since children of the Notebook are stored internally in sorted ascending
XmNpageNumber order, and since the search terminates if a child is found with a page
number exceeding the request, it means that the major_tab_widget and minor_tab_
widget elements contain the Tab with a page number nearest to (but not in excess of) the
requested page number in addition to any data returned in the page_widget field.

Motif Programming Manual 525

Chapter 17: The Notebook Widget

Summary
The Notebook is a most useful, if some what over-decorous, addition to the Motif 2.0
widget set. It performs the services of a traditional Tab Manager by displaying only one
given page child at a time. Indeed the visuals of the Notebook can be configured to give the
usual appearance of a Tab Manager, and it is in this form that it is most likely to be used in
typical application programming. It works by assigning roles to the various children as they
are added: the default algorithm for assigning page numbers and roles is more than
sufficient for most purposes, but the programmer has sufficient control should the need to
override the defaults arise.

Chapter 17: The Notebook Widget

526 Motif Programming Manual

Motif Programming Manual 527

Chapter 1

In this chapter:
• Interacting With Text Widgets
• Text Widget Basics
• Text Clipboard Functions
• A Text Editor
• Text Callbacks
• Text Widget Internationalization
• Summary
• Exercises

18
Text Widgets

This chapter explains how the Text and TextField widgets can be used to provide text-entry
capabilities in an application. These widgets can be used for a variety of purposes, from a
simple data-entry field to a full-fledged text editor. The chapter describes the selection
mechanisms provided by the widgets and how they can be used to communicate with other
applications via the clipboard. The widgets also allow the programmer to control the format
of the data that is entered by the user.

Despite all that can be done with menus, buttons, and lists, there are times when the user
can best interact with an application by typing at the keyboard. The Text widget is usually
the best choice for providing this style of interface, as it provides full-featured text editing
capabilities. The Text widget can be used anywhere the user might be expected to type free-
form text, such as in a compose window in a mail application. Unlike standard text editors,
the Text widget supports the point-and-click model that people expect from GUI-based
applications. The TextField widget provides a single-line data entry field with the same set
of editing commands as the Text widget, but it requires less overhead. Text widgets can
also be used in output-only mode to display more textual information than is practical with
a label or a button.

Even though the text widgets allow for complex interaction, they still provide simple
mechanisms for program control. The widgets have resources that access the text, as well
as control their behavior. They also provide callback routines that allow an application to
intervene on actions that add text, delete text, or move the insertion cursor. The widgets
support keyboard management methods that control the editing style, paging style,
character positioning, and line-wrapping. There are also convenience routines that enable
quick and simple access to the clipboard.

The text widgets do have their limitations. For example, they do not support multiple colors
or fonts, so a single widget can only use one color and one font*. There is no support for
text formatting such as paragraph specifications, automatic line numbering, or indentation,
so you cannot create WYSIWYG documents.†The Text widget is not a terminal emulator;

* The abortive compound string Text widget, CSText, was introduced in Motif 2.0. This did support multi-font
capability, but it had serious performance problems; it was excised from Motif 2.1.

Chapter 18: Text Widgets

528 Motif Programming Manual

it cannot be used to run interactive programs. The widgets cannot display multi-media
objects either, which means that it is not possible to insert graphics into the text stream.

There are some cases where a text widget is not the most appropriate user-interface
element, even though you are displaying text. For example, a Text widget should not be
used to display a list whose items can be individually selected; that is the job of the List
widget. Text that cannot be edited, or selected should be displayed in a Label widget.
Chapter 12, Labels and Buttons, and Chapter 13, The List Widget, describe the appropriate
uses of these components.

If you have not used the Motif Text widget, you should familiarize yourself with one before
getting too involved in this chapter. Running some of our introductory examples should
provide an adequate platform for experimentation. Figure 18-1 shows an application that
uses several Text widgets. Two widgets are used for single-line data entry. The widget with
the ScrollBars attached to it is used for editing multiple lines.

The Text widget supports both single-line and multi-line editing. In single-line mode,
which is the default mode, newlines are ignored. However, single-line text entry is usually
done with the TextField widget class. This widget class is a completely separate class, not
a subclass, of Text that is lighter-weight because it only supports single-line text editing.
Although they are two separate widget classes, the Text and TextField widgets provide
many of the same resources and convenience routines. We will point out the differences as

† WYSIWYG stands for What You See Is What You Get. This term is used to describe page formatting programs
that can produce camera-ready documents that match what is displayed on the screen.

Figure 18-1: An editor application with both Text and TextField widgets

Motif Programming Manual 529

Chapter 18: Text Widgets

we go, but keep in mind that there are two widget classes so you don’t get confused as we
discuss them throughout this chapter.

Since the TextField widget cannot handle multiline editing, you must use the Text widget
for this purpose. When multiple lines are used for editing, the number of lines typically
grows and shrinks dynamically as the user edits the text. The Text widget is often used in
a scrollable window, so that the user can view different portions of the underlying text. The
combination of a Text widget and a ScrolledWindow widget is called a ScrolledText object.
This object is not a widget class, although there is a convenience routine,
XmCreateScrolledText() , that allows you to create both widgets at once.

Interacting With Text Widgets
The Text and TextField widgets are highly configurable in terms of appearance and
behavior. Given the level of sophistication for both the programmer and the user, the
widgets should not be taken lightly or underestimated. The ease of configurability should
not tempt you to enforce your personal ideas about how a text editor should work. The best
thing to do with text widgets is configure them as minimally as possible to suit the needs
of your program. You should let the user have control over as many details of their display
and operation as possible. This laissez-faire approach ensures that your application is more
compatible with other Motif programs.

Inserting Text
The user interface for the text widgets follows the point-and-click model of interaction. The
insertion cursor indicates the position where the next character that is typed will be inserted.
The insertion position is marked by an I-beam cursor. Using the left mouse button, the user
can click on a new location in the widget to move the insertion cursor there, so text may be
inserted at any location in the widget.

The text widgets have predefined action routines that allow the user to perform simple
editing operations such as moving one character to the right or deleting backwards to the
beginning of the line. The user can specify translations in a resource file that modify the
input behavior of the widgets. The widgets are by default always in text-insertion mode.
There is an action that puts the Text widget in overstrike mode if this is required.

The user can use the action routines provided by the widgets to set up the translation table
to mimic an editor such as emacs. The Text widget does not insert non printable characters,
so users typically bind control-character sequences to editing action routines. An editor like
vi cannot be emulated because there is no distinction between command mode and text-
entry mode, and in this sense, the Motif Text widgets are completely modeless.

Chapter 18: Text Widgets

530 Motif Programming Manual

Selecting Text
Users have become accustomed to the ability to cut and paste text between windows in
GUI-based applications. Cut and paste is more difficult for the programmer to implement
with the X Window System than a system where a single vendor controls all of the
variables, because the nature of X requires a more general solution. For example,
applications running on the same display may actually be executing on different systems;
these systems may have different byte orders or other differences in the underlying data
format.*In order to insulate cut and paste operations from dependencies like these, all
communication between applications is implemented via the X server. Data that is cut is
stored in a property on the X server. A property is simply a named piece of data associated
with a window and stored on the server.

The Interclient Communications Conventions Manual†(ICCCM) defines a set of standard
property names to be used for operations such as cut and paste and lays out rules for how
applications should interact with these properties. According to the ICCCM, text that is
selected is typically stored in the PRIMARY property. The SECONDARY property is
defined as an alternate storage area for use by applications that wish to support more than
one simultaneous selection operation or that wish to support operations requiring two
selections, such as switching the contents of the two selections. The CLIPBOARD property
is defined as a longer-term holding area for data that is actually cut (rather than simply
copied) from the application’s window. When we refer to the primary, secondary, or
clipboard selection, we mean the property of the same name.

The most common implementation of the selection mechanism is provided by the X Toolkit
Intrinsics. The low-level routines that are used to implement selections are described in
detail in Volume 4, X Toolkit Intrinsics Programming Manual. In general, applications
such as xterm and widgets such as the Motif Text widget encapsulate this functionality in
action routines that are invoked by the user with mouse button or key combinations.

The user can select text in a Motif Text widget by pressing the left mouse button and
dragging the pointer across the text. The selected text is displayed in reverse video. When
the button is released, the text widget has ownership of the selection, but no text is copied.
The selection can be extended either by pressing the SHIFT key and then dragging the
pointer with the left mouse button down, or by pressing any of the arrow keys while holding
down the SHIFT key. In addition to the click-and-drag technique for text selection, the Text
widget also supports multiple-clicking techniques: double-clicking selects a word, triple-
clicking selects the current line, and quadruple-clicking selects all of the text in the widget.
An important constraint imposed by the ICCCM is that only one window may own a

* Currently, only text selections are implemented, which makes byte order irrelevant. However, the mechanism
is designed to allow transparent transfer of any kind of data.

† Reprinted as Appendix L in Volume Zero, X Protocol Reference Manual.

Motif Programming Manual 531

Chapter 18: Text Widgets

selection property at one time, which means that once the user makes another primary
selection, the original selection is lost.

The user can copy text directly from the primary selection into the Text widget by clicking
the middle mouse button at the location where the text is to be inserted. This action is
sometimes called stuffing the selection into the widget. The user can stuff text at any
location in the text stream, as long as the location is not inside the current selection. The
text is copied only when the middle mouse button is clicked, which is defined as a quick
succession of press and release actions. The operation does not take place simply because
the middle mouse button is pressed, as this action is used for drag and drop operations.

In Motif, the Text and TextField widgets support the drag-and-drop model of transferring
textual data. Once text has been selected in a widget, the selection can be dragged by
pressing the middle mouse button over the selection and dragging the pointer. The text is
transferred when the user releases the middle mouse button with the pointer over another
location in the same widget or over another text widget. By default, the text is moved,
which means that the original text is deleted once the transfer is complete. The user can
force a copy operation by holding down the CONTROL key while dragging the pointer and
releasing the mouse button. For more information on drag and drop, see Chapter 22, Drag
and Drop, and Chapter 23, The Uniform Transfer Model.

The secondary selection is used by the Motif text widgets to copy text directly within a
widget. The user performs this type of operation by first selecting the location where the
copied text is to be placed; clicking the left mouse button places the insertion point. Then
the text that is to be copied is selected by pressing and dragging the middle mouse button
while the ALT key is pressed. The selected text is underlined rather than highlighted in
reverse video. When the button is released, the selected text is immediately stuffed at the
location of the insertion cursor. Unlike the primary selection, which may be retrieved many
times, the secondary selection is immediate and can only be stuffed once.

The third location for holding text is the clipboard selection. The clipboard selection is
designed to be used as a longer-term storage area for data. For example, MIT provides a
client called xclipboard that asserts ownership of the CLIPBOARD property and provides
a user interface to it. xclipboard not only allows a selection to survive the termination of
the window where the data was originally selected, but it also allows for the storage of
multiple selections. The user can view all of the selections before deciding which one to
paste.

OSF’s implementation of the clipboard is incompatible with xclipboard. If xclipboard is
running, any Motif routines that attempt to store data on the clipboard will not succeed. The
Motif routines temporarily try to lock the clipboard, and xclipboard will not give up its own
lock. Motif treats the clipboard as a two-item cache. Only Motif applications that use the
clipboard routines described in Chapter 21, The Clipboard, can inter-operate using this
selection. The advantage of the Motif implementation is that it provides functionality far

Chapter 18: Text Widgets

532 Motif Programming Manual

beyond that provided by the standard MIT clients. With xterm and the Athena widgets,
selections can really only be used for copy-and-paste operations; the selected text is
unchanged. The Motif Text widget, by contrast, allows you to cut, copy, clear, or type over
a selection. While there is a translation and action-based interface defined for these
operations, it is typically not implemented.

As described in Chapter 2, The Motif Programming Model, Motif defines translations in
terms of virtual key bindings. By default, the virtual keys osfCut, osfCopy, osfPaste, et. al.
, are not bound to any actual keys. If a user wants to use these keys, he must specify the
bindings in a .motifbind file in his home directory. The interface for these features is usually
provided by menu items associated with the Text widget, as we will demonstrate in this
chapter.

When text is selected in a Text widget, it is automatically stored in the primary selection.
When one of the Text widget functions, such as XmTextCut() , is used, the text is also
stored in the clipboard selection. Most users will be completely unaware that there are
separate holding areas for selected text. If your application gets heavily into cutting and
pasting, you may find that the fusion of the primary and clipboard selections in the
convenience routines is confusing. You should be careful to implement the selection
operations so that the different properties are transparent to the user.

In Motif 2.0 and later, the Uniform Transfer Model as described in Chapter 23 hides some
of the internal details of differences between the various methods of data transference from
the programmer; note that the UTM does not, however, hide the differences between
selection, the clipboard, or drag-and-drop from the user.

The reference pages for the Text and TextField widgets (in Volume 6B, Motif Reference
Manual; Section 2, Motif and Xt Widget Classes) lists the default translations for the
widgets. See Volume 4, X Toolkit Intrinsics Programming Manual, for a description of how
to programmatically alter translation tables; see Volume 3, X Window System User’s
Guide, for a description of how a user can customize widget translations. See Chapter 21,
The Clipboard, for a discussion of the lower-level Motif clipboard functions.

Text Widget Basics
In order to understand the complexities of the Text and TextField widgets, you need to
know about some of the basic resources and functions that they provide. This section
describes the fundamentals of working with text widgets, including how to create the
widgets, how to work with the textual data, and how to control simple aspects of
appearance and behavior. Applications that wish to use the Text widget need to include the
file <Xm/Text.h>. TextField widgets require the file <Xm/TextF.h>. You can create a Text
widget using the following methods:

Widget text_w = XtVaCreateWidget ("name", xmTextWidgetClass, parent,
resource-value-list , NULL);

Motif Programming Manual 533

Chapter 18: Text Widgets

Widget text_w = XmCreateText (parent, “name”, resource-value-array ,
resource-value-count);

To create a TextField widget instead, either specify the class as
xmTextFieldWidgetClass in the XtVaCreateWidget() call, or use the Motif
convenience routine XmCreateTextField() .

The Textual Data
The XmNvalue resource of the Text and TextField widgets provides the most basic means
of access to the internal text storage for the widgets. Unlike the other widgets in the Motif
toolkit that use text, the text widgets do not use compound strings for their values. Instead,
the value is specified as a regular C string, as shown in Example 18-1.*

Example 18-1. The simple_text.c program

/* simple_text.c -- Create a minimally configured Text widget */

#include <Xm/Text.h>

main (int argc, char *argv[])
{

Widget toplevel;
XtAppContext app;
Widget text_w;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

XtSetArg (args[0], XmNvalue, “Now is the time...”);
text_w = XmCreateText (toplevel, "text", args, 1);
XtManageChild (text_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

This short program simply creates a Text widget with the initial value as shown in Figure
18-2.

* XtVaAppInitialize () is considered deprecated in X11R6.

Figure 18-2: Output of the simple_text program

Chapter 18: Text Widgets

534 Motif Programming Manual

Both widgets also provide the XmNvalueWcs resource for storing a wide-character
representation of the text value. For more information on using the text widgets in an
internationalized application, see Section 18.6.

Specifying the Text

The initial value of the XmNvalue resource may be set either when the widget is created or
by using XtVaSetValues() after the widget has been created. The value of the resource
always represents the entire text of the widget. You can also use a Motif convenience
routine, XmTextSetString() , to set the text value. This routine takes the following form:

void XmTextSetString (Widget text_w , char * value)

This routine works for both Text and TextField widgets. The TextField widget has a
corresponding routine, XmTextFieldSetString() , but it only works for TextField
widgets. If you are using both types of text widgets in an application, we recommend using
the Text widget routines to manipulate all of the widgets. Since these routines work with
both types of widgets, you don’t need to keep track of the widget types.

Although the convenience routine and XtVaSetValues() produce the same results, the
convenience routine may be more efficient since it accesses the internals of the widget
directly, while the XtVaSetValues() method involves going through Xt. On the other
hand, if you are setting a number of resources at the same time, the XtVaSetValues()
method is better because all of the resources can be set in a single function call. Whichever
function you use, the text value is copied into the internals of the widget, and the displayed
value is changed accordingly.

If, for whatever reason, you are making multiple changes in a short period of time to the
text in a Text widget, you may have problems with visual flashing in the widget. You can
solve this problem by calling XmTextDisableRedisplay() to turn off visual updating
in the widget. After the call, the appearance of the widget remains unchanged until
XmTextEnableRedisplay() is called.

Retrieving the Text

You can access the textual data in a Text widget using XtVaGetValues() or
XmTextGetString() . The function XmTextGetString() allocates enough space
(using XtMalloc()) for all of the text in the widget and returns a pointer to the allocated
data. You can modify the returned data any way you like, and then you must free it using
XtFree() when you are done. The code fragment below demonstrates the use of
XmTextGetString() :

char *text;

if (text = XmTextGetString (text_w)) {
/* manipulate text in whatever way is necessary */
...
/* free text or there will be a memory leak */

Motif Programming Manual 535

Chapter 18: Text Widgets

XtFree (text);
}

XmTextGetString() works with both Text and TextField widgets, while the
corresponding TextField routine, XmTextFieldGetString() , only works with
TextField widgets. You can also use XmTextGetSubstring() to get a copy of a portion
of the text in a Text widget.

The alternative to XmTextGetString() is the Xt function XtVaGetValues() . The Text
widget responds to XtVaGetValues() by allocating memory and returning a copy of the
text. As a result, this data must be freed after use. This use of the GetValues() method is
different from most other resources. For most resources, XtVaGetValues() returns a
pointer to internal data that should be treated as read-only data. In order to avoid memory
leaks, you need to be sure to free the memory that is allocated by XtVaGetValues() for
the XmNvalue resource, as shown in the following code fragment:

char *text;

XtVaGetValues (text_w, XmNvalue, &text, NULL);
/* manipulate text in whatever way is necessary */
...
/* free text or there will be a memory leak */
XtFree (text);

Getting the value of a Text widget can be an expensive operation if the widget contains a
large amount of text. In all situations, whenever text is retrieved from the Text widget with
any function, the length of time the data is valid is only guaranteed until the next Xt call
into the same Text widget; what any particular call might do to the internal text stream is
undefined, and that information will not be reflected in the current character pointer handle
you may have.

A Text widget may contain an arbitrarily large amount of text, assuming that there is
enough memory on the computer running the client application. The text for a widget is not
stored on the X server; only the client computer stores widget-specific information. The
server displays a bitmap rendition of what the Text widget chooses to show. The
XmNmaxLength resource specifies the upper limit on the number of characters the user can
type into a Text widget. The default value of this resource is the largest integer for the
particular system, so it is likely that the user’s computer will run out of memory before the
Text widget’s maximum capacity is reached. You can lower the value of the resource to
limit the number of characters that the user can input to a particular Text widget.

The Text widget does not use a temporary file to store its data. All of the data resides in
memory on the machine, so you cannot use a Text widget to browse or edit a file directly.
Instead, you load the contents of a file into a Text widget and allow the user to edit the
internal buffer. The application controls when to rewrite files with updated data. An
application can also provide an interface that allows the user to control this action.
Applications that use Text widgets to edit vital information should make provisions for data

Chapter 18: Text Widgets

536 Motif Programming Manual

recovery if the system fails or the application terminates unexpectedly. The Text widget
does not support this type of recovery.

Single and Multiple Lines
In Example 18-1, the Text widget provides a single-line text entry area that is 20 columns
wide; it is shown in Figure 18-2. Both the single-line editing style and the width are default
values. The width of each column is based on the font that is used for the text. Since the
widget uses the single-line editing style, nothing happens when the user presses RETURN
in the widget. If the user types more text than the widget can display, the text scrolls to the
left. Since newlines are not interpreted when they are typed by the user, textual data is
always a single line.*The user can resize the widget to make it appear large enough to
display multiple lines, but this action does not affect the operation of the widget or the way
it handles input.

Multiline editing allows the user to enter newlines into a Text widget and provides the
capability to edit a large amount of text. The switch from single-line to multiline causes a
number of changes in the behavior of the widget. For example, now widget geometry must
be considered in order to determine the amount of text that is visible at one time. The Text
widget may need to be placed in a ScrolledWindow, so that the user can view all of the text.

Single or multiline editing is controlled through the XmNeditMode resource. The value of
the resource can be either XmSINGLE_LINE_EDIT or XmMULTI_LINE_EDIT. While the
two editing modes are quite different in concept, it should be quite intuitive when to use the
different modes. Single-line text entry areas are commonly used to prompt for file and
directory names, short phrases, or single words. They are also useful for command-line
entry in applications that were originally based on a tty-style interface. Multiline editing is
used for editing files or other large quantities of text.

Scrollable Text
The layout of a multiline Text widget can be difficult to manage, especially if the text is
editable by the user. An application needs to decide how many lines of text are displayed,
how to handle the layout when the user adds new text, and how to deal with resizing the
Text widget. The easiest way to manage an editable multiline Text widget is to create it as
part of a ScrolledText compound object. The ScrolledText object is not a widget class in
and of itself, but rather a compound object that is composed of a Text widget and a
ScrolledWindow widget.

When you create a ScrolledText object, the ScrolledWindow automatically handles
scrolling the text in the Text widget. Basically, the two widget classes have hooks and

* It is possible to set XmNvalue to a string that contains newline characters in a single-line Text widget, but the
interaction with the user is undefined, and the widget produces confusing behavior.

Motif Programming Manual 537

Chapter 18: Text Widgets

procedures that allow them to cooperate intelligently with each other. As of Motif 1.2, the
performance of the ScrolledText object has improved considerably.* In previous releases,
scrolling operations could be quite slow when the Text widget contained a large amount of
text.

You can create a ScrolledText object using the Motif convenience routine
XmCreateScrolledText() , which takes the following form:

Widget XmCreateScrolledText (Widget parent , char * name, ArgList arglist ,
Cardinal argcount)

This routine is not a variable-argument list function; it uses the argument-list style of setting
resources with the XtSetArg() macro.

XmCreateScrolledText() creates a ScrolledWindow widget and a Text widget as its
child. The routine returns a handle to the Text widget; you can get a handle to the
ScrolledWindow using the function XtParent() . When you are laying out an application
that uses ScrolledText objects, you should be sure to use XtParent() to get the
ScrolledWindow widget, since that is the widget that you need to position.

For purposes of specifying resources, the ScrolledWindow takes the name of the Text
widget with the suffix SW. For example, if the name of the Text widget is name, its
ScrolledWindow parent widget has the name nameSW.

If you specify an argument list in a call to XmCreateScrolledText() , the resources are
set for the Text widget or the ScrolledWindow as appropriate. The routine also sets some
resources for the ScrolledWindow so that scrolling is handled automatically. You should
be sure to set the XmNeditMode resource to XmMULTI_LINE_EDIT, since it doesn’t make
sense to have a single-line Text widget in a ScrolledWindow. If you don’t set the resource,
the Text widget defaults to single-line editing mode. The behavior of a single-line Text
widget (or a TextField widget) in a ScrolledWindow is undefined.

XmCreateScrolledText() is adequate for most situations, but you can also create the
two widgets separately, as shown in the following code fragment:

Widget scrolled_w, text_w;
Arg args[6];
int n = 0;

XtSetArg (args[n], XmNscrollingPolicy, XmAPPLICATION_DEFINED); n++;
XtSetArg (args[n], XmNvisualPolicy, XmVARIABLE); n++;
XtSetArg (args[n], XmNscrollBarDisplayPolicy, XmSTATIC); n++;
XtSetArg (args[n], XmNshadowThickness, 0); n++;
scrolled_w = XmCreateScrolledWindow (parent, "scrolled_w", args, n);

n = 0;

* One unfortunate side-effect of the performance improvement is that subclasses of the Text widget may not work
under Motif 1.2, due to the addition of a new data structure.

Chapter 18: Text Widgets

538 Motif Programming Manual

XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
...
text_w = XmCreateText (scrolled_w, "text", args, n);
...
XtManageChild (text);
XtManageChild (scrolled_w);

We create the ScrolledWindow widget with the same resource setting that the Motif
function uses. Since we are creating the ScrolledWindow ourselves, we can give it our own
name. The Text widget itself is created as a child of the ScrolledWindow. In this situation,
it is clear that the parent of the ScrolledWindow controls the position of both of the widgets.

This creation method makes the programmer responsible for managing both of the widgets,
as shown at the bottom of the fragment. You may also need to handle the case in which the
widgets are destroyed. When you call XmCreateScrolledText() , the routine installs an
XmNdestroyCallback on the Text widget that destroys the ScrolledWindow parent.
When you create the widgets yourself, you also need to be sure that they are destroyed
together, either by destroying them explicitly or installing a callback routine on the Text
widget. Unless you are creating and destroying ScrolledText objects dynamically, this issue
should not be a concern.

Example 18-2 shows a simple file browser that displays the contents of a file using a
ScrolledText object. The user can specify a file by typing a filename in the TextField
widget below the Filename: prompt. The user can also select a file from the
FileSelectionDialog that is popped up by the Open entry on the File menu. The specified
file is displayed immediately in the Text widget.*

Example 18-2. The file_browser.c program

/* file_browser.c -- use a ScrolledText object to view the
** contents of arbitrary files chosen by the user from a
** FileSelectionDialog or from a single-line text widget.
*/

#include <X11/Xos.h>
#include <Xm/Text.h>
#include <Xm/TextF.h>
#include <Xm/FileSB.h>
#include <Xm/MainW.h>
#include <Xm/RowColumn.h>
#include <Xm/LabelG.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>

main (int argc, char *argv[])
{

* XtVaAppInitialize() is considered deprecated in X11R6. XmStringGetLtoR () and XmMainWindowSe-
tAreas () are considered deprecated in Motif 2.0 and later.

Motif Programming Manual 539

Chapter 18: Text Widgets

Widget top, main_w, menubar, menu, rc, text_w, file_w, label_w;
XtAppContext app;
XmString file, open, exit;
void read_file(Widget, XtPointer, XtPointer);
void file_cb(Widget, XtPointer, XtPointer);
Arg args[10];
int n;

XtSetLanguageProc (NULL, NULL, NULL);

/* initialize toolkit and create toplevel shell */
top = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

/* MainWindow for the application -- contains menubar
** and ScrolledText/Prompt/TextField as WorkWindow.
*/
main_w = XmCreateMainWindow (top, "main_w", NULL, 0);

/* Create a simple MenuBar that contains one menu */
file = XmStringCreateLocalized ("File");
menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",

XmVaCASCADEBUTTON, file, 'F', NULL);
XmStringFree (file);

/* Menu is "File" -- callback is file_cb() */
open = XmStringCreateLocalized ("Open...");
exit = XmStringCreateLocalized ("Exit");
menu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, exit, 'x', NULL, NULL,
NULL);

XmStringFree (open);
XmStringFree (exit);

/* Menubar is done -- manage it */
XtManageChild (menubar);

rc = XmCreateRowColumn (main_w, "work_area", NULL, 0);
n = 0;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_BEGINNING); n++;
label_w = XmCreateLabelGadget (rc, "Filename:", args, n);
XtManageChild (label_w);

file_w = XmCreateTextField (rc, "text_field", NULL, 0);
XtManageChild (file_w);

/* Create ScrolledText -- this is work area for the MainWindow */
n = 0;
XtSetArg (args[n], XmNrows, 12); n++;
XtSetArg (args[n], XmNcolumns, 70); n++;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;

Chapter 18: Text Widgets

540 Motif Programming Manual

XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
text_w = XmCreateScrolledText (rc, "text_w", args, n);
XtManageChild (text_w);

/* store text_w as user data in "File" menu for file_cb() callback */
XtVaSetValues (menu, XmNuserData, text_w, NULL);

/* add callback for TextField widget passing "text_w" as client data */
XtAddCallback (file_w, XmNactivateCallback, read_file,

(XtPointer) text_w);
XtManageChild (rc);

/* Store the filename text widget to ScrolledText object */
XtVaSetValues (text_w, XmNuserData, file_w, NULL);

/* Configure the Main Window layout */
XtVaSetValues (main_w, XmNmenuBar, menubar, XmNworkWindow, rc, NULL);
XtManageChild (main_w);

XtRealizeWidget (top);
XtAppMainLoop (app);

}

void popdown_fsb (Widget fsb, XtPointer client_data, XtPointer call_data)
{

/* This calls the ChangeManaged() routine of the parent DialogShell
** which then internally calls XtPopdown
*/

XtUnmanageChild (fsb);
}

/* file_cb() -- "File" menu item was selected so popup a
** FileSelectionDialog.
*/
void file_cb (Widget widget, XtPointer client_data, XtPointer call_data)
{

static Widget dialog;
Widget text_w;
void read_file(Widget, XtPointer, XtPointer);
int item_no = (int) client_data;

if (item_no == 1)
exit (0); /* user chose Exit */

if (!dialog) {
Widget menu = XtParent (widget);
dialog = XmCreateFileSelectionDialog (menu, "file_sb", NULL, 0);

/* Get the text widget handle stored as "user data" in File menu */
XtVaGetValues (menu, XmNuserData, &text_w, NULL);
XtAddCallback (dialog, XmNokCallback, read_file,

(XtPointer) text_w);
XtAddCallback (dialog, XmNcancelCallback, popdown_fsb, NULL);

Motif Programming Manual 541

Chapter 18: Text Widgets

}

/* The DialogShell parent ChangeManage() calls XtPopup() internally */
XtManageChild (dialog);
XMapRaised (XtDisplay (dialog), XtWindow (XtParent (dialog)));

}

/* read_file() -- callback routine when the user selects OK in the
** FileSelection Dialog or presses Return in the single-line text widget.
** The specified file must be a regular file and readable.
** If so, it's contents are displayed in the text_w provided as the
** client_data to this function.
*/
void read_file (Widget widget, /* file selection or text field widget */

XtPointer client_data, XtPointer call_data)
{

char *filename, *text;
struct stat statb;
FILE *fp;
Widget file_w;
Widget text_w = (Widget) client_data;
XmFileSelectionBoxCallbackStruct *cbs;

cbs = (XmFileSelectionBoxCallbackStruct *) call_data;

if (XtIsSubclass (widget, xmTextFieldWidgetClass)) {
filename = XmTextFieldGetString (widget);
file_w = widget; /* this *is* the file_w */

} else {
/* file was selected from FileSelectionDialog */
filename = XmStringUnparse (cbs->value, XmFONTLIST_DEFAULT_TAG,

XmCHARSET_TEXT, XmCHARSET_TEXT, NULL,
0, XmOUTPUT_ALL);

/* the user data stored the file_w widget in the text_w */
XtVaGetValues (text_w, XmNuserData, &file_w, NULL);

}
if (!filename || !*filename) {/* nothing typed? */

if (filename)
XtFree (filename);

return;
}
/* make sure the file is a regular text file and open it */
if (stat (filename, &statb) == -1 || (statb.st_mode & S_IFMT) != S_

IFREG || !(fp = fopen (filename,
"r"))) {

if ((statb.st_mode & S_IFMT) == S_IFREG)
perror (filename); /* send to stderr why we can't read it */

else
fprintf (stderr, "%s: not a regular file\n", filename);

XtFree (filename);
return;

}
/* put the contents of the file in the Text widget by allocating
** enough space for the entire file, reading the file into the

Chapter 18: Text Widgets

542 Motif Programming Manual

** allocated space, and using XmTextFieldSetString() to show the file.
*/
if (!(text = XtMalloc ((unsigned)(statb.st_size + 1)))) {

fprintf (stderr, "Can't alloc enough space for %s", filename);
XtFree (filename);
(void) fclose (fp);
return;

}
if (!fread (text, sizeof (char), statb.st_size + 1, fp))

fprintf (stderr, "Warning: may not have read entire file!\n");

text[statb.st_size] = 0; /* be sure to NULL-terminate */
/* insert file contents in Text widget */
XmTextSetString (text_w, text);
/* make sure text field is up to date */
if (file_w != widget) {

/* only necessary if activated from FileSelectionDialog */
XmTextFieldSetString (file_w, filename);
XmTextFieldSetCursorPosition (file_w, strlen (filename));

}
/* free all allocated space and */
XtFree (text);
XtFree (filename);
(void) fclose (fp);

}

The output of the program is shown in Figure 18-3.

We use the convenience routine XmCreateScrolledText() to create a ScrolledText
area. We specify that the Text widget displays 12 lines by 70 columns of text by setting the
XmNrows and XmNcolumns resources. These settings are used only at initialization. Once
the application is up and running, the user can resize the window and effectively change
those dimensions.

Figure 18-3: Output of the file_browse program

Motif Programming Manual 543

Chapter 18: Text Widgets

The XmNeditable resource is set to False to prevent the user from editing the contents
of the Text widget. Since we do not provide a way to write changes back to the file, we
don’t want to mislead the user into thinking that the file is editable. Since a non editable
Text widget should not display an insertion cursor, we remove it by setting
XmNcursorPositionVisible to False .

The FileSelectionDialog is created and managed when the user selects the Open button
from the File menu. The user can exit the program by selecting the Exit button from this
menu. The read_file() routine is activated when the user presses the OK button in the
FileSelectionDialog or enters RETURN in the TextField widget. This function gets the
specified file and checks its type. If the file chosen is not a regular file (e.g., if it is a
directory, device, tty, etc.) or if it cannot be opened, an error is reported and the function
simply returns.

Assuming that the file checks out, its contents are placed in the Text widget. Rather than
loading the file by reading each line using a function like fgets() , we allocate enough
space to contain the entire file and read it all in with one call to fread() . The text is then
loaded into the Text widget using XmTextSetString() . The ScrollBars are updated
automatically and the text is positioned so that the beginning of the file is displayed.

Line Wrapping and ScrollBar Placement

In file_browser.c, the ScrolledText object has two ScrollBars that are installed
automatically. The vertical ScrollBar is needed in case the text exceeds 12 lines; the
horizontal ScrollBar is needed in case any of those lines are wider than 70 columns. Most
users are accustomed to having Text windows be a fixed width (typically 80 columns),
especially if they have ever used an ASCII terminal. However, it can be annoying to have
text that is scrollable in the horizontal direction, since you need to see the entire line to read
smoothly through a page of text.

The XmNscrollHorizontal resource controls whether or not a horizontal ScrollBar is
displayed. If the resource is set to False , the ScrollBar is not displayed, but that does not
stop text from being displayed beyond the visible area. In order to have text wrap
appropriately, the XmNwordWrap resource must be set to True . When this resource is set,
the Text widget breaks lines at spaces, tabs, and newlines. While line breaking is fine for
previewing files and other output-only Text widgets, you should not enforce such a policy
for Text widgets that are used for text editing, as the user may want to edit wide files.

The XmNscrollVertical resource controls whether or not a vertical ScrollBar is
displayed. This resource defaults to True when a Text widget is created as a child of a
ScrolledWindow. The XmNscrollLeftSide and XmNscrollTopSide resources take
Boolean values that control the location of the ScrollBars within the ScrolledWindow. By
default, XmNscrollTopSide is set to False , which causes the ScrollBar to be placed
below the ScrolledWindow. The default value of XmNscrollLeftSide depends upon the

Chapter 18: Text Widgets

544 Motif Programming Manual

value of XmNstringDirection . These two resources should not be set by the
application, but left to users to specify themselves.

Automatic Resizing

The XmNresizeWidth and XmNresizeHeight resources control whether or not a Text
widget should resize itself vertically or horizontally in order to display the entire text
stream. Both of the resources default to False . If XmNresizeWidth is set to True and
new text is added such that the number of columns needs to grow, the width of the widget
grows to contain the new text. Similarly, if XmNresizeHeight is set to True and the
number of lines increases, the height of the widget increases so that it can display all of the
lines. These resources have no effect in a ScrolledText object, since the ScrollBars are
managing the widget’s size. Also, if line breaking is active, XmNresizeWidth has no
effect.

In most cases, it is not appropriate to set these resources, as it is regarded as poor user-
interface design to have a Text widget that dynamically resizes as the text is being edited.
It is also impolite for a window to resize itself except as the result of an explicit user action.
One example of an acceptable use of these resources involves using a Text widget to
display text for a help dialog. In this situation, the Text widget can resize itself silently
before it is mapped to the screen, so that by the time it is visible, its size is constant.

Text Positions
A position in a Text widget specifies the number of characters from the beginning of the
text in the widget, where the first character position is defined as zero (0). All whitespace
and newline characters are considered part of the text and are counted as single characters.
For example, in Figure 18-3, the insertion cursor in the TextField widget is at position 14.
When the user types in a Text widget, the new text is always added at the position of the
insertion cursor and the insertion cursor is advanced. If the user does not move the cursor,
it is always positioned at the end of the text in the widget.

You can set the position of the insertion cursor explicitly using
XmTextSetInsertionPosition() , which takes the following form:

void XmTextSetInsertionPosition (Widget text_w, XmTextPosition position)

This function is identical to XmTextSetCursorPosition() . The XmTextPosition
type is a long value, so it can represent all of the positions in a Text widget.You can get
the current cursor position using XmTextGetInsertionPosition() or
XmTextGetCursorPosition() . As with most of the Text widget functions, there are
corresponding TextField functions for setting and getting the position of the insertion
cursor. The TextField routines only work with TextField widgets, while the Text routines
work with both Text and TextField widgets.

Motif Programming Manual 545

Chapter 18: Text Widgets

Example 18-3 shows an application that uses these routines as part of a search operation.
The program searches the Text widget for a specified pattern and then positions the
insertion cursor so that the pattern is displayed.*

Example 18-3. The search_text.c program

/* search_text.c -- demonstrate how to position a cursor at a
** particular location. The position is determined by a pattern
** match search.
*/

#include <Xm/Text.h>
#include <Xm/TextF.h>
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
#include <X11/Xos.h>

/* for the index() function */
Widget text_w, search_w, text_output;

main (int argc, char *argv[])
{

Widget toplevel, rowcol_v, rowcol_h, label_w;
XtAppContext app;
int i, n;
void search_text(Widget, XtPointer, XtPointer);
Arg args[10];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

rowcol_v = XmCreateRowColumn (toplevel, "rowcol_v", NULL, 0);
XtSetArg (args[0], XmNorientation, XmHORIZONTAL);
rowcol_h = XmCreateRowColumn (rowcol_v, "rowcol_h", args, 1);
label_w = XmCreateLabelGadget (rowcol_h, "Search Pattern:", NULL, 0);
XtManageChild (label_w);
search_w = XmCreateTextField (rowcol_h, "search_text", NULL, 0);
XtManageChild (search_w);
XtManageChild (rowcol_h);

n = 0;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
XtSetArg (args[n], XmNshadowThickness, 0); n++;
XtSetArg (args[n], XmNhighlightThickness, 0); n++;
text_output = XmCreateText (rowcol_v, "text_output", args, n);
XtManageChild (text_output);

n = 0;

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 18: Text Widgets

546 Motif Programming Manual

XtSetArg (args[n], XmNrows, 10); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNscrollHorizontal, False); n++;
XtSetArg (args[n], XmNwordWrap, True); n++;
text_w = XmCreateScrolledText (rowcol_v, "text_w", args, n);
XtManageChild (text_w);

XtAddCallback (search_w, XmNactivateCallback, search_text, NULL);

XtManageChild (rowcol_v);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* search_text() -- called when the user activates the TextField. */
void search_text (Widget widget, XtPointer client_data, XtPointer call_data)
{

char *search_pat, *p, *string, buf[32];
XmTextPosition pos;
int len;
Boolean found = False;

/* get the text that is about to be searched */
if (!(string = XmTextGetString (text_w)) || !*string) {

XmTextSetString (text_output, "No text to search.");
XtFree (string); /* may have been ""; free it */
return;

}
/* get the pattern we're going to search for in the text. */
if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {

XmTextSetString (text_output, "Specify a search pattern.");
XtFree (string); /* this we know is a string; free it */
XtFree (search_pat); /* this may be "", XtFree() checks.. */
return;

}
len = strlen (search_pat);
/* start searching at current cursor position + 1 to find
** the -next- occurrence of string. we may be sitting on it.
*/
pos = XmTextGetCursorPosition (text_w);

for (p = &string[pos+1]; p = index (p, *search_pat); p++)
if (!strncmp (p, search_pat, len)) {

found = True;
break;

}

if (!found) {/* didn't find pattern? */
/* search from beginning till we've passed "pos" */
for (p = string;

(p = index (p, *search_pat)) && p - string <= pos;
p++)
if (!strncmp (p, search_pat, len)) {

Motif Programming Manual 547

Chapter 18: Text Widgets

found = True;
break;

}
}

if (!found)
XmTextSetString (text_output, "Pattern not found.");

else {
pos = (XmTextPosition) (p - string);
sprintf (buf, "Pattern found at position %ld.", pos);
XmTextSetString (text_output, buf);
XmTextSetInsertionPosition (text_w, pos);

}

XtFree (string);
XtFree (search_pat);

}

In this example, the user can search for strings in a ScrolledText, as shown in Figure 18-4.

This program doesn’t provide a way to load a file, so if you want to experiment, you need
to type or paste some text into the widget. Once there is some text in the widget, type a
string pattern in the Search Pattern TextField widget and press RETURN to activate the
search. The text is searched starting at the position immediately following the current
cursor position. If the search routine reaches the end of the text before it finds the pattern,
it resumes searching from the beginning of the text and continues until it finds the pattern
or reaches the cursor position. If the routine finds the pattern, it moves the insertion point
to that location using XmTextSetInsertionPosition() . Otherwise, the routine prints
an error message and does not move the cursor.

The search_text() routine shown in Example 18-3 searches the text using various
string routines. However, in Motif, there is a Text routine that provides the same
functionality. XmTextFindString() searches a Text widget for a specified string. This
routine takes the following form:

Boolean XmTextFindString (Widget text_w ,
XmTextPosition start ,

Figure 18-4: Output of the search_text program

Chapter 18: Text Widgets

548 Motif Programming Manual

char * string ,
XmTextDirection direction ,
XmTextPosition * position)

The start argument specifies the starting position for the search, while direction
indicates whether the routine searches forward or backward in the text. This parameter can
have the value XmTEXT_FORWARD or XmTEXT_BACKWARD. The routine returns True if it
finds the string, and in this case, the position parameter returns the position where the
string starts in the text. If the string is not found, the routine returns False , and the value
of position is undefined. It is easy to rewrite search_text() to take advantage of
XmTextFindString() . In Section 18.4, we implement a full text editor and use
XmTextFindString() to handle the various search operations.

The text_output widget in search_text.c is also a Text widget, even though it looks
more like a Label widget. By setting XmNshadowThickness to 0 and XmNeditable to
False , we create the Text widget that doesn’t look like a normal Text widget, and the user
cannot edit the text. We demonstrate this technique not to advocate such usage, but to point
out the versatility of this widget class.

If you paste a large amount of text into the main Text widget and search repeatedly for a
common pattern, you should notice that the Text widget may scroll automatically to make
the specified text visible. This action is controlled by the
XmNautoShowCursorPosition resource. This resource has a default value of True ,
which means that the Text widget adjusts the visible text to make sure that the cursor is
always visible. When the resource is set to False , the widget does not scroll to compensate
for the cursor’s invisibility. This resource also works in single-line Text widgets and
TextField widgets; these widgets may scroll their displays horizontally to display the
insertion cursor.

It is easy to scroll a Text widget to a particular position in the text stream by setting the
cursor position and then calling XmTextShowPosition() . This routine takes the
following form:

void XmTextShowPosition (Widget text_w , XmTextPosition position)

To scroll to the end of the text, you need to scroll to the last position, which can be retrieved
using XmTextGetLastPosition() . It is also possible to perform relative scrolling using
the function XmTextScroll() , which takes the following form:

void XmTextScroll (Widget text_w , int lines)

A positive value for lines causes a Text widget to scroll upward by that many lines, while
a negative value causes downward scrolling. The Text widget does not have to be a child
of ScrolledWindow for this routine to work; the widget simply adjusts the viewable text.

Now that we have a routine that searches for text, the next logical step is to implement a
function that performs a search-and-replace operation. Motif makes this task fairly easy by
providing the XmTextReplace() routine, which takes the following form:

Motif Programming Manual 549

Chapter 18: Text Widgets

void XmTextReplace (Widget text_w ,
XmTextPosition from_pos ,
XmTextPosition to_pos ,
char * value)

This function identifies the text to be replaced in the Text widget starting at the position
from_pos and ending at, but not including, the position to_pos . This text is replaced by
the text in value . If value is NULL or an empty string, the text between the two positions
is simply deleted. If you want to remove all of the text from the widget, call
XmTextSetString() with a NULL string as the text value.

To add search-and-replace functionality to the program in Example 18-3, we need to add a
new TextField widget that prompts for the replacement text and provide a callback routine
for the widget. Example 18-4 shows the additional code that is necessary.

Example 18-4. The search_and_replace() function

Widget text_w, search_w, replace_w, text_output;

main (int argc, char *argv[])
{

...
replace_w = XmCreateTextField (rowcol_h, "replace_text", NULL, 0);
XtManageChild (replace_w);
XtAddCallback (replace_w, XmNactivateCallback,

search_and_replace, NULL);
...

}

void search_and_replace (Widget widget, XtPointer client_data,
XtPointer call_data)

{
char *search_pat, *p, *string, *new_pat, buf[32];
XmTextPosition pos;
int search_len, pattern_len;
int nfound = 0;

string = XmTextGetString (text_w);
if (!*string) {

XmTextSetString (text_output, "No text to search.");
XtFree (string);
return;

}
search_pat = XmTextGetString (search_w);
if (!*search_pat) {

XmTextSetString (text_output, "Specify a search pattern.");
XtFree (string);
XtFree (search_pat);
return;

}
new_pat = XmTextGetString (replace_w);
search_len = strlen (search_pat);
pattern_len = strlen (new_pat);

Chapter 18: Text Widgets

550 Motif Programming Manual

/* start at beginning and search entire Text widget */
for (p = string; p = index (p, *search_pat); p++)

if (!strncmp (p, search_pat, search_len)) {
nfound++;
/* get the position where pattern was found */
pos = (XmTextPosition) (p-string);
/* replace the text from our position + strlen (new_pat) */
XmTextReplace (text_w, pos, pos + search_len, new_pat);
/* "string" has changed -- we must get the new version */
XtFree (string); /* free the one we had first... */
string = XmTextGetString (text_w);
/* continue search for next pattern -after- replacement */
p = &string[pos + pattern_len];

}

if (!nfound)
strcpy (buf, "Pattern not found.");

else
sprintf (buf, "Made %d replacements.", nfound);

XmTextSetString (text_output, buf);
XtFree (string);
XtFree (search_pat);
XtFree (new_pat);

}

In this routine, the pattern search starts at the beginning of the text and searches all of the
text in the widget. We are not interested in the cursor position and do not attempt to move
it. The main loop of the function only needs to find the specified pattern and replace each
occurrence with the new text. After each call to XmTextReplace() , we reread the text,
since the old value is no longer valid. As with the search_text() routine, we could
easily use XmTextFindString() to search for the pattern, as we do in the text editor in
Section 18.4.

Output-only Text
The Text and TextField widgets can be used in an output-only mode by setting the
XmNeditable resource to False . If the user tries to edit the text in a read-only widget,
the widget beeps and does not allow the modification. We used an output-only Text widget
in our file browsing application.

Our next example addresses a common need for many developers: a method for displaying
text messages while an application is running. These messages may include status
messages about application actions, as well as error messages from Xlib, Xt, and functions
internal to the application. The message area is an important part of the main window of
many applications, as discussed in Chapter 4, The Main Window. While a message area can
be implemented using a Label widget, an output-only ScrolledText object is better suited
for use as a message area because the user can scroll back to previous messages.

Motif Programming Manual 551

Chapter 18: Text Widgets

Example 18-5 shows the wprint() function that we wrote to handle displaying messages.
The function acts like printf() in that it takes variable arguments and understands the
standard string formatting characters. The output goes to a ScrolledText widget so the user
can review previous messages. All new text is appended to the end of the output, so it is
immediately visible and the user does not have to manually scroll to the end of the display.

Example 18-5. The wprint() function

#include <stdio.h>
#include <stdargs.h> /* or <varargs.h> */

/* global variable */
Widget text_output;

main (int argc, char *argv[])
{

Arg args[10];
int n;
....
/* Create output_text as a ScrolledText window */
n = 0;
XtSetArg (args[n], XmNrows, 6); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNwordWrap, True); n++;
XtSetArg (args[n], XmNscrollHorizontal, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
text_output = XmCreateScrolledText (rowcol, "text_output", args, n);
XtManageChild (text_output);
....

}

/*PRINTFLIKE1*/
void wprint (const char *fmt, ...)
{

char msgbuf[256];
static XmTextPosition wpr_position;
va_list data;

va_start (data, fmt);
(void) vsprintf (msgbuf, fmt, data);
va_end (args);

XmTextInsert (text_output, wpr_position, msgbuf);
wpr_position = wpr_position + strlen (msgbuf);
XtVaSetValues (text_output, XmNcursorPosition, wpr_position, NULL);
XmTextShowPosition (text_output, wpr_position);

}

Since the wprint() function acts like printf() , it takes a variable-length argument list,
which requires the inclusion of either <varargs.h> or <stdarg.h>. vsprintf() is a varargs

Chapter 18: Text Widgets

552 Motif Programming Manual

version of sprintf() that exists on most modern UNIX machines.*If your machine does
not have vsprintf() , you can use _doprnt() : consult your system documentation for
details if you do not have the standard C varargs package available. Whether using
vsprintf () or _doprnt (), both of these functions consume all of the arguments in the list
and leave the result in msgbuf .

Now that we have the complete string in msgbuf , we can append it to the existing text in
the Text widget. We keep track of the end of text_output with wpr_position . Each
time msgbuf is concatenated to the end of the text, the value of wpr_position is
incremented appropriately. The new text is added using the convenience routine
XmTextInsert() , which takes the following form:

void XmTextInsert (Widget text_w , XmTextPosition position , char * string)

The function simply inserts the given text at the specified position. Finally, we call
XmTextShowPosition() to make the end position visible within the Text widget. This
routine may cause the Text widget to adjust its text so that the new text is visible, as a
convenience to the user so that he does not have to scroll the window to view new
messages.

The routines in Example 18-6 show how wprint() can be used to reset the error handling
functions for Xlib and Xt so that the messages are printed in a Text widget rather than to
stderr .

Example 18-6. The x_error() and xt_error() routines

extern void wprint(const char *fmt, ...);
static void x_error (Display *dpy, XErrorEvent *err_event)
{

char buf[256];
XGetErrorText (dpy, err_event->error_code, buf, (sizeof buf));
wprint ("X Error: <%s>\n", buf);

}

static void xt_error (char *message)
{

 wprint ("Xt Error: %s\n", message);
}

main (int argc, char *argv[])
{

XtAppContext app;
...
/* catch Xt errors */
 XtAppSetErrorHandler (app, xt_error);
XtAppSetWarningHandler (app, xt_error);
/* and Xlib errors */
XSetErrorHandler (x_error);

* System V has vsprintf() , as does SunOS, but older Ultrix and BSD machines may use _doprnt() .

Motif Programming Manual 553

Chapter 18: Text Widgets

...
}

Using the functions XtAppSetErrorHandler() , XtAppSetWarningHandler() , and
XSetErrorHandler() , we send all X-related error messages to a Text widget through
wprint() . You can also use wprint() to send any application-specific messages to the
ScrolledText area.

Text Clipboard Functions
Both the Text widget and the TextField widget have convenience routines that support
communication with the clipboard. Using these functions, you can implement the standard
cut, copy, and paste functionality, as well as support communication with other windows
or applications on the desktop. If you are not familiar with the clipboard and how it works,
see Chapter 21, The Clipboard. Briefly, the clipboard is one of three transient locations
where arbitrary data such as text can be stored so that other windows or applications can
copy the data. For the Text widget, we are only interested in copying textual data and
providing visual feedback within the widget. The Text widget can send and receive data
from all three of the locations, depending on the interface style that you are using.

As described earlier in this chapter, the user typically selects text by pressing the first
mouse button and dragging the pointer across the text. When text is selected, it is rendered
in reverse video and automatically copied into the primary selection. Now the user can
paste text from the primary selection into any Text widget on the desktop by pressing the
middle mouse button. The insertion cursor is moved to the location of the button press, and
the data is automatically copied into the Text widget at this position. This functionality
works by default within the Text widget. However, the actions operate on the primary
selection, not the clipboard selection. Furthermore, the actions only allow you to copy data
to and from the selection, not cut it or clear it.

To provide these features, most applications provide other user-interface controls, such as
a PulldownMenu and appropriate menu items, that call Text widget clipboard routines.
These routines store text on the clipboard. They also allow the user to move text between
the clipboard and the primary selection, as well as between windows that are interested only
in the clipboard selection. Typical menu entries include Cut, Copy, Paste, and Clear.
Example 18-7 demonstrates these common editing actions. The application creates a
MenuBar with an Edit PulldownMenu that contains actions that operate on the Text widget.
*

Example 18-7. The cut_paste.c program

/* cut_paste.c -- demonstrate the text functions that handle
** clipboard operations. These functions are convenience routines

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 18: Text Widgets

554 Motif Programming Manual

** that relieve the programmer of the need to use clipboard functions.
** The functionality of these routines already exists in the Text
** widget, yet it is common to place such features in the interface
** via the MenuBar's "Edit" pulldown menu.
*/

#include <Xm/Text.h>
#include <Xm/LabelG.h>
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>
#include <Xm/MainW.h>

Widget text_w, text_output;

main (int argc, char *argv[])
{

Widget toplevel, main_w, menubar, rowcol_v;
XtAppContext app;
void cut_paste(Widget, XtPointer, XtPointer);
XmString label, cut, clear, copy, paste;
Arg args[10];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
main_w = XmCreateMainWindow (toplevel, "main_w", NULL, 0);
/* Create a simple MenuBar that contains a single menu */
label = XmStringCreateLocalized ("Edit");
menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",

XmVaCASCADEBUTTON, label, 'E', NULL);
XmStringFree (label);
cut = XmStringCreateLocalized ("Cut");
/* create a simple */
copy = XmStringCreateLocalized ("Copy");
/* pulldown menu that */
clear = XmStringCreateLocalized ("Clear");
/* has these menu */
paste = XmStringCreateLocalized ("Paste");
/* items in it. */
XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 0, cut_paste,

XmVaPUSHBUTTON, cut, 't', NULL, NULL,
XmVaPUSHBUTTON, copy, 'C', NULL, NULL,
XmVaPUSHBUTTON, paste, 'P', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, clear, 'l', NULL, NULL,
NULL);

XmStringFree (cut);
XmStringFree (clear);
XmStringFree (copy);
XmStringFree (paste);
XtManageChild (menubar);

/* create a standard vertical RowColumn... */

Motif Programming Manual 555

Chapter 18: Text Widgets

rowcol_v = XmCreateRowColumn (main_w, "rowcol_v", NULL, 0);

n = 0;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
XtSetArg (args[n], XmNshadowThickness, False); n++;
XtSetArg (args[n], XmNhighlightThickness, 0); n++;
text_output = XmCreateText (rowcol_v, "text_output", args, n);
XtManageChild (text_output);

n = 0;
XtSetArg (args[n], XmNrows, 10); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNscrollHorizontal, False); n++;
XtSetArg (args[n], XmNwordWrap, True); n++;
text_w = XmCreateScrolledText (rowcol_v, "text_w", args, n);
XtManageChild (text_w);

XtManageChild (rowcol_v);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* cut_paste() -- the callback routine for the items in the edit menu */
void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

Boolean result = True;
int reason = (int) client_data;
XEvent *event = ((XmPushButtonCallbackStruct *) call_data)->event;
Time when;

XmTextSetString (text_output, NULL); /* clear message area */
if (event != NULL) {

switch (event->type) {
case ButtonRelease : when = event->xbutton.time; break;
case KeyRelease : when = event->xkey.time; break;
default : when = CurrentTime; break;

}
}
switch (reason) {

case 0 : result = XmTextCut (text_w, when); break;
case 1 : result = XmTextCopy (text_w, when); break;
case 2 : result = XmTextPaste (text_w); /* FALLTHROUGH */
case 3 : XmTextClearSelection (text_w, when); break;

}
if (result == False)

XmTextSetString (text_output, "There is no selection.");
else

XmTextSetString (text_output, NULL)
}

Chapter 18: Text Widgets

556 Motif Programming Manual

The application creates a MainWindow widget, so that it can contain the MenuBar. The
MenuBar and the PulldownMenu are created using their respective convenience routines,
as described in Chapter 4, The Main Window, and Chapter 16, Interacting with the Window
Manager. The output of the program is shown in Figure 18-5.

Again, you need to enter some text or paste it from another window if you want to experi-
ment with this application. The main window contains the same Text widgets used in pre-
vious examples. The Edit PulldownMenu allows the user to interact with the clipboard. The
cut_paste() routine is the callback function for all of the menu items in the Edit menu.
This function uses four Text routines to work with the clipboard: XmTextCut() , XmText-
Copy() , XmTextPaste(), and XmTextClearSelection() . These routines take the
following form:

Boolean XmTextCut (Widget text_w , Time time)
Boolean XmTextCopy (Widget text_w , Time time)
Boolean XmTextPaste (Widget text_w)
void XmTextClearSelection (Widget text_w , Time time)

XmTextCopy() copies the text that is selected in the Text widget and places it on the
clipboard. XmTextCut() is similar to XmTextCopy() , except that the Text widget that
owns the selection is instructed to delete the text once it has been copied to the clipboard.*

The time parameters should not be set to CurrentTime to avoid race conditions with
other clipboard operations that may be occurring at the same time. Since the clipboard
routines are called by menu item callback routines, you can use the time field of the
XEvent that is passed in the callback structure, as we do in Example 18-7. Both
XmTextCopy() and XmTextCut() return True if the operation succeeds. False may be
returned if there is no selected text or an error occurs in attempting to communicate with
the clipboard.

* The deletion is handled by sending a DELETE protocol request to the window holding the selection. This pro-
tocol is not the same as the WM_DELETE protocol, which indicates that a window is being deleted. See Chapter
20, Interacting with the Window Manager, for more information on window manager protocols.

Figure 18-5: Output of the cut_paste program

Motif Programming Manual 557

Chapter 18: Text Widgets

XmTextPaste() gets the current selection from the clipboard and inserts it at the location
of the insertion cursor. If there is some selected text in the Text widget, that text is replaced
by the selection from the clipboard. XmTextPaste() returns True if there is a selection
on the clipboard that can be retrieved.

XmTextClearSelection() deselects the text selection in the Text widget. If there is no
selected text, nothing happens. The routine does not provide any feedback or return any
value. Any text that is held on the clipboard or in a selection property remains.

One additional convenience routine that operates on the selection is XmTextRemove() .
This function is like XmTextCut() , in that it removes the selected text from a Text widget,
but it does not place the text on the clipboard.

Getting the Selection
You can get the selected text from a Text widget using XmTextGetSelection() , which
takes the following form:

char *XmTextGetSelection (Widget text_w)

This routine returns allocated data that contains the selected text. This text must be freed
using XtFree() when you are through using it. The routine returns NULL if there is no text
selected in the Text widget.

XmTextGetSelectionPosition() provides information about the selected text in a
Text widget. This routine takes the following form:

Boolean XmTextGetSelectionPosition (Widget text_w ,
XmTextPosition * left,
XmTextPosition * right)

If XmTextGetSelectionPosition() returns True , the values for left and right
specify the boundaries of the selected text. If the routine returns False , the widget does
not contain any selected text, and the values for left and right are undefined.

Modifying the Selection Mechanisms
The Text widget supports multi-clicking techniques for selecting increasingly large chunks
of text. The default multi-clicking actions in the Text widget are shown in Table 18-1.

Table 1-1. Default Selection Actions for Multiple Clicks

User Action Text Widget Action

Single click Resets insertion cursor to position

Double click Selects a word (bounded by whitespace)

Triple click Selects a line (bounded by newlines)

Quadruple click Selects all of the text

Chapter 18: Text Widgets

558 Motif Programming Manual

These default actions can be modified using the XmNselectionArray and
XmNselectionArrayCount resources. The XmNselectionArray resource specifies
an array of XmTextScanType values, where XmTextScanType is an enumerated type
defined as follows:

typedef enum {
XmSELECT_POSITION, XmSELECT_WHITESPACE,* XmSELECT_WORD, XmSELECT_LINE,
XmSELECT_PARAGRAPH, XmSELECT_ALL

} XmTextScanType;

Each successive button click in a Text widget selects the text according to the
corresponding item in the array. The default array is defined as follows:

static XmTextScanType sarray[] = {
XmSELECT_POSITION, XmSELECT_WORD, XmSELECT_LINE, XmSELECT_ALL

};

You should keep the items in the array in ascending order, so as not to confuse the user.
The following code fragment shows an acceptable change to the array:

static XmTextScanType sarray[] = {
XmSELECT_POSITION, XmSELECT_WORD, XmSELECT_LINE,
XmSELECT_PARAGRAPH, XmSELECT_ALL

};
...
XtVaSetValues (text_w, XmNselectionArray, selectionArray,

XmNselectionArrayCount, 5, NULL);

The maximum time interval between button clicks in a multi-click action is specified by the
multiClickTime resource. This resource is maintained by the X server and set for all
applications; it is not a Motif resource. The value of the resource can be retrieved using
XtGetMultiClickTime() and changed with XtSetMultiClickTime() . For more
discussion on this value, see Chapter 12, Labels and Buttons.

The XmNselectThreshold resource can be used to modify the behavior of click-and-
drag actions. This resource specifies the number of pixels that the user must move the
pointer before a character can be selected. The default value is 5, which means that the user
must move the mouse at least 5 pixels before the Text widget decides whether or not to
select a character. This threshold is used throughout a selection operation to determine
when characters are added or deleted from the selection. If you are using an extremely large
font, you may want to increase the value of this resource to cut down on the number of
calculations that are necessary to determine if a character should be added or deleted from
the selection.

* XmSELECT_WHITESPACE works in the same way as XmSELECT_WORD.

Motif Programming Manual 559

Chapter 18: Text Widgets

A Text Editor
Before we describe the Text widget callback routines, we are going to present an example
that combines all the information covered so far. The example is a full-featured text editor
built from the examples presented so far in this chapter. You should recognize most of the
code in the example; the code that you don’t recognize should be understandable from the
context in which it is used. The output of the program is shown in Figure 18-6; the code is

shown in Example 18-8.*

Example 18-8. The editor.c program

/* editor.c -- create a full-blown Motif editor application complete
** with a menubar, facilities to read and write files, text search
** and replace, clipboard support and so forth.
*/

#include <Xm/Text.h>
#include <Xm/TextF.h>
#include <Xm/LabelG.h>
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/Form.h>
#include <Xm/FileSB.h>
#include <X11/Xos.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

Widget text_edit, search_text, replace_text, text_output;

* XtVaAppInitialize () is considered deprecated in X11R6. XmStringGetLtoR () is deprecated in Motif 2.0
and later. XmRepTypeInstallTearOffModelConverter () is deprecated in Motif 2.0: the converter is in-
stalled internally.

Figure 18-6: Output of the editor program

Chapter 18: Text Widgets

560 Motif Programming Manual

#define FILE_OPEN 0
#define FILE_SAVE 1
#define FILE_EXIT 2
#define EDIT_CUT 0
#define EDIT_COPY 1
#define EDIT_PASTE 2
#define EDIT_CLEAR 3
#define SEARCH_FIND_NEXT 0
#define SEARCH_SHOW_ALL 1
#define SEARCH_REPLACE 2
#define SEARCH_CLEAR 3

main (int argc, char *argv[])
{

XtAppContext app_context;
Widget toplevel, main_window, menubar, form, search_panel,

label_w;
void file_cb(Widget, XtPointer, XtPointer);
void edit_cb(Widget, XtPointer, XtPointer);
void search_cb(Widget, XtPointer, XtPointer);
Arg args[10];
int n = 0;
XmString open, save, exit, exit_acc, file, edit, cut, clear,

copy, paste, search, next, find, replace;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app_context, "Demos", NULL, 0, &argc,

argv, NULL,sessionShellWidgetClass,
NULL);

main_window = XmCreateMainWindow (toplevel, "main_window", NULL, 0);
/* Create a simple MenuBar that contains three menus */
file = XmStringCreateLocalized ("File");
edit = XmStringCreateLocalized ("Edit");
search = XmStringCreateLocalized ("Search");
menubar = XmVaCreateSimpleMenuBar (main_window, "menubar",

XmVaCASCADEBUTTON, file, 'F',
XmVaCASCADEBUTTON, edit, 'E',
XmVaCASCADEBUTTON, search, 'S',
NULL);

XmStringFree (file);
XmStringFree (edit);
XmStringFree (search);

/* First menu is the File menu -- callback is file_cb() */
open = XmStringCreateLocalized ("Open...");
save = XmStringCreateLocalized ("Save...");
exit = XmStringCreateLocalized ("Exit");
exit_acc = XmStringCreateLocalized ("Ctrl+C");
XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaPUSHBUTTON, save, 'S', NULL, NULL,
XmVaSEPARATOR,

Motif Programming Manual 561

Chapter 18: Text Widgets

XmVaPUSHBUTTON, exit, 'x', "Ctrl<Key>c", exit_
acc,

NULL);
XmStringFree (open);
XmStringFree (save);
XmStringFree (exit);
XmStringFree (exit_acc);

/*...create the "Edit" menu -- callback is edit_cb() */
cut = XmStringCreateLocalized ("Cut");
copy = XmStringCreateLocalized ("Copy");
clear = XmStringCreateLocalized ("Clear");
paste = XmStringCreateLocalized ("Paste");
XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 1, edit_cb,

XmVaPUSHBUTTON, cut, 't', NULL, NULL,
XmVaPUSHBUTTON, copy, 'C', NULL, NULL,
XmVaPUSHBUTTON, paste, 'P', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, clear, 'l', NULL, NULL,
NULL);

XmStringFree (cut);
XmStringFree (copy);
XmStringFree (paste);

/* create the "Search" menu -- callback is search_cb() */
next = XmStringCreateLocalized ("Find Next");
find = XmStringCreateLocalized ("Show All");
replace = XmStringCreateLocalized ("Replace Text");
XmVaCreateSimplePulldownMenu (menubar, "search_menu", 2, search_cb,

XmVaPUSHBUTTON, next, 'N', NULL, NULL,
XmVaPUSHBUTTON, find, 'A', NULL, NULL,
XmVaPUSHBUTTON, replace, 'R', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, clear, 'C', NULL, NULL,
NULL);

XmStringFree (next);
XmStringFree (find);
XmStringFree (replace);
XmStringFree (clear);
XtManageChild (menubar);

/* create a form work are */
form = XmCreateForm (main_window, “form", NULL, 0);

/* create horizontal RowColumn inside the form */
n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
XtSetArg (args[n], XmNpacking, XmPACK_TIGHT); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
search_panel = XmCreateRowColumn (form, "search_panel", args, n);

/* Create two TextField widgets with Labels... */

Chapter 18: Text Widgets

562 Motif Programming Manual

label_w = XmCreateLabelGadget (search_panel, "Search Pattern:",
NULL, 0);

XtManageChild (label_w);
search_text = XmCreateTextField (search_panel, "search_text", NULL,
0);
XtManageChild (search_text);
label_w = XmCreateLabelGadget (search_panel, "Replace Pattern:"

NULL, 0);
XtManageChild (label_w);
replace_text = XmCreateTextField (search_panel, "replace_text",

NULL, 0);
XtManageChild (replace_text);
XtManageChild (search_panel);

n = 0;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
XtSetArg (args[n], XmNshadowThickness, 0); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
text_output = XmCreateTextField (form, "text_output", args, n);
XtManageChild (text_output);

n = 0;
XtSetArg (args[n], XmNrows, 10); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNtopWidget, search_panel); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNbottomWidget, text_output); n++;
text_edit = XmCreateScrolledText (form, "text_edit", args, n);
XtManageChild (text_edit);
XtManageChild (form);
XtManageChild (main_window);
XtRealizeWidget (toplevel);
XtAppMainLoop (app_context);

}

/* file_select_cb() -- callback routine for "OK" button in
** FileSelectionDialogs.
*/
void file_select_cb (Widget dialog, XtPointer client_data,

XtPointer call_data)
{

char buf[256], *filename, *text;
struct stat statb;
long len;
FILE *fp;
int reason = (int) client_data;
XmFileSelectionBoxCallbackStruct *cbs;

Motif Programming Manual 563

Chapter 18: Text Widgets

cbs = (XmFileSelectionBoxCallbackStruct *) call_data;

if (!(filename = XmStringUnparse (cbs->value, XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT, XmCHARSET_TEXT, NULL, 0,
XmOUTPUT_ALL)))

return; /* must have been an internal error */
if (*filename == NULL) {

XtFree (filename);
XBell (XtDisplay (text_edit), 50);
XmTextSetString (text_output, "Choose a file.");
return; /* nothing typed */

}
if (reason == FILE_SAVE) {

if (!(fp = fopen (filename, "w"))) {
perror (filename);
sprintf (buf, "Can't save to %s.", filename);
XmTextSetString (text_output, buf);
XtFree (filename);
return;

}
/* saving -- get text from Text widget... */
text = XmTextGetString (text_edit);
len = XmTextGetLastPosition (text_edit);
/* write it to file (check for error) */
if (fwrite (text, sizeof (char), len, fp) != len)

strcpy (buf, "Warning: did not write entire file!");
else {

/* make sure a newline terminates file */
if (text[len-1] != '\n')

fputc ('\n', fp);
sprintf (buf, "Saved %ld bytes to %s.", len, filename);

}
}
else {/* reason == FILE_OPEN */

/* make sure the file is a regular text file and open it */
if (stat (filename, &statb) == -1 || (statb.st_mode & S_IFMT) !=

S_IFREG || !(fp = fopen (filename, "r"))) {
perror (filename);
sprintf (buf, "Can't read %s.", filename);
XmTextSetString (text_output, buf);
XtFree (filename);
return;

}
/* put the contents of the file in the Text widget by
** allocating enough space for the entire file, reading the
** file into the space, and using XmTextSetString() to show
** the file.
*/
len = statb.st_size;
if (!(text = XtMalloc ((unsigned)(len+1)))) /* +1 for NULL */

sprintf (buf, "%s: XtMalloc (%ld) failed", len, filename);
else {

if (fread (text, sizeof (char), len, fp) != len)

Chapter 18: Text Widgets

564 Motif Programming Manual

sprintf (buf, "Warning: did not read entire file!");
else

sprintf (buf, "Loaded %ld bytes from %s.", len, filename);
text[len] = 0; /* NULL-terminate */
XmTextSetString (text_edit, text);

}
}
XmTextSetString (text_output, buf);
/* purge output message */
/* free all allocated space. */
XtFree (text);
XtFree (filename);
(void) fclose (fp);
XtUnmanageChild (dialog);

}

/* popdown_cb() -- callback routine for "Cancel" button. */
void popdown_cb (Widget w, XtPointer client_data, XtPointer call_data)
{

XtUnmanageChild (w);
}

/* file_cb() -- a menu item from the "File" pulldown menu was selected */
void file_cb (Widget w, XtPointer client_data, XtPointer call_data)
{

static Widget open_dialog, save_dialog;
Widget dialog = NULL;
XmString button, title;
int reason = (int) client_data;

if (reason == FILE_EXIT)
exit (0);

XmTextSetString (text_output, NULL); /* clear message area */

if (reason == FILE_OPEN && open_dialog)
dialog = open_dialog;

else if (reason == FILE_SAVE && save_dialog)
dialog = save_dialog;

if (dialog) {
XtManageChild (dialog);
/* make sure that dialog is raised to top of window stack */
XMapRaised (XtDisplay (dialog), XtWindow (XtParent (dialog)));
return;

}
dialog = XmCreateFileSelectionDialog (text_edit, "Files", NULL, 0);
XtAddCallback (dialog, XmNcancelCallback, popdown_cb, NULL);
XtAddCallback (dialog, XmNokCallback, file_select_cb,

(XtPointer) reason);
if (reason == FILE_OPEN) {

button = XmStringCreateLocalized ("Open");
title = XmStringCreateLocalized ("Open File");
open_dialog = dialog;

}

Motif Programming Manual 565

Chapter 18: Text Widgets

else {/* reason == FILE_SAVE */
button = XmStringCreateLocalized ("Save");
title = XmStringCreateLocalized ("Save File");
save_dialog = dialog;

}
XtVaSetValues (dialog, XmNokLabelString, button, XmNdialogTitle,

title, NULL);
XmStringFree (button);
XmStringFree (title);
XtManageChild (dialog);

}

/* search_cb() -- a menu item from the "Search" pulldown menu selected */
void search_cb (Widget w, XtPointer client_data, XtPointer call_data)
{

char *search_pat, *p, *string, *new_pat, buf[256];
XmTextPosition pos = 0;
int len, nfound = 0;
int search_len, pattern_len;
int reason = (int) client_data;
Boolean found = False;

XmTextSetString (text_output, NULL); /* clear message area */
if (reason == SEARCH_CLEAR) {

pos = XmTextGetLastPosition (text_edit);
XmTextSetHighlight (text_edit, 0, pos, XmHIGHLIGHT_NORMAL);
return;

}
if (!(string = XmTextGetString (text_edit)) || !*string) {

XmTextSetString (text_output, "No text to search.");
return;

}
if (!(search_pat = XmTextGetString (search_text)) ||

!*search_pat) {
XmTextSetString (text_output, "Specify a search pattern.");
XtFree (string);
return;

}
new_pat = XmTextGetString (replace_text);
search_len = strlen (search_pat);
pattern_len = strlen (new_pat);

if (reason == SEARCH_FIND_NEXT) {
pos = XmTextGetCursorPosition (text_edit) + 1;
found = XmTextFindString (text_edit, pos, search_pat,

XmTEXT_FORWARD, &pos);

if (!found)
found = XmTextFindString (text_edit, 0, search_pat,

XmTEXT_FORWARD, &pos);
if (found)

nfound++;
}
else {/* reason == SEARCH_SHOW_ALL || reason == SEARCH_REPLACE */

Chapter 18: Text Widgets

566 Motif Programming Manual

do {
found = XmTextFindString (text_edit, pos, search_pat,

XmTEXT_FORWARD, &pos);
if (found) {

nfound++;
if (reason == SEARCH_SHOW_ALL)

XmTextSetHighlight (text_edit, pos,
pos + search_len,
XmHIGHLIGHT_SELECTED);

else
XmTextReplace (text_edit, pos, pos + search_len,

new_pat);
pos++;

}
} while (found);

}

if (nfound == 0)
XmTextSetString (text_output, "Pattern not found.");

else {
switch (reason) {

case SEARCH_FIND_NEXT :
sprintf (buf, "Pattern found at position %ld.", pos);
XmTextSetInsertionPosition (text_edit, pos);
break;

case SEARCH_SHOW_ALL :
sprintf (buf, "Found %d occurrences.", nfound);
break;

case SEARCH_REPLACE :
sprintf (buf, "Made %d replacements.", nfound);

}

XmTextSetString (text_output, buf);
}

XtFree (string);
XtFree (search_pat);
XtFree (new_pat);

}

/* edit_cb() -- the callback routine for the items in the edit menu */
void edit_cb (Widget widget, XtPointer client_data, XtPointer call_data)
{

Boolean result = True;
int reason = (int) client_data;
XEvent *event;
Time when;

event = ((XmPushButtonCallbackStruct *) call_data)->event;

XmTextSetString (text_output, NULL); /* clear message area */
if (event != NULL && reason == EDIT_CUT || reason == EDIT_COPY ||

reason == EDIT_CLEAR) {
switch (event->type) {

Motif Programming Manual 567

Chapter 18: Text Widgets

case ButtonRelease : when = event->xbutton.time; break;
case KeyRelease : when = event->xkey.time; break;
default : when = CurrentTime; break;

}
}
switch (reason) {

case EDIT_CUT : result = XmTextCut (text_edit, when);
break;

case EDIT_COPY : result = XmTextCopy (text_edit, when);
break;

case EDIT_PASTE : result = XmTextPaste (text_edit);
/* FALLTHROUGH */

case EDIT_CLEAR : XmTextClearSelection (text_edit, when);
break;

}

if (result == False)
XmTextSetString (text_output, "There is no selection.");

}

Text Callbacks
The Text and TextField widgets use callback routines in the same way as other Motif
widgets. The widgets provide callbacks for a number of different purposes, such as text
modification, activation, and selection ownership. Some of the routines, such as those that
monitor keyboard input, may be invoked rather frequently. In the next few sections, we
introduce several of the callback routines for the widgets.

The Activation Callback
We begin by exploring the callback routine that is most commonly used for single-line Text
widgets and TextField widgets. This callback is the XmNactivateCallback , which is
invoked when the user presses RETURN in a TextField widget or a single-line Text widget.
The callback is not called for multiline Text widgets. The callback routine for an
XmNactivateCallback receives the common XmAnyCallbackStruct as the call_
data parameter to the function. The callback reason is always XmCR_ACTIVATE. Example
18-9 shows a callback function for some TextField widgets.*

Example 18-9. The text_box.c program

/* text_box.c -- demonstrate simple use of XmNactivateCallback
** for TextField widgets. Create a rowcolumn that has rows of Form
** widgets, each containing a Label and a Text widget. When
** the user presses Return, print the value of the text widget
** and move the focus to the next text widget.
*/

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 18: Text Widgets

568 Motif Programming Manual

#include <Xm/TextF.h>
#include <Xm/LabelG.h>
#include <Xm/Form.h>
#include <Xm/RowColumn.h>

char *labels[] = { "Name:", "Address:", "City:", "State:", "Zip:" };

main (int argc, char *argv[])
{

Widget toplevel, text_w, form, rowcol, label_w;
XtAppContext app;
int i;
void print_result(Widget, XtPointer, XtPointer);
Arg args[8];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

rowcol = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);

for (i = 0; i < XtNumber (labels); i++) {
n = 0;
XtSetArg (args[n], XmNfractionBase, 10); n++;
XtSetArg (args[n], XmNnavigationType, XmNONE); n++;
form = XmCreateForm (rowcol, "form", args, n);

n = 0;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNrightPosition, 3); n++;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_END); n++;
XtSetArg (args[n], XmNnavigationType, XmNONE); n++;
label_w = XmCreateLabelGadget (form, labels[i], args, n);
XtManageChild (label_w);

n = 0;
XtSetArg (args[n], XmNtraversalOn, True); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNleftPosition, 4); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNnavigationType, XmTAB_GROUP); n++;
text_w = XmCreateTextField (form, "text_w", args, n);
XtManageChild (text_w);

/* When user hits return, print the label+value of text_w */
XtAddCallback (text_w, XmNactivateCallback, print_result,

(XtPointer) labels[i]);
XtManageChild (form);

}

Motif Programming Manual 569

Chapter 18: Text Widgets

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* print_result() -- callback for when the user hits return in the
** TextField widget.
*/

void print_result (Widget text_w, XtPointer client_data,
XtPointer call_data)
{

char *value = XmTextFieldGetString (text_w);
char *label = (char *) client_data;

printf ("%s %s\n", label, value);
XtFree (value);

XmProcessTraversal (text_w, XmTRAVERSE_NEXT_TAB_GROUP);
}

The program displays a data form using a RowColumn widget that manages several rows
of Form widgets. Each Form contains a Label and a TextField widget, as shown in Figure
18-7.

When the user enters a value for a field and presses RETURN, the print_result()
callback routine is invoked. The routine prints the value of the field and advances the
keyboard focus to the next widget using XmProcessTraversal() . This function takes a
widget and a traversal direction as its two parameters. We use the XmTRAVERSE_NEXT_
TAB_GROUP direction because each TextField widget is a tab group in and of itself, so we
need to move to the next tab group, rather than to the next item in the same tab group. See
Section 8.8 for more information on tab groups.

When a single-line Text widget or a TextField widget is used as part of a predefined Motif
dialog, the XmNactivateCallback for the widget is automatically hooked up to the OK
button in the dialog. As a result, the same callback is called when the user presses RETURN
in the widget or when the user selects the OK button. This convenience can confuse an
unsuspecting programmer who may find that his callback is being invoked twice. It is also

Figure 18-7: Output of the text_box program

Chapter 18: Text Widgets

570 Motif Programming Manual

possible to overestimate what the Motif toolkit is going to do and expect a callback to be
invoked when it isn’t. The point is to be sure to verify that these callbacks are getting called
at the appropriate times. See Chapter 6, Selection Dialogs, for examples of this feature in
SelectionDialogs, PromptDialogs, and CommandDialogs.

Text Modification Callbacks
In this section, we discuss the callback routines that can be used to monitor and control text
modification. Monitoring occurs both when the user types into a Text widget and when the
text is changed using a convenience routine such as XmTextInsert() . These callbacks
work for both single-line and multiline Text widgets, as well as TextField widgets. Since
the text in a widget is modified by each keystroke, the modification callbacks are invoked
quite frequently.

There are two callbacks for text modification: XmNmodifyVerifyCallback is called
before the text is modified, and XmNvalueChangedCallback is called after the text has
been changed. Depending on the needs of an application, either or both callbacks may be
used on the same widget. You should never call XtVaSetValues() in one of these
callbacks on the widget that is being modified because the state of the widget is unstable
during these callbacks. Avoid adding or deleting callbacks or changing resources,
especially the XmNvalue resource, in a callback routine. If a recursive loop occurs, you
may get very unpredictable results.

Installing an XmNmodifyVerifyCallback function is useful when you need to monitor
or change the user’s input before it actually gets inserted into a Text widget. In Example
18-10, we demonstrate using this callback to convert text to uppercase.*

Example 18-10. The allcaps.c program

/* allcaps.c -- demonstrate the XmNmodifyVerifyCallback for
** Text widgets by using one to convert all typed input to
** capital letters.
*/

#include <Xm/Text.h>
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
#include <ctype.h>

void allcaps(Widget, XtPointer, XtPointer);

main (int argc, char *argv[])
{

Widget toplevel, text_w, rowcol, label_w;
XtAppContext app;

* XtVaAppInitialize() is considered deprecated in X11R6.

Motif Programming Manual 571

Chapter 18: Text Widgets

Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

XtSetArg (args[0], XmNorientation, XmHORIZONTAL);
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, 1);

label_w = XmCreateLabelGadget (rowcol, "Enter Text:", NULL, 0);
XtManageChild (label_w);
text_w = XmCreateText (rowcol, "text_w", NULL, 0);
XtManageChild (text_w);

XtAddCallback (text_w, XmNmodifyVerifyCallback, allcaps, NULL);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* allcaps() -- convert inserted text to capital letters. */
void allcaps (Widget text_w, XtPointer client_data, XtPointer call_data)
{
int len;

XmTextVerifyCallbackStruct *cbs =
(XmTextVerifyCallbackStruct *) call_data;

if (cbs->text->ptr == NULL)
return;

/* convert all input to upper-case if necessary */
for (len = 0; len < cbs->text->length; len++)

if (islower (cbs->text->ptr[len]))
cbs->text->ptr[len] = toupper (cbs->text->ptr[len]);

}

The program creates a RowColumn widget that contains a Label and a Text widget, as
shown in Figure 18-8.

The Text widget uses the allcaps() routine as its XmNmodifyVerifyCallback
function. The routine is actually quite simple, but there are a lot of details to examine. The
call_data parameter to the function is of type XmTextVerifyCallbackStruct . This

Figure 18-8: Output of the allcaps program

Chapter 18: Text Widgets

572 Motif Programming Manual

data structure provides information about the modification that may be done to the text. The
data structure is defined as follows:

typedef struct {
int reason;
XEvent *event;
Boolean doit;
XmTextPosition currInsert, newInsert;
XmTextPosition startPos, endPos;
XmTextBlock text;

} XmTextVerifyCallbackStruct;

With an XmNmodifyVerifyCallback , the reason field has the value XmCR_
MODIFYING_TEXT_VALUE. The event field contains the XEvent that caused the callback
to be invoked; this field is NULL if the modification is programmatic, for example, if the
text is changed through a convenience function*. The values for currInsert and
newInsert are always the same for a modification callback. These fields specify the
location of the insertion cursor, so they are only different for the
XmNmotionVerifyCallback when the user moves the insertion point.

The values for startPos and endPos indicate the range of text that is affected by the
modification. For insertion, these values are always the same. However, for text deletion or
replacement, the values specify the beginning and end of the text about to be deleted. For
example, if the user selects some text and presses the BACKSPACE key, the startPos
and endPos values indicate the boundaries of the text about to be deleted. We discuss text
deletion in detail in an up coming section.

The text field points to a data structure that describes the text about to be added to the
widget. The field is a pointer of type XmTextBlock , which is defined as follows:

typedef struct {
char *ptr;
int length;
XmTextFormat format;

} XmTextBlockRec, *XmTextBlock;

The text being added is accessible through ptr ; it is dynamically allocated using
XtMalloc() for each callback invocation. The ptr field is not NULL-terminated, so you
should not use strlen() or strcpy() to copy the data. The length is stored in the
length field, so if you want to copy the text, you should use strncpy() . If the user is
deleting text, length is 0. While ptr should also be NULL in this case, the field isn’t
always set this way, so you shouldn’t rely on it. The format field specifies the width of
the text characters and can have the value FMT8BIT or FMT16BIT.

* There is a persistent bug in the toolkit such that if the user pastes characters into a Text widget using the mouse,
the event field is also NULL. It is therefore not possible to differentiate between a programmatic and mouse
change of the Text contents by inspecting only the information contained within the callback data.

Motif Programming Manual 573

Chapter 18: Text Widgets

Let’s review the simple case of adding new text, as demonstrated in Example 18-10. When
new text is inserted into the Text widget, the values for currInsert , newInsert ,
startPos , and endPos all have the same value, which is the position in the widget where
the new text will be added. Since the new text has not yet been added to the value of the
widget, the application can change the value of ptr in the text block. In the allcaps()
routine, we modify the input to be all capital letters by looping through the valid bytes in
the ptr field of the text block that is going to be added, as shown in the following fragment:

for (len = 0; len < cbs->text->length; len++)
if (islower (cbs->text->ptr[len]))

cbs->text->ptr[len] = toupper (cbs->text->ptr[len]);

The islower() and toupper() macros are found in the <ctype.h> header file.

Since allcaps() is called each time new text is added to the widget, you might wonder
how length can ever be more than one. If the user pastes a block of text into the widget,
the entire block is added at once, so ptr points to that text, and length specifies the amount
of text. Our loop handles both single-character typing and text-block paste operations.

Preventing Text Modification

Example 18-10 demonstrates how an application can modify the text that is entered by a
user before it is displayed. An application may also want to filter the new text and prevent
certain characters from being inserted. The easiest way to prevent a text modification is to
set the doit field in the XmTextVerifyCallbackStruct to False . When the
modification callback routine returns, the Text widget checks this field. If it has been set to
False , the widget discards the new text, and the widget is left unmodified.

When a text modification is vetoed, the Text widget can sound the console bell to provide
audio feedback informing the user that the input has been rejected. This action is dependent
on the value of the XmNverifyBell resource. The default value is based on the value of
the XmNaudibleWarning resource of the VendorShell, so it is set to True by default. You
should allow a user to set this resource in a resource file, so he can turn off error notification
if he doesn’t want it. If you hard-code the resource value, users cannot control this feature.
You should provide documentation with your application that explains how to set this
resource or provide a way to set the value from the application.

Example 18-11 demonstrates a modification callback routine that filters input and prevents
certain characters from being entered. The check_zip() routine would be used as the
XmNmodifyVerifyCallback for a Text widget that prompts for a ZIP code. We want the
user to type only digits; all other input should be ignored. We also want to keep the user
from typing a string that is longer than five digits.

Example 18-11. The check_zip() routine

/* check_zip() -- limit the user to entering a ZIP code. */
void check_zip (Widget text_w, XtPointer client_data,

Chapter 18: Text Widgets

574 Motif Programming Manual

XtPointer call_data)
{

XmTextVerifyCallbackStruct *cbs =
(XmTextVerifyCallbackStruct *) call_data;

int len = XmTextGetLastPosition (text_w);

if (cbs->startPos < cbs->currInsert) /* backspace */
return;

if (len == 5) {
cbs->doit = False;
return;

}

/* check that the new additions won’t put us over 5 */
if (len + cbs->text->length > 5) {

cbs->text->ptr[5 - len] = 0;
cbs->text->length = strlen (cbs->text->ptr);

}

for (len = 0; len < cbs->text->length; len++) {
/* make sure all additions are digits. */
if (!isdigit (cbs->text->ptr[len])) {

/* not a digit-- move all chars down one and
** decrement cbs->text->length.
*/
int i;

for (i = len; (i+1) < cbs->text->length; i++)
cbs->text->ptr[i] = cbs->text->ptr[i+1];

cbs->text->length--;
len--;

}
}

if (cbs->text->length == 0)
cbs->doit = False;

}

The first thing we do in check_zip() is to see if the user is backspacing, in which case
we simply return. If text is not being deleted, then new text is definitely being added. Since
the length of the current text is not available in the callback structure, we call
XmTextGetLastPosition() to determine it. If the string is already five digits long, we
don’t want to add more digits, so we set doit to False and return.

Otherwise, we loop through the length of the new text and check for characters that are not
digits. If any exist, we remove them by shifting all of the characters that follow down one
place, overwriting the undesirable character. If we loop through all of the characters and
find that none of them are digits, the length ends up being zero, so we set doit to False .

Motif Programming Manual 575

Chapter 18: Text Widgets

Handling Text Deletion

A modification callback can determine if the user is backspacing or deleting a large block
of text by checking to see if startPos is less than currInsert . Alternatively, the routine
could check to see if text->length is 0. For backspacing, the values differ by one. If the
user selects a large block of text and deletes the selection, the
XmNmodifyVerifyCallback is invoked once to delete the text and may be invoked a
second time if the user has typed new text to replace the selected text.

Our next example program demonstrates how to process character deletions in a text
modification callback. Example 18-12 creates a single-line Text widget that prompts the
user for a password. We don’t provide any encryption for the password; we simply mask
what the user is typing by displaying an asterisk (*) for each character. The actual text is
stored in a separate internal variable. The challenge for this application is to capture the
input text, store it internally, and modify the output, even for backspacing.*

Example 18-12. The password.c program

/* password.c -- prompt for a password. All input looks like
** a series of *’s. Store the actual data typed by the user in
** an internal variable. Don’t allow paste operations. Handle
** backspacing by deleting all text from insertion point to the
** end of text.
*/

#include <Xm/TextF.h>
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
#include <ctype.h>

void check_passwd(Widget, XtPointer, XtPointer);
char *passwd = (char *) 0; /* store user-typed passwd here. */

main (int argc, char *argv[])
{

Widget toplevel, text_w, label_w, rowcol;
XtAppContext app;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

XtSetArg (args[0], XmNorientation, XmHORIZONTAL);
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, 1);

label_w = XmCreateLabelGadget (rowcol, "Password:", NULL, 0);
XtManageChild (label_w);

* XtVaAppInitialize() is considered deprecated in X11R6.

Chapter 18: Text Widgets

576 Motif Programming Manual

text_w = XmCreateTextField (rowcol, "text_w", NULL, 0);
XtManageChild (text_w);

XtAddCallback (text_w, XmNmodifyVerifyCallback, check_passwd, NULL);
XtAddCallback (text_w, XmNactivateCallback, check_passwd, NULL);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* check_passwd() -- handle the input of a password. */
void check_passwd (Widget text_w, XtPointer client_data,

XtPointer call_data)
{

char *new;
int len;
XmTextVerifyCallbackStruct *cbs =

(XmTextVerifyCallbackStruct *) call_data;

if (cbs->reason == XmCR_ACTIVATE) {
printf ("Password: %s\n", passwd);
return;

}

if (cbs->startPos < cbs->currInsert) {/* backspace */
cbs->endPos = strlen (passwd); /* delete from here to end */
passwd[cbs->startPos] = 0;
/* backspace--terminate */
return;

}

if (cbs->text->length > 1) {
cbs->doit = False; /* don’t allow "paste" operations */
return; /* make the user *type* the password! */

}

new = XtMalloc (cbs->endPos + 2); /* new char + NULL terminator */

if (passwd) {
strcpy (new, passwd);
XtFree (passwd);

} else
new[0] = NULL;

passwd = new;
strncat (passwd, cbs->text->ptr, cbs->text->length);
passwd[cbs->endPos + cbs->text->length] = 0;

for (len = 0; len < cbs->text->length; len++)
cbs->text->ptr[len] = ’*’;

}

Motif Programming Manual 577

Chapter 18: Text Widgets

As you can see in Figure 18-9, the Text widget only displays asterisks, no matter what the
user has typed.

We use the check_passwd() function for both the XmNactivateCallback and the
XmNmodifyVerifyCallback callbacks. When the user presses RETURN, the routine
prints what has been typed to stdout . If the user is not backspacing through the text, we
know we can add the new text to passwd , which is the internal variable we use to store the
text. Once the new text has been copied, we convert it into asterisks, so that the user cannot
see what has been typed.

We need to handle two different cases for deletion. If the insertion cursor is at the end of
the typed string and the user backspaces, we simply allow the action. If the user clicks
somewhere in the middle of the string and then backspaces, we delete all of the characters
from that point in the string to the end, since the user cannot see the characters that he is
deleting.

To handle the different forms of text deletion, we test to see if startPos is less than
currInsert . Since startPos and endPos specify the range of text that is being deleted,
we can change these values and effectively delete more text than the user originally
intended. By setting endPos to the string length of the internal variable passwd , we handle
both of the cases that we just described. If we had wanted to, we could also have set
startPos to 0 and deleted all of the text.

Extending Text Modification

We can expand on the ZIP code example that we used for filtering non-digits from typed
input by providing an input field for an area code and phone number. The format for a US
phone number is as follows:

123-456-7890

We want to filter out all non-digits for a phone number, but we also want to add the dash
character (-) automatically as it is needed. For example, after the user enters three digits,
the Text widget should automatically insert a dash, so that the next character expected from
the user is still a digit. Similarly, when the user backspaces and deletes a dash character, the

Figure 18-9: Output of the password program

Chapter 18: Text Widgets

578 Motif Programming Manual

widget should delete the preceding digit as well. Table 18-2 shows how the interaction
should work.

We can continue to use the same type of algorithm that we used in check_zip() to filter
digits, and we can use some of the code from check_passwd() to handle backspacing.
The only remaining problem is adding the necessary dash characters. Since we are using
US phone numbers, we know that the dashes should occur after the third and seventh digits.
Therefore, when currInsert is either 2 or 6, the new digit should be added first, followed
by the dash. Example 18-13 shows the program that implements this functionality.*

Example 18-13. The prompt_phone.c program

/* prompt_phone.c -- a complex problem for XmNmodifyVerifyCallback.
** Prompt for a phone number by filtering digits only from input.
** Don’t allow paste operations and handle backspacing.
*/

#include <Xm/Text.h>
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
#include <ctype.h>

void check_phone(Widget, XtPointer, XtPointer);

main (int argc, char *argv[])
{

Widget toplevel, text_w, label_w, rowcol;
XtAppContext app;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

XtSetArg (args[0], XmNorientation, XmHORIZONTAL);

Table 1-2. Phone Number Input Interaction

User Types Text Widget Displays

4 4

1 41

5 415-

4 415-4

BACKSPACE 415-

BACKSPACE 41

* XtVaAppInitialize () is considered deprecated in X11R6. Note that this program does not work using a Tex-
tField: due to a bug, deleting the dash character paints the text contents blank.

Motif Programming Manual 579

Chapter 18: Text Widgets

rowcol = XmCreateRowColumn (toplevel, "rowcol", args, 1);

label_w = XmCreateLabelGadget (rowcol, "Phone Number:", NULL, 0);
XtManageChild (label_w);

text_w = XmCreateText (rowcol, "text_w", NULL, 0);
XtManageChild (text_w);

XtAddCallback (text_w, XmNmodifyVerifyCallback, check_phone, NULL);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* check_phone() -- handle phone number input. */
void check_phone (Widget text_w, XtPointer client_data,

XtPointer call_data)
{

char c;
int len = XmTextGetLastPosition (text_w);
XmTextVerifyCallbackStruct *cbs =

(XmTextVerifyCallbackStruct *) call_data;

/* no backspacing or typing in the middle of string */
if (cbs->currInsert < len) {

cbs->doit = False;
return;

}

if (cbs->text->length == 0) {/* backspace */
if (cbs->startPos == 3 || cbs->startPos == 7)

cbs->startPos--;
/* delete the hyphen too */

return;
}

if (cbs->text->length > 1) {/* don’t allow clipboard copies */
cbs->doit = False;
return;

}

/* don’t allow non-digits or let the input exceed 12 chars */
if (!isdigit (c = cbs->text->ptr[0]) || len >= 12)

cbs->doit = False;
else if (len == 2 || len == 6) {

cbs->text->ptr = XtRealloc (cbs->text->ptr, 2);
cbs->text->length = 2;
cbs->text->ptr[0] = c;
cbs->text->ptr[1] = ’-’;

}
}

Chapter 18: Text Widgets

580 Motif Programming Manual

There are a couple of ways that you could think to add the dashes. One way would be to
use the XmNvalueChangedCallback to keep track of the phone number after it has been
entered and then use XmTextInsert() to add the dashes when appropriate. The problem
with this approach is that XmTextInsert() activates the XmNmodifyVerifyCallback
function again, so the dash would be subject to the input filtering.

As a result, the only way to handle the situation is to actually add the dashes in the
XmNmodifyVerifyCallback routine at the same time the digits are added. This
approach involves modifying the ptr and length fields of the XmTextBlock structure in
the XmTextVerifyCallbackStruct . The check_phone() routine checks the current
length of the phone number. If it is either two or six characters long, the routine reallocates
ptr to hold two characters, adds the dash, and increments length to account for the dash.

When the Text widget adds the digit and the dash, it positions the insertion cursor at the end
of the new text. Although we haven’t demonstrated its use, the
XmNvalueChangedCallback is useful when you need to keep track of the changes in a
Text widget, but you don’t need to monitor or change the input before it is displayed. This
callback is invoked after the text has been modified in any way, which means that it is
called for each insertion and deletion. The call_data parameter to the routine is of type
XmAnyCallbackStruct ; the reason field is always XmCR_VALUE_CHANGED.

The check_phone() routine is fairly simple, in that it only allows text insertions and
deletions that occur when the insertion cursor is at the end of the text. While it is possible
to handle modifications in the middle of the text, the code quickly becomes a large bowl of
spaghetti. We do not allow clipboard copies of more than one character at a time for the
same reason. Our routine is sufficient for demonstration purposes, but for a real application,
you should handle these cases.

The Cursor Movement Callback
The XmNmotionVerifyCallback can be used to monitor the position of the insertion
cursor. This callback is invoked when the user moves the location cursor using the mouse
or the arrow keys, when the user drags the mouse or multi-clicks to extend the text
selection, or when the application calls a Text widget function that moves the cursor or
adds, deletes, or replaces text. However, if the cursor does not move as a result of a function
being called, the callback is not invoked.The XmNmotionVerifyCallback allows an
application to intercept and prevent cursor movement.

The XmNmotionVerifyCallback uses the XmTextVerifyCallbackStruct as its
callback structure, just like the XmNmodifyVerifyCallback . However, for motion
callbacks, the reason is XmCR_MOVING_INSERT_CURSOR and the startPos , endPos ,
and text fields are invalid. The doit field can be set to False to reject requests to
reposition the insertion cursor.

Motif Programming Manual 581

Chapter 18: Text Widgets

If the cursor motion occurs as a result of a user action, the event field should point to an
XEvent structure describing the action that caused the cursor position to be modified.
When the cursor moves as a result of an application action, the field should be set to NULL.
However, the event field is currently set to NULL regardless of what caused the cursor
motion. This bug makes it impossible to tell the difference between a cursor motion
performed by the user and one caused by the application.

We can use the XmNmotionVerifyCallback to tie up a loose end in prompt_phone.c.
To make the text verification simpler, we don’t want to allow the user to move the insertion
cursor except by entering digits or backspacing. Example 18-14 shows a new version of the
check_phone() routine that prevents cursor movement.

Example 18-14. The new check_phone() routine

main (int argc, char *argv[])
{

Widget text_w;
...
XtAddCallback (text_w, XmNmotionVerifyCallback, check_phone, NULL);
...

}

/* check_phone() -- handle phone number input. */
void check_phone (Widget text_w, XtPointer client_data,

XtPointer call_data)
{

char c;
int len = XmTextGetLastPosition (text_w);
XmTextVerifyCallbackStruct *cbs =

(XmTextVerifyCallbackStruct *) call_data;

if (cbs->reason == XmCR_MOVING_INSERT_CURSOR) {
if (cbs->newInsert != len)

cbs->doit = False;
return;

}

/* no backspacing or typing in the middle of string */
if (cbs->currInsert < len) {

cbs->doit = False;
return;

}
...

}

We check the value of newInsert against the length of the current string to determine
whether or not the intended cursor position is at the end of the text string. If it is not, we set
doit to False to prevent the cursor movement. The XmNmotionVerifyCallback
function can also be used to monitor pointer dragging for text selections.

Chapter 18: Text Widgets

582 Motif Programming Manual

Focus Callbacks
The XmNfocusCallback and XmNlosingFocusCallback callback routines can be
used to monitor when a Text widget gains and loses the keyboard focus. A Text widget can
receive the input focus if the user intentionally shifts the focus to the widget or if the
application moves the focus using XmProcessTraversal() . When a widget gains the
input focus and the insertion cursor is not visible, we can make it visible and cause the
widget to automatically scroll to the current cursor location by installing an
XmNfocusCallback routine that calls XmTextShowCursorPosition() , as shown in
the following code fragment:

{
Widget text_w;
void gain_focus(Widget, XtPointer, XtPointer);
...
text_w = XmCreateScrolledText(...);
XtAddCallback (text_w, XmNfocusCallback, gain_focus, NULL);
...

}

void gain_focus (Widget text_w, XtPointer client_data,
XtPointer call_data)

{
XmTextShowCursorPosition (text_w, XmTextGetCursorPosition (text_w));

}

The XmNfocusCallback is passed a callback structure of type XmAnyCallbackStruct
with the callback reason set to XmCR_FOCUS.

The XmNlosingFocusCallback callback can be used to monitor when the Text widget
loses its focus. The callback structure passed to the callback function is an
XmTextVerifyCallbackStruct . All of the fields except the text field are valid, and
the reason field is set to XmCR_LOSING_FOCUS.

Text Widget Internationalization
In Motif, the Text and TextField widgets support internationalized input and output. The
internationalization capabilities of the widgets are layered on top of the functionality
originally provided in X11R5, which is based on the ANSI-C locale model. An
internationalized application uses a library that reads a locale database at runtime to get
information about the user’s language environment. An application that uses the X Toolkit
establishes its language environment (or locale) by registering a language procedure using
XtSetLanguageProc() , as explained in Section 2.3.2. See Volume 4, X Toolkit
Intrinsics Programming Manual for more information on the localization of an Xt-based
application.

Motif Programming Manual 583

Chapter 18: Text Widgets

Text Representation
One of the important characteristics of a locale is the encoding used to represent the
character set for the locale. A character set is simply a set of characters, while an encoding
is a numeric representation of these characters. A charset (not the same as a character set)
is an encoding in which all of the characters use the same number of bits. The Latin-1
charset (ISO8859-1) defines an encoding for all of the characters used in Western
languages. However, not all languages can be represented by a single charset. Japanese text
commonly contains words written using the Latin alphabet, as well as phonetic characters
from the katakana and hirigana alphabets, and ideographic kanji characters. Each of these
character sets has its own charset. The phonetic and Latin charsets are 8-bits wide, while
the ideographic charset is 16-bits wide. Since the charsets must be combined into a single
encoding for Japanese text, the encoding uses shift sequences to specify the character set
for each character in a string.

When an encoding contains shift sequences and characters of non uniform width, strings
can still be stored in a standard NULL-terminated array of characters; this representation is
known as a multibyte string. Strings can also be stored using a wide-character type
(wchar_t in ANSI-C) in which each character has a fixed size and occupies one array
element. ANSI-C provides functions that convert between multibyte and wide-character
strings and the text output routines in X support both types of strings. Multibyte strings are
usually more compact than wide-character strings, but wide-character strings are easier to
work with. If an internationalized application performs any text manipulation, it must take
care to handle all strings properly. Fortunately, many applications can do internationalized
text input and output without performing any manipulations on the text.

Multibyte strings are NULL-terminated, while there is no single convention for the
termination of wide-character strings. The following C string-handling routines are safe to
use with multibyte strings: strcat() , strcmp() , strcpy() , strlen() , and
strncmp() . The string comparison routines are only useful to check for byte-for-byte
equality; use strcoll() to compare strings for sorting. None of the C string-handling
routines work with wide-character strings.

Multibyte strings can be written to a file or an output stream. If the terminal is operating in
the current locale, printing a multibyte string to stdout or stderr causes the correct text
to be displayed. Multibyte strings can also be read from a file or the stdin input stream.
If the file is encoded in the current locale, or the terminal is operating in the current locale,
the strings that are read are meaningful. For a more complete description of working with
multibyte and wide-character strings, see Volume 1, Xlib Programming Manual.

The Motif Text and TextField widgets provide two resources for specifying their textual
data: XmNvalue andXmNvalueWcs. The XmNvalue resource specifies the text string as a
char * value, so it can be used to set the value of the widget to a multibyte string.
XmNvalueWcs specifies the string as a wchar_t * value, so it is used to set the value to a

Chapter 18: Text Widgets

584 Motif Programming Manual

wide-character string. This resource cannot be specified in a resource file. If XmNvalue and
XmNvalueWcs are both defined, the value of XmNvalueWcs takes precedence.

Regardless of which resource you set, the widgets store the text internally as a multibyte
string. The widgets take care of converting between multibyte strings and wide-character
strings when necessary. As a result, you can set the text string using the XmNvalue resource
and retrieve it with XtVaGetValues() using the XmNvalueWcs resource.

The Text widget provides the following convenience routines for manipulating the text
value as a wide-character string:

Boolean XmTextFindStringWcs (Widget widget ,
XmTextPosition start ,
wchar_t * wc,
XmTextDirection dir ,
XmTextPosition * pos)

wchar_t *XmTextGetSelectionWcs (Widget widget)
wchar_t *XmTextGetStringWcs (Widget widget)
int XmTextGetSubstringWcs (Widget widget ,

XmTextPosition start ,
int num_chars ,
int buf_size ,
wchar_t * buffer)

void XmTextInsertWcs (Widget widget ,
XmTextPosition position ,
wchar_t * wc)

void XmTextReplaceWcs (Widget widget ,
XmTextPosition from ,
XmTextPosition to ,
wchar_t * wc)

void XmTextSetStringWcs (Widget widget , wchar_t * wc)

These routines work for both Text and TextField widgets. The TextField also provides
corresponding functions that only work with TextField widgets. All of these routines
function identically to their regular character string counterparts, except that they take or
return wide-character string values. If you have specified the text string using XmNvalue ,
you can still use the wide-character string routines because they handle any necessary string
conversions. For more information on the different wide-character routines, see Volume
6B, Motif Reference Manual.

The widgets also provide a wide-character version of the text modification callback,
XmNmodifyVerifyCallbackWcs . This callback is invoked before the value of the
widget is modified, so an application can use it to monitor changes in the widget. The
callback is passed a callback structure of type XmTextVerifyCallbackStructWcs ,
which is defined as follows:

Motif Programming Manual 585

Chapter 18: Text Widgets

typedef struct {
int reason;
XEvent *event;
Boolean doit;
XmTextPosition currInsert, newInsert;
XmTextPosition startPos, endPos;
XmTextBlockWcs text;

} XmTextVerifyCallbackStructWcs;

With this structure the reason field has the value XmCR_MODIFYING_TEXT_VALUE. All
of the fields have the same meaning as the fields in the regular
XmTextVerifyCallbackStruct , except that the text field is a pointer of type
XmTextBlockWcs . This structure is defined as follows:

typedef struct {
wchar_t *wcsptr;
int length;

} XmTextBlockRecWcs, *XmTextBlockWcs;

If callback routines are registered for both the XmNmodifyVerifyCallback and the
XmNmodifyVerifyCallbackWcs , the routines for the XmNmodifyVerifyCallback
are invoked first. The resulting data, which may have been modified, is passed to the
XmNmodifyVerifyCallbackWcs routines.

Text Output
The Text and TextField widgets do not use compound strings, so their text output
functionality is based directly on Xlib’s internationalized text output capabilities. To
support languages that use multiple charsets, X11R5 introduced the XFontSet abstraction
for its text output routines. An XFontSet contains all of the fonts necessary to display text
in the current locale. The new text output routines work with font sets, so they can render
text for locales that require multiple charsets. See Volume 1, Xlib Programming Manual,
for more information on internationalized text output.

Each of the widgets has a XmNrenderTable resource for specifying the font that it uses.*

Since the widgets do not use compound strings, they cannot use font list tags to display text
using different fonts as described in Section 25, Compound Strings. However, the render
table can specify a rendition which contains a font set, so the widgets can display text using
multiple character sets in a locale that requires them. The widgets pick a font by searching
the render table for a rendition that has the tag XmFONTLIST_DEFAULT_TAG. If the search
finds such a rendition that contains a font set, it is used. Otherwise, the widgets use the first
font set specified in the font list. If the render table does not contain a font set, the first font
is used. If you specify a rendition entry with the tag XmFONTLIST_DEFAULT_TAG, make
sure that it is appropriate for the encoding of the current locale.†

* The XmNfontList resource is deprecated as of Motif 2.0.

Chapter 18: Text Widgets

586 Motif Programming Manual

Text Input
Converting user keystrokes into text in the encoding of the current locale is the most
difficult task of internationalization. An internationalized program cannot assume any
particular mapping between keystrokes and input characters, since it must run in any locale
on a single workstation, using a single keyboard. The mapping between keystrokes and
Japanese characters is very different and much more complex than the mapping between
keystrokes and Latin characters, for example. When there are more characters in the
codeset of a locale than there are keys on a keyboard, some sort of input method is required
for mapping between multiple keystrokes and input characters.

All of the characters for English can be entered using the standard keyboard; the SHIFT key
makes it possible to enter both lower case and upper case letters as well as the number and
punctuation characters. For many European languages, the most common accented
characters may appear directly on a keyboard, but there are still a number of other
characters that cannot be entered with any single shifted or unshifted keystroke. In these
cases, the input method is typically implemented in the keyboard hardware using a special
key that puts the keyboard in “compose” mode in which one or more of the following
keystrokes are combined into a single character.

The Asian ideographic languages are what make internationalized text input complicated.
Japanese and Korean both have phonetic alphabets that are small enough to be mapped onto
a keyboard. While it is sometimes adequate to leave text in this representation, the user
usually wants the final text to be in the full ideographic language. Input methods for these
languages often have the user type the phonetic symbols for a particular word or words and
then signal that the composition or pre-editing is complete. At this point, the input method
can look up the string of phonetic characters in a dictionary and convert it to the equivalent
character or characters in the ideographic language. Multiple characters can have the same
phonetic representation, so the user may still have to select the desired character.

Since input methods can be large and complex and they vary from locale to locale, it does
not make sense to link every application with a generic input method that is localized at
runtime. The X Input Method (XIM) abstraction supports the model of an input manager
that is run as a separate process and that communicates with the X server and with the
application. An application that needs to use an input method calls XOpenIM() to establish
a connection to the input method that is appropriate for the current locale.

An input method needs to provide feedback to the user, so X defines three areas for
interaction:

• The status area is an output-only window that displays information about the state of
the input method interaction.

† This is different to the way in which compound strings are rendered: if a font or tag is absent when rendering a
compound string, callbacks may be invoked. See Chapter 24, Compound Strings, for more details.

Motif Programming Manual 587

Chapter 18: Text Widgets

• The pre-edit area displays the intermediate text while the user is composing a
character.

• The auxiliary area is used to display any dialog boxes or popup menus that are needed
by the input method.

An application generally provides the status and pre-edit areas to the input method, which
is responsible for their contents. The auxiliary area is managed entirely by the input
method. The location of the pre-edit area depends on the interaction style used between the
input method and the application. X defines the following four interaction styles:

• The root-window style, where the input method displays the pre-edit data in a window
that is a child of the root window.

• The off-the-spot style, in which the input method displays the data at a fixed location
in the application window, often at the bottom of the window.

• The over-the-spot style, where the input method displays the data in a window of its
own that is placed over the current insertion point.

• The on-the-spot style, in which the input method directs the application to display the
pre-edit data, so the application can display the data however it wants.

An application must choose an interaction style that is supported by the input method and
it must provide the pre-edit and status areas as required by that style.

Just as the X server can display multiple windows for a single client, an input method can
maintain multiple input contexts for an application. A text editor that supports multiple
editing windows within a single top-level window could create an input context for each
window or share a single context among all of the windows. The function XCreateIC()
creates an X Input Context (XIC) that keeps track of information about the input context,
such as the interaction style, the windows used for the pre-edit and status areas, and the font
set for the text.

When an application gets a KeyPress event, it needs to use that event in a call to
XmbLookupString() or XwcLookupString() to get the multibyte or wide-character
string encoded in the current locale. These routines are analogous to XLookupString() ,
but this routine can only return Latin-1 strings, so it is not appropriate for internationalized
input.

The support for input methods in Xlib is designed to be incorporated within toolkits and
widgets. Accordingly, the internationalized text input capabilities of the Motif Text and
TextField widgets are layered on top of the input method mechanism. Fortunately, the
widgets encapsulate most of the lower-level functionality, so you don’t need to understand
the details of the Xlib implementation. For a more complete description of the Xlib
functionality, see Volume 1, Xlib Programming Manual.

Chapter 18: Text Widgets

588 Motif Programming Manual

Motif leaves it to the hardware vendors to supply input methods, so the toolkit does not
provide any itself. If you need to provide internationalized text input, consult the
documentation for your system for information about the input methods that it supports.
Alternately, you can build one of the contributed input methods provided as part of X11.
X11R5 as shipped from MIT contains two separate implementations of the input method
facilities. The Xsi implementation is the default on all but Sony machines, which use the
Ximp implementation. Each implementation defines its own protocol for communication
between Xlib and input methods. Ximp and Xsi each come with contributed input methods
that are not compatible with each other. For X11R6, the X Consortium standardized the
input method implementation, allowing for dynamic input method server connectivity. The
details of this are beyond the scope of this manual; you are referred to the Programmer’s
Supplement for Release 6 of Volumes 1, 2, 4, and 5 for a complete discussion of the topic.

When you create an editable Text or TextField widget, it automatically provides a
connection to the input method for the current locale. The VendorShell widget plays a role
in internationalization as it defines the XmNinputMethod , XmNpreeditType, and
XmNinputPolicy resources for specifying the input method, the interaction style, and the
input context creation policy respectively*. A Text or TextField widget is always created
as an ancestor of a VendorShell, so the widget can access these resources to set up the
connection to the input method. The resources are defined by the VendorShell because it
handles the geometry management of the pre-edit and status areas for the input method.

The XmNinputMethod resource specifies the input method portion of the locale modifier
that is set before an input method is opened. The format of the value for this resource is
vendor-defined. The XmNpreeditType resource sets the interaction style used by the
input method. The syntax, possible values, and default value of this resource are also
vendor-dependent. The XmNinputPolicy resource specifies whether an input context is
to be created on a per-shell basis (XmPER_SHELL) or for each widget which requests
connection to an input method (XmPER_WIDGET).

In Motif 1.2, only the over-the-spot, off-the-spot, and root-window interaction styles are
supported. Motif 2.0 also supports the on-the-spot style. Under the off-the-spot style, the
VendorShell positions the pre-edit and status areas below the application’s main window
but inside the shell. The VendorShell handles the geometry management for the areas and
places a separator between the main window and the input method area. If the application
sets or gets the XmNheight of the shell using XtVaSetValues() or XtVaGetValues() ,
the height includes the height of the input method area. With the over-the-spot style, the
VendorShell still displays the status area at the bottom of the application’s top-level
window, but the pre-edit area is positioned over the insertion cursor in the Text widget. The
Text widget passes the insertion position to the input method, so that the pre-edit area
moves as with the insertion cursor.

* XmNinputPolicy is only available from Motif 2.0 onwards.

Motif Programming Manual 589

Chapter 18: Text Widgets

The Motif toolkit implements its internationalized text input functionality using the
following public routines:*

void XmImCloseXIM (Widget widget)
void XmImFreeXIC (Widget widget , XIC xic)
XIC XmImGetXIC (Widget widget , XmInputPolicy policy , ArgList argv ,

Cardinal argc)
XIM XmImGetXIM (Widget widget)
int XmImMbLookupString (Widget widget , XKeyPressedEvent * event ,
char * buffer , int num_bytes , KeySym * keysym , int * status)
void XmImMbResetIC (Widget widget , char ** mb_text)
void XmImRegister (Widget widget , unsigned int reserved)
void XmImSetFocusValues (Widget widget , ArgList argv , Cardinal argc)
void XmImSetValues (Widget widget , ArgList argv , Cardinal argc)
XIC XmImSetXIC (Widget widget , XIC xic)
void XmImUnregister (Widget widget)
void XmImUnsetFocus (Widget widget)
void XmImVaSetFocusValues (Widget widget , resource-value-list, NULL)
void XmImVaSetValues (Widget widget , resource-value-list, NULL)

These routines simplify the interaction with the lower-level XIM and XIC constructs
provided by Xlib. If you need to provide text input in another widget, such as a
DrawingArea, you have to handle opening an input method, creating an input context, and
obtaining input from the input method yourself. A description of each is found in Volume
6B, Motif Reference Manual.

Summary
The Motif Text and TextField widgets can be used to provide an application with
sophisticated text entry capabilities. The widgets come with a full set of convenience
routines that make it easy to perform a number of standard text editing tasks. However,
these widgets work best when they are left alone to do their jobs. While they are highly
configurable, the little bits of fine tuning you add may cause your code to grow twice as
much to accommodate the new features and the necessary error checking.

Exercises
The following exercises are designed to expand on the ideas described in this chapter and
introduce some new directions for using Text widgets.

1. Using theXmNmodifyVerifyCallback , you can add more data to a Text widget
than what is typed by the user. This technique is useful for supporting advanced editing
features such as file or word completion. The user should be able to enter the leading
part of a word and then type a special character that completes the word automatically,

* XmImCloseXIM (), XmImFreeXIC (), XmImGetXIC(), XmImSetXIC () are only available from Motif 2.0 on-
wards.

Chapter 18: Text Widgets

590 Motif Programming Manual

based on a predefined list of words in/usr/dict/words. Write anXmNmodifyVerify-
Callback routine that checks each character that is typed and, upon receipt of the spe-
cial character, looks backwards in the text until it finds whitespace and checks this
word against the words in the list. If there is a match, modify the text to complete the
word.

2. The functionXmTextSetHighlight() can be used to highlight text in the same
fashion as if the user had selected it. This routine is useful for emphasizing different
pieces of text. Based upon the previous exercise, write a simple spell-checker program.
Use a PushButton or a menu item to get all of the text from a Text widget and check
the words against/usr/dict/words. Highlight all of the words that are not found in the
dictionary so that the user can find them quickly.

3. Modify the allcaps.cprogram to use theXmNgainFocusCallback and XmNlos-
ingFocusCallback callback routines. When the widget loses the focus, all of the
characters should be converted to lower case, and when the input focus is gained, the
characters should revert to upper case.

4. TheXmNsource resource specifies anXmTextSource , which is an internal object
that contains all of the information about the text in a Text widget. You can set or get
the value for this resource usingXtVaSetValues() andXtVaGetValues() . Since
the data type is opaque to the programmer, you cannot create your own source, but you
can get one from an existing Text widget. By getting theXmNsource from one Text
widget and setting it in another, you can have two Text widgets that edit the same text.
Write a program that does just that.

Motif Programming Manual 591

Chapter 1

In this chapter:
• Menu Types
• Creating Simple Menus
• Designing Menu Systems
• General Menu Creation

Techniques
• Summary
• Exercises

19
Menus

This chapter describes the different types of menus provided by the Motif toolkit. It also
presents a number of ways to create menus in an application and talks about the issues
involved in designing menu systems.

Menus provide the user with a set of choices in an application without complicating its
normal visual appearance. These convenient mini-toolboxes are essential for the user who,
like an auto mechanic that is busy working under the car, needs quick and convenient
access to her tools without having to look or move away from her work. The Motif Style
Guide provides for three different types of menus: PulldownMenus, PopupMenus, and
OptionMenus. Despite the differences between the three types of menus, they all provide
simple and convenient access to application functionality.

Menu Types
PulldownMenus that are posted from the MenuBar are the most common menus in an
application. Figure 19-1 shows an example of a PulldownMenu.The menu pops up when
the user presses the first mouse button on a CascadeButton.*As described in Chapter 4, The
Main Window, CascadeButtons may be displayed as titles in a MenuBar or as menu items
in a PulldownMenu. When the CascadeButton is a child of a MenuBar, the menu drops
down below the button when the user clicks on it. When the CascadeButton is an item in
an existing menu, the new menu pops up to the right of the item; it is sometimes referred to
as a cascading menu or a pullright menu.

* The button that posts the menu is typically user-settable, since left-handed users may want to reverse the default
button bindings.

Figure 19-1: A PulldownMenu

Chapter 19: Menus

592 Motif Programming Manual

Under certain conditions, it may be inconvenient for the user to stop what she is doing,
move the mouse to the MenuBar to pulldown a menu, and then move the mouse back to
where she was working. Having to move the mouse away, even to another part of the same
window, can reduce productivity. A PopupMenu is one solution to this problem as it can
provide immediate access to application functionality. PopupMenus are posted using the
third mouse button and can be displayed anywhere in an application. Rather than having to
move the mouse, the user can simply press the third mouse button to cause a PopupMenu
to appear on the spot. This type of menu does not need to be associated with a visible user-
interface element. In fact, PopupMenus are usually popped up from a work area or another
region that is not affiliated with a user-interface component like a PushButton or
CascadeButton. The only drawback to this design is that there is no indication to the novice
user that the menu exists. Figure 19-2 shows a PopupMenu.

The OptionMenu combines the strengths of a PulldownMenu and a PopupMenu. Like a
PulldownMenu, it is posted from a CascadeButton, but like a PopupMenu, it can be placed
where it is needed. The CascadeButton is used to display the default choice for the menu.
When the user presses the button, the alternate choices are displayed in a menu, as shown
in Figure 19-3. Like a PulldownMenu, an OptionMenu is invoked using the first mouse
button, but it is displayed on top of its associated CascadeButton rather than below it.

Figure 19-2: A PopupMenu

Figure 19-3: An OptionMenu

Motif Programming Manual 593

Chapter 19: Menus

The use of the third mouse button to activate PopupMenus is in sharp contrast to
PulldownMenus and OptionMenus, which are always invoked by the first mouse button. It
may seem confusing to the user that some menus are invoked by the first button while
others are invoked by the third. However, there is some consistency in the fact that
PulldownMenus and OptionMenus are always attached to CascadeButtons, and buttons are
always activated by the first mouse button. By specifying that PopupMenus use the third
mouse button, the first mouse button is free to be used for other activities in an application
work area, which is important since PopupMenus can be popped up anywhere in an
application.

When the user posts a menu, it is only displayed until the user makes a selection, and then
it is removed. A menu can have an additional feature that allows it to be torn off, so that it
remains posted in its own window. The tear-off functionality is activated by a special tear-
off button in the menu. The button displays a dashed line to indicate that you can tear off
the menu, like you would tear a coupon out of a newspaper. When the user presses the tear-
off button, the menu is placed in a separate window, and the user can make as many
selections as she would like. Figure 19-4 shows a PulldownMenu that provides the tear-off
capability.

To make menus even more convenient to use, menu items can have mnemonics and
accelerators associated with them. These devices are keyboard equivalents that allow the
user to activate menu items using the keyboard rather than the mouse. For example, in

Tear-off

Figure 19-4: A PulldownMenu with tear-off functionality

control

Chapter 19: Menus

594 Motif Programming Manual

Figure 19-1, the underlined letter in each menu item is its mnemonic. While the menu is
posted, the user can type the specified character to activate that menu item. Accelerators
are keystroke combinations that invoke a menu item even when the menu is not displayed.
Accelerators typically use the CTRL or ALT key to distinguish them from ordinary
keystrokes that are sent to the application. For example, again in Figure 19-1, the Ctrl+X
accelerator allows the user to exit the application without accessing the menu.

Before we plunge into the details of menu creation, a word of warning to experienced X
Toolkit programmers is in order. Motif does not use Xt’s normal methods for creating and
managing menus. In fact, you cannot use the standard Xt methods for menu creation or
management without virtually re-implementing the Motif menu design.*In Xt, you would
typically create an OverrideShell that contains a generic manager widget, followed by a set
of PushButtons. To display the menu, you would pop up the shell using XtPopup() . The
Motif toolkit abstracts the menu creation and management process using routines that make
the shell opaque to the programmer.

Creating Simple Menus
In Chapter 4, The Main Window, we used the simple menu creation routines to build the
MenuBar and its associated PulldownMenus. These routines are designed to be plug-and-
play convenience routines; their only requirements are compound strings for the menu
labels and a single callback function that is invoked when the user activates any of the menu
items.

XmVaCreateSimpleMenuBar() creates a MenuBar, while
XmVaCreateSimplePulldownMenu() generates a PulldownMenu and its associated
items. These functions take a variable-length argument list of parameters that specify either
the CascadeButtons for the MenuBar or the menu items for the PulldownMenu. You can
also pass RowColumn-specific resource/value pairs to configure the RowColumn widget
that manages the items in the menu. The functions are front ends for more primitive
routines that actually create the underlying widgets, so they are convenient for many simple
menu creation needs. You should review Chapter 4, for more information on how to use
these functions.

Motif also provides simple creation routines for creating PopupMenus and OptionMenus.
Both XmVaCreateSimplePopupMenu() and XmVaCreateSimpleOptionMenu() are
very similar to the routines for creating PulldownMenus, so much of the information in
Chapter 4 also applies to these functions.

* If you need to port an Athena or OPEN LOOK-based application to Motif, you will probably have to reimple-
ment your menu design.

Motif Programming Manual 595

Chapter 19: Menus

Popup Menus
The only difference between XmVaCreateSimplePulldownMenu() and
XmVaCreateSimplePopupMenu() is that the latter routine does not have a button
parameter for specifying the CascadeButton used to display the menu. Since PopupMenus
are not associated with CascadeButtons, this parameter isn’t necessary. Example 19-1
demonstrates the creation of a simple PopupMenu.*

Example 19-1. The simple_popup.c program

/* simple_popup.c -- demonstrate how to use a simple popup menu.
** Create a main window that contains a DrawingArea widget, which
** displays a popup menu when the user presses the third mouse button.
*/

#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/DrawingA.h>

main (int argc, char *argv[])
{

XmString line, square, circle, exit_b, exit_acc;
Widget toplevel, main_w, drawing_a, popup_menu;
void popup_cb(Widget, XtPointer, XtPointer);
XtAppContext app;
Arg args[4];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Create a MainWindow widget that contains a DrawingArea in
** its work window.
*/
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
main_w = XmCreateMainWindow (toplevel, "main_w", args, n);

/* Create a DrawingArea -- no actual drawing will be done. */
n = 0;
XtSetArg (args[n], XmNwidth, 500); n++;
XtSetArg (args[n], XmNheight, 500); n++;
drawing_a = XmCreateDrawingArea (main_w, "drawing_a", args, n);
XtManageChild (drawing_a);

line = XmStringCreateLocalized ("Line");
square = XmStringCreateLocalized ("Square");

* XtVaAppInitialize() is considered deprecated in X11R6. The XmNpopupEnabled re-
source is modified in Motif 2.0 and later to support the values XmPOPUP_AUTOMATIC,
XmPOPUP_AUTOMATIC_RECURSIVE, XmPOPUP_DISABLED, XmPOPUP_KEYBOARD.

Chapter 19: Menus

596 Motif Programming Manual

circle = XmStringCreateLocalized ("Circle");
exit_b = XmStringCreateLocalized ("Exit");
exit_acc = XmStringCreateLocalized ("Ctrl+C");
popup_menu = XmVaCreateSimplePopupMenu (drawing_a, "popup", popup_cb,

XmNpopupEnabled, XmPOPUP_AUTOMATIC,
XmVaPUSHBUTTON, line, ’L’, NULL, NULL,
XmVaPUSHBUTTON, square, ’S’, NULL, NULL,
XmVaPUSHBUTTON, circle, ’C’, NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, exit_b, ’x’, "Ctrl<Key>c",
exit_acc,
NULL);

XmStringFree (line);
XmStringFree (square);
XmStringFree (circle);
XmStringFree (exit_b);
XmStringFree (exit_acc);

XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* popup_cb() -- invoked when the user selects an item in the popup menu */
void popup_cb (Widget menu_item, XtPointer client_data, XtPointer call_data)
{

int item_no = (int) client_data;

if (item_no == 3) /* Exit was selected -- exit */
exit (0);

/* Otherwise, just print the selection */
puts (XtName (menu_item));

}

This program creates a standard MainWindow widget that contains a DrawingArea widget.
The program does not do any drawing; it is just a skeleton that demonstrates how to attach
a PopupMenu. The PopupMenu is created using XmVaCreateSimplePopupMenu() with
the DrawingArea widget as its parent. The menu is popped up when the user presses the
third mouse button in the DrawingArea, as shown in Figure 19-5.

Figure 19-5: Output of the simple_popup program

Motif Programming Manual 597

Chapter 19: Menus

The menu contains four items, the last of which has the accelerator Ctrl<Key>C . Any time
the user presses CTRL-C in the application, the callback routine associated with the menu
is called as if the menu had been popped up and the Exit item had been selected. The
popup_cb() routine either prints the name of the menu item or exits, depending on which
item the user selected. Note that the name of the menu item does not correspond to its label.
As described in Chapter 4, menu items are automatically given names of the form button_
n, where n is assigned in order of menu item creation, starting at 0 (zero).

In Motif 1.2, PopupMenus are not automatically displayed by the toolkit: the programmer
must install an event handler, or, for the DrawingArea, an XmNinputCallback , in order
to catch ButtonPress events. Once caught, a call to XmMenuPosition () to place the menu
at the cursor, followed by XtManageChild () of the menu itself are required to effect the
posting.

In Motif 2.0 and later, this is not necessary because automatic popup is now supported. For
the simple case, simply setting the XmNpopupEnabled resource to XmPOPUP_
AUTOMATIC has the desired effect. Where there is potentially a choice between several
popup menus in a given context, the resource XmNpopupHandlerCallback can be used
to discriminate at the appropriate juncture. XmNpopupHandlerCallback is defined in
both the Manager and Primitive classes, and is thus inherited by all widgets in the Motif
set. Note that the resource is not defined for the Gadget class: you need to manipulate the
required popup through the Manager parent. Where no callback is registered, the toolkit
will select the menu to display.

The XmNpopupMenuHandler callback is passed a structure of type
XmPopupHandlerCallbackStruct as the third parameter when invoked. The structure
is defined as follows:

typedef struct
{

int reason;
XEvent *event;
Widget menuToPost;
Boolean postIt;
Widget target;

} XmPopupHandlerCallbackStruct;

The reason and event fields are the familiar elements found in all Motif callback
structures; here, the reason field will have the value XmCR_POST or XmCR_REPOST.
XmCR_POST is the normal value; XmCR_REPOST will occur if the menu is reposted as a
result of event replay. menuToPost is the toolkit’s suggestion of the menu to display: this
element in the structure should be modified appropriately if a different popup menu is
required. The target field holds the widget or gadget which the Manager believes is the
source of the popup request. Lastly, postIt is a flag which indicates whether the posting
action is to continue after the callback completes.

Chapter 19: Menus

598 Motif Programming Manual

Example 19-2 creates two popups, and adds an XmNpopupHandlerCallback choose_cb
onto the DrawingArea. This randomly picks one of the two menus to display, depending
upon the x coordinate of the Button event: if even, it displays menuA, otherwise menuB.*

Example 19-2. The choice_popup.c program

/* choice_popup.c -- demonstrate how to use a popup menu handler.
** Create a main window that contains a DrawingArea widget, which
** chooses between two popup menus when the user presses the third
** mouse button.
*/

#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/DrawingA.h>

Widget menuA, menuB;

main (int argc, char *argv[])
{

XmString line, square, circle, exit, exit_acc;
XmString red, green, blue;
Widget toplevel, main_w, drawing_a;
void popup_cb(Widget, XtPointer, XtPointer);
void choose_cb(Widget, XtPointer, XtPointer);
XtAppContext app;
Arg args[4];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Create a MainWindow widget that contains a DrawingArea in
** its work window.
*/
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
main_w = XmCreateMainWindow (toplevel, "main_w", args, n);

/* Create a DrawingArea -- no actual drawing will be done. */
n = 0;
XtSetArg (args[n], XmNwidth, 500); n++;
XtSetArg (args[n], XmNheight, 500); n++;
drawing_a = XmCreateDrawingArea (main_w, "drawing_a", args, n);
/* Callback to choose which popup menu to display */
XtAddCallback (drawing_a, XmNpopupHandlerCallback, choose_cb, NULL);
XtManageChild (drawing_a);

line = XmStringCreateLocalized ("Line");

* XtVaAppInitialize() is considered deprecated in X11R6. The XmNpopupHandlerCallback resource, and the au-
tomatic popup of menus. are only available in Motif 2.0 and later.

Motif Programming Manual 599

Chapter 19: Menus

square = XmStringCreateLocalized ("Square");
circle = XmStringCreateLocalized ("Circle");
exit = XmStringCreateLocalized ("Exit");
exit_acc = XmStringCreateLocalized ("Ctrl+C");
menuA = XmVaCreateSimplePopupMenu (drawing_a, "menuA", popup_cb,

XmNpopupEnabled, XmPOPUP_AUTOMATIC,
XmVaPUSHBUTTON, line, ’L’, NULL, NULL,
XmVaPUSHBUTTON, square, ’S’, NULL, NULL,
XmVaPUSHBUTTON, circle, ’C’, NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, exit, ’x’, "Ctrl<Key>c", exit_acc,
NULL);

XmStringFree (line);
XmStringFree (square);
XmStringFree (circle);
XmStringFree (exit);
XmStringFree (exit_acc);

red = XmStringCreateLocalized ("Red");
green = XmStringCreateLocalized ("Green");
blue = XmStringCreateLocalized ("Blue");

menuB = XmVaCreateSimplePopupMenu (drawing_a, "menuB", popup_cb,
XmNpopupEnabled, XmPOPUP_AUTOMATIC,
XmVaPUSHBUTTON, red, ’R’, NULL, NULL,
XmVaPUSHBUTTON, green, ’G’, NULL, NULL,
XmVaPUSHBUTTON, blue, ’B’, NULL, NULL,
NULL);

XmStringFree (red);
XmStringFree (green);
XmStringFree (blue);

XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* popup_cb() -- invoked when the user selects an item in the popup menu */
void popup_cb (Widget menu_item, XtPointer client_data,

XtPointer call_data)
{

int item_no = (int) client_data;

if (item_no == 3) /* Exit was selected -- exit */
exit (0);

/* Otherwise, just print the selection */
puts (XtName (menu_item));

}

/* choose_cb() -- invoked when the user requests a popup menu */
void choose_cb (Widget menu_item, XtPointer client_data,

XtPointer call_data)
{

Chapter 19: Menus

600 Motif Programming Manual

XmPopupHandlerCallbackStruct *cbs =
(XmPopupHandlerCallbackStruct *) call_data;

XButtonPressedEvent *bp = (XButtonPressedEvent *) cbs->event;

if ((bp->x % 2) == 0) {
cbs->menuToPost = menuA;

}
else {

cbs->menuToPost = menuB;
}

}

Cascading Menus
A cascading menu, or a pullright menu, is implemented as a PulldownMenu displayed from
a menu item in another PulldownMenu or PopupMenu. The menu item that posts the
cascading menu must be a CascadeButton. Example 19-3 demonstrates how to add a
cascading menu using the simple menu routines. The program adds a Line Width menu item
to the PopupMenu from Example 19-1. This menu item is a CascadeButton that posts a
PulldownMenu created with XmVaCreateSimplePulldownMenu() .*

Example 19-3. The simple_pullright.c program

/* simple_pullright.c -- demonstrate how to make a pullright menu
** using simple menu creation routines. Create a main window that
** contains a DrawingArea widget that displays a popup menu when the
** user presses the third mouse button.
*/

#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/DrawingA.h>

main (int argc, char *argv[])
{

XmString line, square, circle, weight, exit, exit_acc;
XmString w_one, w_two, w_four, w_eight;
Widget toplevel, main_w, drawing_a, cascade, popup_menu,

pullright;
void popup_cb(Widget, XtPointer, XtPointer);
void set_width(Widget, XtPointer, XtPointer);
XtAppContext app;
Arg args[4];
int n;

XtSetLanguageProc (NULL, NULL, NULL);

* XtVaAppInitialize() is considered deprecated in X11R6. The XmNpopupEnabled re-
source is modified in Motif 2.0 and later to support the values XmPOPUP_AUTOMATIC,
XmPOPUP_AUTOMATIC_RECURSIVE, XmPOPUP_DISABLED, XmPOPUP_KEYBOARD.

Motif Programming Manual 601

Chapter 19: Menus

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

/* Create a MainWindow widget that contains a DrawingArea in
** its work window.
*/
n = 0;
XtSetArg (args[0], XmNscrollingPolicy, XmAUTOMATIC); n++;
main_w = XmCreateMainWindow (toplevel, "main_w", args, n);

/* Create a DrawingArea -- no actual drawing will be done. */
n = 0;
XtSetArg (args[n], XmNwidth, 500); n++;
XtSetArg (args[n], XmNheight, 500); n++;
drawing_a = XmCreateDrawingArea (main_w, "drawing_a", args, n);
XtManageChild (drawing_a);

line = XmStringCreateLocalized ("Line");
square = XmStringCreateLocalized ("Square");
circle = XmStringCreateLocalized ("Circle");
weight = XmStringCreateLocalized ("Line Width");
exit = XmStringCreateLocalized ("Exit");
exit_acc = XmStringCreateLocalized ("Ctrl+C");
popup_menu = XmVaCreateSimplePopupMenu (drawing_a, "popup", popup_cb,

XmNpopupEnabled, XmPOPUP_AUTOMATIC,
XmVaPUSHBUTTON, line, ’L’, NULL, NULL,
XmVaPUSHBUTTON, square, ’S’, NULL, NULL,
XmVaPUSHBUTTON, circle, ’C’, NULL, NULL,
XmVaCASCADEBUTTON, weight, ’W’,
XmVaSEPARATOR,
XmVaPUSHBUTTON, exit, ’x’, "Ctrl<Key>c", exit_
acc,
NULL);

XmStringFree (line);
XmStringFree (square);
XmStringFree (circle);
XmStringFree (weight);
XmStringFree (exit);

/* create pullright for "Line Width" button -- this is the 4th item! */
w_one = XmStringCreateLocalized ("1");
w_two = XmStringCreateLocalized ("2");
w_four = XmStringCreateLocalized ("4");
w_eight = XmStringCreateLocalized ("8");
pullright = XmVaCreateSimplePulldownMenu (popup_menu, "pullright",

3 /* menu item offset */, set_width,
XmVaPUSHBUTTON, w_one, ’1’, NULL, NULL,
XmVaPUSHBUTTON, w_two, ’2’, NULL, NULL,
XmVaPUSHBUTTON, w_four, ’4’, NULL, NULL,
XmVaPUSHBUTTON, w_eight, ’8’, NULL, NULL,
NULL);

XmStringFree (w_one);
XmStringFree (w_two);
XmStringFree (w_four);

Chapter 19: Menus

602 Motif Programming Manual

XmStringFree (w_eight);

XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* popup_cb() -- invoked when the user selects an item in the popup menu */
void popup_cb (Widget menu_item, XtPointer client_data,

XtPointer call_data)
{

int item_no = (int) client_data;
if (item_no == 4) /* Exit was selected -- exit */

exit (0);
/* Otherwise, just print the selection */
puts (XtName (menu_item));

}

/* set_width() -- called when items in the Line Width pullright menu
** are selected.
*/
void set_width (Widget menu_item, XtPointer client_data,

XtPointer call_data)
{

int item_no = (int) client_data;
printf ("Line weight = %d\n", 1 << item_no);

}

In the call to XmVaCreateSimplePulldownMenu() , the PopupMenu is specified as the
parent of the cascading menu. The button parameter is set to 3 to indicate that the fourth
item in the PopupMenu posts the cascading menu. Figure 19-6 shows the output of the
program.

Option Menus
An OptionMenu is similar to a PulldownMenu in that they are both associated with
CascadeButtons. However, there are also several major differences between the two types

Figure 19-6: Output of the simple_pullright program

Motif Programming Manual 603

Chapter 19: Menus

of menus. In an OptionMenu, the CascadeButton is not part of a MenuBar. Instead, it is
created as the child of a RowColumn widget that also contains a Label gadget.

Another difference is that the menu pops up on top of the CascadeButton, instead of
dropping down from it. The label on the CascadeButton is one of the elements in the menu;
the CascadeButton displays the current menu selection. The Motif toolkit handles the
management of the PulldownMenu for the OptionMenu, so its handle is not available to
you, nor does it need to be. Because of the design of the OptionMenu, it cannot have
cascading menus.

Example 19-4 demonstrates the use of XmVaCreateSimpleOptionMenu() . The
program uses a DrawingArea again, but now the user selects the drawing style from an
OptionMenu that is displayed above the DrawingArea*.

Example 19-4. The simple_option.c program

/* simple_option.c -- demonstrate how to use a simple option menu.
** Display a drawing area. The user selects the drawing style from
** the option menu.
*/

#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/ScrolledW.h>
#include <Xm/DrawingA.h>
#include <Xm/PushB.h>

main (int argc, char *argv[])
{

XmString draw_shape, line, square, circle;
Widget toplevel, main_w, rc, sw, drawing_a, option_menu, pb;
void option_cb(Widget, XtPointer, XtPointer);
void exit(int);
XtAppContext app;
Arg args[4];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Create a MainWindow widget that contains a RowColumn
** widget as its work window.
*/
main_w = XmCreateMainWindow (toplevel, "main_w", NULL, 0);
rc = XmCreateRowColumn (main_w, "rowcol", NULL, 0);

/* Inside RowColumn is the Exit pushbutton, the option menu and the
** scrolled window that contains the drawing area.

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 19: Menus

604 Motif Programming Manual

*/
pb = XmCreatePushButton (rc, "Exit", NULL, 0);
XtAddCallback (pb, XmNactivateCallback, (void (*)()) exit, NULL);
XtManageChild (pb);

draw_shape = XmStringCreateLocalized ("Draw Mode:");
line = XmStringCreateLocalized ("Line");
square = XmStringCreateLocalized ("Square");
circle = XmStringCreateLocalized ("Circle");
option_menu = XmVaCreateSimpleOptionMenu (rc,

"option_menu", draw_shape, ’D’,
0 /*initial menu selection*/, option_cb,
XmVaPUSHBUTTON, line, ’L’, NULL, NULL,
XmVaPUSHBUTTON, square, ’S’, NULL, NULL,
XmVaPUSHBUTTON, circle, ’C’, NULL, NULL,
NULL);

XmStringFree (line);
XmStringFree (square);
XmStringFree (circle);
XmStringFree (draw_shape);
XtManageChild (option_menu);
/* Create a DrawingArea inside a ScrolledWindow */
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
sw = XmCreateScrolledWindow (rc, "sw", args, n);

n = 0;
XtSetArg (args[n], XmNwidth, 500); n++;
XtSetArg (args[n], XmNheight, 500); n++;
drawing_a = XmCreateDrawingArea (sw, "drawing_area", args, n);
XtManageChild (drawing_a);
XtManageChild (sw);
XtManageChild (rc);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* option_cb() -- invoked when the user selects an item in the
** option menu
*/
void option_cb (Widget menu_item, XtPointer client_data,

XtPointer call_data)
{

int item_no = (int) client_data;
puts (XtName (menu_item));

}

The layout of the application is different from that in the previous examples because we use
a separate ScrolledWindow for the DrawingArea. The RowColumn widget that contains
the Exit button, the OptionMenu, and the ScrolledWindow is the work area for the
MainWindow. Figure 19-7 shows the output of the program both before and after the

Motif Programming Manual 605

Chapter 19: Menus

OptionMenu is displayed. Notice how the label of the CascadeButton changes as you select
alternate values from the menu.

Designing Menu Systems
The advantages of the simple menu creation routines are clear. It is easy to create menus
with them, the code is extremely readable, and the job gets done without much room for
error. Once the code is written, it is easy to modify the callback function, labels,
mnemonics, and accelerators used by a menu.

There are also some disadvantages to using the simple menu creation functions. One
problem is that they require a great deal of bulk to create a single menu. If an application
needs to create a large number of menus, it has to use a lot of redundant code because the
simple creation routines make it difficult to build a looping construct or a function to
automate the process. Since the creation routines name the widgets using non-unique
names, it is difficult to specify labels, mnemonics, and accelerators in a resource file. If
these values are set using a creation routine, this point is irrelevant because the routines
hard-code the values. The simple creation routines also make it impossible to specify
different callback functions for menu items.

To get around the shortcomings of the simple creation routines, we are going to build a new
system that is just as simple to use, but more dynamic and easy to modify. Before we can
build our new system, we need to examine the advanced Motif menu creation routines and
discuss the overall design of a menu system. We are going to start with the MenuBar and
PulldownMenus because almost every application uses these components. Furthermore,
everything there is to know about menus can be adapted from the design of a menu system
that uses these menus.

Let’s begin by examining the steps that you need to take to create a MenuBar and its
associated PulldownMenus:

1. Create a RowColumn widget for use as a MenuBar with XmCreateMenuBar() .

Figure 19-7: Output of the simple_option program

Before After

Chapter 19: Menus

606 Motif Programming Manual

2. Create each PulldownMenu usingXmCreatePulldownMenu () .

3. Create the menu items (PushButtons, ToggleButtons, Separators, etc.) for each Pull-
downMenu.

4. Create a CascadeButton for each menu in the MenuBar and attach the associated Pull-
downMenu to it.

5. Manage the MenuBar withXtManageChild() .

The program in Example 19-5 demonstrates these steps by creating a MenuBar that
contains a single File PulldownMenu.*

Example 19-5. The file_menu.c program

/* file_menu.c -- demonstrate how to create a menu bar and pulldown
** menu using the Motif creation routines.
*/

#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/CascadeB.h>
#include <Xm/SeparatoG.h>
#include <Xm/PushBG.h>

main (int argc, char *argv[])
{

Widget toplevel, main_w, menu_w, file_w, cascade_w, push_b,
sep_w;

XmString label_str;
XtAppContext app;
Arg a rgs[4];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
main_w = XmCreateMainWindow (toplevel, "main_w", args, n);
menu_w = XmCreateMenuBar (main_w, "MenuBar", NULL, 0);

/* create the "File" Menu */
file_w = XmCreatePulldownMenu (menu_w, "FilePullDown", NULL, 0);

/* create the "File" button (attach Menu via XmNsubMenuId) */
label_str = XmStringCreateLocalized ("File");

n = 0;
XtSetArg (args[n], XmNmnemonic, ‘F’); n++;

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 607

Chapter 19: Menus

XtSetArg (args[n], XmNlabelString, label_str); n++;
XtSetArg (args[n], XmNsubMenuId, file_w); n++;
cascade_w = XmCreateCascadeButton (menu_w, "File", args, n);
XtManageChild (cascade_w);
XmStringFree (label_str);

/* Now add the menu items */
push_b = XmCreatePushButtonGadget (file_w, "Open", NULL, 0);
XtManageChild (push_b);
push_b = XmCreatePushButtonGadget (file_w, "Save", NULL, 0);
XtManageChild (push_b);
sep_w = XmCreateSeparatorGadget (file_w, "separator", NULL, 0);
XtManageChild (sep_w);
push_b = XmCreatePushButtonGadget (file_w, "Exit", NULL, 0);
XtManageChild (push_b);

XtManageChild (menu_w);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The code follows the steps that we just outlined. The MenuBar is created as a child of the
MainWindow, and the PulldownMenu is created as a child of the MenuBar. The
CascadeButton acts as the File title item in the MenuBar, so it is also created as the child
of the MenuBar. Both the menu title and the PulldownMenu are children of the MenuBar.
The CascadeButton sets its XmNsubMenuId resource to the PulldownMenu so that when
the button is selected, it knows which PulldownMenu to display. When you create a
PulldownMenu using the simple menu creation routine, it sets this resource behind the
scenes.

We also set the label of the CascadeButton using the XmNlabelString resource. This
value is a compound string, just as in the simple creation function. If we had not set the label
directly, the name of the widget itself would appear as the label, and we could override it
with a specification in a resource file. Since we are not using the simple creation routine,
we can choose whether or not we hard-code the label for the CascadeButton. After we
create the items in the menu, we manage the MenuBar using XtManageChild() . The

Chapter 19: Menus

608 Motif Programming Manual

output of Example 19-5, both before and after the PulldownMenu is posted, is shown in
Figure 19-8.

Menu Titles
The titles in a MenuBar are actually the labels of the CascadeButtons. The labels can be
specified using the XmNlabelString resource, either in the application code or in a
resource file. Every CascadeButton must have a submenu associated with it via the
XmNsubMenuId resource. When the user selects the CascadeButton, the associated
PulldownMenu is displayed. You should never attach a callback function directly to a
CascadeButton in the MenuBar as it would confuse the user. Callback functions should
only be attached to menu items in PulldownMenus that are posted from the MenuBar.

The PulldownMenu that is associated with a CascadeButton is created using
XmCreatePulldownMenu() . This routine returns the RowColumn widget that manages
the menu items. The routine creates the RowColumn as a child of a MenuShell widget.
Since the routine returns the RowColumn widget, the resource list provided to the function
only sets resources for the RowColumn widget, not for the MenuShell that contains it.

Menu titles should not be dynamically created or destroyed. An application should not
make the MenuBar disappear or add new titles to the MenuBar while the application is
running. All of the titles in the MenuBar must be available to the user when the
MainWindow is visible. You can, however, deactivate an entire menu by changing the
XmNsensitive resource on the CascadeButton widget that acts as its title, as discussed in
Section 19.3.6.

Menu Items
The items in a menu are actually the labels of the PushButtons that make up the menu.
Unlike the File title item in the MenuBar, we chose not to use hard-coded values for the
menu item strings, so the strings can be set in a resource file. While our menu only contains

Figure 19-8: Output of the file_menu program

Before After

Motif Programming Manual 609

Chapter 19: Menus

PushButton gadgets, a PulldownMenu can also contain ToggleButtons, Separators, and
CascadeButtons.

You can install a callback routine for each of the items in a menu, or you can install an
XmNentryCallback for the RowColumn widget to act on behalf of all the menu items.
This resource specifies a callback function that overrides the XmNactivateCallback
used by Pushbuttons and the XmNvalueChangedCallback used byToggleButtons.
Using this resource generates a design that is similar to the simple menu routines described
earlier. See Chapter 8, Manager Widgets, for details on this generic RowColumn resource.

As with the title items, menu items should not be dynamically created or destroyed since it
may confuse the user. However, there is one exception to this guideline. If a menu contains
items that keep track of a dynamic list of objects, such as the open files in a text editor, the
menu items should change to reflect the current state of the application.

Mnemonics
Mnemonics help users traverse the menu system and select actual menu items without
having to use the mouse. In Example 19-5, we used the XmNmnemonic resource to attach
the mnemonic “F” to the File menu, which allows the user to use the key sequence ALT-F
to open or close the menu without using the mouse. The XmNmnemonic resource is defined
by the Label class, but it is only used by PushButtons, ToggleButtons, and CascadeButtons
when these objects are used in a menu system.

A mnemonic is represented visually by the underlining of the mnemonic character in the
label string. In this case, the “F” in the word “File” is underlined. If the label does not
contain the mnemonic character, there is no visual feedback for the mnemonic, but it still
functions. When a mnemonic is specified, the character can be either uppercase or
lowercase, but the distinction only affects which letter is underlined. For operational
purposes, mnemonics are case insensitive.

Our example only provided a mnemonic for the entire menu, but mnemonics can be set on
menu items as well. When a PulldownMenu is displayed, the user can activate a menu item
simply by typing the letter represented by its mnemonic. (The ALT key is not used once the
menu is displayed.) If the user activates a menu item using a mnemonic, the callback
function for the menu is called just as if the user had selected it with the mouse.

Mnemonics are set on MenuBar titles and menu items in the same way. To illustrate, let’s
add a mnemonic to the Exit item in our File menu. We could, as in Example 19-5, set the
mnemonic directly in the creation of the item, as follows:

n = 0;
XtSetArg (args[n], XmNmnemonic, ‘x’); n++;
push_b = XmCreatePushButtonGadget (file_w, "Exit", args, n);

Chapter 19: Menus

610 Motif Programming Manual

Strictly speaking, since the internal representation of an XmNmnemonic is as a KeySym,
and not a char, the following method of assigning a mnemonic to a widget, using the Xt
conversion mechanisms, is preferred:

XrmValue from_value, to_value; /* For resource conversion */
...
n = 0;
from_value.addr = "x";
from_value.size = strlen(from_value.addr) + 1;
to_value.addr = NULL;
XtConvertAndStore (file_w, XmRString, &from_value, XmRKeySym, &to_value);
if (to_value.addr) {

XtSetArg (args[n], XmNmnemonic, (*((KeySym*) to_value.addr))); n++;
}
push_b = XmCreatePushButtonGadget (file_w, "Exit", args, n);

While these methods accomplish the task, one problem with them is that the mnemonic is
hard-coded in the widget, while the label is not. Consider the following resource
specification in a resource file:

*Exit.labelString: Quit

This resource sets the label for the item button to “Quit”, but since the mnemonic for the
button is hard-coded to “x”, there is visual feedback, and the mnemonic itself is counter-
intuitive.

The best way to handle this situation is to specify both the label string and the mnemonic
in the same place: a resource file or application code. For example:

*Exit.labelString: Exit
*Exit.mnemonic: x

Setting both of these resources in the same way helps ensure that an application has a
consistent interface.

Accelerators
The purpose of menu accelerators is to provide the user with the ability to activate menu
items in a PulldownMenu without having to display the menu at all. In Figure 19-1, the Quit
menu item displayed the accelerator Ctrl+C to indicate that the user could press the
CTRL-C keyboard sequence to activate that menu item and quit the application.

To install a accelerator on a menu item, use the XmNaccelerator resource to specify the
accelerator translation and XmNacceleratorText to provide visual feedback to the user.
*These resources are defined by the Label class, but they only work for PushButtons and

* A side effect of the implementation of Motif accelerators is that you cannot install your own accelerators using
the standard methods provided by the X Toolkit Intrinsics (such as XtInstallAccelerators() or XtIn-
stallAllAccelerators()).These functions will not work, and you may interfere with the Motif accelerator
mechanism by attempting to use them.

Motif Programming Manual 611

Chapter 19: Menus

ToggleButtons in menus. The syntax for the accelerator is exactly the same as for a
translation table, except that you do not specify an action function with the event sequence.
The accelerator for the Quit button in Figure 19-1 is specified as "Ctrl<Key>C" . (For
information on how to specify translation tables, see Volume 4, X Toolkit Intrinsics
Programming Manual.

However, the string that is displayed for the accelerator is not the same as the accelerator
translation because it would be confusing for most users. Instead, you should display
something like "̂ C" , "Ctrl-C" , or "Ctrl+C" , as these make it reasonably clear what the
user is expected to type. (The latter is the convention recommended by the Motif Style
Guide, though all three forms are frequently used.) Since this resource specifies displayable
text, you cannot use a common C string; the text must be given as a compound string.

For example, the following code demonstrates how to install an accelerator for the Exit
button in Example 19-5.

XmString accel_text = XmStringCreateLocalized ("Ctrl+C");
...
n = 0;
XtSetArg (args[n], XmNaccelerator, "Ctrl<Key>C"); n++;
XtSetArg (args[n], XmNacceleratorText, accel_text); n++;
push_b = XmCreatePushButtonGadget (file_w, "Exit", args, n);
XmStringFree (accel_text);

As with mnemonics, the resources for the accelerator itself and the text used to display the
accelerator can either be set directly in application code or specified in a resource file. Both
of the resources should be specified in the same way, so that they are always consistent.

The Help Menu
Motif specifies various ways for the user to get help. She can use the HELP or F1 keys on
the keyboard, the Help button in a dialog box, or the Help title on the MenuBar. This title
provides the highest level of help for your application, so it should not provide too much
detail about lower-level functions in the program. When you create a PulldownMenu for

Chapter 19: Menus

612 Motif Programming Manual

this title, it should provide items that give the user access to the help system. Figure 19-9
shows a common Help menu.

The choices shown in Figure 19-9 are recommended by the Motif Style Guide; if they apply
to your application, you should use them.There is usually an item on the Help menu that
gives the user a brief overview of how to use the help system. You should consult the Motif
Style Guide for details on what kind of help each of the above selections should provide. It
is usually a good idea to have an item that displays an index of the type of help that is
available in an application. An example of help index dialog is shown in Figure 19-10. See
Chapter 27, Advanced Dialog Programming, for a discussion of help dialogs.

Figure 19-9: A Help menu from the MenuBar

Figure 19-10: A Help index dialog

Motif Programming Manual 613

Chapter 19: Menus

Creating a Help menu is just like creating any other menu, except that once you have
created the CascadeButton, you should set the XmNmenuHelpWidget resource for the
MenuBar. This resource specifies which CascadeButton is placed to the far right in the
MenuBar, which is where the Style Guide states that the Help menu must be positioned.
Example 19-6 contains a routine that demonstrates how to build a Help menu and attach it
to the MenuBar. In this example, we present an alternate approach to creating MenuBar
titles and their associated PulldownMenus.

Example 19-6. The BuildHelpMenu() routine

void BuildHelpMenu (Widget menu_b)
{

void do_help(Widget, XtPointer, XtPointer);
Widget help_m, widget;
Arg args[4];
int i, n;
static char *h_items[] = { "On Context", NULL, "On Help", "On Window",

"On Keys", "Index", "Tutorial", "On Version" };

/* Help menu */
help_m = XmCreatePulldownMenu (menu_b, "HelpPullDown", NULL, 0);

n = 0;
XtSetArg (args[n], XmNsubMenuId, help_m); n++;
widget = XmCreateCascadeButton (menu_b, "Help", args, n);
XtManageChild (widget);

/* tell the MenuBar that this is the help widget */
XtVaSetValues (menu_b, XmNmenuHelpWidget, widget, NULL);

/* Now add the menu items to the pulldown menu */
for (i = 0; i < XtNumber (h_items); i++) {

if (h_items[i] != NULL) {
widget = XmCreatePushButtonGadget (help_m, h_items[i],

NULL, 0);
XtAddCallback (widget, XmNactivateCallback, do_help,

(XtPointer) h_items[i]);
}
else

widget = XmCreateSeparatorGadget (help_m, "sep", NULL, 0);

XtManageChild (widget);
}

}

Much of the work required to create a PulldownMenu is involved in creating the menu
items. We can optimize the code by using a loop that creates individual items based on the
names provided in a static array. If you want to add a new help item to the list, you just need
to add its name to the h_items list. A NULL entry causes a Separator gadget to be added
to the menu. In Example 19-6, we specify the same callback function for each item in the

Chapter 19: Menus

614 Motif Programming Manual

menu; the client_data is the same as the name of the menu item. In Section 19.4, we
expand on this approach to build arbitrary menus for the MenuBar.

Sensitivity
As we mentioned earlier, MenuBar titles and menu items should not be dynamically created
or destroyed. They may, however, be activated or deactivated using XtSetSensitive() .
When a CascadeButton or a menu item is insensitive, it is greyed out, and the user is unable
to display the associated menu or activate the menu item.

For CascadeButtons, insensitivity has the additional effect of preventing the user from
accessing any of the items on the associated menu, including access through mnemonics
and accelerators, since the menu cannot be displayed. The menu and all its items are
completely unavailable until the sensitivity of the CascadeButton is reset. An alternate way
to disable an entire menu is to set the PulldownMenu pane insensitive. This approach has
the advantage of still allowing the user to display the menu and see all the items, while
making the items unavailable.

For example, take an editor program. If the user is not editing a file, it doesn’t make sense
to have the Save item in the File menu selectable. Once the user starts editing a file, the
Save button is sensitized so that the user can select it. Since the user cannot select the item
until its sensitivity is reset, it is important that the application do so at the appropriate time.
Another less realistic example, but one that we can demonstrate, involves a menu item that
pops up a dialog. As long as that dialog is up, the user cannot reselect the menu item again.
For purposes of this demonstration, let’s say that the Open item pops up a
FileSelectionDialog and desensitizes itself. When the dialog is dismissed, the menu item is
re-sensitized.*

To implement this behavior, we specify a callback routine for the Open menu item that
creates a FileSelectionDialog and sets the item insensitive. We also specify a callback
routine for the dialog box that resets the menu item’s sensitivity. The code fragment in
Example 19-7 shows these callback routines.

Example 19-7. The reset_sensitive() and open_callback() routines

/* reset_sensitive() -- generalized routine that resets the
** sensitivity on the widget passed as the client_data parameter
** in a call to XtAddCallback().
*/
void reset_sensitive (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget reset_widget = (Widget) client_data;

* This behavior is not a great design. The dialog really should be cached, and the menu item should remain sen-
sitive. If the item is reselected, the dialog should be re-mapped or raised to the top of the window stack, if nec-
essary.

Motif Programming Manual 615

Chapter 19: Menus

XtSetSensitive (reset_widget, True);
}

/* open_callback() -- the callback routine for when the "Open"
** menu item is selected from the "File" title in the MenuBar.
*/
void open_callback (Widget menu_item, XtPointer client_data,

XtPointer call_data)
{

Widget dialog, parent = menu_item;

/* Get the window manager shell widget associated with item */
while (!XtIsWMShell (parent))

parent = XtParent (parent);

/* turn off the sensitivity for the Open button... */
XtSetSensitive (menu_item, False);

dialog = XmCreateFileSelectionDialog (parent, "files", NULL, 0);

/* Add callback routines to respond to OK button selection here. */
/* Make sure that if the dialog is popped down or destroyed, the
** menu_item’s sensitivity is reset.
*/
XtAddCallback (XtParent (dialog), /* dialog’s _parent_ */

XmNpopdownCallback, reset_sensitive, (XtPointer) menu_
item);

XtAddCallback (dialog, XmNdestroyCallback,
reset_sensitive, (XtPointer) menu_item);

XtManageChild (dialog);
}

The open_callback() function is called whenever the user activates the Open menu
item on the File menu. The first thing open_callback() does is find the nearest
WMShell widget associated with the menu item. We do not want the MenuShell here, as
we need a non-transient widget to act as the parent for the FileSelectionDialog. If the menu
item is used as the parent for the dialog, when the menu is popped down, the dialog is also
popped down because it is a secondary window.

We set the menu item’s sensitivity to False , which prevents the user from selecting the
item again. In order to be notified when the FileSelectionDialog is dismissed, we add
callback routines for XmNpopdownCallback and XmNdestroyCallback . In both cases,
the Open menu item needs to be reset so that the user can select it again. The only thing in
open_callback() is a callback function that opens the selected file when the user selects
the OK button. This functionality is beyond the scope of this chapter; see Chapter 6,
Selection Dialogs, for details.

Chapter 19: Menus

616 Motif Programming Manual

Tear-Off Menus
Motif provides a feature that allows menus to be torn off and placed in separate windows.
From the user’s perspective, tear-off menus make it easy to make repeated menu selections.
Normally, when the user posts a menu, it is only displayed until she makes a selection, and
then it is removed. If the menu has been torn off, however, it is displayed in a separate
window, and the user can make as many selections as she wants without having to repost it
each time.

Tear-off behavior is provided for all of the Motif menu types, but the behavior is disabled
by default. When tear-off functionality is enabled in a menu, the first item in the menu is a
tear-off button. The button displays a dashed line to indicate that the user can tear off the
menu, much as she would tear a coupon out of a newspaper. If the user selects the tear-off
button, the menu is placed in a separate window with limited window manager decorations.
The window can be moved, so the user can position it in a convenient location. The menu
remains torn off until the user cancels the menu by pressing the ESCAPE key within the
window.

Tear-off functionality is controlled by the XmNtearOffModel resource of the
RowColumn widget. This resource is only valid when the RowColumn is being used as a
PulldownMenu or a PopupMenu. The resource can have one of the following values:
XmTEAR_OFF_ENABLED or XmTEAR_OFF_DISABLED. By default, the resource is set to
XmTEAR_OFF_DISABLED, so if you want to provide tear-off functionality in the menus in
your application, you must set the resource for all of your menu panes. Figure 19-4 showed
a PulldownMenu both before and after being torn off.

You can use the following resource specification to enable tear-off functionality for all
menus:*

*tearOffModel: TEAR_OFF_ENABLED

Some applications use menus in such a way that they need to keep track of when the menu
is popped up and popped down. For example, an application might use some
ToggleButtons in a PulldownMenu to allow the user to set state variables for the program.
If the application also provides another interface for changing the variables, such as a
command-line, the application needs to know when the menu is popped up so that it can
make sure the ToggleButtons are set appropriately. If you think that your application state
may be affected by the user enabling tear-off functionality in her resource files, you should
either explicitly disable the feature in your code, or install some callbacks to keep track of
the tear-off state.

* Motif 1.2 does not install a resource converter for the XmNtearOffModel resource: you need to call XmRepTy-
peInstallTearOffModelConverter () manually. Motif 2.0 installs a converter for the type automatically,
and thus XmRepTypeInstallTearOffModelConverter () is deprecated in later versions of the toolkit.

Motif Programming Manual 617

Chapter 19: Menus

The RowColumn widget provides two callback resources that allow an application to keep
track of tear-off menus. The XmNtearOffMenuActivateCallback routine is called
when a menu is torn off; XmNtearOffMenuDeactivateCallback is called when the
torn-off menu is dismissed. These callbacks provide a way for you to perform any special
processing that is necessary for handling tear-off menus.

Motif also provides access to the tear-off button with the XmGetTearOffControl()
routine. This routine takes a menu pane and returns the widget ID of the tear-off button in
the menu, if there is one. Otherwise the routine returns NULL.The tear-off button has a
Separator-like appearance; you can specify its background, foreground, and top and bottom
shadow colors using the standard resources, as well as the XmNseparatorType resource.
You can also set these resources in a resource file using the name of the button, which is
TearOffControl .

In Motif 2.0 and later, the title of the dialog which contains the torn-off menu can be set
through the RowColumn resource XmNtearOffTitle . This resource is a compound
strings value, and you are referred to Chapter 25, Compound Strings, for more information
on.

General Menu Creation Techniques
Now we have addressed each of the fundamental elements of the MenuBar and the
resources used to provide the user with the appropriate feedback. Using this information,
we can generalize the way we build MenuBars, enabling us to create arbitrarily large
MenuBars and PulldownMenus using a substantially smaller amount of code.

In the examples that follow, we use many of the recommended elements for a standard
Motif MenuBar. You can adjust the algorithms and data structures to fit the needs of your
own application. Although we use hard-coded values for widget resources, this technique
is by no means a requirement, nor should it be construed as recommended usage. If you
choose to specify resources in a resource file, you should write an application defaults file
that contains the appropriate resource values.

Building Pulldown Menus
Let’s begin by identifying each of the attributes of a menu item:

• Label

• Mnemonic

• Accelerator

• Accelerator text

• Callback routine

Chapter 19: Menus

618 Motif Programming Manual

• Callback data

Using this information, we can construct a data structure that describes all of the important
aspects of a menu item. We define the MenuItem structure as follows:

typedef struct _menu_item {
char *label; /* the label for the item */
WidgetClass *class; /* pushbutton, label, separator,... */
char mnemonic; /* mnemonic; NULL if none */
char *accelerator; /* accelerator; NULL if none */
char *accel_text; /* to be converted to compound string */
void (*callback)(); /* routine to call; NULL if none */
XtPointer callback_data; /* client_data for callback() */

} MenuItem;

To create a PulldownMenu, all we need to do is initialize an array of MenuItem structures
and pass it to a routine that iterates through the array and creates the items using the
appropriate information. For example, the following declaration describes the elements for
a File menu:

MenuItem file_items[] = {
{"New", &xmPushButtonGadgetClass, 'N', NULL, NULL, do_open, NEW},
{"Open...", &xmPushButtonGadgetClass, 'O', NULL, NULL, do_open, OPEN},
{"Save", &xmPushButtonGadgetClass, 'S', NULL, NULL, do_save, SAVE},
{"Save As...", &xmPushButtonGadgetClass, 'A', NULL, NULL, do_save, SAVE_AS},
{"Print...", &xmPushButtonGadgetClass, 'P', NULL, NULL, do_print, NULL},
{"", &xmSeparatorGadgetClass, NULL, NULL, NULL, NULL, NULL},
{"Exit", &xmPushButtonGadgetClass, 'x', "Ctrl<Key>C", "Ctrl+C", do_quit,
NULL},
{NULL, NULL, NULL, NULL, NULL, NULL, NULL}
};

Each element in the MenuItem data structure is filled with default values for each menu
item. If a resource value is not meaningful, or is not going to be hard-coded, we initialize
the field to NULL. If you don’t need a callback function or client data for an item, the field
may be set to NULL. The only field that cannot be NULL in a valid entry is the widget class.
The final terminating NULL entry indicates the end of the list.

We have not specified any accelerators except for the Exit item. The Separator gadget is
completely unspecified, since none of the resources even apply to Separators. This design
makes modification and maintenance very simple. If you want to add an accelerator for the
Save item, all you need to do is change the appropriate fields in the data structure, instead
of having to search through the source code looking for where that item is created.

One particular point of interest is the way the WidgetClass field is initialized. It is
declared as a pointer to a widget class rather than just a widget class, so we initialize the
field with the address of the widget class variable that is declared in the widget’s header
file. The use of &xmPushButtonGadgetClass is one such example. The structure must
be initialized this way because the compiler requires a specific value in order to initialize a
static data structure. The xmPushButtonWidgetClass pointer does not have a value

Motif Programming Manual 619

Chapter 19: Menus

until the program is actually running, but the address of the variable does have a value.
Once the program is running, the pointer can be dereferenced to access the real PushButton
widget class.

Now we can write a routine that uses the MenuItem data structure to create a
PulldownMenu. The BuildPulldownMenu() function is shown in Example 19-8. The
routine loops through each element in an array of pre-initialized MenuItem structures and
creates menu items based on the information.

Example 19-8. The BuildPulldownMenu() routine

Widget BuildPulldownMenu (Widget parent, char *menu_title,
char menu_mnemonic, Boolean tear_off,
MenuItem *items)

{
Widget pulldown, cascade, widget;
int i, n;
XmString str;
Arg args[4];

pulldown = XmCreatePulldownMenu (parent, "_pulldown", NULL, 0);

if (tear_off)
XtVaSetValues (pulldown,

XmNtearOffModel, XmTEAR_OFF_ENABLED, NULL);

str = XmStringCreateLocalized (menu_title);
n = 0;
XtSetArg (args[n], XmNsubMenuId, pulldown); n++;
XtSetArg (args[n], XmNlabelString, str); n++;
XtSetArg (args[n], XmNmnemonic, menu_mnemonic); n++;
cascade = XmCreateCascadeButton (parent, menu_title, args, n);
XtManageChild (cascade);
XmStringFree (str);

/* Now add the menu items */
for (i = 0; items[i].label != NULL; i++) {

widget = XtVaCreateManagedWidget (items[i].label, *items[i].class,
pulldown, NULL);

if (items[i].mnemonic)
XtVaSetValues (widget, XmNmnemonic, items[i].mnemonic, NULL);

if (items[i].accelerator) {
str = XmStringCreateLocalized (items[i].accel_text);
XtVaSetValues (widget, XmNaccelerator, items[i].accelerator,

XmNacceleratorText, str, NULL);
XmStringFree (str);

}
if (items[i].callback)

XtAddCallback (widget, XmNactivateCallback, items[i].
callback, (XtPointer) items[i].callback_data);

}

return cascade;

Chapter 19: Menus

620 Motif Programming Manual

}

The function takes five parameters. parent is a handle to a MenuBar widget that must
have already been created, menu_title indicates the title of the menu, menu_mnemonic
specifies the mnemonic, tear_off indicates whether or not the menu can be torn off, and
items is an array of MenuItem structures.

The first thing the routine does is create a PulldownMenu. Since the name of this widget is
not terribly important, we use a predefined name, prefixed with an underscore, to indicate
that the name is not intended to be referenced in a resource file. This use of the underscore
is our own convention, by the way, not one adopted by the X Toolkit Intrinsics. We came
up with this “unwritten rule” because Xt has no such naming conventions for widgets that
do not wish to have their resources specified externally.

After creating the PulldownMenu, the routine creates the CascadeButton that acts as the
title for the menu on the MenuBar. The name of the widget is taken from the second
parameter, menu_title . The routine also sets the mnemonic and the XmNtearOffModel
resource at this point. All MenuBar titles should have mnemonics associated with them.

Now the function loops through the array of MenuItem structures creating menu items
until it finds an entry with a NULL name. We use this value as an end-of-menu indicator in
our initialization. When each widget is created, the mnemonic, accelerator, and callback
function are added only if they are specified in the MenuItem structure.

BuildPulldownMenu() must be called from another function that passes the appropriate
data structures and other parameters. In our design, this would be the routine that creates
the MenuBar itself. Example 19-9 shows the code for the CreateMenuBar() routine.
This simple function creates a MenuBar widget, calls BuildPulldownMenu() for each
menu, manages the MenuBar, and returns it to the calling function.

Example 19-9. The CreateMenuBar() routine

Widget CreateMenuBar (Widget MainWindow)
{

Widget mbar, widget;
Widget BuildPulldownMenu (Widget, char *, char, Boolean , MenuItem *);

mbar = XmCreateMenuBar (MainWindow, "MenuBar", NULL, 0);

(void) BuildPulldownMenu (mbar, "File", ’F’, True, file_items);
(void) BuildPulldownMenu (mbar, "Edit", ’E’, True, edit_items);
(void) BuildPulldownMenu (mbar, "View", ’V’, True, view_items);
(void) BuildPulldownMenu (mbar, "Options", ’O’, True, options_items);
widget = BuildPulldownMenu (mbar, "Help", ’H’, True, help_items);

XtVaSetValues (mbar, XmNmenuHelpWidget, widget, NULL);
XtManageChild (mbar);
return mbar;

}

Motif Programming Manual 621

Chapter 19: Menus

Each call to BuildPulldownMenu() passes an array of pre-initialized MenuItem
structures. The Help menu is a special case, so we set the XmNmenuHelpWidget resource
to let the MenuBar know which item it is. By setting the resource to the CascadeButton
returned by the function, the MenuBar knows that this button should be placed to the far
right. The only parameter to the CreateMenuBar() function is the MainWindow widget
that is the parent of the MenuBar that is returned.

Building Cascading Menus
We can add pullright menus to our menu creation methodology quite easily by adding to
the MenuItem data structure and making a slight modification to the
CreatePulldownMenu() function. As we learned from the simple menu creation
routines, a cascading menu is really a PulldownMenu that is associated with a
CascadeButton. We also know that we can attach a menu to a CascadeButton by setting the
XmNsubMenuId resource to the handle of the PulldownMenu. We begin by modifying the
MenuItem structure as follows:

typedef struct _menu_item {
char *label; /* the label for the item */
WidgetClass *class; /* pushbutton, label, separator... */
char mnemonic; /* mnemonic; NULL if none */
char *accelerator; /* accelerator; NULL if none */
char *accel_text; /* to convert to compound string */
void (*callback)(); /* routine to call; NULL if none */
XtPointer callback_data; /* client_data for callback() */
struct _menu_item *subitems; /* pullright menu items, if not NULL */

} MenuItem;

The new field at the end of the structure is a pointer to another array of MenuItem
structures. If this pointer is not NULL, the menu item has a cascading submenu that is
described by subitems . Example 19-10 shows an example of creating a cascading menu.
This program uses a modified version of BuildPulldownMenu() that calls itself to create
cascading menus.*

Example 19-10. The build_menu.c program

/* build_menu.c -- Demonstrate the BuildPulldownMenu() routine and
** how it can be used to build pulldown -and- pullright menus.
** Menus are defined by declaring an array of MenuItem structures.
*/

#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/DrawingA.h>
#include <Xm/CascadeBG.h>
#include <Xm/PushB.h>

* XtVaAppInitialize() is considered deprecated in X11R6.

Chapter 19: Menus

622 Motif Programming Manual

#include <Xm/PushBG.h>
#include <Xm/ToggleB.h>
#include <Xm/ToggleBG.h>

typedef struct _menu_item {
char *label; /* the label for the item */
WidgetClass *class; /* pushbutton, label, separator... */
char mnemonic; /* mnemonic; NULL if none */
char *accelerator; /* accelerator; NULL if none */
char *accel_text; /* to be converted to compound string */
void (*callback)(); /* routine to call; NULL if none */
XtPointer callback_data; /* client_data for callback() */
struct _menu_item *subitems; /* pullright menu items, if not NULL */

} MenuItem;

/* Pulldown menus are built from cascade buttons, so this function
** also includes pullright menus. Create the menu, the cascade button
** that owns the menu, and then the submenu items.
*/
Widget BuildPulldownMenu (Widget parent, char *menu_title,

char menu_mnemonic,
Boolean tear_off,
MenuItem *items)

{
Widget PullDown, cascade, widget;
int i;
XmString str;
Arg args[8];
int n;

PullDown = XmCreatePulldownMenu (parent, “_pulldown”, NULL, 0);

if (tear_off)
XtVaSetValues (PullDown,

XmNtearOffModel, XmTEAR_OFF_ENABLED, NULL);
str = XmStringCreateLocalized (menu_title);
n = 0;
XtSetArg (args[n], XmNsubMenuId, PullDown); n++;
XtSetArg (args[n], XmNlabelString, str); n++;
XtSetArg (args[n], XmNmnemonic, menu_mnemonic); n++;
cascade = XmCreateCascadeButtonGadget (parent, menu_title, args, n);
XtManageChild (cascade);
XmStringFree (str);

/* Now add the menu items */
for (i = 0; items[i].label != NULL; i++) {

/* If subitems exist, create the pull-right menu by calling this
** function recursively. Since the function returns a cascade
** button, the widget returned is used.
*/
if (items[i].subitems)

widget = BuildPulldownMenu (PullDown, items[i].label,
items[i].mnemonic, tear_off,
items[i].subitems);

Motif Programming Manual 623

Chapter 19: Menus

else
widget = XtVaCreateManagedWidget (items[i].label,

*items[i].class,
PullDown,
NULL);

/* Whether the item is a real item or a cascade button with a
** menu, it can still have a mnemonic.
*/
if (items[i].mnemonic)

XtVaSetValues (widget, XmNmnemonic, items[i].mnemonic, NULL);

/* any item can have an accelerator, except cascade menus. But,
** we don’t worry about that; we know better in our declarations.
*/
if (items[i].accelerator) {

str = XmStringCreateLocalized (items[i].accel_text);
XtVaSetValues (widget, XmNaccelerator, items[i].accelerator,

XmNacceleratorText, str, NULL);
XmStringFree (str);

}

if (items[i].callback) {
String resource;

if (XmIsToggleButton (widget) ||
(XmIsToggleButtonGadget (widget))

resource = XmNvalueChangedCallback;
else

resource = XmNactivateCallback;

XtAddCallback (widget, resource, items[i].callback,
(XtPointer) items[i].callback_data);

}
}

return cascade;
}

/* callback functions for menu items declared later... */
void set_weight (Widget widget, XtPointer client_data, XtPointer call_data)
{

int weight = (int) client_data;
printf (“Setting line weight to %d\n”, weight);

}

void set_color (Widget widget, XtPointer client_data, XtPointer call_data)
{

char *color = (char *) client_data;
printf (“Setting color to %s\n”, color);

}

void set_dot_dash (Widget widget, XtPointer client_data,
XtPointer call_data)

Chapter 19: Menus

624 Motif Programming Manual

{
int dot_or_dash = (int) client_data;
printf (“Setting line style to %s\n”, dot_or_dash? “dot” : “dash”);

}

MenuItem weight_menu[] = {
{ “ 1 “, &xmPushButtonGadgetClass, ‘1’, NULL, NULL, set_weight,

(XtPointer) 1, (MenuItem *) NULL },
{ “ 2 “, &xmPushButtonGadgetClass, ‘2’, NULL, NULL, set_weight,

(XtPointer) 2, (MenuItem *) NULL },
{ “ 3 “, &xmPushButtonGadgetClass, ‘3’, NULL, NULL, set_weight,

(XtPointer) 3, (MenuItem *) NULL },
{ “ 4 “, &xmPushButtonGadgetClass, ‘4’, NULL, NULL, set_weight,

(XtPointer) 4, (MenuItem *) NULL },
{ NULL. NULL, NULL, NULL, NULL, NULL, NULL, NULL }

};

MenuItem color_menu[] = {
{ “Cyan”, &xmPushButtonGadgetClass, ‘C’, “Alt<Key>C”, “Alt+C”,

set_color, (XtPointer) “cyan”, (MenuItem *) NULL },
{ “Yellow”, &xmPushButtonGadgetClass, ‘Y’, “Alt<Key>Y”, “Alt+Y”,

set_color, (XtPointer) “yellow”, (MenuItem *) NULL },
{ “Magenta”, &xmPushButtonGadgetClass, ‘M’, “Alt<Key>M”, “Alt+M”,

set color,(XtPointer) “magenta”, (MenuItem *) NULL },
{ “Black”, &xmPushButtonGadgetClass, ‘B’, “Alt<Key>B”, “Alt+B”,

set_color, (XtPointer) “black”, (MenuItem *) NULL },
{ NULL. NULL, NULL, NULL, NULL, NULL, NULL, NULL }

};

MenuItem style_menu[] = {
{ “Dash”, &xmPushButtonGadgetClass, ‘D’, NULL, NULL, set_dot_dash,

(XtPointer) 0, (MenuItem *) NULL },
{ “Dot”, &xmPushButtonGadgetClass, ‘o’, NULL, NULL, set_dot_dash,

(XtPointer) 1, (MenuItem *) NULL },
{ NULL. NULL, NULL, NULL, NULL, NULL, NULL, NULL }

};

MenuItem drawing_menus[] = {
{ “Line Weight”, &xmCascadeButtonGadgetClass, ‘W’, NULL, NULL, 0, 0,

weight_menu },
{ “Line Color”, &xmCascadeButtonGadgetClass, ‘C’, NULL, NULL, 0, 0,

color_menu },
{ “Line Style”, &xmCascadeButtonGadgetClass, ‘S’, NULL, NULL, 0, 0,

style_menu },
{ NULL. NULL, NULL, NULL, NULL, NULL, NULL, NULL }

};

main (int argc, char *argv[])
{

Widget toplevel, main_w, menubar, drawing_a;
XtAppContext app;
Arg args[4];
int n;

Motif Programming Manual 625

Chapter 19: Menus

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Create a MainWindow widget that contains a DrawingArea in
** its work window.
*/
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
main_w = XmCreateMainWindow (toplevel, “main_w”, args, n);
menubar = XmCreateMenuBar (main_w, “menubar”, NULL, 0);
BuildPulldownMenu (menubar, “Lines”, ‘L’, True, drawing_menus);
XtManageChild (menubar);

/* Create a DrawingArea -- no actual drawing will be done. */
n = 0;
XtSetArg (args[n], XmNwidth, 500); n++;
XtSetArg (args[n], XmNheight, 500); n++;
drawing_a = XmCreateDrawingArea (main_w, “drawing_a”, args, n);
XtManageChild (drawing_a);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The majority of this program is composed of the new version of BuildPulldownMenu()
and the menu and submenu declarations. All the menus and menu items are declared in
reverse order because the cascading menu declaration must exist before the menu is
actually referenced. The output of the program is shown in Figure 19-12.

All we have to do to get BuildPulldownMenu() to create a cascading menu is add code
that checks whether or not the current menu has a submenu. If it does, the routine calls itself
to create the submenu. Because the function creates and returns a CascadeButton, the return
value can be used as the menu item in the menu that is currently being built. We have to
create the cascading menu first because it has to exist before it can be attached to a
CascadeButton. Recursion handles this problem for us by creating the deepest submenus

Figure 19-12: Output of the build_menu program

Chapter 19: Menus

626 Motif Programming Manual

first, which ensures that all the necessary submenus are built before their CascadeButtons
require them.

We also added support for ToggleButtons to this version of BuildPulldownMenu() ,
even though our menus do not contain any ToggleButtons. The only change that we have
to make here involves the callback function. Since ToggleButtons have an
XmNvalueChangedCallback , while PushButtons have an XmNactivateCallback ,
we check the class of the item being added and specify the appropriate callback resource in
our call to XtAddCallback() .

Building Popup Menus
To further demonstrate the flexibility of our design and to exploit the similarities between
PulldownMenus, PopupMenus, and cascading menus, we can easily modify the
BuildPulldownMenu() routine to support any of these menu types. We only need to
specify a new parameter indicating which of the two menu types to use. Since Motif already
defines the values XmMENU_PULLDOWN and XmMENU_POPUP in <Xm/Xm.h>, we use those
values. We have also given the function a more generic name, BuildMenu() , as shown in
Example 19-11.*

Example 19-11. The BuildMenu() routine

Widget BuildMenu (Widget parent, int menu_type, char *menu_title,
char menu_mnemonic, Boolean tear_off, MenuItem *items)

{
Widget menu, cascade, widget;
int i;
XmString str;
Arg args[8];
int n;

if (menu_type == XmMENU_PULLDOWN)
menu = XmCreatePulldownMenu (parent, “_pulldown”, NULL, 0);

else {
n = 0;
XtSetArg (args[n], XmNpopupEnabled, XmPOPUP_AUTOMATIC_RECURSIVE);
n++;
menu = XmCreatePopupMenu (parent, “_popup”, args, n);

}

if (tear_off)
XtVaSetValues (menu, XmNtearOffModel, XmTEAR_OFF_ENABLED, NULL);

if (menu_type == XmMENU_PULLDOWN) {
str = XmStringCreateLocalized (menu_title);
n = 0;
XtSetArg (args[n], XmNsubMenuId, menu); n++;

* Automatic popup as provided by the toolkit is only available from Motif 2.0 onwards.

Motif Programming Manual 627

Chapter 19: Menus

XtSetArg (args[n], XmNlabelString, str); n++;
XtSetArg (args[n], XmNmnemonic, menu_mnemonic); n++;
cascade = XmCreateCascadeButtonGadget (parent, menu_title,

args, n);
XtManageChild (cascade);
XmStringFree (str);

}

/* Now add the menu items */
for (i = 0; items[i].label != NULL; i++) {

/* If subitems exist, create the pull-right menu by calling this
** function recursively. Since the function returns a cascade
** button, the widget returned is used.
*/
if (items[i].subitems)

widget = BuildMenu (menu, XmMENU_PULLDOWN,
items[i].label,
items[i].mnemonic,
tear_off,
items[i].subitems);

else
widget = XtVaCreateManagedWidget (items[i].label,

*items[i].class,
menu,
NULL);

/* Whether the item is a real item or a cascade button with a
** menu, it can still have a mnemonic.
*/
if (items[i].mnemonic)

XtVaSetValues (widget, XmNmnemonic, items[i].mnemonic, NULL);

/* any item can have an accelerator, except cascade menus. But,
** we don’t worry about that; we know better in our declarations.
*/
if (items[i].accelerator) {

str = XmStringCreateLocalized (items[i].accel_text);
XtVaSetValues (widget, XmNaccelerator, items[i].accelerator,
XmNacceleratorText, str, NULL);
XmStringFree (str);

}

if (items[i].callback) {
String resource;

if (XmIsToggleButton (widget) || (XmIsToggleButtonGadget
(widget))

resource = XmNvalueChangedCallback;
else

resource = XmNactivateCallback;

XtAddCallback (widget, resource, items[i].callback,
(XtPointer) items[i].callback_data);

}

Chapter 19: Menus

628 Motif Programming Manual

}

return (menu_type == XmMENU_PULLDOWN? cascade: menu);
}

All of the original functionality is maintained; we only added a few lines to support popup
menus. Namely, when XmMENU_POPUP is passed as the menu_type parameter, the
function XmCreatePopupMenu() is called, and the menu itself is returned. Otherwise the
routine returns a CascadeButton. If any of the menu items have cascading menus, we
continue what we were doing before for submenus.

Now we can build PopupMenus, but what we really need to talk about is when you should
use PopupMenus in an application. The Motif Style Guide has very little to say about when
and how popup menus should be used. One guideline is that PopupMenus should only be
used as a redundant means of activating application functionality, since they do not make
themselves apparent to the user. The single requirement is that PopupMenus use the third
mouse button, which leads to the question: how do you get the necessary events on an
arbitrary widget so that you can pop up a menu?

The design of PopupMenus in the Motif 1.2 toolkit requires you to dig into lower-level Xt
event-handling mechanisms in order to post a PopupMenu. In Motif 2.0 and later, this is
not necessary: we can set the XmNpopupEnabled resource to XmPOPUP_AUTOMATIC or
XmPOPUP_AUTOMATIC_RECURSIVE on the menu, and the toolkit does the rest. In
Example 19-11, we specified the value as XmPOPUP_AUTOMATIC_RECURSIVE so that
widgets in the hierarchy can inherit our popup menus: we may wish to display a popup
menu for a Gadget, and inherit the popup from the manager parent. If we need to choose
between a number of popup menus at any given point, we only need to register an
XmNpopupHandlerCallback on the widget where the popup is required. Example 19-12
demonstrates how to display a PopupMenu for an arbitrary widget.

In the example, we parent the popup menu off the RowColumn rowcol: pressing the 3rd
mouse button over either the PushButton widget or gadget children displays the menu. If
we only wanted to display the menu for the PushButton widget, we would parent the menu
off the button itself. This program uses the BuildMenu() routine from Example 19-11, so
we do not show it in this example.*

Example 19-11. The popups.c program

/* popups.c -- demonstrate the use of a popup menus in an arbitrary
** widget. Display two PushButtons. The second one has a popup

* XtVaAppInitialize() is considered deprecated in X11R6. There is no XmNpopupHan-
dlerCallback resource in Motif 1.2: an event handler must be installed in order
to display a popup menu., which means that Gadgets did not support popup menus.
in this version of the toolkit.

Motif Programming Manual 629

Chapter 19: Menus

** menu attached to it that is activated with the third
** mouse button.
*/

#include <Xm/LabelG.h>
#include <Xm/PushBG.h>
#include <Xm/PushB.h>
#include <Xm/ToggleBG.h>
#include <Xm/ToggleB.h>
#include <Xm/SeparatoG.h>
#include <Xm/RowColumn.h>
#include <Xm/FileSB.h>
#include <Xm/CascadeBG.h>

Widget toplevel;
extern void exit(int);
void open_dialog_box(Widget, XtPointer, XtPointer);

/* callback for pushbutton activation */
void put_string (Widget w, XtPointer client_data, XtPointer call_data)
{

String str = (String) client_data;
puts (str);

}

typedef struct _menu_item {
char *label;
WidgetClass *class;
char mnemonic;
char *accelerator;
char *accel_text;
void (*callback)();
XtPointer callback_data;
struct _menu_item *subitems;

} MenuItem;

MenuItem file_items[] = {
{"File Items", &xmLabelGadgetClass, NULL, NULL, NULL, NULL, NULL, NULL},
{"_sep1", &xmSeparatorGadgetClass, NULL, NULL, NULL, NULL, NULL, NULL},
{"New", &xmPushButtonGadgetClass, ’N’, NULL, NULL, put_string, "New", NULL},
{"Open...", &xmPushButtonGadgetClass, ’O’, NULL, NULL, open_dialog_box,
(XtPointer) XmCreateFileSelectionDialog, NULL},
{"Save", &xmPushButtonGadgetClass, ’S’, NULL, NULL, put_string, "Save", NULL},
{"Save As...", &xmPushButtonGadgetClass, ’A’, NULL, NULL, open_dialog_box,
(XtPointer) XmCreateFileSelectionDialog, NULL},
{"Exit", &xmPushButtonGadgetClass, ’x’, "Ctrl<Key>C", "Ctrl+C", exit, NULL,
NULL},
{NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL}
};

/* build_menu.c -- Demonstrate the BuildMenu() routine and
** how it can be used to build pulldown -and- pullright menus.
** Menus are defined by declaring an array of MenuItem structures.
*/

Chapter 19: Menus

630 Motif Programming Manual

/* Pulldown menus are built from cascade buttons, so this function
** also includes pullright menus. Create the menu, the cascade button
** that owns the menu, and then the submenu items.
*/
Widget BuildMenu (Widget parent, int menu_type, char *menu_title,

char menu_mnemonic, Boolean tear_off, MenuItem *items)
{

Widget menu, cascade, widget;
int i;
XmString str;
Arg args[8];
int n;

if (menu_type == XmMENU_PULLDOWN)
menu = XmCreatePulldownMenu (parent, "_pulldown", NULL, 0);

else {
n = 0;
XtSetArg (args[n], XmNpopupEnabled, XmPOPUP_AUTOMATIC_RECURSIVE);
n++;
menu = XmCreatePopupMenu (parent, "_popup", args, n);

}

if (tear_off)
XtVaSetValues (menu, XmNtearOffModel, XmTEAR_OFF_ENABLED, NULL);

if (menu_type == XmMENU_PULLDOWN) {
str = XmStringCreateLocalized (menu_title);
n = 0;
XtSetArg (args[n], XmNsubMenuId, menu); n++;
XtSetArg (args[n], XmNlabelString, str); n++;
XtSetArg (args[n], XmNmnemonic, menu_mnemonic); n++;
cascade = XmCreateCascadeButtonGadget (parent, menu_title,

args, n);
XtManageChild (cascade);
XmStringFree (str);

}

/* Now add the menu items */
for (i = 0; items[i].label != NULL; i++) {

/* If subitems exist, create the pull-right menu by calling this
** function recursively. Since the function returns a cascade
** button, the widget returned is used.
*/

if (items[i].subitems)
widget = BuildMenu (menu, XmMENU_PULLDOWN,

items[i].label,
items[i].mnemonic,
tear_off,
items[i].subitems);

else
widget = XtVaCreateManagedWidget (items[i].label, *items[i].

class, menu, NULL);

Motif Programming Manual 631

Chapter 19: Menus

/* Whether the item is a real item or a cascade button with a
** menu, it can still have a mnemonic.
*/
if (items[i].mnemonic)

XtVaSetValues (widget, XmNmnemonic, items[i].mnemonic, NULL);

/* any item can have an accelerator, except cascade menus. But,
** we don’t worry about that; we know better in our declarations.
*/
if (items[i].accelerator) {

str = XmStringCreateLocalized (items[i].accel_text);

XtVaSetValues (widget, XmNaccelerator, items[i].accelerator,
XmNacceleratorText, str, NULL);

XmStringFree (str);
}

if (items[i].callback) {
String resource;

if (XmIsToggleButton (widget) ||
XmIsToggleButtonGadget (widget))

resource = XmNvalueChangedCallback;
else

resource = XmNactivateCallback;

XtAddCallback (widget, resource, items[i].callback,
(XtPointer) items[i].callback_data);

}
}

return (menu_type == XmMENU_PULLDOWN)? cascade: menu;
}

main (int argc, char *argv[])
{

Widget button, rowcol, popup;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Build a RowColumn to contain two PushButtons */
rowcol = XtVaCreateManagedWidget ("rowcol", xmRowColumnWidgetClass,
toplevel, NULL);

/* The first PushButton is a gadget, just to show that the Motif 2.x
** popup routines work for Gadgets as well as widgets.
*/
button = XmCreatePushButtonGadget (rowcol, "Button 1", NULL, 0);
XtAddCallback (button, XmNactivateCallback, put_string, "Button 1");
XtManageChild (button);

Chapter 19: Menus

632 Motif Programming Manual

/* This PushButton is a widget.
*/
button = XmCreatePushButton (rowcol, "Button 2", NULL, 0);
XtAddCallback (button, XmNactivateCallback, put_string, "Button 2");
XtManageChild (button);

/* build the menu... */
popup = BuildMenu (rowcol, XmMENU_POPUP, "Stuff", NULL,

True, file_items);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* open_dialog_box() -- callback for some of the menu items declared
** in the MenuItem struct. The client data is the creation function
** for the dialog. Associate the dialog with the menu
** item via XmNuserData so we don’t have to keep a global and
** don’t have to repeatedly create one.
*/
void open_dialog_box (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget (*func)() = (Widget (*)()) client_data;
Widget dialog = NULL;

/* first see if this menu item’s dialog has been created yet */
XtVaGetValues (w, XmNuserData, &dialog, NULL);

if (!dialog) {
/* menu item hasn’t been chosen yet -- create the dialog.
** Use the toplevel as the parent because we don’t want the
** parent of a dialog to be a menu item.
*/
dialog = (*func)(toplevel, "dialog", NULL, 0);
XtVaSetValues (XtParent (dialog), XmNtitle, XtName (w), NULL);
XtVaSetValues (dialog, XmNautoUnmanage, True, NULL);

/* store the newly created dialog in the XmNuserData for the menu
** item for easy retrieval next time. (see get-values above.)
*/
XtVaSetValues (w, XmNuserData, dialog, NULL);

}
XtManageChild (dialog);

/* If the dialog was already open, XtPopup does nothing. In
** this case, at least make sure the window is raised to the top
** of the window tree (or as high as it can get).
*/
XRaiseWindow (XtDisplay (dialog), XtWindow (XtParent (dialog)));

}

Motif Programming Manual 633

Chapter 19: Menus

The output of the program is shown in Figure 19-13.

The program displays two PushButtons, one of which is a gadget and the other a widget. In
Motif 1.2, we would need to catch ButtonPress events by specifically asking for them
using XtAddEventHandler() . This routine requires a widget because it needs a window.
To add an event handler for a gadget, you would have to install it on the gadget’s parent,
which is a manager widget. Any time a ButtonPress event occurs in the manager, the
event handler would be called, so the event handler would have to check the coordinates of
the event and see if it happened within the boundaries of the gadget. In Motif 2.0 and later,
none of this is necessary: the toolkit does it all for us, and we only need to specify the
XmNpopupEnabled and XmNpopupHandlerCallback resources as required. Motif 1.2
code will still work, however: XtAddEventHandler() takes the following form:

void XtAddEventHandler (Widget w,
EventMask event_mask ,
Boolean nonmaskable ,
XtEventHandler proc ,
XtPointer client_data)

The widget parameter specifies the widget on which the event handler is to be installed,
while event_mask identifies the events that are being handled. We would specify
ButtonPressMask to indicate that we are interested in ButtonPress events. The
nonmaskable argument indicates whether or not the event handler should be called on
non-maskable events. We would specify False since we are not interested in the events.
The final arguments specify the event handler routine and the client data that is passed to
it. This routine would have to position the required popup menu (XmMenuPosition ()),
and display it (XtManageChild ()). These are now called by Motif for us internally. See
Volume 4, X Toolkit Intrinsics Programming Manual, for a complete list of event masks
and more detailed information about XtAddEventHandler() .

The RowColumn widget has a resource that you can set on PopupMenus called
XmNmenuPost, which allows you to specify an alternate button to post the menu.

Figure 19-13: Output of the popups program

Before After

Chapter 19: Menus

634 Motif Programming Manual

You may have noticed that the PopupMenu shown in Figure 19-13 has accelerators
associated with it. These accelerators only take effect if the input focus is in the widget that
contains the menu.

Building Option Menus
In this final section on generalized menu creation methods, we examine how to create
OptionMenus using the BuildMenu() function. In this case, the underlying function is
XmCreateOptionMenu() , which is another convenience routine provided by the Motif
toolkit. The routine creates a RowColumn widget that manages the Label and
CascadeButton widgets that define the OptionMenu, but we must create the actual
PulldownMenu ourselves. The final version of the BuildMenu() function is shown in
Example 19-12.

Example 19-12. The build_option.c program

/* build_option.c -- The final version of BuildMenu() is used to
** build popup, option, pulldown -and- pullright menus. Menus are
** defined by declaring an array of MenuItem structures as usual.
*/

#include <Xm/MainW.h>
#include <Xm/ScrolledW.h>
#include <Xm/PanedW.h>
#include <Xm/RowColumn.h>
#include <Xm/DrawingA.h>
#include <Xm/CascadeBG.h>
#include <Xm/ToggleB.h>
#include <Xm/ToggleBG.h>
#include <Xm/PushB.h>
#include <Xm/PushBG.h>

typedef struct _menu_item {
char *label; /* the label for the item */
WidgetClass *class; /* pushbutton, label, separator... */
char mnemonic; /* mnemonic; NULL if none */
char *accelerator; /* accelerator; NULL if none */
char *accel_text; /* to be converted to compound string */
void (*callback)(); /* routine to call; NULL if none */
XtPointer callback_data; /* client_data for callback() */
struct _menu_item *subitems;/* pullright menu items, if not NULL */

} MenuItem;

/* Build popup, option and pulldown menus, depending on the menu_type.
** It may be XmMENU_PULLDOWN, XmMENU_OPTION or XmMENU_POPUP. Pulldowns
** return the CascadeButton that pops up the menu. Popups return the menu.
** Option menus are created, but the RowColumn that acts as the option
** “area” is returned unmanaged. (The user must manage it.)
** Pulldown menus are built from cascade buttons, so this function
** also builds pullright menus. The function also adds the right
** callback for PushButton or ToggleButton menu items.

Motif Programming Manual 635

Chapter 19: Menus

*/
Widget BuildMenu (Widget parent, int menu_type, char *menu_title,

char menu_mnemonic, Boolean tear_off, MenuItem *items)
{

Widget menu, cascade, widget;
int i;
XmString str;
Arg args[4];
int n;

if (menu_type == XmMENU_PULLDOWN || menu_type == XmMENU_OPTION)
menu = XmCreatePulldownMenu (parent, “_pulldown”, NULL, 0);

else if (menu_type == XmMENU_POPUP) {
n = 0;
XtSetArg (args[n], XmNpopupEnabled, XmPOPUP_AUTOMATIC_RECURSIVE);
n++;
menu = XmCreatePopupMenu (parent, “_popup”, args, n);

}
else {

XtWarning (“Invalid menu type passed to BuildMenu()”);
return NULL;

}

if (tear_off)
XtVaSetValues (menu, XmNtearOffModel, XmTEAR_OFF_ENABLED, NULL);

/* Pulldown menus require a cascade button to be made */
if (menu_type == XmMENU_PULLDOWN) {

str = XmStringCreateLocalized (menu_title);
n = 0;
XtSetArg (args[n], XmNsubMenuId, menu); n++;
XtSetArg (args[n], XmNlabelString, str); n++;
XtSetArg (args[n], XmNmnemonic, menu_mnemonic); n++;
cascade = XmCreateCascadeButtonGadget (parent, menu_title,

args, n);
XtManageChild (cascade);
XmStringFree (str);

}
else if (menu_type == XmMENU_OPTION) {

/* Option menus are a special case, but not hard to handle */
str = XmStringCreateLocalized (menu_title);
n = 0;
XtSetArg (args[n], XmNsubMenuId, menu); n++;
XtSetArg (args[n], XmNlabelString, str); n++;

/* This really isn’t a cascade, but this is the widget handle
** we’re going to return at the end of the function.
*/
cascade = XmCreateOptionMenu (parent, menu_title, args, n);
XmStringFree (str);

}

/* Now add the menu items */

Chapter 19: Menus

636 Motif Programming Manual

for (i = 0; items[i].label != NULL; i++) {
/* If subitems exist, create the pull-right menu by calling this
** function recursively. Since the function returns a cascade
** button, the widget returned is used.
*/

if (items[i].subitems) {
if (menu_type == XmMENU_OPTION) {

XtWarning (“You can’t have submenus from option menus.”);
continue;

}
else {

widget = BuildMenu (menu, XmMENU_PULLDOWN,
items[i].label,
items[i].mnemonic,
tear_off,
items[i].subitems);

}
}
else {

widget = XtVaCreateManagedWidget (items[i].label,
*items[i].class, menu, NULL);

}

/* Whether the item is a real item or a cascade button with a
** menu, it can still have a mnemonic.
*/

if (items[i].mnemonic)
XtVaSetValues (widget, XmNmnemonic, items[i].mnemonic, NULL);

/* any item can have an accelerator, except cascade menus. But,
** we don’t worry about that; we know better in our declarations.
*/

if (items[i].accelerator) {
str = XmStringCreateLocalized (items[i].accel_text);
XtVaSetValues (widget, XmNaccelerator, items[i].accelerator,

XmNacceleratorText, str, NULL);
XmStringFree (str);

}
if (items[i].callback) {

String resource;

if (XmIsToggleButton (widget) ||
XmIsToggleButtonGadget (widget))

resource = XmNvalueChangedCallback;
else

resource = XmNactivateCallback;

XtAddCallback (widget, resource, items[i].callback,
(XtPointer) items[i].callback_data);

}
}

Motif Programming Manual 637

Chapter 19: Menus

/* for popup menus, just return the menu; pulldown menus, return
** the cascade button; option menus, return the thing returned
** from XmCreateOptionMenu(). This isn’t a menu, or a cascade button!
*/

return (menu_type == XmMENU_POPUP? menu: cascade);
}

MenuItem drawing_shapes[] = {
{ “Lines”, &xmPushButtonGadgetClass, ‘L’, NULL, NULL, 0, 0, NULL },
{ “Circles”, &xmPushButtonGadgetClass, ‘C’, NULL, NULL, 0, 0, NULL },
{ “Squares”, &xmPushButtonGadgetClass, ‘S’, NULL, NULL, 0, 0, NULL },
{ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }

};

main (int argc, char *argv[])
{

Widget toplevel, main_w, pane, sw, drawing_a, menu,
option_menu;

Arg args[4];
int n;
XtAppContext app;
XtWidgetGeometry geom;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

main_w = XmCreateMainWindow (toplevel, “main_w”, NULL, 0);

/* Use a PanedWindow widget as the work area of the main window */
pane = XmCreatePanedWindow (main_w, “pane”, NULL, 0);

/* create the option menu -- don’t forget to manage it. */
option_menu = BuildMenu (pane, XmMENU_OPTION, “Shapes”, ‘S’, True,

drawing_shapes);
XtManageChild (option_menu);

/* Set the OptionMenu so that it can’t be resized */
geom.request_mode = CWHeight;
XtQueryGeometry (option_menu, NULL, &geom);
XtVaSetValues (option_menu, XmNpaneMinimum, geom.height,

XmNpaneMaximum, geom.height, NULL);

/* The scrolled window (which contains the drawing area) is a child
** of the PanedWindow; its sibling, the option menu, cannot be resized,
** so if the user resizes the toplevel shell, *this* window will resize.
*/
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
sw = XmCreateScrolledWindow (pane, “sw”, args, n);

/* Create a DrawingArea -- no actual drawing will be done. */

Chapter 19: Menus

638 Motif Programming Manual

n = 0;
XtSetArg (args[n], XmNwidth, 500); n++;
XtSetArg (args[n], XmNheight, 500); n++;
drawing_a = XmCreateDrawingArea (sw, “drawing_a”, args, n);
XtManageChild (drawing_a);

XtManageChild (sw);
XtManageChild (pane);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

There are two particularly interesting features of this program. First, of course, is the
modification of the BuildMenu() function. As the comments in the code indicate, the
function now fully supports all of the Motif menu types.We use
XmCreatePulldownMenu() to create the menu pane that is posted from the
CascadeButton of the OptionMenu.This menu pane is attached to the OptionMenu by
setting the XmNsubMenuId as usual. As we loop through the menu items that are to be
placed in the menu, we prevent the creation of a pullright menu in an OptionMenu, as
cascading menus are not allowed in OptionMenus.

When BuildMenu() is used to create an OptionMenu, the function returns the
RowColumn widget that is returned by XmCreateOptionMenu() , even though it is not
really a CascadeButton as the variable name might indicate. The calling function needs the
RowColumn widget so that it can manage the OptionMenu by calling XtManageChild() .
(The call to XtManageChild() might be another automated part of BuildMenu() if you
want to modify it.)

The other interesting feature of the program is the layout of the MainWindow. The
MainWindow widget has a single PanedWindow widget as its child because we wish to
retain the vertical stacking relationship between the OptionMenu and the DrawingArea.
Another advantage of using the PanedWindow is that we can set the maximum and
minimum height of each pane. The user can resize the entire window using the window
manager, but we don’t want the OptionMenu to change size, so we allow the
ScrolledWindow to absorb the size fluctuations.

Summary
Menus are basically simple objects that provide the user with access to application
functionality. While the simple menu creation routines are handy for basic prototyping and
other simple application constructs, their usefulness is limited once you begin to develop
larger-scale applications.

We have described the design of a general menu creation routine, so it should be clear that
you only need two things to create an arbitrary number of menus: predefined arrays of

Motif Programming Manual 639

Chapter 19: Menus

MenuItem structures and the BuildMenu() function. Since initializing an array of
MenuItem objects is very simple, our method is convenient and also more powerful than
the simple menu creation routines. We have defined our own data type and generalized the
routine to build menus so that you can use and modify these functions however you like, to
conform to the needs of your application.

Exercises
This chapter could go on forever discussing more and more things you can do with menus.
However, the goal was to present you with the fundamental concepts and design
considerations behind menus. From this information, you should be able to teach yourself
new techniques that we haven’t touched upon.In that spirit, you should be able to do the
following exercises based on the material covered in this chapter.

1. Create a MainWindow widget that has a MenuBar that contains at least theFile, Edit,
andHelpmenus, an OptionMenu, and a PopupMenu that pops up from a DrawingArea
widget. First implement the menus using the simple menu creation routines, and then
implement them using theBuildMenu() function.

2. Initialize aMenuItem structure whose fields are all set toNULLexcept for the menu
items’ names, callback routines, and widget classes, and then write a resource file that
generates a usable menu.

3. Modify theMenuItem structure and theBuildMenu routine so that you can specify
the initial sensitivity for menu items.

4. Modify BuildMenu() to recognize when the menu it is about to build is a RadioBox.
You may choose to implement this behavior by passing a new parameter to the func-
tion or by examining the children in theMenuItem list to see if they are ToggleBut-
tons. You will need to modify theMenuItem structure by adding anotherBoolean
field to allow each element to indicate whether it is a radio button or a plain Toggle-
Button. See Chapter 4,The Main Window, for a discussion of RadioBoxes in menus.

Chapter 19: Menus

640 Motif Programming Manual

Motif Programming Manual 641

Chapter 1

In this chapter:
• Interclient Communication
• Shell Resources
• VendorShell Resources
• Handling Window Manager

Messages
• Session Management
• Customized Protocols
• Summary
• Exercises

20
Interacting With the

Window Manager
This chapter provides additional information on the relationship between shell widgets and
the window manager. In particular, it focuses on the Motif window manager, mwm,
although the information given pertains equally to the CDE desktop manager, as well as
other ICCCM-compliant managers. It discusses shell widget resources and describes how
to use functions in the Motif toolkit to add and modify window manager protocols.

This chapter provides technical details about how Motif applications can interact with the
window manager. It discusses when and how to interpret special window manager events
and client messages, how to set shell resources that act as hints to the window manager, and
how to add protocols for communication between the application and the window manager.
In the course of the discussion, we cover the major features of the X Toolkit Intrinsics’
WMShell widget class, which handles basic window manager communication, and Motif’s
VendorShell widget, which handles window manager events that are specific to the Motif
window manager (mwm), and the CDE desktop which is derived from it. In the discussions
which follow, wherever the text refers to mwm, you should assume that the CDE desktop
manager dtwm is also included unless otherwise stated. The majority of the differences
between the CDE desktop and the Motif window manager mwm are concerned with
consistency of visuals across platforms in any case, and do not overly affect the way in
which clients communicate using the standardized ICCCM mechanisms.

The material in this chapter is advanced; you should typically not interfere with the
predefined interactions between an application and the Motif window manager. When you
do so, you risk interfering with the uniform look and feel that is at the heart of a graphical
user interface such as Motif. However, the material in this chapter should provide you with
an understanding of some important concepts that may allow you to make your applications
more robust.This chapter also discusses the use of protocols and client messages for
window manager communication. These techniques can be used for communication
between instances of the same application or between suites of cooperating applications.

Chapter 20: Interacting with the Window Manager

642 Motif Programming Manual

Interclient Communication
The X Window System is designed so that any user-interface style can be imposed on the
display. The X libraries (Xlib and Xt) provide the mechanisms for applications to decide
for themselves how to display information and how to react to user-generated actions. It is
left up to graphical user interface specifications such as Motif to standardize most of these
decisions. However, in order to preserve a baseline of inter-operability, there are certain
standards that an application must conform to if it is to be considered a “good citizen” of
the desktop. These standards are referred to as interclient communication conventions.
While X makes no suggestions about the way an application should look or act, it does have
a lot to say about how it interacts with other applications on the user’s display.

One such convention is that all applications must negotiate the sizes and positions of their
windows with the window manager, rather than with one another. The window manager is,
in essence, the ultimate ruler of the desktop. While it is mostly benevolent, its primary
function is to prevent anarchy on the display. Communication with the window manager
has various forms. Applications can talk directly to the window manager, or the window
manager may initiate a conversation with an application. When the user selects a item from
the window menu or issues other window manager commands, he or she initiates
communication between the window manager and the application. Much of the
communication between the window manager and the application is carried on in terms of
properties and protocols.

A property is an arbitrary-length piece of data associated with a window. It is stored on the
server identified by a unique integer value called an Atom.*An application sets properties
on its windows as a way of communicating with the window manager or other applications.
Some properties are referred to as “window manager hints” because the window manager
doesn’t have to obey them. For example, an application can specify the preferred size of its
top-level window, but the window manager might use this value only in the absence of any
other instructions from the user.

A window manager protocol is an agreed-upon procedure for the exchange of messages
between the window manager and an application. Protocols are implemented with
ClientMessage events; the window manager sends an event to the application, and the
application takes the appropriate action. For example, a protocol exchange occurs when the
user selects Close from the window menu to close an application window.

There are low-level Xlib routines for setting and getting the value of window properties.
However, the various shell widgets provided by Xt and Motif define resources that access

* Atoms are used to avoid the overhead of passing property names as arbitrary-length strings. See Volume 1, Xlib
Programming Manual, and Volume 4, X Toolkit Intrinsics Programming Manual for a detailed discussion of
properties and atoms.

Motif Programming Manual 643

Chapter 20: Interacting with the Window Manager

most of the predefined properties of interest in window manager/application interaction.
These resources are the preferred interface to window properties.

The WMShell widget defines many of the generic properties that are used for
communication with the window manager. For example, you can use WMShell resources
to specify an icon pixmap and resize increment values. The VendorShell widget class is
defined by Xt as the widget class in which a vendor can define appearance and behavior
resources specific to its own window manager. As such, this widget class is customized by
every vendor of Xt-compatible toolkits. In the case of Motif, the VendorShell class
provides resources that control the layout and operation of the Motif window manager
decorations, and it supports the Motif window manager protocols.

You never instantiate WMShell or VendorShell widgets; they exist only as supporting
classes for other shells, such as TopLevelShells, SessionShells, and DialogShells*.
However, you frequently need to set WMShell and VendorShell resources on other types
of shell widgets. Remember that the MenuShell widget is not a subclass of VendorShell and
WMShell, so it does not have the same provisions for window manager interaction. You
can use the XtIsVendorShell() macro defined in <X11/Intrinsic.h>, to determine if a
widget is a subclass of VendorShell. Similarly, the XtIsWMShell() macro indicates
whether or not a widget is a subclass of WMShell. Once you have a handle to a shell widget,
you can specify both generic and Motif-resources for it.

Shell Resources
As discussed in Chapter 3, Overview of the Motif Toolkit, the WMShell widget class
handles standard window manager/application communications as established by the Inter-
Client Communications Conventions Manual (ICCCM). This document can be found in
Appendix L of Volume 0, X Protocol Reference Manual, by the X Consortium for all
interclient communication. Such conventions are necessary because the window manager
and a client application are two separate programs. Applications and window managers
need to follow these standards to maintain order in the X world.

To give you an idea of the kinds of properties in which the window manager is interested,
Table 20-1 shows a partial list of properties that are handled automatically by shells.

* The ApplicationShell widget class is considered deprecated in X11R6, and is superseded by the SessionShell.

Table 1-1. Some Window Manager Properties

Atom Meaning

WM_NAME The name of the window

WM_CLASS The class name of the window

WM_NORMAL_HINTS Information about the size of the window

Chapter 20: Interacting with the Window Manager

644 Motif Programming Manual

Xlib provides functions for modifying the values of these atoms on a window so that you
can change the visual appearance, size, position, or functionality of the window.*However,
the job of the WMShell is to hide this interface from the programmer by providing
resources that accomplish the same tasks. The next few sections describe how most of the
common resources can be used. While we do not cover all of the WMShell resources here,
most of the ones we have omitted are intuitive, so they do not require a great deal of
explanation. See the WMShell reference page in Volume 6B, Motif Reference Manual, for
a complete list of resources.

Shell Positions
You can position a shell at a specific location on the screen using the XmNx and XmNy
resources. In addition, you can set the XmNx and XmNy resources of the immediate child of
a shell widget to position the shell. This feature exists because Motif dialogs are designed
to make their shell widgets invisible to the programmer. It is typically easier to set these
resources directly on the child of a shell, as you are more likely to have a handle to that
widget. The following code fragment shows how you can position a MessageDialog in the
center of the screen:

Widget dialog, parent;
Dimension width, height;
Screen screen = XtScreen (parent);
Position x, y;

dialog = XmCreateMessageDialog (parent, "dialog", NULL, 0);
/* get width and height of dialog */
XtVaGetValues (dialog, XmNwidth, &width, XmNheight, &height, NULL);
/* center the dialog on the screen */
x = (WidthOfScreen (screen) / 2) - (width / 2);
y = (HeightOfScreen (screen) / 2) - (height / 2);
XtVaSetValues (dialog, XmNx, x, XmNy, y, NULL);

You can position a dialog in this way because the Motif BulletinBoard widget passes
positional information to its shell parent. See Chapter 5, Introduction to Dialogs, and
Chapter 7, Custom Dialogs, for further discussion. In most cases, you shouldn’t be setting
the XmNx and XmNy resources for a dialog because it is the job of the window manager to
position shells. The user can also have some say in how placement should be handled. For

WM_ICON_NAME The name of the icon for the window

WM_HINTS Information about the icon pixmap, icon
position, and input model for the window

* See Volume 0, Xlib Programming Manual, for complete details on the properties that can be set on windows;
see Volume 1, X Toolkit Intrinsics Programming Manual for details on how to set or get these properties.

Table 1-1. Some Window Manager Properties (continued)

Atom Meaning

Motif Programming Manual 645

Chapter 20: Interacting with the Window Manager

example, if the user has set the interactivePlacement resource for mwm to True , he
gets to place the window himself when it first appears. If you set the position of the window,
then you are interfering with the positioning method preferred by the user.

Shell Sizes
In some situations, an application may want to prevent one of its windows from growing or
shrinking beyond certain geometrical limits. For example, an application might want to
keep a dialog box from getting so small that some of its elements are clipped. A paint
application might want to restrict its top-level window from growing larger than the size of
its canvas. An application can also constrain the increments by which the user can
interactively resize the window. For example, xterm only allows itself to be resized in
character-size increments, where the character size is defined by the font being used.

The WMShell defines the following resources that can be used to constrain the size of a
window:

XmNminWidth XmNmaxWidth XmNminHeight XmNmaxHeight
XmNwidthInc XmNheightInc XmNbaseWidth XmNbaseHeight

The XmNminWidth , XmNmaxWidth, XmNminHeight , and XmNmaxHeight resources
specify the minimum and maximum width and height for the shell. The XmNwidthInc and
XmNheightInc resources control the pixel incrementals by which the window changes
when it is being resized by the user. When mwm provides visual feedback during a resize
operation, it specifies the width and height in terms of these increments, rather than pixels.
The XmNbaseWidth and XmNbaseHeight resources specify the base values that are used
when calculating the preferred size of the shell.

Example 20-1 demonstrates incremental resizing. The application displays a shell widget
that contains a PushButton. When you click on the button, it displays the sizeof the window
in pixels, but when you resize the window, the mwm feedback window displays the size in
terms of XmNwidthInc and XmNheightInc .*

Example 20-1. The resize_shell.c program

/* resize_shell.c -- demonstrate the max and min heights and widths.
** This program should be run to really see how mwm displays the
** size of the window as it is resized.
*/

#include <Xm/PushB.h>

main (int argc, char *argv[])
{

Widget toplevel, button;

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 20: Interacting with the Window Manager

646 Motif Programming Manual

XtAppContext app;
void getsize(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass,
XmNminWidth, 75,
XmNminHeight, 25,
XmNmaxWidth, 150,
XmNmaxHeight, 100,
XmNbaseWidth, 5,
XmNbaseHeight, 5,
XmNwidthInc, 5,
XmNheightInc, 5,
NULL);

/* PushButton's callback prints the dimensions of the shell. */
button = XmCreatePushButton (toplevel, "Print Size", NULL, 0);
XtManageChild (button);
XtAddCallback (button, XmNactivateCallback, getsize,

(XtPointer) toplevel);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void getsize (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget shell = (Widget) client_data;
Dimension width, height;

XtVaGetValues (shell, XmNwidth, &width, XmNheight, &height, NULL);
printf ("Width = %d, Height = %d\n", width, height);

}

In our example, we arbitrarily specify the minimum and maximum extents of the shell. The
width and height increments are each set to five, so the user can only resize the window in
five-pixel increments. As the window is resized, the feedback window displays the size
according to these incremental units, rather than using pixel values. If you run resize_shell,
you can press the PushButton to print the size of the shell in pixels and compare that size
with the size reported by the window manager. If you are going to specify the various size
resources for a shell, it only makes sense to hard-code the values as we have done here. If
you specify the resources in an app-defaults file, the user can override the settings, which
defeats the whole point of setting them.

The problem with specifying minimum and maximum extents is that most real applications
contain many components whose sizes cannot be computed easily, making it difficult to
determine exactly how large or small the window should be. If the fonts and strings for
PushButtons, Labels, and ToggleButtons can be set in a resource file, the equation becomes
far too difficult to calculate before the window is actually created and displayed.

Motif Programming Manual 647

Chapter 20: Interacting with the Window Manager

Incremental width and height values are even more difficult to estimate because there are
margins, border widths, and other resources to consider.

However, all is not lost. If you need to constrain the size of an application, you should
consider whether the application’s default initial size can be considered either its maximum
or minimum size. If so, you can allow the window to come up using default size and trap
for ConfigureNotify events on the shell widget. You can then use the default width and
height reported in that event as your minimum or maximum size, as demonstrated in
Example 20-2.*

Example 20-2. The set_minimum.c program

/* set_minimum.c -- demonstrate how to set the minimum size of a
** window to its initial size. This method is useful if your program
** is initially displayed at its minimum size, but it would be too
** difficult to try to calculate ahead of time what the initial size
** would be.
*/

#include <Xm/PushB.h>

void getsize(Widget, XtPointer, XtPointer);
void configure(Widget, XtPointer, XEvent *, Boolean *);

main (int argc, char *argv[])
{

Widget toplevel, button;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass,
XmNmaxWidth, 150,
XmNmaxHeight, 100,
XmNbaseWidth, 5,
XmNbaseHeight, 5,
XmNwidthInc, 5,
XmNheightInc, 5,
NULL);

/* Add an event handler to trap the first configure event */
XtAddEventHandler (toplevel, StructureNotifyMask, False, configure, NULL);

/* PushButton’s callback prints the dimensions of the shell. */
button = XmCreatePushButton (toplevel, "Print Size", NULL, 0);
XtManageChild (button);
XtAddCallback (button, XmNactivateCallback, getsize,

(XtPointer) toplevel);
XtRealizeWidget (toplevel);

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 20: Interacting with the Window Manager

648 Motif Programming Manual

XtAppMainLoop (app);
}

void getsize (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget shell = (Widget) client_data;
Dimension width, height;

XtVaGetValues (shell, XmNwidth, &width, XmNheight, &height, NULL);

printf ("Width = %d, Height = %d\n", width, height);
}

void configure (Widget shell, XtPointer client_data, XEvent *event,
Boolean *unused)

{
XConfigureEvent *cevent = (XConfigureEvent *) event;

if (cevent->type != ConfigureNotify)
return;

printf ("Width = %d, Height = %d\n", cevent->width, cevent->height);

XtVaSetValues (shell, XmNminWidth, cevent->width,
XmNminHeight, cevent->height, NULL);

XtRemoveEventHandler (shell, StructureNotifyMask, False, configure, NULL);
}

We use XtAddEventHandler() to add an event handler to the top-level shell for events
that satisfy the StructureNotifyMask , which includes ConfigureNotify events
indicating the window’s dimensions. The configure() function is called when the
window is initially sized, so we can use the width and height fields of the
XConfigureEvent structure as values for the XmNminWidth and XmNminHeight
resources for the shell. To prevent the event handler from being called each time the
window is resized, the event handler removes itself using XtRemoveEventHandler() .

One problem with this technique occurs when the user has the interactivePlacement
resource for mwm set to True . This specification allows the user to set the initial size and
position of an application. However, once the user sets the initial size, she will never be able
to make the window any smaller. Although interactive placement adheres to the constraints
we have set, it cannot enforce a minimum size because we have not set one. Unfortunately,
there is no way to allow interactive placement without allowing the user to resize the
window.

The Shell widget class defines the XmNallowShellResize resource that is inherited by
all of its subclasses. This resource specifies whether or not the shell allows itself to be
resized when its widget children are resized, but it does not affect whether the user can
resize the window. For example, if the number of items in a List widget grows, the widget
tries to increase its own size, which causes a rippling effect that eventually reaches the top-

Motif Programming Manual 649

Chapter 20: Interacting with the Window Manager

level window. If XmNallowShellResize is True for this shell, it grows, subject to the
window manager’s approval, of course. However, if the resource is False , the shell does
not even consult the window manager because it knows that it doesn’t want to resize. This
resource only prevents the shell from resizing after it has been realized, so it does not
interfere with the initial sizing of the shell.

The Shell’s Icon
Shells can be in one of three states: normal, iconic, or withdrawn. When a shell is in its
normal state, the user can interact with the user-interface elements in the expected way. If
a shell is withdrawn, it is still active, but the user cannot interact with it directly. When a
shell is iconic, its window is not mapped to the screen, but instead it displays a smaller
image, or icon, that represents the entire window. The application is still running in this
state, but the program does not expect any user interaction. The icon window usually
displays a visual image that suggests some connection to the window from which it came.
Some window managers, like mwm, also allow a label to be attached to the icon’s window.

The XmNiconPixmap resource specifies the pixmap that is used when an application is in
an iconic state. Example 20-3 shows a simple application that sets its icon pixmap.*

Example 20-3. The icon_pixmap.c program

#include <Xm/Xm.h>
#include <X11/bitmaps/mailfull>

main (int argc, char *argv[])
{

Widget toplevel;
XtAppContext app;
Pixmap bitmap;

XtSetLanguageProc (NULL, NULL, NULL);

/* size is irrelevant -- toplevel is iconified */
/* it just can't be 0, or Xt complains */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass,
XmNwidth, 100,
XmNheight, 100,
XmNiconic, True,
NULL);

bitmap = XCreatePixmapFromBitmapData (XtDisplay (toplevel)
RootWindowOfScreen (XtScreen (toplevel)),
(char *) mailfull_bits,
mailfull_width
mailfull_height,
1, 0, 1);

* XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 20: Interacting with the Window Manager

650 Motif Programming Manual

XtVaSetValues (toplevel, XmNiconPixmap, bitmap, NULL);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The program creates an ApplicationShell and sets the XmNiconic resource to True to
cause the application to appear iconified. The bitmap variable is initialized to contain the
bitmap described by the file /usr/include/X11/bitmaps/mailfull, and the XmNiconPixmap
resource for the shell is set to the bitmap.

When we set the XmNiconPixmap and XmNiconic resources, we are actually sending
hints to the window manager that we would like the icon window to display the given
pixmap and that we would like to be in the iconic state. These requests are called hints
because the window manager does not have to comply with the requests. However, if the
icon pixmap or iconic state is ignored, it is most likely a bug in the window manager, or an
incomplete implementation of one, which is often the case for older versions of many
window managers, including mwm (Version 1.0).

One work around for a window manager that ignores the icon pixmap is to set the
XmNiconWindow resource. This resource sets the entire icon window, rather than just its
image. In environments where the user may not be running the most up-to-date window
manager, it may be best to create the icon window directly and then paint an image in that
window. Example 20-4 contains a routine that demonstrates this technique.This routine
creates a shell’s icon window and can be called repeatedly to dynamically update its image.

Example 20-4. The SetIconWindow() routine.

void SetIconWindow (Widget shell, Pixmap image)
{

Window window, root;
unsigned int width, height, border_width, depth;
int x, y;
Display *dpy = XtDisplay (shell);

/* Get the current icon window associated with the shell */
XtVaGetValues (shell, XmNiconWindow, &window, NULL);

if (!window) {
/* If there is no window associated with the shell, create one.
** Make it at least as big as the pixmap we're
** going to use. The icon window only needs to be a simple window.
*/
if (!XGetGeometry (dpy, image, &root, &x, &y, &width, &height, &border_

width, &depth) ||
!(window = XCreateSimpleWindow (dpy, root, 0, 0, width, height,

(unsigned)0, CopyFromParent, CopyFromParent)))
{

XtVaSetValues (shell, XmNiconPixmap, image, NULL);
return;

}

Motif Programming Manual 651

Chapter 20: Interacting with the Window Manager

/* Now that the window is created, set it... */
XtVaSetValues (shell, XmNiconWindow, window, NULL);

}

/* Set the window's background pixmap to be the image. */
XSetWindowBackgroundPixmap (dpy, window, image);
/* cause a redisplay of this window, if exposed */
XClearWindow (dpy, window);

}

SetIconWindow() takes two parameters: a shell and an image . If the icon window for
shell has not yet been set, we create a window using XCreateSimpleWindow() . The
size of the window is set to the size of the image , which is retrieved with
XGetGeometry() . This function is used to get the size of the image, but it can be used on
windows as well. In the unlikely event that one of these routines fails, we fall back to using
XmNiconPixmap to specify the image and hope the window manager understands it.
Otherwise, we set the XmNiconWindow resource to the window we just created.

We use the image pixmap to set the window’s background pixmap, which saves us the
hassle of rendering it using XCopyArea() or XCopyPlane() . If the shell widget
already has an icon window, XSetWindowBackgroundPixmap() is still called so that
the specified image is displayed. The final call to XClearWindow() causes the icon to be
repainted. This call isn’t necessary if the window has just been created, but it is necessary
if the window is merely updated with a new image.

The XmNiconX and XmNiconY resources can be used to set the position of the icon window
on the screen. However, you probably shouldn’t set these resources arbitrarily without a
really good reason. Most window managers deal with positioning icon windows, or leave
the positioning for the user to specify, so it is best not to interfere.

The XmNtitle and XmNiconName resources specify the titles used for the application
window and the icon window, respectively. These resources are set to regular character
strings, not compound strings. These values are typically both set to the name of the
program,argv[0] , by default. The values also affect the WM_NAME property for the top-
level window, which is important for session managers and other applications that monitor
all top-level windows on a desktop. These programs look for the WM_NAME property to
provide menus or buttons that allow the user to control the desktop in a GUI-like fashion,
rather than through tty-like shells such as xterm and csh. It is best to let the user set the
XmNtitle and XmNiconName resources, especially since Xt provides command-line
options such as -name that can be used to set the title of an application.

VendorShell Resources
The VendorShell widget class is subclassed from WMShell, so all of the shell widget
classes subclassed from VendorShell can use the resources described in the previous

Chapter 20: Interacting with the Window Manager

652 Motif Programming Manual

section. All of the Motif shells except for MenuShell are subclassed from VendorShell. The
VendorShell is designed to be implemented by individual vendors so that they can define
resources specific to their own window manager. For example, mwm has some window
manager features that are not found in other window managers. You need to be familiar
with the Motif window manager in order to understand the discussion that follows.

Window Manager Decorations
The frame around an application’s main window belongs to the window manager; the
controls and window menu in it are not part of the application. The mwm window manager
decorations for an application window are shown in Figure 20-1.

The user can set mwm resources to control which of these items are available for particular
windows on the desktop. Also, mwm automatically controls which elements are visible for
certain windows, in order to maintain compatibility with the Motif Style Guide. As such,
we discourage you from modifying the decorations that are available on specific windows.
Nevertheless, the VendorShell does provide the XmNmwmDecorations resource for use in
exceptional cases. The resource can be set to an integer value that is made up of any of the
following values:

MWM_DECOR_BORDER
This value enables the window manager borders for the frame. These borders are dec-
orative only; they are not resize handles. Except for non-rectangular windows or pro-
grams like a clock, all Motif-style applications should have decorative borders.

Title Minimize Maximize
Buttonbuttonbar

Window
menu
button

Resize
corner

Vertical
resize
handle

Horizontal
resize
handle

Client
area

Figure 20-1: Motif window manager decorations

Motif Programming Manual 653

Chapter 20: Interacting with the Window Manager

MWM_DECOR_RESIZEH
This value enables the resize handles for the frame. If the resize handles are displayed,
the decorative borders are forced to be displayed.

MWM_DECOR_TITLE
This value enables the title bar for the window.

MWM_DECOR_MENU
This value enables the window menu button on the title bar. If this item is on, the title
bar is forced to be displayed.

MWM_DECOR_MAXIMIZE
This value makes the maximize button visible. When this button is selected, the win-
dow is expanded to the largest size possible. The size of the window is constrained by
the values forXmNmaxWidth andXmNmaxHeight . If these resources are not set, the
window is expanded to the size of the screen.

MWM_DECOR_MINIMIZE
This value makes the minimize button visible. This button does not shrink the window,
but rather iconifies it. This item is turned off by default for TransientShell widgets (di-
alogs), since they cannot be iconified separately from their parent shells.

MWM_DECOR_ALL
This value can be used to enable all of the window manager decorations.

All of these values are defined in <Xm/MwmUtil.h>, which must be included before any of
them may be used. The values are bit masks, so they are meant to be ORed together. For
example, if you have a customized dialog that you do not want to have resize handles, you
can turn them off as shown in the following code fragment:

Widget dialog_shell;
int decor;

XtVaGetValues (dialog_shell, XmNmwmDecorations, &decor, NULL);
decor &= ~MWM_DECOR_RESIZEH;
XtVaSetValues (dialog_shell, XmNmwmDecorations, decor, NULL);

While the programmatic interface is available to make changes in the form described
above, you really don’t have to resort to this level of complexity. If you want to do
something that is allowed by the Motif Style Guide, chances are that the Motif toolkit
provides a more convenient way of doing it. For example, you can turn off the resize
handles for a Motif dialog by setting the XmNnoResize resource to True , as shown in the
following code:

Widget dialog;
Arg args[5];
int n = 0;

XtSetArg (args[n], XmNnoResize, True); n++;
dialog = XmCreateFileSelectionDialog (parent, "dialog", args, n);

Chapter 20: Interacting with the Window Manager

654 Motif Programming Manual

If Motif doesn’t provide a convenience routine or a resource for doing what you want,
chances are good that you shouldn’t be doing it. On the other hand, you don’t have to use
the convenience method; if it seems appropriate, you can use the methods described here.

Window Menu Functions
The contents of the window menu can be modified using the XmNmwmFunctions resource
defined by the VendorShell. This resource acts like XmNmwmDecorations , in that the
value is an integer that may be set to one or more of the following values:

MWM_FUNC_RESIZE
This value enables theSizeitem in the window menu. If this value isn’t set, the resize
handles for the window manager frame are disabled.

MWM_FUNC_MOVE
This value enables theMovemenu item. Disabling this item does not affect the window
manager frame decorations for the window.

MWM_FUNC_MINIMIZE
This value enables theMinimizemenu item. Disabling this item causes the minimize
button to be disabled as well.

MWM_FUNC_MAXIMIZE
This value enables theMaximizemenu item. Disabling this item causes the corre-
sponding window frame decoration to be disabled.

MWM_FUNC_CLOSE
This value enables theClosemenu item. Disabling this item does not affect the win-
dow manager decorations for the window.

MWM_FUNC_ALL
This value causes all of the standard items in the menu to be displayed and all the de-
fault functionality of the window manager to work.

It is important to remember that the user can specify these window menu functions, as well
as new functions, in an .mwmrc file (See Motif Volume 3, X Window System User’s Guide,
Motif Edition). While your settings override any user specifications, you should only
modify the window menu functions if it is absolutely necessary. A common misuse of this
functionality is to disable the Close button. We strongly discourage disabling this button,
as users expect it to be in the window menu. Rather than disable the button, you should link
its functionality to another control in your application that has the same meaning. For
example, if you are using a standard Motif dialog that provides OK and Cancel buttons, you
can link the Close menu item to the Cancel button. We explain how to connect the
functionality of these components in the next section.

Motif Programming Manual 655

Chapter 20: Interacting with the Window Manager

Handling Window Manager Messages
A protocol is a set of rules that governs communication and data transfer. When the window
manager sends a message to an application that follows a predefined protocol, the client
application should respond accordingly. The ICCCM defines a number of protocols for
window managers and applications to follow. One such protocol involves the Close item in
the window menu. When the user selects this item, the window manager sends the
application a protocol message, and the application must comply. The message is delivered
through the normal event-handling mechanisms provided by Xlib. The event that
corresponds to this message is called a ClientMessage event. The message itself is an
Atom, which is merely a unique integer that is used as an identifier. (The actual value is
unimportant, since you only need to reference the value through the preprocessor macro,
WM_PROTOCOLS.) The protocol itself takes the form of other atoms, depending on the
nature of the message. Table 20-2 lists the atoms that are used as values for WM_
PROTOCOLS client messages. Although this table is currently complete, it is expected to
grow in future editions of the ICCCM.

Example 20-5 demonstrates how to use the WM_DELETE_YOURSELF protocol to link the
Close item on the window menu with the Cancel button in a dialog.*

Example 20-5. The wm_delete.c program.

/* wm_delete.c -- demonstrate how to bind the Close button in the
** window manager's system menu to the "cancel" button in a dialog.
*/

#include <Xm/MessageB.h>
#include <Xm/PushB.h>
#include <Xm/Protocols.h>

main (int argc, char *argv[])
{

Widget toplevel, button;
XtAppContext app;
void activate(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);

Table 1-2. Protocol Atoms Defined by the ICCCM

Atom Meaning

WM_TAKE_FOCUS The window is getting the input focus.

WM_DELETE_WINDOW The window is about to be deleted.

WM_SAVE_YOURSELF The application should save its internal state.

* XtVaAppInitialize () is considered deprecated in X11R6. XmMessageBoxGetChild () is deprecated from
Motif 2.0. XmInternAtom () is marked for deprecation from Motif 2.0.

Chapter 20: Interacting with the Window Manager

656 Motif Programming Manual

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

button = XmCreatePushButton (toplevel, "Push Me", NULL, 0);
XtManageChild (button);
XtAddCallback (button, XmNactivateCallback, activate, NULL);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Create and popup an ErrorDialog indicating that the user may have
** done something wrong. The dialog contains an OK and Cancel button,
** but he can still choose the Close button in the titlebar.
*/
void activate (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget dialog, shell;
void response(Widget, XtPointer, XtPointer);
XmString t = XmStringCreateLocalized ("Warning: Delete All Files?");
Atom WM_DELETE_WINDOW;
Arg args[5];
int n;

/* Make sure the VendorShell associated with the dialog does not
** react to the user's selection of the Close system menu item.
*/
n = 0;
XtSetArg (args[n], XmNmessageString, t); n++;
XtSetArg (args[n], XmNdeleteResponse, XmDO_NOTHING); n++;
dialog = XmCreateWarningDialog (w, "notice", args, n);
XmStringFree (t);
/* add callback routines for ok and cancel -- desensitize help */
XtAddCallback (dialog, XmNokCallback, response, NULL);
XtAddCallback (dialog, XmNcancelCallback, response, NULL);
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtManageChild (dialog);
/* Add a callback for the WM_DELETE_WINDOW protocol */
shell = XtParent (dialog);
WM_DELETE_WINDOW = XInternAtom (XtDisplay (w), "WM_DELETE_WINDOW", False);
XmAddWMProtocolCallback (shell, WM_DELETE_WINDOW, response, (XtPointer)

dialog);
}

/* callback for the OK and Cancel buttons in the dialog -- may also be
** called from the WM_DELETE_WINDOW protocol message sent by the wm.
*/
void response (Widget widget, XtPointer client_data, XtPointer call_data)
{

XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
Widget dialog;

if (cbs->reason == XmCR_OK)
puts ("Yes");

else
puts ("No");

Motif Programming Manual 657

Chapter 20: Interacting with the Window Manager

if (cbs->reason == XmCR_PROTOCOLS)
/* we passed the dialog as client data for the protocol callback */
dialog = (Widget) client_data;

else
dialog = widget;

XtDestroyWidget (dialog);
}

When you run the application and click on the button, a dialog is displayed. All the
application does is print “Yes” or “No” to standard output based on whether the OK or
Cancel button is pressed. However, if you select Close from the window menu for the
dialog, the dialog disappears, and the “No” message is printed.

When the user selects the Close item on the window menu, the application is sent a
ClientMessage event by the window manager indicating that the window is about to be
deleted. The value associated with the WM_PROTOCOLS message is WM_DELETE_WINDOW.
The application is now responsible for complying with the protocol in some way.

At the highest level of abstraction, the VendorShell resource XmNdeleteResponse can
be used to control what the application does in response to the user’s selection of the Close
button. The default behavior for a dialog is that the window is dismissed; the value
XmUNMAP is used, and the window is unmapped from the screen. By setting
XmNdeleteReponse to XmDESTROY, the window is destroyed; this value is the default for
ApplicationShells. However, if the resource is set to XmDO_NOTHING, the application
declares that it is going to handle the action itself.

In Example 20-5, we use this value to handle the WM_DELETE_WINDOW protocol ourselves
by setting up a callback routine that is called whenever the protocol is sent. But before we
can set up the callback, we have to get the atom associated with the WM_DELETE_WINDOW
protocol. We retrieve the atom using XInternAtom() , which takes the following form:

Atom XInternAtom (Display * display , char * atom_name, Boolean dont_create)

If the atom name described by the string atom_name exists, then the Atom is returned. If
it does not exist and if dont_create is True , the function returns None. Otherwise, the
routine creates and returns the atom.

Once we have the protocol atom, we can add a callback routine to respond to the client
message event generated by that protocol. The function XmAddWMProtocolCallback()
is used to install a callback routine invoked whenever the window manager sends a WM_
PROTOCOLS client message to the application. If the protocol sent in the client message
matches the protocol passed to XmAddWMProtocolCallback() , the associated function
is called. In Example 20-5, we use the response() routine as the callback for the dialog
buttons and the protocol. As a result, the Close item invokes the same callback as the OK
and Cancel buttons.

The form of this callback routine is the same as any other Motif callback. The final
parameter is a Motif-defined callback structure of some kind, where the reason field

Chapter 20: Interacting with the Window Manager

658 Motif Programming Manual

specifies why the callback was called. This field is provided because the same callback
function may be invoked by more than one widget. In our example, the response()
function’s callback structure may have one of three different values for reason : XmCR_OK
for the OK button, XmCR_CANCEL for the Cancel button, or XmCR_PROTOCOLS for the
Close button in the window menu. When the callback is invoked for the protocol message,
the event field of the callback structure is an XClientMessageEvent .

The widget parameter passed to response() also varies depending on whether the
routine is called from the dialog or from the Close button. When either OK or Cancel is
pressed, the widget is the dialog itself. But the protocol callback routines are really
processed by special protocol widgets that are attached to VendorShells.*When the
protocol callback is invoked, the widget field is one of the special widgets, but this widget
has no intrinsic meaning, so it can be ignored. We know that the activation of the WM_
DELETE_WINDOW protocol causes a protocol widget to be passed as the widget parameter.
Therefore, we pass a handle to the dialog widget as the client data to
XmAddWMProtocolCallback() so that we have access to the dialog.

The purpose, of course, is to destroy the window, but our function could just as easily veto
the operation and render the Close button inoperable. However, this technique is really not
appropriate, as users expect to be able to use the Close button to remove a window. If the
Close button is not going to unmap the window for some good reason, like an error, you
should report the error in another dialog. If you are going to modify the default behavior of
standard user-interface controls, you should keep the user informed about what you are
doing.

Adding New Protocols
In general, you can attach a callback routine to any of the published protocols using the
mechanisms we just described. You may also assign new protocols to send yourself special
messages that are pertinent only to your application, as protocol messages can be passed
from application to application, not just between the window manager and other clients.
Handling arbitrary protocols is basically a matter of following these simple steps:

1. Create an atom or retrieve one from the X server usingXInternAtom() .

2. Register the atom on the shell withXmAddWMProtocols() , so the event-handling
mechanism can recognize it if it should arrive.

3. Install a callback routine that is invoked when the protocol is sent to the application
usingXmAddWMProtocolCallback() .

* A shell can actually have any number of widget children, as long as only one of them is managed at a time. In
the case of the Motif VendorShell, these other widgets are not managed but are used to process and manage pro-
tocols that are exchanged between the window manager and the application.

Motif Programming Manual 659

Chapter 20: Interacting with the Window Manager

For the case of WM_DELETE_WINDOW, the second step has already been taken care of by the
VendorShell, since it is an established and standardized ICCCM protocol. The VendorShell
has already registered interest in the protocol so it can react to it in the method described
by its XmNdeleteResponse resource. However, other protocols (customized or not) may
not be registered. Since it doesn’t hurt to register a protocol with a window more than once,
it’s always a good practice to register the protocol using XmAddWMProtocols() , which
takes the following form:

void XmAddWMProtocols (Widget shell , Atom * protocols, int num_protocols)

This function takes a list of protocols, so you can use it to add as many protocols as you like
at one time.

Session Management
A session manager is an application that acts something like a window manager. However,
rather than controlling only the windows on a screen, it monitors the actual applications
running on that screen. Frequently, session managers allow the user to start, terminate, or
even restart any program automatically, through a variety of interface controls. Session
managers may even cause a program to “sleep” by terminating all its keyboard and mouse
input, so as far as the program is concerned, the user is just not interacting with it.

This section discusses one aspect of session manager behavior and how it might be
implemented. This behavior concerns the ability of an application running under the
session manager to restart itself at the point where it left off in a previous session. The
implementation focuses initially on the functionality inherent in the protocols defined by
the ICCCM, and proceeds to a discussion of the new features provided by the X11R6
SessionShell.

Session Management in X11R5
Under the scheme drafted prior to X11R6, if the session manager decides that it should
terminate (which might result in the entire X connection terminating), it may send a request
to all its applications to save their internal state so they can be restarted later. In this case,
the session manager sends a WM_SAVE_YOURSELF protocol message. According to the
ICCCM, client applications that can save their current state and restart from that state
should register the atom WM_SAVE_YOURSELF on the WM_PROTOCOLS property on one of
their top-level windows.

The ICCCM further stated that after sending the WM_SAVE_YOURSELF message to the
application, the session manager should wait until the program updates its WM_COMMAND
property on the same window that received the protocol message. The application was not
permitted to interact with the user in any way at this time. You were not supposed to prompt
for filenames or ask if the user wants to save state. The callback routine saved its current

Chapter 20: Interacting with the Window Manager

660 Motif Programming Manual

state somehow, possibly in a predefined file that could be made known to the user through
documentation, rather than a run-time message. It then updated the WM_COMMAND property
to reflect the parameters that started the program, as well as any additional parameters that
might be required to restart it.

For example, say your application is called wm_save and you want to be able to restart it
from a previously-saved file. In this case, your application might parse the following
command-line option:

% wm_save -restart filename

Example 20-6 contains a code fragment that demonstrates how you would implement this
functionality which is compatible with the X11R5 model.*

Example 20-6. The wm_save.c program

/* wm_save.c -- demonstrate how to save the state of an application
** from a WM_SAVE_YOURSELF session manager protocol. This is not a
** real program -- just a template.
*/

#include <Xm/Xm.h>
#include <Xm/Protocols.h>
#include <stdio.h>

/* save the original argc and argv for possible WM_SAVE_YOURSELF messages */
int save_argc;
char **save_argv;

main (int argc, char *argv[])
{

Widget toplevel;
XtAppContext app;
Atom WM_SAVE_YOURSELF;
void save_state();
char *restart_file;
int i;

/* save argc and argv values */
save_argv = (char **) XtMalloc (argc * sizeof (char *));
for (i = save_argc = 0; i < argc; i++) {

/* we don't need to save old -restart options */
if (!strcmp (argv[i], "-restart"))

i++; /* next arg is filename */
else {

char *copy = XtMalloc (strlen (argv[i]) + 1);
save_argv[save_argc++] = strcpy (copy, argv[i]);

}
}

* XtVaAppInitialize() is considered deprecated in X11R6. XInternAtom () is marked for deprecation from
Motif 2.0.

Motif Programming Manual 661

Chapter 20: Interacting with the Window Manager

XtSetLanguageProc (NULL, NULL, NULL);
/* initialize toolkit: argv has its Xt-specific args stripped */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, XmNwidth, 100,
XmNheight, 100, NULL);

/* get the WM_SAVE_YOURSELF protocol atom and register it with the
** toplevel window's WM_PROTOCOLS property. Also add a callback.
*/
WM_SAVE_YOURSELF = XInternAtom (XtDisplay (toplevel),

"WM_SAVE_YOURSELF", False);
XmAddWMProtocols (toplevel, &WM_SAVE_YOURSELF, 1);
XmAddWMProtocolCallback (toplevel, WM_SAVE_YOURSELF, save_state,

(XtPointer) toplevel);

/* create widgets... */
...
/* now check to see if we are restarting from a previously run state */
for (i = 0; i < argc; i++) {

if (!strcmp (argv[i], "-restart")) {
/* restarting from a previously saved state */
restart_file = argv[++i];

}
/* possibly process other args here, too */

}

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* called if WM_SAVE_YOURSELF client message was sent...
*/

void save_state (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget toplevel = (Widget) client_data;
/* hypothetical function */
extern char *SaveStateAndReturnFileName();
char *filename = SaveStateAndReturnFileName ();

puts("save_state()”);
save_argv = (char **) XtRealloc ((char *) save_argv,

(save_argc+2) * sizeof (char *));
save_argv[save_argc++] = "-restart";
save_argv[save_argc++] = filename;
/* notice the order of XSetCommand() args! */
XSetCommand (XtDisplay (toplevel), XtWindow (toplevel),

save_argv, save_argc);
}

This program registers the WM_SAVE_YOURSELF protocol using XmAddWMProtocols()
before it specifies the callback routine. If the session manager sends a WM_SAVE_
YOURSELF message to this program then the save_state() function is called, which

Chapter 20: Interacting with the Window Manager

662 Motif Programming Manual

causes the program to save its internal state using the function
SaveStateAndReturnFileName() . This is a hypothetical function that you would
write yourself to save the state of the program and return the filename that contains the state
information. The callback routine also adds the -restart flag and the new filename to the
saved argv from the beginning of the program. The function XSetCommand() is used to
set the WM_COMMAND property on the window associated with the top-level shell, which
fulfills the program’s obligation to the session manager.

For more information about session managers and the save-yourself communication
protocol, see Volume 0, X Protocol Reference Manual. For more details on
XSetCommand() and other Xlib-based functions that set and get window manager
properties on top-level windows, see Volume 1, Xlib Programming Manual, and Volume
2, Xlib Reference Manual.

Session Management in X11R6
X11R6 introduces the SessionShell widget class, which is specifically designed to
encapsulate the interaction between an application and the session manager. The
SessionShell is a subclass of the ApplicationShell; the ApplicationShell is now considered
obsolete.

Using the SessionShell, handling the interaction between the session manager and the
application no longer requires direct programming using the lower level window manager
protocols. It is simply a matter of setting some new resources, and providing new callbacks
where appropriate.

The SessionShell widget class is fully described in the Programmer’s Supplement for
Release 6 of the X Window System. Only the basics will be described here, in order to give
sufficient information to describe the X11R6 equivalent of the techniques described in the
previous X11R5 section. You are referred to the Supplement for further details.

Connecting to the Session Manager

The connection between the application and the session manager is established
automatically when you create a SessionShell. The internals of the communicating process,
and the messages passed backwards and forwards between the application and the session
manager in performing the initial handshake are beyond the scope of this chapter. For the
purposes of this chapter, it is simply sufficient to know that calling
XtVaOpenApplication () or XtOpenApplication (), passing the
sessionShellWidgetClass as a parameter, will establish the connection for us as a side effect
of creating our first toplevel shell.

Motif Programming Manual 663

Chapter 20: Interacting with the Window Manager

SessionShell Resources

The most important information which is passed between the session manager and the
application is the name of the command, and arguments, which are to be used by the session
manager to restart the application. This is specified using the XtNrestartCommand
resource. The resource is represented internally by an array of strings, and is initialized by
default from the argv , and argc parameters of the application which are passed to the
XtOpenApplication () or XtVaOpenApplication () call when creating the
SessionShell. For many applications, this default behavior may be considered sufficient to
recover the current state of the application. However, for many applications, the internal
state which changes due to various options or actions taken by the user may well result in
the need to modify the notional parameters passed to the application if that internal state is
to be recovered. Consider an editor, which edits files either passed to it on the command
line, and which dynamically opens files as a result of menu or other actions. We may need
to update the XtNrestartCommand resource as each new file is opened in the
application.

Recovering application state often involves considerably more than simply constructing an
array of command line arguments. We may need to take into account the current directory
in which the application was running at the time, or consider the state of environment
variables which affect application behavior, or even explicitly supply the path to the
application program. The SessionShell also supports these aspects of application recovery
through resources.

The application environment can be explicitly set using the XtNenvironment resource;
this is specified through a NULL-terminated array of strings. The default value is NULL, and
is not initialized in any way from the current environment settings: you must explicitly
program into the resource any environment which the application requires.

The current working directory can be specified through the XtNcurrentDirectory
resource. Again, this resource has a default value of NULL, and must be explicitly set if
required.

An explicit path to the application command can be specified through the XtNprogramPath
resource. Unlike XtNrestartCommand , this resource is not initialized from the
parameters passed to XtOpenApplication (), and the default value is NULL.

As well as specifying the restart behavior of our application, we can also inform the session
manager of any commands we may care to execute in order to tidy up the current
application before it exits. The XtNshutdownCommand resource specifies a command and
arguments to be called by the session manager after our application terminates.

A unique handle on the interaction between the session manager and the application is
available through the XtNsessionID resource. The exact syntax of the resource will not
be covered here - you are referred to the Supplement for more details of this. As far as we

Chapter 20: Interacting with the Window Manager

664 Motif Programming Manual

are concerned in the examples which follow, it will be used simply to inform the session
manager that we wish to restart our application in the same logical session in which it is
currently running. We do this simply by copying the value from the SessionShell (where it
was set up by the session manager) into part of the XtNrestartCommand array.

There is one other interesting resource which may be of use. This is the
XtNcloneCommand , which can be used to inform the session manager how the application
should be started in the general case. By default, if no XtNcloneCommand is specified, the
session manager will clone a new application using the XtNrestartCommand value.
Think of the difference between restart and clone as this: a restart command informs the
session manager how to recover as near as possible the current application state, but the
clone command just starts the application in the normal initial state.

Example 20-7 shows a specimen routine which resets the application restart parameters. It
can be considered as a logical equivalent of the save_state () routine from Exercise 20-
6. We ignore for the moment the problem of how this routine gets to be called in the new
scheme of things: this is covered in the following section on SessionShell callbacks.

Example 20-7. The set_session_restart() routine.

void set_session_restart (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget toplevel = (Widget) client_data;
/* hypothetical function */
extern char *SaveStateAndReturnFileName();
char *filename = SaveStateAndReturnFileName ();

puts("set_session_restart()");
save_argv = (char **) XtRealloc ((char *) save_argv,

(save_argc+3) * sizeof (char *));
save_argv[save_argc++] = "-restart";
save_argv[save_argc++] = filename;
save_argv[save_argc] = (char *) 0; /* NULL terminated */

XtVaSetValues (toplevel, XtNrestartCommand, save_argv, NULL);
}

SessionShell Callbacks

In the X11R5 model, we have to program the interchange between the session manager and
the application using protocols. In X11R6, we use SessionShell callbacks. Furthermore,
unlike the X11R5 model, we are allowed to interact with the user for whatever confirmation
or information we require. User interaction is however strictly controlled in the sense that
it should occur only at specific points in the interactions between the session manager and
the application.

There are six session management callbacks which can be used to program the various
stages of the interaction between the session manager and the application. Not all need to

Motif Programming Manual 665

Chapter 20: Interacting with the Window Manager

be programmed for the interactions to work - it all depends on the degree of sophistication
and error recovery required by the application to hand.

The most important callback is the XtNsaveCallback . This is used to perform actual
application state save. It should also initialise the XtNrestartCommand resource if the
application state has changed since the last time the session manager issued a request. The
code in Example 20-7 is entirely typical: it simply resets the XtNrestartCommand value
to reflect the current save file name. Note that the XtNsaveCallback is not supposed to
interact with the user. We would ensure that the XtNsaveCallback is active simply by
registering the routine using normal Xt means:

extern Widget sessionShell; /* The application top level */

XtAddCallback (sessionShell, XtNsaveCallback, set_session_restart, NULL);

Once an application has saved its state, it may or may not require notification from the
session manager that the message has been received and understood - that is, the session
manager has managed to process all changes to the XtNrestartCommand resources for
all the participating applications in the current session. The
XtNsaveCompleteCallback can be used if this part of the interaction is important. For
a typical application, it is not.

If the session manager or the application decides to terminate the save state request, any
handling of clean-up operations required should be programmed using an
XtNcancelCallback . Again, a typical application would not be over-concerned: it is
unlikely that you would want to unwind any save operations.

The session manager can request that the application kills itself: it would do this when the
session is closing down. The application can catch this request using an XtNdieCalback .
It should not attempt to interact with the user or save state in this callback, but simply exit
as cleanly as possible.

When the program does want to interact with the user, it should register an
XtNinteractCallback . Typically, this would be used to prompt the user for the name
of a file into which the application state is to be saved, or indeed to request user
confirmation as to whether she really does want the current application state saved at all.
The XtNinteractCallback does not create any graphical interface for the user
interaction - the programmer should create the message dialogs as appropriate inside the
callback.

The last SessionShell callback available to the programmer is the XtNerrorCallback ,
which would be used by mission-critical applications that need to be exactly informed of
errors in the session manager interaction.

All of the SessionShell callbacks receive as callback data an XtCheckPointToken . This
is a pointer to a data structure, the XtCheckPointTokenRec , defined as follows:

Chapter 20: Interacting with the Window Manager

666 Motif Programming Manual

typedef struct _XtCheckpointTokenRec {
int save_type;
int interact_style;
Boolean shutdown;
Boolean fast;
Boolean cancel_shutdown;
int phase;
int interact_dialog_type;
Boolean request_cancel;
Boolean request_next_phase;
Boolean save_success;
int type;
Widget widget;

} XtCheckpointTokenRec, *XtCheckpointToken;

The exact meaning of each of the elements is fully described in the Supplement. For our
purposes, we will confine ourselves to the following elements: save_success ,
request_cancel , cancel_shutdown , interact_style , and interact_dialog_
type .

The save_success element indicates whether the application was able to successfully
save its state. This should be set to TRUE or FALSE during the XtNsaveCallback
depending on circumstances.

The request_cancel element should be set to TRUE if the application wants to abort the
current save operation for any reason.

The cancel_shutdown element should be set to TRUE if the application wants to abort
the current shutdown operation for any reason.

The interact_style element is set by the session manager to inform the program
whether or not it is allowed to interact with the user. The possible values are:

SmInteractStyleNone
SmInteractStyleAny
SmInteractStyleErrors

The program should not attempt to interact with the user if the value is
SmInteractStyleNone , and should only interact with the user in the case of an internal
error if the style is SmInteractStyleErrors .

The interact_dialog_type is set by the programmer, and indicates back to the session
manager whether any popup dialogs which will be created by the program are for the
purposes of warning the user of an error, or if the dialog is an ordinary one for collecting
user information or confirmation. Possible values are:

SmDialogError SmDialogNormal

Motif Programming Manual 667

Chapter 20: Interacting with the Window Manager

Tokens

The session management system works by passing a logical token - an identifier
represented in the client by an XtCheckpointToken - between the manager and the various
applications participating in the session. Each application in turn holds the token as it
attempts to save its state. This token must be returned to the session manager at the
termination of each deferred save callback. That is, if you pop up a dialog to request
information from the user using an interact callback, the callbacks associated with this
dialog should return the token, not the interact callback itself. The routine
XtSessionReturnToken () is used to perform this task, and has the following functional
signature:

void XtSessionReturnToken (XtCheckpointToken token)

The token parameter is simply the data passed through to the given session callback. It is
also possible to fetch a token. What this means in the context of a session management
interaction is simply whether or not the session manager is currently in the process of
talking to (Checkpointing) the application. The routine XtSessionGetToken () returns a
token depending upon whether a current checkpoint operation is in force. It is formally
defined as follows:

XtCheckpointToken XtSessionGetToken (Widget sessionShell) *

 The routine returns NULL if the session manager does not have a checkpoint operation in
force.

It is very important that you remember to return the token in your session management
deferred callbacks, otherwise the session manager can hang awaiting a non-existent reply.

An Example

The code in Example 20-8 is a simple application which sets up various session callbacks
in order to save its state. The application does nothing more than display a spinbox: the state
to be saved is the current value of the spinbox.

Example 20-8. The session.c program

/* session.c - outlines the interactions with the session manager
*/

#include <stdio.h>
#include <Xm/Xm.h>
#include <Xm/RowColumn.h>
#include <Xm/SSpinB.h>
#include <Xm/MessageB.h>

* The Solaris (and other) manual pages for this routine list the function in the form

XtCheckpointToken XtSessionGetToken (Widget sessionShell , int type)

This is a bug: there is no type parameter.

Chapter 20: Interacting with the Window Manager

668 Motif Programming Manual

Widget toplevel, spin;

/* The command by which the session manager will restart this application */
char *restart_command[6] = {

NULL,
“-xtsessionID”,
NULL,
“-value”,
NULL,
NULL

};

/* The “OK” button is pressed in the popup interaction dialog */
/* This does not perform save-yourself actions - */
/* it informs the session manager that we need to do so */
static void msg_ok_callback(Widget w,

XtPointer client_data,
XtPointer call_data)

{
XtCheckpointToken token = (XtCheckpointToken) client_data;

/* Asks the session manager to call the save_callback */
token->save_success = True;
/* Return the token */
XtSessionReturnToken (token);

}

/* The “Cancel” button is pressed in the popup interaction dialog */
static void msg_cancel_callback(Widget w,

XtPointer client_data,
XtPointer call_data)

{
XtCheckpointToken token = (XtCheckpointToken) client_data;

/* Tells the session manager not to call the save_callback */
token->request_cancel = True;
token->save_success = False;
/* Return the token */
XtSessionReturnToken (token);

}

/* Interacts with the user during session shell operations */
static void interact_callback(Widget w,

XtPointer client_data,
XtPointer call_data)

{
static Widget message = (Widget) 0;
XtCheckpointToken token = (XtCheckpointToken) call_data;
XmString xms;
Arg args[8];
int n;

if (token->cancel_shutdown || token->interact_style == None) {

Motif Programming Manual 669

Chapter 20: Interacting with the Window Manager

token->save_success = False;
return;

}

if (message == (Widget) 0) {
n = 0;
xms = XmStringCreateLocalized (“Save Changes Before Quitting?”);
XtSetArg (args[n], XmNmessageString, xms); n++;

message = XmCreateQuestionDialog (toplevel, “message”, args, n);

XtUnmanageChild (XtNameToWidget (message, “Help”));

XtAddCallback (XtNameToWidget (message, “OK”), XmNactivateCallback,
msg_ok_callback, call_data);
XtAddCallback (XtNameToWidget (message, “Cancel”),
XmNactivateCallback, msg_cancel_callback, call_data);

}

XtManageChild (message);

/* Don’t return the token: we are still interacting with the user */
/* The token is returned at a deferred time in the message dialog */
/* callbacks */

}

/* Performs the session manager save-yourself actions */
/* That is, it sets up the XtNrestartCommand array as appropriate */
static void save_callback(Widget w,

XtPointer client_data,
XtPointer call_data)

{
XtCheckpointToken token = (XtCheckpointToken) call_data;
int spin_value;
char buf[20];

XtVaGetValues (spin, XmNposition, &spin_value, NULL);
(void) sprintf (buf, “%d”, spin_value);
restart_command[4] = buf;
XtVaSetValues (toplevel, XtNrestartCommand, restart_command, NULL);

if (token->interact_style != SmInteractStyleNone) {
if (token->interact_style == SmInteractStyleAny)

token->interact_dialog_type = SmDialogNormal;
else

token->interact_dialog_type = SmDialogError;

XtAddCallback (toplevel, XtNinteractCallback,
interact_callback, NULL);

}
}

/* Signals to the session manager that save completed successfully */
/* In this example, there is nothing to do */

Chapter 20: Interacting with the Window Manager

670 Motif Programming Manual

static void save_complete_callback(Widget w,
XtPointer client_data,
XtPointer call_data)

{
XtCheckpointToken token = (XtCheckpointToken) call_data;

}

/* Kills this application in response to session manager request */
static void die_callback(Widget w,

XtPointer client_data,
XtPointer call_data)

{
XtDestroyWidget (toplevel);
exit (0);

}

main (int argc, char *argv[])
{

XtAppContext app;
Arg args[16];
int i, n;
String smcid;
int spin_value = 0;

/* Parse the command-line arguments for -value nnn. */
for (i = 1; i < argc; i++) {

if ((strcmp (argv[i], “-value”) == 0) && (i < argc - 1)) {
spin_value = atoi (argv[++i]);

}
}

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtOpenApplication (&app, “Demos”, NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, args, n);

/* Set up the restart command */
XtVaGetValues (toplevel, XtNsessionID, &smcid, NULL);

restart_command[0] = argv[0];
restart_command[2] = XtNewString (smcid);
restart_command[4] = “0”;
XtVaSetValues (toplevel, XtNrestartCommand, restart_command, NULL);

/* Set up the session manager callbacks */
XtAddCallback (toplevel, XtNsaveCallback, save_callback, NULL);
XtAddCallback (toplevel, XtNcancelCallback,

save_complete_callback, NULL);
XtAddCallback (toplevel, XtNsaveCompleteCallback,

save_complete_callback, NULL);
XtAddCallback (toplevel, XtNdieCallback, die_callback, NULL);

n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;

Motif Programming Manual 671

Chapter 20: Interacting with the Window Manager

XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNposition, spin_value); n++;
XtSetArg (args[n], XmNminimumValue, 0); n++;
XtSetArg (args[n], XmNmaximumValue, 99); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;

spin = XmCreateSimpleSpinBox (toplevel, “spin”, args, n);

XtManageChild (spin);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of this program is given in Figure 20-2.

Customized Protocols
The previous section demonstrated how similar one protocol message is to the next in the
way they are added to a program. Adding a completely new protocol is not difficult either.
The only changes we have to make are those that would otherwise interfere with the
standard protocols and properties that are registered with the X protocol and ICCCM. To
avoid conflicts, the convention is to begin the name of non-standard atoms and window
properties with at least an underscore, and possibly a more detailed prefix that identifies the
atom as a private protocol or property. Accordingly, Motif provides the property _MOTIF_
WM_MESSAGES as a private atom specifically for Motif-based applications that wish to send
private messages to themselves or one another. Private does not mean that no one else can
see the messages; it just implies that the protocol is not publicly available for other third-
party applications to use, so don’t expect other programs on the desktop to participate in
the protocol.

Example 20-8 demonstrates how to register your own protocol with the shell and set up a
callback routine that is invoked when that protocol is delivered. Like Example 20-6, this
program is a skeletal frame only; it does not have any real functionality.*

Figure 20-2: Output of session program

Chapter 20: Interacting with the Window Manager

672 Motif Programming Manual

Example 20-8. The wm_protocols.c program

/* wm_protocol.c -- demonstrate how to add your own protocol to a
** shell. The nature of the protocol isn't important; however, it
** must be registered with the _MOTIF_WM_MESSAGES property on the
** shell. We also add a menu item to the window manager frame's
** window menu to allow the user to activate the protocol, if desired.
*/

#include <Xm/Xm.h>
#include <Xm/Protocols.h>
#include <stdio.h>

main (int argc, char *argv[])
{

Widget toplevel;
XtAppContext app;
Atom MOTIF_MSGS, MY_PROTOCOL;
void my_proto_callback(Widget, XtPointer, XtPointer);
char buf[64];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass,
XmNwidth, 100,
XmNheight, 100,
NULL);

/* get the MOTIF_MSGS and MY_PROTOCOL atoms */
MY_PROTOCOL = XInternAtom (XtDisplay (toplevel),

"_MY_PROTOCOL", False);
MOTIF_MSGS = XInternAtom (XtDisplay (toplevel),

"_MOTIF_WM_MESSAGES", False);
/* Add MY_PROTOCOL to the _MOTIF_WM_MESSAGES VendorShell-defined
** property on the shell. Add a callback for this protocol.
*/
XmAddProtocols (toplevel, MOTIF_MSGS, &MY_PROTOCOL, 1);
XmAddProtocolCallback (toplevel, MOTIF_MSGS, MY_PROTOCOL,

my_proto_callback, NULL);
/* allow the user to activate the protocol through the window manager's
** window menu on the shell.
*/
sprintf (buf, "MyProtocol _P Ctrl<Key>P f.send_msg %d", MY_PROTOCOL);
XtVaSetValues (toplevel, XmNmwmMenu, buf, NULL);

/* create widgets... */
...

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

* XtVaAppInitialize() is considered deprecated in X11R6. XmInternAtom () is marked for deprecation in
Motif 2.0.

Motif Programming Manual 673

Chapter 20: Interacting with the Window Manager

}

/* called if _MY_PROTOCOL was activated, a client message was sent...
*/
void my_proto_callback (Widget widget, XtPointer client_data,

XtPointer call_data)
{

puts ("My protocol got activated!");
}

This program is set up to receive the protocol _MY_PROTOCOL. If the message is sent, the
function my_proto_callback() is called, passing the appropriate client data and
callback structure as before. However, since we just made up the protocol, the only way it
can be delivered is by the window manager if (and only if) the user selects the new menu
item that we attached to the window menu, as shown in Figure 20-3.

The menu item is added using the XmNmwmMenu resource in the call to
XtVaSetValues() .The syntax of the value for the string used by the XmNmwmMenu
resource is described completely in the mwm documentation in Volume 6B, Motif
Reference Manual. Briefly, each of the arguments refers to a single entry in the menu that
is always added after the last standard protocol in the menu, which is usually the Close
button. The syntax for the resource is:

label [mnemonic] [accelerator] function

Only the label and the window manager function (mwm-specific) are required. The label is
always first; if a space needs to be embedded in the label, precede it by two backslashes.
The next token is parsed as a mnemonic if it starts with an underscore. If an accelerator is
given, the Motif toolkit parses this string and creates a corresponding accelerator text string
for the menu. Finally, the parser looks for a window manager function as described by the
mwm documentation. These include f.move , f.raise and f.send_msg , for example.
We use f.send_msg to tell mwm to send the specified client message to the application.

Figure 20-3: Output of wm_protocol program

Chapter 20: Interacting with the Window Manager

674 Motif Programming Manual

It is possible to deactivate a protocol on the window menu using
XmDeactivateWMProtocol() . Deactivation makes a protocol insensitive
(unselectable). Protocols may be reactivated by XmActivateWMProtocol() ; new
protocols are automatically activated when they are added XmActivateProtocol() and
XmDeactivateProtocol() perform an analogous function for non-window manager
protocols.

But what can you do with your own private protocol? These protocols can come in handy
if you want to attach any application-specific functionality to a window so that it can
communicate with similar applications on the desktop. For example, larger application
suites that contain multiple programs might need to communicate with one another through
this protocol. If a suite of painting, drawing, and desktop publishing products wanted to
pass document information to one another, they could pass messages using their own
protocol.Whether or not you allow the window manager (and thus the user) to participate
in the protocol can be controlled by whether you make the protocol handle available in the
window menu, as shown in Figure 20-2.

Advanced work with protocols is getting beyond the scope of this book. Further progress
requires Xlib-level code that you can research on your own by reading portions of Volume
1, Xlib Programming Manual. However, if you are interested in providing this kind of
functionality, you might consider the following design approach:

• When an application is interested in communicating via a private protocol, it should
place a property on its top-level windows that express this interest. For example, let’s
call this atom _MYAPP_CLIENT_PROP. The atom can be added to the WM_PROTOCOLS
property already on the window using XmAddWMProtocol() , just as we did earlier.
An application can also choose to use XChangeProperty() to actually use the atom
as the property itself; XChangeProperty() adds a new property to a window’s list
of existing properties.

• An application interested in seeking out other windows that have expressed interest in
_MYAPP_CLIENT_PROP can call XQueryTree() to start at the root window and
search all of its immediate children for those windows that have that property. The
function XGetWindowProperty() can be used to test for the existence of the
property itself.

• When an application finds a window that contains the property, it can use
XSendEvent() to send an XClientMessageEvent to that window. When sending
a client message, the application can either do what the Motif toolkit does and send a
WM_PROTOCOLS message, or it can just send the _MYAPP_CLIENT_PROP atom itself.
If the program uses the first technique, the data.l[0] field of the
XClientMessageEvent data structure contains the value WM_PROTOCOLS, and the
data.l[1] field contains _MYAPP_CLIENT_PROP.If the receiving window is part of
a Motif application that has registered a callback function for this protocol, the
function is invoked.*

Motif Programming Manual 675

Chapter 20: Interacting with the Window Manager

• If the sending application wishes to send any additional data to the receiving
application, it should either add or replace the receiving window’s _MYAPP_CLIENT_
PROP property and upgrade or change its value.

Remember, since this is your own private protocol, you can do whatever you like in the
correspondence process. If you wanted, you could specify that the receiving window would
always test for a newly-defined property on its window, and if that property is set, obtain
further information from the primary selection. Using this process, you could write your
own data transfer methods. However, whatever you come up with is strictly private, so no
other application can participate in your protocol unless you tell the developer of the other
application what to do.

You can place whatever information you like in properties: a string, an integer, or a data
structure. Just make sure that it’s not per-process information like a file descriptor. This
type of data cannot be shared among separate processes. You should also try not to make
the information host-specific because you are not guaranteed that both clients are going to
be running on the same computer, although they will be running on the same server. It is
also a good idea to avoid protocols that involve continuous chatting between programs.
Protocols are not a good method for doing interactive talk programs because the network
can’t handle that kind of traffic. To do this kind of communication, it is typically better to
establish your own TCP or STREAM connection between the two applications. You should
attempt to be as network-portable as possible, but this is your own personal protocol, so you
can do anything you like.

Summary
The best applications can still function adequately without a window manager. For
portability reasons, you should not assume that the user is running mwm. Except for dealing
with WM_DELETE_WINDOW protocol messages to handle the window menu’s Close button,
you should avoid interfering with the interaction between your applications and the
window manager. Despite this advice, many developers believe they know better and
attempt to redesign Motif on a per-application basis. If you attempt to go this route, be
aware of the guidelines provided by the Motif Style Guide and the ICCCM.

Client messages can be an extremely powerful tool for a large application with many top-
level windows that need to interact with each other. They can also be useful for larger
groups of similar applications by the same vendor that need to talk to one another. The
secret to making a private protocol work is establishing a good communication channel and
being able to transfer a lot of information without having to transfer a lot of data.

* Whether or not the receiving application is a Motif application, it can set up its own event handler to trap for the
client message.

Chapter 20: Interacting with the Window Manager

676 Motif Programming Manual

Exercises
These exercises are designed to help you understand the material that was presented in this
chapter.

1. Write a program that always places its error dialogs in the center of the screen.

2. Whenever a shell changes from normal state to iconic state, the window manager
changes the shell’sWM_STATEproperty. Write a program that gets thePropertyNo-
tify event generated from this state change so that you can track when a shell is icon-
ified and de-iconified. UseXtAddEventHandler() to register a routine that tracks
for the event in the same way we tracked forConfigureNotify events inset_mini-
mum.c

3. Write a program so that when the user selects theClosebutton from a window menu,
the shell iconifies itself if it is a TopLevelShell, and destroys itself if it is a DialogShell.

Motif Programming Manual 677

Chapter 1

In this chapter:
• Simple Clipboard Copy and

Retrieval
• Copy by Name
• Clipboard Data Formats
• The Primary Selection and the

Clipboard
• Implementation Issues
• Summary

21
The Clipboard

This chapter describes a way for the application to interact with other applications. Data is
placed on the clipboard, where it can be accessed by other windows on the desktop
regardless of the applications with which they are associated. From Motif 2.0 and onwards,
many of the functions and methods which are described here have been subsumed into the
Uniform Transfer Model, described in Chapter 23. Although not officially marked as
deprecated, the Motif Toolkit performs some of the housekeeping operations described in
this chapter internally to the model on behalf of the programmer.

Imagine a group of people in a room; the only way for them to communicate is by writing
messages on paper, placing the paper on a clipboard, and passing the clipboard around.
A single person acts as the moderator and holds the clipboard at all times. If someone
wants to post a note, she writes the message on a slip of paper and hands the message to
the moderator. The note is now available for anyone to read. However, those who read the
message do not remove the message from the clipboard; rather, they copy what was
written. There is no guarantee that anyone will want to look at any particular message, but
it is there nonetheless and will remain there until someone writes a new one.

This scenario is the concept behind the Motif clipboard: a data transfer mechanism that
enables widgets to make data available for other widgets, including those in separate
applications. Information of any size or type can be passed using the clipboard interface.
The most common example of this data transfer model is cut and paste, a method by which
the user can move or copy text between windows. Here, the user interacts with a Text
widget that contains some text that she wishes to transfer to another Text widget. The user
first selects the text she wants to transfer by clicking the left mouse button and dragging it
across the entire area to be copied. Then, she moves the pointer to the target widget and
pastes the text by clicking the middle mouse button.*

This action causes the text to appear to be copied to the new window. However, the text
does not actually move; it is copied to the clipboard, from which the second widget then

* This is the default cut and paste user model; the user may override it using resources or keyboard equivalents.
The actual method for performing this task is not the point of discussion here.

Chapter 21: The Clipboard

678 Motif Programming Manual

copies it into its own window. The original data may have been changed or destroyed since
it was sent to the clipboard, but that is of no concern to the second widget.

An object that wishes to place data on the clipboard or read data from it is called a client of
the clipboard (one of the people in our imaginary room). Since only one client may access
the clipboard at a time, whether it is storing or retrieving data, requesting access to the
clipboard implies “locking” it. If another widget already has locked the clipboard, the client
must wait and ask for it again later (after the current holder has “unlocked” it).

Now, imagine that the people in the room have all sorts of items besides text messages they
wish to make available for copy. Some may have pictures, records, tapes - anything. Their
“cargo” must be deliverable by the moderator to anyone who requests it. To deal with this
situation, the moderator must know what type of cargo she will be handling. Therefore,
certain information must be registered with the moderator before cargo may be sent or
received through the clipboard mechanism. Once a particular cargo type is registered,
anyone may post or request such cargo to or from the moderator.

In the Motif toolkit, different types of cargo are referred to as formats. With respect to the
X server and client applications, text messages are the most commonly used format of
clipboard messages and are therefore registered by default.* Application-specific data
structures must be registered separately, perhaps on a per-application basis. Once a new
data type is registered, even clients that exist on other computer architectures where data is
not represented identically (e.g., due to byte swapping) can use that data type, since the
clipboard registration handles the proper data conversion.

There are some situations where it is impractical to place complete information on the
clipboard. Some people’s cargo may be “too heavy” for the clipboard to hold indefinitely.
Other people may have perishables that don’t last very long. Still others may have
information that varies with the state of the world. For these cases, the person with the
special cargo may choose to leave only some information about their cargo rather than the
cargo itself. This information might include its weight, type, name and/or reference
number, for example. Potential recipients may then examine the clipboard and inquire
about the cargo without having to get it or even look at it. Only in the event that someone
else wishes to obtain the cargo is the original owner called upon to provide it.

In the Motif world, this scenario describes clipboard data that is available by name. For
example, if a client wishes to place an entire file on the clipboard, it might choose to register
the file by name without providing the actual contents unless someone requests it. This may
save a lot of time and resources, since it is possible that no one will request it. Referencing
data this way is very cheap and is not subject to expiration or obsolescence.

* There are also other types that are automatically registered, such as integers. A complete list is given in Section
21.3.

Motif Programming Manual 679

Chapter 21: The Clipboard

When posting messages by name, the client must provide the clipboard with a callback
function that returns the actual data. This callback function may be called by the Motif
toolkit at any time, provided another client requests the data. If the data is time-dependent
or subject to other criteria (someone removed or changed the file), the callback routine may
respond accordingly.

The Motif clipboard functions are based on X’s Inter-Client Communications Conventions
Manual (ICCCM). Knowledge of these conventions will aid greatly in your understanding
of how these functions are implemented. However, knowledge of the implementation is not
required in order to understand the concepts involved here or to be able to use the clipboard
effectively through Motif’s application interface. This chapter does not address many of the
issues involved with the ICCCM and the lower-level Xlib properties that implement them.
Rather, it only addresses the highest level of interaction provided by the Motif toolkit.

Also note that the clipboard is one of three commonly used mechanisms to support
interclient communication. There are also the primary and secondary selections, which are
similar in nature, but are handled differently at the application and user level.

The Motif 1.2 toolkit supports convenience routines that interact with clipboard selections
only. To use the other selection mechanisms, you have to use X Toolkit Intrinsics functions
discussed in Volume 4, X Toolkit Intrinsics Programming Manual. Note, however, that the
Text widget supports both mechanisms.

The Motif 2.1 toolkit handles primary and secondary selections in a more consistent
manner through the Uniform Transfer Model mechanisms. See Chapter 23 for more details.

Simple Clipboard Copy and Retrieval
To introduce the application programmer’s interface (API) for the clipboard functions, we
demonstrate how to handle simple copy and retrieval of text. The cut and paste functions
provided by the Text widgets handle copy and retrieval from the clipboard in the manner
we are about to describe; they also support interaction with the primary and secondary
selection mechanisms. However, as pointed out in Chapter 18, Text Widgets, these
functions are usually reserved for interactive actions taken by the user. Fortunately, Motif
provides many convenience functions that facilitate the task of dealing with the clipboard
for Text widgets. This section discusses the techniques used by the Text widget when it
interacts with the clipboard.

Let’s begin with the short program in Example 21-1. This program creates two PushButtons
that have complementary callback routines: to_clipbd() copies text to the clipboard and
from_clipbd() retrieves text from the clipboard. For this example, the text copied to the
clipboard is arbitrary; we happen to use a string that represents the number of times the
Copy to Clipboard button is pressed.*

Chapter 21: The Clipboard

680 Motif Programming Manual

Example 21-1. The copy_retrieve.c program

/* copy_retrieve.c -- simple copy and retrieve program. Two
** pushbuttons: the first places text in the clipboard, the other
** receives text from the clipboard. This just demonstrates the
** API involved.
*/

#include <Xm/CutPaste.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

static void to_clipbd(Widget, XtPointer, XtPointer);
static void from_clipbd(Widget, XtPointer, XtPointer);

main (int argc, char *argv[])
{

Widget toplevel, rowcol, button;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
/* Initialize toolkit, application context and session shell */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);
/* manage two buttons in a RowColumn widget */
rowcol = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);
/* button1 copies to the clipboard */
button = XmCreatePushButton (rowcol, "Copy To Clipboard", NULL, 0);
XtAddCallback (button, XmNactivateCallback, to_clipbd, "text");
XtManageChild (button);
/* button2 retrieves text stored in the clipboard */
button = XmCreatePushButton (rowcol, "Retrieve From Clipboard",
NULL, 0);
XtAddCallback (button, XmNactivateCallback, from_clipbd, NULL);
XtManageChild (button);
/* manage RowColumn, realize toplevel shell and start main loop */
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* copy data to clipboard. */
static void to_clipbd (Widget widget, XtPointer client_data,

XtPointer call_data)
{

long item_id = 0; /* clipboard item id */
int status;
XmString clip_label;
char buf[32];
static int cnt;

* XtVaAppInitialize() is considered deprecated in X11R6. The SessionShell is only available from X11R6
onwards.

Motif Programming Manual 681

Chapter 21: The Clipboard

Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);
char *data = (char *) client_data;

sprintf (buf, "%s-%d", data, ++cnt); /* make each copy unique */
clip_label = XmStringCreateLocalized ("to_clipbd");

/* start a copy -- retry till unlocked */
do

status = XmClipboardStartCopy (dpy, window, clip_label,
CurrentTime, NULL, NULL, &item_id);

while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data (buf) -- pass "cnt" as private id for kicks */
do

status = XmClipboardCopy (dpy, window, item_id, "STRING", buf,
(long) strlen (buf)+1, cnt, NULL);

while (status == ClipboardLocked);

/* end the copy */
do

status = XmClipboardEndCopy (dpy, window, item_id);
while (status == ClipboardLocked);

printf ("Copied \"%s\" to clipboard.\n", buf);
}

static void from_clipbd (Widget widget, XtPointer client_data,
XtPointer call_data)

{
int status;
long private_id;
char buf[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardRetrieve (dpy, window, "STRING", buf,

sizeof (buf), NULL, &private_id);
while (status == ClipboardLocked);

if (status == ClipboardSuccess)
printf ("Retrieved \"%s\" (private id = %d).\n", buf, private_id);

}

The program uses the header file <Xm/CutPaste.h> to include the appropriate function
declarations and various constants.* The to_clipbd() callback routine uses the
following clipboard functions to copy data to the clipboard:

* CutPaste.h is derived from the phrase “cut and paste,” which historically has been used to describe clipboard-
type operations.

Chapter 21: The Clipboard

682 Motif Programming Manual

XmClipboardStartCopy ()
XmClipboardCopy ()
XmClipboardEndCopy ()

Copying data to the clipboard is a three-phase process. Each of the functions locks the
clipboard so that other clients cannot access it. Since locking the clipboard is done on a per-
window basis, the object that locks the clipboard should have an associated window, which
means that gadgets may not work.* When the clipboard is locked, only requests from
objects with the same window ID can access the clipboard. Each time an object requests a
lock on the clipboard, a counter is incremented so that matching unlock requests can be
honored.

XmClipboardStartCopy() sets up internal storage for the copy to take place,
XmClipboardCopy() sends the data to the clipboard, and XmClipboardEndCopy()
frees the internal supporting structures. When copying data to the clipboard, including
copies by name, all three functions must be used.

The from_clipbd() callback routine uses XmClipboardRetrieveCopy() to retrieve
data from the clipboard. Only a single call is needed for the retrieval of short items, as in
this example. However, a three-step process similar to that for copying data to the clipboard
is required for the incremental retrieval of large amounts of data. We will cover these
functions shortly.

Copying Data
The syntax of the functions that copy data to the clipboard is outlined below. Due to the
intricacies involved in providing data to the clipboard, these functions take a larger number
of parameters than you might expect from the simple examples given so far. Later examples
should clarify the intended usage of these functions and their corresponding parameters.
Each of the routines takes a pointer to the Display and the Window associated with the
object making the clipboard request. These parameters may be derived from any widget or
gadget using XtDisplayOfObject() and XtWindowOfObject() .

XmClipboardStartCopy() takes the following form:

int XmClipboardStartCopy (Display * display ,
Window window ,
XmString label ,
Time timestamp ,
Widget widget ,
XmCutPasteProc callback ,
long * item_id)

* Gadgets happen to work in some cases because of their window-based widget parents. However, some of the
clipboard functions use XtWindow() rather than XtWindowOfObject() to get the window of an object.
These functions do not work for gadgets.

Motif Programming Manual 683

Chapter 21: The Clipboard

The widget and callback parameters are only used when registering data by name (see
Section 21.2). Although the label parameter is currently unused, its purpose is to label the
data so that certain applications can view the contents of the clipboard. The timestamp
identifies the server time when the cut took place (CurrentTime is the typical value). The
item_id parameter is filled in by the toolkit and is returned to the client for use in
subsequent clipboard function calls. This value identifies the item’s entry in the clipboard.

XmClipboardCopy() has the following form:

int XmClipboardCopy (Display * display ,
Window window ,
long item_id ,
char * format_name ,
XtPointer buffer ,
unsigned long length ,
long private_id ,
long * data_id)

XmClipboardCopy() copies the data in buffer to the clipboard. The format of the data
is described by the format_name parameter. This value is not a type, but a string
describing the type. For example, "STRING" indicates that the data is a text string. The
length parameter is the size of the data. Text strings can use strlen (data) .

The item_id parameter is the ID returned by XmClipboardStartCopy() . The data_
id parameter returns the format ID. You may pass NULL for this parameter if you are not
interested in the value, however you may need it for other functions. For example, you will
need it if you wish to withdraw an item from the clipboard. We will discuss this issue later
when we talk about registration by name. The private_id parameter is an arbitrary
number that is application-defined. The value is passed back to various functions, including
those that handle calling by name, so we will address it further in Section 21.2.

When copying is done, XmClipboardEndCopy() is called to free the internal data
structures associated with the clipboard item. The routine takes the following form:

int XmClipboardEndCopy (Display * display ,
Window window ,
long item_id)

The item_id parameter is the ID returned by the call to XmClipboardStartCopy() .

The clipboard copy functions return one of three status values: ClipboardSuccess ,
ClipboardLocked , or ClipboardFail . If the client is successful in gaining access to
the clipboard, the routine returns ClipboardSuccess . If another client is already
accessing the clipboard, the clipboard is locked and the client can loop repeatedly to
attempt to gain access.

Once a copy to the clipboard is complete, you can undo it using
XmClipboardUndoCopy() , which takes the following form:

int XmClipboardUndoCopy (Display * display , Window window)

Chapter 21: The Clipboard

684 Motif Programming Manual

You can remove an item that you have placed on the clipboard using
XmClipboardWithdrawFormat() . This routine is discussed in Section 21.2.1, Copying
Incrementally.

Retrieving Data
In Example 21-1, we retrieved the data stored on the clipboard using the function
XmClipboardRetrieve() . This function takes the following form:

int XmClipboardRetrieve (Display * display ,
Window window ,
char * format_name ,
char * buffer ,
unsigned long length ,
unsigned long * num_bytes ,
long * private_id)

When using XmClipboardRetrieve() , you must provide buffer space to retrieve the
data. In our example, we know that the data is not very large, so we declared buffer to
have 32 bytes, which is more than adequate. The length parameter tells the clipboard how
much space is available in buffer . The num_bytes parameter is the address of an
unsigned long variable. This value is filled in by XmClipboardRetrieve() to
indicate how much data it gave us. The private_id parameter is the address of a long ;
its value is the same as the private_id parameter passed to XmClipboardCopy() . You
can pass NULL as this parameter if you are not interested in it.

If the routine is successful in retrieving the data, it returns ClipboardSuccess . If the
clipboard is locked, the function returns ClipboardLocked . A rare internal error may
cause the function to return ClipboardFail . If the routine does not succeed, you can
choose to loop repeatedly to attempt to retrieve data.

One problem with XmClipboardRetrieve() occurs when there is more data in the
clipboard than buffer space to contain it. In this case, the function copies only length
bytes into buffer and sets num_bytes to the number of bytes it copied, which should be
the same value as length if not enough space is available. If this situation arises, the
function returns ClipboardTruncate to indicate that it did not copy everything that is
available. Since we cannot just arbitrarily specify a larger data space without knowing how
much data there is, we have two choices: query the clipboard to find out how much data
there is or copy the data incrementally. There are advantages and disadvantages to each
method. Let’s start by discussing incremental retrieval.

To do an incremental retrieval, we need to introduce two functions:
XmClipboardStartRetrieve() and XmClipboardEndRetrieve() . These
functions are similar to the start and end copy functions discussed earlier.
XmClipboardStartRetrieve() takes the following form:

int XmClipboardStartRetrieve (Display * display ,

Motif Programming Manual 685

Chapter 21: The Clipboard

Window window ,
Time timestamp)

This function locks the clipboard and notes the timestamp . Data placed on the clipboard
after this time is considered invalid and the function returns ClipboardFail . The
constant CurrentTime is typically used as this value.*

XmClipboardStartRetrieve() also allocates internal data structures to support the
incremental retrieval operation. Once the function is called, multiple calls to
XmClipboardRetrieve() can be made until it returns ClipboardSuccess . While the
routine returns ClipboardTruncate , more data needs to be read and you should continue
to call the function. Be careful to save the data that has already been retrieved before the
next call to the function, or you may overwrite the old data and lose information.

Once all of the data has been retrieved, call XmClipboardEndRetrieve() , which takes
the following form:

int XmClipboardEndRetrieve (Display * display , Window window)

This function unlocks the clipboard and frees the internal data structures. Example 21-2
shows a callback routine that retrieves data from the clipboard incrementally. The from_
clipbd_incr() routine could replace the from_clipbd() callback routine in Example
21-1.

Example 21-2. Incrementally retrieving data from the clipboard

static void from_clipbd_incr (Widget widget, XtPointer client_data,
XtPointer call_data)

{
int status;
unsigned total_bytes;
unsigned long received;
char *data = NULL, buf[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardStartRetrieve (dpy, window, CurrentTime);

while (status == ClipboardLocked);

/* initialize data to contain at least one byte. */
data = XtMalloc (1);
total_bytes = 1;
do {

/* retrieve data from clipboard -- if locked, try again */
status = XmClipboardRetrieve (dpy, window, "STRING", buf,

sizeof (buf), &received, NULL);
/* reallocate data to contain enough space for everything */

* It is also common to provide the timestamp found in an event structure when available. This technique is typi-
cally used when the clipboard retrieval is initiated as a result of an action or callback routine where an event
structure is available.

Chapter 21: The Clipboard

686 Motif Programming Manual

if (!(data = XtRealloc (data, total_bytes + received))) {
XtError ("Can't allocate space for data");
break; /* XtError may or may not return */

}
/* copy buf into data. strncpy() does not NULL terminate */
strncpy (&data[total_bytes-1], buf, received);
total_bytes += received;

} while (status == ClipboardTruncate);

if (data)
data[total_bytes] = 0; /* NULL terminate */

if (status == ClipboardSuccess)
printf ("Retrieved \"%s\" from clipboard.\n", data);

status = XmClipboardEndRetrieve (dpy, window);
}

The callback routine works regardless of the amount of data held by the clipboard. If the
client placed an entire file on the clipboard, the routine would read all of it in 32-byte
increments. It is probably wise to use a larger block size when retrieving data
incrementally; the constant BUFSIZ* is a good default choice.

The primary advantage of using the incremental retrieval method is that you do not need to
allocate a potentially large amount of memory at one time. By segmenting memory, you
can reuse some of it, or even discard it as each increment is read. This technique is
especially useful if you are scanning for specific data and you have no intention of actually
saving everything that you retrieve.

Querying the Clipboard for Data Size
The problem with incremental retrieval is that numerous round trips to the server may be
necessary in order to obtain the entire contents of the clipboard. If you intend to save every
bit of information you retrieve, the most economical way to handle the retrieval is by
reading everything in one fell swoop. A single call to XmClipboardRetrieve() is more
convenient than the three-step process involving locking the clipboard.

However, as pointed out earlier, we have a problem since we do not know how much data
there is to read. The solution to the problem is to determine exactly how much data there is
by using XmClipboardInquireLength() . This routine has the following form:

int XmClipboardInquireLength (Display * display ,
Window window ,
char * format ,
unsigned long * length)

* BUFSIZ is defined in <stdio.h>.

Motif Programming Manual 687

Chapter 21: The Clipboard

The function returns the amount of data being held by the clipboard under the specified
format_name . In Example 21-3, we are looking for data in the "STRING" format. If any
data on the clipboard is in this format, the function returns ClipboardSuccess and the
length parameter is set to the number of bytes being held. If there is no data on the clipboard
in the specified format, the function returns ClipboardNoData . If length is not set to a
value other than 0, the data cannot be read from the clipboard.

If XmClipboardInquireLength() is successful, then the number of bytes specified by
length can be allocated and the data can be retrieved in one call to
XmClipboardRetrieve() . Example 21-3 shows a callback routine that retrieves data
from the clipboard after querying the size of the data. The from_clipbd_query()
routine could replace the from_clipbd() callback routine in Example 21-1.

Example 21-3. The from_clipbd_query() routine

static void from_clipbd_query (Widget widget, XtPointer client_data,
XtPointer call_data)

{
int status;
unsigned long recvd, length;
char *data;
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardInquireLength (dpy, window, "STRING",

&length);
while (status == ClipboardLocked);

if (length == 0)
printf ("No data on clipboard in specified format.\n");

data = XtMalloc (length+1);

do
status = XmClipboardRetrieve (dpy, window, "STRING", data,

length+1, &recvd, NULL);
while (status == ClipboardLocked);

if (status != ClipboardSuccess || recvd != length) {
printf ("Failed to receive all clipboard data\n");
XtFree (data);

}
else

printf ("Retrieved \"%s\" from clipboard.\n", data);
}

Chapter 21: The Clipboard

688 Motif Programming Manual

Copy by Name
As discussed earlier, there are cases where data should not be copied to the clipboard until
it is requested. It is possible to copy data by name, so that the owner of the data is notified
through a callback function when the data is needed by the clipboard. Since copying large
amounts of data may be expensive, time-consuming, or even impossible due to other
constraints in an application, copying data by name may be the only option available. The
technique is especially advantageous if the data is never requested, since time and resources
are saved.

The procedure for copying data by name is quite similar to the procedure for normal
copying. The application first calls XmClipboardStartCopy() , but unlike a normal
copy operation, the callback and widget parameters are specified. These values indicate
that the data is to be copied by name. The callback parameter specifies the routine that
is called when the data is requested by another client. The widget parameter specifies the
widget that receives the messages requesting the data. Since the toolkit handles the
messages, any valid widget ID can be used.

XmClipboardCopy() is then called with a buffer value of NULL.
XmClipboardEndCopy() is called as usual. When a client requests the data from the
clipboard, the callback routine provided to XmClipboardStartCopy() is called and the
application provides the actual data using XmClipboardCopyByName() .

You can use the convenience function XmClipboardBeginCopy() instead of
XmClipboardStartCopy() . The only difference between the two routines is that the
convenience function does not take a timestamp parameter; it simply uses CurrentTime
as the timestamp value.

The program shown in Example 21-4 demonstrates copying data to the clipboard by name.*

Example 21-4. The copy_by_name.c program

/* copy_by_name.c -- demonstrate clipboard copies "by-name".
** Copying by name requires that the copy *to* clipboard
** functions use the same window as the copy *from* clipboard
** functions. This is a restriction placed on the API by the
** toolkit, not by the ICCCM.
*/

#include <Xm/CutPaste.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

static void to_clipbd(), from_clipbd();
Widget toplevel;

* XtVaAppInitialize () is considered deprecated in X11R6.

Motif Programming Manual 689

Chapter 21: The Clipboard

main (int argc, char *argv[])
{

Widget rowcol, button;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
/* Initialize toolkit, application context and toplevel shell */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
/* manage two buttons in a RowColumn widget */
rowcol = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);
/* button1 copies to the clipboard */
button = XmCreatePushButton (rowcol, "Copy To Clipboard", NULL, 0);
XtAddCallback (button, XmNactivateCallback, to_clipbd, NULL);
XtManageChild (button);
/* button2 retrieves text stored in the clipboard */
button = XmCreatePushButton (rowcol, "Retrieve From Clipboard",

NULL, 0);
XtAddCallback (button, XmNactivateCallback, from_clipbd, NULL);
XtManageChild (button);
/* manage RowColumn, realize toplevel shell and start main loop */
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

static void copy_by_name (Widget widget, int *data_id, int *private_id,
int *reason)

{
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);
static int cnt;
int status;
char buf[32];

printf ("Copy by name:\n\treason: %s, id: %d, data_id: %d\n",
*reason == XmCR_CLIPBOARD_DATA_REQUEST? "request" : "delete",
*private_id, *data_id);

if (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
sprintf (buf, "stuff-%d", ++cnt); /* make each copy unique */

do
status = XmClipboardCopyByName (dpy, window, *data_id, buf,

strlen (buf)+1, *private_id = cnt);
while (status != ClipboardSuccess);

}
}

/* copy data to clipboard */
static void to_clipbd (Widget widget, XtPointer client_data,

XtPointer call_data)
{

Chapter 21: The Clipboard

690 Motif Programming Manual

long item_id = 0; /* clipboard item id */
int status;
XmString clip_label;
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);

clip_label = XmStringCreateLocalized ("to_clipbd");

/* start a copy. retry till unlocked */
do

status = XmClipboardBeginCopy (dpy, window, clip_label, widget,
copy_by_name, &item_id);

while (status == ClipboardLocked);

/* copy by name by passing NULL as the "data", copy_by_name() as
** the callback and "widget" as the widget.
*/
do

status = XmClipboardCopy (dpy, window, item_id, "STRING",
NULL, 8L, 0, NULL);

while (status == ClipboardLocked);

/* end the copy */
do

status = XmClipboardEndCopy (dpy, window, item_id);
while (status == ClipboardLocked);

}

static void from_clipbd (Widget widget, XtPointer client_data,
XtPointer call_data)

{
int status;
unsigned total_bytes;
unsigned long received;
char *data = NULL, buf[32];
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);

do
status = XmClipboardStartRetrieve (dpy, window, CurrentTime);

while (status == ClipboardLocked);

/* initialize data to contain at least one byte. */
data = XtMalloc (1);
total_bytes = 1;

do {
buf[0] = 0;
/* retrieve data from clipboard -- if locked, try again */
status = XmClipboardRetrieve (dpy, window, "STRING", buf,

sizeof (buf), &received, NULL);
if (status == ClipboardNoData) {

puts ("No data on the clipboard");
break;

Motif Programming Manual 691

Chapter 21: The Clipboard

}
/* reallocate data to contain enough space for everything */
if (!(data = XtRealloc (data, total_bytes + received))) {

XtError ("Can't allocate space for data");
break; /* XtError may or may not return */

}
/* copy buf into data. strncpy() does not NULL terminate */
strncpy (&data[total_bytes-1], buf, received);
total_bytes += received;

} while (status == ClipboardTruncate);

data[total_bytes-1] = 0; /* NULL terminate */

if (status == ClipboardSuccess)
printf ("Retrieved \"%s\" from clipboard (%d bytes)\n",

data, total_bytes);

status = XmClipboardEndRetrieve (dpy, window);
}

Just as in Example 21-1, the function to_clipbd() is used to initiate copying data to the
clipboard. However, rather than passing actual data, we use:

status = XmClipboardBeginCopy (dpy, window, clip_label, widget,
copy_by_name, &item_id);

Passing a valid widget and a callback routine indicates that the copy-by-name method is
being used. Here, the data is provided through the given callback routine when it is
requested, rather than being provided immediately. The item_id parameter is filled in by
the clipboard function to identify the particular data element. The parameter is then used in
the call to copy data:

status = XmClipboardCopy (dpy, window, item_id, "STRING", NULL, 8L, 0,
NULL);

Passing NULL as the data also indicates that the data is passed by name. The value 8L is
passed as the size parameter to indicate how much data will be sent if the data is
requested. This value is important in case other clients query the clipboard to find out how
much data is available to copy.

The callback function copy_by_name() is called either when someone requests the data
from the clipboard or when another client copies new data (by name or with actual data) to
the clipboard. In the first case, the data must be copied to the clipboard; in the second case,
the clipboard is telling the client that it can now free its data. The callback function is an
XmCutPasteProc , which takes the following form:

typedef void (*XmCutPasteProc) (Widget widget,
int * data_id ,
int * private_id ,
int * reason)

Chapter 21: The Clipboard

692 Motif Programming Manual

The widget parameter is the same as that passed to XmClipboardStartCopy() . The
data_id argument is the ID of the data item that is returned by XmClipboardCopy() ,
and private_id is the private data passed to XmClipboardCopy() . The reason
parameter takes the value XmCR_CLIPBOARD_DATA_REQUEST, which indicates that the
data must be copied to the clipboard, or XmCR_CLIPBOARD_DATA_DELETE, which
indicates that the client can delete the data from the clipboard. Although the last three
parameters are pointers to integer values, the values are read-only and changing them has
no effect.

The purpose of the function is either to send the appropriate data to the clipboard or to free
the data. The value of reason determines which action is taken. Since no data is passed to
the clipboard until this callback function is called, either the data must be stored locally (in
the application) or the function must be able to generate it dynamically. The example makes
no assumptions or suggestions about how to create the data, since it is entirely subject to
the nature of the data and/or the application.

Once the data is obtained, it is sent to the clipboard using XmClipboardCopyByName() .
This function does not need to lock the clipboard since the clipboard is already being locked
by the window that called XmClipboardRetrieve() . At this point in time, both routines
are accessing the clipboard. If the same application is both retrieving the data and copying
the data, the XmClipboardRetrieve() and XmClipboardCopyByName() routines
must use the same window for their respective window parameters because otherwise
deadlock will occur and the application will hang. There may be cases where you should
copy data to the clipboard incrementally. The data may be large enough that allocating one
large data space to handle the entire copy is unreasonable; its size may warrant sending it
in smaller chunks. Moreover, data may be generated by a slow mechanism such as a
database library. If the database only returns data in specific block sizes, then you need not
buffer them all up and send to the clipboard with one call; you can send each block as it
comes through.

Incremental copying requires multiple calls to XmClipboardCopyByName() . Since
XmClipboardCopyByName() does not lock the clipboard, you need to do that yourself
by calling XmClipboardLock() . However, you only need to call it once no matter how
much data is transferred. When you are through copying the data, you need to call
XmClipboardUnlock() . In some cases, you may need to stop sending data before the
copy is complete. For example, if the database is not responding to your application or there
are other extenuating circumstances, you may want to terminate the copy operation using
XmClipboardCancelCopy() , which has the following form:

int XmClipboardCancelCopy (Display * display ,
Window window ,
long item_id)

When using XmClipboardCancelCopy() , you should not unlock the clipboard using
XmClipboardUnlock() .

Motif Programming Manual 693

Chapter 21: The Clipboard

If you have copied data by name to the clipboard under a specific data format, you may
withdraw it by calling XmClipboardWithdrawFormat() . The function takes the
following form:

int XmClipboardWithdrawFormat (Display * display ,
Window window ,
int data_id)

Despite the name of the procedure, its main purpose is not to remove a format specification,
but to remove a data element in that format from the clipboard. The data_id parameter is
the same value that is returned by XmClipboardCopy() when the data is initially copied
by name. If the specified window holds the clipboard data but it is in a different format than
that specified by data_id , then the data is not removed from the clipboard.

Clipboard Data Formats
As discussed in the introduction, the clipboard can contain data in arbitrary formats. While
the most commonly used format is text, other formats include integers, pixmaps, and
arbitrary data structures. Since all applications on the desktop have access to the clipboard,
any of them may register a new format and place items of that type on the clipboard.

When registering a new format, you must also register a corresponding format name and
the format length in bits (8, 16, and 32). Determining the type of data on the clipboard is
much easier when there is a descriptive name associated with it. The length allows
applications to send and receive data without suffering from byte-swapping problems due
to differing computer architectures.

To register a new format, use XmClipboardRegisterFormat() , which takes the
following form:

int XmClipboardRegisterFormat (Display * display ,
char * format_name ,
unsigned long format_length)

The function may return ClipboardBadFormat if the format name is NULL or the format
length is other than 8, 16, or 32. The format length may be specified as 0, in which case
Motif will attempt to look up the default length for the given name. Table 21-1 shows the
format lengths for some predefined format names.

Table 1-1. Predefined Format Names and Lengths

Format Name Format Length

“TARGETS” 32

“MULTIPLE” 32

“TIMESTAMP” 32

“STRING” 8

“LIST_LENGTH” 32

Chapter 21: The Clipboard

694 Motif Programming Manual

Although these format names are known, they are not necessarily registered automatically
with the server; you may still need to register the one(s) you want to use. If you are
specifying your own data structure as a format, you should choose an appropriate name for
it and use 32 as the format size.

The following code fragment shows how you can register a data format and then copy data
in that format to the clipboard:

long item_id;
long data_id;
int status;
void my_data_callback(Widget, long *, long *, int *);
Display *dpy = XtDisplay (widget);
Window window = XtWindow (widget);
XmString label = XmStringCreateLocalized ("my data");

/* register our own data structure with clipboard. */

“PIXMAP” 32

“DRAWABLE” 32

“BITMAP” 32

“FOREGROUND” 32

“BACKGROUND” 32

“COLORMAP” 32

“ODIF” 8

“OWNER_OS” 8

“FILE_NAME” 8

“HOST_NAME” 8

“CHARACTER_POSITION” 32

“LINE_NUMBER” 32

“COLUMN_NUMBER” 32

“LENGTH” 32

“USER” 8

“PROCEDURE” 8

“MODULE” 8

“PROCESS” 32

“TASK” 32

“CLASS” 8

“NAME” 8

“CLIENT_WINDOW” 32

“COMPOUND_TEXT” 8

Table 1-1. Predefined Format Names and Lengths (continued)

Format Name Format Length

Motif Programming Manual 695

Chapter 21: The Clipboard

XmClipboardRegisterFormat (dpy, "MY_DATA_STRUCT", 32);

/* use the copy-by-name method to transfer data to clipboard */
do

status = XmClipboardStartCopy (dpy, window, label, CurrentTime, my_data_
callback, widget, &item_id);

while (status == ClipboardLocked);

XmStringFree (label); /* don't need this any more */
/* MY_DATA_SIZE is presumed to be defined as the amount of data to transfer */
do

status = XmClipboardCopy (dpy, window, item_id, "MY_DATA_STRUCT",
NULL, MY_DATA_SIZE, 0, &data_id);

/* save the data_id! */
while (status == ClipboardLocked);

do
status = XmClipboardEndCopy (dpy, window, item_id);

while (status == ClipboardLocked);

Once the "MY_DATA_STRUCT" format has been registered with the server, we follow the
standard procedure for copying data to the clipboard. Here, we chose to use the copy-by-
name method discussed earlier. Note that we save the value of the data_id returned by
XmClipboardCopy() . This value is used so that we may withdraw the data later using
XmClipboardWithdrawFormat() if necessary. Note that formats are never removed
from the clipboard; only data can be removed from the clipboard. Once a particular format
is registered with the clipboard, it is there until the server goes down. If you plan on
retrieving data held by the clipboard, you may wish to inquire about the format of the data
it is holding. To do so, you must use two functions together:
XmClipboardInquireCount() and XmClipboardInquireFormat() . They take the
following form:

int XmClipboardInquireCount (Display * display ,
Window window ,
int * count ,
int * max_length)

int XmClipboardInquireFormat (Display * display ,
Window window ,
int index ,
char * format_name_buf ,
unsigned long buffer_len ,
unsigned long * copied_len)

XmClipboardInquireCount() returns the number of formats the clipboard knows
about for the data item it is currently holding. Also returned is the string length of the
longest format name. You can iterate through the formats starting from 1 (one) through
count by calling XmClipboardInquireFormat() . The iteration number is passed as
the index parameter. You should use this value to ensure that you can read all the format
types in your search for the desired format.

Chapter 21: The Clipboard

696 Motif Programming Manual

Although there is only one data item stored on the clipboard at anyone time, that item may
have multiple formats associated with it. While this is unusual, it is possible to handle this
case by providing different formats to successive calls to XmClipboardCopy() or
XmClipboardCopyByName() .

The Primary Selection and the Clipboard
Since text is the most commonly used format in the clipboard, there is a natural interaction
between the clipboard and windows that contain text. In most situations, it is usual (even
expected) that when the user selects text, the selection should be placed on the clipboard,
which is known as a copy operation. Retrieving text from the clipboard and placing it in
another window is known as a paste operation. In some cases, after the data is pasted from
the clipboard, the original window deletes the data it copied, which is classified as a cut
operation. The clipboard uses what is commonly referred to as the cut and paste model.

The low-level implementation of the clipboard mechanism uses the X Toolkit selection
mechanism. This model has additional properties that provide for more detailed
communication between the clients involved. For example, cutting text from a Text widget
and placing it in another widget involves more communication between the widgets than
that of the clipboard copy and retrieval mechanism. When the text that was selected in the
first widget is pasted in the other, the first widget may be notified to delete the selected text.
This type of communication can be handled either automatically by the Text widgets or
through low-level X calls where the corresponding windows of the widgets send real events
called client messages to one another.

Clipboard Functions With Text Widgets
In most cases, you should not need to access the clipboard functions to perform simple text
copy and retrieval (cut and paste) for Text widgets. If you need to access the clipboard
above and beyond the normal selection mechanisms provided by the Text widgets, there
are a number of convenience routines that deal with selections automatically. We present a
brief overview of these functions here; see Chapter 18, Text Widgets, for detailed
information.

The XmTextCut() , XmTextCopy() , and XmTextPaste() routines handles cutting,
copying, and pasting operations for the Text widget. There are also corresponding
functions for the TextField widget. XmTextCut() and XmTextCopy() take the following
form:

Boolean XmTextCut (Widget widget , Time time)
Boolean XmTextCopy (Widget widget , Time time)

If there is text selected in the Text widget referred to by the widget parameter, the selected
text is placed on the clipboard. For XmTextCut() , the selected text is also deleted from

Motif Programming Manual 697

Chapter 21: The Clipboard

the Text widget, while for XmTextCopy() it is not. The functions return True if all of
these things happen successfully. If False is returned, it is usually because the Text widget
does not have any selected text.

The time parameter controls when the operation takes place and may be set to any server
timestamp value. For example, if you are calling this function from a callback routine, you
may wish to use the time field from the event pointer in the callback structure provided
by the Motif toolkit. The value CurrentTime can also be used, but there is no guarantee
that this value will prevent any race conditions between other clients wanting to use the
clipboard. Although race conditions are not likely, the possibility does exist. The result of
the race condition is that one widget may appear to have cut or copied selected text to the
clipboard when in fact another Text widget got there first.

XmTextPaste() takes the following form:

Boolean XmTextPaste (Widget widget)

XmTextPaste() gets the current data from the clipboard and places it in the Text widget.
The routine returns False if there is no data on the clipboard.

XmTextCut() and XmTextCopy() only work if there is a current selection in the
specified Text widget, which may be dependent on whether or not the user has made a
selection. However, you can force a selection in a Text widget using
XmTextSetSelection() . This routine takes the following form:

void XmTextSetSelection (Widget widget ,
XmTextPosition first ,
XmTextPosition last ,
Time time)

XmTextSetSelection() selects the text between the specified positions in the Text
widget. Once the text has been selected, either XmTextCut() or XmTextCopy() may be
called to place the selection on the clipboard.

Although XmTextGetSelection() does not deal with the clipboard directly, it provides
a convenient way to get the current selection from the corresponding Text widget. This
routine takes the following form:

char *XmTextGetSelection (Widget widget)

Note that the text returned by the routine is allocated data and must be freed by the caller
using XtFree() . The function returns NULL if the specified widget does not own the text
selection.

To deselect the current selection in a Text widget, you can use
XmTextClearSelection() , which takes the following form:

void XmTextClearSelection (Widget widget , Time time)

Chapter 21: The Clipboard

698 Motif Programming Manual

The Owner of the Selection
Sometimes, if you have a large number of Text widgets, you may need to know which of
the widgets has the text selection. You can determine this by using the Xlib function
XGetSelectionOwner() :

Window XGetSelectionOwner (Display * display , Atom selection)

The display parameter can be taken from any widget using XtDisplay() . The
selection argument represents the Atom associated with the kind of selection you are
looking for. For example, you can determine the Text widget that has the current clipboard
selection with the following calls:*

Display *dpy = XtDisplay (widget);
Atom clipboard_atom = XInternAtom (dpy, "CLIPBOARD", False);
Window win = XGetSelectionOwner (dpy, clipboard_atom);
Widget text_w = XtWindowToWidget (dpy, win);

Implementation Issues
The Motif clipboard mechanism relies on an underlying X mechanism referred to as
properties. Windows are data structures maintained by the X server; each window can have
an arbitrary list of properties associated with it. Each property consists of a name (called an
atom), an arbitrary amount of data, and a format. Property formats are not at all the same
thing as the higher-level Motif formats - they simply indicate whether the data is a list of
8-bit, 16-bit, or 32-bit quantities, so that the server can perform byte-swapping, if
appropriate. Properties are the underlying mechanism for all interclient communication,
including interaction between applications and window managers, and inter-application
interaction such as the transfer of selections.

In order to simplify communication over the network, property names are not passed as
arbitrary-length strings, but as defined integers known as atoms. A number of standard
properties (such as those used for communication between applications and window
managers) are predefined and interned, or made known to, and cached by the server.
However, application-defined atoms can also be interned with the server by calling the Xlib
function XInternAtom() †. Atoms are not only used to name properties, but to name any
string data that may need to be passed back and forth between a client and the server.

We started this chapter with the analogy that the Motif toolkit is the moderator of the
clipboard. In reality, the clipboard itself is a property (called CLIPBOARD) that is
automatically maintained by the X server. A property is uniquely identified by both an atom
and a window, which means that it is possible for there to be multiple copies of a given

* XmInternAtom () is marked as deprecated from Motif 2.0 onwards.

† XmInternAtom () is marked as deprecated from Motif 2.0 onwards.

Motif Programming Manual 699

Chapter 21: The Clipboard

property. However, there should be only one CLIPBOARD property active at one time,
based on conventions about the use of properties set forth in a document called the Inter-
Client Communication Conventions Manual and followed by the deeper layers of X
software. *Among these conventions are that certain properties should only be set by
application top-level windows and that only one window should own the CLIPBOARD
property at any one time. When an application makes a call to XmClipboardCopy() , the
data is actually stored in the CLIPBOARD property of the window that was identified in
the call to XmClipboardCopy() .

The format of the data stored in a property is defined by another property. The standard
formats are based on those recommended by the ICCCM. For example, the FONT format
might suggest that an application wants the font that the data string is rendered in, rather
than the data string itself. At present, Motif does not support this functionality. You have
to remember that formats (or targets, as they are referred to in the ICCCM) are not really
things that have any functionality. They are simply names that are translated into integer
atoms. The meaning of the formats to an application depends entirely on convention. At
present, most applications only support the STRING format. But eventually, conventions
will doubtless be articulated for doing far more with the selection mechanism.

A further complication that needs some mention is how the Motif clipboard
implementation relates to the underlying X Toolkit implementation of selections. The
ICCCM actually defines three separate properties that can be used for selections:
PRIMARY, SECONDARY, and CLIPBOARD. Standard Xt applications, including all of
the clients distributed by MIT, use the PRIMARY property for storing selections.

The SECONDARY property is designed for quicker, more transient selections. An
application that makes use of this property usually copies data directly to another window
instantly when the owner finishes copying data to the property. The Motif Text widget uses
the SECONDARY property when the META key is down while the middle button is
clicked and dragged. As soon as the selection is complete, the selected data is immediately
sent to the window that has the input focus, which may be the same window.

In the standard MIT implementation, the CLIPBOARD property is used by an independent
client called xclipboard. Keep in mind that a property stays around only as long as the
window with which it is associated. When you terminate a client and close its windows, any
data stored in a property on one of the client’s windows is lost. If the CLIPBOARD
property is associated with a client that is kept around between invocations of other
applications, it embodies a consistent repository for information to be passed between
applications.

The ICCCM blesses the use of both the PRIMARY and CLIPBOARD selection properties.
However, you should be aware that the difference between the Motif use of the

* Reprinted as Appendix L of Volume 0, X Protocol Reference Manual.

Chapter 21: The Clipboard

700 Motif Programming Manual

CLIPBOARD property and the use of the PRIMARY selection property by other Xt
applications makes inter-operability questionable, unless you take care to handle the
PRIMARY selection in your application. The X Toolkit mechanisms for handling
selections are described in Volume 4, X Toolkit Intrinsics Programming Manual. The
Motif Text widgets support both the Xt mechanism, which uses the PRIMARY selection,
and the Motif clipboard, depending on the interaction. You should probably do the same
for your application.

While you can manipulate properties and atoms directly using Xlib, the higher-level API
provided by Motif and Xt should insulate you from many of the details and ensure that your
applications inter-operate well with others. Eventually, toolkits and applications will
doubtless support numerous extensions of the current clipboard and selection mechanisms.

Summary
The clipboard provides a convenient mechanism that allows applications to interact with
one another in a way that is independent of the application, operating system, and system
architecture. The clipboard is one of two common mechanisms used to handle data transfer
between objects. The primary selection is still regarded as the most common method for
data transfer between applications, mostly because it is the standard cut and paste method
used to move textual data between terminal emulators like xterm. A secondary selection
method is also available, but is not very widely used.

The Motif toolkit tries to compensate for the de facto standard use of the primary selection
method by integrating both the primary and clipboard selections into the same set of
functions. Although users seem to be oblivious to the differences, this technique has the
unfortunate side effect of confusing programmers. This is partly alleviated in the 2.1
version of the Motif toolkit, where the Uniform Transfer Model provides a single interface
to the transference of application data. The Uniform Transfer Model is fully described in
Chapter 23.

Motif Programming Manual 701

Chapter 1

In this chapter:
• Using Drag and Drop
• The Drag and Drop Model
• Customizing Built-in Drag and Drop
• Working With Drag Sources
• Working With Drop Sites
• Summary

22
Drag and Drop

This chapter describes the drag and drop mechanism provided by the Motif toolkit. Drag
and drop can be used to transfer data within and between applications on the desktop.
Although not marked as deprecated, from Motif 2.0 onwards many of the routines
described within this chapter are subsumed into the Uniform Transfer Model, which is
described in Chapter 23. The Uniform Transfer Model is concerned primarily with data
transfer; it does not concern itself directly with the visuals associated with a transfer. You
should still read this chapter if you are interested in providing customised feedback during
mouse-based data transfer operations, and if you want to gain an understanding of the
mechanisms which now partly sit underneath the Uniform Transfer Model.

A graphical user interface provides objects that the user can manipulate and actions that can
be performed on those objects. The drag and drop mechanism for transferring data is a
natural one for a GUI, as drag and drop allows the user to transport data within and between
applications by dragging an iconic representation of the data from one location to another.

An important question that a developer needs to consider is whether or not drag and drop
is appropriate for a particular application. You need to think about the data that is
manipulated by the application, the actions that can be performed on the data, and whether
the drag and drop metaphor makes sense in this context. This decision involves figuring out
if drag and drop allows you to enhance the usability of your application by making it easier
for the user to perform various tasks.

For example, an electronic mail application might allow the user to drag messages that have
been received into folders for storage or into a text editor for composing a response.
Perhaps the most common use of drag and drop functionality is for desktop-style
applications. These programs allow the user to manipulate files in the directory structure
and run other applications by dragging objects around on the desktop.

Using Drag and Drop
From the user’s perspective, drag and drop involves choosing a data source, dragging the
data around on the desktop, and dropping the data on a new location. The mechanism is the
same no matter what type of data is being manipulated. In most cases, the data is moved or

Chapter 22: Drag and Drop

702 Motif Programming Manual

copied to the new location. However, an application can also allow the user to drag an
object and drop it to invoke an action. For example, dropping a file on a printer icon could
cause the file to be printed.

The Motif Style Guide specifies that the middle mouse button is used for drag and drop. The
user starts a drag and drop transfer by pressing the second button over the data, which is
referred to as the drag source. While the user is dragging the data, the pointer shape is
changed to a drag icon which is a picture that represents the type of data being dragged.
The drag icon is meant to provide the user with feedback about the current data transfer, so
different drag icons can be used to represent textual data and graphical data, for example.

The user can drag the data to another location within the same application or to a location
within another application by moving the pointer with the middle button pressed. The data
can be dropped in any location that has been registered as a dropsite. The drop occurs when
the user releases the mouse button. Figure 22-1 shows the conceptual model of drag and
drop.

A drag and drop transfer can result in the data being moved, copied, or linked. A move
operation copies the data to the drop site and then removes it from the drag source, while a
copy operation copies the data to the drop site without removing it. A link operation allows
the drop site access to the data in the drag source without copying it.

The default operation depends on the type of data that is being manipulated. In an editable
text area, the default operation might be a move, while in a read-only area, the default
operation should be a copy. A drag source can support multiple operations, in which case
the user should be able to select the operation that is used. The Motif Style Guide specifies
that the SHIFT key selects a move operation, the CTRL key selects a copy operation, and
CTRL-SHIFT selects a link operation.

Figure 22-1: Drag and drop conceptual model

Drop Sites

Drag Sources

Drag Icon

Motif Programming Manual 703

Chapter 22: Drag and Drop

The user can cancel a drag at any time by pressing the ESCAPE key. The user can also
request help on a drop site by pressing the HELP or F1 key before dropping the data. The
help information should tell the user what will happen if the data is dropped in the drop site.

Besides representing the type of data being manipulated, the drag icon can also indicate the
current operation and whether the pointer is over a valid drop site, over an invalid drop site,
or not over a drop site at all. For a drop site to be valid, the drag source and the drop site
must understand at least one common data format. If a drag source only provides graphical
data and a drop site only understands text, the data transfer cannot succeed.

The drag icon may change as it enters and leaves drop sites to provide this state
information; these changes are called drag-over visuals. For example, the drag icon could
be displayed without any modification when it is over a valid drop site, but be
superimposed with a do-not-enter symbol when the drop site is invalid. A drop site may
also change its appearance when the drag icon is within it; these effects are known as drag-
under visuals. A “garbage can” drop site might use animation to show the lid opening when
a drag icon moves into the drop site. When the user performs a drop, the drag icon melts
into the drop site if the data transfer is successful or springs back to the drag source if the
transfer fails.

The Drag and Drop Model
The Motif implementation of drag and drop introduces a number of new programming
constructs. The interaction between the different components is complex, so it may be
difficult to understand just what needs to be done to implement drag and drop functionality.
Since you need to understand all of the different components before you can see what your
application may need, we’ve decided to describe all of the components of drag and drop in
a somewhat abstract way before we present any examples. Although this material may be
a bit dry, we think that this approach works better than presenting an example early and
then having to jump around a lot to explain all of its parts. Hopefully, once you see the big
picture, it will be easier to understand the different pieces more fully.

From the programmer’s perspective, providing drag and drop functionality in an
application can be as simple as using the Motif widgets that support drag and drop. In
Motif, the Text, TextField, and List widgets are all drag sources, which means that the
textual data they contain can be dragged. The Label widget and its subclasses are also drag
sources for both textual and pixmap data*. The Text and TextField widgets are registered
as drop sites, which means that textual data can be dropped in them. When you use these
widgets in an application, you do not have to do any extra programming to provide their
drag and drop capabilities since the functionality is built into the widgets.

* Under CDE Motif 2.0 or later, dragging from a Scale, Label, or LabelGadget may be turned off if the XmDisplay
resource XmNenableUnselectableDrag is False .

Chapter 22: Drag and Drop

704 Motif Programming Manual

The drag and drop capabilities provided by the Motif toolkit are highly customizable, so an
application can also implement custom drag and drop transfers. Drag source and/or drop
site functionality can be added to any widget. An application can provide custom drag icons
and implement custom drag-under effects, such as animated drop sites. Drag and drop can
be made to handle any type of data. The amount of programming required to implement
custom drag and drop features varies depending on the degree of customization that is
desired. While it is relatively easy to provide a new drop site for textual information,
supporting drag and drop for graphical objects requires quite a bit of work.

The Motif toolkit layers the implementation of drag and drop on top of the selection
mechanisms provided by the X Toolkit Intrinsics. If you are simply using the built-in drag
and drop functionality, the implementation details are completely invisible. However, if
you are customizing drag and drop in any way, you need to understand the underlying
selection mechanisms because the drag and drop implementation is not a complete
abstraction over the Xt mechanisms. For example, an application that uses custom drag
sources and drop sites must provide certain selection conversion and transfer procedures in
order for the data transfer to occur.

Since the Xt selection mechanisms are based on X’s Inter-Client Communications
Conventions Manual (ICCCM), the Motif implementation of drag and drop also adheres to
the ICCCM. Data is transferred using properties on the server, where properties are
referenced using atoms. Drag sources and drop sites also use atoms to specify the data
formats, or targets, that they support. The ICCCM suggests a list of possible target types so
that applications can understand each other. These targets and their meanings are shown in
Table 22-1. You can also define your own targets, but unless you document them, other
applications will not necessarily be able to communicate with your application using these
targets.

Table 1-1. Target Types Defined by ICCCM

Atom Type Meaning

TARGETS ATOM List of valid target atoms

MULTIPLE ATOM_PAIR Multiple conversion requests

TIMESTAMP INTEGER Timestamp used to acquire selection

STRING STRING ISO Latin 1 text

COMPOUND_TEXT COMPOUND_TEXT Text in compound text encoding

TEXT TEXT Text in owner’s encoding

LIST_LENGTH INTEGER Number of disjoint parts of selection

PIXMAP DRAWABLE Pixmap ID

DRAWABLE DRAWABLE Drawable ID

BITMAP BITMAP Bitmap ID

FOREGROUND PIXEL Pixel value

BACKGROUND PIXEL Pixel value

Motif Programming Manual 705

Chapter 22: Drag and Drop

Motif uses some new objects to encapsulate information about various aspects of a drag and
drop transfer. These objects act like widgets, in that they are created by the programmer,
they have resources that can be set and retrieved, and they interact with the application
using callbacks. However, they are unlike traditional widgets in that they are not visible
components of the user interface. The DragContext object is used to store information
during a drag, while the DropTransfer object keeps track of information during a drop. The
DragIcon object is used to represent the pointer shape that is used during a drag and drop
transfer. The DropSite object maintains information about all of the drop sites in an
application. The Display and Screen objects also provide resources that control the
behavior of drag and drop, although they are not specifically part of drag and drop.

The following sections describe all the components of a drag and drop transfer and present
the Motif objects that are used to implement drag and drop. As we describe the objects, we
mention many of their resources, callbacks, and related functions so that you can see how
everything fits together. We describe each of the objects in much greater detail later in the
chapter when we talk about how they can be used to customize different aspects of drag and
drop. However, this chapter does not attempt to describe all of the possible ways in which
drag and drop can be customized. We present some common situations and leave you to
explore all of the details on your own. For complete information about each Motif object

ODIF TEXT ISO Office Document Interchange
Format

OWNER_OS TEXT Operating system of owner

FILE_NAME TEXT Full path name of a file

HOST_NAME TEXT Host name of machine of owner

CHARACTER_POSITION SPAN Start and end of selection in bytes

LINE_NUMBER SPAN Start and end line numbers

LENGTH INTEGER Number of bytes in selection

USER TEXT Name of user running owner

PROCEDURE TEXT Name of selected procedure

MODULE TEXT Name of selected module

PROCESS INTEGER, TEXT Process ID of owner

TASK INTEGER, TEXT Task ID of owner

CLASS TEXT Class of owner (WM_CLASS)

NAME TEXT Name of owner (WM_NAME)

CLIENT_WINDOW WINDOW Top-level window of owner

DELETE NULL True if owner deleted selection

INSERT_SELECTION NULL Insert specified selection

INSERT_PROPERTY NULL Insert specified property

Table 1-1. Target Types Defined by ICCCM (continued)

Atom Type Meaning

Chapter 22: Drag and Drop

706 Motif Programming Manual

used to implement drag and drop, see the appropriate reference pages in Volume 6 B, Motif
Reference Manual.

The Drag Source
The widget that contains the data being manipulated with drag and drop is known as the
drag source. When the user starts a drag, the application that contains the drag source is
considered the initiator of the transfer. The data provided by a drag source depends on the
type of object the source represents. For example, a Text widget provides textual data,
while a DrawingArea could provide some form of graphical data.

A drag source can be designed to support and transfer any type of data. There can even be
multiple formats for a given piece of data if appropriate. A drag source also specifies the
operations (move, copy, or link) that it allows. The type of data, and in some cases the
widget that contains the data, affects the operations that are supported. For example, the
List widget only supports copy operations because it is a read-only component.

In order for a drag and drop transfer to work, the drag source and the drop site need to
understand the same type of data. The drag source announces the data targets it can supply
to the drop site. A drag source that supports textual data might offer the data using
COMPOUND_TEXT, STRING, and TEXT targets, while a graphical drag source could
provide PIXMAP, FOREGROUND, and BACKGROUND targets. When the drop occurs,
the drop site can request the data in any of the targets supported by the drag source, so the
drag source needs to know how to convert between supported types.

In order for a widget to be a drag source, the widget must be able to recognize a
ButtonPress event for the second mouse button. Essentially, you need to set up a
translation and action or an event handler for this event that invokes a function that starts
the drag. The following code fragment shows the definition of a translation and an action
for a drag source:

static char dragTranslations[] = "#override <Btn2Down>: StartDrag()";
static XtActionsRec dragActions[] = {

{"StartDrag", (XtActionProc) StartDrag}
};

Just as with any translation and action, the application code needs to call
XtParseTranslationTable() and XtAppAddActions() . The parsed translation
table can be used to set the XmNtranslations resource for the drag source widget.

The Motif toolkit uses the DragContext object to store information about a drag source once
a drag has started. This object also keeps track of state information about the transfer as it
is happening. The routine that starts a drag calls XmDragStart() to create the
DragContext and get things rolling. The DragContext object has resources that need to be
set at creation time to provide information about the drag source. The
XmNdragOperations resource specifies the operations supported by the drag source,

Motif Programming Manual 707

Chapter 22: Drag and Drop

while XmNexportTargets and XmNnumExportTargets indicate the data targets that
are supported.

The DragContext also has a number of resources that control the visual effects used during
the drag. Many of these resources specify various attributes of the drag icon for the transfer.
For example, the XmNsourceCursorIcon , XmNoperationCursorIcon , and
XmNstateCursorIcon resources indicate the images that are used for different parts of
the drag icon.If these resources are not specified, the DragContext uses default icons. There
are also resources that allow you to specify different foreground and background colors for
the drag icon. We describe the drag icon in more detail in Section 22.2.3.

The DragContext also provides callback routines that can be used to monitor the drag and
provide custom visual effects. All of the routines use special callback structures that
provide information about the current state of the drag. Section 22.4.5 provides more
information about these callbacks.

The XmNconvertProc is a procedure that must be specified when a DragContext is
created. This procedure is used to convert the drag source data to the format requested by
the drop site when the drop occurs. The convert procedure is either an
XtConvertSelectionProc or an XtConvertSelectionIncrProc , depending on
whether or not the drag source is using incremental transfer. If the XmNincremental
resource is set to True , the data is transferred incrementally. Both of these procedures are
part of the underlying Xt selection mechanism that is not completely hidden by the Motif
drag and drop abstraction. See Volume 4, X Toolkit Intrinsics Programming Manual, for
more information on these procedures.

The following code fragment shows the creation of a DragContext object with a minimal
set of resources:

Atom exportList[1];
Widget widget, dc;
Arg args[5];
int n;
Boolean ConvertProc(Widget, Atom *, Atom *, Atom *, XtPointer *,

unsigned long *, int *);
XEvent *event;
...
n = 0;
exportList[0] = COMPOUND_TEXT;
XtSetArg (args[n], XmNexportTargets, exportList); n++;
XtSetArg (args[n], XmNnumExportTargets, XtNumber (exportList)); n++;
XtSetArg (args[n], XmNdragOperations, XmDROP_COPY); n++;
XtSetArg (args[n], XmNconvertProc, ConvertProc); n++;
dc = XmDragStart (widget, event, args, n);

In Section 22.4, we present an example that creates a custom drag source, and we describe
the source code in detail.

Chapter 22: Drag and Drop

708 Motif Programming Manual

Once a DragContext has been created, the Motif toolkit for the initiating application
assumes control of the drag, so the application itself doesn’t have to do anything during the
drag. If any of the DragContext callbacks have been specified, they are called automatically
by the Motif toolkit at the appropriate time.

When the drop occurs, the drop site determines whether or not the data transfer can succeed
based on the operations and targets supported by the drag source and the drop site. If the
transfer can succeed, the drop site initiates the transfer, which causes the
XmNconvertProc to be called for each data target that the drop site has requested. This
routine converts the data into the requested format and passes it back to the drop site, so the
drop site can do whatever it needs with the data.

The Drop Site
Once the user starts a drag and drop transfer, the data can be dropped in any location that
has been registered as a drop site, and if the drop site understands the data, the transfer will
succeed. The application that contains the drop site where data is dropped is the receiving
client in a drag and drop transfer. A drop site is always associated with a widget. Like a
drag source, a drop site supports particular types of data, depending on the type of object it
is.

A drop site can be designed to handle any type of data, or even multiple types if appropriate.
A drop site also specifies the operations that it supports. The standard operations are to
move, copy, and link data. However, a drop site can instead invoke an action as the result
of a drop. For example, a “send message” drop site could send an electronic mail message
when text is dropped in it.The type of object that functions as the drop site also has an effect
on the supported operations. In most cases, it only makes sense for writable components to
act as drop sites, since read-only components like Lists and Labels cannot be modified by
the user.

Motif stores information about all of the drop sites in an application using DropSite objects.
An application registers a widget as a drop site by calling XmDropSiteRegister() for
the widget. The DropSite object uses resources to keep track of information about the drop
site. This information can be set when the drop site is registered, or it can be specified later
using XmDropSiteUpdate() ; the values of the resources can be retrieved using
XmDropSiteRetrieve() . Since a widget is being used as the handle to the drop site, you
cannot use XtVaSetValues() and XtVaGetValues() to set and retrieve drop site
information, as these routines manipulate the widget’s resources.

Just as a drag source specifies the data types that it can process, a drop site also needs to
provide this information. The XmNimportTargets and XmNnumImportTargets
resources specify this information, while the XmNdropSiteOperations resource
specifies the operations supported by the drop site.

Motif Programming Manual 709

Chapter 22: Drag and Drop

A drop site provides visual effects when the drag icon passes through it; these effects are
called drag-under effects. By default, the widget is highlighted. Other simple effects, such
as a shadow border or a special pixmap, can be specified using the XmNanimationStyle
resource. All of these effects are handled automatically by the toolkit on the initiating side
once the resource is set. For more sophisticated effects, such as animation, a drop site must
register an XmNdragProc . This callback is invoked whenever there is any drag activity in
the drop site, so the application can do whatever it likes in terms of drag-under effects.

While the XmNdragProc is optional, every drop site must have a XmNdropProc
registered. This routine is called when a drop occurs in the drop site. The procedure is
responsible for determining whether the drop is successful or not, based on the targets and
operations supported by the drag source and the drop site. The following code fragment
shows how a widget that can handle compound text is registered as a drop site:

Arg args[10];
int n;
Widget label;
Atom importList[1];
void HandleDrop(Widget, XtPointer, XtPointer);
...
n = 0;
importList[0] = COMPOUND_TEXT;
XtSetArg (args[n], XmNimportTargets, importList); n++;
XtSetArg (args[n], XmNnumImportTargets, XtNumber (importList)); n++;
XtSetArg (args[n], XmNdropSiteOperations, XmDROP_COPY); n++;
XtSetArg (args[n], XmNdropProc, HandleDrop); n++;
XmDropSiteRegister (label, args, n);

When a drop occurs in the drop site, the XmNdropProc is called automatically by the
Motif toolkit. This routine must call XmDropTransferStart() whether or not the drop
is successful. XmDropTransferStart() creates a DropTransfer object that maintains
information about the data transfer. When The DropTransfer object is created, the
XmNtransferStatus resource must be set to indicate the success or failure of the drop.
If the resource is set to XmTRANSFER_FAILURE, XmDropTransferStart() does not
transfer any data and merely cleans up after the drag and drop transfer.

If XmNtransferStatus is set to XmTRANSFER_SUCCESS when the DropTransfer object
is created, some other resources must also be specified to cause the data to be transferred.
The XmNdropTransfers and XmNnumDropTransfers resources specify the data
targets to be processed, while XmNtransferProc indicates the procedure that receives the
converted data from the drag source. This transfer procedure is of type
XtSelectionCallbackProc . Once the data transfer has started, the routine
XmDropTransferAdd() can be used to request the processing of additional data targets.
In Section 22.5, we discuss in detail the tasks involved in creating a drop site.

When a drop takes place, visual effects are used to indicate the status of the transfer. Unlike
the different drag effects, these visuals are not customizable. When the drop occurs, the

Chapter 22: Drag and Drop

710 Motif Programming Manual

pointer shape is changed back to the standard cursor, while the drag icon sits over the drop
site. If the drop succeeds, the icon melts into the drop site. If the transfer fails or is cancelled
by the user, the icon snaps back to the drag source.

A drop site is normally the size and shape of the widget with which it is associated.
However, a drop site can also be shaped. The XmNdropRectangles and
XmNnumDropRectangles resources control this feature. Drop sites can also be nested, so
that a manager widget can be a drop site and can also contain children that are drop sites.
The XmNdropSiteType resource controls whether the drop site is a simple drop site or a
compound drop site. Drop sites have a stacking order, which means that they can overlap.
When drop sites overlap, the drop site on the top of the stack obscures the drop sites beneath
it, as you would expect. An application can control the stacking order of drop sites using
the toolkit convenience routines XmDropSiteQueryStackingOrder() and
XmDropSiteConfigureStackingOrder() .

The Drag Icon
During a drag, the pointer shape is changed into a dragicon that represents the data that is
being dragged. One of the purposes of the special icon is to make it clear that a drag and
drop transfer is in progress. The drag icon can also change during a drag to indicate the
current status of the transfer. These visual effects are called drag-over visuals. Typical
effects include changing the shape and changing the color of the icon.

A drag icon can be composed of three distinct parts, each of which is really a separate icon.
The source icon represents the type of data that is being dragged; this icon is the only
necessary component of a drag icon. The source icon for a drag that manipulates files might
be an image of a piece of paper, for example. The state icon indicates whether the pointer
is over a valid drop site, over an invalid drop site, or not over a drop site. The operation
icon specifies the current operation. The source icon in a drag icon is static, while the state
and operation icons can be dynamic. Figure 22-2 shows the components of a drag icon.

The Motif toolkit provides default icons for all of the different drag icon components. In
Motif 2.0 and later, there are two sets of default icons; which set is displayed depends upon
the value of the XmDisplay object XmNenableDragIcon resource. If this is False , the
default icons are consistent with Motif 1.2 behavior, otherwise an alternative set is

Figure 22-2: A drag icon

Source icon
State Icon

Operation Icon

Motif Programming Manual 711

Chapter 22: Drag and Drop

displayed. The default source icons for textual data and for generic data are shown in Figure
22-3.

The default state icon for all of the different states is an arrow, as shown in Figure 22-2,
while the default operation icons for the move, copy, and link operations are shown in
Figure 22-4.

Motif uses DragIcon objects to represent the parts of a drag icon. In order to use a custom
image, you need to create each part of the icon using XmCreateDragIcon(). The
XmNblendModel resource of the DragContext for a drag and drop transfer specifies the
different pieces that are blended together to create the actual drag icon.

A drag icon is essentially a pixmap, and the DragIcon object encapsulates all of the
information about the image. When you create a DragIcon, you specify resources that
describe the image. The XmNpixmap and XmNmask resources represent the actual pixmap
and its mask if you use one. Other resources include XmNheight , XmNwidth , and
XmNdepth for specifying those attributes of the image, as well as XmNhotX and XmNhotY
for indicating the x, y coordinate of the hotspot for the icon. The XmNattachment ,
XmNoffsetX , and XmNoffsetY resources specify how the icon is attached to the other
parts of a drag icon.

There are a number of ways in which you can customize the drag icons that are used for
drag and drop. You can specify default icons for all drag and drop transfers that start from
your application by setting various resources of the Screen object. When you change the
default drag icons for the Screen, the toolkit handles the drag-over effects using the icons,
as we discuss in Section 22.3.3. An application can also specify custom drag icons for a
particular drag and drop transfer by setting resources on its DragContext object. In this
case, the application has to manage the drag-over visuals using the different DragContext
callback routines.

Figure 22-3: Default source icons

Generic

Alternative Generic

Text

Alternative Te x

Figure 22-4: Default operation icons

Move Copy Link

Chapter 22: Drag and Drop

712 Motif Programming Manual

Protocols
For drag and drop to work, the initiating and receiving applications must be able to talk to
each other. The Motif toolkit supports two different mechanisms by which clients can
communicate with each other during drag and drop. The main information that needs to be
passed back and forth during a drag concerns the location of the drag icon relative to drop
sites in the receiving application. The dynamic drag protocol requires messaging between
the two applications, while the preregister drag protocol does not. During the drop, the Xt
selection protocol is used to transfer the data from one application to the other.

Drag Protocols

An application can quite easily support both the dynamic and preregister drag protocols,
although it can just support one or neither of the protocols if necessary. If an application
does not support either of the protocols, it can still participate in drag and drop, but it does
not provide any visual effects during the drag. The best approach is to support both
protocols so that users can specify the protocol that is used based on their needs. By default
the toolkit supports both protocols, so it is easy for an application to support both as well.
The code for the initiating client is the same for both protocols, while the code for the
receiver is the same except for an additional procedure that can be specified for use under
the dynamic protocol.

With the preregister protocol, information about all of the drop sites in an application is
stored in a database. This database is kept in a property on the top-level window of the
application (or on each top-level window, if there is more than one) so that it can be read
by an initiating application. During a drag, the initiator uses information in the database to
manage both drag-over and drag-under visuals. Drop sites in the receiving application can
set some resources to control the style of drag-under effect used, but the receiver does not
participate directly in the drag.

One benefit of the preregister protocol is that it does not require dynamic communication
between the initiating and receiving applications, so the performance of drag and drop does
not suffer if the network is heavily loaded. However, a receiving application cannot provide
sophisticated drag-under effects when the preregister protocol is being used. Under this
protocol, the server is grabbed during the drag, which means that the drag icon can be any
size (the size is not limited to the largest cursor size, as it is for the dynamic protocol).

Under the dynamic protocol, when the drag icon moves into a receiving application’s
window, the initiator sends a message to the application. Based on this message, the toolkit
on the receiving side determines whether or not the drag icon is in a valid drop site. The
toolkit also initializes state and operation information for the receiver, although the
receiving application can update this information using its XmNdragProc . Based on the
movement of the drag icon, the initiator receives the updated message back in one of its
drag-related callbacks.

Motif Programming Manual 713

Chapter 22: Drag and Drop

The benefit of the dynamic protocol is that the receiving application can provide
sophisticated drag-under effects and drag processing using its XmNdragProc . However,
the application does not have to provide these effects, as the toolkit provides some basic
effects by default. The dynamic protocol also has some drawbacks. One drawback is that
the messaging is expensive in terms of network traffic and may lead to unacceptable
performance if the network is heavily loaded. Another limitation is that the image used for
the drag icon can only be as large as the largest cursor supported by the system running the
application.

The Display object provides two resources that can be set to indicate which protocol the
toolkit should use when an application is the initiating or the receiving application in a drag
and drop transfer. These resources are XmNdragInitiatorProtocolStyle and
XmNdragReceiverProtocolStyle . An application can set the resources if it needs to
specify a particular protocol, or they can be set by the user in a resource file. We describe
the different values for the resources and how the actual protocols are determined in Section
22.3.1, when we discuss how to customize drag and drop.

Drop Protocol

The protocol that is used to transfer data when the drop occurs encompasses the Xt
incremental and non-incremental selection protocols. The DropTransfer object created by
the receiving application handles the drop protocol. When the DropTransfer object is
created using XmDropTransferStart() , the receiver specifies resources that indicate
the list of desired targets, as well as an XmNtransferProc that handles the data once it
has been converted by the initiator. The toolkit processes the requests one at a time by
calling the XmNconvertProc of the initiating client. This procedure processes the request
and passes the data back to the XmNtransferProc .

The DragContext and DropTransfer objects both have XmNincremental resources that
specify whether or not the data transfer is incremental. Incremental transfers are used when
the data is too large for a single X protocol request. No matter how the two resources are
set, the toolkit handles the transfer of data using the underlying Xt selection mechanisms.
Both the initiator and the receiver are informed about the completion of the entire transfer
once all of the subtransfers are done, if there are any.

The Programming Model
If you review what we’ve just covered and put all of the pieces together, it creates a
complex picture from the programmer’s perspective. Fortunately, unless you are trying to
do something really complicated, you can ignore many of the pieces and only use what you
need. This section describes the complete picture by laying out the responsibilities of both
the initiating and receiving applications for each step of a drag and drop operation. Figure
22-5 shows the steps graphically.

Chapter 22: Drag and Drop

714 Motif Programming Manual

Even though most applications contain both drag sources and drop sites, it makes sense to
think about the two roles separately, as the programming requirements for each are
separate.

- Provides custom drag-under
 visuals (optional)

- Checks drop site information
- Calls XmNdragProc (if registered)

- Sets protocol (optional)
- Establishes translations/actions
- Creates drag icons with
 XmCreateDragIcon() (optional)

Initiator

- Creates DragContext and
 specifies XmNconvertProc
 with XmDragStart()

- Calls XmNdropFinishCallback

 and XmNdragDropFinishCallback
 (if registered)

- Invokes action routine

- Provides custom drag-over
 visuals (optional)

- Sets protocol (optional)
- Registers drop sites and
 specifies XmNdropProc with
 XmDropSiteRegister()

Receiver

- Returns information about

 drop site

- Calls XmNdropProc

- Performs custom visuals (optional)

- Calls XmNdropStartCallback

 (if registered)

- Calls XmNconvertProc for each target

- Process converted data

- Requests conversion for each target

- Calls XmNtransferProc with
converted data- Returns converted data

When
Drag
Starts

During
Drag

When
Drop
Occurs

Before
Drag

During
Data
Transfer

After
Transfer

Toolkit

Application

Figure 22-5: Drag and drop programming model

- Determines action
 HELP - Posts dialog
 CANCEL - Cancels transfer
 DROP - proceeds with transfer
- Verifies if drop is possible and
 sets status information
- Starts transfer, registers XmNtransferProc
 with XmDropTransferStart()

- Handles drag-over/
drag-under visuals by
default

- Calls DragContext callbacks

- Sends message to
 receiver (Dynamic
 Protocol only)

- Performs clean-up (optional)

- Passes drop site and status

 information

- Converts data to requested format

Motif Programming Manual 715

Chapter 22: Drag and Drop

 If the initiator and receiver are in the same application, then the same toolkit is used by
both parties. Otherwise, each application is using a separate toolkit.

Before a Drag Starts

During the initialization and setup of the user interface, the initiating application needs to
create any custom drag icons that it wants to use for drag-over visual effects. The initiator
also needs to set up translations or event handlers to deal with ButtonPress events for
the second mouse button. The initiator (or the user) can specify the drag protocol if
necessary.

The receiving application needs to register widgets as drop sites. For each drop site, the
receiver must specify the valid data targets and the XmNdropProc that takes over when a
drop occurs in the dropsite. The receiver can also specify an XmNdragProc to handle
special processing during the drag and custom drag-under visuals for the drop site. The
receiver can query and modify the stacking order of drop sites, as well as update
information about drop sites while the application is running.

When a Drag Starts

When the user starts a drag operation, the toolkit on the initiating side takes control. The
application needs to create a DragContext by calling XmDragStart() . It must specify the
valid targets for the operation and the XmNconvertProc that processes data transfer
requests from the receiving client. The application can also specify callbacks that are
invoked at various points during the drag, custom drag-over visual effects, and a drop
callback that is called when the drop occurs. Receiving clients are not involved in this step.

During the Drag

By default, the toolkit on the initiating side handles all of the drag-over and drag-under
visuals under both the preregister and dynamic protocols. If the preregister protocol is being
used, the receiving client is not involved during the drag, but the initiating application can
provide custom drag-over effects. These effects are handled by the various callbacks that
can be specified fora DragContext. At any point during the drag, the initiator can cancel the
transfer by calling XmDragCancel() .

Under the dynamic protocol, the initiating application sends messages to receiving clients
to get drop site information. The toolkit on the receiving side handles these messages. If the
receiver has registered an XmNdragProc , it is invoked each time a message is sent to the
receiver. This routine can provide custom drag-under visuals and other special processing.
After the XmNdragProc is finished, information about the drop site is passed back to the
initiator, and the DragContext callbacks are invoked, so the initiator can still perform any
special processing and provide custom drag-overvisuals.

Chapter 22: Drag and Drop

716 Motif Programming Manual

When a Drop Occurs

When the user drops the data, the toolkit on the receiving side takes over from the toolkit
on the initiating side. The XmNdropProc for the drop site determines what action the user
has requested.If the user has requested help, the receiving application should display a help
dialog and see if the user wants to proceed. If the user cancels the transfer, the drop does
not proceed. Otherwise, the XmNdropProc determines if the transfer is possible by
checking the targets supported by drag source.

If the drop is valid, the receiving client starts the transfer of data by calling
XmDropTransferStart() . If the transfer is not valid, the routine still needs to be called
to clean up the operation. If the initiator has registered an XmNdropStartCallback on
its DragContext, it is invoked now. Other than this callback, the initiating client plays no
role when the drop occurs.

During the Data Transfer

When the receiver calls XmDropTransferStart() , it must specify a list of data and
target formats that it wants from the initiating application.The routine creates a
DropTransfer object that can be updated during the transfer. The receiver must also specify
an XmNtransferProc to handle the data once it has been converted by the initiator.The
receiver can cancel the transfer at any point.

For each target requested by the receiver, the XmNconvertProc of the initiator is called
to convert the data to the specified format. The formatted data is passed back to the
receiver’s XmNtransferProc . Once the entire data transfer is complete, the
XmNdropFinishCallback and XmNdragDropFinishCallback callbacks of the
initiating client’s DragContext are invoked, if they have been specified.

Customizing Built-in Drag and Drop
The Text and TextField widgets, the List widget, and the Label widget and its subclasses
all support drag and drop functionality by default*. When you use these widgets in an
application, they provide built-in drag and drop capabilities. All of the widgets are drag
sources for textual data, while just the Text and TextField widgets are registered as drop
sites for text.

With a Label widget or a button, the user can drag the entire text string of the component
by starting a drag in the component. The Label widget and its subclasses are also drag
sources for graphical data, but there are no built-in drop sites for graphical data. However,
when these components are in a menu, they do not function as drag sources. These
components are not drop sites because they are meant to be read-only components in a user

* In Motif 2.0 and later, drag and drop for the Scale, Label and LabelGadget are by default turned off if the Xm-
Display resource XmNenableUnselectableDrag is True .

Motif Programming Manual 717

Chapter 22: Drag and Drop

interface. Most applications would not want the user to be able to change the label on a
button by dropping text on it. However, if you want to provide this type of functionality, it
is easy to register a Label or a button as a drop site using the technique we describe in
Section 22.5.

The user can drag the text of either a single item or the current selection in a Listwidget. If
the pointer is over a selected item when the drag is started, the text of the selected item is
used for the drag. If multiple items are selected, the text of all of the selected items is used,
where the items are separated by newlines. If the drag is started over an unselected item,
the text of that item is transferred by drag and drop. The List widget is not a drop site
because its items are not meant to be modified by the user. If you want to allow the user to
modify a List by dropping items in it, however, you can register the widget as a drop site.

In Motif 1.2, only the Text and TextField widgets have built-in drop site functionality. The
user can drop textual data from any drag source in these widgets. The widgets also function
as drag sources, so the user can move and copy the current selection within and between
Text and TextField widgets.

In Motif 2.0 and later, the set of widgets supporting built-in drop site capability is expanded
to include the Container. In this instance, the data being transferred is widget-based, and
comes from the Container itself: it allows the user to move IconGadget children within the
same Container by dragging with the mouse.

Applications that simply use the built-in drag and drop capabilities of the Motif widgets can
still customize various aspects of the functionality. This section explores the different types
of customization that are possible.

Specifying the Drag Protocol
Motif supports two different protocols for communication between applications during a
drag. The dynamic protocol passes messages between the two applications about the
location of drop sites, while the preregister protocol keeps track of drop site information in
a database. Since the preregister protocol does not require communication between
applications, it can provide better performance on a heavily-loaded network. However, the
dynamic protocol offers the advantage of sophisticated drag-under visual effects.

The programmer or the user can specify the drag protocol for an application by setting the
XmNdragInitiatorProtocolStyle and XmNdragReceiverProtocolStyle
resources defined by the Display object. Motif creates a Display object automatically for
an application when it creates the first shell on a particular display. If an application uses
multiple displays, it has a Display object for each one. An application can retrieve the
Display object for a specified display using XmGetXmDisplay() .

The XmNdragInitiatorProtocolStyle and XmNdragReceiverProtocolStyle
resources indicate the preferred drag protocol for an application when it is acting as an

Chapter 22: Drag and Drop

718 Motif Programming Manual

initiator and as a receiver, respectively, in a drag and drop transfer. Each resource can be
set to one of the following values:

XmDRAG_PREREGISTER
This value means that the application can only support the preregister drag protocol.

XmDRAG_DYNAMIC
This value indicates that the application can only support the dynamic drag protocol.

XmDRAG_NONE
This value means that drag and drop is disabled for the application.

XmDRAG_DROP_ONLY
This value specifies that the application does not support either drag protocol, but it
does support drag and drop transfers. The user can transfer data using drag and drop,
but there are no visual effects during the drag.

XmDRAG_PREFER_DYNAMIC
This value means that the application supports both the preregister and dynamic pro-
tocols, but it prefers to use the dynamic protocol.

XmDRAG_PREFER_PREREGISTER
This value means that the application supports both drag protocols, but it prefers to use
the preregister protocol. The value is the default value forXmNdragReceiverPro-
tocolStyle .

XmDRAG_PREFER_RECEIVER
This value indicates that the application supports both the preregister and dynamic pro-
tocols, but it defers to the preference of the receiving application. The value can only
be specified for theXmNdragInitiatorProtocolStyle resource, and it is the de-
fault value for the resource.

The actual protocol that is used during a drag and drop transfer is based on the preferences
specified by the initiating and receiving applications. The protocol can change during a
drag as the drag icon enters and leaves top-level windows. Table 22-2 shows how the
protocol is resolved based on the preferred protocols for the initiator and the receiver.

Table 1-2. Drag Protocol Resolution

Initiator
Protocol Style

Receiver Protocol Style

Preregister
Prefer
Preregister Prefer Dynamic Dynamic

Preregister Preregister Preregister Preregister Drop Only

Prefer Preregister Preregister Preregister Preregister Dynamic

Prefer Receiver Preregister Preregister Dynamic Dynamic

Prefer Dynamic Preregister Dynamic Dynamic Dynamic

Dynamic Drop Only Dynamic Dynamic Dynamic

Motif Programming Manual 719

Chapter 22: Drag and Drop

If two applications cannot find an agreeable protocol style, the XmDRAG_DROP_ONLY style
is used. In this case, there are no drag-over or drag-under visuals except for the initial drag
icon. An application can also explicitly set the protocol resources to XmDRAG_DROP_ONLY,
in which case the application does not provide any visual effects during the drag.

If an application sets the resources XmNdragInitiatorProtocolStyle or
XmNdragReceiverProtocolStyle to XmDRAG_NONE, the application does not
participate in drag and drop as an initiator or a receiver, respectively. This value is useful
for disabling drag and drop functionality, as we discuss in the next section.

The actual protocol used for a drag and drop transfer controls the visual effects that the user
sees during the drag. Under the preregister protocol, the server is grabbed so the drag icon
can be a pixmap of arbitrary size. The drag icon uses the depth and colormap of the drag
source widget, so it can be a color image. When the dynamic protocol is used, the drag icon
is implemented using the X cursor, so it must be a bitmap and is limited in size (use
XQueryBestCursor() to determine the largest size for a particular hardware
configuration).

An application should support both the dynamic and preregister protocols so that the user
can select the protocol based on his needs. Since the toolkit supports both protocols by
default, an application can easily support both as well. The code for handling drag sources
is the same under both protocols. Drop sites can specify an optional XmNdragProc routine
that is invoked under the dynamic protocol and can be used to provide sophisticated drag-
under effects.

The only reason that you should specify the XmNdragInitiatorProtocolStyle and
XmNdragReceiverProtocolStyle resources in application code is if your application
is going to support only one of the drag protocols. In this case, you should set the resources
to force the application to use the supported protocol. You can retrieve the Display object
for the application using XmGetXmDisplay() and then use XtVaSetValues() to
specify the resources. You can also use XtVaGetValues() to check the values of the
protocol resources.

If your application supports both drag protocols, you can specify the protocol resources in
an app-defaults file to indicate the application’s preferred protocol. By default, an
application uses the preregister protocol because XmNdragInitiatorProtocolStyle
is set to XmDRAG_PREFER_RECEIVER and XmNdragReceiverProtocolStyle is set to
XmDRAG_PREFER_PREREGISTER. If you have implemented custom drag-under visuals
with an XmNdragProc , you should set the protocol resources to XmDRAG_PREFER_
DYNAMIC so that the dynamic protocol is used whenever possible. You can set these
resources in an app-defaults file as follows:

*DragInitiatorProtocolStyle: DRAG_PREFER_DYNAMIC
*DragReceiverProtocolStyle: DRAG_PREFER_DYNAMIC

Chapter 22: Drag and Drop

720 Motif Programming Manual

If you set the protocol resources in an app-defaults file, users can specify their own values
in a resource file. Users that want to ensure good performance should specify a preference
for the preregister protocol, while users that want sophisticated drag-under effects should
indicate a preference for the dynamic protocol.

Turning Off Drag and Drop Functionality
If you do not want to provide drag and drop in an application, you can turn off the function-
ality in a number of ways. The most effective way to turn off the functionality is to set both
XmNdragInitiatorProtocolStyle and XmNdragReceiverProtocolStyle to
XmDRAG_NONE. These settings completely disable drag and drop for the application. You
can also set just one of the resources to this value to prevent an application from participat-
ing in drag and drop as either an initiator or a receiver.

You can also selectively turn off individual drag sources in an application. To prevent a
widget from providing its default drag source functionality, you need to override the
translation for the second mouse button for the widget, as shown in the following code
fragment:

static char dragTranslations[] = "#override <Btn2Down>: DoNothing()";
static XtActionsRec dragActions[] = {

{"DoNothing", (XtActionProc) DoNothing}
};

True to its name, the DoNothing() action routine does nothing. Once you parse the
translation table and add the actions to the application, you can use the translation to set the
XmNtranslations resources of all of the widgets that you do not want to function as
drag sources.

There are two different ways to disable the drop site functionality of a Text or TextField
widget. If you want to turn off the drop site permanently, you can call
XmDropSiteUnregister() for the widget. This routine removes the drop site associated
with the widget, so you have to reregister it if you want to enable the drop site. To disable
a drop site temporarily, it is easier to use the XmNdropSiteActivity resource defined by
the DropSite object. This resource can be set to either XmDROP_SITE_ACTIVE or
XmDROP_SITE_INACTIVE. When a drop site is inactive, it does not participate in drag and
drop. You can set a drop site inactive using XmDropSiteUpdate() , as shown in the
following code fragment:

Widget text_w;
Arg args[5];
int n = 0;
...
XtSetArg (args[n], XmNdropSiteActivity, XmDROP_SITE_INACTIVE); n++;
XmDropSiteUpdate (text_w, args, n);
...

Motif Programming Manual 721

Chapter 22: Drag and Drop

Even though drop sites are associated with widgets, you have to set DropSite resources
using XmDropSiteUpdate() , not XtVaSetValues() .

One situation in which you would probably want to disable a built-in drop site is when the
widget is designed to be output-only. If you set the XmNeditable resource of a Text or
TextField widget to False , the user cannot drop data in the widget because it is uneditable.
However, the toolkit still displays the default drag-under visual effects in this case, so the
widget appears as though it functions as a drop site. To make it clear that the widget is not
a drop site, you can disable the drop site using one of the techniques we just described. If
the widget is always uneditable, it is fine to use XmDropSiteUnregister() , but if the
widget changes state, you are better off setting XmNdropSiteActivity . For certain other
types of read-only widgets, an alternative exists in Motif 2.0 and later; set the XmDisplay
resource XmNenableUnselectableDrag to True to turn off dragging in Label,
LabelGadget, and Scale widgets.

When you set a Text or TextField widget insensitive, the user cannot interact with the
widget, so it doesn’t make sense for the widget to function as a drop site. However, there
is currently a bug in the implementation of drag and drop such that the user can drop text
in an insensitive widget. To prevent this problem, whenever you change the sensitivity of
a Text widget, you should set the XmNdropSiteActivity resource to match the
sensitivity.

Modifying the Visual Effects
Motif provides resources that both the user and the programmer can use to change the
default drag-over visual effects that are used during a drag and drop transfer. The Screen
object provides the following resources:

XmNdefaultSourceCursorIcon XmNdefaultMoveCursorIcon
XmNdefaultCopyCursorIcon XmNdefaultLinkCursorIcon
XmNdefaultValidCursorIcon XmNdefaultInvalidCursorIcon
XmNdefaultNoneCursorIcon

These resources specify the default icons for all the components of a drag icon, including
the different operations and states.

Motif creates a Screen object automatically for an application when it creates the first shell
on a particular screen. If an application accesses multiple screens, it has a Screen object for
each one. An application can retrieve the Screen object for a specified screen using
XmGetXmScreen() .

The drag icon resources defined by the Screen object only take effect when the
XmNsourceCursorIcon , XmNoperationCursorIcon , and XmNstateCursorIcon
resources have not been specified for a particular DragContext. All Motif widgets with
built-in drag source functionality set the XmNsourceCursorIcon resource, so the Screen
resource cannot be used to specify a different source icon for these components. The

Chapter 22: Drag and Drop

722 Motif Programming Manual

widgets do not set the XmNoperationCursorIcon and XmNstateCursorIcon
resources, so you can set the various default icons for these components.

If neither the DragContext resources nor the Screen resources are specified, Motif uses
hard-coded default icons. For example, the running figure shown in Figure 22-3 is used as
the source icon whenever a source icon has not been specified. Since this icon is rather
arbitrary, you might want to set the XmNdefaultSourceCursorIcon resource to
something more appropriate for your application.

Before you can set the Screen resources in application code, you must create DragIcon
objects for the different resources. In Section 22.4.2 we describe how to create a drag icon
using XmCreateDragIcon() . Once the drag icon exists, you can retrieve the Screen
object using XmGetXmScreen() and set its resources, as shown in the following code
fragment:

Widget drag_icon, screen, toplevel;
...
screen = XmGetXmScreen (XtScreen (toplevel));
XtVaSetValues (screen, XmNdefaultSourceCursorIcon, drag_icon, NULL);
...

The specified icon is used whenever the source icon has not been set for the DragContext
for a drag and drop transfer.

The Screen resources can also be set in a resource file. In this case, the icons can be
specified as bitmap files, so the application does not have to create DragIcon objects. Both
the icon and an optional mask can be specified using resources as follows:

*defaultSourceCursorIcon.pixmap: icon.xbm
*defaultSourceCursorIcon.mask: icon_mask.xbm

Although it is convenient to be able to set the Screen resources in a resource file, this feature
really isn’t that useful since the Motif widgets and most applications specify their drag
icons using DragContext resources.

The resources XmNvalidCursorForeground , XmNinvalidCursorForeground , and
XmNnoneCursorForeground of the DragContext can be used to further distinguish
between the different states in a drag and drop transfer. These resources can be specified in
a resource file as follows:

*validCursorForeground: green
*invalidCursorForeground: red
*noneCursorForeground: yellow

In this case, the drag icon changes color as the user moves it between components that are
valid drop sites, components that are invalid drop sites, and components that are not drop
sites. While it is possible to modify some aspects of the drag-over effects using Screen and
DragContext resources, if you really want to provide customized visual effects, you need

Motif Programming Manual 723

Chapter 22: Drag and Drop

to understand more about the implementation of drag and drop. In Section 22.4.5 we
discuss how to provide custom drag-over effects.

Working With Drag Sources
Many applications work with data other than text. In order to provide drag and drop
capabilities, these applications need to create drag sources for the data they manipulate. In
this section, we describe the steps you need to follow to create a new drag source. We use
an example program that displays all the files in a directory and allows the user to drag the
files. However, in order for this drag to succeed, we need another application that
understands files as objects and allows the user to drop files. In Section 22.5, we present a
text editor that handles the dropping of file data, but for now we are just going to consider
the ability to drag a file. Example 22-1 shows the file_manager.c application, which we are
going to describe in detail in the following sections.*

Example 22-1. The file_manager.c program

/* file_manager.c -- displays all of the files in the current directory
** and creates a drag source for each file. The user can drag the
** contents of the file to another application that understands
** dropping file data. Demonstrates creating a drag source, creating
** drag icons, and handling data conversion.
*/

#include <Xm/Screen.h>
#include <Xm/ScrolledW.h>
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <Xm/Label.h>
#include <Xm/AtomMgr.h>
#include <Xm/DragDrop.h>
#include <X11/Xos.h>
#include <stdio.h>
#include <sys/stat.h>

typedef struct {
char *file_name;
Boolean is_directory;

} FileInfo;

/* global variable -- arbitrarily limit number of files to 256 */
FileInfo files[256];
void StartDrag(Widget, XEvent *, String *, Cardinal *);

/* translations and actions. Pressing mouse button 2 calls
** StartDrag to start a drag transaction

* XtAppInitialize () is considered deprecated in X11R6. XmInternAtom () is marked for deprecation in Mo-
tif 2.0 and later.

Chapter 22: Drag and Drop

724 Motif Programming Manual

*/
static char dragTranslations[] = "#override <Btn2Down>: StartDrag()";
static XtActionsRec dragActions[] = {

{"StartDrag", (XtActionProc) StartDrag}
};

main (int argc, char *argv[])
{

Arg args[12];
int num_files, n, i = 0;
Widget toplevel, sw, panel, form, label;
Display *dpy;
Atom FILE_CONTENTS, FILE_NAME, DIRECTORY;
XtAppContext app;
XtTranslations parsed_trans;
char *p, buf[256];
FILE *pp, *popen();
struct stat s_buf;
Pixmap file, dir, pixmap;
Pixel fg, bg;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL, 0);

/* intern the Atoms for data targets */
dpy = XtDisplay (toplevel);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
DIRECTORY = XInternAtom (dpy, "DIRECTORY", False);

/* use popen to get the files in the directory */
sprintf (buf, "/bin/ls .");
if (!(pp = popen (buf, "r"))) {

perror (buf);
exit (1);

}

/* read output from popen -- store filename and type */
while (fgets (buf, sizeof (buf), pp) && (i < 256)) {

if (p = index (buf, '\n'))
*p = 0;

if (stat (buf, &s_buf) == -1)
continue;

else if ((s_buf.st_mode &S_IFMT) == S_IFDIR)
files[i].is_directory = True;

else if (!(s_buf.st_mode & S_IFREG))
continue;

else
files[i].is_directory = False;

files[i].file_name = XtNewString (buf);
i++;

}
pclose (pp);

Motif Programming Manual 725

Chapter 22: Drag and Drop

num_files = i;

/* create a scrolled window to contain the file labels */
n = 0;
XtSetArg (args[n], XmNwidth, 200); n++;
XtSetArg (args[n], XmNheight, 300); n++;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
sw = XmCreateScrolledWindow (toplevel, "sw", args, n);
panel = XmCreateRowColumn (sw, "panel", NULL, 0);
/* get foreground and background colors and create label pixmaps */
XtVaGetValues (panel, XmNforeground, &fg,

XmNbackground, &bg, NULL);
file = XmGetPixmap (XtScreen (panel), "file.xbm", fg, bg);
dir = XmGetPixmap (XtScreen (panel), "dir.xbm", fg, bg);
if (file == XmUNSPECIFIED_PIXMAP || dir == XmUNSPECIFIED_PIXMAP) {

puts ("Couldn't load pixmaps");
exit (1);

}

parsed_trans = XtParseTranslationTable (dragTranslations);
XtAppAddActions (app, dragActions, XtNumber (dragActions));

/* create image and filename Labels for each file */
for (i = 0; i < num_files; i++) {

form = XmCreateForm (panel, "form", NULL, 0);

if (files[i].is_directory) pixmap = dir;
else pixmap = file;

n = 0;
/* specify translation for drag and index into file array */
XtSetArg (args[n], XmNtranslations, parsed_trans); n++;
XtSetArg (args[n], XmNuserData, i); n++;
XtSetArg (args[n], XmNlabelType, XmPIXMAP); n++;
XtSetArg (args[n], XmNlabelPixmap, pixmap); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNrightPosition, 25); n++;
label = XmCreateLabel (form, "type", args, n);
XtManageChild (label);

n = 0;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_BEGINNING); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNleftPosition, 25); n++;
label = XmCreateLabel (form, files[i].file_name, args, n);
XtManageChild (label);
XtManageChild (form);

}

Chapter 22: Drag and Drop

726 Motif Programming Manual

XtManageChild (panel);
XtManageChild (sw);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* StartDrag() -- action routine called by initiator when a drag starts
** (in this case, when mouse button 2 is pressed). It starts
** the drag processing and establishes a drag context.
*/
void StartDrag (Widget widget, XEvent *event, String *params,

Cardinal *num_params)
{

Argargs[10];
int n, i;
Display *dpy;
Atom FILE_CONTENTS, FILE_NAME, DIRECTORY;
Atom exportList[2];
Widget drag_icon, dc;
Pixel fg, bg;
Pixmap icon, iconmask;
XtPointer ptr;
Boolean ConvertProc(Widget, Atom *, Atom *, Atom *,

XtPointer *, unsigned long *, int *);
void DragDropFinish(Widget, XtPointer, XtPointer);

Boolean ConvertProc();
void DragDropFinish();

/* intern the Atoms for data targets */
dpy = XtDisplay (widget);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
DIRECTORY = XInternAtom (dpy, "DIRECTORY", False);

/* get background and foreground colors and fetch index into file
** array from XmNuserData.
*/
XtVaGetValues (widget, XmNbackground, &bg, XmNforeground, &fg,

XmNuserData, &ptr, NULL);

/* create pixmaps for drag icon -- either file or directory */
i = (int) ptr;
if (files[i].is_directory) {

icon = XmGetPixmapByDepth (XtScreen (widget), "dir.xbm",
1, 0, 1);

iconmask = XmGetPixmapByDepth (XtScreen (widget),
"dirmask.xbm", 1, 0, 1);

}
else {

icon = XmGetPixmapByDepth (XtScreen (widget), "file.xbm",
1, 0, 1);

iconmask = XmGetPixmapByDepth (XtScreen (widget),

Motif Programming Manual 727

Chapter 22: Drag and Drop

"filemask.xbm", 1, 0, 1);
}
if (icon == XmUNSPECIFIED_PIXMAP ||

iconmask == XmUNSPECIFIED_PIXMAP) {
puts ("Couldn't load pixmaps");
exit (1);

}
n = 0;
XtSetArg (args[n], XmNpixmap, icon); n++;
XtSetArg (args[n], XmNmask, iconmask); n++;
drag_icon = XmCreateDragIcon (widget, "drag_icon", args, n);

/* specify resources for DragContext for the transfer */
n = 0;
XtSetArg (args[n], XmNblendModel, XmBLEND_ALL); n++;
XtSetArg (args[n], XmNcursorBackground, bg); n++;
XtSetArg (args[n], XmNcursorForeground, fg); n++;
XtSetArg (args[n], XmNsourceCursorIcon, drag_icon); n++;

/* establish the list of valid target types */
if (files[i].is_directory) {

exportList[0] = DIRECTORY;
XtSetArg (args[n], XmNexportTargets, exportList); n++;
XtSetArg (args[n], XmNnumExportTargets, 1); n++;

}
else {

exportList[0] = FILE_CONTENTS;
exportList[1] = FILE_NAME;
XtSetArg (args[n], XmNexportTargets, exportList); n++;
XtSetArg (args[n], XmNnumExportTargets, 2); n++;

}
XtSetArg (args[n], XmNdragOperations, XmDROP_COPY); n++;
XtSetArg (args[n], XmNconvertProc, ConvertProc); n++;
XtSetArg (args[n], XmNclientData, widget); n++;

/* start the drag and register a callback to clean up when done */
dc = XmDragStart (widget, event, args, n);
XtAddCallback (dc, XmNdragDropFinishCallback, DragDropFinish,

NULL);
}

/* ConvertProc() -- convert the file data to the format requested
** by the drop site.
*/
Boolean ConvertProc (Widget widget,

Atom *selection,
Atom *target,
Atom *type_return,
XtPointer *value_return,
unsigned long *length_return,
int *format_return)

{
Display *dpy;
Atom FILE_CONTENTS, FILE_NAME, MOTIF_DROP;

Chapter 22: Drag and Drop

728 Motif Programming Manual

XtPointer ptr;
Widget label;
int i;
char *text;
struct stat s_buf;
FILE *fp;
long length;
String str;

/* intern the Atoms for data targets */
dpy = XtDisplay (widget);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
MOTIF_DROP = XInternAtom (dpy, "_MOTIF_DROP", False);

/* check if we are dealing with a drop */
if (*selection != MOTIF_DROP)

return False;

/* get the drag source widget */
XtVaGetValues (widget, XmNclientData, &ptr, NULL);
label = (Widget) ptr;
if (label == NULL)

return False;

/* get the index into the file array from XmNuserData from the
** drag source widget.
*/
XtVaGetValues (label, XmNuserData, &ptr, NULL);
i = (int) ptr;
/* this routine processes only file contents and file name */
if (*target == FILE_CONTENTS) {

/* get the contents of the file */
if (stat (files[i].file_name, &s_buf) == -1 ||

(s_buf.st_mode & S_IFMT) != S_IFREG ||
!(fp = fopen (files[i].file_name, "r")))
return False;

length = s_buf.st_size;

if (!(text = XtMalloc ((unsigned) (length + 1))))
return False;

else if (fread (text, sizeof (char), length, fp) != length)
return False;

else
text[length] = 0;

fclose (fp);

/* format the value for transfer */
*type_return = FILE_CONTENTS;
*value_return = (XtPointer) text;
*length_return = length;
*format_return = 8;
return True;

}

Motif Programming Manual 729

Chapter 22: Drag and Drop

else if (*target == FILE_NAME) {
str = XtNewString (files[i].file_name);
/* format the value for transfer */
*type_return = FILE_NAME;
*value_return = (XtPointer) str;
*length_return = strlen (str) + 1;
*format_return = 8;
return True;

}
else

return False;
}

/* DragDropFinish() -- clean up after a drag and drop transfer. */
void DragDropFinish (Widget widget, XtPointer client_data,

XtPointer call_data)
{

Widget source_icon = NULL;
XtVaGetValues (widget, XmNsourceCursorIcon, &source_icon, NULL);
if (source_icon)

XtDestroyWidget (source_icon);
}

The output of this application is shown in Figure 22-6.

The application gets the names of all of the files in the current directory*and displays the
filenames using Label widgets. Each file has a file or folder image next to it, depending on
whether it is a regular file or a directory. The images are the drag sources for manipulating
the files. If the user presses the middle mouse button over one of the symbols, the pointer
changes to a drag icon and he can drag the file to another application that has a drop site
that understands files.

* We use popen() here, but you should use opendir() and readdir() .

Figure 22-6: The output of the file_manager program

Chapter 22: Drag and Drop

730 Motif Programming Manual

Creating a Drag Source
When the application reads the files in the directory, it creates a global array of structures
that contain information about the files. This information is used to keep track of filenames
and file types. For each file, the application creates two Label widgets: an image that
represents the type of the file and a string that specifies the filename. To link the image
Labels to the array, the application passes the index of each file in the array as the
XmNuserData resource for the associated Label. This value can be retrieved and used to
access the information in the array.

Depending on whether a file is a regular file or a directory, the application places an image
of a file or a folder next to the filename Label. Each image is created using
XmGetPixmap() and specified as the XmNlabelPixmap for the appropriate image
Labels. The images are also used for drag icons during the drag operation, as we describe
in the next section. For more information on XmGetPixmap() , see Section 3.4.5.

In order to specify that the file images are drag sources, we have to establish translations
for the Label widgets that are used for the images. Label widgets already have drag source
functionality, so we need to decide whether to override or augment this functionality. Since
the existing translation merely allows the user to drag the pixmap image for the Label, we
override the translation as shown in the following code fragment:

static char dragTranslations[] = “#override <Btn2Down>: StartDrag()";
static XtActionsRec dragActions[] = {

{"StartDrag", (XtActionProc) StartDrag}
};

The application parses the translation table and adds the action using
XtParseTranslationTable() and XtAppAddActions() , respectively. The new
translation table is specified for the XmNtranslations resource for each of the image
Labels.

The only other operation performed in main() that is relevant for the drag functionality is
the interning of atoms for target types. We use the FILE_NAME target that is defined by
the ICCCM, as well as two of our own targets, FILE_CONTENTS and DIRECTORY. We
chose these target names ourselves because the ICCCM does not define any targets that are
suitable for our purposes. We create atoms for these targets using XInternAtom() , as
shown in the following code fragment*:

Widget toplevel;
Display *dpy;
Atom FILE_CONTENTS, FILE_NAME, DIRECTORY;

dpy = XtDisplay (toplevel);

* As of Motif 2.0, XmInternAtom () is marked for deprecation.

Motif Programming Manual 731

Chapter 22: Drag and Drop

FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
DIRECTORY = XInternAtom (dpy, "DIRECTORY", False);

Although we don’t actually use the atoms in main() , we intern them so that they are
cached by the Motif toolkit. When we intern the atoms in other routines in the application,
they are retrieved from the cache.

Starting the Drag
When the user starts a drag, the DragStart() action routine is called. This routine creates
a custom dragicon and calls XmDragStart() to start the drag. To create the appropriate
drag icon, we need to know whether the drag source represents a file or a directory, so we
fetch the XmNuserData from the Label widget that is the drag source. We use this value
to access the appropriate structure in the files array and determine the type of file the user
is manipulating.

Once we know what type of file we are dealing with, we can create the source icon for the
drag. We use the same pixmap as for the image Label, so the drag icon is either a file image
or a folder image. We use XmGetPixmapByDepth() to create both the icon and an
iconmask so that we can specify a depth of 1. We call XmCreateDragIcon() to create
the drag icon, as shown in the following code fragment from Example 22-1:

n = 0;
XtSetArg (args[n], XmNpixmap, icon); n++;
XtSetArg (args[n], XmNmask, iconmask); n++;
drag_icon = XmCreateDragIcon (widget, "drag_icon", args, n);

The DragIcon is created as a child of the drag source widget. We only need to specify the
XmNpixmap and XmNmask resources because the DragIcon sets its other attributes, such
as width and height, based on the pixmap. The DragIcon takes its foreground and
background colors from its parent, so we don’t need to specify these resources either. The
XmNmask resource must be set to a pixmap of depth 1, while the XmNpixmap can be any
depth.

Now that we have a DragIcon object for the source icon, we can call XmDragStart() to
start the drag as shown below:

n = 0;
XtSetArg (args[n], XmNblendModel, XmBLEND_ALL); n++;
XtSetArg (args[n], XmNcursorBackground, bg); n++;
XtSetArg (args[n], XmNcursorForeground, fg); n++;
XtSetArg (args[n], XmNsourceCursorIcon, drag_icon); n++;

if (files[i].directory) {
exportList[0] = DIRECTORY;
XtSetArg (args[n], XmNexportTargets, exportList); n++;
XtSetArg (args[n], XmNnumExportTargets, 1); n++;

} else {

Chapter 22: Drag and Drop

732 Motif Programming Manual

exportList[0] = FILE_CONTENTS;
exportList[1] = FILE_NAME;
XtSetArg (args[n], XmNexportTargets, exportList); n++;
XtSetArg (args[n], XmNnumExportTargets, 2); n++;

}

XtSetArg (args[n], XmNdragOperations, XmDROP_COPY); n++;
XtSetArg (args[n], XmNconvertProc, ConvertProc); n++;
XtSetArg (args[n], XmNclientData, widget); n++;
dc = XmDragStart (widget, event, args, n);

This routine creates a DragContext object for the drag and drop transfer and sets a number
of resources for the DragContext. The XmNsourceCursorIcon specifies the source drag
icon that we just created. We also specify the background and foreground colors for the
icon. The DragContext also has the resources XmNoperationCursorIcon and
XmNstateCursorIcon for specifying the operation and state icons, but our drag icon
does not use these parts, so we don’t set the resources.

The XmNblendModel resource controls the components of the drag icon that are used
during the drag. This resource can take one of the following values:

XmBLEND_ALL XmBLEND_STATE_SOURCE
XmBLEND_JUST_SOURCE XmBLEND_NONE

XmBLEND_ALL indicates that all three parts of the drag icon should be used, while
XmBLEND_STATE_SOURCE causes only the state and source icons to be used. We specify
the value XmBLEND_ALL since we want our source icon to be used for the drag icon, as well
as the default system operation and status icons. XmBLEND_NONE means that the
DragContext does not generate a drag icon.

Another important set of resources are the XmNexportTargets and
XmNnumExportTargets resources. These resources specify the data targets to which the
drag source can convert the actual data. The XmNexportTargets resource contains a list
of target atoms.If the file is a directory, we specify the DIRECTORY target. Otherwise, we
specify both the FILE_CONTENTS and FILE_NAME targets, which means that the drag
source can provide both a filename and the actual contents of the file to a drop site. In order
for the drag to succeed, another application must use at least one of these targets for a drop
site so that the user has some place to drop the data.

The XmNdragOperations resource specifies all of the operations that are supported by
the application. This value is specified as a bit mask formed by combining the following
possible values:

XmDROP_COPY XmDROP_MOVE XmDROP_LINK XmDROP_NOOP

For the limited purpose of this application, we specify XmDROP_COPY because we only
allow the user to copy the contents of a file. A fully-functional file manager application
would probably also support moving and copying files within the directory structure, but
that functionality is beyond the scope of our discussion. During the drag, the operations

Motif Programming Manual 733

Chapter 22: Drag and Drop

supported by the current drop site are matched against those supported by the drag source
to see if the transfer is possible.

The final DragContext resource that we specify is the XmNconvertProc . This resource
indicates the procedure that is called to convert the actual data into the format requested by
the drop site when the drop occurs. We specify the ConvertProc() routine for our
application; this routine is described in the next section. We also set XmNclientData to
the Label widget that started the drag, so that we have access to the filename and file type
data stored about that Label, as this information is needed to process the drop.

After we create the DragContext and start the drag with XmDragStart() , we register a
callback routine for the XmNdragDropFinishCallback so that we can destroy the
DragIcon that we created. This routine is discussed further in Section 22.4.6.

Converting the Data
When a drop occurs, a procedure that has been registered by the drop site is called to verify
that the drop can take place. This procedure checks the status of the operation and then
starts the data transfer. The receiving application requests the format that it wants to receive
the data in; the receiver can even request the data in multiple formats, if they are available.
For each requested data target, the initiating application’s XmNconvertProc is invoked.
In our case, this is the ConvertProc() routine. Since we are not using incremental
transfer, this routine is of type XtConvertSelectionProc , which takes the following
form:

typedef Boolean (*XtConvertSelectionProc)(Widget widget ,
Atom * selection ,
Atom * target ,
Atom * type_return ,
XtPointer * value_return ,
unsigned long * length_return ,
int * format_return)

The widget parameter is the DragContext for the drag operation, selection is the
selection atom, which in this case is _MOTIF_DROP, and target is the type of information
requested about the selection. The type_return , value_return , length_return ,
and format_return parameters return the type, value, length, and format of the
converted data. The routine should return True if the conversion succeeds and False
otherwise. For more information about this procedure type, see Volume 4, X Toolkit
Intrinsics Programming Manual, and the appropriate reference page in Volume 5, X
Toolkit Intrinsics Reference Manual.

The ConvertProc() routine in Example 22-1 starts by retrieving the Label widget from
the XmNclientData resource of the DragContext. The goal is to get an index into the
files array so that we can access information about the file. The index is stored in the

Chapter 22: Drag and Drop

734 Motif Programming Manual

XmNuserData resource of the Label widget. Once we have the index, we can use it to get
the filename from the array.

Our conversion routine only handles requests for a filename or the contents of a file. If
target is set to FILE_CONTENTS, ConvertProc() retrieves the contents of the file
and formats the data for transfer back to the receiving client. The contents of the file are
passed as a pointer to the text, using the value_return parameter. If the drop site has
requested the FILE_NAME target, the routine returns the filename in value_return . In
either case, the length_return argument is set to the length of the text, and format_
return is set to 8 to specify the length of each of the elements in value_return . The
return_type parameter is set to the appropriate target. If the drop site has requested any
other target, the routine returns False to indicate that the transfer has failed.

The conversion routine does not handle the DIRECTORY target, partly because we have
not implemented any drop sites that understand the target. A real file manager application
would want to support the dragging of directories to allow the user to modify the file system
using drag and drop. In this case, the conversion procedure would need to have another
branch for handling the DIRECTORY target.

Since the drag source only supports the copy operation, the conversion routine does not
have to worry about deleting the existing data. With a copy operation, the
XmNconvertProc returns a pointer to the data so that when the operation is done, both the
initiator and the receiver have a copy of the data. With a move operation, the initiating
application returns a pointer to the data and then waits for the receiver to tell it to delete the
data. The receiving application gets the data, stores it, and then specifies the DELETE
target to handle this situation. When the initiating client gets this target, it can safely delete
the data. With a link operation, the initiator again passes a pointer to the data, but in this
case the receiver uses the pointer to establish a link to the data.

Modifying an Existing Drag Source
In file_manager.c, we decided to replace the existing drag capabilities of the image Label
widgets and provide our own functionality instead. By default, the Labels would function
as graphical drag sources, but since there are no drop sites that support graphical data, there
is no reason to preserve this functionality.

However, if you want to provide the default functionality for a drag source as well as your
own functionality, the set up of the drag source becomes more complicated. Each Motif
widget that acts as a drag source has a translation and action that starts the drag. Since the
existing action calls XmDragStart() for the transfer, another action routine cannot call
XmDragStart() again. The solution to this problem is to write an action routine that
retrieves the DragContext for the transfer and modifies its resources.

In our application, we want to augment the drag source functionality of the filename Labels.
If the user drags the Label to a drop site that understands file objects, the actual file is

Motif Programming Manual 735

Chapter 22: Drag and Drop

transferred. Otherwise, the default drag functionality for the Label causes the text of the
Label to be passed to the dropsite. The first thing that we need to do is modify the
translations for the Label widgets. Since we want to provide the default functionality, the
new translation calls the widget’s existing drag action routine followed by our own action.
The existing drag action routine for the Label widget is ProcessDrag() , so the
translations and actions for the application can be defined as follows:

static char dragTranslations[] = "#override <Btn2Down>: StartDrag()";
static char newdragTranslations[] =

"#override <Btn2Down>: ProcessDrag() UpdateDrag()";
static XtActionsRec dragActions[] = {

{"StartDrag", (XtActionProc) StartDrag},
{"UpdateDrag", (XtActionProc) UpdateDrag}

};

As always, the translations need to be parsed using XtParseTranslationTable() , and
the actions need to be registered using XtAppAddActions() . Now, when we create each
of the filename Labels, we can specify the new translation for the XmNtranslations
resource, as shown in the following code fragment:

parsed_trans_text = XtParseTranslationTable (newdragTranslations);
...
n = 0;
XtSetArg (args[n], XmNtranslations, parsed_trans_text); n++;
XtSetArg (args[n], XmNuserData, i); n++;
...
label = XmCreateLabel (form, files[i].file_name, args, n);

Note that we also specify the index in the files array as the XmNuserData for these
widgets, just as we did for the image Labels in Example 22-1.

The UpdateDrag() action routine is invoked after the Label’s default drag action, which
means that XmDragStart() has already been called for the operation. Our action routine
retrieves the DragContext for the operation and modifies it, as shown in Example 22-2*.

Example 22-2. The UpdateDrag() routine

void (*convert_proc) (Widget, Atom *, Atom *, Atom *,
XtPointer *, unsigned long *, int *);

void UpdateDrag (Widget widget, XEvent *event, String *params,
Cardinal *num_params)

{
Arg args[10];
int n, m, i;
Display *dpy;
Atom FILE_CONTENTS, FILE_NAME, DIRECTORY;
Widget drag_icon, dc;

* XmInternAtom () is marked for deprecation from Motif 2.0.

Chapter 22: Drag and Drop

736 Motif Programming Manual

Pixel fg, bg;
Pixmap icon, iconmask;
XtPointer ptr;
Boolean NewConvertProc(Widget, Atom *, Atom *, Atom *,

XtPointer *, unsigned long *, int *);
void DragDropFinish(Widget, XtPointer, XtPointer);
Cardinal numExportTargets;
Atom *exportTargets, *newTargets;

/* intern the Atoms for data targets */
dpy = XtDisplay (widget);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
DIRECTORY = XInternAtom (dpy, "DIRECTORY", False);

/* get background and foreground colors and fetch index into file
** array from XmNuserData.
*/
XtVaGetValues (widget, XmNforeground, &fg, XmNbackground, &bg,

XmNuserData, &ptr, NULL);

/* create pixmaps for drag icon -- either file or directory */
i = (int) ptr;
if (files[i].is_directory) {

icon = XmGetPixmapByDepth (XtScreen (widget), "dir.xbm",
1, 0, 1);

iconmask = XmGetPixmapByDepth (XtScreen (widget),
"dirmask.xbm", 1, 0, 1);

}
else {

icon = XmGetPixmapByDepth (XtScreen (widget), "file.xbm",
1, 0, 1);

iconmask = XmGetPixmapByDepth (XtScreen (widget),
"filemask.xbm", 1, 0, 1);

}
if (icon == XmUNSPECIFIED_PIXMAP ||

iconmask == XmUNSPECIFIED_PIXMAP) {
puts ("Couldn't load pixmaps");
exit (1);

}
n = 0;
XtSetArg (args[n], XmNpixmap, icon); n++;
XtSetArg (args[n], XmNmask, iconmask); n++;
drag_icon = XmCreateDragIcon (widget, "drag_icon", args, n);

/* get the DragContext and retrieve info about it */
dc = XmGetDragContext (widget, event->xbutton.time);
n = 0;
XtSetArg (args[n], XmNexportTargets, &exportTargets); n++;
XtSetArg (args[n], XmNnumExportTargets, &numExportTargets); n++;
XtSetArg (args[n], XmNconvertProc, &convert_proc); n++;
XtGetValues (dc, args, n);

/* add new targets to the list of targets */

Motif Programming Manual 737

Chapter 22: Drag and Drop

n = 0;
if (files[i].is_directory) {

newTargets = (Atom *) XtMalloc (sizeof (Atom) *
(numExportTargets + 1));

for (m = 0; m < numExportTargets; m++)
newTargets[m] = exportTargets[m];

newTargets[m] = DIRECTORY;
XtSetArg (args[n], XmNexportTargets, newTargets); n++;
XtSetArg (args[n], XmNnumExportTargets, numExportTargets + 1);
n++;

} else {
newTargets = (Atom *) XtMalloc (sizeof (Atom) *

(numExportTargets + 2));
for (m = 0; m < numExportTargets; m++)

newTargets[m] = exportTargets[m];
newTargets[m] = FILE_CONTENTS;
newTargets[m+1] = FILE_NAME;
XtSetArg (args[n], XmNexportTargets, newTargets); n++;
XtSetArg (args[n], XmNnumExportTargets, numExportTargets + 2);
n++;

}

/* modify other DragContext resources */
XtSetArg (args[n], XmNblendModel, XmBLEND_ALL); n++;
XtSetArg (args[n], XmNcursorBackground, bg); n++;
XtSetArg (args[n], XmNcursorForeground, fg); n++;
XtSetArg (args[n], XmNsourceCursorIcon, drag_icon); n++;
XtSetArg (args[n], XmNdragOperations, XmDROP_COPY); n++;
XtSetArg (args[n], XmNconvertProc, NewConvertProc); n++;
XtSetArg (args[n], XmNclientData, widget); n++;
XtSetValues (dc, args, n);
XtAddCallback (dc, XmNdragDropFinishCallback, DragDropFinish,

NULL);
}

This routine performs many of the same tasks as the StartDrag() action routine, such as
accessing the appropriate structure in the files array and creating a DragIcon for the source
icon. The main difference is that we use XmGetDragContext() to retrieve the current
DragContext object, rather than creating one using XmDragStart() .

The routine retrieves the values of the XmNexportTargets , XmNnumExportTargets ,
and XmNconvertProc resources using XtGetValues() so that it can preserve the
existing functionality. The appropriate new targets are added to the list of targets based on
the type of the file, and XmNexportTargets is set to the new list. The
NewConvertProc() routine is used for the XmNconvertProc . The rest of the
DragContext resources are specified as in StartDrag() , and the DragContext is modified
using XtSetValues() .

There is only one difference between the NewConvertProc() routine and
ConvertProc() in file_manager.c. Instead of simply returning False if the requested

Chapter 22: Drag and Drop

738 Motif Programming Manual

target is not FILE_CONTENTS or FILE_NAME, NewConvertProc() calls the
conversion procedure retrieved from the Label widget, as shown in the following fragment:

(*convert_proc) (widget, selection, target, type_return, value_return,
length_return, format_return);

Essentially, our conversion routine handles our data targets and passes other targets to the
Label widget’s default conversion procedure.

Providing Custom Drag-over Visuals
The DragContext has a number of callback routines that the initiating application can use
to provide custom drag-over visuals. These callbacks are invoked when different events
occur during the drag, like when the drag icon enters or leaves a drop site. The DragContext
provides the following callback routines for monitoring the drag:

XmNdragMotionCallback XmNdropSiteEnterCallback
XmNdropSiteLeaveCallback XmNoperationChangedCallback
XmNtopLevelEnterCallback XmNtopLevelLeaveCallback

The names of the routines are fairly self-explanatory. Each callback has its own special
callback structure that contains the relevant information about the current state of the drag
operation. For example, the XmNdropSiteEnterCallback uses a callback structure of
type XmDropSiteEnterCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
Time timeStamp;
unsigned char operation;
unsigned char operations;
unsigned char dropSiteStatus;
Position x;
Position y;

} XmDropSiteEnterCallbackStruct, *XmDropSiteEnterCallback;

The reason field in this structure is always XmCR_DROP_SITE_ENTER. The operation
and operations fields specify the current operation and the set of supported operations,
respectively. The dropSiteStatus element indicates whether or not the current drop site
is valid, based on the targets supported by the drag source and the drop site. This field can
have one of the following values:

XmDROP_SITE_VALID XmDROP_SITE_INVALID XmNO_DROP_SITE

The operation , operations , and dropSiteStatus fields are initialized by the
toolkit based on the values of different resources for both the drag source and the drop site.
If the drop site has registered an XmNdragProc and the dynamic protocol is being used,
this routine can update these fields as necessary before the data is passed to the callback
routine. A drop site might want to update these fields if it is performing any special
processing or simulating multiple drop sites.

Motif Programming Manual 739

Chapter 22: Drag and Drop

All of the callback structures for the DragContext callback routines have a reason field
that indicates why the callback was invoked. The callback structures also provide
information that is relevant to the particular routine; they are all similar to the
XmDropSiteEnterCallbackStruct . See the DragContext reference page in Volume 6
B, Motif Reference Manual, for complete information about the different callback
structures.

When an application creates the DragContext for a drag, it can register routines for the
different callback resources. These routines can perform any special processing that is
necessary, as well as handle custom drag-over effects for the transfer. The typical way to
handle drag-over effects is to modify the various drag icon resources of the DragContext
during the drag. The XmNsourcePixmapIcon , XmNsourceCursorIcon ,
XmNoperationCursorIcon , and XmNstateCursorIcon resources specify the
different components of the drag icon. The XmNvalidCursorForeground ,
XmNinvalidCursorForeground , and XmNnoneCursorForeground resources of the
DragContext can be used to further distinguish between the different states during a drag.

The XmNsourcePixmapIcon is used under the preregister protocol and can be any size,
while the XmNsourceCursorIcon is used for the dynamic protocol and is limited to the
size of the largest cursor for a particular platform. If you want to specify a color icon, you
must use the XmNsourcePixmapIcon resource. If XmNsourcePixmapIcon is not
specified, the value of XmNsourceCursorIcon is used. If this resource has not been
specified, the default source icon for the Screen object is used.

At any point during a drag, the initiating client can call XmDragCancel() to cancel the
transfer. The user can also cancel the operation by pressing the ESCAPE key.The initiating
client can retrieve additional information about the current drop site by calling
XmDropSiteRetrieve() during the drag.

After the user drops the data in a drop site, the drag source has one last chance to check the
status of the transfer and provide custom visual effects. After the receiving client’s
XmNdropProc completes, the DragContext’s XmNdropStartCallback is invoked. This
routine has a callback structure of type XmDropStartCallbackStruct , which is
defined as follows:

typedef struct {
int reason;
XEvent *event;
Time timeStamp;
unsigned char operation;
unsigned char operations;
unsigned char dropSiteStatus;
unsigned char dropAction;
Position x;
Position y;

} XmDropStartCallbackStruct, *XmDropStartCallback;

Chapter 22: Drag and Drop

740 Motif Programming Manual

The reason field is set to XmCR_DROP_START, while the operation, operations , and
dropSiteStatus fields are set as described previously. The dropAction field is set to
XmDROP if the user has simply dropped the data, XmDROP_HELP if the user has requested
help on the drop site, or XmDROP_CANCEL if the user has cancelled the transfer.

Cleaning Up
The initiating client can also register callbacks that are invoked after a drag and drop
transfer has completed. The XmNdropFinishCallback is called after the receiver’s
XmNtransferProc has finished processing all of the data targets requested by the
receiver. This routine receives as call_data a callback structure of the type
XmDropFinishCallbackStruct , where the reason field is XmCR_DROP_FINISH.

The XmNdragDropFinishCallback is invoked when the entire operation has
completed, which is immediately after theXmNdropFinishCallback .In this case, the
callback structure is an XmDragDropFinishCallbackStructure , and reason is
XmCR_DRAG_DROP_FINISH. Our application uses this callback to destroy the drag icon
that we created, as shown below:

void DragDropFinish (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget source_icon = NULL;
XtVaGetValues (widget, XmNsourceCursorIcon, &source_icon, NULL);
if (source_icon)

XtDestroyWidget (source_icon);
}

The widget passed to the callback routine is the DragContext object for the drag and drop
transfer. The routine retrieves the source icon from the DragContext and destroys it using
XtDestroyWidget().

Working With Drop Sites
In order to handle data from drag sources that provide something other than textual data, an
application has to register drop sites that understand other types of data. To make the file_
manager.c application useful, we need an application that has drop sites that can handle file
objects. In this section, we are going to modify the text editor from Chapter 18, Text
Widgets, so that it understands file data. The application contains two drop sites that handle
files: the main text entry area and a filename status area. The Example 22-3 shows the
main() , HandleDropLabel() , HandleDropText() , and TransferProc() routines
for editor_dnd.c. The rest of the routines in the application are the same as in Section 18.4,
so we have not shown them here.*

* XtVaAppInitialize () is considered deprecated in X11R6. XmInternAtom () is marked for deprecation from
Motif 2.0.

Motif Programming Manual 741

Chapter 22: Drag and Drop

Example 22-3. The editor_dnd.c program

/* editor_dnd.c -- create an editor application that contains drop
sites
** that understand file data. A file can be dragged from another
** application and dropped in the text entry area or the filename status
** area.
*/

#include <Xm/Text.h>
#include <Xm/TextF.h>
#include <Xm/LabelG.h>
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/Form.h>
#include <Xm/FileSB.h>
#include <Xm/SeparatoG.h>
#include <Xm/DragDrop.h>
#include <X11/Xos.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FILE_OPEN 0
#define FILE_SAVE 1
#define FILE_EXIT 2
#define EDIT_CUT 0
#define EDIT_COPY 1
#define EDIT_PASTE 2
#define EDIT_CLEAR 3
#define SEARCH_FIND_NEXT 0
#define SEARCH_SHOW_ALL 1
#define SEARCH_REPLACE 2
#define SEARCH_CLEAR 3

/* global variables */
void (*drop_proc) (Widget, XtPointer, XtPointer);
Widget text_edit, search_text, replace_text, text_output;
Widget toplevel, file_label;

main (int argc, char *argv[])
{

XtAppContext app_context;
Display *dpy;
Atom FILE_CONTENTS, FILE_NAME;
Widget main_window, menubar, form, search_panel, label;
Widget sep1, sep2;
void file_cb(Widget, XtPointer, XtPointer);
void edit_cb(Widget, XtPointer, XtPointer);
void search_cb(Widget, XtPointer, XtPointer);
Arg args[10];
int n = 0;
XmString open, save, exit, exit_acc, file, edit, cut, clear,

Chapter 22: Drag and Drop

742 Motif Programming Manual

copy, paste, search, next, find, replace;
Cardinal numImportTargets;
Atom *importTargets, *newTargets;
Atom importList[2];
void HandleDropLabel(Widget, XtPointer, XtPointer);
void HandleDropText(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app_context, "Demos", NULL, 0, &argc,

argv, NULL, sessionShellWidgetClass, NULL);
dpy = XtDisplay (toplevel);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
main_window = XmCreateMainWindow (toplevel, "main_window", NULL, 0);

/* Create a simple MenuBar that contains three menus */
file = XmStringCreateLocalized ("File");
edit = XmStringCreateLocalized ("Edit");
search = XmStringCreateLocalized ("Search");
menubar = XmVaCreateSimpleMenuBar (main_window, "menubar",

XmVaCASCADEBUTTON, file, 'F',
XmVaCASCADEBUTTON, edit, 'E',
XmVaCASCADEBUTTON, search, 'S',
NULL);

XmStringFree (file);
XmStringFree (edit);
XmStringFree (search);

/* First menu is the File menu -- callback is file_cb() */
open = XmStringCreateLocalized ("Open...");
save = XmStringCreateLocalized ("Save...");
exit = XmStringCreateLocalized ("Exit");
exit_acc = XmStringCreateLocalized ("Ctrl+C");
XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaPUSHBUTTON, save, 'S', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, exit, 'x', "Ctrl<Key>c",
exit_acc,
NULL);

XmStringFree (open);
XmStringFree (save);
XmStringFree (exit);
XmStringFree (exit_acc);

/* ...create the "Edit" menu -- callback is edit_cb() */
cut = XmStringCreateLocalized ("Cut");
copy = XmStringCreateLocalized ("Copy");
clear = XmStringCreateLocalized ("Clear");
paste = XmStringCreateLocalized ("Paste");
XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 1, edit_cb,

XmVaPUSHBUTTON, cut, 't', NULL, NULL,
XmVaPUSHBUTTON, copy, 'C', NULL, NULL,
XmVaPUSHBUTTON, paste, 'P', NULL, NULL,

Motif Programming Manual 743

Chapter 22: Drag and Drop

XmVaSEPARATOR,
XmVaPUSHBUTTON, clear, 'l', NULL, NULL,
NULL);

XmStringFree (cut);
XmStringFree (copy);
XmStringFree (paste);

/* create the "Search" menu -- callback is search_cb() */
next = XmStringCreateLocalized ("Find Next");
find = XmStringCreateLocalized ("Show All");
replace = XmStringCreateLocalized ("Replace Text");
XmVaCreateSimplePulldownMenu (menubar, "search_menu", 2, search_cb,

XmVaPUSHBUTTON, next, 'N', NULL, NULL,
XmVaPUSHBUTTON, find, 'A', NULL, NULL,
XmVaPUSHBUTTON, replace, 'R', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, clear, 'C', NULL, NULL,
NULL);

XmStringFree (next);
XmStringFree (find);
XmStringFree (replace);
XmStringFree (clear);
XtManageChild (menubar);

/* create a form work are */
form = XmCreateForm (main_window, "form", NULL, 0);

/* create horizontal RowColumn inside the form */
n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
XtSetArg (args[n], XmNpacking, XmPACK_TIGHT); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
search_panel = XmCreateRowColumn (form, "search_panel", args, n);

/* Create two TextField widgets with Labels... */
label = XmCreateLabelGadget (search_panel, "Search Pattern", NULL, 0);
XtManageChild (label);

search_text = XmCreateTextField (search_panel, "search_text", NULL,
0);
XtManageChild (search_text);

label = XmCreateLabelGadget (search_panel, "Replace Pattern", NULL,
0);
XtManageChild (label);

replace_text = XmCreateTextField (search_panel, "replace_text",
NULL, 0);

XtManageChild (replace_text);
XtManageChild (search_panel);

n = 0;

Chapter 22: Drag and Drop

744 Motif Programming Manual

XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
XtSetArg (args[n], XmNshadowThickness, 0); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
text_output = XmCreateTextField (form, "text_output", args, n);
XtManageChild (text_output);

n = 0;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNbottomWidget, text_output); n++;
sep2 = XmCreateSeparatorGadget (form, "sep2", args, n);
XtManageChild (sep2);

/* create file status area */
n = 0;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_BEGINNING); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNbottomWidget, sep2); n++;
file_label = XmCreateLabelGadget (form, "Filename:", args, n);
XtManageChild (file_label);

/* register the file status label as a drop site */
n = 0;
importList[0] = FILE_CONTENTS;
importList[1] = FILE_NAME;
XtSetArg (args[n], XmNimportTargets, importList); n++;
XtSetArg (args[n], XmNnumImportTargets, XtNumber (importList));
n++;
XtSetArg (args[n], XmNdropSiteOperations, XmDROP_COPY); n++;
XtSetArg (args[n], XmNdropProc, HandleDropLabel); n++;
XmDropSiteRegister (file_label, args, n);

n = 0;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNbottomWidget, file_label); n++;
sep1 = XmCreateSeparatorGadget (form, "sep1", args, n);
XtManageChild (sep1);

/* create text entry area */
n = 0;
XtSetArg (args[n], XmNrows, 10); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNtopWidget, search_panel); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;

Motif Programming Manual 745

Chapter 22: Drag and Drop

XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNbottomWidget, sep1); n++;
text_edit = XmCreateScrolledText (form, "text_edit", args, n);
XtManageChild (text_edit);

/* retrieve drop site info so that we can modify it */
n = 0;
XtSetArg (args[n], XmNimportTargets, &importTargets); n++;
XtSetArg (args[n], XmNnumImportTargets, &numImportTargets); n++;
XtSetArg (args[n], XmNdropProc, &drop_proc); n++;
XmDropSiteRetrieve (text_edit, args, n);

/* add FILE_CONTENTS and FILE_NAME to the list of targets */
newTargets = (Atom *) XtMalloc (sizeof (Atom) *

(numImportTargets + 2));

for (n = 0; n < numImportTargets; n++)
newTargets[n] = importTargets[n];
newTargets[n] = FILE_CONTENTS;
newTargets[n+1] = FILE_NAME;

/* update the drop site */
n = 0;
XtSetArg (args[n], XmNimportTargets, newTargets); n++;
XtSetArg (args[n], XmNnumImportTargets, numImportTargets+2); n++;
XtSetArg (args[n], XmNdropProc, HandleDropText); n++;
XmDropSiteUpdate (text_edit, args, n);

XtManageChild (form);
XtManageChild (main_window);
XtRealizeWidget (toplevel);
XtAppMainLoop (app_context);

}

/* HandleDropLabel() -- start the data transfer when data is dropped in
** the filename status area.
*/
void HandleDropLabel (Widget widget, XtPointer client_data,

XtPointer call_data)
{

Display *dpy;
Atom FILE_CONTENTS, FILE_NAME;
XmDropProcCallback DropData;
XmDropTransferEntryRec transferEntries[2];
XmDropTransferEntry transferList;
Arg args[10];
int n, i;
Widget dc;
Cardinal numExportTargets;
Atom *exportTargets;
Boolean file_name = False;
void TransferProc(Widget, XtPointer, Atom *,

Atom *, XtPointer,

Chapter 22: Drag and Drop

746 Motif Programming Manual

unsigned long *, int);

/* intern the Atoms for data targets */
dpy = XtDisplay (toplevel);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
DropData = (XmDropProcCallback) call_data;
dc = DropData->dragContext;

/* retrieve the data targets and search for FILE_NAME */
n = 0;
XtSetArg (args[n], XmNexportTargets, &exportTargets); n++;
XtSetArg (args[n], XmNnumExportTargets, &numExportTargets); n++;
XtGetValues (dc, args, n);
for (i = 0; i < numExportTargets; i++) {

if (exportTargets[i] == FILE_NAME) {
file_name = True;
break;

}
}

/* make sure we have a drop that is a copy operation and one of
** the targets is FILE_NAME. if not, set the status to failure.
*/
n = 0;
if ((!file_name) || (DropData->dropAction != XmDROP) ||

(DropData->operation != XmDROP_COPY)) {
XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE);
n++;
XtSetArg (args[n], XmNnumDropTransfers, 0); n++;

}
else {

/* set up transfer requests for drop site */
transferEntries[0].target = FILE_CONTENTS;
transferEntries[0].client_data = (XtPointer) text_edit;
transferEntries[1].target = FILE_NAME;
transferEntries[1].client_data = (XtPointer) file_label;
transferList = transferEntries;
XtSetArg (args[n], XmNdropTransfers, transferEntries); n++;
XtSetArg (args[n], XmNnumDropTransfers,

XtNumber (transferEntries)); n++;
XtSetArg (args[n], XmNtransferProc, TransferProc); n++;

}
XmDropTransferStart (dc, args, n);

}

/* HandleDropText() -- start the data transfer when data is dropped in
** the text entry area.
*/
void HandleDropText (Widget widget, XtPointer client_data,

XtPointer call_data)
{

Motif Programming Manual 747

Chapter 22: Drag and Drop

Display *dpy;
Atom FILE_CONTENTS, FILE_NAME;
XmDropProcCallback DropData;
XmDropTransferEntryRec transferEntries[2];
XmDropTransferEntry transferList;
Arg args[10];
int n, i;
Widget dc;
Cardinal numExportTargets;
Atom *exportTargets;
Boolean file_contents = False;
void TransferProc(Widget, XtPointer, Atom *,

Atom *, XtPointer,
unsigned long *, int);

/* intern the Atoms for data targets */
dpy = XtDisplay (toplevel);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
DropData = (XmDropProcCallback) call_data;
dc = DropData->dragContext;

/* retrieve the data targets and search for FILE_CONTENTS */
n = 0;
XtSetArg (args[n], XmNexportTargets, &exportTargets); n++;
XtSetArg (args[n], XmNnumExportTargets, &numExportTargets); n++;
XtGetValues (dc, args, n);
for (i = 0; i < numExportTargets; i++) {

if (exportTargets[i] == FILE_CONTENTS) {
file_contents = True;
break;

}
}
if (file_contents) {

/* make sure we have a drop that is a copy operation.
** if not, set the status to failure.
*/
n = 0;
if ((DropData->dropAction != XmDROP) ||

(DropData->operation != XmDROP_COPY)) {
XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_
FAILURE); n++;
XtSetArg (args[n], XmNnumDropTransfers, 0); n++;

}
else {

/* set up transfer requests for drop site */
transferEntries[0].target = FILE_CONTENTS;
transferEntries[0].client_data = (XtPointer) text_edit;
transferEntries[1].target = FILE_NAME;
transferEntries[1].client_data = (XtPointer) file_label;
transferList = transferEntries;
XtSetArg (args[n], XmNdropTransfers, transferEntries);
n++;
XtSetArg (args[n], XmNnumDropTransfers,

Chapter 22: Drag and Drop

748 Motif Programming Manual

XtNumber (transferEntries)); n++;
XtSetArg (args[n], XmNtransferProc, TransferProc); n++;

}
XmDropTransferStart (dc, args, n);

}
else

(*drop_proc) (widget, client_data, call_data);
}

/* TransferProc() -- handle data transfer of converted data from drag
** source to drop site.
*/
void TransferProc (Widget widget, XtPointer client_data, Atom

*seltype, Atom *type, XtPointer value, unsigned long
*length, int format)

{
Display *dpy;
Atom FILE_CONTENTS, FILE_NAME;
Widget w;
XmString string;
char label[256];

/* intern the Atoms for data targets */
dpy = XtDisplay (toplevel);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
w = (Widget) client_data;

if (*type == FILE_CONTENTS)
XmTextSetString (w, value);

else if (*type == FILE_NAME) {
sprintf (label, "Filename: %s", value);
string = XmStringCreateLocalized (label);
XtVaSetValues (w, XmNlabelString, string, NULL);
XmStringFree (string);

}
}

The application basically has the same functionality as editor.c in Chapter 18, Text Widgets.
The only difference in the interface is the Filename: status area that displays the name of
the current file. This status area is also a drop site for file objects, so the user can drag a file
from the file_manager.c application and drop it in this area. When a file is dropped here,
the filename is displayed in the status area, and the contents of the file are copied into the
ScrolledText object. The ScrolledText object has also been modified to function as a drop

Motif Programming Manual 749

Chapter 22: Drag and Drop

site for file data, so the user can drop a file in the text entry area. Figure 22-7 shows the
output of the application before and after a file has been dropped in the file status area.

Creating a Drop Site
The file status area is a Label widget, so it does not have any drop site capabilities by
default. In order for the widget to function as a drop site, we have to register it using
XmDropSiteRegister() , as shown below:

n = 0;
importList[0] = FILE_CONTENTS;
importList[1] = FILE_NAME;
XtSetArg (args[n], XmNimportTargets, importList); n++;
XtSetArg (args[n], XmNnumImportTargets, XtNumber (importList)); n++;
XtSetArg (args[n], XmNdropSiteOperations, XmDROP_COPY); n++;
XtSetArg (args[n], XmNdropProc, HandleDropLabel); n++;
XmDropSiteRegister (file_label, args, n);

This routine registers information about the drop site in a DropSite object using resources
that are specified as for a normal widget. Since drop sites are referenced by their associated
widget, however, the resources cannot be set using XtVaSetValues() .

Before

Figure 22-7: The output of the editor_dnd program

After

Chapter 22: Drag and Drop

750 Motif Programming Manual

The XmNimportTargets resource specifies the data targets that the drop site can handle.
We use the FILE_CONTENTS and FILE_NAME targets that we have interned using
XInternAtom() * . The drop site only supports copy operations, so
XmNdropSiteOperations is set to XmDROP_COPY. The final resource that we specify is
the XmNdropProc . This callback is invoked when a drop occurs in the drop site; it is
responsible for starting the transfer of data from the drag source to the drop site. The
HandleDropLabel() routine handles the drop for the file status area, as we describe in
Section 22.5.3.

Modifying an Existing Drop Site
The editor_dnd.c application also allows the user to drag a file from file_manager.c to the
main text entry area and drop it. This action causes the contents of the file to be copied to
the Text widget. By default, the Text widget also has its own drop site functionality that
allows the user to drop textual data. We want to modify the drop site to incorporate our own
functionality but still allow the user to drag and drop textual data in the widget. The Text
widget has already been registered as a drop site by the Motif toolkit, so we do not need to
call XmDropSiteRegister() . In fact, if we did call that routine, we would override the
default functionality.

Instead, we call XmDropSiteRetrieve() to get the values of the XmNimportTargets ,
XmNnumImportTargets , and XmNdropProc resources for the Text widget drop site, as
shown in the following fragment:

n = 0;
XtSetArg (args[n], XmNimportTargets, &importTargets); n++;
XtSetArg (args[n], XmNnumImportTargets, &numImportTargets); n++;
XtSetArg (args[n], XmNdropProc, &drop_proc); n++;
XmDropSiteRetrieve (text_edit, args, n);

Although a drop site is always associated with a widget, the XtVaGetValues() routine
cannot be used to retrieve drop site resources, as the resources are stored separately from
the widget in a DropSite object. We retrieve the XmNimportTargets resource so that we
can add our own targets to the list of data targets for the drop site. A drop site can only have
one XmNdropProc associated with it, so we need to get the existing routine and store it
before we specify our own routine.

Once we have the data targets for the drop site, we create a new list that contains the
existing targets, as well as the FILE_CONTENTS and FILE_NAME targets. We use
XmDropSiteUpdate() to modify the drop site:

n = 0;
XtSetArg (args[n], XmNimportTargets, newTargets); n++;
XtSetArg (args[n], XmNnumImportTargets, numImportTargets + 2); n++;

* XmInternAtom () is marked for deprecation as of Motif 2.0.

Motif Programming Manual 751

Chapter 22: Drag and Drop

XtSetArg (args[n], XmNdropProc, HandleDropText); n++;
XmDropSiteUpdate (text_edit, args, n);

The HandleDropText() routine processes the drops that occur in the Text widget. We
explain this routine in detail in the following section.

If you need to update information for a number of drop sites, you should use the
XmDropSiteStartUpdate() and XmDropSiteEndUpdate() routines, as they
optimize the process. After a call to XmDropSiteStartUpdate() ,
XmDropSiteUpdate() can be called repeatedly for different drop sites. When you are
finished updating all of the drop sites, call XmDropSiteEndUpdate() .

Handling the Drop
When a drop occurs, the receiving application takes over and the XmNdropProc for the
drop site is called. This callback provides a callback structure of type
XmDropProcCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
Time timeStamp;
Widget dragContext;
Position x;
Position y;
unsigned char dropSiteStatus;
unsigned char operation;
unsigned char operations;
unsigned char dropAction;

} XmDropProcCallbackStruct, *XmDropProcCallback;

The reason field is always XmCR_DROP_MESSAGE, and dragContext specifies the
DragContext object for the drag operation that caused the drop. The dropSiteStatus
element is set to either XmDROP_SITE_VALID or XmDROP_SITE_INVALID, depending on
the targets that are supported by the drop site and the drag source. The callback routine can
change this value if necessary.

The operations and operation fields are set to the possible operations for the drag
source data and the current operation, respectively. The dropAction field specifies the
action requested by the user. If this field is set to XmDROP, the user has requested a normal
drop; if it is set to XmDROP_HELP, the user has requested help for the drop site. We discuss
providing help for a drop site in the next section.

The main task of the XmNdropProc is to determine whether or not the operation is possible
and to start the data transfer by calling XmDropTransferStart() . This routine creates a
DropTransfer object that keeps track of information about the data transfer. The
HandleDropLabel() routine initiates the data transfer for the file status drop site, as
shown in the following code fragment from Example 22-3:

Chapter 22: Drag and Drop

752 Motif Programming Manual

n = 0;
if ((!file_name) || (DropData->dropAction != XmDROP) ||

(DropData->operation != XmDROP_COPY)) {
XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
XtSetArg (args[n], XmNnumDropTransfers, 0); n++;

}
else {

transferEntries[0].target = FILE_CONTENTS;
transferEntries[0].client_data = (XtPointer) text_edit;
transferEntries[1].target = FILE_NAME;
transferEntries[1].client_data = (XtPointer) file_label;
transferList = transferEntries;
XtSetArg (args[n], XmNdropTransfers, transferEntries); n++;
XtSetArg (args[n], XmNnumDropTransfers, XtNumber (transferEntries));
n++;
XtSetArg (args[n], XmNtransferProc, TransferProc); n++;

}
XmDropTransferStart (dc, args, n);

If the action requested by the user is not a normal drop or if the operation is not a copy
operation, we do not process the data transfer. However, we still have to call
XmDropTransferStart() to clean up after the whole drag and drop operation. In this
case, we set the XmNtransferStatus resource to XmTRANSFER_FAILURE to indicate
that the transfer should not proceed. We also set XmNnumDropTransfers to 0.

Otherwise, the drop can proceed, so we establish a list of target data types that we want to
receive using the XmNdropTransfers and XmNnumDropTransfer resources. Each
entry in XmNdropTransfers is an XmDropTransferEntryRec , which is defined as
follows:

typedef struct {
XtPointer client_data;
Atom target;

} XmDropTransferEntryRec, *XmDropTransferEntry;

The target field specifies the requested data target, and client_data passes any
additional data that is necessary to the routine that processes the data transfer. We specify
the FILE_CONTENTS and FILE_NAME targets. For each target, we pass the widget that
is modified by the data from the drag source as client_data . For the FILE_CONTENTS
format, the widget is the text entry area text_edit , while for FILE_NAME, the widget
is the file status area file_label .

The final resource that we specify for the DropTransfer is the XmNtransferProc routine.
This routine is of type XtSelectionCallbackProc ; it is responsible for actually
processing the formatted data that is received from the drag source. The routine is called
for each target data type requested by the drop site. This routine takes the following form:

typedef void (*XtSelectionCallbackProc)(Widget widget,
XtPointer client_data ,
Atom * selection ,
Atom * type ,

Motif Programming Manual 753

Chapter 22: Drag and Drop

XtPointer value ,
unsigned long * length ,
int * format);

The widget parameter is the widget that requested the data, and client_data is the data
specified in the client_data field of the XmDropTransferEntryRec that is being
processed. The type , value , length , and format arguments contain the data that was
converted by the drag source in its XmNconvertProc .

The TransferProc() routine in Example 22-3 checks the type to determine what needs
to be done with the data. If the data is FILE_CONTENTS data, the text in value is placed
in the Text widget with XmTextSetString() . Otherwise, the text is used to create a new
value for XmNlabelString for the file status area. Since the file status area requests both
target data types, both formats are processed by TransferProc() .

The HandleDropText() routine for the ScrolledText object is very similar to
HandleDropLabel() . The main difference is that the routine for the text area checks the
XmNexportTargets resource of the DragContext object to determine whether or not the
drag source provides file data. If it does, HandleDropText() initiates the data transfer
just as in HandleDropLabel() . Otherwise, the text routine calls the XmNdropProc that
we retrieved from the Text widget when we modified the drop site. By calling the original
drop routine, we allow the Text widget to process textual data as it would by default. As a
result, the user can drop a file object in the text entry area, as well as manipulate textual
data in the widget using drag and drop.

Once a data transfer is in progress, additional targets for the DropTransfer object can be
specified using XmDropTransferAdd() . The primary use of this routine is for move
operations. In this case, the drop site receives a copy of the data from the drag source and
then requests that the source delete the data. Once the drop site has stored the data, it can
call XmDropTransferAdd() to specify the DELETE target, which indicates to the
initiating application that it should delete the data.

Providing Help
Since it is not always obvious what will happen when data is dropped on a particular drop
site, the user can request help on a drop site by pressing the HELP or F1 key when the drag
icon is over the drop site. An application should provide help information for its drop sites
to assist users in understanding the drag and drop capabilities of the application. When the
user requests help, the drop site should respond by posting an InformationDialog that
explains what would happen and allows the user to proceed with the drop or cancel it.

When the user presses HELP while the drag icon is over a drop site, the XmNdropProc for
the drop site is called with the dropAction field in the callback structure set to to
XmDROP_HELP. Example 22-4 shows a new HandleDropLabel() routine for the editor_

Chapter 22: Drag and Drop

754 Motif Programming Manual

dnd.c application that provides help for the file status drop site. The example also shows
the HandleDropOK() and HandleDropCancel() callback routines for the help dialog.*

Example 22-4. The HandleDropLabel(), HandleDropOK(), HandleDropCancel()
routines

/* HandleDropLabel() -- start the data transfer when data is dropped in
** the filename status area.
*/
void HandleDropLabel (Widget widget, XtPointer client_data,

XtPointer call_data)
{

Display *dpy;
Atom FILE_CONTENTS, FILE_NAME;
XmDropProcCallback DropData;
XmDropTransferEntryRec transferEntries[2];
XmDropTransferEntry transferList;
Arg args[10];
int n, i;
Widget dc;
Cardinal numExportTargets;
Atom *exportTargets;
Boolean file_name = False;
static XmDropProcCallbackStruct client;
static Widget dialog = NULL;
XmString message;

void HandleDropOK(Widget, XtPointer, XtPointer);
void HandleDropCancel(Widget, XtPointer, XtPointer);
void TransferProc (Widget, XtPointer, Atom *, Atom *, XtPointer,

unsigned long *, int);

/* intern the Atoms for data targets */
dpy = XtDisplay (toplevel);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
DropData = (XmDropProcCallback) call_data;
dc = DropData->dragContext;
/* retrieve the data targets and search for FILE_NAME */
n = 0;
XtSetArg (args[n], XmNexportTargets, &exportTargets); n++;
XtSetArg (args[n], XmNnumExportTargets, &numExportTargets); n++;
XtGetValues (dc, args, n);
for (i = 0; i < numExportTargets; i++) {

if (exportTargets[i] == FILE_NAME) {
file_name = True;
break;

}
}

* XmStringCreateLtoR(), XmMessageBoxGetChild() are deprecated from Motif 2.0 onwards. Xm-
StringGenerate () is only available from Motif 2.0 onwards. XmInternAtom () is marked for deprecation
from Motif 2.0 onwards.

Motif Programming Manual 755

Chapter 22: Drag and Drop

/* if one of the targets is not FILE_NAME, transfer fails */
if (!file_name) {

n = 0;
XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
XtSetArg (args[n], XmNnumDropTransfers, 0); n++;

}
/* check if the user has requested help */
else if (DropData->dropAction == XmDROP_HELP) {

/* create a dialog if it doesn't already exist */
if (!dialog) {

n = 0;
message = XmStringGenerate ((XtPointer) help_str,

XmFONTLIST_DEFAULT_TAG, XmCHARSET_TEXT,
NULL);

XtSetArg (args[n], XmNdialogStyle,
XmDIALOG_FULL_APPLICATION_MODAL); n++;

XtSetArg (args[n], XmNtitle, "Drop Help"); n++;
XtSetArg (args[n], XmNmessageString, message); n++;
dialog = XmCreateInformationDialog (toplevel, "help",

args, n);
XmStringFree (message);
XtUnmanageChild (XtNameToWidget (dialog, “Help”));
XtAddCallback (dialog, XmNokCallback, HandleDropOK,

(XtPointer) &client);
XtAddCallback (dialog, XmNcancelCallback, HandleDropCancel,

(XtPointer) &client);
}
/* set up the callback structure for when the user proceeds
** with the drop and pass it as client data to the callbacks
** for the buttons.
*/
client.dragContext = dc;
client.x = DropData->x;
client.y = DropData->y;
client.dropSiteStatus = DropData->dropSiteStatus;
client.operation = DropData->operation;
client.operations = DropData->operations;
XtManageChild (dialog);
return;

}
else if (DropData->operation != XmDROP_COPY) {

/* if the operation is not a copy, the transfer fails */
n = 0;
XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
XtSetArg (args[n], XmNnumDropTransfers, 0); n++;

}
else {

/* set up transfer requests since this is a normal drop */
n = 0;
transferEntries[0].target = FILE_CONTENTS;
transferEntries[0].client_data = (XtPointer) text_edit;
transferEntries[1].target = FILE_NAME;
transferEntries[1].client_data = (XtPointer) file_label;
transferList = transferEntries;

Chapter 22: Drag and Drop

756 Motif Programming Manual

XtSetArg (args[n], XmNdropTransfers, transferEntries); n++;
XtSetArg (args[n], XmNnumDropTransfers,

XtNumber (transferEntries)); n++;
XtSetArg (args[n], XmNtransferProc, TransferProc); n++;

}
XmDropTransferStart (dc, args, n);

}

/* HandleDropOK() -- callback routine for OK button in drop site help
** dialog that processes the drop as normal.
*/
void HandleDropOK (Widget widget, XtPointer client_data,

XtPointer call_data)
{

Display *dpy;
Atom FILE_CONTENTS, FILE_NAME;
XmDropProcCallbackStruct *DropData;
XmDropTransferEntryRec transferEntries[2];
XmDropTransferEntry transferList;
Arg args[10];
int n;
Widget dc;
void TransferProc (Widget, XtPointer, Atom *,

Atom *, XtPointer,
unsigned long *, int);

/* intern the Atoms for data targets */
dpy = XtDisplay (toplevel);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);

/* get the callback structure passed via client data */
DropData = (XmDropProcCallbackStruct *) client_data;
dc = DropData->dragContext;

n = 0;
/* if operation is not a copy, the transfer fails */
if (DropData->operation != XmDROP_COPY) {

XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
XtSetArg (args[n], XmNnumDropTransfers, 0); n++;

}
else {

/* set up transfer requests to process data transfer */
transferEntries[0].target = FILE_CONTENTS;
transferEntries[0].client_data = (XtPointer) text_edit;
transferEntries[1].target = FILE_NAME;
transferEntries[1].client_data = (XtPointer) file_label;
transferList = transferEntries;
XtSetArg (args[n], XmNdropTransfers, transferEntries); n++;
XtSetArg (args[n], XmNnumDropTransfers,

XtNumber (transferEntries)); n++;
XtSetArg (args[n], XmNtransferProc, TransferProc); n++;

}
XmDropTransferStart (dc, args, n);

Motif Programming Manual 757

Chapter 22: Drag and Drop

}
/* HandleDropCancel() -- callback routine for Cancel button in drop site
** help dialog that cancels the transfer.
*/
void HandleDropCancel (Widget widget, XtPointer client_data,

XtPointer call_data)
{

XmDropProcCallbackStruct *DropData;
Arg args[10];
int n;
Widget dc;

/* get the callback structures passed via client data */
DropData = (XmDropProcCallbackStruct *) client_data;
dc = DropData->dragContext;
/* user has cancelled the transfer, so it fails */
n = 0;
XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
XtSetArg (args[n], XmNnumDropTransfers, 0); n++;
XmDropTransferStart (dc, args, n);

}

When the user requests help on the file status drop site, the application displays a help
dialog, as shown in Figure 22-8.

The new HandleDropLabel() routine handles the case when the dropAction field is
set to XmDROP_HELP. In this case, the routine creates an InformationDialog if it has not
already been created. The HandleDropOK() and HandleDropCancel() routines are
registered for the OK and Cancel buttons in the dialog. If the dialog already exists, the
necessary fields in the client structure are specified so that the callback structure
information is passed to the callback routines as client data. If the user has performed a
normal drop operation, the drop proceeds just as it did in editor_dnd.c.

The HandleDropOK() routine is invoked when the user presses the OK button in the help
dialog. This routine proceeds with the drop by calling XmDropTransferStart(). The
status of the transfer is based on whether the drop performs a copy operation or not.

Figure 22-8: The drag and drop help dialog

Chapter 22: Drag and Drop

758 Motif Programming Manual

HandleDropCancel() cancels the drop when the user presses the Cancel button by
calling XmDropTransferStart() with XmNtransferStatus set to XmTRANSFER_
FAILURE. One thing to note about both of these procedures is that they get the
XmDropProcCallbackStruct from the client_data parameter, since the call_
data parameter is the callback structure for the dialog.

Providing Custom Drag-under Visuals
Under the preregister protocol, the drop site does not participate during the drag. The
initiating application handles the drag-under visual effects based on the value of the
XmNanimationStyle resource for the drop site. This resource can have one of the
following values:

XmDRAG_UNDER_HIGHLIGHT XmDRAG_UNDER_SHADOW_OUT
XmDRAG_UNDER_SHADOW_IN XmDRAG_UNDER_PIXMAP
XmDRAG_UNDER_NONE

The default value is XmDRAG_UNDER_HIGHLIGHT, which means that a highlighting
rectangle is displayed around the drop site when the drag icon enters it. The drop site can
also be displayed with an inset or outset shadow using XmDRAG_UNDER_SHADOW_OUT and
XmDRAG_UNDER_SHADOW_IN, respectively. The XmDRAG_UNDER_PIXMAP value
specifies that a special pixmap is displayed in the drop site when the drag icon is in it; the
XmNanimationPixmap and XmNanimationMask resources indicate the pixmap that is
used. If XmNanimationStyle is set to XmDRAG_UNDER_NONE, there are no animation
effects unless they are provided by the XmNdragProc .

Under the dynamic protocol, the drop site can participate in the drag by specifying an
XmNdragProc . This callback routine is invoked when the drag icon enters or leaves the
drop site, when the drag icon moves within the drop site, and when the operation changes
while the icon is in the drop site. The callback receives a callback structure of the type
XmDragProcCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
Time timeStamp;
Widget dragContext;
Position x;
Position y;
unsigned char dropSiteStatus;
unsigned char operation;
unsigned char operations;
Boolean animate;

} XmDragProcCallbackStruct, *XmDragProcCallback;

The reason field is set to one of the following, depending upon the event that triggered
the callback:

XmCR_DROP_SITE_ENTER_MESSAGE XmCR_DROP_SITE_LEAVE_MESSAGE

Motif Programming Manual 759

Chapter 22: Drag and Drop

XmCR_DRAG_MOTION_MESSAGE XmCR_OPERATION_CHANGED_MESSAGE

The dragContext field specifies the current DragContext object, while
dropSiteStatus is set to either XmDROP_SITE_VALID or XmDROP_SITE_INVALID,
based on the values of XmNimportTargets and XmNexportTargets for the drop site
and the drag source, respectively. The operations and operation fields are set to the
possible operations for the drag source data and the current operation, respectively. The
value of operations is based on the value of the XmNdragOperations resource for the
DragContext, while the value of operation is based on operations and the value of
XmNdropSiteOperations .

The XmNdragProc can change the values of these three fields based on any special
processing it performs, such as handling simulated drop sites. When the routine is done, the
toolkit uses these values of the fields to initialize the fields in the callback structure that is
passed to the corresponding DragContext callback routine in the initiating application.

The animate field specifies whether the toolkit or the receiving client is handling drag-
under effects for the drop site. If the value is True , as it is by default, the toolkit handles
the effects based on the XmNanimationStyle resource. The receiving client can set the
field to False so that it is responsible for providing drag-under effects. The main use of
the XmNdragProc is for providing specialized drag-under effects, such as actual
animation, that the toolkit itself does not support.

Summary
The drag and drop capabilities provided by Motif are highly customizable, so an application
can use the toolkit to implement whatever functionality is necessary. The examples in this
chapter have demonstrated many of the techniques that an application needs to use to
provide drag and drop functionality, but they really just scratch the surface of what is
possible.

Our examples implement the drag and drop features directly in application code because
that is sufficient for our purposes. However, if you are developing real applications, you
should think seriously about encapsulating drag and drop functionality in widgets, so that
you can reuse the components in all of the applications.

In Chapter 23, The Uniform Transfer Model, we introduce the schemes introduced in Motif
2.0 which build on top of the mechanisms described in this chapter and Chapter 21, The
Clipboard. These schemes allow the programmer to transfer data between widgets or the
clipboard, either through the primary selection mechanisms or drag and drop, using a single
programming interface.

Chapter 22: Drag and Drop

760 Motif Programming Manual

Motif Programming Manual 761

Chapter 1

• Overview
• Exporting the Data
• Requesting the Data Format
• Importing the Data
• Batched Data Transfer
• An Example
• Summary

23
The Uniform Transfer

Model
This chapter describes the new features introduced in Motif 2.0 for transferring application
data in a consistent and uniform manner.

In Motif 1.2, whenever widget data needed to be transferred in the application, a distinct
set of code had to be written depending upon the nature of the transfer. Since Motif widgets
support several styles of data transfer - to the primary or secondary X Selection, to the
Motif Clipboard, or to another widget through the Drag and Drop mechanisms - the task of
providing a fully featured interface could be somewhat detailed and repetitive in the
implementation. This was repetitive because the data to be transferred might in fact be the
same in each case. It was certainly detailed, because several implementations would be
required, one for each of the supported data transfer methods.

From Motif 2.0, the Uniform Transfer Model makes it possible to transfer data using any
of the transfer methods using a single programming interface. The UTM is designed to
allow applications to use common code for all the supported data transfer requirements. It
is also designed to ease the way in which new transfer targets can be added to the system.
All of the existing pre-Motif 2.0 transfer methodologies have been re-written to utilize the
Uniform Transfer Model internally where appropriate.

The Motif data transfer utilities have also been interwoven with the Trait mechanisms. In
the absence of transfer code written by the programmer, the Trait system steps in and
provides default data transfer capability for a large range of built-in data types. Although
the details of Traits are beyond the scope of this book, belonging as they do much more to
a widget authors manual, suffice it to say that because of this default Trait behavior, the
programmer only needs to consider writing Uniform Transfer Model code in order to
transfer data in a new and application-specific format. The Traits will transfer everything
else automatically, under the assumption that it is the current widget selection (whatever
that may mean) which is the data to be transferred. The set of available built-in target types
is given in Table 22-1 of Chapter 22, Drag and Drop, although not all built-in target types
are transferrable in every widget context: what a widget can export or import by default is
widget class specific.

Chapter 23: The Uniform Transfer Model

762 Motif Programming Manual

Overview
The Uniform Transfer Model is implemented through two new callback resources, the
XmNconvertCallback , and the XmNdestinationCallback, and a new procedure,
the Transfer procedure, which can also be considered as just another callback, although it
is not specified using widget resources. In essence, the XmNconvertCallback is
responsible for exporting the data, the XmNdestinationCallback requests the import
format, the Transfer procedure performs the actual import of the arriving data. The
XmNdestinationCallback routine negotiates with the XmNconvertCallback to find
the best data format, and then sets up the Transfer callback to do the work. Data is
transferred to and from the source and destination through elements in the callback
structure supplied to each callback. In addition to transferring data, the callbacks can also
transfer protocol when and if required. The destination of the data transfer can request a list
of target types in which the source is prepared to export data, as well as requesting data in
a particular and specific target format. The source in turn can inform the destination of the
available export data types, as well as actually delivering the data itself. There is thus a two-
way communication between the source and destination: each callback may in fact fire
more than once as the two ends of the transfer communicate and negotiate the preferred
format in which the data is to be transferred. The XmNconvertCallback in particular
may be called multiple times. The simple case, however, need only concern itself with a
single set of transactions: the destination requests data in a specific format, and the source
provides it.

The XmNconvertCallback

The XmNconvertCallback resource is implemented into the Primitive widget class, and
is inherited by all sub-classes. It is also implemented in the DrawingArea, Scale, and
Container widget classes. The resource is thus available in all widget contexts where the
user directly interacts - the widgets which the user can actually use, as opposed to a
Manager which simply lays out other components. The callback is not available for Gadget
classes.

The XmNdestinationCallback

The XmNdestinationCallback is directly implemented into the List, Container,
DrawingArea, Text and TextField widget classes. It may seem surprising that the callback
is not implemented into a wider range of classes, but if we consider what it really means to
have an XmNdestinationCallback in a widget class, the matter becomes clearer.

Recall that the UTM encapsulates three distinct methods of data transfer: X selections, the
Clipboard, and Drag-and-Drop. The destination of an X Selection transfer is via the X
server, and this is also indirectly true for the Motif Clipboard, which is really a higher level
view onto the X selection mechanisms. The destination of a Drag-and-Drop, however, is an
application widget. In other words, the toolkit only needs to implement the

Motif Programming Manual 763

Chapter 23: The Uniform Transfer Model

XmNdestinationCallback into widget classes which are not only likely to be required
as a drop site, but also in which it makes sense to allow foreign (non-toolkit) targets as the
type of the data transfer.

This is not to say that data cannot be transferred to other widget classes using drag-and-
drop: Motif implements some Trait mechanisms into other widget classes as well, and these
implement transfer of the built-in Motif target types. For example, the Label (and derived
classes) and Scale widgets handle data transfer using drag-and-drop by these default Trait
mechanisms. Again, the details of the Trait implementation are beyond the scope of this
book.

Exporting the Data
Each XmNconvertCallback is passed a pointer to an XmConvertCallbackStruct ,
which is defined in the header file <Xm/Transfer.h>. This must be included either directly
or indirectly by the programmer; it can be loaded indirectly simply by including the general
Motif header <Xm/Xm.h>, as this includes the header internally. The
XmConvertCallbackStruct is defined as follows:

typedef struct {
int reason;
XEvent *event;
Atom selection;
Atom target;
XtPointer source_data;
XtPointer location_data;
int flags;
XtPointer parm;
int parm_format;
unsigned long parm_length;
Atom parm_type;
int status;
XtPointer value;
Atom type;
int format;
unsigned long length;

} XmConvertCallbackStruct;

At first sight, the structure is somewhat daunting. However, because not all of the elements
of the structure are applicable in any given context (the structure unifies the requirements
of three distinct data transfer types, and some of the elements are used by the toolkit to
communicate with itself), programming the callback structure is not as complex as it looks.
We will start by looking at the basic common elements before looking at specific data
transfer types.

Firstly, we can deduce the type of the current data transfer if we need to by inspecting the
selection element. This will be one of CLIPBOARD, _MOTIF_DROP, PRIMARY, or

Chapter 23: The Uniform Transfer Model

764 Motif Programming Manual

SECONDARY, expressed as an Atom. In other words, all the possible types of data transfer
which the UTM supports.

Secondly, we place the data to transfer into the value element. At this address, we need to
dynamically allocate memory to hold the transfer data, but we need not concern ourselves
with freeing up the memory at the right point in the transfer process: the toolkit does this
for us. It is assumed that value points to an allocated array of items of some kind - the
number of such items in the array should be specified using the length element. The size
of each element in the array is specified using the format element. This is not a simple
sizeof (data) result, but a logical size: if you are transferring character-based data, format
should be set to 8. For a list of short quantities, format should be set to 16. A list of long
values is expressed by setting format to 32. A format of zero is reserved to mean that
value contains no data. The logical type of the data being transferred, expressed as an
Atom, is placed into the type element. If we define a new application-specific data
transfer, we need to define a logical (and hopefully unique) name for it, and express this in
the type field.

Thirdly, we need to deduce the actual data to transfer (although we already know that it is
placed into the value element when we do export it). Normally this will be related to the
widget selection in some way - the default Trait transfer mechanisms assume this - or to
some application specific data. But it need not be. Depending upon the nature of the
transfer, we may be simply asked to convert given data of one type into data of another: this
XmNconvertCallback instance really is a converter. For example, the various
negotiations between a source and destination might result in the destination asking the
source to convert specific supplied data in a specific format. We will know if this has
happened if the location_data field is not NULL. The format of the data to convert can
be deduced from the target field. In principle, all we have to do is convert the data at
location_data into the requested target format, and place the result into the value
field, also specifying the size and length of the data at value using the format and
length elements, as specified in the previous paragraph. In practice, the location_
data will most likely be NULL: the interpretation of location_data is generally widget-
class specific in any case. Whether converting supplied data or providing our own, this
holds true: we export our data in the format as requested by the target field.

There is a special case. The destination may be requesting of us, the source, the list of
available data formats in which we are prepared to export our application data. In this case,
the target element will variously be the value TARGETS, _MOTIF_EXPORT_TARGETS,
_MOTIF_CLIPBOARD_TARGETS, or _MOTIF_DEFERRED_CLIPBOARD_TARGETS
expressed as an Atom. In response, we construct a list of Atoms representing the set of
available export formats, and return this in the value field. The length field is set to the
number of such Atoms, and the format field becomes 32, because Atoms are long
quantities. Hopefully what happens next is that the destination will choose a preferred
export target, and communicate this back to the source, whereupon the

Motif Programming Manual 765

Chapter 23: The Uniform Transfer Model

XmNconvertCallback is invoked again, this time with a specific target chosen from
our supplied list. This part of the negotiation is described below in Section 23.3.

Exporting to the Clipboard

When transferring data to the Motif Clipboard, the parm, parm_format , parm_length ,
and parm_type elements come into play. This is the case when the target element is set
to the Atoms representing _MOTIF_CLIPBOARD_TARGETS or _MOTIF_DEFERRED_
CLIPBOARD_TARGETS. The parm element contains an array of Clipboard-specific
elements specifying the type of clipboard transfer required. The elements will each be one
of XmCOPY, XmMOVE, XmLINK. The param_length field specifies the number of such data
elements, the param_format field gives the logical size of such elements. Again, 8 means
char-sized array items, 16 means short, 32 means long. The param_type element specifies
the logical type of the parm data. Much of all this is over-engineering: in practice, the
parm_type field will be the constant Atom XA_INTEGER. These fields do however give
a consistency to the data transfer process: they replicate the logic of the value /format /
length /type fields so that incoming and outgoing data is transferred in a similar fashion,
albeit in different elements of the callback structure. All of these parm fields are read-only
in any case, and pretty much toolkit internal.

Exporting to a Widget (Drag and Drop)

When exporting data in response to a drag-and-drop operation, the source_data element
is operative. It points to an XmDragContext object, which gives the programmer a handle
whereby you might specify any customised drag visuals you wish to associate with the data
transfer. Drag Context resources are covered in Chapter 22, Drag and Drop. For other types
of data transfer, the source_data element of the callback structure is simply NULL.

The status field is also probably a touch of over-engineering, used for drag-and-drop
transfers. Recall that there are also widget Traits which know how to convert built-in Motif
target types. These are called if no XmNconvertCallback is specified by the
programmer. They may, however, be called even if the programmer does supply a callback.
Whether this is the case or not depends on the status element.

If status is XmCONVERT_MERGE, the Trait mechanisms are invoked after the callback,
merging any data so produced with the results of the callback. This can be useful: if the
destination requests data in a built-in format, we can leave the value element as NULL and
set status to XmCONVERT_MERGE, so that the toolkit does all the work.

If status is XmCONVERT_DONE, we tell the toolkit not to invoke the Trait mechanisms: the
result of the conversion is only the data we supply to the value field. For efficiency
reasons, we should use this if the target type is application-specific, otherwise the Traits
will go to the bother of working out that they don’t know how to convert the data: it is much
better if they are never called in the first place.

Chapter 23: The Uniform Transfer Model

766 Motif Programming Manual

If status is XmCONVERT_REFUSE, we tell the toolkit that the conversion process is to
terminate immediately after this callback without invoking any Traits. But then neither is
data transfer effective. This is the transfer failure signal - we cannot transmit data as
requested for whatever reason.

The default value of status is XmCONVERT_DEFAULT, which works out to have the same
behavior as XmCONVERT_MERGE. Since the whole point of the Uniform Transfer Model is
that the programmer really only needs to add callbacks when transferring new application-
specific data types, you probably want to change this for a start. On the other hand, the
default value as it stands makes the built-in behavior work, so we can excuse the
implementation.

As an example, the following is a convert procedure which exports a date in the form of
three integers. The procedure also exports the list of supported targets when requested.

Example 23-1. The convert_callback() procedure

void convert_callback (Widget widget,
XtPointer client_data,
XtPointer call_data)

{
XmConvertCallbackStruct *cptr = (XmConvertCallbackStruct *) call_data;
Atom TARGETS, EXPORTS, CB_TARGETS, DATE_TARGET;
Atom *targets;
Display *display = XtDisplay (widget);

/* Intern the atoms */
TARGETS = XInternAtom (display, “TARGETS”, False);
EXPORTS = XInternAtom (display, “_MOTIF_EXPORT_TARGETS”, False);
CB_TARGETS = XInternAtom (display, “_MOTIF_CLIPBOARD_TARGETS”, False);
DATE_TARGET = XInternAtom (display, “APPLICATION_DATE”, False);

/* If the destination has requested the list of targets */
/* we return this as the convert data */
if ((cptr->target == TARGETS) || (cptr->target == CB_TARGETS) ||
 (cptr->target == EXPORTS)) {

/* A request from the destination for the supported */
/* data types we are willing to handle */
targets = (Atom *) XtMalloc ((unsigned) sizeof (Atom));
targets[0] = DATE_TARGET;
cptr->type = XA_ATOM;
cptr->value = (XtPointer) targets;
cptr->length = 1;
cptr->format = 32;

/* Merge the target with the toolkit Trait-supported targets */
/* If we only wanted to export our own format, we would return */
/* XmCONVERT_DONE at this point */
cptr->status = XmCONVERT_MERGE;

}
else {

/* A request from the destination for a specific data type */

Motif Programming Manual 767

Chapter 23: The Uniform Transfer Model

if (cptr->target == DATE_TARGET) {
/* An unspecified routine to fetch the date */
/* Presumably the current widget is a date field */
/* So we pass the widget parameter to fetch this */
void GetDate (Widget, short *, short *, short *);
short *date;

/* We don’t worry about freeing this - the toolkit does it */
date = (short *) XtMalloc ((unsigned) 3 * sizeof (short));

GetDate (widget, &date[0], &date[1], &date[2]);

cptr->value = (XtPointer) date;
cptr->length = 3;
cptr->type = cptr->target; /* As requested */
cptr->format = 16; /* 8 = char, 16 = short, 32 = long */

/* No point in calling the Trait mechanisms */
/* Since we have already handled the target */
cptr->status = XmCONVERT_DONE;

}
else {

/* Presumably a Trait-supported built-in target */
/* Again, if not interested, return XmCONVERT_DONE */
cptr->status = XmCONVERT_MERGE;

}
}

}

Requesting the Data Format
Turning to the destination site, each XmNdestinationCallback is passed a pointer to an
XmDestinationCallbackStruct , which is defined in the <Xm/Transfer.h> header file.
The structure is defined as follows:

typedef struct {
in reason;
XEvent *event;
Atom selection;
XtEnum operation;
int flags;
XtPointer transfer_id;
XtPointer destination_data;
XtPointer location_data;
Time time;

} XmDestinationCallbackStruct;

Just as not all elements of the XmConvertCallbackStruct are applicable in any given
data transfer type, so the various fields of the XmNdestinationCallback become
operative at different times.

Chapter 23: The Uniform Transfer Model

768 Motif Programming Manual

Firstly, the selection element specifies the type of data transfer, and it may have the
values CLIPBOARD, PRIMARY, SECONDARY, or _MOTIF_DROP, expressed as an Atom.

Secondly, the flags element indicates whether the source of the data transfer is the same
as the destination. Possible values are XmCONVERTING_SAME and XmCONVERTING_NONE,
the latter value indicating different source and destination locations.

The transfer_id element is simply a unique identifier for the current transaction. This
field is read-only. As far as application programming is concerned, it serves as a hook or
identifier which is passed to further transfer functions which are discussed in the Transfer
Routines section below.

The time field is a server timestamp, and is read-only and internal to the toolkit.

The location_data field specifies where the data is to be transferred. The interpretation
of this field is widget-class specific. For example, if the destination is a Container,
location_data points to an XPoint structure which describes the x, y coordinates of the
transfer. If location_data is NULL, this should be interpreted as a request to deposit the
transfer data at the current cursor location within the destination widget concerned.

The destination_data element provides information concerning the destination of the
transfer operation. If the selection is _MOTIF_DROP, the callback has been invoked by an
XmDropProc at a drop site, and the destination_data element points to an
XmDropProcCallbackStruct . If selection is SECONDARY, destination_data
contains an Atom which represents the format to which the selection owner believes that
the data should be converted. Otherwise, for clipboard or primary selection, the element is
NULL.

The operation field indicates the type of data transfer; for a clipboard transfer, it can
have the values XmCOPY, XmLINK, or XmMOVE. Otherwise, the value is XmOTHER, and
destination_data will indicate the type of transfer required where appropriate.

Transfer Routines

As far as application programming of drag-and-drop is concerned, much of the above
information is irrelevant, and can be treated as toolkit internal. The average destination
callback simply performs the following tasks:

— it either asks the source of the data to provide a list of available export targets, or
asks for a specific export target,

— it sets up a further routine which will perform the actual data import.

It does both of these things using the routine XmTransferValue (), which is defined as
follows:

void XmTransferValue (XtPointer transfer_id ,
Atom target ,
XtCallbackProc transfer_routine ,

Motif Programming Manual 769

Chapter 23: The Uniform Transfer Model

XtPointer client_data ,
unsigned long timestamp)

The transfer_id parameter is simply passed through from the transfer_id element
of the XmDestinationCallbackStruct passed to the destination callback itself. The
target parameter specifies the format in which the source XmNconvertCallback
should export the data. Specially, it can be a request for the available list of export targets,
and this is performed by passing TARGETS expressed as an Atom. The transfer_
routine is a further procedure which will perform the actual data transfer; any
application-specific data which is to be passed to the routine is specified in the client_
data parameter. Lastly, the timestamp parameter is a unique server timestamp for the
current transfer. The function XtLastTimestampProcessed () should be used to
construct this value.

As an example, the following code fragment illustrates an XmNdestinationCallback
which requests the list of available targets from the source.

Example 23-2. The destination_callback() procedure

void destination_callback (Widget w,
XtPointer client_data,
XtPointer call_data)

{
extern void transfer_procedure (Widget, XtPointer, XtPointer);
XmDestinationCallbackStruct *dptr =

(XmDestinationCallbackStruct *) call_data;
Atom TARGETS = XInternAtom (XtDisplay (w), “TARGETS”, False);

XmTransferValue (dptr->transfer_id,
TARGETS,
transfer_procedure,
NULL,
XtLastTimestampProcessed (XtDisplay (w)));

}

Despite the apparent complexity surrounding the various callback structures associated
with the Uniform Transfer Model, and the very dry paragraphs which were required to
describe them, when it boils down to a real example, the required application code turns out
to be extremely simple. We ignore almost every field of the
XmDestinationCallbackStruct passed to us: only the current transfer_id is of
any real interest. We construct an Atom in order to query the list of targets at the source of
the data, we specify a procedure to perform the actual data transfer, and finally send the
request off to the source using the UTM routine XmTransferValue (). The procedure to
perform the data transfer, transfer_procedure , is described in the following section.
Whether requesting a list of available targets or asking for a specific data format, the code
is essentially the same: only the Atom changes.

Chapter 23: The Uniform Transfer Model

770 Motif Programming Manual

Importing the Data
A Transfer Procedure has to be prepared to perform two tasks. Its primary role is to collect
the exported data passed to it from callback structure fields, and process this in an
appropriate fashion. However, there is a second possibility: the source of the data may have
sent a list of available export formats in response to a destination callback request, and it is
also the responsibility of the transfer procedure to choose from the available options.

Note that it is not strictly necessary to have separate destination and transfer procedures: a
single callback could in fact perform all the destination side tasks, in which case the transfer
procedure as specified through XmTransferValue () would be the destination callback
itself. This however makes the destination callback unnecessarily complex, you would
have to discriminate between the various states of the transfer using the callback reason
field, and maintain a separate block of code in the callback for each case. Since logically
the XmNdestinationCallback and the transfer procedure are performing separate
tasks, we prefer to split the destination side into separate destination and transfer callbacks,
and recommend that you do the same. In any case, the callback structure passed to a transfer
and a destination callback is not the same: you would have to perform some suitable casting
of the callback call_data to each type if you insist on maintaining a single destination
side routine.

Each transfer procedure (as registered through XmTransferValue ()) is passed an
XmSelectionCallbackStruct when invoked. Again, the structure is defined in the
header file <Xm/Transfer.h>. The definition is as follows:

typedef struct {
int reason;
XEvent *event;
Atom selection;
Atom target;
Atom type;
XtPointer transfer_id;
int flags;
int remaining;
XtPointer value;
unsigned long length;
int format;

} XmSelectionCallbackStruct;

The interpretation of each of the elements is exactly the same as the corresponding fields
in the XmConvertCallbackStruct and XmDestinationCallbackStruct
definitions. The value , length , and format fields specify the incoming data from the
source of the transfer. The type of the transfer is expressed in the target element: this will
either be a specific export data target, or TARGETS if the incoming data is a reply to a
request for the supported range of export types.

Motif Programming Manual 771

Chapter 23: The Uniform Transfer Model

The following example is a transfer procedure which is hoping to receive a date, as
exported in the code of Example 23-1. On receipt of the date, it simply displays it under the
assumption that this destination is a TextField widget.

Example 23-3 The transfer_callback() routine

void transfer_callback (Widget w, /* The destination widget */
XtPointer client_data,
XtPointer call_data)

{
XmSelectionCallbackStruct *sptr =

(XmSelectionCallbackStruct *) call_data;
Atom TARGETS, EXPORTS, CB_TARGETS, DATE_TARGET;
Display *display = XtDisplay (w);
Atom *targets, choice;
int i;

choice = (Atom) 0;
TARGETS = XInternAtom (display, “TARGETS”, False);
EXPORTS = XInternAtom (display, “_MOTIF_EXPORT_TARGETS”, False);
CB_TARGETS = XInternAtom (display, “_MOTIF_CLIPBOARD_TARGETS”, False);
DATE_TARGET = XInternAtom (display, “APPLICATION_DATE”, False);

if ((sptr->type == XA_ATOM) &&
((sptr->target == TARGETS) || (sptr->target == CB_TARGETS) ||
 (sptr->target == EXPORTS))) {

/* The source has sent us a list of available data formats */
/* in which it is prepared to export the data */
/* We get to choose one */
/* The value field contains the list of available targets */
targets = (Atom *) sptr->value;

for (i = 0; i < sptr->length; i++) {
if (targets[i] == DATE_TARGET) {

/* We like this: its our own preferred format */
choice = targets[i];

}
}

/* If the source is not prepared to export in a format */
/* of our choice, we can either let the toolkit handle it */
/* under the assumption its a built-in data type */
/* or we can signal that the transfer is no good */

/* Lets assume we are only interested in our own data transfer */
if (choice == (Atom) 0) {

XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_FAIL);
return;

}

/* On the other hand, if we have chosen a target */
/* We simply go back to the source asking for it */

Chapter 23: The Uniform Transfer Model

772 Motif Programming Manual

XmTransferValue (sptr->transfer_id,
choice,
transfer_callback, /* Round we go again */
NULL,
XtLastTimestampProcessed (display));

}
else {

/* The source has sent us a specific data format */
/* It **ought** to be DATE_TARGET, but better check... */
if (sptr->target == DATE_TARGET) {

/* Three integers, we assume */
/* We really ought to check sptr->length */
short *date = (short *) sptr->value;
char buf[32];

/* Not pretty, but it will do for here */
(void) sprintf (buf, “%d/%d/%d”, date[0], date[1], date[2]);
XmTextFieldSetString (w, buf);
XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_SUCCEED);

}
else {

/* We should not be here. Someone has written a */
/* UTM procedure which is out of step. */
XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_FAIL);

}
}

}

The example is straight forward. The top half of the transfer_callback () returns to the
source the preferred import target. The list of available options has been sent to the routine
in the value element of the callback structure. All the routine has to do is pick from the
list, and go back to the source asking for the preferred data format. The bottom half of the
routine is the case where the source has sent the data in the preferred format. The callback
only has to extract the data from the value field, and process it. The only other issue is
how the callback terminates the transfer, whether if there has been an error, or if the data
has all been processed. It does this through the routine XmTransferDone (), which is
specified as follows:

void XmTransferDone (XtPointer transfer_id , XmTransferStatus status)

The transfer_id parameter is the unique handle on the current transfer, and is passed
through from of the relevant callback structure element. The status field indicates why
the transfer is terminated. Possible values are:

XmTRANSFER_DONE_SUCCEED XmTRANSFER_DONE_FAIL
XmTRANSFER_DONE_CONTINUE XmTRANSFER_DONE_DEFAULT

XmTRANSFER_DONE_SUCCEED, XmTRANSFER_DONE_FAIL are self-evident. The value
XmTRANSFER_DONE_DEFAULT requests that the Trait mechanisms take over to handle the
current transfer target. XmTRANSFER_DONE_CONTINUE is complex to describe, involving

Motif Programming Manual 773

Chapter 23: The Uniform Transfer Model

as it does Motif _MOTIF_SNAPSHOT operations, which are part of the implementation of
deferred clipboard data transfer. We are going to treat all this as entirely toolkit internal.

Batched Data Transfer
If we need to send multiple separate pieces of information as part of the data transfer, we
can in principle simply call XmTransferValue () multiple times from within the UTM
callbacks. This is not necessarily efficient or transfer-order safe. For example, if a source
declares that it can support export multiple targets, the destination might choose not simply
to pick one from the list, but decide to ask for more than one of the available target types.
Each data type will involve a separate invocation of the convert and transfer callbacks at
each end, so that many messages will go back and forth. A certain degree of
synchronization is required to make all this work successfully.

To get round this problem, there are two routines available which batch up
XmTransferValue () requests. To initiate a new batch, call the routine
XmTransferStartRequest (). Then call XmTransferValue () as needed. To end the
batch, use the routine XmTransferSendRequest (). These routines are defined as
follows:

void XmTransferStartRequest (XtPointer transfer_id)
void XmTransferSendRequest (XtPointer transfer_id, Time time)

These are extremely simple to use: the transfer_id is taken from the current callback
data structure, and the time is specified using XtLastTimestampProcessed ().

An Example
Example 23-4 creates two components: a SpinBox configured to display the date, and a
TextField. The SpinBox we will treat as the source of the transfer, and the TextField as the
destination.

Example 23-4. The utm.c program

/* utm.c: transfers data between a specimen SpinBox and
** a TextField using the Uniform Transfer Model
*/

#include <X11/Intrinsic.h>
#include <Xm/Transfer.h>
#include <Xm/RowColumn.h>
#include <Xm/SpinB.h>
#include <Xm/TextF.h>
#include <Xm/Label.h>

/*
** GetDate(): fetches the various elements of a date from multiple
** SpinBox TextField children.

Chapter 23: The Uniform Transfer Model

774 Motif Programming Manual

*/
void GetDate (Widget text, short *day, short *month, short *year)
{

int d, m, y;
Widget spinb = XtParent (text);

XtVaGetValues (XtNameToWidget (spinb, “days”), XmNposition, &d, 0);
XtVaGetValues (XtNameToWidget (spinb, “months”), XmNposition, &m, 0);
XtVaGetValues (XtNameToWidget (spinb, “years”), XmNposition, &y, 0);

*day = (short) d;
*month = (short) m;
*year = (short) y;

}

/*
** convert_callback(): exports data in the format requested
** by the destination of the data transfer.
*/
void convert_callback (Widget widget,

XtPointer client_data,
XtPointer call_data)

{
XmConvertCallbackStruct *cptr = (XmConvertCallbackStruct *) call_data;
Atom TARGETS, EXPORTS, CB_TARGETS, DATE_TARGET;
Atom *targets;
Display *display = XtDisplay (widget);

/* Intern the atoms */
TARGETS = XInternAtom (display, “TARGETS”, False);
EXPORTS = XInternAtom (display, “_MOTIF_EXPORT_TARGETS”, False);
CB_TARGETS = XInternAtom (display, “_MOTIF_CLIPBOARD_TARGETS”, False);
DATE_TARGET = XInternAtom (display, “APPLICATION_DATE”, False);

/* If the destination has requested the list of targets */
/* we return this as the convert data */
if ((cptr->target == TARGETS) || (cptr->target == CB_TARGETS) ||

(cptr->target == EXPORTS)) {
/* A request from the destination for the supported */
/* data types we are willing to handle */

targets = (Atom *) XtMalloc ((unsigned) sizeof (Atom));
targets[0] = DATE_TARGET;
cptr->type = XA_ATOM;
cptr->value = (XtPointer) targets;
cptr->length = 1;
cptr->format = 32;
cptr->status = XmCONVERT_MERGE;

}
else {

/* A request from the destination for a specific data type */
if (cptr->target == DATE_TARGET) {

short *date;
date = (short *) XtMalloc ((unsigned) 3 * sizeof (short));

Motif Programming Manual 775

Chapter 23: The Uniform Transfer Model

GetDate (widget, &date[0], &date[1], &date[2]);

cptr->value = (XtPointer) date;
cptr->length = 3;
cptr->type = cptr->target; /* As requested */
cptr->format = 16; /* 8 = char, 16 = short, 32 = long */
cptr->status = XmCONVERT_DONE;

}
else {

/* Presumably toolkit built-in type */
/* Let the Traits take over */
cptr->value = (XtPointer) 0;
cptr->length = 0;
cptr->format = 0;
cptr->type = cptr->target;
cptr->status = XmCONVERT_MERGE;

}
}

}

/*
** transfer_callback(): performs the import of the data at
** the destination site.
*/
void transfer_callback (Widget w, /* The destination widget */

XtPointer client_data,
XtPointer call_data)

{
XmSelectionCallbackStruct *sptr =

(XmSelectionCallbackStruct *) call_data;
Atom EXPORTS, TARGETS, CB_TARGETS, DATE_TARGET;
Display *display = XtDisplay (w);
Atom *targets, choice;
int i;

choice = (Atom) 0;
TARGETS = XInternAtom (display, “TARGETS”, False);
EXPORTS = XInternAtom (display, “_MOTIF_EXPORT_TARGETS”, False);
CB_TARGETS = XInternAtom (display, “_MOTIF_CLIPBOARD_TARGETS”, False);
DATE_TARGET = XInternAtom (display, “APPLICATION_DATE”, False);

if ((sptr->type == XA_ATOM) && ((sptr->target == TARGETS) ||
(sptr->target == CB_TARGETS) ||
(sptr->target == EXPORTS))) {

/* The source has sent us a list of available data formats */
/* in which it is prepared to export the data */
/* We get to choose one */
/* The value field contains the list of available targets */
targets = (Atom *) sptr->value;

for (i = 0; i < sptr->length; i++) {
if (targets[i] == DATE_TARGET) {

/* We like this: its our own preferred format */

Chapter 23: The Uniform Transfer Model

776 Motif Programming Manual

choice = targets[i];
}

}

/* If the source is not prepared to export in a format */
/* of our choice, we can either let the toolkit handle it */
/* under the assumption its a built-in data type */
/* or we can signal that the transfer is no good */

/* Lets assume we are only interested in our own data transfer */
if (choice == (Atom) 0) {

XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_FAIL);
return;

}

/* On the other hand, if we have chosen a target */
/* We simply go back to the source asking for it */
XmTransferValue (sptr->transfer_id,

choice,
transfer_callback, /* Round we go again */
NULL,
XtLastTimestampProcessed (display));

}
 else {

/* The source has sent us a specific data format */
/* It **ought** to be DATE_TARGET, but better check... */
if (sptr->target == DATE_TARGET) {

/* Three integers, we assume */
/* We really ought to check sptr->length */
short *date = (short *) sptr->value;
char buf[32];

/* Not pretty, but it will do for here */
(void) sprintf (buf, “%d/%d/%d”, date[0], date[1], date[2]);
XmTextFieldSetString (w, buf);

XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_SUCCEED);
}
else {

/* We should not be here. Someone has written a */
/* convert procedure which is out of step. */

XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_FAIL);
}

}
}

/*
** destination_callbvack: simply asks the source for the
** set of formats it is prepared to send the data in,
** and sets up a transfer procedure to import the data when sent.
*/
void destination_callback (Widget w,

XtPointer client_data,

Motif Programming Manual 777

Chapter 23: The Uniform Transfer Model

XtPointer call_data)
{

XmDestinationCallbackStruct *dptr =
(XmDestinationCallbackStruct *) call_data;

Atom TARGETS = XInternAtom (XtDisplay (w), “TARGETS”, False);

XmTransferValue (dptr->transfer_id,
TARGETS,
transfer_callback,
NULL,
XtLastTimestampProcessed (XtDisplay (w)));

}

main (int argc, char *argv[])
{

Widget toplevel, spin, rowcol;
Widget day, month, year, text;
XtAppContext app;
Arg args[8];
int n;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

rowcol = XmCreateRowColumn (toplevel, “rowcol”, NULL, 0);

/* Create the SpinBox */
spin = XmCreateSpinBox (rowcol, “spin”, NULL, 0);

/* Create the Days field */
n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 1); n++;
XtSetArg (args[n], XmNmaximumValue, 31); n++;
XtSetArg (args[n], XmNposition, 1); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;

day = XmCreateTextField (spin, “days”, args, n);
XtManageChild (day);

/* Create the Months field */
n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 1); n++;
XtSetArg (args[n], XmNmaximumValue, 12); n++;
XtSetArg (args[n], XmNposition, 1); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;

Chapter 23: The Uniform Transfer Model

778 Motif Programming Manual

month = XmCreateTextField (spin, “months”, args, n);
XtManageChild (month);

n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 4); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 1900); n++;
XtSetArg (args[n], XmNmaximumValue, 2100); n++;
XtSetArg (args[n], XmNposition, 2000); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
year = XmCreateTextField (spin, “years”, args, n);
XtManageChild (year);

/* The destination of the data transfer */
n = 0;
XtSetArg (args[n], XmNeditable, FALSE); n++;
text = XmCreateTextField (rowcol, “drop-site”, args, n);
XtManageChild (text);

/* Now program the UTM */
XtAddCallback (day, XmNconvertCallback, convert_callback, NULL);
XtAddCallback (month, XmNconvertCallback, convert_callback, NULL);
XtAddCallback (year, XmNconvertCallback, convert_callback, NULL);
XtAddCallback (text, XmNdestinationCallback, destination_callback, NULL);

XtManageChild (spin);
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of the example is as given in Figure 23-1.

It should be possible to transfer the formatted SpinBox date to the lower TextField by any
of the supported transfer methods.

• selecting any SpinBox TextField, pressing the COPY key, moving the cursor over the
lower TextField, then press the PASTE key.

• drag-and-drop out of one of any SpinBox TextField into the lower TextField

Figure 23-1: Output of the utm program

Motif Programming Manual 779

Chapter 23: The Uniform Transfer Model

• select data in any SpinBox TextField, then press the middle mouse button over the
lower TextField.

Summary
The Uniform Transfer Model rationalises the various means of data transfer in the Motif
toolkit into a coherent single methodology. The model is simple to understand: a single
callback resource at the source of the data, a single callback resource at the destination. The
destination callback negotiates with the source in order to determine the best import data
format. It then sets up a transfer procedure to perform the actual data import. While a first
glance at the callback structures associated with each of these procedures seems to indicate
an unwarranted degree of complexity, in actual practice many of the data elements are
internal to Motif, and are the means by which it unifies the various types of data transfer in
the toolkit. The actual tasks we need to perform in order to transfer data turn out to be quite
simple.

Chapter 23: The Uniform Transfer Model

780 Motif Programming Manual

Motif Programming Manual 781

Chapter 1

In this chapter:
• Introduction to Render Tables and

Renditions
• Renditions
• Render Tables
• Tab Lists
• An Example
• Render Tables and Resource Files
• Missing Fonts and Renditions
• Summary

24
Render Tables

This chapter describes the new features introduced in Motif 2.0 for rendering compound
strings.

In Motif 1.2, compound strings were rendered with respect to an XmFontList , which
encapsulates a list of X fonts and font sets. By separating the contents of a compound string
from the fonts with which it is associated, it was possible to display the same compound
string in different ways in distinct widget contexts, simply by changing the XmFontList
for each context.

In Motif 2.0 and later, the separation of content from rendition information is continued and
extended. The XmFontList is however now obsolete. In its place is the notion of a Render
Table, represented by the XmRenderTable type. Throughout Motif, all the places which
used to contain an XmFontList resource also now support an XmRenderTable
equivalent.

A Render table consists of a sequence of XmRendition objects. Unlike an XmFontList ,
however, a Rendition object describes rather more than simply the fonts with which a
compound string is drawn. A Rendition also describes color, line style, and columnar
information. In Motif 2.0 and later, we can have multi-color compound strings inside a
multi-column List. A Rendition object is also optimized: fonts can be loaded dynamically
at the point of rendition rather than having to be pre-loaded at or before widget creation.

Render Tables and Rendition objects are shareable across contexts, and independently
reference-counted. They are also inherited within the widget hierarchy, thus enabling a
degree of consistent appearance for the application.

For backwards compatibility, the XmFontList is maintained as a type, although internally
it is re-implemented as a skeleton XmRenderTable containing only font information. Any
specified XmRenderTable resource for the widget concerned takes precedence.

Chapter 24: Render Tables

782 Motif Programming Manual

Renditions
An XmRendition object is a pseudo-widget. Although not a true widget, it has many of
the properties of one, namely resource attributes and a resource-style interface. Rendition
attributes can also be specified in a resource file.

Creating Renditions

An XmRendition object is created through the routine XmRenditionCreate (), defined
as follows:

XmRendition XmRenditionCreate (Widget widget ,
XmStringTag tag ,
Arg * argList ,
Cardinal argCount)

The widget parameter does not have to be related in any way to the place where the new
XmRendition object is to be applied: it is simply used to find a connection to the X server,
so that font and color resources of the XmRendition can be loaded. The tag parameter
identifies the XmRendition object: compound strings which contain embedded tags are
matched against this name when deciding whether to apply the XmRendition to the
rendering process of the string. In effect, the XmRendition tag takes the place of the
deprecated XmFontList tag. If tag is NULL, the value _MOTIF_DEFAULT_LOCALE is
assigned. The argList and argCount parameters specify the resources of the
XmRendition object, and are in exactly the same format as the usual argument lists supplied
to widget creation routines.

Rendition Resources

XmRendition resources fall mainly into three groups: those which specify the font, those
which specify the color, and those which specify the tab or multi-columnar data.

The font is specified through either the XmNfontName of the XmNfont resource. The
XmNfontName resource is specified using a standard XLFD font description string. The
XmNfont resource can be specified either as an X font (XFontStruct *) or an X font set
(XFontSet); whichever you supply, you also need to set the XmNfontType resource to
either XmFONT_IS_FONT or XmFONT_IS_FONTSET respectively. Specifying the
XmNfont resource means of course that you need to load the font beforehand using
XLoadFont (), XLoadQueryFont () or similar, described in Volume 1, Xlib Programming
Manual. An alternative is to arrange to load the font when it is actually needed for
rendering. This is done by specifying the XmNfontName in conjunction with the
XmNloadModel resource. If the load model is XmLOAD_IMMEDIATE, the font name is
loaded when the rendition is created. Otherwise, with a load model of XmLOAD_DEFERRED,
the font is loaded when actually required. The following code fragment creates an
XmRendition object which is configured with a deferred font.

Motif Programming Manual 783

Chapter 24: Render Tables

extern Widget widget;
XmRendition rendition;
Arg args[4];
Cardinal n = 0;

XtSetArg (args[n], XmNfontName, “-*-courier-bold-o-*--*-140-*”); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_DEFERRED); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
rendition = XmRenditionCreate (widget, “my_bold_font”, args, n);

If an XmNfont resource is specified, it takes precedence over any XmNfontName which is
also specified. In addition to specifying the font, it is also possible to specify an underline
or strike-through style for the font rendition. The resource XmNunderlineType controls any
underlining. It has the following possible values:

XmDOUBLE_DASHED_LINE XmDOUBLE_LINE
XmSINGLE_DASHED_LINE XmSINGLE_LINE
XmNO_LINE

Similarly, a strike-through line can be specified using the XmNstrikethruType
resource*. This resource has exactly the same range of values as the XmNunderlineType
resource.

There are two color resources which can be specified for a rendition. These are
XmNrenditionBackground and XmNrenditionForeground , which are Pixel -
valued.

Multi-column specification is performed using the XmNtabList resource. Since this
subject requires knowledge of other object types, the XmTab and XmTabList , each of
which really require a section to themselves, discussion of this resource is reserved for later
in the chapter, in Section 24.3.

At this point something needs to be said about the way in which Render Tables work in
order to understand the default values associated with each of the resources of an
XmRendition object. When a particular compound string component is rendered, any tag
associated with the component is matched against renditions in the current render table,
starting at the head of the table. Any given rendition in the table may only specify a portion
of the rendition information, for example just the foreground color. However, we cannot
just draw a color, we also need to draw using a font, and maybe also a line style. There may
indeed be renditions in the table which specify these, but they can all have different
rendition tags which do not match the current component tag. This is where the notion of
inheritance comes in. If any resource in a rendition has the reserved value XmAS_IS, its
actual value is calculated by moving back up through the render table. The order of
renditions in a render table is therefore important because it determines the order of

* It ought to have been properly named XmNstrikeThroughType , in our humble opinion.

Chapter 24: Render Tables

784 Motif Programming Manual

inheritance. The default value for all resources is indeed XmAS_IS, except for the color
resources, which default to XmUNSPECIFIED_PIXEL.

The last XmRendition attribute to mention is the XmNtag resource. This is simply the
name passed through from the XmRenditionCreate () routine, and it defaults to _
MOTIF_DEFAULT_LOCALE. The value NULL is therefore never applied to this resource,
although an empty string can be used as the tag. This resource should not be manipulated
by the programmer, who should treat the attribute as private to the toolkit.

The following code fragment fully specifies every resource for an XmRendition object.
The rendition is unnamed when created, so that it defaults to _MOTIF_DEFAULT_LOCALE.
Again, discussion of the XmTabList is reserved until later in the chapter.

extern Widget widget;
XmRendition rendition;
Arg args[10];
Cardinal n = 0;
Pixel fg = ...; /* Whatever */
Pixel bg = ...; /* Whatever */
XmNtabList tlist = ...; /* Discussed later */

XtSetArg (args[n], XmNfontName, “fixed”); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_DEFERRED); n++;
XtSetArg (args[n], XmNunderlineType, XmNO_LINE); n++;
XtSetArg (args[n], XmNstrikethruType, XmNO_LINE); n++;
XtSetArg (args[n], XmNrenditionForeground, fg); n++;
XtSetArg (args[n], XmNrenditionBackground, bg); n++;
XtSetArg (args[n], XmNtabList, tlist); n++;
rendition = XmRenditionCreate (widget, NULL, args, n);

Retrieving Rendition Resources

The attributes of an XmRendition object can be fetched using the routine
XmRenditionRetrieve (). This routine has the following signature:

void XmRenditionRetrieve (XmRendition rendition ,
Arg * argList ,
Cardinal argCount)

Juts as we need to pass the address of a variable when fetching resources using
XtGetValues (), so we need to pass an address to fetch a rendition resource. The
following code fragment outlines the scheme:

extern XmRendition rendition;
Arg args[4];
Cardinal n = 0;
Pixel fg;
unsigned char underline;

XtSetArg (args[n], XmNunderlineType, &underline); n++;
XtSetArg (args[n], XmNrenditionForeground, &fg); n++;

Motif Programming Manual 785

Chapter 24: Render Tables

XmRenditionRetrieve (rendition, args, n);

All resources for an XmRendition object can be fetched at any time, except for the
XmNtag resource, which should not be touched.

Updating Rendition Resources

Updating the rendition resources is also straightforward, and involves the routine
XmRenditionUpdate (), which is defined as follows:

void XmRenditionUpdate (XmRendition rendition ,
Arg * argList ,
Cardinal argCount)

Again, all rendition resources can be dynamically changed except XmNtag. If the
XmNfontName resource is changed, the XmNfont value is immediately set to NULL
internally irrespective of whether the load model is XmLOAD_DEFERRED or XmLOAD_
IMMEDIATE.

Freeing a Rendition

When a rendition object is no longer required, it should be freed using the routine
XmRenditionFree (). This function has the prototype:

void XmRenditionFree (XmRendition rendition)

Note that rendition objects are shareable: we can add the same rendition object to multiple
render tables, and remove the rendition from a table, freeing as and when required, because
the rendition is reference counted: XmRenditionFree () does not actually free the object
until the count is zero. How we add or remove a rendition from a render table is covered in
the next section.

Render Tables
A render table, represented by the opaque type XmRenderTable , is a set of rendition
objects. An XmRenderTable is not simply an array of XmRendition objects, but a
distinct opaque type into which rendition objects must be explicitly merged.

Creating Render Tables

Rendition objects are added to a render table using the function
XmRenderTableAddRenditions (), which is defined thus:

XmRenderTable
XmRenderTableAddRenditions (XmRenderTable old_table ,

XmRendition * merge_renditions ,
Cardinal new_rendition_count ,
XmMergeMode merge_mode)

Chapter 24: Render Tables

786 Motif Programming Manual

The old_table parameter is the table into which we want to add the renditions merge_
renditions . If old_table is NULL, a new render table is formed from the merge_
renditions . Otherwise the merge_renditions are merged into the old_table .
Clearly it is possible to have potential conflicts, because a rendition in the old_table and
in the merge_renditions may have the same tag. How to resolve conflicts is determined
by the merge_mode parameter. If merge_mode is XmMERGE_REPLACE, any rendition in
old_table with the same tag as a rendition in the merge_renditions is ignored: merge_
renditions take precedence. If merge_mode is XmMERGE_SKIP, the old_table takes
precedence, and renditions are merged from merge_renditions if and only if old_
table does not contain a rendition with a matching tag. These two cases are
straightforward: use only the rendition in the old_table , or in the new merge list. More
complex however are the cases described by the merge_mode values XmMERGE_NEW and
XmMERGE_OLD. The value XmMERGE_NEW gives precedence to renditions in the merge_
renditions list, except that if any resources associated with a rendition in the merge_
renditions list have the value XmAS_IS, the value is copied from any rendition in the
old_table with a matching tag. XmMERGE_OLD is similar: old_table renditions take
precedence, but any resource in a rendition in old_table which is XmAS_IS takes its
value from any rendition in merge_renditions with the same tag. The degree of control
which can be exercised over the creation and manipulation of render tables using the
various merge_mode values is quite complex. The simple case, however, is
straightforward: the following specimen code creates a new render table by merging in two
newly allocated rendition objects, then applies it to an unspecified widget:

extern Widget widget;
XmRendition renditions[2];
XmRenderTable rtable;
Arg args[4];
Cardinal n;

n = 0;
XtSetArg (args[n], XmNfontName, “fixed”); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_IMMEDIATE); n++;
renditions[0] = XmRenditionCreate (widget, NULL, args, n);

n = 0;
XtSetArg (args[n], XmNfontName, “-*-courier-bold-o-*--*-140-*”); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_DEFERRED); n++;
renditions[1] = XmRenditionCreate (widget, “bold”, args, n);

rtable = XmRenderTableAddRenditions (NULL, renditions,
XtNumber (renditions),
XmMERGE_NEW);

XtVaSetValues (widget, XmNrenderTable, rtable, NULL);

Motif Programming Manual 787

Chapter 24: Render Tables

Freeing Render Tables

An XmRenderTable is a dynamically allocated object. We must arrange to free the memory
ourselves when we are finished using the table. This is done through the function
XmRenderTableFree(), which is simply defined as follows:

void XmRenderTableFree (XmRenderTable table)

Render tables, like the rendition objects which they contain, are reference-counted
internally by Motif. The table may not in fact be freed after calling
XmRenderTableFree () unless the reference count becomes zero.
XmRenderTableFree () does not free the constituent renditions: these need to be
deallocated separately in their own right. Note that if we apply a render table to a widget
through the XmNrenderTable resource, the widget takes a copy (or rather, updates the
reference count) of the table and the renditions which it contains, and so the following code
outlines the correct scheme when creating widgets using render tables:

extern Widget parent;
Widget new_widget;
XmRenderTable render_table;
XmRendition renditions[MAX_RENDITIONS];
Arg args[MAX_ARGS];
int i, n;

/* Create the renditions we require */
for (i = 0; i < MAX_RENDITIONS; i++) {

...
renditions[i] = XmRenditionCreate (parent, “some_tag”, args, n);
...

}

/* Create the Render Table */
render_table = XmRenderTableAddRenditions (NULL, renditions,

XtNumber (renditions),
XmMERGE_NEW);

/* Create a new widget with the given render table */
/* Or indeed apply to an existing widget using XtSetValues() */
/* Either way, the widget “takes a copy” */
n = 0;
XtSetArg (args[n], XmNrenderTable, render_table); n++;
...
new_widget = XmCreatePushButton (parent, “name”, args, n);

/* Free the allocated space */
/* Firstly, the constituent renditions */
for (i = 0; i < MAX_RENDITIONS; i++) {

XmRenditionFree (renditions[i]);
}

/* Now the render table itself */
XmRenderTableFree (render_table);

Chapter 24: Render Tables

788 Motif Programming Manual

Copying Render Tables

A copy of an existing render table can be achieved using the function
XmRenderTableCopy (), which is defined thus:

XmRenderTable XmRenderTableCopy (XmRenderTable old_table ,
XmStringTag * tags ,
Cardinal num_tags)

The routine allocates storage for, and returns, a new render table based upon old_table .
The tags parameter can be used as a filter: if tags is not NULL, only renditions within
old_table whose tag is contained within the tags array are copied over. Otherwise, all
renditions within the old_table are cloned. We could, for example, create a new render
table which only contains the “fixed” rendition from the code fragment in Section 24.2.1
using this routine:

XmRenderTable fixed_table;
XmStringTag tag = “fixed”;
...
fixed_table = XmRenderTableCopy (new_table, &tag, 1);

Retrieving Renditions from Render Tables

Supposing we want to modify a rendition (or indeed multiple renditions) contained within
an arbitrary render table. If we know the tag (or tags) associated with the rendition, we can
fetch the renditions using either of the following routines:

XmRendition XmRenderTableGetRendition (XmRenderTable table ,
XmStringTag tag)

XmRendition *XmRenderTableGetRenditions (XmRenderTable table,
XmStringTag *tags,
Cardinal num_tags)

Fetching a single rendition using XmRenderTableGetRendition () is straightforward
enough. The complexity arises where we need to fetch multiple renditions. The array of
renditions returned by XmRenderTableGetRenditions () is sized to the list of requested
tags , and it may contain NULL entries if a given tag does not match anything in the render
table . There is a one-to-one correspondence between the position of a given tag in the
tags array and the returned render table list. In other words, the returned renditions are not
necessarily in the order in which they appear in table , but most certainly are in the order
in which the tags data appears. Therefore if, say, the first tag in tags does not match
anything in table , the first element in the returned rendition array will be NULL. Both
XmRenderTableGetRendition () and XmRenderTableGetRenditions () allocate
memory which must be freed at an appropriate point by the programmer. The following
code clarifies the situation:

extern XmRendertable render_table;
XmStringTag *tags[3];
XmRendition *renditions;
int i;

Motif Programming Manual 789

Chapter 24: Render Tables

tags[0] = (XmStringTag) “bold”;
tags[1] = (XmStringTag) “red”;
tags[2] = (XmStringTag) “no such rendition”;

renditions = XmRendertableGetRenditions (render_table,
tags,
XtNumber (tags));

if (renditions != (XmRendition *) 0) {
/* The returned renditions array is the same size as the tags array */
/* Furthermore, the renditions are in tag-array order */
for (i = 0; i < XtNumber (tags); I++) {

/* But an entry can be NULL if a given tag does not match */
if (renditions[i] == (XmRendition) 0) {

printf (“Warning: no such rendition %s\n”, tags[i]);
}
else {

/* Process the rendition, then free the allocated space */
...
XmRenditionFree (renditions[i]);

}
}
/* Free the allocated array pointer */
XtFree ((char *) renditions);

}

This all assumes that we know the names of the tags in an arbitrary render table. Where this
is not the case, we need to query the set of tags in a render table using the routine
XmRenderTableGetTags (), which has the following functional prototype:

int XmRenderTableGetTags (XmRenderTable table,
XmStringTag ** tags)

The routine returns the number of renditions in the parameter table , and places the list of
tags at the address specified by the tags parameter. The returned array is placed in
dynamically allocated memory which the programmer should free at the appropriate point.
The tags are in the order in which the renditions occur in the render table. The following
routine simply lists all the tags in a given render table:

void ListRenditionTags (XmRenderTable table)
{

int count, i;
XmStringTag *tags;

count = XmRenderTableGetTags (table, &tags);

for (i = 0; i < count; i++) {
printf (“Tag %d is %s\n”, i, tags[i]);
XtFree (tags[i]);

}
XtFree ((char *) tags);

}

Chapter 24: Render Tables

790 Motif Programming Manual

Removing Renditions

If we know the tag or tags associated with a group of rendition objects in a render table, we
can remove the renditions from the table through the routine
XmRenderTableRemoveRenditions (), defined as follows:

XmRenderTable XmRenderTableRemoveRenditions (XmRenderTable old_table ,
XmStringTag * tags ,
int tag_count)

The function returns a new render table formed by copying all renditions in old_table
which do not have a matching tag in the tags array. A side effect of calling
XmRenderTableRemoveRenditions () is that the reference count associated with old_
table is decremented. An exception to this is where the tags array is NULL: the old_
table is returned unmodified in any way, so that in effect the routine does nothing. Any
renditions which are removed from old_table also have their reference counts decremented
by the routine. Which means that if we remove the last rendition from a table, and the
rendition is only referenced by this table, both the rendition and the table are freed by the
toolkit.

Tab Lists
A TabList is the means by which Motif implements multi-column layout for compound
strings. TabLists consist of Tab objects; a Tab is simply an offset across the widget where
the compound string is rendered. The Tab represents a location at which to start drawing a
compound string segment.

There are four aspects to achieving a multi-column layout.

1. The Tab objects themselves, describing specific locations across a widget. Each Tab
specifies a single logical column starting point.

2. The TabList, which is an ordered set of Tabs.The TabList taken as a whole provides
the multi-column appearance.

3. Compound string components of typeXmSTRING_COMPONENT_TAB; these can be em-
bedded into a compound string, informing the toolkit that the following compound
string text component is to be drawn dependent upon the current Tab information.

4. A Render Table, which contains a TabList as a constituent Rendition resource.

Tabs and TabLists are inoperative unless the compound string to be drawn contains the
special XmSTRING_COMPONENT_TAG component.

Tabs
Tabs are implemented through the XmTab object. The XmTab object is an opaque handle
onto a structure which describes an offset across the widget where a compound string is

Motif Programming Manual 791

Chapter 24: Render Tables

rendered. Each XmTab is a shareable, reference counted resource which can be used in
multiple tablists.

Creating an XmTab

An XmTab is created using the function XmTabCreate (), which is defined as follows:

XmTab XmTabCreate (float value ,
unsigned char units ,
XmOffsetModel offset_model ,
unsigned char alignment ,
char * decimal)

The value parameter is interpreted in terms of units , which can be one of the following:

XmPIXELS
XmMILLIMETERS Xm100TH_MILLIMETERS
XmINCHES Xm1000TH_INCHES
XmCENTIMETERS
XmPOINTS Xm100TH_POINTS
XmFONT_UNITS Xm!00th_FONT_UNITS

The offset_model parameter determines whether the tab position is an absolute distance
across the widget where rendering is to take place (XmABSOLUTE), or whether the tab
position is calculated relative to the previous tab stop (XmRELATIVE). The alignment
parameter specifies how text is aligned with respect to the tab location. Only
XmALIGNMENT_BEGINNING is implemented as of Motif 2.1.10. The decimal parameter
specifies the multi-byte character in the current locale which is used as a decimal point.
This is currently unused.

The following code fragment creates a tab stop 1.5 inches from the start of compound string
rendering:

XmTab tab;

tab = XmTabCreate ((float) 1.5,
XmINCHES,
XmABSOLUTE,
XmALIGNMENT_BEGINNING,
“.”);

Freeing an XmTab

When an XmTab is no longer required, the memory associated with the object should be
freed using the routine XmTabFree(), which is defined as follows:

void XmTabFree (XmTab tab)

Fetching XmTab values

The values associated with an XmTab object can be fetched using the routine
XmTabGetValues (). This routine is defined as follows:

Chapter 24: Render Tables

792 Motif Programming Manual

float XmTabGetValues (XmTab tab ,
unsigned char * units ,
XmOffsetModel * model ,
unsigned char * alignment ,
char ** decimal)

The interpretation of each of the parameters is directly analogous to XmTabCreate (),
except that in each case an address is required to hold the returned data. The tab parameter
is the object for which the values are required. The following code fragment outlines the
basic usage of the routine:

extern XmTab tab;
XmOffsetModel offset_model;
unsigned char units;
unsigned char alignment;
char *decimal;
float value;

value = XmTabGetValues (tab,
&units,
&offset_model,
&alignment,
&decimal);

Note that the returned data at the decimal address directly points into the tab object
structure: decimal does not contain a dynamically allocated copy, and so it should neither
be modified nor freed by the programmer.

Setting the XmTab value

The value associated with a tab object can be modified using the routine
XmTabSetValues (). There is no routine available to modify the units, alignment, offset
model, or decimal associated with a tab once it has been created. To do these operations,
you need to explicitly remove the tab object from the tab list concerned, and create a new
tab with the required attributes from scratch. XmTabSetValues () is defined as follows:

void XmTabSetValues (XmTab tab , float value)

TabLists
A Tab List, represented by the opaque type XmTabList , is an ordered set of tab objects.
An XmTabList is not simply an array of XmTab objects, but a distinct opaque type into
which tab objects must be explicitly merged.

Creating TabLists

XmTab objects can be added to an XmTabList using the convenience routine
XmTabListInsertTabs (), which is defined as follows:

Motif Programming Manual 793

Chapter 24: Render Tables

XmTabList XmTabListInsertTabs (XmTabList tablist ,
XmTab *tabs ,
Cardinal tab_count ,
int position)

The parameter tablist can be NULL, which means that a new tab list is to be formed out
of the XmTab objects specified through the tabs array. If tabs is NULL, the original
tablist is returned unmodified. This means that in effect that there is no way to create an
XmTabList independently of a set of XmTab objects. The position parameter specifies
where the tabs are to be inserted into tablist . If position is 0, the tabs are inserted
at the head of tablist . If position is 1, tabs are inserted after the current first tab of
tablist , and so forth. To insert using the end of the tablist, position should be specified
as a negative quantity.* A negative position inserts XmTab objects in reverse order at the
end of the XmTabList , such that the first new tab in the tabs array becomes the last tab
in the newly formed tab set.

Much of the implementation of XmTabListInsertTabs () is complex and probably over-
engineered. The simple case, however, is as given in the following code fragment. This
creates two XmTab objects, and forms a new XmTabList from them:

XmTab tabs[2];
XmTabList tabList;

tabs[0] = XmTabCreate ((float) 1.0, XmINCHES, XmABSOLUTE,
XmALIGNMENT_BEGINNING, “.”);

tabs[1] = XmTabCreate ((float) 1.5, XmINCHES, XmRELATIVE,
XmALIGNMENT_BEGINNING, “.”);

tabList = XmTabListInsertTabs (NULL, tabs, XtNumber (tabs), 0);

Freeing TabLists

The XmTabList object uses dynamically allocated memory. This should be reclaimed
when no longer in use through the routine XmTabListFree (), which is defined as follows:

void XmTabListFree (XmTabList tablist)

Manipulating Tabs in a TabList

The following routines are available for manipulating the XmTab elements in an
XmTabList:

XmTabList XmTabListCopy (XmTabList tablist , int offset , Cardinal count) †

XmTab XmTabListGetTab (XmTabList tablist , Cardinal position)
XmTabList XmTabListRemoveTabs (XmTabList tablist ,

Cardinal * positions ,
Cardinal position_count)

* This is not consistent with other Motif insertion routines, where zero is generally taken to mean the end of the
given list of objects, and negative positions are disallowed.

† Erroneously listed as XmTabListTabCopy () in Volume 6B, Motif Reference Manual. Humble Apologies!

Chapter 24: Render Tables

794 Motif Programming Manual

XmTabList XmTabListReplacePositions (XmTabList tablist ,
Cardinal * positions ,
XmTab *tabs ,
Cardinal tab_count)

int XmTabListTabCount (XmTabList tablist)

XmTabListCopy () copies count XmTab objects from the XmTabList specified by the
tablist parameter, starting with the tab at the position specified by offset . If offset
is zero, tabs are copied from the start of the list. If count is zero, all tabs from offset to
the end of the tablist are copied. If the offset is negative, tabs are copied in reverse order
from the end of the tablist . Copying an entire tablist is therefore simply a matter of
calling the following code:

extern XmTabList old_tablist;
XmTabList full_copy = XmTabListCopy (old_tablist, 0, 0);

An XmTab object can be fetched from a tab list using the routine XmTabListGetTab ().
The routine simply fetches the tab at the designated position within the given tablist .
The first tab in the list is at position zero. The routine returns a copy of the XmTab object at
position , and it is the responsibility of the programmer to free the allocated memory at
a suitable point using XmTabFree().

If you wanted to fetch the last XmTab object in a tablist, you would need to know the
number of tabs in the list in the first place. The routine XmTabListTabCount () can be
used for this: it simply returns the number of tabs in the specified tablist . The following
code therefore fetches the last XmTab object:

extern XmTabList tablist;
XmTab last_tab;
int count;

count = XmTabListTabCount (tablist);

if (count > 0)
/* TabLists offset from zero */
last_tab = XmTabListGetTab (tablist, count - 1);

...
/* Remember to reclaim the memory: we are returned a copy */
XmTabFree (last_tab);

XmTab objects can be removed from a tablist using the routine XmTabListRemoveTabs ().
It creates and returns a new XmTabList formed out of an existing tablist , but with tabs
at designated positions excluded. The original tablist has its reference count
internally decremented internally by the routine.

XmTabListReplacePositions () can be used to substitute a set of XmTab objects
within tablist. The positions parameter specifies an array of offsets representing the
locations where tabs are to be replaced. The tabs parameter is the set of new tabs to be
merged into the tablist . There is a one-to-one correspondence between the offsets in the
positions parameter and the tabs specifier. That is, the nth XmTab in the tabs list is

Motif Programming Manual 795

Chapter 24: Render Tables

placed at the offset designated by the nth offset in the positions array. For example, the
following code replaces the third and fifth tabs in an unspecified tablist:

extern XmTabList old_tablist;
XmTabList new_tablist;
XmTab new_tabs[2];
Cardinal positions[2];

new_tabs[0] = XmTabCreate (...);
new_tabs[1] = XmTabCreate (...);

positions[0] = 2; /* The third position - offsets are from zero */
positions[1] = 4; /* The fifth position */

new_tablist = XmTabListReplacePositions (old_tablist,
positions,
new_tabs,
XtNumber (new_tabs));

Using TabLists

TabLists are used by specifying them as an attribute of a rendition in a render table. If we
require a multi-column layout, we need to make sure that the render table which is being
used to render our compound strings contains a TabList.* The following code fragment
outlines the general scheme of things:

XmTab tabs[MAX_TABS];
XmTabList tablist;
XmRendition renditions[MAX_RENDITIONS];
XmRenderTable rendertable;
Arg args[MAX_ARGS];
int i, n;
extern Widget widget;
...
/* Create the XmTab objects */
tabs[i] = XmTabCreate ((float) 1.5, XmINCHES, XmABSOLUTE,
XmALIGNMENT_BEGINNING, ”.”);
...
/* Create the XmTabList from the XmTab objects */
tablist = XmTabListInsertTabs (NULL, tabs, XtNumber (tabs), 0);
...
/* Create an XmRendition that uses the XmTabList */
/* Other XmRendition attributes are ignored here */
n = 0;
XtSetArg (args[n], XmNtabList, tablist); n++;
...
renditions[i] = XmRenditionCreate (widget, “rendition tag”, args, n);
...
/* Create an XmRenderTable which uses the XmRendition objects */

* The exception to the rule is the Container widget, which has an XmNdetailTabList resource independent of
its XmNrendertable resource.

Chapter 24: Render Tables

796 Motif Programming Manual

rendertable = XmRenderTableAddRenditions (NULL,
renditions,
XtNumber (renditions),
XmMERGE_NEW);

...
/* Specify the XmRenderTable for the widget concerned */
XtVaSetValues (widget, XmNrenderTable, rendertable, NULL);
...
/* The compound strings associated with widget are now */
/* drawn in multi-column format if the strings contain */
/* embedded XmSTRING_COMPONENT_TAB components */
...
/* Free the memory used above. */
/* The widget takes a copy of the XmRenderTable */
/* Or rather, increases the reference count */
/* The XmRendition takes a copy of the XmTabList */
/* (increases the reference count) */
for (i = 0; i < XtNumber (tabs); i++) {

XmTabFree (tabs[i]);
}
XmTabListFree (tablist);

for (i = 0; i < XtNumber (renditions); i++) {
XmRenditionFree (renditions[i]);

}

XmRenderTableFree (rendertable);
...

An Example
The code in Example 24-1 creates a multi-column, multi-color, multi-font List widget. It
brings together all the threads of this chapter by utilizing fully the tab, tab list, rendition,
and render table functionality as described above.

Example 24-1. The rendered_list.c program

/* rendered_list.c: illustrates all the features of
** render tables and renditions by creating a
** multi-column, multi-font, multi-color List widget.
*/

#include <Xm/Xm.h>
#include <Xm/RowColumn.h>
#include <Xm/List.h>

/* ConvertStringToPixel()
** A utility function to convert a color name to a Pixel
*/
Pixel ConvertStringToPixel (Widget widget, char *name)
{

XrmValue from_value, to_value; /* For resource conversion */

Motif Programming Manual 797

Chapter 24: Render Tables

from_value.addr = name;
from_value.size = strlen(name) + 1;
to_value.addr = NULL;
XtConvertAndStore (widget,

XmRString, &from_value,
XmRPixel, &to_value);

if (to_value.addr) {
return (*((Pixel*) to_value.addr));

}

return XmUNSPECIFIED_PIXEL;
}

/*
** A convenient structure to hold the data
** for creating various renditions
*/
typedef struct RenditionData_s
{

char *tag;
char *color;
char *font;

} RenditionData_t;

#define MAX_COLUMNS4

RenditionData_t rendition_data[MAX_COLUMNS] =
{

{ “one”, “red”, “fixed” },
{ “two”, “green”,

“-adobe-helvetica-bold-r-normal--10-100-75-75-*-*-iso8859-1” },
{ “three”, “blue”, “bembo-bold” },
{ “four”, “orange”,

“-adobe-*-medium-i-normal--24-240-75-75-*-*-iso8859-1” }
};

/*
** Arbitrary data to display in the List
*/
static char *poem[] =
{

“Mary”, “had a”, “little”, “lamb”,
“Its”, “fleece”, “was white”, “as snow”,
“And”, “everywhere that”, “Mary”, “went”,
“The”, “lamb was”, “sure”, “to follow”,
(char *) 0

};

/*
** CreateListData(): routine to convert the
** poem into an array of compound strings
*/

Chapter 24: Render Tables

798 Motif Programming Manual

XmStringTable CreateListData (int *count)
{

XmStringTable table = (XmStringTable) 0;
int line = 0;
int column = 0;
int index = 0;
XmString entry = (XmString) 0;
XmString row = (XmString) 0;
XmString tmp = (XmString) 0;
XmString tab;

tab = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, NULL, 0);

while (poem[index] != (char *) 0) {
/* create a compound string, using the rendition tag */
entry = XmStringGenerate ((XtPointer) poem[index],

NULL,
XmCHARSET_TEXT,
rendition_data[column].tag);

if (row != (XmString) 0) {
tmp = XmStringConcat (row, tab);
XmStringFree (row);
row = XmStringConcatAndFree (tmp, entry);

}
else {

row = entry;
}

++column;

if (column == MAX_COLUMNS) {
if (table == (XmStringTable) 0) {

table = (XmStringTable) XtMalloc ((unsigned)
sizeof (XmString));

}
else {

table = (XmStringTable) XtRealloc ((char *) table,
(unsigned) (line + 1) * sizeof (XmString));

}

table[line++] = row;
row = (XmString) 0;
column = 0;

}

index++;
}

XmStringFree (tab);

table[line] = (XmString) 0;

*count = line;

Motif Programming Manual 799

Chapter 24: Render Tables

return table;
}

main (int argc, char *argv[])
{

Widget toplevel, rowcol, list;
XtAppContext app;
Arg args[10];
XmTab tabs[MAX_COLUMNS];
XmTabList tablist;
XmRendition renditions[MAX_COLUMNS];
XmRenderTable rendertable;
XmStringTable xmstring_table;
int xmstring_count;
Pixel pixels[MAX_COLUMNS];
int n, i;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
rowcol = XmCreateRowColumn (toplevel, “rowcol”, NULL, 0);

/* Create some colors */
for (i = 0; i < MAX_COLUMNS; i++) {

pixels[i] = ConvertStringToPixel (toplevel,
rendition_data[i].color);

}

/* Create tab stops for columnar output */
for (i = 0; i < MAX_COLUMNS; i++) {

tabs[i] = XmTabCreate ((float) 1.5,
XmINCHES,
((i == 0) ? XmABSOLUTE : XmRELATIVE),
XmALIGNMENT_BEGINNING,
“.”);

}

/* Create a tablist table which contains the tabs */
tablist = XmTabListInsertTabs (NULL, tabs, XtNumber (tabs), 0);

/* Create some multi-font/color renditions, and use the tablist */
/* This will be inherited if we use it on the first rendition */
for (i = 0; i < MAX_COLUMNS; i++) {

n = 0;

if (i == 0) {
XtSetArg (args[n], XmNtabList, tablist); n++;

}

XtSetArg (args[n], XmNrenditionForeground, pixels[i]); n++;
XtSetArg (args[n], XmNfontName, rendition_data[i].font); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
renditions[i] = XmRenditionCreate (toplevel,

Chapter 24: Render Tables

800 Motif Programming Manual

rendition_data[i].tag,
args, n);

}

/* Create the Render Table */
rendertable = XmRenderTableAddRenditions (NULL,

renditions,
XtNumber (renditions),
XmMERGE_NEW);

/* Create the multi-column data for the list */

xmstring_table = CreateListData (&xmstring_count);

/* Create the List, using the render table */
n = 0;
XtSetArg (args[n], XmNrenderTable, rendertable); n++;
XtSetArg (args[n], XmNitems, xmstring_table); n++;
XtSetArg (args[n], XmNitemCount, xmstring_count); n++;
XtSetArg (args[n], XmNwidth, 400); n++;
XtSetArg (args[n], XmNvisibleItemCount, xmstring_count + 1); n++;
list = XmCreateScrolledList (rowcol, “list”, args, n);
XtManageChild (list);

/* Free the memory now the widget has the data */
/* First, the compound strings */
for (i = 0; i < xmstring_count; i++)

XmStringFree (xmstring_table[i]);
XtFree ((char *) xmstring_table);

/* Secondly, the XmTab objects */
for (i = 0; i < XtNumber (tabs); i++)

XmTabFree (tabs[i]);

/* Thirdly, the XmTabList object */
XmTabListFree (tablist);

/* Fourthly, the XmRendition objects */
for (i = 0; i < XtNumber (renditions); i++)

XmRenditionFree (renditions[i]);

/* Lastly, the XmRenderTable object */
XmRenderTableFree (rendertable);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output from the program is given in Figure 24-1. Of course, the color details of the
program are lost on a black-and-white printed page, although it is clear even in grey scale

Motif Programming Manual 801

Chapter 24: Render Tables

that the List contains differently colored compound string segments. The multi-font and
multi-column aspects of the program are fully in evidence.

Render Tables and Resource Files
RenderTables, Renditions, Tabs, and TabLists can all be specified in resource files.
Resource converters are installed for each of the various attribute types automatically by
the Motif toolkit. Since the rendition objects described in this chapter are implemented very
much as pseudo-widgets, the resource specifications required to describe the objects are
natural and familiar. Only the specification of Tabs and Tab lists present new formats.
Since renditions contain tab lists, we should start from the bottom up and describe the
specification of a tab list in a resource file first.

Tabs and TabList

In a resource file, a tab list is represented by a comma-separated list of tab specifications.
Each tab specification has the formal syntax:

tab := float [WHITESPACE units]
float := [sign] [[DIGIT]*.]DIGIT+
sign := +

Less formally, a tab is represented by a floating point number, optionally preceded by a plus
sign, and optionally followed by a units description. The following are examples of
correctly formed tab specifications:

12.4 in
+1in
+14.56 mm
0.15 font_units
+116.0 pix

The presence of a plus sign indicates that the tab is relative to the previous tab stop in the
current tab list. If no plus sign is given, the tab is interpreted as an absolute value across the
widget wherever it is used. In code, we would write the following in order to duplicate the
effect of the tab resource specifications given above:

Figure 24-1: The output of rendered_list

Chapter 24: Render Tables

802 Motif Programming Manual

XmTab a = XmTabCreate (12.4, XmINCHES, XmABSOLUTE, ...)
XmTab b = XmTabCreate (1.0, XmINCHES, XmRELATIVE, ...)
XmTab c = XmTabCreate (14.56, XmMILLIMETERS, XmRELATIVE, ...)

The units descriptions are in the same format as a normal widget XmNunitType resource.
That is, the following are acceptable to the resource converter:

pixels pix pixel
inches in inch
centimeters cm centimeter
millimeters mm millimeter
points pt point
font_units fu font_unit

Note that the converter does not directly handle the fractional unit types (Xm1000TH_
INCHES, Xm1000TH_MILLIMETERS, Xm100TH_POINTS, Xm100TH_FONT_UNITS). To
specify these in a resource file, you need to divide the float value by the appropriate
quantity. For example, although we can write in code...

XmTab tab = XmTabCreate (150.0, Xm1000TH_INCHES, XmABSOLUTE, ...)

... in a resource file, we need to specify the following:

0.15 in

A tab list as specified in a resource file is a simple comma separated set of tab
specifications. The following are examples:

*tabList: 1.5in, +1.5in, +1.5in
XApplication*my_rendition.tabList: 220.0 mm, 450.0 mm, +1.0 in

Rendition Resources

The rendition object is a pseudo-widget, and nowhere is this more true than in specifying
external rendition resources. We simply use the rendition tag as the X resource key, and
thereafter pretend the object is a normal widget. For example, the following resources
specify a rendition whose tag is “my_rendition”. The rendition is filly loaded. As is normal,
the Xm prefix is stripped off any enumerated types when specifying resource file entries.

*my_rendition.fontName: fixed
*my_rendition.fontType: FONT_IS_FONT
*my_rendition.loadModel: LOAD_DEFERRED
*my_rendition.renditionForeground: red
*my_rendition.renditionBackground: blue
*my_rendition.strikethruType: AS_IS
*my_rendition.underlineType: SINGLE_LINE
*my_rendition.tablist: 1in, +1.5in

RenderTable Resources

Just as a tablist is specified by a comma-separated list of tabs, a render table is specified
externally to code by a list of rendition tags. The list of rendition tags can be whitespace or
comma separated. The following are valid render table specifications:

Motif Programming Manual 803

Chapter 24: Render Tables

*XmList.renderTable: renditionA, my_rendition
*.renderTable: r1 r2 r3, r4

Missing Fonts and Renditions
In Motif 1.2, whenever an attempt was made to render a compound string, the tags
associated with the compound string segments were matched against tags within the
XmFontList which was being used to display the string. Whenever there occurred a
mismatch, if a segment referred to a fontlist tag which was not satisfied by the current
XmFontList , the toolkit would simply use the first font in the font list. There was nothing
that the programmer could dynamically do at that point to rectify the situation, either by
directly tendering an alternative font, or indirectly by querying the user for a preferred
alternative.

In Motif 2.1, the situation is entirely different. Whenever an attempt is made to render a
compound string and there is a mismatch between the required string tags and the current
render table, the toolkit now invokes callbacks. In the callback, the programmer can take
whatever action is necessary in order to find an appropriate solution to the rendering
problem. Once an appropriate font or rendition is found, the programmer simply returns the
new font or rendition to the toolkit through elements in the callback structure.

The new callbacks are implemented in the XmDisplay object. There are two callback types,
each of which is invoked depending upon the nature of the problem to hand: the
XmNnoRenditionCallback , and the XmNnoFontCallback .

The XmNnoRenditionCallback is invoked when an attempt is made by the toolkit to
draw a compound string segment, and no matching rendition can be found in the current
render table.

The XmNnoFontCallback is called by the toolkit if an XmRendition object refers to a
font name, and that font cannot be located on the system. Recall that fonts in a rendition
object can have the load model XmLOAD_DEFERRED: this means that the potential exists for
mis-specifying a font name when creating a rendition. The effects of the error are not
apparent until much later, when an attempt is made to actually render using the rendition
concerned. This is different to the Motif 1.2 handling of fonts because the fonts within an
XmFontList are loaded immediately on creation of the object.

The XmNnoFontCallback is therefore an internal error in the specification of the
attributes of a rendition. The XmNnoRenditionCallback indicates a flaw in either the
render table itself, or in the tags associated with segments in the compound string.

Callback Structure

Both the XmNnoFontCallback and the XmNnoRenditionCallback are passed the
following structure by the Motif toolkit when invoked:

Chapter 24: Render Tables

804 Motif Programming Manual

typedef struct
{

int reason;
XEvent *event;
XmRendition rendition;
char *font_name;
XmRenderTable render_table;
XmStringTag tag;

} XmDisplayCallbackStruct;

Not all the fields of the structure are applicable to each of the callback types. The render_
table and tag elements are only applicable to XmNnoRenditionCallback callbacks,
and the rendition and font_name fields are only applicable to XmNnoFontCallback
routines. The reason field will be either XmCR_NO_FONT or XmCR_NO_RENDITION.

XmNnoFontCallback

When an attempt is made to render using a rendition which refers to a font name which
cannot be located, the XmNnoFontCallback is called. The programmer can deduce which
font could not be loaded from the font_name element of the callback structure. She can
remedy the problem simply by choosing an alternative font, and then updating the
rendition element. The following code fragment outlines the basic scheme of
operations:

void no_font_callback (Widget widget,
XtPointer client_data,
XtPointer call_data)

{
XmDisplayCallbackStruct *dptr = (XmDisplayCallbackStruct *) call_data;
Arg args[4];
int n;

printf (“Warning: could not load font %s\n”, dptr->font_name);

/* Just use a simple alternative */
/* A better algorithm would try and find */
/* a close match to the missing font type */

n = 0;
XtSetArg (args[n], XmNfontName, “fixed”); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_IMMEDIATE); n++;

XmRenditionUpdate (dptr->rendition, args, n);
}

...
extern Display *display;
Widget xmdisplay = XmGetXmDisplay (display);
XtAddCallback (xmdisplay, XmNnoFontCallback, no_font_callback, NULL);
...

Motif Programming Manual 805

Chapter 24: Render Tables

XmNnoRenditionCallback

If a compound string segment refers to a rendition tag which is absent from the current
render table, the XmNnoRenditionCallback is called. Again, the programmer can
deduce the missing information from the callback structure: the tag element identifies
the missing rendition. The programmer simply has to update the render_table
element field of the structure by merging a new rendition. The only issue is one of
memory management: the render_table element is allocated for the purpose of the
callback, and so the programmer should make sure that the old value of render_
table is freed (reference count reduced) if she modifies the element. The following
code fragment shows how this can be done:

void no_rendition_callback (Widget widget,
XtPointer client_data,
XtPointer call_data)

{
XmDisplayCallbackStruct *dptr = (XmDisplayCallbackStruct *) call_data;
XmRendition new_rendition;
XmRenderTable new_table;
Arg args[4];
int n;

printf (“Warning: could not find a rendition with tag %s\n”, dptr->tag);

/* Again, this algorithm is slightly defective: */
/* we ought to try and deduce a sensible rendition */
/* given whatever clues that the missing tag can tell us */

n = 0;
XtSetArg (args[n], XmNfontName, “fixed”);
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_IMMEDIATE); n++;

/* Make sure we create the rendition using the missing tag */
new_rendition = XmRenditionCreate (widget, dptr->tag, args, n);

/* Merge into the current render table */
new_table = XmRenderTableAddRenditions (dptr->render_table,

&new_rendition, 1,
XmMERGE_NEW);

/* Decrement the old table reference count */
XmRenderTableFree (dptr->render_table);

/* Reset the element */
dptr->render_table = new_table;

}

...
extern Display *display;
Widget xmdisplay = XmGetXmDisplay (display);
XtAddCallback (xmdisplay,

Chapter 24: Render Tables

806 Motif Programming Manual

XmNnoRenditionCallback, no_rendition_callback, NULL);
...

Nota Bene

An important difference exists between Motif 1.2 and Motif 2.1 behavior in this respect:
whereas Motif 1.2 uses the first font in an XmFontList by default whenever there is a
mismatch between compound string segment and font list tags, in Motif 2.1 there is no
default behavior. That is, if a programmer fails to provide an alternative font or rendition
through the appropriate callback then the given compound string is simply not drawn at all.

Summary
Render tables are shareable resources. They extend the separation between the abstract
representation of a compound string and the way it is rendered which was implicit in the
Motif 1.2 XmFontList . What the Render Table provides is the ability to specify not only
font information, but also color and multi-column detail, and as such they offer far greater
control over the presentation and layout of compound strings.

A side effect of the XmFontList deprecation is a greater degree of compatibility with the
underlying X Internationalization modules, because the fonts contained within the
renditions of a render table are now properly only held internally in the form of
XFontStruct or X FontSet data.

Motif Programming Manual 807

Chapter 1

In this chapter:
• Internationalized Text Output
• Creating Compound Strings
• Manipulating Compound Strings
• Parse Tables
• Rendering Compound Strings
• Summary

25
Compound Strings

This chapter describes Motif’s technology for encoding font changes and character
directions in the strings that are used by almost all of the Motif widgets.

Compound strings are designed to address two issues frequently encountered by
application designers: the use of foreign character sets to display text in other languages and
the use of multiple fonts to render text. With the addition of internationalized string
rendering capabilities in X11R5 onwards, the use of compound strings for
internationalization purposes is theoretically no longer necessary. However, the Motif
widget set still uses compound strings extensively, so applications have no choice but to
create them to display text.

From Motif 2.0 onwards, the XmFontList is obsolete, and is replaced by the
XmRenderTable . RenderTables are fully described in Chapter 24; briefly, a RenderTable
describes a complete style by which a compound string can be rendered. In Motif 2.0
onwards, not only can we associate different fonts with a compound string, we can also
render the various segments of the string in different colors, underline styles, and so forth.
These and other aspects of rendering compound strings are described in the following
sections.

Internationalized Text Output
The internationalization features in X11R5 onwards are based on the ANSI-C locale model.
Under this model, an application uses a library that reads a customization database at run-
time to get information about the user’s language environment. An Xt-based application
can establish its language environment (or locale) by registering a language procedure with
XtSetLanguageProc() , as described in Chapter 18, Text Widgets. The language
procedure returns a language string that is used by XtResolvePathname() to find locale-
specific resource files. See Volume 4, X Toolkit Intrinsics Programming Manual, for more
information on the localization of the resource database.

One of the important characteristics of a language environment is the encoding that is used
to represent the character set for the particular language. In X, character set simply refers
to a set of characters, while an encoding is a numeric representation of these characters.* A

Chapter 25: Compound Strings

808 Motif Programming Manual

charset (not the same as a character set) is an encoding in which all of the characters have
the same number of bits. Charsets are often defined by standards bodies such as the
International Standards Organization (ISO). For example, the ISO Latin-1 charset
(ISO8859-1) defines an encoding for the characters used in all Western languages. The first
half of Latin-1 is standard ASCII, while the second half (with the eighth bit set) contains
accented characters needed for Western languages other than English. Character 65 in ISO
Latin-1 is an uppercase “A”, while 246 is a lowercase “o” with an umlaut (ö).

However, not all languages can be represented by a single charset. Japanese text commonly
contains words written using the Latin alphabet, as well as phonetic characters from the
katakana and hirigana alphabets, and ideographic kanji characters. Each of these character
sets has its own charset; the phonetic and Latin charsets are 8-bits wide, while the
ideographic charset is 16-bits wide. The charsets must be combined into a single encoding
for Japanese text, so the encoding uses shift sequences to specify the character set for each
character in a string.

Strings in an encoding that contains shift sequences and characters with non-uniform width
can be stored in a standard NULL-terminated array of characters; this representation is
known as a multibyte string. Strings can also be stored using a wide-character type in which
each character has a fixed size and occupies one array element in the string. The text output
routines in X11R5 support both multibyte and wide-character strings. To support languages
that use multiple charsets, X developed the XFontSet abstraction for its text output
routines. An XFontSet contains all of the fonts that are needed to display text in the
current locale. The new text output routines work with font sets, so they can render text for
languages that require multiple charsets. See Volume 1, Xlib Programming Manual, for
more information on internationalized text output.

With the addition of these features in X, a developer can write an internationalized
application without using the internationalization features provided by compound strings.
In an internationalized application, strings are interpreted using the encoding for the current
locale. To support a number of locales, the application needs to store string data in separate
files from the application code. The application must provide a separate file for each of the
locales supported, so that the program can read the appropriate file during localization.

However, since most Motif widgets use compound strings for representing textual data, a
Motif application has to use compound strings to display text. As we describe compound
strings in this chapter, we’ll discuss how to use them so as not to interfere with the lower-
level X internationalization features. However, since Rendition objects in Motif 2.x only
refer to fonts in the form of an X FontStruct or X FontSet, the toolkit is rather more
compatible with the X11R5 internationalization features than previous versions of the
toolkit, and so this is less of an issue.

* Both of these terms are different from the definition of a font, which is a collection of glyphs used to represent
the characters in an encoding.

Motif Programming Manual 809

Chapter 25: Compound Strings

Creating Compound Strings
Almost all of the Motif widgets use compound strings to specify textual data. Labels,
PushButtons, and Lists, among others, all require their text to be given in compound string
format, whether or not you require the additional flexibility compound strings provide. The
only widgets that don’t use compound strings are the Text and TextField widgets* . As a
result, you cannot use the compound string techniques for displaying text using multiple
fonts. However, these widgets do support internationalized text output, so they can display
text using multiple character sets. For information on the internationalization capabilities
of the Text and TextField widgets, see Section 18.6.

A compound string (XmString) is made of three components: a tag, a direction, and text.
The tag is an arbitrary name that the programmer can use to associate a compound string
with particular rendition data. In Motif 1.1, the tag was referred to as a character set. Since
the tag doesn’t necessarily specify a character set, Motif 1.2 referred to the entity as a font
list tag. In Motif 2.0 and later, the font list is obsolete, and has been replaced with the render
table. A render table consists of rendition objects: the tag now refers to the name assigned
to an individual rendition object. One of the things which a rendition object contains is a
font. Renditions and Render Tables can be shared between, and inherited from, other
widgets.

An application can create a compound string that uses multiple fonts by concatenating
separate compound strings with different rendition tags to produce a single compound
string. Concatenating compound strings with different renditions is a powerful way to
create graphically interesting labels and captions. More importantly, because renditions
and render tables are loosely bound to compound strings via resources, you can
dynamically associate new renditions with a widget while an application is running and
effectively change text styles on the fly.

The Simple Case
Many applications only need to use compound strings to specify various textual resources.
In this case, all that is needed is a routine that converts a standard C-style NULL-terminated
text string into a compound string. The most basic form of conversion can be done using
the XmStringCreateLocalized() function, as demonstrated in examples throughout
this book. This routine takes the following form:

XmString XmStringCreateLocalized (char * text)

The text parameter is a common C char string. The value returned is of type XmString ,
which is an opaque type to the programmer.

* The Motif 2.0 CSText widget, which did support compound strings, was removed from Motif 2.1.

Chapter 25: Compound Strings

810 Motif Programming Manual

XmStringCreateLocalized() creates a compound string in the current locale, which
is specified by the tag XmFONTLIST_DEFAULT_TAG. This routine interprets the text
string in the current locale when creating the compound string. If you are writing an
internationalized application that needs to support multiple locales, you should use
XmStringCreateLocalized() to create compound strings. The routine allows you to
take advantage of the lower-level internationalization features of X.

Most applications specify compound string resources in resource files. This technique is
appropriate for an internationalized application, as there can be a separate resource file for
each language environment that is supported. Motif automatically converts all strings that
are specified in resource files into compound strings using the tag XmFONTLIST_
DEFAULT_TAG, so the strings are handled correctly for the current locale. If an application
needs to create a compound string programmatically, it should use
XmStringCreateLocalized() to ensure that the string is interpreted in the current
locale. The examples in other chapters of this book use XmStringCreateLocalized()
to demonstrate the appropriate technique, even though the examples are only designed to
work in the C locale.

With XmStringCreateLocalized() , you cannot explicitly specify the tag or the string
direction that is used for the compound string, and in Motif 1.2, the string cannot have
multiple lines.

XmStringCreateLocalized() allocates memory to store the compound string that is
returned. Widgets that have compound string resources always allocate their own space and
store copies of the compound string values you give them. When you are done using a
compound string to set widget resources, you must free it using XmStringFree() . The
following code fragment demonstrates this usage:

XmString str = XmStringCreateLocalized ("Push Me");
Widget push_b;
Arg args[...];
int n = 0;
...
XtSetArg (args[n], XmNlabelString, str); n++;
push_b = XmCreatePushButton (parent, "widget_name", args, n);
XmStringFree (str);
...

The process of creating a compound string, setting a widget resource, and then freeing the
string is the most common use of compound strings. However, this process involves quite
a bit of overhead, as memory operations are expensive. Memory is allocated by the string
creation function and again by the internals of the widget for its own storage, and then your
copy of the string must be deallocated.

The programmatic interface to the string creation process can also be achieved by using the
XtVaTypedArg feature in Xt. This special resource can be used in variable argument list
specifications for functions such as XtVaCreateManagedWidget() and

Motif Programming Manual 811

Chapter 25: Compound Strings

XtVaSetValues() . It allows you to specify a resource using a convenient type and have
Xt do the conversion for you. In the case of compound strings, we could use this method to
convert a C string to a compound string. The following code fragment has the same logical
effect as the previous example:

push_b = XtVaCreateManagedWidget ("widget_name",
xmPushButtonWidgetClass,
parent,
XtVaTypedArg, XmNlabelString,

XmRString, "Push Me", strlen ("Push Me") + 1,
NULL);

XtVaTypedArg takes four additional parameters: the name of the resource, the type of the
value specified for the resource, the value itself, and the size of the value. We set the
XmNlabelString resource. We want to avoid converting the character string to a
compound string, so we specify a char * value and XmRString as its type.*The string
"Push Me" is the string value; the length of the string, including the NULL-terminating
byte, is 8.

The XtVaTypedArg method for specifying a compound string resource is only a
programmatic convenience; it does not save time or improve performance. The three-step
process of creating, setting, and freeing the compound string still takes place, but it happens
within Motif’s compound string resource converter. Using automatic conversion is actually
slower than converting a string using XmStringCreateLocalized() . However, unless
you are creating hundreds of strings, the difference may well be negligible.†

The reason none of the examples in this book do not make use of the feature is that we are
trying to demonstrate good programming techniques tuned to a large-scale, production-
size, and quality application. Using the XtVaTypedArg method for compound strings is
painfully slow when repeated over hundreds of Labels, PushButtons, Lists, and other
widgets. The XtVaTypedArg method is perfectly reasonable for converting other types of
resources, however. If you are converting a lot of values from one type to another, it is in
your own best interest to evaluate the conversion process yourself by testing the automatic
versus the manual conversion methods.

* This terminology may be confusing to a new Motif programmer. Xt uses the typedefString for char * . The
representation type used by Xt resource converters for this type isXtRString (XmRString in Motif). A com-
pound string, on the other hand, is of typeXmString ; its representation type isXmRXmString . You just have
to read the symbols carefully. Resource converters are described in detail in Volume 4,X Toolkit Intrinsics Pro-
gramming Manual, Motif Edition.

† There is some evidence that the XtVaTypedArg method outlined here for compound strings results in memory
leakage, so this should be viewed with some suspicion.

Chapter 25: Compound Strings

812 Motif Programming Manual

Rendition Tags
Motif provides compound string creation routines that allow you to specify a tag used to
associate the compound string with a rendition. This tag is a programmer-specified
identifier that enables a Motif widget to pick its rendition from a render table at run-time*.

The XmStringCreate() routine allows you to specify a rendition tag. The routine takes
the following form:

XmString XmStringCreate (char * text , char * tag)

This routine creates and allocates a new compound string and associates the tag parameter
with that string. As with any compound string, be sure to free it with XmStringFree()
when you are done using it.

XmStringCreate() creates a compound string that has no specified direction. The
default direction of a string may be taken from the XmNlayoutDirection resource†.
This resource is defined by manager widgets; it specifies the layout and string direction for
all the children of the manager. If the default direction is not adequate,
XmStringDirectionCreate() can be used to create a compound string with an explicit
direction, as we’ll discuss shortly.‡

As of Motif 2.0, XmStringGenerate() is now the preferred routine for creating simple
compound strings. This routine can convert either single or multi-byte character strings to
compound string format. The routine is defined as follows:

XmString XmStringGenerate (XtPointer text ,
XmStringTag tag ,
XmTextType type ,
XmStringTag rendition)

The text parameter is the input string to be converted. This can be either single or multi-
byte data, the type parameter will inform the function of the supplied text type. type
can be either XmCHARSET_TEXT or XmMULTIBYTE_TEXT. The tag parameter is simply
the name to be associated with the created compound string: if this is NULL, the default
value XmFONTLIST_DEFAULT_TAG is used. If the rendition parameter is not NULL, the
compound string which is returned is enclosed within matching XmSTRING_RENDITION_
BEGIN and XmSTRING_RENDITION_END string components: this is the way that a
compound string is created such that it is associated with a particular named rendition from
the widgets’ render table. The following code fragment is the simple case: convert a string
to a compound string without explicitly hard-coding a rendition association:

* Prior to Motif 2.0, the tag was associated with a font list rather than a rendition. In Motif 1.1, the font list was
referred to as a character set, but strictly speaking, it did not specify a character set.

† The XmNstringDirection resource is deprecated as of Motif 2.0, and is subsumed into the XmNlayoutDi-
rection resource. XmNlayoutDirection is available only from Motif 2.0 onwards.

‡ XmStringCreateLtoR () is deprecated as of Motif 2.0.

Motif Programming Manual 813

Chapter 25: Compound Strings

XmString xms = XmStringGenerate ((XtPointer) “Hello World”,
NULL,
XmCHARSET_TEXT,
NULL);

The actual rendition, and hence the font or font set, that is associated with the compound
string is dependent on the widget that renders the string. Every Motif widget that displays
text has an XmNrenderTable resource. This resource specifies a list of rendition objects
for the widget; each entry in the list may have an optional tag associated with it. For
example, a resource file might specify a render table as follows:

*renderTable: renditionA, renditionB, renditionC
renditionA.fontName: --courier-*-r-*--*-120-*
*renditionA.fontType: FONT_IS_FONT
renditionB.fontName: --courier-*-r-*--*-140-*
*renditionB.fontType: FONT_IS_FONT
renditionC.fontName: --courier-*-r-*--*-180-*
*renditionC.fontType: FONT_IS_FONT

At run-time, the compound string is rendered using the rendition in the widget’s render
table that matches the tag specified in the compound string creation function. In Motif 1.2
onwards, the compound string rendering functions use the X11R5 text output functions, so
compound strings are displayed appropriately for the current locale.

In Motif 1.2, if Motif cannot find a match, the compound string is rendered using the first
item in the widget’s font list, regardless of its tag. In Motif 2.0 and later, if no matching
rendition can be found, the XmDisplay object XmNnoRenditionCallback is invoked.
This callback, if specified, can be used to supply the missing rendition information. The
XmNnoRenditionCallback is discussed in Chapter 24, Render Tables. After invocation
of this callback, if no matching or supplied rendition can still be found, the first rendition
in the render table which has the default tag XmFONTLIST_DEFAULT_TAG is used to render
the compound string, provided it has a font. If this default rendition also has no font, the
compound string is not drawn, and a warning message is displayed.

This loose binding between the compound string and the rendition (and hence the font or
font set) used to render it is useful in a number of ways:

• The same compound string can be rendered using different fonts in different widgets
simply by specifying a different render table for each widget. For example:

*XmPushButton.renderTable: renditionA
*XmPushButton*renditionA.fontName: -*-courier-*-r-*--*-120-*
*XmList.renderTable: renditionA
*XmList*renditionA.fontName: -*-helvetica-*-r-*--*-120-*

• Compound strings rendered in different fonts can be concatenated to create a multi-
font compound string. The font for each segment is selected from the renditions within
the widget’s render table by means of a unique tag.

Chapter 25: Compound Strings

814 Motif Programming Manual

• Compound strings can be language-independent, with the tag used to select between
fonts with different character set encodings. This is the least common use for
compound strings, and as of X11R5, it is no longer needed to support internationalized
text output.

Example 25-1 demonstrates how a compound string can be rendered using different fonts
in different PushButton widgets.*

Example 25-1. The string.c program

/* string.c -- create a compound string with the "MY_TAG" tag.
** The tag defaults to the "9x15" font. Create three pushbuttons:
** pb1, pb2, and pb3. The user can specify resources so that each of the
** widgets has a different font associated with the "MY_TAG" tag
** specified in the compound string.
*/

#include <Xm/RowColumn.h>
#include <Xm/PushBG.h>

String fallbacks[] = { "*MY_TAG.fontName:9x15", NULL };

main (int argc, char *argv[])
{

Widget toplevel, rowcol, push_b;
XtAppContext app;
XmString text;
Display *dpy;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "String", NULL, 0, &argc, argv,

fallbacks, sessionShellWidgetClass, NULL);

rowcol = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);

text = XmStringGenerate ((XtPointer) "Testing, testing...",
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
“MY_TAG”);

XtSetArg (args[0], XmNlabelString, text);
push_b = XmCreatePushButtonGadget (rowcol, "pb1", args, 1);
XtManageChild (push_b);
push_b = XmCreatePushButtonGadget (rowcol, "pb2", args, 1);
XtManageChild (push_b);
push_b = XmCreatePushButtonGadget (rowcol, "pb3", args, 1);
XtManageChild (push_b);
XmStringFree (text);

* XtVaAppInitialize () is considered deprecated in X11R6. XtVaOpenApplication () is only available in
X11R6. XmStringGenerate () is only available from Motif 2.0 onwards.

Motif Programming Manual 815

Chapter 25: Compound Strings

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

This simple program creates three PushButton gadgets that all use the same compound
string for their labels. The rendition tag MY_TAG is associated with the 9x15 font in the
fallback resources. By default, all of the buttons look the same, as shown in Figure 25-1.

However, Figure 25-2 shows what happens to the output when the following resources are
specified:

*.renderTable: MY_TAG
*.fontType: FONT_IS_FONT
*pb1.*MY_TAG.fontName: -*-courier-*-r-*--*-120-*
*pb2.*MY_TAG.fontName: -*-courier-*-r-*--*-140-*
*pb3.*MY_TAG.fontName: -*-courier-*-r-*--*-180-*

The rendition associated with MY_TAG for each of the PushButtons is different, so the
compound string for each one is rendered in a different font. Since each render table only
contains one rendition, Motif has no choice but to attempt to display the compound string
using the font associated with the single rendition. The following resource specification
creates the output shown in Figure 25-3:

*.fontType: FONT_IS_FONT
*.renderTable: MY_TAG

pb1.fontName: -*-courier-*-r-*--*-120-*
pb2.renderTable: fixed_rendition, courier_rendition
*pb2.fixed_rendition.fontName: fixed
pb2.courier_rendition.fontName: --courier-*-r-*--*-140-*
*pb3*MY_TAG.fontName: fixed,-*-courier-*-r-*--*-180-*

Figure 25-1: Output of string program

Figure 25-2: Output of string program with rendition resources set

Chapter 25: Compound Strings

816 Motif Programming Manual

In this case, the compound string in the first PushButton uses a 12-point Courier font, since
that is the only rendition in the render table, it has the implicit tag _MOTIF_DEFAULT_
LOCALE assigned to it, and this is used as the default. The third button uses the 18-point
Courier font associated with MY_TAG. The second PushButton does not render the
compound string label because there is no rendition with a matching tag, and no default
unnamed rendition. Motif prints out a warning message:

Warning: No font found.

This behavior is different to that of Motif 1.2. In Motif 1.2, the toolkit would use the first
font if the compound string contained a tag which did not match any of the fonts in the
XmNfontList resource of the widget concerned. In Motif 2.0 and later, the programmer
must supply a default font; the XmDisplay object XmNnoFontCallback is called
whenever this situation arises, and the programmer can supply the missing font information
in the callback. The XmNnoFontCallback procedure is discussed in Chapter 24, Render
Tables.

The Default Tag

The constant XmFONTLIST_DEFAULT_TAG is used to tag compound strings that are
created in the encoding of the current locale. When a compound string is created using
XmStringCreateLocalized() , this tag is used. The equivalent compound string can
also be created using XmStringCreate() with the tag explicitly set to XmFONTLIST_
DEFAULT_TAG. In Motif 2.0 and later, the compound string can also be created using
XmStringGenerate (), with the tag either explicitly set to XmFONTLIST_DEFAULT_TAG,
or implicitly by setting the tag to NULL. Motif looks for a rendition with a matching tag
when it renders the compound string. In Motif 2.0 and later, a rendition which is created
with a NULL tag is assigned the tag _MOTIF_DEFAULT_LOCALE, and this will match with
a compound string component which has the tag XmFONTLIST_DEFAULT_TAG.

An internationalized application can use XmFONTLIST_DEFAULT_TAG to ensure that
compound strings are rendered correctly for the current locale. However, it is possible to
use explicit rendition tags for locale-specific text. Explicit tags are necessary when an
application wants to display compound strings using different point sizes or type styles. In
this case, the compound string and the renditions associated with it need to use the same

Figure 25-3: Output of string program with multiple rendition resources set

Motif Programming Manual 817

Chapter 25: Compound Strings

tag; the tag can be mapped to XmFONTLIST_DEFAULT_TAG using
XmRegisterSegmentEncoding().

In Motif 1.1, the first font in widget’s font list is the default character set for that widget. If
the widget does not have a font list, it uses a default character set referred to by the constant
XmSTRING_DEFAULT_CHARSET. If the user has set the LANG environment variable, its
value is used for this character set. If this value is invalid or its associated font cannot be
used, Motif uses the value of XmFALLBACK_CHARSET, which is vendor-defined but
typically set to “ISO8859-1”.

For backwards compatibility, Motif 1.2 equated XmFONTLIST_DEFAULT_TAG with
XmSTRING_DEFAULT_CHARSET when it could not find an exact match between a
compound string and a font list. XmFONTLIST_DEFAULT_TAG in a compound string or
font list matched the tag used in creating a compound string or specified in a font list entry
with the tag XmSTRING_DEFAULT_CHARSET.

Again for backwards compatibility, in Motif 2.0 and later, renditions with the tag _MOTIF_
DEFAULT_LOCALE match against compound string components whose tag is
XmFONTLIST_DEFAULT_TAG. A rendition created with a NULL tag is assigned the default
tag _MOTIF_DEFAULT_LOCALE.

RenderTable Resources

Some Motif widgets define rendition resources that allow them to provide a consistent
appearance for all of their children.

In Motif 1.2, the VendorShell widget defined the XmNbuttonFontList ,
XmNlabelFontList , and XmNtextFontList resources, while the MenuShell defined
XmNbuttonFontList and XmNlabelFontList . These resources referred to
XmFontList data, and were applied to all of the buttons, Labels, and Text widgets that are
descendents of the widget. In Motif 1.1, the VendorShell and MenuShell only defined the
XmNdefaultFontList resource; this resource applied to all of the children of the widget.
For backwards compatibility, if one of the more specific font list resources was not set, its
value was taken from XmNdefaultFontList .

In Motif 2.0 and later, the resources XmNbuttonFontList , XmNlabelFontList ,
XmNtextFontList , and XmNdefaultFontList are deprecated, and have been replaced
by the resources XmNbuttonRenderTable , XmNlabelRenderTable , and
XmNtextRenderTable . There is no putative XmNdefaultRenderTable defined by the
MenuShell or VendorShell classes.

The BulletinBoard widget defines the resources XmNbuttonRenderTable ,
XmNlabelRenderTable , and XmNtextRenderTable primarily for use in dialog boxes.
These render tables apply to the buttons, Labels, and Text widgets that descend from a
BulletinBoard. For more information on the use of the resources in dialog boxes, see
Chapter 5, Introduction to Dialogs.

Chapter 25: Compound Strings

818 Motif Programming Manual

All of these render table resources are designed to help you maintain a consistent interface.
However, you can always specify the font for a particular button, Label, or Text widget
using the widget’s XmNrenderTable resource, as this resource overrides the more general
ones.

Compound String Segments
A compound string is composed of segments, where each segment contains a continuous
sequence of text with no change in rendition tag or direction. A compound string segment
can be terminated by a separator, which is the equivalent of a newline in a character string.
*Segments can be concatenated with other segments or compound strings to create longer
strings; each segment can specify a different tag and direction to make a string that uses
multiple fonts and directions.

XmStringComponentCreate() provides complete control over the creation of a
compound string, as it allows you to specify individual text, rendition tag, tab, and direction
components which can be concatenated together into a whole†. In Motif 2.0 and later, Tab
segments can also be added to a compound string; these can be used to create a multi-
columnar arrangement, and is typically used by the List widget. The routine takes the
following form:

XmString XmStringComponentCreate (XmStringComponentType type ,
unsigned int length ,
XtPointer value)

String Directions

Compound strings are rendered either from left-to-right or from right-to-left. If you are
going to use left-to-right strings uniformly in your applications, you really don’t need to
read this section.There are several ways to build a compound string that is rendered from
right-to-left; the best method is dependent on the nature of your application.

If your application uses right-to-left strings for all of its widgets, you may want to use the
XmNlayoutDirection resource‡. This resource specifies the layout of the component in
general terms: for Primitive widgets, it also specifies the direction for compound strings,
provided that the string direction is not hard-coded in the compound strings themselves. If
you use this resource, you can continue to use XmStringCreate() or
XmStringCreateLocalized() to create compound strings.

Most right-to-left languages display certain things, like numbers, from left-to-right, so it is
not always possible to use the XmNlayoutDirection resource. In this case, you have to

* Separators in compound strings should not be confused with the Separator widget and gadget class.

† In Motif 2.0 and later, XmStringSegmentCreate () is deprecated. XmStringComponentCreate () is only
available in Motif2.0 and later.

‡ The resource XmNstringDirection is considered deprecated in Motif 2.0 and later.

Motif Programming Manual 819

Chapter 25: Compound Strings

create compound string segments that hard-code their directional information.You can
create individual string segments with a specific direction by using either
XmStringDirectionCreate() or XmStringComponentCreate() . Both of these
routines take an argument of type XmStringDirection , which is defined as an
unsigned char . You can specify either XmSTRING_DIRECTION_R_TO_L, XmSTRING_
DIRECTION_L_TO_R, or XmSTRING_DIRECTION_DEFAULT for values of this type.

When using XmStringComponentCreate() , you specify the string direction using the
value parameter. For example, we can change the call to XmStringCreate() in
Example 25-1 to the following:

XmStringDirection direct = XmSTRING_DIRECTION_R_TO_L;
XmString dir = XmStringComponentCreate (XmSTRING_COMPONENT_DIRECTION,

sizeof (XmStringDirection),
(XtPointer) &direct);

char *cptr = “Testing, testing”;
XmString text = XmStringComponentCreate (XmSTRING_COMPONENT_TEXT,

strlen (cptr),
(XtPointer) cptr);

XmString xms = XmStringConcatAndFree (dir, text);

Obviously, you would normally do this only if you were using a font that was meant to be
read from right-to-left, such as Hebrew or Arabic. The output that results from this change
is shown in Figure 25-4.

You can also use the function XmStringDirectionCreate() to create a compound
string segment that contains only directional information. This routine takes the following
form:

XmString XmStringDirectionCreate (XmStringDirection direction)

The routine returns a compound string segment that can be concatenated with another
compound string to cause a directional change.

String Separators

Separators are used to break compound strings into multiple lines, in much the same way
that a newline character does in a character string. To demonstrate separators, we can
change the string creation line in Example 25-1 to the following:

Figure 25-4: Output of string program using a right-to-left direction

Chapter 25: Compound Strings

820 Motif Programming Manual

text = XmStringGenerate ((XtPointer) "Testing,\nTesting...",
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
"MY_TAG");

We can use XmStringGenerate() because this function interprets embedded newline
characters (\n) as separators. The effect of this change is shown in Figure 25-5, where the
PushButtons display multiple lines of text.

XmStringCreate() does not interpret newline characters as separators; it creates a single
compound string segment in which the '\n' is treated just like any other character value
in the associated font or font set, as shown in Figure 25-6.
XmStringComponentCreate() , however, can be told to create a separator which can be
embedded into a larger compound string.

Most applications need newline characters to be interpreted as separators. For example, if
you are using fgets() or read() to read the contents of a file, and newlines are read into
the buffer, you should use XmStringGenerate() to convert the buffer into a compound
string that contains separators. Example 25-2 shows a function that reads the contents of a
file into a buffer and then converts that buffer into a compound string.*

Example 25-2. The ConvertFileToXmString() routine.

XmString ConvertFileToXmString (char *filename, int *lines)
{

struct stat statb;
int fd, len;
char *text;

* XmStringCreateLtoR () is deprecated in Motif 2.0 and later. XmStringGenerate () is only available from
Motif 2.0.

Figure 25-5: Output of string program with multiple lines

Figure 25-6: Output of string program with \n not interpreted as a separator

Motif Programming Manual 821

Chapter 25: Compound Strings

XmString str;

*lines = 0;

if (!(fd = open (filename, O_RDONLY))) {
XtWarning ("Internal error -- can't open file");
return NULL;

}

if (fstat (fd, &statb) == -1 ||
!(text = XtMalloc ((len = statb.st_size) + 1)))

{
XtWarning ("Internal error -- can't show text");
close (fd);
return NULL;

}

(void) read (fd, text, len);
text[len] = 0;

str = XmStringGenerate ((XtPointer) text,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
NULL);

XtFree (text);
(void) close (fd);

*lines = XmStringLineCount (str);
return str;

}

Since separators are considered to be line breaks, we can count the number of lines in the
compound string using the function XmStringLineCount() . However, this does not
imply that separators terminate compound strings or cause font changes. As we have
shown, a separator can be inserted into the middle of a compound string without
terminating it. The fact that separate segments are created has little significance unless you
need to convert compound strings back into C strings, which we discuss in Section 25.3.3.

Multiple-font Strings
Once multiple renditions with distinctive tags are specified in a render table, you can use
the list to display more than one font or font set in a single compound string. You can create
a multi-font string in one of two ways: create the compound text in segments or create
separate compound strings. Either way, once the segments or strings have been created,
they must be concatenated together to form a new compound string that has font-change
information embedded in it. Example 25-3 demonstrates the creation of a compound string
that uses three fonts.*

* XtVaAppInitialize () is considered deprecated in X11R6. XmStringGenerate () and XmStringConcat-
AndFree () are only available in Motif 2.0 and later.

Chapter 25: Compound Strings

822 Motif Programming Manual

Example 25-3. The multi_font.c program

/* multi_font.c -- create three compound strings using 12, 14 and 18
** point fonts. The user can specify resources so that each of the strings
** use different fonts by setting resources similar to that shown
** by the fallback resources.
*/

#include <Xm/Label.h>

String fallbacks[] = {
"*.renderTable: TAG1, TAG2, TAG3",
"*.fontType: FONT_IS_FONT",
"*TAG1.fontName: -*-courier-*-r-*--*-120-*",
"*TAG2.fontName: -*-courier-bold-o-*--*-140-*",
"*TAG3.fontName: -*-courier-medium-r-*--*-180-*",
NULL

};

main (int argc, char *argv[])
{

Widget toplevel, label;
XtAppContext app;
XmString s1, s2, s3, text, tmp;
Arg args[2];
String string1 = "This is a string ",

string2 = "that contains three ",
string3 = "separate fonts.";

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "String", NULL, 0, &argc, argv,

fallbacks, sessionShellWidgetClass,
NULL);

s1 = XmStringGenerate ((XtPointer) string1, NULL,
XmCHARSET_TEXT, "TAG1");

s2 = XmStringGenerate ((XtPointer) string2, NULL,
XmCHARSET_TEXT, "TAG2");

s3 = XmStringGenerate ((XtPointer) string3, NULL,
XmCHARSET_TEXT, "TAG3");

/* concatenate the 3 strings on top of each other, but we can only
** do two at a time. So do s1 and s2 onto tmp and then do s3.
*/
tmp = XmStringConcatAndFree (s1, s2);
text = XmStringConcatAndFree (tmp, s3);
XtSetArg (args[0], XmNlabelString, text);
label = XmCreateLabel (toplevel, "widget_name", args, 1);
XtManageChild (label);

XmStringFree (text);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

Motif Programming Manual 823

Chapter 25: Compound Strings

The output of this program is shown in Figure 25-7.

The XmNrenderTable resource is specified using three renditions, each with a distinct
tag. We create each string using XmStringGenerate() with the appropriate text and tag.
Then we concatenate the strings using XmStringConcatAndFree() , two at a time until
we have a single compound string that contains all the text. XmStringConcatAndFree()
does not work like strcat() in C. The Motif function creates a new compound string that
is composed of the two existing strings, rather than appending one string to the other string.

It is possible to specify compound string resource values, such as the XmNlabelString
resource of the Label widget, in a resource file as normal C strings. Motif provides a
resource converter that converts the character string into a compound string. However, this
resource converter does not allow you to specify rendition tags in the character string. If
you need font changes within a compound string, you need to create the compound strings
explicitly in your application as we have done in Example 25-3.

Manipulating Compound Strings
Most C programmers are used to dealing with functions such as strcpy() , strcmp() ,
and strcat() to copy, compare, and modify strings. However, these functions do not
work with compound strings, as they are not based on a byte-per-character format, and they
may have NULL characters as well as other types of information embedded in them. In order
to perform these common tasks, you can either convert the compound string into a character
string, or you can use the compound string manipulation functions provided by Motif. The
method you choose depends largely on the complexity of the compound strings you have
and/or the complexity of the manipulation you need to do.

Compound String Functions
Motif provides a number of functions that allow you to treat compound strings in much the
same way that you treat C-style character arrays. The toolkit provides the following
routines:

Boolean XmStringByteCompare (XmString string1 , XmString string2)
Boolean XmStringCompare (XmString string1 , XmString string2)
XmString XmStringConcat (XmString string1 , XmString string2)
XmString XmStringConcatAndFree (XmString string1 , XmString string2)
XmString XmStringCopy (XmString string)
Boolean XmStringEmpty (XmString string)
Boolean XmStringHasSubstring (XmString string , XmString substring)

Figure 25-6: Output of multi_font program

Chapter 25: Compound Strings

824 Motif Programming Manual

Boolean XmStringIsVoid (XmString string)
int XmStringLength (XmString string)

Both XmStringCompare() and XmStringByteCompare() compare two compound
strings, string1 , and string2 . XmStringCompare() simply checks if the strings have
the same text components, directions, and separators; it returns True if they do. This
routine is simpler and more frequently used than XmStringByteCompare() , which
performs a byte-by-byte comparison of the two compound strings. If each string uses the
same rendition tags, has the same direction, and contains the same embedded char string
internally, the function returns True . The mapping between rendition tags and fonts does
not happen until a compound string is rendered by a widget, so whether or not the same
rendition tag actually maps to two different fonts does not affect the results of this function.

XmStringConcat() and XmStringConcatAndFree() can be used to concatenate
compound strings. Both of these routines create a new compound string and copy the
concatenation of string1 and string2 into the newly allocated string. With
XmStringConcat (), the original strings are preserved, but with
XmStringConcatAndFree () the original parameter strings are internally freed. In both
cases, you are responsible for freeing the compound string returned by the routines using
XmStringFree() * .

You can copy a compound string using XmStringCopy() , which copies the parameter
string into a newly-allocated compound string.†

XmStringHasSubstring() determines whether or not a compound string contains a
particular substring . For this function, substring must be a single-segment compound
string. If its text is completely contained within any single segment of string , the function
returns True . The two strings must use the same rendition tags for the routine to return
True .

To get the length of a compound string, use XmStringLength() . This function returns
the number of bytes in the compound string including all tags, direction indicators, and
separators. If the structure of string is invalid, the routine returns zero. This function
cannot be used to get the length of the text represented by the compound string; it is not the
same as strlen()).

You can determine whether or not a compound string contains any segments using
XmStringEmpty() . This function returns True if there are no segments in the specified
string and False otherwise. If the routine is passed NULL, it returns True . The function
XmStringIsVoid () is similar, except that it checks only for text, separator, and tab
components‡. Therefore testing a compound string which contains only direction indicators

* XmStringNConcat () is deprecated from Motif 2.0.

† XmStringNCopy () is deprecated from Motif 2.0.

‡ XmStringIsVoid () is only available in Motif 2.0 and later.

Motif Programming Manual 825

Chapter 25: Compound Strings

using XmStringEmpty () will return False , whereas XmStringIsVoid () will return
True .

Compound String Retrieval
You can retrieve a compound string from a Motif widget using XtVaGetValues() .
However, the way XtVaGetValues() is used for compound string resources is different
than how it is used for most other resources. The value returned by XtVaGetValues() for
a compound string resource is a copy of the internal data, so the compound string must be
freed by the application, as shown in the following code fragment:

XmString str;
extern Widget pushbutton;
char *text;

XtVaGetValues (pushbutton, XmNlabelString, &str, NULL);
...
/* do whatever you want with the compound string */
...
XmStringFree (str); /* must free compound strings from GetValues */

To avoid memory leaks in your application, you must remember to free any compound
strings that you retrieve from a widget using XtVaGetValues() . You free a compound
string using the routine XmStringFree ().

Compound String Conversion
If the Motif routines described in the previous section are inadequate for your needs, you
can convert compound strings back into C strings and manipulate them using the
conventional C functions. This process can be simple or complicated depending on the
complexity of the compound string to be converted.

In Motif 1.2, there were two basic methods of conversion. The simplest method was to use
the routine XmStringGetLtoR (), which is sufficient if the compound string has a single
tag associated with it, and has a left-to-right orientation. The more complex method is to
walk along the compound string one segment at a time. This technique is rather low level,
and requires the creation of a type, XmStringContext , that is used to identify and
maintain the position within the compound string being scanned. This is described below.

In Motif 2.0 and later, XmStringGetLtoR () is deprecated. In its place is the notion of a
Parse Table, whereby compound strings can be converted using a table-driven description
of the requisite conversion process. Parse Tables are covered in Section 25.3.4.

The XmStringContext

To cycle through a compound string, you need to use the following sequence of operations:

1. Initialize a string context for the compound string usingXmStringInitContext() .

Chapter 25: Compound Strings

826 Motif Programming Manual

2. Iterate through the string by callingXmStringGetNextTriple() to get the type,
length, and value associated with each segment* .

3. Free the string context usingXmStringFreeContext() .

XmStringInitContext() initializes a string context that allows an application to read
the contents of a compound string segment by segment. This routine takes the following
form:

Boolean XmStringInitContext (XmStringContext * context, XmString string)

The function allocates a new XmStringContext type and sets the pointer that is passed
by the calling function in the context parameter to this data. If the allocation is successful
and the compound string is valid, the function returns True .

Once the string context has been initialized, the contents of the string can be scanned using
XmStringGetNextTriple() :

XmStringComponentType XmStringGetNextTriple (XmStringContext context ,
unsigned int *length,
XtPointer *value)

The routine does not take an XmString parameter because the context parameter is used
to keep track of the compound string. The function reads the next segment; the values for
length , value are filled in, and the function returns the type of the new segment. The
XmStringComponentType parameter is an enumerated type, and has the following
possible values:†

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_TAB
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END
XmSTRING_COMPONENT_UNKNOWN
XmSTRING_COMPONENT_END

When you are through scanning the compound string, you need to free the string context
using XmStringFreeContext() , which takes the following form:

void XmStringFreeContext (XmStringContext context)

* XmStringGetNextComponent () is deprecated as of Motif 2.0. XmStringGetNextTriple () is only availa-
ble in Motif 2.0 or later.

† For backwards compatibility, the values XmSTRING_COMPONENT_TAG and XmSTRING_COMPONENT_
FONTLIST_ELEMENT_TAG are mapped onto XmSTRING_COMPONENT_CHARSET. The Layout push/pop, Ren-
dition push/pop, and Tab component values are only available from Motif 2.0 onwards.

Motif Programming Manual 827

Chapter 25: Compound Strings

Example 25-4 shows a routine that uses these functions to print a compound string used as
the label for a widget.

Example 25-4. The PrintLabel() routine

void PrintLabel (Widget widget)
{

XmString str;
XmStringContext context;
char *text, *p, buf[256];
XtPointer data;
unsigned int length;
XmStringComponentType type;

XtVaGetValues (widget, XmNlabelString, &str, NULL);

if (!XmStringInitContext (&context, str)) {
/* compound strings from GetValues still need to be freed! */
XmStringFree (str);
XtWarning ("Can't convert compound string.");
return;

}

/* p keeps a running pointer through buf as text is read */
p = buf;
while ((type = XmStringGetNextTriple (context, &length, &data)) !=

XmSTRING_COMPONENT_END) {
switch (type) {

case XmSTRING_COMPONENT_TEXT :
text = (char *) data;
(void) strcpy (p, text);
p += length;
XtFree ((char *) data);
break;

case XmSTRING_COMPONENT_TAB :
*p++ = ’\t’;
*p = 0;
break;

case XmSTRING_COMPONENT_SEPARATOR :
*p++ = ’\n’;
*p = 0;
break;

}
}

XmStringFreeContext (context);
XmStringFree (str);

printf ("Compound string:\n%s\n", buf);
}

Chapter 25: Compound Strings

828 Motif Programming Manual

Parse Tables
From Motif 2.0, strings can be converted to and from compound strings by means of table-
driven mappings. A Parse Table consists of Parse Mapping objects. What a Parse Mapping
defines is a small piece of the conversion process in the form of a match pattern, and a
substitution method. Whenever a sequence of input corresponds to the match pattern it is
replaced using the substitution specified in the mapping object.

To be more concrete, a string containing newline characters can be mapped to a compound
string by supplying a parse mapping which has a match pattern of the newline character,
and a substitution pattern that is a compound string consisting of a segment of type
XmSTRING_COMPONENT_SEPARATOR. The internal implementation of the toolkit
convenience function XmStringGenerate () does precisely this: it uses the lower level
parse mapping routines, supplying a default parse table that has mappings for newlines and
tabs.

You dont need to specify a large Parse Table for most operations. The default mechanisms
convert text directly into textual compound string components without the need for the
programmer to specify Parse Mappings on a character-by-character basis for all of the
input. Typically, you only need to create a Parse Mapping when you wish to handle a
particular input character specially.

For many conversions, the default internal mappings are entirely sufficient, and so
XmStringGenerate () is more than adequate for most tasks: it hides the lower level
details of the table-driven parsing process from the programmer. There are however cases
where a bespoke converter makes sense. Consider reading a file where the separation
between fields is not by tab characters. A typical example of this is the UNIX /etc/
passwd file, where fields are separated by colons. If we wanted to read lines of this file
into a List widget, where each field is in a distinct column, we have to define a parse
mapping which converts colons into compound string tab components because the default
internal parse tables do not handle this specific conversion: they simply treat the colon like
any other character, so if you use the default mechanisms the colon will appear untranslated
in the converted compound string.

Thee two most important procedures for performing table-driven string to compound string
conversion (and vice-versa) are XmStringParseText (), and XmStringUnparse ().
XmStringParseText () converts a single or multi-byte character stream into a compound
string; XmStringUnparse () converts a compound string back into the single or multi-byte
character representation.

Where the conversion involves arrays of strings or compound strings, the routines
XmStringTableParseStringArray () and XmStringTableUnparse () are provided.
These are in fact simple convenience routines which do little more than call

Motif Programming Manual 829

Chapter 25: Compound Strings

XmStringParseText () and XmStringUnparse () iteratively across the array of strings
or compound strings.

Examples of all of the above routines will be given in due course. But first, we must define
exactly what Parse Mappings and Parse Tables are, and how to create them.

The XmParseMapping Object
A Parse Mapping object is a pseudo-widget; although not a true widget, it is an object
which has resources and a resource-style interface. A mapping is created through the
routine XmParseMappingCreate (), which takes the following form:

XmParseMapping XmParseMappingCreate (Arg * argList , Cardinal argCount)

The argList parameter is an array of parse mapping resources, argCount being the
number of resources in the array. This is directly analogous to the Arg array passed as a
parameter to standard widget creation routines. The function returns an opaque handle, an
XmParseMapping , used to designate the object created. To create a Parse Table, we
simply create an array of these, one for each particular piece of bespoke conversion, and
pass the array to the XmStringParseText () or XmStringUnparse () routines as
required. An XmParseTable is nothing more than an array of XmParseMapping objects.

Once created, the resources associated with an XmParseMapping object can be modified
using the XmParseMappingSetValues () routine. This routine is defined as follows:

void XmParseMappingSetValues (XmParseMapping map,
Arg * argList ,
Cardinal argCount)

Conversely, we can retrieve the values associated with an XmParseMapping object using
the XmParseMappingGetValues () routine:

void XmParseMappingGetValues (XmParseMapping map,
Arg * argList ,
Cardinal argCount)

When we have finished using the XmParseMapping object, we free it using
XmParseMappingFree ():

void XmParseMappingFree (XmParseMapping map)

XmParseMapping Resources
The most important attributes of an XmParseMapping object are the XmNpattern ,
XmNpatternType , XmNsubstitute , and the XmNinvokeParseProc resources.
XmNpattern represents the input associated with this XmParseMapping object: it is the
data against which the input stream is matched. You specify this to the parse mapping
object in the form of a pointer to a character (multi-byte character or wide character,
depending on what it is you are trying to convert to a compound string), even though any

Chapter 25: Compound Strings

830 Motif Programming Manual

given parse mapping object concerns itself with converting a single piece of input and not
a sequence. If the current input matches the XmNpattern resource, it is replaced in the
output stream by either the value of the XmNsubstitute resource, or dynamically
constructed by the procedure specified by the XmNinvokeParseProc resource. Which of
the two methods is adopted depends upon the value of the XmNincludeStatus resource.
If XmNincludeStatus is XmINSERT, the XmNsubstitute resource is used for the
transformation; if XmNincludeStatus is XmINVOKE, the XmNinvokeParseProc
procedure is used; lastly, if XmNincludeStatus is XmTERMINATE, the conversion
process is terminated at that point in the input stream. The XmNinvokeParseProc
resource is considered later in Section 25.4.3. Remember that the XmNpattern resource
requires a pointer to an array as its value, although only the first item in the array is used
when performing matching. XmNpattern can specify more than just character arrays: we
can parse multi-byte or wide-character input as well. The type of input is specified using
the XmNpatternType resource, and it takes the following values:

XmCHARSET_TEXT XmWIDECHAR_TEXT XmMULTIBYTE_TEXT

To make this clear, the following code fragment creates a parse mapping for converting
colon characters in a simple char * input stream into compound string tab components.
Since it is only the colon that we are treating specially, we only need one parse mapping
object to convert the entire input to a compound string: everything except the colon is
converted using default internal algorithms:

XmParseMapping map;
XmString tab;
Arg args[4];
Cardinal n = 0;

/* Match against the colon character */
/* Note we specify the string “:” not the character ’:’ */
XtSetArg (args[n], XmNpattern, “:”); n++;

/* XmNpattern contains a simple character array */
/* so we specify the pattern type as XmCHARSET_TEXT */
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;

/* Convert to a tab compound string component */
tab = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0, NULL);
XtSetArg (args[n], XmNsubstitute, tab); n++;

/* Use the XmNsubstitute resource for conversion */
/* Not the XmNinvokeParseProc resource */
XtSetArg (args[n], XmNincludeStatus, XmINSERT); n++;

/* Create the Parse Mapping object */
map = XmParseMappingCreate (args, n);

The way the parse system works is as follows: each character in the input stream is matched
in turn against the XmNpattern resources for each of the mappings in a given

Motif Programming Manual 831

Chapter 25: Compound Strings

XmParseTable . Where there is a match, that mapping is used to perform the translation,
either by directly replacing the input with the XmNsubstitute value, or by calling the
XmNinvokeParseProc routine to provide the output value. The input stream is advanced
by one character (wide-character or multi-byte character, depending on the input stream
type), and the process reiterates until either the end of the input is reached, or some parse
mapping object specifies XmTERMINATE as the required match action. The concatenation
of each chunk of output is performed automatically by the parse process: the parse mapping
objects only concern themselves with supplying the individual chunks for a given piece of
input.

It is important to stress that we only need to provide mapping objects for special processing,
because the default action in the absence of a supplied mapping for some input is a direct
conversion to the output. For example, if we wanted to convert lines of /etc/passwd into
a compound string, we only need to supply a mapping that specifies the colon character is
a logical tab separator. Everything else gets converted implicitly on a simple character-by-
character basis.

Converting to Compound Strings

Example 25-5 illustrates a simple string to compound string conversion. It loads lines read
from the /etc/passwd file into a multi-column List widget. For details of TabLists used to
provide the multi-column layout, you are referred to Chapter 24, Render Tables.

Example 25-5. The parse_file.c program

/* parse_file.c: converts a file into
** a multi-column list format. Assumes that
** the file is colon-separated fields.
*/

#include <stdio.h>
#include <Xm/Xm.h>
#include <Xm/List.h>

/* construct an array of compound strings
** from loading a file using colon as the field separator.
**
** A more generic routine would pass the field separator in.
*/
XmString *load_file (Widget list, char *file, int *count)
{

XmParseMapping map[2];
FILE *fptr;
char buffer[256];
Arg args[8];
char *cptr;
XmString tab;
XmString *xms_array = (XmString *) 0;
int xms_count = 0;

Chapter 25: Compound Strings

832 Motif Programming Manual

int n;

*count = 0;

if ((fptr = fopen (file, “r”)) == (FILE *) 0) {
return NULL;

}

/* Map colons to tabs */
n = 0;
tab = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0, NULL);
XtSetArg (args[n], XmNpattern, “:”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNsubstitute, tab); n++;
XtSetArg (args[n], XmNincludeStatus, XmINSERT); n++;
map[0] = XmParseMappingCreate (args, n);

/* Throw away newlines by terminating the parse for this line */
n = 0;
XtSetArg (args[n], XmNpattern, “\n”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNincludeStatus, XmTERMINATE); n++;
map[1] = XmParseMappingCreate (args, n);

while ((cptr = fgets (buffer, 255, fptr)) != (char *) 0) {
xms_array = (XmString *) XtRealloc ((char *) xms_array,

(xms_count + 1) * sizeof (XmString));

xms_array[xms_count] = XmStringParseText (cptr, NULL, NULL,
XmCHARSET_TEXT, map, 2, NULL);

xms_count++;
}

(void) fclose (fptr);

XmParseMappingFree (map[0]);
XmParseMappingFree (map[1]);

*count = xms_count;

return xms_array;
}

main (int argc, char *argv[])
{

Widget toplevel, list;
XtAppContext app;
Arg args[8];
XmTabList tlist = NULL;
XmRenderTable rtable;
XmRendition rendition;
XmString *data = (XmString *) 0;
int lines = 0;

Motif Programming Manual 833

Chapter 25: Compound Strings

int n, i;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demo”, NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

n = 0;
XtSetArg (args[n], XmNvisibleItemCount, 10); n++;
/* For TabList separation calculations */
XtSetArg (args[n], XmNunitType, XmINCHES); n++;
list = XmCreateScrolledList (toplevel, “list”, args, n);
XtManageChild (list);

/* Load the data from file as an array of compound strings */
data = load_file (list, ((argc > 1) ? argv[1] : “/etc/passwd”), &lines);

XtVaSetValues (list, XmNitems, data, XmNitemCount, lines, NULL);

/* Use the toolkit to propose a tab list for the items */
/* This isn’t ideal but will do for this example */
tlist = XmStringTableProposeTablist (data, lines, list,

(float) 0.1, XmRELATIVE);

/* Create a render table for the List using the tab list */
n = 0;
XtSetArg (args[n], XmNtabList, tlist); n++;
XtSetArg (args[n], XmNfontName, “-*-courier-*-r-*--*-120-*”); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
rendition = XmRenditionCreate (list, XmFONTLIST_DEFAULT_TAG, args, n);
rtable = XmRenderTableAddRenditions (NULL, &rendition, 1,

XmMERGE_REPLACE);
XtVaSetValues (list, XmNrenderTable, rtable, NULL);

/* Free up the temporarily allocated memory */
XmRenditionFree (rendition);
XmRenderTableFree (rtable);
XmTabListFree (tlist);

for (i = 0; i < lines; i++)
XmStringFree (data[i]);

XtFree ((char *) data);

/* Display the interface */
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

Chapter 25: Compound Strings

834 Motif Programming Manual

Sample output from the program is given in Figure 25-7.

The interesting part of the program is the routine load_file (). This parses a file into an
array of compound strings by constructing two XmParseMapping objects. The first object
converts colons into tab components:

/* Map colons to tabs */
n = 0;
tab = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0, NULL);
XtSetArg (args[n], XmNpattern, “:”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNsubstitute, tab); n++;
XtSetArg (args[n], XmNincludeStatus, XmINSERT); n++;
map[0] = XmParseMappingCreate (args, n);

The second XmParseMapping object is used to throw away the trailing newline character
returned by the fgets () system call. We could just as easily have truncated the returned
string from fgets () to remove the newline, but it was more interesting to demonstrate how
to terminate parsing of an input sequence using an XmParseMapping object. Here we
simply specify the XmNincludeStatus as XmTERMINATE to throw the newline away:

/* Throw away newlines by terminating the parse for this line */
n = 0;
XtSetArg (args[n], XmNpattern, “\n”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNincludeStatus, XmTERMINATE); n++;
map[1] = XmParseMappingCreate (args, n);

Once the parse table is assembled, we only need to call the right routine to convert the input.
This is the function XmStringParseText (), which takes the following form:

XmString XmStringParseText (XtPointer input ,
XtPointer * input_end ,
XmStringTag tag ,
XmTextType input_type ,
XmParseTable parse_table ,
Cardinal parse_table_size ,
XtPointer client_data)

The data to be converted to a compound string is given by input : this can be an ordinary
C string as in Example 25-5, or a wide-character or multi-byte array. Which of these

Figure 25-7: Output of the parse_file program

Motif Programming Manual 835

Chapter 25: Compound Strings

various input types is the case must be specified through the input_type parameter,
which can be one of XmCHARSET_TEXT, XmWIDECHAR_TEXT, or XmMULTIBYTE_TEXT.
The input_end parameter specifies a point within the input where parsing is to terminate.
If NULL, parsing continues to the end of the input unless terminated by an
XmParseMapping object. If parsing does terminate before the end of the input , and
input_end is not NULL, the routine resets the input_end pointer to where parsing
actually finished. The tag parameter is used to name the created compound string: if the
value is NULL, the compound string is created with the default tag _MOTIF_DEFAULT_
LOCALE. The parse_table and parse_table_count parameters identify the array of
XmParseMapping objects used to control the conversion process. If parse_table is
NULL, a default internal parse table is used which simply converts newlines to compound
string separator components, and tabs to tab components (and thus is equivalent to
XmStringGenerate ()). The client_data parameter is used to pass application-
specific data to any parse procedures within the parse_table . In particular, the client_
data is passed to any XmNinvokeParseProc routines specified for the
XmParseMapping objects. The XmNinvokeParseProc routines are discussed in Section
25.4.3.

Another routine for converting strings to compound strings is
XmStringTableParseStringArray (). This works using an array of input strings rather
than a single input. We could have used this routine in Example 25-5 if we loaded the
contents of the file into an array of C strings before performing the conversion process,
instead of converting each line as it is encountered. The convenience routine
XmStringTableParseStringArray () is defined as follows:

XmStringTable
XmStringTableParseStringArray (XtPointer * input_array ,

Cardinal input_array_count ,
XmStringTag tag ,
XmTextType input_type ,
XmParseTable parse_table ,
Cardinal parse_table_size ,
XtPointer client_data)

The parameters to XmStringTableParseStringArray () are similar to those of
XmStringParseText (), except that the data to be converted is specified using the
input_array and input_array_count parameters. The main difference between the
two routines is that XmStringTableParseStringArray () does not have an input_
end parameter. Example 25-6 is a reworking of the load_file () routine to use
XmStringTableParseStringArray ().

Example 25-6. The load_file_array() routine.

/* construct an array of compound strings
** from loading a file using colon as the field separator.
**
** A more generic routine would pass the field separator in.

Chapter 25: Compound Strings

836 Motif Programming Manual

*/
XmString *load_file_array (Widget list, char *file, int *count)
{

XmParseMapping map[2];
FILE *fptr;
char buffer[256];
Arg args[8];
char *cptr;
XmString tab;
XmString *xms_array = (XmString *) 0;
int lines = 0;
char **data = (char **) 0;
int n;

*count = 0;

if ((fptr = fopen (file, “r”)) == (FILE *) 0) {
return NULL;

}

/* Map colons to tabs */
n = 0;
tab = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0, NULL);
XtSetArg (args[n], XmNpattern, “:”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNsubstitute, tab); n++;
XtSetArg (args[n], XmNincludeStatus, XmINSERT); n++;
map[0] = XmParseMappingCreate (args, n);

/* Throw away newlines by terminating the parse for this line */
n = 0;
XtSetArg (args[n], XmNpattern, “\n”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNincludeStatus, XmTERMINATE); n++;
map[1] = XmParseMappingCreate (args, n);

while ((cptr = fgets (buffer, 255, fptr)) != (char *) 0) {
data = (char **) XtRealloc ((char *) data,

(lines + 1) * sizeof (char *));
data[lines] = XtMalloc ((unsigned) strlen (cptr) + 1);
(void) strcpy (data[lines], cptr);

lines++;
}

(void) fclose (fptr);

xms_array = XmStringTableParseStringArray ((XtPointer *) data, lines, NULL,
XmCHARSET_TEXT, map, 2, NULL);

for (n = 0; n < lines; n++) {
XtFree (data[n]);

}

Motif Programming Manual 837

Chapter 25: Compound Strings

XtFree ((char *) data);

XmParseMappingFree (map[0]);
XmParseMappingFree (map[1]);

*count = lines;

return xms_array;
}

Converting From Compound Strings

Converting compound strings back into a character array, whether to ordinary C or wide/
multi-byte strings, is very similar to the process for converting strings to compound strings.
We construct an XmParseTable with appropriate bespoke mappings if the toolkit default
maps are insufficient, then call the relevant parsing procedure. In this case, we call either
XmStringUnparse () or XmStringTableUnparse (), depending on whether it is a
simple compound string or an array we need to convert. XmStringUnparse () is defined
as follows:

XtPointer XmStringUnparse (XmString input ,
XmStringTag tag ,
XmTextType tag_type ,
XmTextType output_type ,
XmParseTable parse_table ,
Cardinal parse_table_count ,
XmParseModel parse_model)

The compound string to be converted is specified by input . How we want the compound
string to be converted depends upon the output_type parameter. If we want an ordinary
C string, we specify output_type as XmCHARSET_TEXT. For wide character text or
multi-byte array, specify XmWIDECHAR_TEXT or XmMULTIBYTE_TEXT respectively. The
routine returns a generic pointer: cast the result to the appropriate data type depending on
the value of output_type . For a normal C style string, the return value of
XmStringUnparse () should be simply cast to char * . XmStringUnparse () returns
dynamically allocated memory, and thus the return value should be freed when no longer
in use. Only those compound string components which match the designated tag are
converted: if tag is NULL, all components of input are converted. tag_type specifies
the representation of tag , which could be in ordinary, wide character, or multi-byte format.
tag_type takes the same range of values as output_type described above. The parse_
table and parse_table_count parameters specify the parse mappings for controlling
the conversion process. If parse_table is NULL, the default internal parse table is used,
which converts compound string separators to newlines and tab components to the tab
character. The parse_model parameter specifies how non-textual compound string
components are to be converted. The possible values are:

XmOUTPUT_ALL XmOUTPUT_BEGINNING
XmOUTPUT_END XmOUTPUT_BOTH

Chapter 25: Compound Strings

838 Motif Programming Manual

XmOUTPUT_BETWEEN

The value XmOUTPUT_ALL attempts to convert everything. The value XmOUTPUT_
BETWEEN will convert a non-text component if and only if it appears between two text
components. This can be used as a filter to map multiple adjoining tab components to a
single tab character, for instance. XmOUTPUT_END only converts non-text components if
they follow a textual one, so this could be used to strip tab components off the front.
XmOUTPUT_BEGINNING converts non-text if it precedes text. XmOUTPUT_BOTH is a
combination of XmOUTPUT_BEGINNING and XmOUTPUT_END.

As an example, consider the reverse of Example 25-5, where the contents of a multi-column
List is output to file, using the colon character as a field separator. The routine to perform
this task is given in Example 25-7:

Example 25-7. The dump_file() routine.

/* Dump the contents of a List to file,
** using colon as the field separator.
**
** A more generic routine would pass the field separator in.
*/
void dump_file (Widget list, char *file)
{

XmParseMapping map;
FILE *fptr;
Arg args[8];
XmString tab;
XmString *xms_array = (XmString *) 0;
int xms_count = 0;
char *output;
int n, i;

if ((fptr = fopen (file, “w”)) == (FILE *) 0) {
return;

}

XtVaGetValues (list, XmNitems, &xms_array,
XmNitemCount, &xms_count, NULL);

/* Map tabs to colons */
n = 0;
tab = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0, NULL);
XtSetArg (args[n], XmNpattern, “:”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNsubstitute, tab); n++;
XtSetArg (args[n], XmNincludeStatus, XmINSERT); n++;
map = XmParseMappingCreate (args, n);

for (i = 0; i < xms_count; i++) {
output = (char *) XmStringUnparse (xms_array[i], NULL,

XmCHARSET_TEXT, XmCHARSET_TEXT,
&map, 1, XmOUTPUT_ALL);

Motif Programming Manual 839

Chapter 25: Compound Strings

(void) fprintf (fptr, “%s\n”, output);
}

(void) fclose (fptr);

XmParseMappingFree (map);
}

The important thing to note is that for converting compound strings to strings, an
XmParseMapping is set up exactly as though we are converting to a compound string.
That is, XmNpattern is the C string we get from the conversion, XmNsubstitute is the
compound string segment to match against. Since we are substituting a compound string
for a C string, we might reasonably expect XmNsubstitute to contain the required C
string value, but this is not the case. XmNsubstitute always contains a compound string,
XmNpattern contains the equivalent character, wide character or multi-byte value,
irrespective of the direction of conversion.

The alternative when converting an array of compound strings is to use
XmStringTableUnparse (), which takes the following form:

XtPointer *XmStringTableUnparse (XmStringTable table,
Cardinal table_count,
XmStringTag tag,
XmTextType tag_type,
XmTextType output_type,
XmParseTable parse_table,
Cardinal parse_table_count,
XmParseModel parse_model)

This routine differs from XmStringUnparse () only in that it takes XmStringTable and
counter parameters, and returns an array. As for XmStringUnparse (),
XmStringTableUnparse () returns allocated memory: you need to free each of the
elements in the returned array, as well as the array itself. We could equally have written the
dump_file () routine to use XmStringTableUnparse () as follows:

char **output;

output = (char **) XmStringTableUnparse (xms_array, xms_count,
NULL, XmCHARSET_TEXT, XmCHARSET_TEXT,
&map, 1, XmOUTPUT_ALL);

...
for (i = 0; i < xms_count; i++) {

(void) fprintf (fptr, “%s\n”, output[i]);
XtFree (output[i]);

}

XtFree ((char *) output);

Chapter 25: Compound Strings

840 Motif Programming Manual

Parse Procedures
The problems with an XmParseMapping as described so far are that the mapping between
the input and output sequences are static, the parse state as far as the application is
concerned is context free, and there is no opportunity to dynamically move the current input
pointer around if we decide to skip some sequence of data. For example, we might want to
skip a particular field when converting a formatted line read from a file because we don’t
want to show it to the user. For this kind of task, the simple XmNsubstitute resource is
insufficient. We need an XmParseProc . The specification of an XmParseProc is as
follows:

typedef XmIncludeStatus (*XmParseProc) (XtPointer * in_out ,
XtPointer text_end ,
XmTextType text_type ,
XmString locale_tag ,
XmParseMapping entry ,
int pattern_length ,
XmString * str_include ,
XtPointer call_data)

The in_out parameter points to the current location within the input stream when the
procedure is invoked. The procedure can move the pointer to reset the location where
parsing is to continue after the routine finishes. text_end initially points to the end of the
in_out string, but again the procedure can move the location to indicate where parsing is
to continue from after the mapping has been applied to the current input. The text_type
parameter is the type of the input stream, and is one of XmCHARSET_TEXT, XmWIDECHAR_
TEXT, XmMULTIBYTE_TEXT. The locale_tag parameter specifies the tag to be used in
creating the result of the mapping. entry is the XmParseMapping associated with the
current matched input. pattern_length is the number of bytes remaining to be parsed
at the address specified by in_out . If the XmParseProc wishes to insert a compound
string into the output at this juncture, it returns it at the str_include address. Lastly, the
application can arrange to pass data to the routine through the client_data parameter,
thus providing whatever context the function needs to perform its task. The call_data is
specified as a parameter to the convenience routine (XmStringParseText () or
XmStringTableParseStringArray ()) which is currently controlling the parsing
process.

As an example, consider converting a UNIX /etc/passwd file to an array of compound
strings, except that the password field is to be hidden. As before, we map colon characters
to tab components, except that this time we skip the second field in each line of the file. We
add a second parse mapping object to handle newlines - not because we want to map
newlines to anything, but because it is a convenient place to reset the field counter as the
end of the line is reached. The address of the field counter is passed as client_data to
the parse routines so that they can inspect and manipulate the value. Example 25-8 shows
how this can be done using XmParseProc routines.

Motif Programming Manual 841

Chapter 25: Compound Strings

Example 25-8. The load_filtered_passwd() routine.

/* load_filtered_passwd(): converts the /etc/passwd file into
** a multi-column list format, skipping the password field.
*/

#include <stdio.h>
#include <Xm/Xm.h>
#include <Xm/List.h>

/* reset_field(): used to reset the field context
** when a newline is encountered in the input
*/
XmIncludeStatus reset_field (XtPointer *in_out,

XtPointer text_end,
XmTextType text_type,
XmStringTag locale_tag,
XmParseMapping parse_mapping,
int pattern_length,
XmString *str_include,
XtPointer call_data)

{
/* client data is a pointer to the field counter */
int *field_counter = (int *) call_data;

/* A newline encountered.
**
** Trivial: we reset the field counter for this line
** and terminate the parse sequence
*/

*field_counter = 0;

return XmTERMINATE;
}

/* filter_field(): throws away the second (password) field
** and maps colon characters to tab components.
*/
XmIncludeStatus filter_field (XtPointer *in_out,

XtPointer text_end,
XmTextType text_type,
XmStringTag locale_tag,
XmParseMapping parse_mapping,
int pattern_length,
XmString *str_include,
XtPointer call_data)

{
/* client data is a pointer to the field counter */
int *field_counter = (int *) call_data;
char *cptr = (char *) *in_out;

/* Skip this colon */
cptr += pattern_length;

Chapter 25: Compound Strings

842 Motif Programming Manual

/* If this is the first colon
** then skip the input until after the second.
** Otherwise, we return a TAB component
*/

if (*field_counter == 0) {
/* Skip over the next colon */
while (*cptr != ‘:’) cptr++;

cptr++;
}

*str_include = XmStringComponentCreate (XmSTRING_COMPONENT_TAB,
0, NULL);

*in_out = (XtPointer) cptr;
*field_counter = *field_counter + 1;

return XmINSERT;
}

XmString *load_filtered_passwd (Widget list, char *file, int *count)
{

XmParseMapping map[2];
FILE *fptr;
char buffer[256];
Arg args[8];
char *cptr;
XmString *xms_array = (XmString *) 0;
int xms_count = 0;
/* Used as client data to the XmParseProc routines */
int field_count = 0;
int n;

*count = 0;

if ((fptr = fopen (file, “r”)) == (FILE *) 0) {
return NULL;

}

/* Set up an XmParseProc to handle colons */
n = 0;
XtSetArg (args[n], XmNpattern, “:”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNincludeStatus, XmINVOKE); n++;
XtSetArg (args[n], XmNinvokeParseProc, filter_field); n++;
map[0] = XmParseMappingCreate (args, n);

/* Set up an XmParseProc to handle newlines */
n = 0;
XtSetArg (args[n], XmNpattern, “\n”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNincludeStatus, XmINVOKE); n++;

Motif Programming Manual 843

Chapter 25: Compound Strings

XtSetArg (args[n], XmNinvokeParseProc, reset_field); n++;
map[1] = XmParseMappingCreate (args, n);

while ((cptr = fgets (buffer, 255, fptr)) != (char *) 0) {
xms_array = (XmString *) XtRealloc ((char *) xms_array,

(xms_count + 1) * sizeof (XmString));

xms_array[xms_count] = XmStringParseText (cptr,
NULL, NULL, XmCHARSET_TEXT,
map, 2, &field_count);

xms_count++;
}

(void) fclose (fptr);

XmParseMappingFree (map[0]);
XmParseMappingFree (map[1]);

*count = xms_count;

return xms_array;
}

Figure 25-8 shows the result of replacing the load_file () routine of Example 25-5 with
the load_filtered_passwd () function:

Rendering Compound Strings
Motif always renders compound strings automatically within its widgets, so you should
never find yourself in a situation where you need to render a compound string manually.
However, if you are writing your own widget, you may need to incorporate the same type
of functionality. Motif provides three functions that render compound strings:

XmStringDraw()
XmStringDrawImage()
XmStringDrawUnderline()

Figure 25-8: Output of the load_filtered_passwd() routine

Chapter 25: Compound Strings

844 Motif Programming Manual

From Motif 1.2, all of these routines use the X11R5 text output routines when necessary,
to ensure that the text is rendered correctly for the current locale.

The most basic rendering function is XmStringDraw() , which takes the following form*:

void XmStringDraw (Display * display,
Window window,
XmRenderTable renderTable,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned char alignment,
unsigned char layout_direction,
XRectangle * clip)

As you can see, the function requires a great deal of information to actually render the
string. If you are rendering into a widget, you can specify the display and window using
XtWindow() and XtDisplay() . Since a gadget does not have a window, you must use
XtWindowOfObject() with a gadget. The renderTable parameter can be constructed
using any of the functions described in Chapter 24, Render Tables, or you can retrieve a
render table from a widget using XtVaGetValues() .

The function also requires a graphics context (GC) so that certain rendering attributes such
as color can be applied. A graphics context is generally not available through a widget, so
you have to get one at the Xlib level. If you are writing your own widget, you can probably
use a GC that is cached by Xt and returned by XtGetGC() (see Volume 4, Xlib
Programming Manual). Also, if you are writing your own widget, you may want to
consider exposing the GC to the programmer in the form of a resource.

The x, y, and width parameters specify the coordinates and width of the rectangle that
contains the compound string. The width parameter is used only for alignment purposes.
There is no height parameter because the render table may specify fonts that are unknown
in size and whose heights are too variable. The clip parameter defines the drawing
boundary; you can pass NULL to indicate that the rendering should not be clipped.

The alignment parameter can be set to one of the following values:

XmALIGNMENT_BEGINNING XmALIGNMENT_CENTER XmALIGNMENT_END

The value identifies the justification for the text. The effect of the value is modified by the
value of the layout_direction parameter, which can be set to either XmSTRING_
DIRECTION_L_TO_R or XmSTRING_DIRECTION_R_TO_L.

* In Motif 1.2, XmStringDraw () takes an XmFontList parameter. In Motif 2.0, the XmFontList is obsolete, and
has been replaced with an XmRenderTable . For backwards compatibility, the XmFontList type is implement-
ed as a skeleton XmRenderTable .

Motif Programming Manual 845

Chapter 25: Compound Strings

The function XmStringDrawImage() is to XmStringDraw() as XDrawString() is to
XDrawImageString() .The difference is that the image routines overwrite the
background even in places where the font does not set bits in the character image, while the
other routines only render foreground pixels.

The XmStringDrawUnderline() routine takes the same parameters as
XmStringDraw() with one addition. The last parameter specifies the portion of the
compound string that should be underlined. A compound string can be wholly or partially
underlined depending on whether the last parameter specifies the entire compound string
or only a substring of the string parameter.

It may be necessary to get dimensional information about a compound string in order to
know where to place it within the window when it is drawn. You may also want this data
to determine the optimal or desired width and height of a widget in case you have to provide
a geometry callback method. When a call to XtQueryGeometry() is made, a widget that
contains compound strings may need to tell the calling function the dimensions it needs to
render its compound strings adequately. Motif provides the following routines to help you
determine compound string dimensions:

Dimension XmStringBaseline (XmRenderTable renderTable , XmString string)
void XmStringExtent (XmRenderTable renderTable , XmString string ,

Dimension * width , Dimension * height)
Dimension XmStringHeight (XmRenderTable renderTable , XmString string)
Dimension XmStringWidth (XmRenderTable renderTable , XmString string)

Each of these functions takes renderTable (XmRenderTable) and string
(XmString) parameters. The render table is dependent on the widget associated with the
string, but there is no requirement that you must use a string that is associated with a widget.
If you just want to get the dimensions of a particular compound string rendered using an
arbitrary font or font set, you can create a render table manually, as described in Chapter
24, Render Tables.

XmStringBaseline() returns the number of pixels between the top of the character box
and the baseline of the first line of text in the compound string. XmStringWidth() and
XmStringHeight() return the width and height, respectively, for the specified
compound string. XmStringExtent() takes two additional parameters, width and
height . These arguments return the width and height in pixels of the smallest rectangle
that encloses the compound string specified in string .

Summary
Compound strings can be useful for creating multi-line or multi-font text for widgets such
as Labels, PushButtons, and ToggleButtons. Compound strings were also designed to help
in making internationalized applications, but this functionality has basically been made
obsolete by the addition of internationalization features in X11R5. Since Motif applications

Chapter 25: Compound Strings

846 Motif Programming Manual

have to use compound strings to display most textual data, the trick to developing an
internationalized application is to use compound strings without interfering with lower-
level X internationalization functionality.

The best practice is to specify compound string and rendition resources in resource files, so
that you can have a separate file for each language that is supported by your application. If
you have to create compound strings in an application, you should use
XmStringCreateLocalized() or specify the XmFONTLIST_DEFAULT_TAG rendition
tag to ensure that the strings are interpreted and rendered in the current locale.

Motif Programming Manual 847

In this chapter:
• Handling Signals in X11R5
• Handling Signals in X11R6
• Additional Issues
• Summary

26
Signal Handling

This chapter describes the techniques which should be adopted in order to handle UNIX
signals within an X-based application. It is not a lesson in signal handling per se: if you are
unsure what a signal is or how to handle one in an ordinary non-X-based application, you
should consult your operating system or programming language manuals.

In X11R5, handling signals safely could be problematic. UNIX signals are delivered
asynchronously in the context of the currently running process. On receipt of a signal, your
application branches immediately to any handlers which have been set up to process the
signal concerned, without any consideration to the application state or context. That is,
regardless of whatever state the application is in, a new function context is pushed onto the
process stack in order to immediately handle the signal. This scheme of operations can
severely interfere with the transmission and processing of X protocol messages between the
X server and the application client, because the signal could potentially be delivered right
in the middle of an X call which is manipulating the event queue. Any attempt by the signal
handler to call further X routines in these circumstances might garbage any messages which
are in progress. Although the probability of this interference is small, because signals can
arise from a variety of reasons which in many cases are from events external to the
application, mission critical applications have to guard against the possibility by
incorporating carefully constructed code to process potentially dangerous signals safely
and cleanly. This is particularly important because the default action associated with some
signal types causes the termination of the application, and thus we have no option but to
install our own handlers to override the system default.

The solution to the problem is to ensure that the processing of received signals is delayed
until such time as the application knows that it is safe to do so*. In practical terms, this
means that we rewrite our X event loop to take into account the possible receipt of a signal,
and we only process the signal when we know that the event queue is stable. This usually
involves two signal handling routines. The first routine is installed as the normal signal

* It should be noted that BSD-style UNIX systems do provide a system call that effectively suspends signal de-
livery, but it would be too costly to invoke this routine for each Xlib call. Furthermore, it is considered inappro-
priate for X, a windowing system that is designed to be independent of the operating system, to adopt this
system-specific solution.

Chapter 5: Introduction to Dialogs

848 Motif Programming Manual

handler, but it does nothing more than set a flag on receipt of the signal. The second routine
performs the actual signal processing; we call this at a later date when it is safe to do so.

In X11R6, the task is much simplified because the toolkit has been rewritten in order to
handle signals safely. There are new toolkit procedures which we can call that are
specifically designed to ensure that the receipt and handling of a signal does not interfere
with the X queue processing.

In the discussion which follows, we present both X11R5- and X11R6-style signal handling.
In the case of X11R5, the issue is complicated by the fact that an application can decide to
handle events in two different ways, either using the lower level Xlib mechanisms, or
through the higher level event procedures provided in the X toolkit.

Handling Signals in X11R5

Handling Signals using Xlib
An application that uses Xlib gets events from the server using a function like
XNextEvent() . This function reads the next event in the queue and fills an XEvent data
structure that describes various things about the event, such as the window associated with
it, the time it took place, the event type, and so on. When the function returns, the event has
been delivered and it is up to the application to decide what to do next. The following code
fragment demonstrates a simplified view of Xlib event handling:

void sigchld_handler(int);

main_event_loop ()
{
...
signal (SIGCHLD, sigchld_handler);

while (1) {
XNextEvent (display, &event);
switch (event.type) {
case ConfigureNotify: /*...*/ break;
case Expose: /*...*/ break;
case ButtonPress: /*...*/ break;
case EnterWindow: /*...*/ break;
case LeaveWindow: /*...*/ break;
case MapNotify: /*...*/ break;
...
}
}
}

If the operating system decides to deliver a SIGCHLD signal, the signal can arrive at any
time, possibly inside any of the case statements or even inside the call to XNextEvent() .
The signal handler for the signal is called automatically by the operating system. If the

Motif Programming Manual 849

Chapter 5: Introduction to Dialogs

signal handler makes any Xlib calls, you have no way of knowing if it is doing so at a time
when another Xlib call is being sent to the X server. The solution is to have the signal
handler do nothing but set a flag to indicate that the signal has been delivered. Then, just
before the call to XNextEvent() , the event loop can check the flag to determine whether
or not to call another function that actually processes the signal. This new design is shown
in the following code fragment:

static int sigchld_delivered;
void sigchld_handler(...), real_sigchld_handler(int);

main_event_loop()
{
...
signal (SIGCHLD, real_sigchld_handler);

while (1) {
/* it's safe to handle signals that may have been delivered */
if (sigchld_delivered > 0) {
/* add other parameters as necessary */
sigchld_handler (SIGCHLD);
sigchld_delivered--;
}
XNextEvent (display, &event);
switch (event.type) {
case ConfigureNotify: /*...*/ break;
case Expose: /*...*/ break;
case ButtonPress: /*...*/ break;
case EnterWindow: /*...*/ break;
case LeaveWindow: /*...*/ break;
case MapNotify: /*...*/ break;
...
}
}
}

All that real_sigchld_handler() does is increment the sigchld_delivered flag,
as shown in the following fragment:

/* additional parameters differ between BSD and SYSV */
void real_sigchld_handler (int sig)
{
sigchld_delivered++;
}

The actual sigchld_handler() routine can do whatever it needs to do, including call
Xlib routines, since it is only called when it is safe to do so. You should note that
XNextEvent() waits until it reads an event from the X server before it returns, so
handling the signal may take a long time if the program is waiting for the user to do
something.

These code fragments demonstrate the general design for handling signals in a rudimentary
way. In a real application, the actual signal handler would probably need access to all of the

Chapter 5: Introduction to Dialogs

850 Motif Programming Manual

parameters passed to the original signal handling function. One example of this situation
would be a signal handler that displays the values of all its parameters in a dialog box. You
can’t change anything on the display using the original signal handler because it would
require making Xlib calls, so you have to save the parameters until the real signal handler
is called. To save the parameters, you could define a data structure that contains fields for
all of the parameters. The original signal handler could allocate a new structure and fill it
in each time a signal is delivered.* When the real signal handler is called, it can access the
data structure and create a dialog using the appropriate Xlib calls.

Handling Signals in Xt
Since this is a book on Motif and Motif is based on Xt, the next step is to find a solution
that is appropriate for Xt-based applications. In Xt, you typically don’t read events directly
from the X server using XNextEvent() and then branch on the event type to decide what
to do next. Instead, Xt provides XtAppMainLoop() ; the code for this function is below:

void XtAppMainLoop (XtAppContext app_context)
{
XEvent event;

for (;;) {
XtAppNextEvent (app_context, &event);
XtDispatchEvent (&event);
}
}

Since the event processing loop is internal to the Xt toolkit, we don’t have the opportunity
to insert a check to see if any signals have been delivered, as we did with Xlib. There are
various ways to handle this problem. We could write our own event processing loop and
include code that tests for the delivery of a signal. One problem with this solution is that it
bypasses a standard library routine. We want to ensure upwards compatibility with future
versions of Xt, and if we write our own routine, we risk losing any functionality that might
be introduced later.

Even though it is unlikely that XtAppMainLoop() will change in the future, we should
find another way to solve the problem. Clearly, the desired effect is to get Xt to notify us
just before it’s going to call XNextEvent() , since this is the window of opportunity where
it is safe for a signal handler to make Xlib or Xt calls. It just so happens that Xt provides
two methods that do what we want: work procedures and timers.

A work procedure is a function that is called by Xt when it does not have any events to
process. Although an application can register multiple work procedures, the procedures are
processed one at a time, with the most recent one being invoked first. We can solve the
signal handler problem using a work procedure because most applications spend a fair bit

* As we will discuss later, there can also be problems with memory allocation in a signal handler.

Motif Programming Manual 851

Chapter 5: Introduction to Dialogs

of time waiting for the user to generate events. In the signal handler, we register a work
procedure using XtAppAddWorkProc() . When the application is idle, Xt invokes the
work procedure, which does the real work of handling the signal. The following code
fragment uses this approach:

XtAppContext app;
static void real_reset(int);
static Boolean reset(XtPointer);

main (int argc, char *argv[])
{
...
signal (SIGCHLD, real_reset);
...
}

/* reset() -- a program died... */
static void real_reset (int unused)
{
int pid, i;

#ifdef SYSV
int status;
#else /* SYSV */
union wait status;
#endif /* SYSV */

if ((pid = wait (&status)) == -1)
/* an error of some kind (fork probably failed); ignore it */
return;

(void) XtAppAddWorkProc (app, reset, NULL);
}

static Boolean reset (XtPointer client_data)
{
/* handle anything Xt/Xlib-related that needs to be done now */
...
return True; /* remove the work procedure from the list */
}

This example assumes that the application forks off a new process at some point. When the
child eventually exits, the parent is sent a SIGCHLD signal, at which point the application
branches directly to the real_reset() signal handler. This routine reaps the child using
wait() and then adds a work procedure using XtAppAddWorkProc() . (The function
normally returns a work procedure ID, but we’re not interested in it here.) When Xt does
not have any events to process, it calls reset() . This routine can perform any other tasks
necessary for handling the signal, such as calling Xlib routines, popping up dialogs, or
anything it likes.

Chapter 5: Introduction to Dialogs

852 Motif Programming Manual

If the application is waiting for events when it receives the signal, the work procedure is
invoked almost immediately after the actual signal handler. However, if the application is
in a callback routine handling an event, the work procedure is not called until control is
passed back to the event loop. While it’s true that there may be some delay between the
time that the signal is delivered and the time that it is actually processed, the delay is usually
small enough that an application doesn’t need to worry about it. If timing is critical, you
can always set a global signal flag when the signal is received, and then test that variable
in critical sections of your code to see if the signal has been delivered.

An Example
The signal handling problem can also be solved with a timer, using the same approach as
with a work procedure. Example 26-1 demonstrates the use of a timer in a more realistic
application.*The program displays an array of DrawnButtons that start application
programs. While an application is running, the associated button is insensitive, so that the
user can only run one instance of the application. When the application exits, the button is
reactivated, so that the user can select it again.

Example 26-1. The app_box.c program

/* app_box.c -- make an array of DrawnButtons that, when activated,
** executes a program. When the program is running, the drawn button
** associated with the program is insensitive. When the program dies,
** reactivate the button so the user can select it again.
*/

#include <Xm/DrawnB.h>
#include <Xm/RowColumn.h>
#include <signal.h>

#ifndef SYSV
#include <sys/wait.h>
#else /* SYSV */
#define SIGCHLD SIGCLD
#endif /* SYSV */

#define MAIL_PROG "/bin/mail"

typedef struct {
Widgetdrawn_w;
char*pixmap_file;
char*exec_argv[6]; /* 6 is arbitrary, but big enough */
intpid;
} ExecItem;

ExecItem prog_list[] = {

* In X11R6, the routine XtVaAppInitialize () is deprecated, and should be replaced with XtVaOpenAppli-
cation ().

Motif Programming Manual 853

Chapter 5: Introduction to Dialogs

{ NULL, "terminal", { "xterm", NULL }, 0 },
{ NULL, "flagup", { "xterm", "-e", MAIL_PROG, NULL }, 0 },
{ NULL, "calculator", { "xcalc", NULL }, 0 },
{ NULL, "xlogo64", { "foo", NULL }, 0 }
};

XtAppContext app;/* application context for the whole program */
GC gc;/* used to render pixmaps in the widgets */

void reset (int);
void reset_btn (XtPointer, XtIntervalId *);
void redraw_button (Widget, XtPointer, XtPointer);
void exec_prog (Widget, XtPointer, XtPointer);

main (int argc, char *argv[])
{
Widgettoplevel, rowcol;
Pixmappixmap;
Pixelfg, bg;
Argargs[8];
inti, n;

/* we want to be notified when child programs die */
(void) signal (SIGCHLD, reset);

XtSetLanguageProc (NULL, NULL, NULL);

/* Since this is an X11R5 example...
** For X11R6, use XtVaOpenApplication()
*/
toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0, &argc, argv, NULL, NULL);

n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, n);

/* get the foreground and background colors of the rowcol
** so the gc (DrawnButtons) will use them to render pixmaps.
*/
XtVaGetValues (rowcol,
XmNforeground, &fg,
XmNbackground, &bg, NULL);
gc = XCreateGC (XtDisplay (rowcol),
RootWindowOfScreen (XtScreen (rowcol)),
NULL, 0);
XSetForeground (XtDisplay (rowcol), gc, fg);
XSetBackground (XtDisplay (rowcol), gc, bg);

for (i = 0; i < XtNumber (prog_list); i++) {
/* the pixmap is taken from the name given in the structure */
pixmap = XmGetPixmap (XtScreen (rowcol),
prog_list[i].pixmap_file, fg, bg);
/* Create a drawn button 64x64 (arbitrary, but sufficient)
** shadowType has no effect till pushButtonEnabled is false.

Chapter 5: Introduction to Dialogs

854 Motif Programming Manual

*/
n = 0;
XtSetArg (args[n], XmNwidth, 64); n++;
XtSetArg (args[n], XmNheight, 64); n++;
XtSetArg (args[n], XmNpushButtonEnabled, True); n++;
XtSetArg (args[n], XmNshadowType, XmSHADOW_ETCHED_OUT); n++;
prog_list[i].drawn_w = XmCreateDrawnButton (rowcol,
"dbutton",
args, n);
XtManageChild (prog_list[i].drawn_w);

/* if this button is selected, execute the program */
XtAddCallback (prog_list[i].drawn_w, XmNactivateCallback,
exec_prog, (XtPointer) &prog_list[i]);
/* when the resize and expose events come, redraw pixmap */
XtAddCallback (prog_list[i].drawn_w, XmNexposeCallback,
redraw_button, (XtPointer) pixmap);
XtAddCallback (prog_list[i].drawn_w, XmNresizeCallback,
redraw_button, (XtPointer) pixmap);
}

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);
}

/* redraw_button() -- draws the pixmap into its DrawnButton
** using the global GC. Get the width and height of the pixmap
** being used so we can either center it in the button or clip it.
*/
void redraw_button (Widget button, XtPointer client_data,
XtPointer call_data)
{
Pixmappixmap = (Pixmap) client_data;
intunused, destx, desty;
unsigned intsrcx, srcy, pix_w, pix_h;
intdrawsize, border;
Dimensionbdr_w, w_width, w_height;
shorthlthick, shthick;
Windowroot;
XmDrawnButtonCallbackStruct *cbs =
(XmDrawnButtonCallbackStruct *) call_data;

/* get width and height of the pixmap. don't use srcx and root */
XGetGeometry (XtDisplay (button), pixmap, &root, &unused,
&unused, &pix_w, &pix_h, &srcx, &srcx);
/* get the values of all the resources that affect the entire
** geometry of the button.
*/
XtVaGetValues (button,
XmNwidth, &w_width,
XmNheight, &w_height,
XmNborderWidth, &bdr_w,
XmNhighlightThickness, &hlthick,

Motif Programming Manual 855

Chapter 5: Introduction to Dialogs

XmNshadowThickness, &shthick,
NULL);
/* calculate available drawing area, width first */
border = bdr_w + hlthick + shthick;
/* if window is bigger than pixmap, center it; else clip pixmap */
drawsize = w_width - 2 * border;
if (drawsize > pix_w) {
srcx = 0;
destx = (drawsize - pix_w) / 2 + border;
}
else {
srcx = (pix_w - drawsize) / 2;
pix_w = drawsize;
destx = border;
}
drawsize = w_height - 2 * border;
if (drawsize > pix_h) {
srcy = 0;
desty = (drawsize - pix_h) / 2 + border;
}
else {
srcy = (pix_h - drawsize) / 2;
pix_h = drawsize;
desty = border;
}

XCopyArea (XtDisplay (button), pixmap, cbs->window, gc, srcx, srcy, pix_w, pix_h,
destx, desty);
}

/* exec_proc() -- the button has been pressed; fork() and call
** execvp() to start up the program. If the fork or the execvp
** fails (program not found?), the sigchld catcher will get it
** and clean up. If the program is successful, set the button's
** sensitivity to False (to prevent the user from exec’ing again)
** and set pushButtonEnabled to False to allow shadowType to work.
*/
void exec_prog (Widget drawn_w, XtPointer client_data,
XtPointer call_data)
{
ExecItem *program = (ExecItem *) client_data;
XmDrawnButtonCallbackStruct *cbs =
(XmDrawnButtonCallbackStruct *) call_data;

switch (program->pid = fork ()) {
case 0: /* child */
execvp (program->exec_argv[0], program->exec_argv);
perror (program->exec_argv[0]); /* command not found? */
_exit (255);
case -1:
printf ("fork() failed.\n");
}

/* The child is off executing program... parent continues */

Chapter 5: Introduction to Dialogs

856 Motif Programming Manual

if (program->pid > 0) {
XtVaSetValues (drawn_w, XmNpushButtonEnabled, False, NULL);
XtSetSensitive (drawn_w, False);
}
}

/* reset() -- a program died, so find out which one it was and
** reset its corresponding DrawnButton widget so it can be reselected
*/
void reset (int unused)
{
intpid, i;
#ifdef SYSV
intstatus;
#else /* SYSV */
union waitstatus;
#endif /* SYSV */

if ((pid = wait (&status)) != -1) {
for (i = 0; i < XtNumber (prog_list); i++)
if (prog_list[i].pid == pid) {
/* program died -- now reset item. But not here! */
XtAppAddTimeOut (app, (unsigned long) 0, reset_btn,
(XtPointer) prog_list[i].drawn_w);
break;
}
}

(void) signal (SIGCHLD, reset);
}

/* reset_btn() -- reset the sensitivity and pushButtonEnabled resources
** on the drawn button. This cannot be done within the signal
** handler or we might step on an X protocol packet since signals are
** asynchronous. This function is safe because it's called from a timer
*/
void reset_btn (XtPointer closure, XtIntervalId *unused)
{
Widget drawn_w = (Widget) closure;

XtVaSetValues (drawn_w, XmNpushButtonEnabled, True, NULL);
XtSetSensitive (drawn_w, True);
XmUpdateDisplay (drawn_w);
}

Motif Programming Manual 857

Chapter 5: Introduction to Dialogs

The output of the program is shown in Figure 26-1.

The program in Example 26-1 is almost identical in design to the code fragment that used
a work procedure, but it is more like something you might actually write. The program uses
DrawnButtons to represent different application programs. The idea is that when a button
is pressed, the program corresponding to the image drawn on the button is run. The button
turns insensitive for as long as the application is alive. When the user exits the program, the
button’s state is restored so the user can select it again.

Each button has a data structure associated with it that specifies the file that contains the
icon bitmap, an argv that represents the program to be run, the process ID associated with
the program’s execution, and a handle to the button itself. The callback routine for each
button spawns a new process, sets the button to insensitive, and immediately returns control
to the main event loop. The process ID is saved in the button’s data structure. When the
external process terminates, a SIGCHLD signal is sent to the main program and the button
is reset.

As a general note, it is crucial that you understand that the new process does not attempt to
interact with the widgets in its parent application or read events associated with the same
display connection as its parent process. Even though the child has access to the same data
structures as the parent, it cannot use its parent’s connection to the X server because
multiple processes cannot share an X server connection. If a child process intends to
interact with the X server, it must close its existing connection and open a new one.

In our application, we play it safe by running a completely new application using
execvp() . This system call executes a program provided it can be found in the user’s
PATH, so we don’t need to specify full pathnames to the applications. If the program cannot
be found for whatever reason, the child process dies immediately and the reset() signal
handler is called by the operating system.

The reset() signal handler is called whenever a child process dies. At this point, the child
needs to be reaped and the state of the button needs to be reset. The wait() system call is
used to reap the child; this routine can be called from within reset() because it doesn’t
make any Xlib calls. However, we cannot reset the button’s state by calling
XtVaSetValues() and XtSetSensitive() because these routines would ultimately
result in Xlib calls. Therefore, rather than actually resetting the button in reset() , we call

Figure 26-1: Output of the app_box program

Chapter 5: Introduction to Dialogs

858 Motif Programming Manual

XtAppAddTimeOut() to install a timer routine. This Xt call is safe in a signal handler
because it does not make any calls to Xlib; the timer is handled entirely on the client side.

XtAppAddTimeOut() registers a timer procedure that is called after a specified amount
of time. Xt’s main event processing loop takes care of calling the timer routine after the
appropriate time interval. Since we have specified an interval of 0 for the reset_btn()
timer, the routine is called immediately after the signal is received and control is passed
back to the main event loop. The reset_btn() routine handles restoring the state of the
DrawnButton, so that the user can run the associated application again.

In terms of signal handling, there is really one main difference between using a work
procedure and using an interval timer. The work procedure is called as soon as the
application is idle and waiting for input, while the timer is called after a specified interval.

Additional Issues
There are several loose ends that we need to address. One issue involves the way timers are
implemented. You may be thinking, “Isn’t a timer another signal in UNIX?” While the
answer is yes, what is important is that Xt-timers are not implemented using UNIX signals,
but instead using a feature of the select() system call. In this context, select() is used
to determine if the X server is sending events to the application (although this function does
not actually read any events). The last parameter to select() is a time interval that
specifies how long the routine waits before returning whether there is anything to read.
Setting this time interval allows Xt to implement what appears to be a timer. As long as
there are events to read from the server, however, the timer is inactive, which is why a timer
in Xt can only be set in terms of an interval, rather than as a real-time value. It is also why
you should never rely on the accuracy of these timers.

Timers are not implemented using UNIX signals for the same reasons that we did not call
XtVaSetValues() from within the SIGCHLD signal handler. It is also for this reason that
you should not use UNIX-based functions such as sleep() or setitimer() to modify
widgets or make Xlib calls. We don’t mean to imply that you should not use these functions
at all; it’s just that the same restrictions apply to UNIX timers as they do to other UNIX
signals. If you need to do any X or Xt-related function calls, don’t do it from a signal
handler. You should install a zero-length interval timeout function using
XtAppAddTimeOut() and, when the toolkit invokes your function, call whatever X
routines are necessary.Timers of this type are used frequently with clock programs and text
widgets. In the case of a clock, the timer advances the second hand, while for a text widget,
it causes the insertion cursor to flash.

Another loose end that needs to be tied up involves System V’s handling of signals. In most
modern versions of UNIX (derived from BSD UNIX), when a signal is delivered to an
application, any system call that might be going on is interrupted, the signal handler is
called, and when it returns, the system call is allowed to continue. For example, if you are

Motif Programming Manual 859

Chapter 5: Introduction to Dialogs

reading in the text of a file using read() and a signal is sent to the application, the read()
is suspended while the signal handler is called. After your signal handler returns, the
read() is restarted and it returns the actual number of bytes read as if no signal had ever
occurred. Under System V, all system calls are interrupted and return an error (with errno
set to EINTR). In this case, all of the data read by the read() call is lost.

This situation is a problem in X because read() is used to read events from the X server.
If read() fails because a signal is delivered, then the protocol that was being sent by the
server is lost, as would be anything we were sending to the server, since the same is true for
calls to write() . There really isn’t anything you can do about this problem, except,
perhaps, for upgrading to a more modern version of UNIX. This problem does not exist
with SVR4 or Solaris.

Even system calls in BSD-derived UNIX systems may have problems. If, for example, you
call read() from a signal handler that interrupted another read() , you still might not get
what you expected because read() is not re-entrant. A function that is re-entrant is one
that can be called at any time, even while the function is already being executed.

We’re pretty safe with the advice we’ve given so far, with one exception: calling
XtAppAddTimeOut() or XtAppAddWorkProc() eventually requires the allocation of
memory to add the new timer or work procedure to the respective list. If your application
happens to be allocating memory when a signal is delivered and you try to add a timer or a
work procedure, you could make another call to alloc() , which is the lowest-level
routine that allocates memory from the system. Unless your version of UNIX has a re-
entrant memory allocation system call, your memory stack may be corrupted.*There really
isn’t anything that you can do about these problems, and there are no official specifications
anywhere in the X documents that even address these issues, so the best tactic is to
minimize the exposure using timers or work procedures as described here.

Handling Signals in X11R6
In X11R6, three new functions are added in order to handle signals safely in the context of
the X Toolkit Intrinsics event queue mechanisms.

XtAppAddSignal

Firstly, XtAppAddSignal () registers a handler with the toolkit which is to be invoked at
the appropriate safe point in the Xt event mechanisms; the handler is permitted to call
further X routines, in the knowledge that it is safe to do so at that juncture.
XtAppAddSignal () returns an opaque handle, an XtSignalId , used to keep track of the
registered handler. The full signature of the routine is as follows:

XtSignalId XtAppAddSignal (XtAppContext app,

* The GNU version of malloc () is re-entrant, so it is safe from this problem.

Chapter 5: Introduction to Dialogs

860 Motif Programming Manual

XtSignalCallbackProc handler ,
XtPointer client_data)

The handler parameter is the application-specific routine invoked in response to a signal.
As usual, client_data is any application-specific data which you want your handler to
be passed when invoked. The returned XtSignalId should be stored for subsequent later use.
An XtSignalCallbackProc routine is defined as follows:

typedef void (*XtSignalCallbackProc) (XtPointer closure, XtSignalId *id)

The application handler should be registered after the usual operating system signal ()
call. Note that the purpose of handler is not to catch the signal, but to perform any
processing that is required in the knowledge that it is Xt-event-safe. A standard signal
handling routine is still required to catch the signal itself. The following code fragment
outlines the steps:

void my_safe_handler (XtPointer, XtSignalId *);
void my_signal_catcher ();

XtSignalId my_signal_id;
XtAppContext app;
...
/* standard operating system signal() call */
signal (SIGCHLD, my_signal_catcher);

/* register a handler to process the signal safely */
my_signal_id = XtAppAddSignal (app, my_safe_handler, NULL);
...

XtNoticeSignal

If we are still using the standard operating system signal () routines to catch a signal, and
a separate application handler to perform safe processing, what then, you may ask, is the
connecting piece of logic which makes the system work? The answer is the routine
XtNoticeSignal (). We call this inside our normal operating system signal handling
routine to inform Xt that the signal has arrived, secure in the knowledge that this Xt routine
is the only intrinsics function we are guaranteed as to its signal safety. XtNoticeSignal ()
takes as a parameter the XtSignalId of the handler we wish to invoke in response to the
current signal delivery. XtNoticeSignal () therefore has the following form:

void XtNoticeSignal (XtSignalId)

Following on from the previous example, we might sketch our signal catching routine as
follows:

void my_signal_catcher (int signo)
{
/* Perform non-X processing */
...

/* Inform the intrinsics of signal arrival */

Motif Programming Manual 861

Chapter 5: Introduction to Dialogs

XtNoticeSignal (my_signal_id);
}

XtNoticeSignal () therefore replaces the various calls to XtAppAddWorkProc () or
XtAppAddTimeOut () within the signal catching routine, as recommended for the X11R5
examples. XtNoticeSignal () simply arranges to call the handler associated with the
parameter XtSignalId at a safe point in the Xt event processing loop.

XtRemoveSignal

We can disassociate a handler from the X Intrinsics at any time by calling
XtRemoveSignal (). We would do this if we are no longer interested in handling the given
signal, or if we wanted to change the handler. The routine is passed as a parameter the
XtSignalId returned from a previous call to XtAppAddSignal (). XtRemoveSignal ()
has the following prototype:

void XtRemoveSignal (XtSignalId)

The source of the signal must be disabled before calling XtRemoveSignal () in order to
prevent possible race conditions. The following code fragment outlines the correct scheme
of operations:

XtSignalId my_signal_id;
...
/* Disable the signal source */
signal (SIGCHLD, SIG_IGN);

/* Unregister the Intrinsics signal handler */
XtRemoveSignal (my_signal_id);

An Example
The following fragments of code represent the changes required to modify the example of
Section 26.2.1 to use the X11R6 signal notification mechanisms.*We add a new global
variable for the XtSignalId returned by XtAppAddSignal (), we modify reset () to call
XtNoticeSignal (), and we change reset_btn () to an XtSignalCallbackProc .

.....
XtAppContextapp;/* application context for the whole program */
GCgc;/* used to render pixmaps in the widgets */
XtSignalIdsign_id;/* X11R6 Signal Registration handle */
ExecItem*reap = NULL;/* the item which has just terminated */
....
/* reset_btn is now an XtSignalCallbackProc */
void reset_btn (XtPointer, XtSignalId *);
...

* XtVaOpenApplication (), the SessionShell widget class, XtAppAddSignal (), and XtNoticeSignal () are
only available in X11R6. XtVaAppInitialize () is considered deprecated in X11R6.

Chapter 5: Introduction to Dialogs

862 Motif Programming Manual

main (int argc, char *argv[])
{
...

/* we want to be notified when child programs die */
(void) signal (SIGCHLD, reset);

XtSetLanguageProc (NULL, NULL, NULL);
/* Now that we are using X11R6...*/
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

/* Register our safe signal handler with the Intrinsics */
/* Pass the address of the reap pointer as client data */
sign_id = XtAppAddSignal (app, reset_btn, (XtPointer) &reap);

/* The rest of main() is exactly as before */
n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
rowcol = XmCreateRowColumn (toplevel, “rowcol”, args, n);

...
XtAppMainLoop (app);
}

/* reset() -- a program died, so find out which one it was and
** reset its corresponding DrawnButton widget so it can be reselected
**
** The difference between this and the X11R5 example is the replacing
** of XtAppAddTimeOut() with XtNoticeSignal().
*/
void reset (int unused)
{
int pid, i;
#ifdef SYSV
int status;
#else /* SYSV */
union wait status;
#endif /* SYSV */

reap = (ExecItem *) 0;

/* Basically the same loop as X11R5, except for XtNoticeSignal()
** instead of the XtAppAddTimeOut() call
*/
if ((pid = wait (&status)) != -1) {
for (i = 0; i < XtNumber (prog_list); i++)
if (prog_list[i].pid == pid) {
/* program died -- now reset item. But not here! */
/* Set up the client data for our signal procedure */
reap = &prog_list[i];
/* Inform Xt of signal arrival */
XtNoticeSignal (sign_id);
break;

Motif Programming Manual 863

Chapter 5: Introduction to Dialogs

}
}

(void) signal (SIGCHLD, reset);
}

/* reset_btn() -- reset the sensitivity and pushButtonEnabled resources
** on the drawn button.
**
** For X11R6, we have simply changed the signature to that
** of an XtSignalCallbackProc, and pass a pointer to the
** reap ExecItem as client data, instead of a Widget.
*/
void reset_btn (XtPointer closure, XtSignalId *id)
{
ExecItem **reap_ptr = (ExecItem **) closure;
Widget drawn_w = (*reap_ptr)->drawn_w;

XtVaSetValues (drawn_w, XmNpushButtonEnabled, True, NULL);
XtSetSensitive (drawn_w, True);
XmUpdateDisplay (drawn_w);
}

Summary
Up until the release of X11R6, the official advice of the X Consortium was that you should
not mix signals with X applications. However, there are cases where you must choose the
lesser of two evils. The need for signal handling exists and cannot simply be ignored. In
X11R6, Xt has support for registering signal handlers, so this problem is no longer a critical
issue as far as the support offered by the X Toolkit is concerned. In an X11R5 environment,
the approaches given in this chapter should serve you well most of the time.

The most important lesson to learn from this chapter may well be that UNIX signals are
potentially dangerous to X applications, or indeed any sort of program that relies on a
client-server protocol. They can also be a problem for system calls in an extremely sensitive
or real-time environment. The issue is not X specific; X just happens to be an environment
where the issue arises. Whenever the operating system can interrupt the client side (or the
server side, for that matter), you should be prepared to consider those cases where the
client-server protocol may be breached. Using the X11R6 signal notification scheme, the
toolkit takes upon itself the task of ensuring X protocol integrity.

Chapter 5: Introduction to Dialogs

864 Motif Programming Manual

Motif Programming Manual 865

Chapter 1

In this chapter:
• Help Systems
• Working Dialogs
• Dynamic Message

Symbols
• Summary

27
Advanced Dialog

Programming
This chapter describes some Motif features that have not been described, or at least not
completely, in earlier chapters. The topics, which all deal with dialogs, include the creation
of multi-stage help systems, the development of WorkingDialogs that allow the user to
interrupt long-running tasks, and a method for dynamically changing the pixmaps
displayed in a dialog.

In one sense, this chapter isn’t about dialogs at all, but about various aspects of X
programming that become most evident when working with dialogs. Here we address some
issues involved in creating multi-stage help systems, we show you how to create a
WorkingDialogs that allows the user to interrupt a long-running task, and we describe a
method for dynamically changing the pixmaps that are displayed in a dialog. These topics
explore some of the most interesting problems in this book.

These topics take us deeper into the lower layers of X than anything we’ve discussed so far
in this book. You should have a good basic understanding of X event-processing, as
implemented both in Xlib and Xt. Otherwise, be prepared to refer frequently to Volume 1,
Xlib Programming Manual, and Volume 4, X Toolkit Intrinsics Programming Manual,
when faced with references to lower-level functions.

Help Systems
The Motif Style Guide doesn’t have much to say about how help is presented to the user,
although it does discuss the ways in which the user can request help from an application.
The user can request help by selecting the Help button in a dialog box, by choosing help
items from the Help menu in the MenuBar, or by pressing the HELP or F1 key on the
keyboard. Help information should be presented clearly, so that it is accessible and
beneficial to users. You should also maintain consistency in a help system, so that the user
can become familiar with the style of help that you provide.

The easiest and most straightforward method of presenting help information involves
creating an InformationDialog with the necessary text displayed as the

Chapter 27: Advanced Dialog Programming

866 Motif Programming Manual

XmNmessageString . Example 27-1 demonstrates how to display a help dialog when the
user presses the Help button in another dialog box.*

Example 27-1. The simple_help.c program

/* simple_help.c -- create a PushButton that posts a dialog box
** that entices the user to press the help button. The callback
** for this button displays a new dialog that gives help.
*/

#include <Xm/MessageB.h>
#include <Xm/PushB.h>

main (int argc, char *argv[])
{

Widget toplevel, button;
XtAppContext app;
XmString label;
Arg args[2];
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
label = XmStringCreateLocalized ("Push Me");
XtSetArg (args[0], XmNlabelString, label);
button = XmCreatePushButton (toplevel, "button",args, 1);
XtAddCallback (button, XmNactivateCallback, pushed,

"You probably need help for this item.");
XmStringFree (label);
XtManageChild (button);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

#define HELP_TEXT "This is the help information.\nNow press 'OK'"

/* pushed() -- the callback routine for the main app's pushbutton. */
void pushed (Widget w, XtPointer client_data, XtPointer call_data)
{

char *text = (char *) client_data;
Widget dialog;
XmString t = XmStringCreateLocalized (text);
Arg args[5];
int n;
void help_callback(Widget, XtPointer, XtPointer);
void help_done(Widget, XtPointer, XtPointer);

n = 0;

* XtVaAppInitialize() is considered deprecated in X11R6. XmStringGetLtoR () and XmMessage-
BoxGetChild () are deprecated in Motif 2.0 and later. XmStringGenerate () is only available from Motif 2.
0 onwards.

Motif Programming Manual 867

Chapter 27: Advanced Dialog Programming

XtSetArg (args[n], XmNautoUnmanage, False); n++;
XtSetArg (args[n], XmNmessageString, t); n++;
dialog = XmCreateMessageDialog (XtParent (w), "notice", args, n);
XmStringFree (t);
XtUnmanageChild (XtNameToWidget (dialog, “Cancel”));
XtAddCallback (dialog, XmNokCallback, help_done, NULL);
XtAddCallback (dialog, XmNhelpCallback, help_callback, HELP_TEXT);

/* This also pops up the DialogShell parent */
XtManageChild (dialog);

}

/* help_callback() -- callback routine for the Help button in the
** original dialog box that displays an InformationDialog based on the
** help_text parameter.
*/

void help_callback (Widget parent, XtPointer client_data,
XtPointer call_data)

{
char *help_text = (char *) client_data;
Widget dialog;
XmString text;
void help_done(Widget, XtPointer, XtPointer);
Arg args[5];
int n;

n = 0;
text = XmStringGenerate ((XtPointer) help_text,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
NULL);

XtSetArg (args[n], XmNmessageString, text); n++;
XtSetArg (args[n], XmNautoUnmanage, False); n++;
dialog = XmCreateInformationDialog (parent, "help", args, n);
XmStringFree (text);

XtUnmanageChild (XtNameToWidget (dialog, “Cancel”));
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
/* the OK button will call help_done() below */
XtAddCallback (dialog, XmNokCallback, help_done, NULL);
/* display the help text */
XtManageChild (dialog);

}

/* help_done() -- called when user presses "OK" in dialogs. */
void help_done (Widget dialog, XtPointer client_data, XtPointer call_data)
{

XtDestroyWidget (XtParent (dialog));
}

Chapter 27: Advanced Dialog Programming

868 Motif Programming Manual

The main window contains a PushButton that posts a simple MessageDialog. This dialog,
as you can tell from Figure 27-1, contains a Help button, that pops up an
InformationDialog. This dialog is intended to provide help text for the user.

The callback routine for the Help button is installed using the XmNhelpCallback . This
routine pops up an InformationDialog that contains some predefined text. Obviously, this
text is for demonstration purposes only. We used XmStringGenerate() to display the
text, instead of XmStringCreateLocalized() , since the help message contains
newline characters. See Chapter 25, Compound Strings, for more information on how you
can use compound strings.

The XmNhelpCallback resource serves as the callback for any widget that wishes to
provide help information; every Motif widget has an XmNhelpCallback resource
associated with it. Whenever the user presses the HELP key on the keyboard (if one exists
and the X server is set up correctly*the XmNhelpCallback is invoked for the widget that
has the keyboard focus. The F1 key also serves as a help key for compatibility with
Microsoft Windows and to compensate for any computer that may not have a HELP key.†

If a widget does not have an XmNhelpCallback function installed, Motif climbs the
widget tree, searching for the nearest ancestor that has a help callback. If you assign help
callbacks to widgets, were commend that you provide specific help information for
individual interface components, such as PushButtons, Lists, and Text widgets, and more
general information for manager widgets. It is possible to design an elaborate context-

* Sun workstations do not necessarily generate the proper event when the HELP key is pressed, and your mileage
may vary for other computers.

† The F1 key works by default, but it may be remapped to perform another function in the user’s.mwmrc file.

Figure 27-1: Output of simple_help.c

Motif Programming Manual 869

Chapter 27: Advanced Dialog Programming

sensitive help system for an application by installing help callback routines for the widgets
in the interface and providing relevant help information throughout the hierarchy.

Although simple_help.c is rather contrived, we can use it to examine the different actions
the user might take within a help system. You can think of the Push Me button as any
widget in an application on which the user might want help. When the button is activated,
the user is presented with a MessageDialog that undoubtedly requires help. The user can
select the Help button or press the F1 or HELP keys to access the help information. Since
the InformationDialog is modeless, as it should be, the user can either close the
InformationDialog or the original MessageDialog.

Since the InformationDialog is a child of the MessageDialog, if the MessageDialog is
destroyed, the InformationDialog is also destroyed. Similarly, if the MessageDialog is
unmapped, so is the InformationDialog. In general, when you display an
InformationDialog, you should remove it if the user unmanages, destroys, or otherwise
disables the dialog from which it was posted because if the help dialog remains posted, it
could confuse the user. By making the InformationDialog the child of the original dialog,
you can let the parent-child interaction handle this behavior.

Multi-level Help
Developing a help system may involve providing multiple levels of help information. If the
user has already posted an InformationDialog, it is possible to display an additional dialog
if the user requests help in the original dialog. However, multiple help windows can
confuse the user, so they should be avoided. A better solution is to display the new help text
in the same InformationDialog, so that all of the help information is displayed in the same
place. Example 27-2 shows new help_callback() and help_done() routines that
implement this technique.*

Example 27-2. Sample routines to create a single help dialog

#define MAX_HELP_STAGES 3

char *help_text[3][5] = {
{

"You have reached the first stage of the help system.",
"If you need additional help, select the 'More Help' button.",
"You may exit help at any time by pressing 'Done'.",
NULL

},
{

"This is the second stage of the help system. There is",
"more help available. Press 'More Help' to see more.",
"Press 'Previous' to return to the previous help message,",

* XmStringCreateLtoR () and XmMessageBoxGetChild () are deprecated from Motif 2.0. XmStringGen-
erate () is only available from Motif 2.0 onwards.

Chapter 27: Advanced Dialog Programming

870 Motif Programming Manual

"or press 'Done' to exit the help system.",
NULL

},
{

"This is the last help message you will see on this topic.",
"You may either press 'Previous' to return to the previous",
"help level, or press 'Done' to exit the help system.",
NULL

}
};

/* help_callback() -- callback routine for the Help button in the
** original dialog box. The routine also serves as its own help
** callback for displaying multiple levels of help messages.
*/
void help_callback (Widget parent, XtPointer client_data,

XtPointer call_data)
{

static Widget dialog = (Widget) 0; /* prevent multiple dialogs
*/
XmString text;
char buf[BUFSIZ], *p;
static int index;
int i;
void help_done(Widget, XtPointer, XtPointer);
int index_incr = (int) client_data;

if (dialog && index_incr == 0) {
/* user pressed Help button in MesageDialog again. We're
** already up, so just make sure we're visible and return.
*/
XtManageChild (dialog);
XMapRaised (XtDisplay (dialog), XtWindow (XtParent (dialog)));
return;

}

if (dialog)
index += index_incr; /* more/previous help; change index */

else {
/* We're not up, so create new Help Dialog */
Arg args[5];
int n;
/* Action area button labels. */
XmString done = XmStringCreateLocalized ("Done");
XmString cancel = XmStringCreateLocalized ("Previous");
XmString more = XmStringCreateLocalized ("More Help");
n = 0;
XtSetArg (args[n], XmNautoUnmanage, False); n++;
XtSetArg (args[n], XmNokLabelString, done); n++;
XtSetArg (args[n], XmNcancelLabelString, cancel); n++;
XtSetArg (args[n], XmNhelpLabelString, more); n++;
dialog = XmCreateInformationDialog (parent, "help", args, n);
/* pass help_done() the address of "dialog" so it can reset */
XtAddCallback (dialog, XmNokCallback, help_done,

Motif Programming Manual 871

Chapter 27: Advanced Dialog Programming

(XtPointer) &dialog);
/* if more/previous help, recall ourselves with increment */
XtAddCallback (dialog, XmNcancelCallback, help_callback,

(XtPointer) -1);
XtAddCallback (dialog, XmNhelpCallback, help_callback,

(XtPointer) 1);
/* If our parent dies, we must reset "dialog" to NULL! */
XtAddCallback (dialog, XmNdestroyCallback, help_done,

(XtPointer) &dialog);
XmStringFree (done); /* once dialog is created, these */
XmStringFree (cancel); /* strings are no longer needed. */
XmStringFree (more);
/* initialize index--needed for each new help stuff */
index = 0;

}

/* concatenate help text into a single string with newlines */
for (p = buf, i = 0; help_text[index][i]; i++) {

p += strlen (strcpy (p, help_text[index][i]));
*p++ = '\n';
*p = 0;

}
text = XmStringGenerate ((XtPointer) buf,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
NULL);

XtVaSetValues (dialog, XmNmessageString, text, NULL);
XmStringFree (text); /* after set-values, free unneeded memory */
/* If no previous help msg, set "Previous" to insensitive. */
XtSetSensitive (XtNameToWidget (dialog, ”Cancel”), index > 0);
/* If no more help, set "More Help" insensitive. */
XtSetSensitive (XtNameToWidget (dialog, “Help”),

index < MAX_HELP_STAGES - 1);
/* display the dialog */
XtManageChild (dialog);

}

/* help_done () -- callback used to set the dialog pointer
** to NULL so it can't be referenced again by help_callback().
** This function is called from the Done button in the help dialog.
** It is also our XmNdestroyCallback, so reset our dialog_ptr to NULL.
*/
void help_done (Widget dialog, XtPointer client_data,

XtPointer call_data)
{

Widget *dialog_ptr;

if (!client_data) {
/* destroy original MessageDialog */
XtDestroyWidget (XtParent (dialog));
return;

}

dialog_ptr = (Widget *) client_data;

Chapter 27: Advanced Dialog Programming

872 Motif Programming Manual

if (!*dialog_ptr)
/* prevent unnecessarily destroying twice */
return;

/* this might call ourselves. */
XtDestroyWidget (XtParent (dialog));

*dialog_ptr = NULL;
}

In our help system, each level has a new help string that needs to be displayed. All of the
help text is displayed in the same InformationDialog. The dialog for the first level of help
is shown in Figure 27-2.

The help_callback routine addresses several problems that arise when dealing with the
added complexity of a multi-level help system. Since many dialogs may be trying to pop
up the same InformationDialog, the routine uses a static variable for the dialog to prevent
multiple instances of the dialog. This variable allows the routine to keep track of when the
dialog is active and when it is dormant.

The routine is conceptually recursive, in that it is used as the callback routine for the buttons
in the help dialog. The client_data is used as an index into the help_text array.
When this parameter is 0, the routine was called by the original MessageDialog. Otherwise,
the routine was invoked as a result of the user pressing the Previous button or the More
Help button. In this case, the index is changed so that the help text changes.

If the InformationDialog has already been created and the user presses the Help button
anyway, the dialog is remapped and raised to the top of the screen using XMapRaised() .
If the parent dialog is unmapped or destroyed, the InformationDialog is also unmapped or
destroyed. In order to maintain the correct state information, we install an
XmNdestroyCallback to monitor the destruction of the InformationDialog. When the
dialog is destroyed, we need to reset the handle to the dialog to NULL so that we cannot
reference the destroyed dialog again from help_callback() the next time help is
requested.

Figure 27-2: Displaying multiple levels of help text

Motif Programming Manual 873

Chapter 27: Advanced Dialog Programming

All of our help text is fairly short, but if you need to provide help text that longer, you may
want to use a ScrolledText object in your help dialog. With a ScrolledText object, you can
display text of an arbitrary length without worrying about screen real estate. This technique
is explained in Chapter 7, Custom Dialogs.

Context-sensitive Help
Although the user can access the help system by using the HELP or F1 keys, this interface
is somewhat cumbersome and it doesn’t work for widgets like Labels that do not process
input events.You can provide a more intuitive interface that allows the user to point-and-
click directly on a widget to obtain help. The Motif Style Guide refers to this style of help
as context-sensitive help.

Context-sensitive help is make possible by the XmTrackingEvent() routine, which takes
the following form:

Widget XmTrackingEvent (Widget widget ,
Cursor cursor ,
Boolean confine_to ,
XEvent * event)

The routine invokes a server-grab on the pointer, changes the pointer shape to that specified
by the cursor parameter, and waits until the user presses a mouse button. The routine
returns the widget on which the user pressed the button. If the confine_to parameter is
True , the cursor is confined to the window of the specified widget . This window is also
used as the owner of the pointer grab. The event parameter returns the actual event
performed by the user.

An application usually provides context-sensitive help through an item on the Help menu.
Example 27-3 shows the query_for_help() callback routine that could be used for such
a menu item.

Example 27-3. The query_for_help() routine

#include <X11/cursorfont.h>

Widget toplevel;

void query_for_help (Widget widget, XtPointer client_data,
XtPointer call_data)

{
Cursor cursor;
Display *display;
Widget help_widget;
XmAnyCallbackStruct *cbs, *newcbs;
XEvent event;

cbs = (XmAnyCallbackStruct *) call_data;
display = XtDisplay (toplevel);
cursor = XCreateFontCursor (display, XC_hand2);

Chapter 27: Advanced Dialog Programming

874 Motif Programming Manual

help_widget = XmTrackingEvent (toplevel, cursor, True, &event);

while (help_widget != NULL) {
if (XtHasCallbacks (help_widget, XmNhelpCallback) ==

XtCallbackHasSome)
{

newcbs->reason = XmCR_HELP;
newcbs->event = &event;
XtCallCallbacks (help_widget, XmNhelpCallback,

(XtPointer) newcbs);
help_widget = NULL;

}
else

help_widget = XtParent (help_widget);
}

XFreeCursor (display, cursor);
}

When the user selects the menu item for context-sensitive help, query_for_help() is
invoked. This routine calls XmTrackingEvent() to allow the user to specify a widget on
which to see help information. The confine_to parameter is set to True , so the pointer
is constrained to the window of the toplevel widget. We use toplevel so that the user
can select any component in the entire application.

XmTrackingEvent() changes the pointer to the specified cursor to provide visual
feedback that the application is in a new state. Since the user is expected to click on a object,
the routine uses the XC_hand2 glyph that shows a pointing hand. The cursor is created
using XCreateFontCursor() . See Volume 1, Xlib Programming Manual, for more
information.

If the user clicks on any valid widget within the application, XmTrackingEvent() returns
the ID for that widget. The widget itself is not activated and it does not receive any events
that indicate that anything has happened at all. If the user does not click on a valid widget,
the function returns NULL. If XmTrackingEvent() returns a widget ID, we use
XtCallCallbacks() to activate the XmNhelpCallback for the widget. If the widget
does not have a help callback, query_for_help() climbs the widget tree looking for an
ancestor widget with a help callback.

While the confine_to flag makes XmTrackingEvent() useful for constraining mouse
movement, you should use this feature with caution. Once the cursor is confined to the
window, the server grab is not released until the user presses the mouse button. We also
advise caution if you are using a debugger while working with this function. If the debugger
stops at a breakpoint while the function is invoked, you will have to log in remotely and kill
the debugger process to release the pointer grab. If you kill the process, you will have to
shut down the computer.

Motif Programming Manual 875

Chapter 27: Advanced Dialog Programming

Working Dialogs
The Motif WorkingDialog is used to inform the user that an application is busy processing,
so that it doesn’t have the time to handle other actions the user may take. For example, if
your application is busy trying to figure out the complete value of pi, the user is probably
going to have to wait for the application to respond to her next action. The delay occurs
because the application code has control, rather than Xt. When Xt has control, it processes
events and dispatches them to the appropriate widgets in the application. If a widget has a
callback installed for an event, Xt returns control to the application. While the application
has control, there is no way for the window system to service any requests the user may
happen to make.

In the meantime, the application is faced with the dilemma of how it is going to process
events that happen in the interim. While your application is busy number-crunching, the
user is frantically pounding on the Stop button and hoping that the application will figure
out that she really didn’t want it to figure out the complete value of pi, but instead to print
out the recipe for cherry pie.

What the application needs to do is to find a way to do the necessary work for callback
routine and process events at the same time. The solution is conceptually simple: the
application should periodically check to see if there are any events in the input queue, and
if there are, process and dispatch them. The implementation of this solution, on the other
hand, is quite a different story. There are a number of different approaches you can take,
depending on the nature of the work you are trying to do. Let’s examine four of the options:

• If the task can be broken down into tiny chunks, you can set up work procedures that
are invoked automatically by Xt when there are no events on the event queue. Since
events are very infrequent in terms of processor time, this type of processing goes quite
quickly. This technique works best for tasks that are not critical to the application; the
tasks can be done in the background and not interfere with the normal event-processing
loop. To minimize the effect on system performance, you should be sure to break the
task into small components time-wise.

• You can set timer event handlers to go off periodically using XtAppAddTimeOut() .
As each timer fires, another chunk of work is done before control is returned to Xt.
While this method is similar to using work procedures, the time intervals may be more
in tune with the type of processing you are doing. Timers are typically used when the
work being done is synchronous with the system clock or some other regular interval.
However, timers are not associated directly with the system clock, so a task should not
rely on their accuracy.

• You can choose to maintain control and use Xlib and Xt functions to process events
yourself. In this case, your application checks for events in the queue and processes
them. This technique is appropriate for applications that need to perform complex

Chapter 27: Advanced Dialog Programming

876 Motif Programming Manual

operations, as it is possible to handle sophisticated looping constructs, process
recursively, or manage complex state information.

• You can simply choose to ignore events entirely. In this case, it is best to set the cursor
to a stopwatch or hour glass shape, and/or post a message that indicates that the user
must wait. This solution is sometimes the only one available if the task is dependent
on some outside entity. Examples include device driver communication (printer, disk
drives), network communications (NFS), inter-process activity (forks and pipes), or
anything that puts the application in a state where it has no control over the object with
which it is communicating.

You can mix and match some of these techniques. Say the user wants to send a large
PostScript file to a laser printer. When she clicks on the Print button, you can post a
WorkingDialog that reports that the file is being printed and the user must wait.
Additionally, you could provide an option that allows the user to send the file to the printer
in the background. In this case, you can send the file to the printer in small chunks using
work procedures.

The four methods fall into two basic categories:

• Xt maintains control, processes events as normal, and periodically calls application
routines

• The application takes control, performs the necessary tasks, and periodically calls Xlib
functions to check the event queue

Work procedures and timers return control to Xt and allow it to process events as normal.
In turn, Xt gives control back to the application for short intervals every now and then.
When the application maintains control, it can query and process X events whenever it
wants. While this process is more complicated, it does make it easier for the application to
control its own processing.

In all four situations, you can decide whether or not to display a WorkingDialog. If you
want to give the user the ability to terminate the work in progress, you can provide a Stop
button in the dialog. Otherwise, you can simply display the dialog for informational
purposes. If you do not want the user to interact with other windows in the application while
the WorkingDialog is being displayed, you can make the dialog modal as described in
Section 5.7.1, in Chapter 5, Introduction to Dialogs.

Using Work Procedures
Work procedures in Xt are extremely simple in design. They are typically used by
applications that can process tasks in the background. When a work procedure is used in
conjunction with a WorkingDialog, the application can provide feedback on the status of
the task.Say the user wants to load a large bitmap into a window. The nature of your
application requires you to load the file from disk into client-side memory, perform some

Motif Programming Manual 877

Chapter 27: Advanced Dialog Programming

bitmap manipulation, and then send the bitmap to the X server to be loaded into a pixmap.
If you suspect that this task might take a long time and you want to allow the user to
interrupt it, you can use work procedures and a WorkingDialog.

Unfortunately, demonstrating such a task is difficult, due to its extremely complex nature.
The bitmap loading operation requires a great deal of image-handling code that is a
distraction from the issue at hand, which is installing a work procedure. To get around this
problem, we present a short, abstract program that demonstrates the use of a work
procedure. In Example 27-4, we represent a time-consuming task by counting from 0 to
20000.*

Example 27-4. The working.c program

/* working.c -- represent a complicated, time-consuming task by
** counting from 0 to 20000 and provide feedback to the user about
** how far we are in the process. The user may terminate the process
** at any time by selecting the Stop button in the WorkingDialog.
** This demonstrates how a WorkingDialog can be used to allow the
** user to interrupt lengthy procedures.
*/

#include <Xm/MessageB.h>
#include <Xm/PushB.h>

#define MAXNUM 20000

void done(Widget, XtPointer, XtPointer);
/* Global variables */
static int i = 0;
static XtWorkProcId work_id;

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, button;
XmString label;
Arg args[2];
int n;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

label = XmStringCreateLocalized ("Press To Start A Long Task");
n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
button = XmCreatePushButton (toplevel, "button", args, n);

* XtVaAppInitialize() is considered deprecated in X11R6.XmMessageBoxGetChild() is
deprecated from Motif 2.0.

Chapter 27: Advanced Dialog Programming

878 Motif Programming Manual

XtAddCallback (button, XmNactivateCallback, pushed,
(XtPointer) app);

XmStringFree (label);
XtManageChild (button);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* pushed() -- the callback routine for the main app's pushbutton.*/
void pushed (Widget w, XtPointer client_data, XtPointer call_data)
{

XtAppContext app = (XtAppContext) client_data;
Widget dialog;
XmString stop_txt;
Arg args[5];
int n;
Boolean count(XtPointer);

/* Create the dialog -- the "cancel" button says "Stop" */
n = 0;
stop_txt = XmStringCreateLocalized ("Stop");
XtSetArg (args[n], XmNcancelLabelString, stop_txt); n++;
dialog = XmCreateWorkingDialog (w, "working", args, n);
XmStringFree (stop_txt);

work_id = XtAppAddWorkProc (app, count, dialog);
XtUnmanageChild (XtNameToWidget (dialog, “OK”));
XtUnmanageChild (XtNameToWidget (dialog, “Help”));

/* Use cancel button to stop counting. True = remove work proc */
XtAddCallback (dialog, XmNcancelCallback, done, (XtPointer) True);
XtManageChild (dialog);

}

/* count() -- work procedure that counts to MAXNUM. When we get there,
** change the "Stop" button to say "Done".
*/
Boolean count (XtPointer client_data)
{

Widget dialog = (Widget) client_data;
char buf[64];
XmString str, button;
Boolean finished = False;
/* If we printed every number, the flicker is too fast to read.
** Therefore, just print every 1000 ticks for smoother feedback.
*/
if (++i % 1000 != 0)

return finished;
/* display where we are in the counter. */
sprintf (buf, "Counter: %d", i);
str = XmStringCreateLocalized (buf);
XtVaSetValues (dialog, XmNmessageString, str, NULL);
XmStringFree (str);
if (i == MAXNUM) {

Motif Programming Manual 879

Chapter 27: Advanced Dialog Programming

i = 0;
finished = True;
button = XmStringCreateLocalized ("Done");
XtVaSetValues (dialog, XmNcancelLabelString, button, NULL);
XmStringFree (button);
XtRemoveCallback (dialog, XmNcancelCallback, done,

(XtPointer) True);
XtAddCallback (dialog, XmNcancelCallback, done,

(XtPointer) False);
XMapRaised (XtDisplay (dialog), XtWindow (XtParent (dialog)));

}
/* Return either True, meaning we're done and remove the work proc,
** or False, meaning continue working by calling this function.
*/
return finished;

}

/* done () -- user pressed "Stop" or "Done" in WorkingDialog. */
void done (Widget dialog, XtPointer client_data, XtPointer call_data)
{

Boolean remove_work_proc = (Boolean) client_data;
if (remove_work_proc) {

i = 0;
XtRemoveWorkProc (work_id);

}
XtDestroyWidget (XtParent (dialog));

}

The main application simply displays a button. When the user presses the button, the
application starts counting and displays a WorkingDialog. The user can press Stop at any
time during the process. If the user allows the application to finish counting, the button is
changed from Stop to Done. Figure 27-3 shows both states of the WorkingDialog.

This program is designed to demonstrate how a work procedure and a WorkingDialog can
interact. The callback for the button in the application creates a WorkingDialog using
XmCreateWorkingDialog() . The callback routine also installs a work procedure using
XtAppAddWorkProc() . This function takes the following form:

XtWorkProcId XtAppAddWorkProc (XtAppContext app_context ,
XtWorkProc proc ,

Figure 27-3: Output of the working program

While Counting Finished

Chapter 27: Advanced Dialog Programming

880 Motif Programming Manual

XtPointer client_data)

The WorkingDialog is used as the client data for the count() work procedure, so that the
procedure can update the dialog. To allow the user to interrupt the counting operation, we
install done() as the XmNcancelCallback resource. If the user presses the Stop button,
this routine is invoked. The routine stops the counting operation by removing the work
procedure using XtRemoveWorkProc() .

During the counting operation, Xt calls the work procedure when there are no events that
need to be processed. The work procedure increments the global counter variable, i . Each
time i reaches an increment of 1000 , the XmNmessageString for the WorkingDialog is
updated to inform the user about the progress of the operation. The work procedure returns
True when the task is complete, which causes Xt to remove the procedure from the list of
work procedures being called. When count() returns False , Xt continues to call the
routine when the application is idle.

If the user allows the task to complete, the work procedure changes the action button to say
Done and removes the XmNcancelCallback . The procedure then reinstalls the callback
in order to change the client data from True to False . The client data must be set to False
so that done() does not try to remove the work procedure. Since the work procedure
returns True in this case, Xt removes the procedure for us.

The work procedure also calls XMapRaised() to ensure that the dialog is visible when the
operation completes. The user must explicitly press the Done button to remove the dialog.
Another approach is to call XtDestroyWidget() to remove the dialog when the
processing is done. In this case, the user is not notified that the operation has finished, but
she also does not have to respond to the dialog.

An application can install multiple work procedures, but Xt only processes one procedure
at a time. The last work procedure installed has the highest priority, so it is the first one
called, except if one work procedure installs another work procedure. In this case, the new
procedure has a lower priority than the current one.

As you can see from running the program in Example 27-4, work procedures are called
extremely frequently. In any real application, however, the task that is being performed is
going to be more sophisticated and time-consuming than our example here. It is important
that the operations you perform in a work procedure do not take too much time, or response
time will suffer. A work procedure should return frequently enough to allow Xt to process
user events, so that the operation of the entire application flows smoothly.

Using Timers
Using timers to process a task is very similar to using work procedures. Timers are not
called as frequently as work procedures, so Xt can wait longer for user events to be

Motif Programming Manual 881

Chapter 27: Advanced Dialog Programming

generated and processed when the application uses timers. An application can add a timer
using XtAppAddTimeOut() , which takes the following form:

XtIntervalId XtAppAddTimeOut (XtAppContext app_context,
unsigned long interval,
XtTimerCallbackProc proc ,
XtPointer client_data)

The interval parameter specifies how long Xt waits before invoking the timer specified
by proc . The main difference between using a timer and a work procedure is that a timer
is called once and then automatically unregistered. To have a timer called at a regular
interval, an application must call XtAppAddTimeOut() again from within the timer
callback. With this exception, using timers is similar to using work procedures, so we aren’t
going to present a separate example here. See Chapter 12, Labels and Buttons, for some
examples that use timers in various contexts.

Processing Events
If your application needs to start a lengthy process that is difficult to break into small
pieces, you probably don’t want to return control to Xt. In this case, you never lose control
of your own processing loop, but you need to check for X events that need to be processed
every once in a while. This technique is more convenient than work procedures for certain
algorithms, since the application doesn’t have to break out of its processing loop unless the
user terminates the operation or the task completes naturally.

Processing events is somewhat complicated, but not because of the function calls involved
or the design required to support the processing. The complications involve the decisions
about which events you want to process, which you want to ignore, and which you want to
put off handling until later. Say you are rendering a complicated graphic directly into a
DrawingArea. While you are busy processing, you need to decide what to do if you get an
incoming ButtonPress , Expose , or ConfigureNotify event, among others.In many
cases, what you do depends on the widget or the window that receives the event.

When an application starts a lengthy task, it should post a WorkingDialog that displays an
appropriate message. The WorkingDialog can also provide a Stop button to allow the user
to terminate the task. During the operation, the user should not be interacting with other
windows in the application. It is a good idea to change the cursor that is used in these
windows, to make it clear that the windows will not respond to user input. When the
operation is finished, the application needs to remove the WorkingDialog and reset the
cursor.

If you are going to process events yourself, you probably want to write a routine that checks
the event queue for relevant events. This routine would process all of the important events,
such as those that cause widgets to be repainted. The routine should also handle events for
the Stop button in the WorkingDialog, so the user can terminate the task.

Chapter 27: Advanced Dialog Programming

882 Motif Programming Manual

The program listed in Example 27-5 supports the requirements that we have laid out for an
application that processes its own events.*

Example 27-5. The busy.c program

/* busy.c -- demonstrate how to use a WorkingDialog and to process
** only important events. e.g., those that may interrupt the
** task or to repaint widgets for exposure. Set up a simple shell
** and a widget that, when pressed, immediately goes into its own
** loop. Set a timeout cursor on the shell and pop up a WorkingDialog
** Then enter loop and sleep for one second ten times, checking between
** each interval to see if the user clicked the Stop button or if
** any widgets need to be refreshed. Ignore all other events.
**
** main() and get_busy() are stubs that would be replaced by a real
** application; all other functions can be used as is.
*/

#include <Xm/MessageB.h>
#include <Xm/PushB.h>
#include <X11/cursorfont.h>

Widget shell;
void TimeoutCursors(Boolean, Boolean);
Boolean CheckForInterrupt(void);

main (int argc, char *argv[])
{

XtAppContext app;
Widget button;
XmString label;
Arg args[2];
void get_busy(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
shell = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
label = XmStringCreateLocalized ("Press To Start A Long Task");
XtSetArg (args[0], XmNlabelString, label);
button = XmCreatePushButton (shell, "button", args, 1);
XmStringFree (label);
XtAddCallback (button, XmNactivateCallback, get_busy, NULL);
XtManageChild (button);
XtRealizeWidget (shell);
XtAppMainLoop (app);

}

void get_busy (Widget widget, XtPointer client_data,
XtPointer call_data)

{

* XtVaAppInitialize() is considered deprecated in X11R6. XmMessageBoxGetChild () is deprecated from
Motif 2.0.

Motif Programming Manual 883

Chapter 27: Advanced Dialog Programming

int n;

TimeoutCursors (True, True);

for (n = 0; n < 10; n++) {
sleep ((unsigned) 1);
if (CheckForInterrupt ()) {

puts ("Interrupt!");
break;

}
}
if (n == 10)

puts ("Done");
TimeoutCursors (False, False);

}

/* The interesting part of the program -- extract and use at will */
static Boolean stopped; /* True when user wants to stop task */
static Widget dialog; /* WorkingDialog displayed */

/* TimeoutCursors() -- turns on the watch cursor over the application
** to provide feedback for the user that she's going to be waiting
** a while before she can interact with the application again.
*/
void TimeoutCursors (Boolean on, Boolean interruptible)
{

static int locked = False;
static Cursor cursor = (Cursor) 0;
extern Widget shell;
XSetWindowAttributes attrs;
Display *dpy = XtDisplay (shell);
XEvent event;
Arg args[5];
int n;
XmString str;
void stop(Widget, XtPointer, XtPointer);
/* "locked" keeps track if we've already called the function.
** This allows recursion and is necessary for most situations.
*/
if (on)

locked++;
else

locked--;
if (locked > 1 || (locked == 1 && on == False))

return;
/* already locked and we're not unlocking */
stopped = False;
if (!cursor)

cursor = XCreateFontCursor (dpy, XC_watch);
/* if on is true, then turn on watch cursor, otherwise, return
** the shell's cursor to normal.
*/
attrs.cursor = on ? cursor : None;
/* change the main application shell's cursor to be the timeout

Chapter 27: Advanced Dialog Programming

884 Motif Programming Manual

** cursor or to reset it to normal. If other shells exist in
** this application, they will have to be listed here in order
** for them to have timeout cursors too.
*/
XChangeWindowAttributes (dpy, XtWindow (shell), CWCursor, &attrs);
XFlush (dpy);
if (on) {

/* we're timing out, put up a WorkingDialog. If the process
** is interruptible, allow a "Stop" button. Otherwise, remove
** all actions so the user can't stop the processing.
*/
n = 0;
str = XmStringCreateLocalized ("Busy -- Please Wait.");
XtSetArg (args[n], XmNmessageString, str); n++;
dialog = XmCreateWorkingDialog (shell, "busy", args, n);
XmStringFree (str);
XtUnmanageChild (XtNameToWidget (dialog, “OK”));
XtUnmanageChild (XtNameToWidget (dialog, “Help”));
if (interruptible) {

str = XmStringCreateLocalized ("Stop");
XtVaSetValues (dialog, XmNcancelLabelString, str, NULL);
XmStringFree (str);
XtAddCallback (dialog, XmNcancelCallback, stop, NULL);

}
else

XtUnmanageChild (XtNameToWidget (dialog, “Cancel”));
XtManageChild (dialog);

}
else {

/* get rid of all button and keyboard events that occurred
** during the time out. The user shouldn't have done anything
** during this time, so flush for button and keypress events.
** KeyRelease events are not discarded because accelerators
** require the corresponding release event before normal input
** can continue.
*/
while (XCheckMaskEvent (dpy, ButtonPressMask |

ButtonReleaseMask | ButtonMotionMask |
PointerMotionMask | KeyPressMask,
&event)) {

/* do nothing */;
}
XtDestroyWidget (dialog);

}
}

/* stop() -- user pressed the "Stop" button in dialog. */
void stop (Widget dialog, XtPointer client_data, XtPointer call_data)
{

stopped = True;
}

/* CheckForInterrupt() -- check events in event queue and process
** the interesting ones.

Motif Programming Manual 885

Chapter 27: Advanced Dialog Programming

*/
Boolean CheckForInterrupt (void)
{

extern Widgetshell;
Display *dpy = XtDisplay (shell);
Window win = XtWindow (dialog);
XEvent event;
/* Make sure all our requests get to the server */
XFlush (dpy);
/* Let Motif process all pending exposure events for us. */
XmUpdateDisplay (shell);
/* Check the event loop for events in the dialog ("Stop"?) */
while (XCheckMaskEvent (dpy, ButtonPressMask | ButtonReleaseMask |

ButtonMotionMask | PointerMotionMask |
KeyPressMask, &event)) {

/* got an "interesting" event. */
if (event.xany.window == win)

XtDispatchEvent (&event); /* it's in our dialog. */
else

/* uninteresting event--throw it away and sound bell */
XBell (dpy, 50);

}
return stopped;

}

This program is obviously for demonstration purposes only. To keep to the subject matter,
we have made the main part of the program quite unrealistic and only use it to support the
functions we are about to discuss. The application displays a single button that starts a “long
task”. The get_busy() callback routine is trivial, but it demonstrates the use of the
TimeoutCursors() and CheckForInterrupt() routines.

The TimeoutCursors() routine is used to change the cursor for the main application
shell and to post the WorkingDialog. The cursor is changed to a watch shape to give the
user visual feedback that the main window is not responding to input. The routine uses the
static variable locked to keep track of how many times it has been called with on set to
True . The function does not reset the cursor and remove the WorkingDialog until a
matching number of calls has been made with onset to False . This technique makes it
possible for a low-level function in an application to call TimeoutCursors() at its
beginning and end, without affecting higher-level loops that also call the function.

The routine stores the XC_watch cursor in the static cursor variable. The cursor is created
using XCreateFontCursor() , which is why <X11/cursorfont.h> is included.
TimeoutCursors() uses XChangeWindowAttributes() to change the cursor to the
watch shape and to reset it to its normal shape when on is False . The cursor is modified
for the window of the shell widget, which is the main window for the application. If your
application uses multiple SessionShells or TopLevelShells, you will need to modify the
function to change the cursor shape for all of the shells* .

Chapter 27: Advanced Dialog Programming

886 Motif Programming Manual

At this point, we call XFlush() to make sure that all of our requests have been sent to the
server. The TimeoutCursors() function may be called from deep within an application,
so there may be a number of server requests that are waiting and we want to be sure that the
server knows about them now. If the are turning off the timeout cursor, we may also need
to read any resulting events.

Now we determine whether we are locking or unlocking the application. If we are locking
it, we create and post a WorkingDialog. The dialog is created with a standard message. If
the interruptible parameter is True , we provide a Stop button by changing the label
of the Cancel button. We also add a callback routine for button, so that we can actually stop
the task in progress.

We should note that an application does not necessarily have to post a WorkingDialog, as
long as it changes the cursor. The watch cursor provides enough feedback to indicate that
the application is in a busy state. The decision about whether or not to post a dialog really
depends on the length of the task being performed. For relatively short tasks, it typically
doesn’t make sense to provide a WorkingDialog, as it takes some time to actually create
and post the dialog.

Now the application is in a busy state. However, the user has yet to see anything; events
need to be processed in order for the dialog to be mapped to the screen. At this point, the
CheckForInterrupt() routine takes over. This routine handles Expose events by
calling XmUpdateDisplay() . This Motif function processes all of the Expose events in
the event queue by causing the server to flush these events for all of the windows on the
display. This processing may cause redrawing event handlers to be called for various
widgets. If you have installed your own exposure routines for any widgets, be sure that they
are not too time consuming, or you may find yourself in a bind. You can check to see which
windows are going to be repainted before it actually happens by using
XCheckMaskEvent() to process Expose events.

After any possible repainting has occurred, we check for any button or keyboard events in
the event queue. If one has been generated, we extract it from the input queue using
XCheckMaskEvent() . The function takes the following form:

Bool XCheckMaskEvent (Display * display ,
long event_mask ,
XEvent * event_return)

This Xlib function looks for events in the queue that match event_mask . If there is a
matching event, the event_return parameter is filled in with the event and the routine
returns True . Otherwise, the function returns False and we can return. The event is
processed only if it occurred within the WorkingDialog window. Since the application is
busy, events in other windows are not processed. If the user did something in the

* The ApplicationShell is deprecated in X11R6, where the SessionShell is to be preferred.

Motif Programming Manual 887

Chapter 27: Advanced Dialog Programming

WorkingDialog, we process the event because she may have activated the Stop button. If
the button is not provided for the dialog, it does not affect the code here.

You should be aware that XCheckMaskEvent() removes the event from the queue. If you
choose not to process an event, you cannot stick it back in the queue. If you retrieve an
event out of the queue and don’t want to process it, you should set an application-defined
variable or flag that notifies the application that it must eventually deal with the event.
Another alternative is to save the event by allocating a new XEvent structure and copying
the data. Then you dispatch the event later, when you are prepared to handle it.

We do not check for KeyRelease events in CheckForInterrupt() for a very
important reason that concerns how the X Toolkit Intrinsics handles accelerators. Say your
application has a menu item that initiates a long, complicated process. The callback
function for this menu item calls both TimeoutCursors() and
CheckForInterrupt() , just like the get_busy() routine. Let’s say that ALT-X is the
accelerator for the menu item. When the user types this key sequence, the callback routine
for the menu item is activated by the KeyPress events. At this time, the KeyRelease
events associated with the accelerator are still in the event queue. If we checked for
KeyRelease events in CheckForInterrupt() , the ones for the accelerator would get
thrown away, since they did not occur in the WorkingDialog.

Throwing away these events is a problem because Xt uses an internal state machine to
determine whether or not any particular sequence of keyboard events is an accelerator or a
prefix for one. Since Xt would never get the accompanying KeyRelease events, it would
think that the user is still entering a keyboard accelerator.Xt would not get out of that state
until the matching events were given, with the result that no other keyboard events would
work in the application until the user happened to type the same accelerator sequence. This
situation is not a bug in Xt; Xt is simply doing what it must to handle acclerators. However,
the situation does demonstrate the intricacies of handling events in X.

Getting back to CheckForInterrupt() , if the user presses the Stop in the dialog, the
event is processed and the stop() callback routine is invoked. This routines imply sets the
global variable stopped to True . By the time that CheckForInterrupt() is ready to
return, stopped has been set, so the function returns True . If the WorkingDialog does not
have a Stop button, the callback routine is not installed, so stopped is never set to True .

After the get_busy() routine finishes processing, it calls TimeoutCursors() again to
unlock the application. When on is set to False , the routine uses XCheckMaskEvent()
to look in the event queue for button and keyboard events. In this case, the events are
thrown away, since the input is no longer useful. The routine also destroys
theWorkingDialog. In one sense, TimeoutCursors() implements a kind of modality,
similar to that discussed in Section 5.7.1 of Chapter 5, Introduction to Dialogs. However,
modality alone cannot provide the functionality necessary to handle long-running tasks.

Chapter 27: Advanced Dialog Programming

888 Motif Programming Manual

Updating the Display
As discussed earlier, XmUpdateDisplay() checks the event queue for all Expose events
and processes them immediately. However, there are some circumstances under which the
routine does not work as you might expect. For example, let’s say that your application
creates and posts a dialog that contains a DrawingArea widget. You call XSync() and
XmUpdateDisplay() to make sure that the dialog is on the screen and fully exposed.
After you call XClearWindow() to make sure the window is clear, you begin drawing.
Unfortunately, you may find that nothing is drawn.

The problem is due to the redirection of events from the window manager and the way
events are processed and queued. When a dialog is posted using XtManageChild() or
XtPopup() , the toolkit calls XMapRaised() to raise the window to the top of the window
stack. The call to XSync() sends the MapRequest event to the server, which redirects it
to the window manager(e.g., mwm). A bottleneck can occur if the window manager is
swapped out, which is a side effect of multi-tasking operating systems such as UNIX.

In this case, mwm may not react immediately to the redirection and can take an
indeterminate amount of time to respond. The X server doesn’t take this delay into account.
It thinks that the event has been delivered properly, so your application believes that the
window has been mapped. As a result, XmUpdateDisplay() doesn’t get the Expose
event that you were expecting and drawing does no good because the window still hasn’t
been mapped. When mwm gets around to mapping the window to the screen, the server
generates the Expose event, but by now your application is off doing something else.

One solution to this problem is to change the design of your application so that it doesn’t
start drawing until the server actually generates the Expose events. In this case, you should
post the dialog and immediately return control to the main event-processing loop
(XtAppMainLoop()). If you have installed an event handler or a translation for the
Expose event, the routine is called at the appropriate time. Another advantage to this
design is that the drawing procedure is called any time an Expose event occurs, which
ensures that the window is always up-to-date.

In Example 27-6, we show another solution. This solution should be used only if you need
to create, pop up, or manage a dialog and then immediately draw into the window. The
ForceUpdate() routine ensures that the specified widget is visible before it returns.

Example 27-6. The ForceUpdate() routine.

/* ForceUpdate() -- a superset of XmUpdateDisplay() that ensures
** that a window's contents are visible before returning.
** The monitoring of window states is necessary because an attempt to
** map a window is subject to the whim of the window manager, which can
** introduce a significant delay before the window is actually mapped
** and exposed. This function is intended to be called after XtPopup(),
** XtManageChild() or XMapRaised(). Don't use it in other situations
** as it may sit and process other unrelated events until the widget

Motif Programming Manual 889

Chapter 27: Advanced Dialog Programming

** becomes visible.
*/

/* The parameter widget must be visible before the function returns */
void ForceUpdate (Widget w)
{

Widget diashell, topshell;
Window diawindow, topwindow;
XtAppContext cxt = XtWidgetToApplicationContext (w);
Display *dpy;
XWindowAttributes xwa;
XEvent event;
/* Locate the shell we are interested in */
for (diashell = w; !XtIsShell (diashell);

diashell = XtParent (diashell));
/* Locate its primary window's shell (which may be the same) */
for (topshell = diashell; !XtIsTopLevelShell (topshell);

topshell = XtParent (topshell));
/* If the dialog shell (or its primary shell window) is
** not realized, don't bother... nothing can possibly happen.
*/
if (XtIsRealized (diashell) && XtIsRealized (topshell)) {

dpy = XtDisplay (topshell);
diawindow = XtWindow (diashell);
topwindow = XtWindow (topshell);

/* Wait for the dialog to be mapped.
** It's guaranteed to become so
*/
while (XGetWindowAttributes (dpy, diawindow, &xwa) &&

xwa.map_state != IsViewable) {
/*...if the primary is (or becomes) unviewable or
** unmapped, it's probably iconic, and nothing will
happen.
*/
if (XGetWindowAttributes (dpy, topwindow, &xwa) &&

xwa.map_state != IsViewable)
break;

/* we are guaranteed there will be an event of some kind.
*/
XtAppNextEvent (cxt, &event);
XtDispatchEvent (&event);

}
}
/* The next XSync() will get an expose event. */
XmUpdateDisplay (topshell);

}

This routine makes sure that a dialog is visible by waiting for the window of the dialog to
be mapped to the screen.

Chapter 27: Advanced Dialog Programming

890 Motif Programming Manual

Avoiding Forks
Before we close out this section, there is one more method of executing tasks in the
background that we should discuss. Beginning programmers tend to use library functions
and system calls such as system() , popen() , fork() , and exec() to invoke external
commands. Although these functions are perfectly reasonable, they can backfire quite
easily on virtually any error condition. Recovering from these errors is the GUI
programmer’s nightmare, since there are so many different possible conditions to deal with.

The purpose of using these functions, of course, is to call another UNIX program and have
it run concurrently with the main application. The system() and popen() functions fork
a new process using the fork() system call. They also use some form of exec() so the
new child process can invoke the external UNIX program. If the new process cannot fork,
if there is something wrong with the external UNIX command, if there is a communications
protocol error, or any one of a dozen other possible error conditions, there is noway for the
external program to display an error message as a part of the main application.

It is unlikely that the external program would display a dialog box or any sort of reasonable
user-interface element. It is illegal fora new process to use any of the widgets or windows
in the main application because only one connection to the server is allowed per process. If
the child process wants to post a dialog, it must establish a new connection to the X server
and create an entirely new widget tree, as it is a separate application. Since most system
utilities do not have graphical user interface front ends, this scenario is very unlikely. It is
also entirely unreasonable to have any expectations of the external process, especially since
other solutions are much easier.

If a separate process is necessary in order to accomplish a particular task, setting up pipes
between the child application and the parent is usually the best alternative. The popen()
function uses this method superficially, but it is not the most elegant solution. The routine
only handles forking the new process and setting up half of a two-way pipe. The popen()
function is used in several places throughout the book; check the index for those uses.

To really handle external processes and pipes properly, an application should do the
following:

1. The parent process callspipe() to set up entry points for the expected child process’
input and output channels. Two pipes for both input and output are usually needed.

2. The parent process callsfork() to spawn the new child process.

3. The child usesdup2() to redirect its ownstdin , stdout , andstderr to the other
ends of the pipes set up by the parent. The communication pipeline between the parent
and the child is now established.

4. The parent callsXtAppAddInput() to tell Xt to monitor an additional file descriptor
while it is waiting for input events from the X server.

Motif Programming Manual 891

Chapter 27: Advanced Dialog Programming

5. The parent can read data (e.g., output, error conditions, etc.) sent by the child using
read() on the appropriate pipe.

6. The parent can display the output from the pipe to a dialog, a ScrolledText object, or
some other widget because it is still in connection with the X server.

If the parent calls XtAppAddInput() , Xt can see the data the child sends through the pipe
and invoke the callback routine associated with the file descriptor. XtAppAddInput()
takes the following form:

XtInputId XtAppAddInput (XtAppContext app_context ,
int source ,
XtPointer mask,
XtInputCallbackProc proc ,
XtPointer client_data)

The source parameter should be the side of the pipe that the parent uses to read data sent
by the child process. The proc function is called when there is data to read on the pipe.
When the function is called, the client_data is passed to the callback. For example, you
can pass the process ID returned by fork() , so you can see if the process is still alive and
read the data using read() .

This discussion is merely presented as an overview, since the implementation details are
beyond the scope of this book. For example, UNIX signals cause problems in a number of
ways. The parent process is sent signals when the child dies or its process state changes.
The child is also sent signals that are delivered to the parent by the user or other
outsideforces. Different forms of UNIX require that process groups be set up in different
ways to avoid other problems with signals.

Another problem involves file descriptors that are set up as non-blocking files. If read()
returns 0 with one of these descriptors, you may not know whether there is nothing to read
or the end of the file has been reached, which means that the child process has terminated.
Incidentally, popen() does not deal with any of these issues correctly, so building a new
solution is the best thing to do in the long run.

You should really consult the programmer’s guide for your UNIX system for more
information on the techniques used to spawn new processes and communicate with them
appropriately. Once you have a handle on those issues, it should be relatively easy to
redirect text from file descriptors using the toolkit. For more information on
XtAppAddInput() , including examples of how it can be used, see Volume 4, X Toolkit
Intrinsics Programming Manual.

Dynamic Message Symbols
The MessageDialog is used to display many different types of messages; the image in the
dialog helps the user identify the purpose of the dialog. The pixmaps used by the standard
MessageDialogs are predefined by the Motif toolkit. When you are using the standard

Chapter 27: Advanced Dialog Programming

892 Motif Programming Manual

dialogs, you typically change the dialog’s type rather than its symbol, since changing its
type effectively changes the symbol that it displays. However, you can change the
MessageDialog’s symbol to a customized image using the XmNsymbolPixmap resource.

The resource takes a pixmap value that must be created before the resource is set. When the
resource is set, the pixmap is not copied by the dialog widget. If the dialog is destroyed, you
should be sure to free the pixmap unless you are using it elsewhere. If you are going to
destroy the dialog using XtDestroyWidget() directly, you should get the pixmap by
calling XtVaGetValues() , so that you can free it. However, the dialog can also be
destroyed automatically, so you should also specify an XmNdestroyCallback procedure
that is called whenever the dialog is destroyed.

Example 27-7 shows an example of using a custom image in a standard MessageDialog.
The program also demonstrates how the dialog should clean up after itself.*

Example 27-7. The warn_msg.c program

/* warn_msg.c -- display a very urgent warning message.
** Really catch the user's attention by flashing an urgent-
** looking pixmap every 250 milliseconds.
** The program demonstrates how to set the XmNsymbolPixmap
** resource, how to destroy the pixmap and how to use timers.
*/

#include <Xm/MessageB.h>
#include <Xm/PushB.h>
#include "bang0.symbol"
#include "bang1.symbol"

#define TEXT "Alert!\n\
The computer room is ON FIRE!\n\
All of your e-mail will be lost."

/* define the data structure we need to implement flashing effect */
typedef struct {

XtIntervalId id;
int which;
Pixmap pix1, pix2;
Widget dialog;
XtAppContext app;

} TimeOutClientData;

main (int argc, char *argv[])
{

XtAppContextapp;
Widget toplevel, button;
XmString label;
Arg args[2];

* XtVaAppInitialize() is considered deprecated in X11R6. XmStringCreateLtoR() and
XmMessageBoxGetChild() are deprecated from Motif 2.0.

Motif Programming Manual 893

Chapter 27: Advanced Dialog Programming

int n;
void warning(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
label = XmStringCreateLocalized ("Do Not Touch");
n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
button = XmCreatePushButton (toplevel, "button", args, n);
XtManageChild (button);
XmStringFree (label);
/* set up callback to popup warning */
XtAddCallback (button, XmNactivateCallback, warning, NULL);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* warning() -- callback routine for the button. Create a message
** dialog and set the message string. Allocate an instance of
** the TimeOutClientData structure and set a timer to alternate
** between the two pixmaps. The data is passed to the timeout
** routine and the callback for when the user presses "OK".
*/
void warning (Widget parent, XtPointer client_data,

XtPointer call_data)
{

Widget dialog;
XtAppContext app = XtWidgetToApplicationContext (parent);
XmString text;
void done(Widget, XtPointer, XtPointer);
void destroy_it(Widget, XtPointer, XtPointer);
void blink(XtPointer, XtIntervalId *);
Display *dpy = XtDisplay (parent);
Screen *screen = XtScreen (parent);
Pixel fg, bg;
Arg args[5];
int n, depth;
TimeOutClientData*data = XtNew (TimeOutClientData);

/* Create the dialog */
n = 0;
XtSetArg (args[n], XmNdeleteResponse, XmDESTROY); n++;
dialog = XmCreateMessageDialog (parent, "danger", args, n);
XtUnmanageChild (XtNameToWidget (dialog, “Cancel”));
XtUnmanageChild (XtNameToWidget (dialog, ”Help”));
XtAddCallback (dialog, XmNokCallback, done, NULL);
XtAddCallback (dialog, XmNdestroyCallback, destroy_it, data);
/* now that dialog has been created, it's colors are initialized */
XtVaGetValues (dialog, XmNforeground, &fg, XmNbackground, &bg,

XmNdepth, &depth, NULL);
/* Create pixmaps that are going to be used as symbolPixmaps.
** Use the foreground and background colors of the dialog.
*/

Chapter 27: Advanced Dialog Programming

894 Motif Programming Manual

data->pix1 = XCreatePixmapFromBitmapData (dpy, XtWindow (parent),
bang0_bits, bang0_width, bang0_height,
fg, bg, depth);

data->pix2 = XCreatePixmapFromBitmapData (dpy, XtWindow (parent),
bang1_bits, bang1_width, bang1_height,
fg, bg, depth);

/* complete the timeout client data */
data->dialog = dialog;
data->app = app;
/* Add the timeout for blinking effect */
data->id = XtAppAddTimeOut (app, 1000L, blink, (XtPointer) data);
/* display the help text and the appropriate pixmap */
text = XmStringGenerate (TEXT, XmFONTLIST_DEFAULT_TAG,

XmCHARSET_TEXT, NULL);
XtVaSetValues (dialog, XmNmessageString, text, XmNsymbolPixmap,

data->pix2, NULL);
XmStringFree (text);
XtManageChild (dialog);

}

/* blink() -- visual blinking effect for dialog's symbol. Displays
** flashing ! symbol, restarts timer and saves timer id.
*/
void blink (XtPointer client_data, XtIntervalId *id)
{

TimeOutClientData*data = (TimeOutClientData *) client_data;
Pixmap pixmap;

data->id = XtAppAddTimeOut (data->app, 250L, blink,
(XtPointer) data);

data->which = !data->which;
pixmap = (data->which ? data->pix1 : data->pix2);
XtVaSetValues (data->dialog, XmNsymbolPixmap, pixmap, NULL);

}

/* done() -- called when user presses "OK" in dialog or
** if the user picked the Close button in system menu.
** Remove the timeout id stored in data, free pixmaps and
** make sure the widget is destroyed (which is only when
** the user presses the "OK" button.
*/
void done (Widget dialog, XtPointer client_data, XtPointer call_data)
{

XtDestroyWidget (XtParent (dialog));
}

/* destroy_it() -- called when dialog is destroyed. Removes
** timer and frees allocated data.
*/
void destroy_it (Widget dialog, XtPointer client_data,

XtPointer call_data)
{

TimeOutClientData *data = (TimeOutClientData *) client_data;
Pixmap symbol;

Motif Programming Manual 895

Chapter 27: Advanced Dialog Programming

XtRemoveTimeOut (data->id);
XFreePixmap (XtDisplay (data->dialog), data->pix1);
XFreePixmap (XtDisplay (data->dialog), data->pix2);
XtFree ((char *) data);

}

The dialog is created in warning() , the callback routine for the PushButton in the main
window. We create a simple MessageDialog that does not have a predefined symbol so we
can specify a custom image. The dialog actually uses two symbols that are exchanged every
250 milliseconds by a timer callback routine. The output of this program is shown in Figure
27-4.

To implement the flashing symbol, we must associate certain information with the dialog.
Basically, we need to keep track of the two pixmaps and the timer routine. All of the
information is placed in a single data structure, so we can pass the structure around as client
data. We can also use multiple structure variables to store information about multiple
dialogs. The TimeOutClientData is defined as follows:

typedef struct {
XtIntervalId id;
int which;
Pixmap pix1, pix2;
Widget dialog;
XtAppContext app;

} TimeOutClientData;

The warning() routine allocates a new instance of the structure using XtNew() , since it
is going to create anew dialog and it needs a unique structure for the dialog. The routine
uses XmCreateMessageDialog() to create the dialog. We unmanage the Cancel and
Help buttons and specify a callback for the OK button. The done() callback simply calls
XtDestroyWidget() , which causes the XmNdestroyCallback to be called. We also
set the XmNdeleteResponse resource for the dialog to XmDESTROY. This setting causes

Figure 27-4: The output of the warn_msg program

Chapter 27: Advanced Dialog Programming

896 Motif Programming Manual

the Motif toolkit to destroy the dialog if the user dismisses it using the Close button on the
window menu,

Since we are not reusing the dialog or its data, we must be sure to free the pixmaps, release
the timer, and free the allocated data structure when the dialog is destroyed. To be sure that
these tasks take place, we install a callback function for the XmNdestroyCallback
resource. The destroy_it() routine handles all of the cleanup for the dialog.

Before we create the pixmaps that are used in the dialog, we retrieve the dialog’s
foreground and background colors using XtVaGetValues() so that the new pixmaps can
use the same colors. Once the colors are known, we can create the pixmaps and finish
initializing the fields in the TimeOutClientData structure. The dialog field of the
structure points to the MessageDialog. We call XtAppAddTimeOut() to start the timer
that controls the flashing effect and set the id field to the timer ID.

We perform a final bit of setup for the dialog by specifying the XmNsymbolPixmap and
XmNmessageString resources. Once everything is set up, the function returns, Xt regains
control, and normal event processing resumes. After the initial one-second interval times
out, the blink() function is called. This routine adds another timeout for 250 milliseconds
and switches the pixmaps displayed in the dialog. This loop continues until the user
dismisses the dialog, at which time it is destroyed, the pixmaps are freed, the timer is
removed, and the TimeOutClientData structure is freed.

Since we created a simple MessageDialog that does not have a predefined image, we did
not have to get a handle to the XmNsymbolPixmap for the dialog and destroy it. However,
if you decide to change the pixmap for one of the standard dialogs that has a predefined
symbol, like the ErrorDialog, you should get its pixmap and free it. In this case, you should
use XmDestroyPixmap() rather than XFreePixmap() . The Motif dialogs use
XmGetPixmap() to create their images, so the pixmaps must be freed with the companion
routine XmDestroyPixmap() . See Chapter 3, Overview of the Motif Toolkit, for a
discussion on XmGetPixmap() .

Although changing the symbol pixmap in a dialog is quite simple, using the feature
effectively requires a careful design to make sure that all of the pointers and data structures
are destroyed appropriately. Being meticulous about cleaning up after destroyed widgets
and other objects is sometimes a difficult task because of the many ways in which the user
can destroy them. However, eliminating these possible memory leaks enables a program to
run longer and more efficiently.

Summary
Developing a real application often involves a lot of work to get the details just right. Some
of the most interesting problems in designing an interface cannot be solved by Motif alone.
Motif provides the basic user interface, but you must make it work with your application.

Motif Programming Manual 897

Chapter 27: Advanced Dialog Programming

A solid understanding of the fundamentals of the X Window System and the X Toolkit
Intrinsics makes it easier to fine-tune the interface for an application. This chapter has
presented some solutions to common problems that require using both Xlib and Xt routines
in conjunction with the Motif toolkit.

Chapter 27: Advanced Dialog Programming

898 Motif Programming Manual

Motif Programming Manual 899

Chapter 1

A
Additional Example

Programs
This appendix provides some additional example programs that illustrate techniques not
discussed in the body of the book.

This appendix contains a number of programs that provide more realistic examples of how
the Motif toolkit is used. Most of the examples are also intended to encourage further
investigation into other X-related topics, such as the use of app-defaults files, fallback
resources, and command-line option parsing. Our discussion of the examples is fairly
limited; see the comments in the code for explanations of various implementation details.

A Bitmap Display Utility
The xshowbitmap program is a useful utility for reviewing a group of bitmap files. The
filenames for the bitmaps can be specified on the command line, sent through a pipe, or
typed into stdin . All of the bitmaps are drawn into a pixmap, which is rendered into a
DrawingArea widget. The DrawingArea is used as the work window for a
ScrolledWindow, so that we can demonstrate application-defined scrolling for the Motif
ScrolledWindow. The bitmaps are displayed in an equal number of rows and columns if
possible. Alternatively, you can specify either the number of rows or the number of
columns using the -rows or -columns command-line option, respectively.

The example in Example A-1 demonstrates the use of Xt mechanisms for adding
command-line options and application-level resources in an application. For an explanation
of these Xt features, see Volume 4. For details on the Xlib functions for reading and
manipulating bitmaps, see Volume 1.*

Example A-1. The xshowbitmap.c program

/* Written by Dan Heller and Paula Ferguson.
** Copyright 1994, O’Reilly & Associates, Inc.

* XtVaAppInitialize () is considered deprecated in X11R6. The SessionShell and XtVaOpenApplica-
tion () are only available in X11R6.

Appendix A: Additional Example Programs

900 Motif Programming Manual

**
** The X Consortium, and any party obtaining a copy of these files from
** the X Consortium, directly or indirectly, is granted, free of charge, a
** full and unrestricted irrevocable, world-wide, paid up, royalty-free,
** nonexclusive right and license to deal in this software and
** documentation files (the “Software”), including without limitation the
** rights to use, copy, modify, merge, publish, distribute, sublicense,
** and/or sell copies of the Software, and to permit persons who receive
** copies from any such party to do so. This license includes without
** limitation a license to do the foregoing actions under any patents of
** the party supplying this software to the X Consortium.
*/

/* xshowbitmap.c -- displays a set of bitmaps specified on the command
** line, from a pipe, or typed into stdin. Bitmaps must be specified
** as file names.
**
** Usage: xshowbitmap
** -ssorts the bitmaps in order of size with largest first
** -vverbose mode for when input is redirected to stdin
** -wwidth of viewport window
** -hheight of viewport window
** -fgforeground color
** -bgbackground color
** -labellabels each bitmap with its corresponding filename
**(this is the default behavior)
** -nolabeldoesn’t label each bitmap with its filename
** -grid Nline width for grid between bitmaps; defaults to 1
** -rows Nnumber of rows; cannot be used with -cols
** -cols Nnumber of columns; cannot be used with -rows
** -fn fontfont for bitmap filenames
** -bw max-widthexcludes bitmaps larger than this width; default is 64
** -bh max-heightexcludes bitmaps larger than this height; default is 64
** -indicates to read from stdin; piping doesn’t require
**the ‘-’ argument
** [no arguments]reads from stdin
**
** Modified by A.J.Fountain, IST
** for Motif 2.1/X11R6, ANSI
**
** Example usage:
** xshowbitmaps /usr/X11R6/include/X11/bitmaps/*
*/

#include <stdio.h>
#include <X11/Xos.h>
#include <Xm/ScrolledW.h>
#include <Xm/DrawingA.h>
#include <Xm/ScrollBar.h>

#ifdef max
#undef max
#endif
#define max(a,b) ((int)(a)>(int)(b)?(int)(a):(int)(b))

Motif Programming Manual 901

Appendix A: Additional Example Programs

#define min(a,b) ((int)(a)<(int)(b)?(int)(a):(int)(b))

typedef struct {
char *name;
int len;
unsigned int width, height;
Pixmap bitmap;

} Bitmap;

/* Resrcs is an object that contains global variables that we want the
** user to be able to initialize through resources or command line options.
** XtAppInitialize() initializes the fields in this data structure to values
** indicated by the XrmOptionsDescRec structure defined later.
*/
struct _resrcs {

Boolean sort; /* sort the bitmaps */
Boolean verbose; /* loading bitmaps verbosely */
Boolean label_bitmap; /* whether to label bitmaps */
int max_width, max_height; /* largest allowable bitmap */
unsigned int grid; /* line width between bitmaps */
Pixel fg, bg; /* colors of bitmaps */
XFontStruct *font; /* font for bitmap labels */
Dimension view_width, view_height;/* initial clip window size */
int rows, cols; /* forcefully set #rows/cols */

} Resrcs;

/* .Xdefaults or app-defaults resources. The last field in each structure
** is used as the default values for the field in the Resrcs struct above.
*/
static XtResource resources[] = {

{ “sort”, “Sort”, XmRBoolean, sizeof (Boolean), XtOffsetOf (struct _resrcs,
sort), XmRImmediate, False },

{ “verbose”, “Verbose”, XmRBoolean, sizeof (Boolean), XtOffsetOf (struct _
resrcs,verbose), XmRImmediate, False },

{ “labelBitmap”, “LabelBitmap”, XmRBoolean, sizeof (Boolean), XtOffsetOf
(struct _resrcs, label_bitmap), XmRImmediate, (char *) True },

{ “grid”, “Grid”, XmRInt, sizeof (int), XtOffsetOf (struct _resrcs, grid),
XmRImmediate, (char *) 1 },

{ “bitmapWidth”, “BitmapWidth”, XmRInt, sizeof (int), XtOffsetOf (struct _
resrcs, max_width), XmRImmediate, (char *) 64 },

{ “bitmapHeight”, “BitmapHeight”, XmRInt, sizeof (int), XtOffsetOf (struct
_resrcs, max_height), XmRImmediate, (char *) 64 },

{ XmNfont, XmCFont, XmRFontStruct, sizeof (XFontStruct *), XtOffsetOf
(struct _resrcs, font), XmRString, XtDefaultFont },

{ XmNforeground, XmCForeground, XmRPixel, sizeof (Pixel), XtOffsetOf
(struct _resrcs, fg), XmRString, XtDefaultForeground },

{ XmNbackground, XmCBackground, XmRPixel, sizeof (Pixel), XtOffsetOf
(struct _resrcs, bg), XmRString, XtDefaultBackground },

{ “view-width”, “View-width”, XmRDimension, sizeof (Dimension), XtOffsetOf
(struct _resrcs, view_width), XmRImmediate, (char *) 500 },

{ “view-height”, “View-height”, XmRDimension, sizeof (Dimension),
XtOffsetOf (struct _resrcs, view_height), XmRImmediate, (char *)
300 },

{ “rows”, “Rows”, XmRInt, sizeof (int), XtOffsetOf (struct _resrcs, rows),

Appendix A: Additional Example Programs

902 Motif Programming Manual

XmRImmediate, 0 },
{ “cols”, “Cols”, XmRInt, sizeof (int), XtOffsetOf (struct _resrcs, cols),

XmRImmediate, 0 },
};

/* If the following command line args (1st field) are found, set the
** associated resource values (2nd field) to the given value (4th field).
*/
static XrmOptionDescRec options[] = {

{ “-sort”, “sort”, XrmoptionNoArg, “True” },
{ “-v”, “verbose”, XrmoptionNoArg, “True” },
{ “-fn”, “font”, XrmoptionSepArg, NULL },
{ “-fg”, “foreground”, XrmoptionSepArg, NULL },
{ “-bg”, “background”, XrmoptionSepArg, NULL },
{ “-w”, “view-width”, XrmoptionSepArg, NULL },
{ “-h”, “view-height”, XrmoptionSepArg, NULL },
{ “-rows”, “rows”, XrmoptionSepArg, NULL },
{ “-cols”, “cols”, XrmoptionSepArg, NULL },
{ “-bw”, “bitmapWidth”, XrmoptionSepArg, NULL },
{ “-bh”, “bitmapHeight”, XrmoptionSepArg, NULL },
{ “-bitmap_width”, “bitmapWidth”, XrmoptionSepArg, NULL },
{ “-bitmap_height”, “bitmapHeight”, XrmoptionSepArg, NULL },
{ “-label”, “labelBitmap”, XrmoptionNoArg, “True” },
{ “-nolabel”, “labelBitmap”, XrmoptionNoArg, “False” },
{ “-grid”, “grid”, XrmoptionSepArg, NULL },

};

/* size_cmp() -- used by qsort to sort bitmaps into alphabetical order
** This is used when the “sort” resource is true or when -sort is given.
*/
int size_cmp(Bitmap *b1, Bitmap *b2)
{

int n = (int) (b1->width * b1->height) - (int) (b2->width * b2->height);
if (n)

return n;
return strcmp (b1->name, b2->name);

}

/* int_sqrt() -- get the integer square root of n. Used to put the
** bitmaps in an equal number of rows and colums.
*/
int int_sqrt(register int n)
{

register int i, s = 0, t;
for (i = 15; i >= 0; i--) {

t = (s | (1L << i));
if (t * t <= n)

s = t;
}
return s;

}

/* global variables that are not changable thru resources or command
** line options.

Motif Programming Manual 903

Appendix A: Additional Example Programs

*/
Widget drawing_a, vsb, hsb;
Pixmap pixmap; /* used the as image for Label widget */
GC gc;
Display *dpy;
unsigned int cell_width, cell_height;
unsigned int pix_hoffset, pix_voffset, sw_hoffset, sw_voffset;

void redraw(Window);

main(int argc, char *argv[])
{

extern char *strcpy();
XtAppContext app;
Widget toplevel, scrolled_w;
Bitmap *list = (Bitmap *) NULL;
char buf[128], *p;
Arg args[12];
int n;
XFontStruct *font;
int istty = isatty(0), redirect = !istty, i = 0, total = 0;
unsigned int bitmap_error;
int j, k;
void scrolled(Widget, XtPointer, XtPointer);
void expose_resize(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “XShowbitmap”, options,

XtNumber (options), &argc, argv, NULL,
sessionShellWidgetClass, NULL);

dpy = XtDisplay (toplevel);

XtGetApplicationResources (toplevel, &Resrcs,
resources, XtNumber (resources), NULL, 0);

if (Resrcs.rows && Resrcs.cols)
XtWarning (“You can’t specify both rows *and* columns.”);

font = Resrcs.font;

/* check to see if we have to load the bitmaps from stdin */
if (!argv[1] || !strcmp(argv[1], “-”)) {

printf (“Loading bitmap names from standard input. “);
if (istty) {

puts (“End with EOF or .”);
redirect++;

}
else

puts (“Use -v to view bitmap names being loaded.”);
}
else if (!istty && strcmp(argv[1], “-”)) {

printf (“%s: either use pipes or specify bitmap names.\n”, argv[0]);
exit (1);

}

Appendix A: Additional Example Programs

904 Motif Programming Manual

/* Now, load the bitmap file names */
while (*++argv || redirect) {

if (!redirect)
/* this may appear at the end of a list of filenames */
if (!strcmp (*argv, “-”))

redirect++; /* switch to stdin prompting */
else

(void) strcpy (buf, *argv);
if (redirect) {

if (istty)
printf (“Bitmap file: “), fflush(stdout);

if (!fgets (buf, sizeof buf - 1, stdin) || !strcmp (buf, “.\n”))
break;

buf[strlen (buf) - 1] = 0; /* plug a null at the newline */
}
if (!buf[0])

continue;
if (Resrcs.verbose)

printf (“Loading \”%s\”...”, buf), fflush(stdout);
if (i == total) {

total += 10; /* allocate bitmap structures in groups of 10 */
if (!(list = (Bitmap *) XtRealloc ((char *) list,

total * sizeof (Bitmap))))
XtError (“Not enough memory for bitmap data”);

}
if ((bitmap_error = XReadBitmapFile (dpy, DefaultRootWindow(dpy),

buf, &list[i].width, &list[i].
height,
&list[i].bitmap,
&j, &k)) == BitmapSuccess) {

if (p = rindex (buf, ‘/’))
p++;

else
p = buf;

if (Resrcs.max_height && list[i].height > Resrcs.max_height ||
Resrcs.max_width && list[i].width > Resrcs.max_width) {

printf (“%s: bitmap too big\n”, p);
XFreePixmap (dpy, list[i].bitmap);
continue;

}
list[i].len = strlen (p);
list[i].name = strcpy (XtMalloc (list[i].len + 1), p);
if (Resrcs.verbose)

printf (“size: %dx%d\n”, list[i].width, list[i].height);
i++;

}
else {

printf (“Couldn’t load bitmap: “);
if (!istty && !Resrcs.verbose)

printf(“\”%s\”: “, buf);
switch (bitmap_error) {

case BitmapOpenFailed : puts (“open failed.”);
break;

Motif Programming Manual 905

Appendix A: Additional Example Programs

case BitmapFileInvalid : puts (“bad file format.”);
break;

case BitmapNoMemory : puts (“not enough memory.”);
break;

}
}

}
if ((total = i) == 0) {
puts (“couldn’t load any bitmaps.”);
exit (1);

}
printf (“Total bitmaps loaded: %d\n”, total);
if (Resrcs.sort) {

printf (“Sorting bitmaps...”);
fflush (stdout);
qsort (list, total, sizeof (Bitmap), size_cmp);
putchar (‘\n’);

}

/* calculate size for pixmap by getting the dimensions of each bitmap. */
printf (“Calculating sizes for pixmap...”);
fflush (stdout);
for (i = 0; i < total; i++) {

if (list[i].width > cell_width)
cell_width = list[i].width;

if (list[i].height > cell_height)
cell_height = list[i].height;

if (Resrcs.label_bitmap && (j = XTextWidth (font, list[i].name,
list[i].len)) > cell_width)

cell_width = j;
}

/* Compensate for vertical font height if label_bitmap is true.
** Add value of grid line weight and a 6 pixel padding for aesthetics.
*/
cell_height += Resrcs.grid + 6 + Resrcs.label_bitmap * (font->ascent +

font->descent);
cell_width += Resrcs.grid + 6;

/* if user didn’t specify row/column layout figure it out ourselves.
** optimize layout by making it “square”.
*/
if (!Resrcs.rows && !Resrcs.cols) {

Resrcs.cols = int_sqrt (total);
Resrcs.rows = (total + Resrcs.cols - 1) / Resrcs.cols;

}
else if (Resrcs.rows)

/* user specified rows -- figure out columns */
Resrcs.cols = (total + Resrcs.rows - 1) / Resrcs.rows;

else
/* user specified cols -- figure out rows */
Resrcs.rows = (total + Resrcs.cols - 1) / Resrcs.cols;

printf (“Creating pixmap area of size %dx%d (%d rows, %d cols)\n”,

Appendix A: Additional Example Programs

906 Motif Programming Manual

Resrcs.cols * cell_width, Resrcs.rows * cell_height,
Resrcs.rows, Resrcs.cols);

if (!(pixmap = XCreatePixmap (dpy, DefaultRootWindow(dpy),
Resrcs.cols * cell_width,
Resrcs.rows * cell_height,
DefaultDepthOfScreen (

XtScreen (toplevel)))))
XtError (“Can’t Create pixmap.”);

if (!(gc = XCreateGC (dpy, pixmap, NULL, 0)))
XtError (“Can’t create gc.”);

XSetForeground (dpy, gc, Resrcs.bg); /* init GC’s foreground to bg */
XFillRectangle (dpy, pixmap, gc, 0, 0,

Resrcs.cols * cell_width, Resrcs.rows * cell_height);
XSetForeground (dpy, gc, Resrcs.fg);
XSetBackground (dpy, gc, Resrcs.bg);
XSetFont (dpy, gc, font->fid);
if (Resrcs.grid) {

if (Resrcs.grid != 1)
/* Line weight of 1 is faster when left as 0 (the default) */
XSetLineAttributes (dpy, gc, Resrcs.grid, 0, 0, 0);

for (j = 0; j <= Resrcs.rows * cell_height; j += cell_height)
XDrawLine (dpy, pixmap, gc, 0, j, Resrcs.cols * cell_width, j);

for (j = 0; j <= Resrcs.cols * cell_width; j += cell_width)
XDrawLine (dpy, pixmap, gc, j, 0, j,

Resrcs.rows * cell_height);
}

/* Draw each of the bitmaps into the big picture */
for (i = 0; i < total; i++) {

int x = cell_width * (i % Resrcs.cols);
int y = cell_height * (i / Resrcs.cols);
if (Resrcs.label_bitmap)

XDrawString (dpy, pixmap, gc,
x + 5 + Resrcs.grid / 2,
y + font->ascent + Resrcs.grid / 2,
list[i].name, list[i].len);

if (DefaultDepthOfScreen (XtScreen (toplevel)) > 1)
XCopyPlane (dpy, list[i].bitmap, pixmap, gc,

0, 0, list[i].width, list[i].height,
x + 5 + Resrcs.grid / 2,
y + font->ascent + font->descent +
Resrcs.grid / 2, 1L);

else
XCopyArea (dpy, list[i].bitmap, pixmap, gc,

0, 0, list[i].width, list[i].height,
x + 5 + Resrcs.grid / 2,
y + font->ascent + font->descent + Resrcs.grid / 2);

XFreePixmap (dpy, list[i].bitmap);
XtFree (list[i].name);

}
XtFree ((char *) list);

Motif Programming Manual 907

Appendix A: Additional Example Programs

/* Now we get into the Motif stuff */

/* Create automatic Scrolled Window */
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAPPLICATION_DEFINED); n++;
XtSetArg (args[n], XmNvisualPolicy, XmVARIABLE); n++;
XtSetArg (args[n], XmNshadowThickness, 0); n++;
scrolled_w = XmCreateScrolledWindow (toplevel, “scrolled_w”, args, n) ;

/* Create a drawing area as a child of the ScrolledWindow.
** The DA’s size is initialized (arbitrarily) to view_width and
** view_height. The ScrolledWindow will expand to this size.
*/
n = 0;
XtSetArg (args[n], XmNwidth, Resrcs.view_width); n++;
XtSetArg (args[n], XmNheight, Resrcs.view_height); n++;
drawing_a = XmCreateDrawingArea (scrolled_w, “drawing_a”, args, n) ;

XtAddCallback (drawing_a, XmNexposeCallback, expose_resize, NULL);
XtAddCallback (drawing_a, XmNresizeCallback, expose_resize, NULL);
XtManageChild (drawing_a) ;

/* Application-defined ScrolledWindows won’t create their own
** ScrollBars. So, we create them ourselves as children of the
** ScrolledWindow widget. The vertical ScrollBar’s maximum size is
** the number of rows that exist (in unit values). The horizontal
** ScrollBar’s maximum width is represented by the number of columns.
*/
n = 0;
j = min (Resrcs.view_height / cell_height, Resrcs.rows);
XtSetArg (args[n], XmNorientation, XmVERTICAL) ; n++;
XtSetArg (args[n], XmNmaximum, Resrcs.rows) ; n++;
XtSetArg (args[n], XmNsliderSize, j) ; n++;
vsb = XmCreateScrollBar (scrolled_w, “vsb”, args, n) ;
XtManageChild (vsb) ;

if (Resrcs.view_height / cell_height > Resrcs.rows)
sw_voffset = (Resrcs.view_height - Resrcs.rows * cell_height) / 2;

n = 0;
j = min (Resrcs.view_width / cell_width, Resrcs.cols);
XtSetArg (args[n], XmNorientation, XmHORIZONTAL) ; n++;
XtSetArg (args[n], XmNmaximum, Resrcs.cols) ; n++;
XtSetArg (args[n], XmNsliderSize, j) ; n++;
hsb = XmCreateScrollBar (scrolled_w, “hsb”, args, n);
XtManageChild (hsb);

if (Resrcs.view_width / cell_width > Resrcs.cols)
sw_hoffset = (Resrcs.view_width - Resrcs.cols * cell_width) / 2;

/* Allow the ScrolledWindow to initialize itself accordingly...*/
XtVaSetValues (scrolled_w,

XmNhorizontalScrollBar, hsb,
XmNverticalScrollBar, vsb,

Appendix A: Additional Example Programs

908 Motif Programming Manual

XmNworkWindow, drawing_a,
NULL);

XtAddCallback (vsb, XmNvalueChangedCallback, scrolled,
(XtPointer) XmVERTICAL);

XtAddCallback (hsb, XmNvalueChangedCallback, scrolled,
(XtPointer) XmHORIZONTAL);

XtAddCallback (vsb, XmNdragCallback, scrolled,
(XtPointer) XmVERTICAL);

XtAddCallback (hsb, XmNdragCallback, scrolled,
(XtPointer) XmHORIZONTAL);

XtManageChild (scrolled_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* scrolled() -- react to scrolling actions; cbs->value is ScrollBar’s
** new position.
*/
void scrolled(Widget scrollbar, XtPointer client_data, XtPointer call_data)
{

int orientation = (int) client_data;
XmScrollBarCallbackStruct *cbs =

(XmScrollBarCallbackStruct *) call_data;

if (orientation == XmVERTICAL)
pix_voffset = cbs->value * cell_height;

else
pix_hoffset = cbs->value * cell_width;

redraw (XtWindow (drawing_a));
}

/* expose_resize() -- handles both expose and resize (configure) events.
** For XmCR_EXPOSE, just call redraw() and return. For resizing,
** we must calculate the new size of the viewable area and possibly
** reposition the pixmap’s display and position offset. Since we
** are also responsible for the ScrollBars, adjust them accordingly.
*/
void expose_resize(Widget drawing_a, XtPointer client_data,

XtPointer call_data)
{

XmDrawingAreaCallbackStruct *cbs =
(XmDrawingAreaCallbackStruct *) call_data;

Dimension view_width, view_height, oldw, oldh;
int do_clear = 0;

if (cbs->reason == XmCR_EXPOSE) {
redraw (cbs->window);
return;

}
oldw = Resrcs.view_width;
oldh = Resrcs.view_height;

Motif Programming Manual 909

Appendix A: Additional Example Programs

/* Unfortunately, the cbs->event field is NULL, we have to have
** get the size of the drawing area manually.
*/
XtVaGetValues (drawing_a,

XmNwidth, &Resrcs.view_width,
XmNheight, &Resrcs.view_height,
NULL);

/* Get the size of the viewable area in “units lengths” where
** each unit is the cell size for each dimension. This prevents
** rounding error for the {vert,horiz}_start values later.
*/
view_width = Resrcs.view_width / cell_width;
view_height = Resrcs.view_height / cell_height;

/* When the user resizes the frame bigger, expose events are generated,
** so that’s not a problem, since the expose handler will repaint the
** whole viewport. However, when the window resizes smaller, then no
** expose event is generated. In this case, the window does not need
** to be redisplayed if the old viewport was smaller than the pixmap.
** (The existing image is still valid--no redisplay is necessary.)
** The window WILL need to be redisplayed if:
** 1) new view size is larger than pixmap (pixmap needs to be centered).
** 2) new view size is smaller than pixmap, but the OLD view size was
** larger than pixmap.
*/
if ((int) view_height >= Resrcs.rows) {

/* The height of the viewport is taller than the pixmap, so set
* pix_voffset = 0, so the top origin of the pixmap is shown,
* and the pixmap is centered vertically in viewport.
*/
pix_voffset = 0;
sw_voffset = (Resrcs.view_height - Resrcs.rows * cell_height) / 2;
/* Case 1 above */
do_clear = 1;
/* scrollbar is maximum size */
view_height = Resrcs.rows;

}
else {

/* Pixmap is larger than viewport, so viewport will be completely
** redrawn on the redisplay. (So, we don’t need to clear window.)
** Make sure upper side has origin of a cell (bitmap).
*/
pix_voffset = min (pix_voffset,
(Resrcs.rows-view_height) * cell_height);
sw_voffset = 0; /* no centering is done */
/* Case 2 above */
if (oldh > Resrcs.rows * cell_height)

do_clear = 1;
}
XtVaSetValues (vsb,

XmNsliderSize, max (view_height, 1),
XmNvalue, pix_voffset / cell_height,
XmNpageIncrement, max (view_height - 1, 1),

Appendix A: Additional Example Programs

910 Motif Programming Manual

NULL);

/* identical to vertical case above */
if ((int) view_width >= Resrcs.cols) {

/* The width of the viewport is wider than the pixmap, so set
** pix_hoffset = 0, so the left origin of the pixmap is shown,
** and the pixmap is centered horizontally in viewport.
*/
pix_hoffset = 0;
sw_hoffset = (Resrcs.view_width - Resrcs.cols * cell_width) / 2;
/* Case 1 above */
do_clear = 1;
/* scrollbar is maximum size */
view_width = Resrcs.cols;

}
else {

/* Pixmap is larger than viewport, so viewport will be completely
** redrawn on the redisplay. (So, we don’t need to clear window.)
** Make sure left side has origin of a cell (bitmap).
*/
pix_hoffset = min (pix_hoffset,
(Resrcs.cols - view_width) * cell_width);
sw_hoffset = 0;
/* Case 2 above */
if (oldw > Resrcs.cols * cell_width)

do_clear = 1;
}
XtVaSetValues (hsb,

XmNsliderSize, max (view_width, 1),
XmNvalue, pix_hoffset / cell_width,
XmNpageIncrement, max (view_width - 1, 1),
NULL);

if (do_clear)
/* XClearWindow() doesn’t generate an ExposeEvent */
XClearArea (dpy, cbs->window, 0, 0, 0, 0, True);

}

void redraw(Window window)
{

XCopyArea (dpy, pixmap, window, gc, pix_hoffset, pix_voffset,
Resrcs.view_width, Resrcs.view_height, sw_hoffset, sw_voffset);

}

Motif Programming Manual 911

Appendix A: Additional Example Programs

The output of the example is shown in Figure A-1.

A Memo Calendar
The xmemo program creates a main application window that contains a calendar and a list
of months. Selecting a month changes the calendar, while selecting a day causes that date
to become activated. When a date is activated, the application displays another window that
contains a Text widget. The Text widget could be used to keep a memo for that day if you
were to add code to save and retrieve the contents of the memo. If you select the same day
a second time, the window is popped down. Figure A-2 shows the output of the program.

The program shown in Example A-2 demonstrates a number of very subtle quirks about X
and Motif programming. What separates simple programs from sophisticated ones is how
well you get around quirks like the ones demonstrated in this example. For example, the
way the dates in the calendar are handled is not as simple as it might appear. Unlike the xcal
example in Chapter 12, Labels and Buttons, which used a single Label widget as the
calendar, here each date in a month is a separate PushButton widget. To give the
appearance that the calendar is a single ?at area, the XmNShadowThickness of each
PushButton is initialized to 0 . When a date is selected, the shadow thickness for that
PushButton is reset to 2 (the default) to provide visual feedback that there is a memo
associated with it.*

Example A-2. The xmemo.c program

* XtVaAppInitialize () is considered deprecated in X11R6. The SessionShell and XtVaOpenApplica-
tion () are only available in X11R6. XmStringGenerate () is only available in Motif 2.0 and later.

Figure A-1: Output of the xshowbitmap program

Appendix A: Additional Example Programs

912 Motif Programming Manual

/* Written by Dan Heller and Paula Ferguson.
** Copyright 1994, O’Reilly & Associates, Inc.
**
** The X Consortium, and any party obtaining a copy of these files from
** the X Consortium, directly or indirectly, is granted, free of charge, a
** full and unrestricted irrevocable, world-wide, paid up, royalty-free,
** nonexclusive right and license to deal in this software and
** documentation files (the “Software”), including without limitation the
** rights to use, copy, modify, merge, publish, distribute, sublicense,
** and/or sell copies of the Software, and to permit persons who receive
** copies from any such party to do so. This license includes without
** limitation a license to do the foregoing actions under any patents of
** the party supplying this software to the X Consortium.
**
** Modified by A.J.Fountain, IST
** for Motif 2.1, X11R6, ANSI.
*/

/* xmemo.c -- a memo calendar program that creates a calendar on the
** left and a list of months on the right. Selecting a month changes
** the calendar. Selecting a day causes that date to become activated
** and a popup window is displayed that contains a text widget. This
** widget is presumably used to keep memos for that day. You can pop
** up and down the window by continuing to select the date on that month.
*/
#include <stdio.h>
#include <X11/Xos.h>
#include <Xm/List.h>
#include <Xm/Frame.h>
#include <Xm/LabelG.h>
#include <Xm/PushB.h>
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <Xm/Text.h>

int year;
void date_dialog(Widget, XtPointer, XtPointer);
void set_month(Widget, XtPointer, XtPointer);
Widget list_w, month_label;

typedef struct _month {
char *name;
Widget form, dates[6][7];

} Month;

Month months[] = { /* only initialize “known” data */
{ “January” }, { “February” }, { “March” }, { “April” },
{ “May” }, { “June” }, { “July” }, { “August” }, { “September” },
{ “October” }, { “November” }, { “December” }

};

/* These only take effect if the app-defaults file is not found */
String fallback_resources[] = {

“*bold.fontName: -*-courier-bold-r-*--18-*”,

Motif Programming Manual 913

Appendix A: Additional Example Programs

“*bold.fontType: FONT_IS_FONT”,
“*medium.fontName: -*-courier-medium-r-*--18-*”,
“*medium.fontType: FONT_IS_FONT”,
“*XmPushButton*.renderTable: bold”,
“*XmLabelGadget*.renderTable: medium”,
NULL

};

main (int argc, char *argv[])
{

Widget toplevel, frame, rowcol, rowcol2, label;
XtAppContext app;
int month;
Arg args[8];
int n;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, “XMemo”, NULL, 0, &argc, argv,
fallback_resources,
sessionShellWidgetClass, NULL);

/* The form is the general layout manager for the application.
** It will contain two widgets (the calendary and the list of months).
** These widgets are laid out horizontally.
*/
n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
rowcol = XmCreateRowColumn (toplevel, “rowcol”, args, n) ;

/* Place a frame around the calendar... */
frame = XmCreateFrame (rowcol, “frame1”, NULL, 0) ;
/* the calendar is placed inside of a RowColumn widget */
rowcol2 = XmCreateRowColumn (frame, “rowcol2”, NULL, 0) ;
/* the month label changes dynamically as each month is selected */
month_label = XmCreateLabelGadget (rowcol2, “month_label”, NULL, 0);
XtManageChild (month_label);
label = XmCreateLabelGadget (rowcol2, “ Su Mo Tu We Th Fr Sa”, NULL, 0);
XtManageChild (label);

/* Create a ScrolledText that contains the months. You probably won’t
** see the ScrollBar unless the list is resized so that not all of
** the month names are visible.
*/
{

XmString strs[XtNumber (months)];
for (month = 0; month < XtNumber (months); month++)

strs[month] = XmStringCreateLocalized (months[month].name);
list_w = XmCreateScrolledList (rowcol, “list”, NULL, 0);
XtVaSetValues (list_w,

XmNitems, strs,
XmNitemCount, XtNumber (months),
NULL);

for (month = 0; month < XtNumber (months); month++)

Appendix A: Additional Example Programs

914 Motif Programming Manual

XmStringFree (strs[month]);
XtAddCallback (list_w, XmNbrowseSelectionCallback, set_month, NULL);
XtManageChild (list_w);

}

/* Determine the year we’re dealing with and establish today’s month */
if (argc > 1)

year = atoi (argv[1]);
else {

long time(long *), t = time ((long *) 0);
struct tm *today = localtime (&t);
year = 1900 + today->tm_year;
month = today->tm_mon + 1;

}
XmListSelectPos (list_w, month, True);

XtManageChild (rowcol2);
XtManageChild (frame);
XtManageChild (rowcol);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* set_month() -- callback routine for when a month is selected.
** Each month is a separate, self-contained widget that contains the
** dates as PushButton widgets. New months do not overwrite old ones,
** so the old month must be “unmanaged” before the new month is managed.
** If the month has not yet been created, then figure out the dates and
** which days of the week they fall on using clever math computations...
*/
void set_month(Widget w, XtPointer client_data, XtPointer call_data)
{

XmListCallbackStruct *list_cbs = (XmListCallbackStruct *) call_data;
char text[BUFSIZ];
register char *p;
int i, j, m, tot, day;
static int month = -1;
XmString xms;
Arg args[8];
int n;

if (list_cbs->item_position == month + 1)
return; /* same month, don’t bother redrawing */

if (month >= 0 && months[month].form)
XtUnmanageChild (months[month].form); /* unmanage last month */

month = list_cbs->item_position - 1; /* set new month */
sprintf (text, “%s %d”, months[month].name, year);
xms = XmStringGenerate ((XtPointer) text, NULL, XmCHARSET_TEXT, NULL);
XtVaSetValues (month_label, XmNlabelString, xms, NULL);
XmStringFree(xms);
if (months[month].form) {

/* it’s already been created -- just manage and return */

Motif Programming Manual 915

Appendix A: Additional Example Programs

XtManageChild (months[month].form);
return;

}

/* Create the month Form widget and dates PushButton widgets */
n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
XtSetArg (args[n], XmNnumColumns, 6); n++;
XtSetArg (args[n], XmNpacking, XmPACK_COLUMN); n++;
months[month].form = XmCreateRowColumn (XtParent(month_label),

“month_form”, args, n);

/* calculate the dates of the month using science */
/* day_number() takes day-of-month (1-31), returns day-of-week (0-6) */
m = day_number (year, month + 1, 1);
tot = days_in_month (year, month + 1);

/* We are creating a whole bunch of PushButtons, but not all of
* them have dates associated with them. The buttons that have
* dates get the number sprintf’ed into it. All others get two blanks.
*/
for (day = i = 0; i < 6; i++) {

for (j = 0; j < 7; j++, m += (j > m && --tot > 0)) {
char *name;
if (j != m || tot < 1)

name = “ “;
else {

sprintf(text, “%2d”, ++day);
name = text;

}
n = 0;
/* this is where we will hold the dialog later. */
XtSetArg (args[n], XmNuserData, NULL); n++;
XtSetArg (args[n], XmNsensitive, (j % 7 == m && tot > 0)); n++;
XtSetArg (args[n], XmNshadowThickness, 0); n++;
months[month].dates[i][j] = XmCreatePushButton (months[month].

form, name, args, n);
XtManageChild (months[month].dates[i][j]);
XtAddCallback (months[month].dates[i][j], XmNactivateCallback,

date_dialog,
(XtPointer) day);

}
m = 0;

}
XtManageChild (months[month].form);

/* The RowColumn widget creates equally sized boxes for each child
** it manages. If one child is bigger than the rest, all children
** are that big. If we create all the PushButtons with a 0 shadow
** thickness, as soon as one PushButton is selected and its thickness
** is set to 2, the entire RowColumn resizes itself. To compensate
** for the problem, we need to set the shadow thickness of at least
** one of the buttons to 2, so that the entire RowColumn is
** initialized to the right size. But this will cause the button to

Appendix A: Additional Example Programs

916 Motif Programming Manual

** have a visible border and make it appear preselected, so, we have
** to make it appear invisible. If it is invisible then it cannot be
** selected, but it just so happens that the last 5 days in
** the month will never have selectable dates, so we can use any one
** of those. To make the button invisible, we need to unmap the
** widget. We can’t simply unmanage it or the parent won’t consider
** its size, which defeats the whole purpose. We can’t create the
** widget and then unmap it because it has not been realized, so it
** does not have a window yet. We don’t want to realize and manage
** the entire application just to realize this one widget, so we
** set XmNmappedWhenManaged to False along with the shadow thickness
** being set to 2. Now the RowColumn is the right size.
*/
XtVaSetValues (months[month].dates[5][6],

XmNshadowThickness, 2,
XmNmappedWhenManaged, False,
NULL);

}

/* date_dialog() -- when a date is selected, this function is called.
** Create a dialog (toplevel shell) that contains a multiline text
** widget for memos about this date.
*/
void date_dialog(Widget w, XtPointer client_data, XtPointer call_data)
{

int date = (int) client_data;
Widget dialog;
XWindowAttributes xwa;

/* the dialog is stored in the PushButton’s XmNuserData */
XtVaGetValues (w, XmNuserData, &dialog, NULL);
if (!dialog) {

/* it doesn’t exist yet, create it. */
char buf[32];
Arg args[5];
int n, n_pos, *list;

/* get the month that was selected -- we just need it for its name */
if (!XmListGetSelectedPos (list_w, &list, &n_pos))

return;
sprintf (buf, “%s %d %d”, months[list[0]-1].name, date, year);
XtFree ((char *) list);
dialog = XtVaCreatePopupShell (“popup”, topLevelShellWidgetClass,

XtParent (w),
XmNtitle, buf,
XmNallowShellResize, True,
XmNdeleteResponse, XmUNMAP,
NULL);

n = 0;
XtSetArg (args[n], XmNrows, 10); n++;
XtSetArg (args[n], XmNcolumns, 40); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtManageChild (XmCreateScrolledText (dialog, “text”, args, n));
/* set the shadow thickness to 2 so user knows there is a memo

Motif Programming Manual 917

Appendix A: Additional Example Programs

** attached to this date.
*/
XtVaSetValues (w,

XmNuserData, dialog,
XmNshadowThickness, 2,
NULL);

}
/* See if the dialog is realized and is visible. If so, pop it down */
if (XtIsRealized (dialog) &&

XGetWindowAttributes (XtDisplay (dialog),
XtWindow (dialog), &xwa) &&

xwa.map_state == IsViewable) {
XtPopdown (dialog);

}
else

XtPopup (dialog, XtGrabNone);
}

/* the rest of the file is junk to support finding the current date. */

static int mtbl[] = { 0,31,59,90,120,151,181,212,243,273,304,334,365 };

int days_in_month(int year, int month)
{

int days;

days = mtbl[month] - mtbl[month - 1];
if (month == 2 && year % 4 == 0 && (year % 100 != 0 || year % 400 == 0))

days++;
return days;

}

int day_number(int year, int month, int day)
{

/* Lots of foolishness with casts for Xenix-286 16-bit ints */
/* Oh Good Grief */

long days_ctr; /* 16-bit ints overflowed Sept 12, 1989 */

year -= 1900;
days_ctr = ((long)year * 365L) + ((year + 3) / 4);
days_ctr += mtbl[month - 1] + day + 6;
if (month > 2 && (year % 4 == 0))

days_ctr++;
return (int) (days_ctr % 7L);

}

Appendix A: Additional Example Programs

918 Motif Programming Manual

The output from the xmemo program is given in Figure A-2.

Figure A-2: Output of the xmemo program

Motif Programming Manual 919

SYMBOLS
.mwmrc ?le 654
_MOTIF_WM_MESSAGES property 671

NUMERICS
3-D widgets 57, 238, 271

A
accelerators 887

menu 593, 610
action areas 219–227

and dialogs 78
buttons 133, 206, 227
creating 222
generalizing 221
in dialogs 131

action routines
and text widgets 529

actions 14
add_item callback routine 442
alignment

widget 257, 395
animated widgets 703, 704, 759
ANSI

compilers 24, 36
function declarations 36

ANSI-C 20
app-defaults ?le 13
application class 22
application context 21
application manager

constructing 430
application-de?ned scrolling 321

and main windows 102
example 342–356, 899

ApplicationShell
and dialogs 204, 231
creating 205
versus DialogShell 152

Apply button
managing 177

argument lists
and setting resources 29

arm callbacks 400
and ToggleButton 412

ArrowButton 387, 421–427
arrows

and scrollbars 331
directional 421
for traversing widgets 358

atoms 642, 698
and types in ICCCM 704
protocol 655

attachments
default 257
example 257
Form 243
offsets 251–253
position 253, 255
resources 217

automatic scrolling
example 325

automatic~scrolling 319–321, 324
auxiliary area 587

Index

Index

920 Motif Programming Manual

B
background tasks

executing 890–891
backing store

and redrawing a DrawingArea 368
backspace key

remapping 34
backspacing

and Text 577
binary searches

and lists 442
bindings 33
Boolean state

ToggleButton 406
borders

3-D 57
color of 83
window manager 652

bugs
event ?eld 581
PanedWindow 216
Scale 504
translation tables 372
window manager 650
Xt and varargs 24

BulletinBoard 237–243
and dialog shells 237
and dialogs 130
and font lists 238
and geometry management 239–243
and translation tables 241
creating 238
resizing 241

button clicks
maximum time between 558
multiple 403

buttons 387–431
and menus 593
ArrowButton (see ArrowButton)
CascadeButton (see CascadeButton)
dialog

default 143
keyboard focus 145
pre-de?ned 132
setting 136
sizes 145

DrawnButton (see DrawnButton)
in action areas 133, 206, 227
multi-colored 85

PushButton; (see PushButton)
radio buttons 48
tear-off 617
ToggleButton (see ToggleButton)

C
C strings

and menu accelerator text 611
converting to compound strings 809, 811

caching
and pixmaps 80

callback reasons 505
XmAddWMProtocolCallback() 658
(see also callbacks)

callback resources (see XmN entries for indi-
vidual callback resources)
callback routines

CascadeButton 105
dialog 147, 220
FileSelectionDialog 186
List 454–460
scrollbar 338
SimpleMenu 108

callback structures
XmCommandCallbackStruct 181
XmDragDropFinishCallbackStruct 740
XmDragProcCallbackStruct 758
XmDropProcCallbackStruct 751
XmDropSiteEnterCallbackStruct 738
XmFileSelectionBoxCallbackStruct 186
XmRowColumnCallbackStruct 269
XmSelectionBoxCallbackStruct 176
XmTextVerifyCallbackStruct 572

callbacks
and CascadeButtons 105
and clipboards 691
and DrawingArea 363
arm 400, 412
CommandDialog 180
cursor movement 580
dialog 147, 220

example 148, 149
setting 136

disarm 400, 412
FileSelectionDialog 186
List 454–460
lists 13

Motif Programming Manual 921

Index

popdown 141
popup 141
protocol 657
PushButton 400
reasons; (see callback reasons)
resources; (see callback resources)
routines; (see callback routines)
RowColumn 269
Scale 505
scrollbar 338
SimpleMenu 108
structures 108, 109
Text 567, 570–582
ToggleButton 412

cancelling a drag operation 703
CascadeButton 68, 387

and callback routines 105
and menu items 614
and MenuBars 103–105
and menus 591
and option menus 603

cascading menus 42, 591, 600
example 634

case sensitivity
and mnemonics 609

cell_height 354
cell_width 354
character sets 583, 807
charset 583, 808
CheckBox 418–421

and mask variables 420
compared to List 406
creating 418
versus RadioBoxes 418

CheckForInterrupt() 885
circular dependencies

Form 260
class names

application 22
classes

de?nition 12
client data 36

changing in callbacks 880
client messages 655–662
clip windows

and pixmaps 354
ClipboardBadFormat 693
ClipboardFail 683
ClipboardLocked 683, 684

ClipboardNoData 687
clipboards 677–700

and properties 698
and Text widgets 530
callback functions 691
copying data to 682, 696

by name 688
incrementally 692

cut and paste 677
convenience routines 696
example 679–693

data formats 693, 695
locking 685, 692
messages, posting by name 679
querying for data size 686
retrieving data from

incrementally 684
with XmClipboardRetrieve() 684
with XmClipboardRetrieveCopy()

682
with XmTextPaste() 697

routines
and Text widgets 553–558, 696

selection
and Text widgets 530
cut and paste 553

sending data to 682
terminating a copy 692
unlocking 685
versus primary and secondary selections

679, 699
ClipboardSuccess 683, 684, 685, 687
ClipboardTruncate 684, 685
close item

window manager 655
closing dialogs 140
color 83–85, 506

and DrawingArea 379–385
and gadgets 63
foreground 84
setting 85

Command 121, 180–181
command areas

in main windows 67, 118
Command.h 134
CommandBoxes 169
command-line arguments

specifying 22
commands

Index

922 Motif Programming Manual

saving in a history list 180
Common User Access (CUA) 6

speci?cations 6, 283
composite widgets 55
compound objects 56
compound strings 781, 807–846

and Labels 46, 390
and menu accelerator text 611
and Text widgets 809
C strings, converting from 809, 811
concatenating 809
creating 809–823
dimensions of 845
freeing 810
in lists 436, 458
internationalization 810
language-independent 814
manipulating 823–827
rendering 843–845
retrieving 825
segments 818
specifying as normal strings 823
string direction 818
text, converting to 825–827

Con?gureNotify events 648
Constraint 62

resources 62, 217
control areas

and dialogs 78
dialog 131

control sashes 57
and PanedWindows 275

convenience functions 43
and dialogs 151

copying a ?le via drag and drop 732
copying and retrieving

clipboard 677–693
copying data via drag and drop 702
Core 45
CreateBitmapFromData() 80
creating

PushButtons 197, 358
ToggleButtons 358

ctrl key
and tab key 283

CUA (Common User Access) 6
speci?cations 6, 283

current items 64
cursor

callbacks 580
insertion 544–550
position 544

custom dialogs 78, 195
cut and paste

and Text widgets 553
clipboard 677
example 553, 679–693

D
data formats

clipboard 693
deactivating menu titles 608
default action

in list selection 455
default button

dialog 143
default font list tag 816
default language procedure 20
DefaultDepthOfScreen 355
delete key

remapping 34
deleting items from a list 444
deselecting items from a list 446
dialog actions 133
dialog boxes (see dialogs)
dialog callbacks

adding 148
routine for 198

dialog shells
BulletinBoard 237
versus dialog widgets 131

dialog widgets (see dialogs)
dialogs 74–80, 169–193

accessing internal widgets 155
action areas 131, 205–207, 219–227

buttons in 133
anatomy of 131–133
and BulletinBoards 130
and manager widgets 205
and shell widgets 73
and the window manager 141
buttons

default 143
fonts 147
keyboard focus 145
sizes 145

Motif Programming Manual 923

Index

callback reasons 149
callback routines 147, 198, 220

example 149
closing 140–143
CommandDialog 77, 180–181
control areas 131, 205–207
creating 133–143, 203–221
custom 78, 195
de?nition 4
destroying 892
ErrorDialog 74
FileSelectionDialog 76, 181
fonts 817
full-application-modal 156
function of 128–131
header ?les 133
help 865–874

context-sensitive 873
example 866, 869
point-and-click 873

InformationDialog 74
interacting with other windows 156
labels

fonts 147
layout of 205
managing 136–140
MessageDialog 74, 75
modality 79, 156–167

example 162–164
implementing 159
setting 159

modifying 195–203
popping up 221, 231
positioning 229–232
pre-de?ned 127, 132
primary-application-modal 156
PromptDialog 76
QuestionDialog 75
relation to manager widgets 130
resizing 146
resources

setting 135, 215
reusing 141, 163
SelectionDialog 75, 169, 170–177
system-modal 156
TemplateDialog 75, 198
terminology 130
text

fonts 147

titlebar 146, 215
TopLevelShells, using with 227, 229
transient 128
unmanaging 140–143
unmapping 141
versus dialog shells 131
WarningDialog 75
WorkingDialog 75

DialogShell 152
and building dialogs 204
and convenience routines 152
and PanedWindow widgets 216
children of 216–219
creating 205
identifying 154
parents of 135, 205
using with RowColumns 269
versus ApplicationShells 152
versus TopLevelShells 152

direction
string 818

directional arrows 421
directory

dropping a ?le into a 732
directory searching 183, 191
disarm callbacks 400

and ToggleButtons 412
Display 705, 713, 717
do-not-enter symbol 703
double-clicking

on a list item 455
drag and drop 46, 49, 51, 531, 701–759

basic programming constructs 703–716
conceptual model 702
conversion procedures 704, 708, 733
customizing 704
dragging non-text data 723–740
dropping non-text data 740–759
encapsulating in widgets 759
handling the drop 751
implementation 704
Motif widgets 703
overview 701–703
programming model 713–716
protocols 712–713
starting the drag 731–733
transfer procedures 704
turning off 720–721
validity of drop 703, 710, 712, 716

Index

924 Motif Programming Manual

drag icons 702, 710–711
coloring 707, 722, 732
components 710, 732
creating 731
customizing 704, 711
default operation icons for 711
default source icons for 711
destroying 733, 740
specifying default icons 721

drag protocols 712–713
dynamic 712, 715, 719
preregister 712, 715
resolution based on initiator and receiver

718
specifying 717–720

drag sources 702, 706–708
allowed data targets for 706
allowed operations on 706
and second mouse button 706
creating 730–731
?le images as 730
incremental transfer of 707
modifying 734–738
multiple formats for 706
working with 723–740

DragContext 705, 706, 711
creating 707, 732
XmNdropStartCallback 739

DragIcon 705, 711, 722
drag-over visuals 703, 710

customizing 715, 738–740
modifying 721–723

DragStart() 731
drag-under visuals 703

customizing 704, 715, 719, 758–759
drawing

and backing store 368
and global variables 367
directly from the action function 373
freehand 372, 373
into windows 888
redrawing a DrawingArea 368
with color 379–385
Xlib 367
(see also DrawingArea)

DrawingArea 361–385
and color 379–385
and gadgets 368
and keyboard traversal 372

and scrollbars 378
as a manager widget 362
callbacks 363
children 367
clearing windows 364
creating 362
dragging 706
event-handling 363
example 364
geometry management 368
resizing 354
translation tables 363, 372

DrawingAreaInput() 372
DrawnButton 427–430

and PushButtons 427
creating 427

drop protocols 713
drop sites 702, 708–710

animated 704, 709, 759
creating 749–750
deactivating 720
drag-under visuals 709
garbage can 703
HELP on 703
modifying 750–751
operations supported by 708
overlapping 710, 715
providing help 753–758
registering widgets as 709
send message 708
shaping 710
working with 740–759

DropSite 705, 708, 720
XmNdropProc 739
XmNtransferProc 740

DropTransfer 705, 709, 713
creating 751

E
emacs

and Text widgets 529
encoding 583, 807
endpwent() 326
ErrorDialog 133
events

?eld 581
handling 32–39

Motif Programming Manual 925

Index

KeyPress 33
KeyRelease 887
processing 875, 881
structures 674
syntax 33
timers 875
translations 32, 288
X event control loops 848

examples
action areas, creating 222
application managers, constructing 430
application-de?ned scrolling 342–356
attachments 257
automatic scrolling 325
bitmap display utility 911
bitmaps, dynamically changing 110
browse selection, specifying 455
BulletinBoard geometry management 239
button clicks, multiple 403
calendars, creating 918
changes in Motif 1.2 95
CheckBox 418
clipboards, copying data to 688
Close item, mwm 655
compound strings

converting to text 827
creating 814

dialogs
buttons, setting 136
callback routines 136, 148, 149
help 866, 869
MessageDialog 892
modal 162–164
modifying 202
positioning 229
symbols 892
WorkDialog 877

DrawingArea 364
dropping ?les into a text editor 740–749

providing help 754–757
?le browser 538
file manager with draggable files 723–729
FileSelectionDialog, creating 184
Form geometry management 248
Frame 273
freehand drawing 373
hello world, Motif-style 16
help dialogs 866, 869
icons, creating 650

keyboard traversal
in ScrolledWindows 356–358
processing manually 290

lists
adding items to 440
creating 435
selecting items 447, 458

MainWindow
displaying bitmaps in 110
using a ScrolledList in 102

menu of common editing actions 553
MenuBars 110
menus

cascading 621, 634
help 613
option 634
popup 626, 634
pulldown 619, 621, 626, 634

MessageDialog 164, 892
Motif 1.2 changes 95
multi-font strings, creating 821
PanedWindow 276, 279, 280
position attachments 255
PromptDialog

creating 177
protocols 660, 671
RadioBoxes 414, 418
RowColumn 262, 264, 266, 270
Scales 500, 506
scrolling

application-de?ned 342–356
automatic 325

SelectionDialog 170
shell, resizing 645, 647
text

converting to uppercase 570
pattern, searching for 545

text editor 559
dropping ?les into 740, 754–757

Text widgets, preventing text modi?cation
in 573

tic-tac-toe 255
timers, using 892
ToggleButtons 409
updating an existing drag source 735
window manager functions 655
WorkDialog 877, 882
XmCreateSimpleMenuBar() 106
XmNentryCallback 270

Index

926 Motif Programming Manual

XmNsymbolPixmap 892
XtAppAddTimeOut() 892

exec() system call 890
execvp()

system call 857
Expose events 888

processing 886
expose_resize() 354
extended selection mode 459
external commands

executing 890–891

F
fallback resources 23
?le browser 538
?le descriptors

and running external processes 891
file manager with draggable files 723–729
?le objects 740
?le type masks 192

XmFILE_REGULAR 192
?les

searching with FileSelectionDialog 186–
191

selecting with FileSelectionDialog 181
FileSB.h 134
FileSelectionBox 169
FileSelectionDialog 110, 181, 538

callback routines 186
creating 183–185
searching directories 191

?lesystem searches 186–191
FMT16BIT 572
FMT8BIT 572
focus~callbacks 582
font list tags 812–818
font lists 812–818

and BulletinBoard 238
internationalization 816

fonts
and compound strings 810
and dialogs 817
and Labels 396
used by widgets 817

ForceUpdate() 888
fork() system call 890
Form 243–261

and geometry management 248
attachments 217, 243
circular dependencies 260
common problems with 260
positions 253
resizing 244

Frame 234, 271–275
fread() 543
freehand drawing 372, 373
full-application-modal dialogs 156
function overloading 367
functions

callbacks
(see also callback routines)

popen 890
system 890

G
gadgets 63

and DrawingArea widgets 368
class hierarchy 53
coloring 63
creating 63
de?nition 25
header ?les 18
Label (see LabelGadget)
managing 63
pointers 390
ToggleButtonGadget 406
translation tables 290

GC (graphics context) 367
geometry management 61–63, 233–294

and BulletinBoard 239–243
and DrawingArea 368
and Form 243, 248
and RowColumn 262

getpwent() 326
global variables

and drawing 367
graphics context 367
grips 57, 275
GUI buttons

and menus 593

H
hard-coded resources 27

Motif Programming Manual 927

Index

header ?les 18
dialog 133
private 18

hello world program
Motif-style 16

help
and drop sites 703
and Labels 286

help dialogs 865–874
context-sensitive 873
example 866, 869
multi-level 869
point-and-click 873

help keys 868
help menus 611–614
HOME 82
hooks (see attachments)
horizontal alignment of widgets 257
horizontal scrollbars 51

and scrolled lists 438

I
ICCCM

and clipboard functions 679
and drag and drop 704
and window managers 73

icons 649–651
creating 650
naming 651
setting pixmap 649
setting position 651

images
and Label widgets and gadgets 391
installing personalized 82
names 81
uninstalling 82

InformationDialog 133
as help dialog 865
for help about drag and drop 753, 757

initializing the toolkit 20–24
input context 587
input focus

setting 293
input manager 586
input method 586
insertion cursor 529, 544–550
instantiating widgets 12

int_sqrt() 391
interactivePlacement 231
Inter-Client Communications Conventions
Manual (ICCCM)

drag and drop 704
target types 704, 730
window sizing and placement 642

interface design 6–9
basic concepts 2

internationalization 19, 582, 807–808
and compound strings 810, 846
font lists 816

J
justi?cation

and Label widgets 395

K
keyboard traversal 283–293

and DrawingAreas 372
and ScrolledWindows 356–358
processing manually 290
translation table 288

KeyPress events 33
KeyRelease events 887
keysyms 33

L
Label 387–431

aligning 395
and color 85
and PushButton 400
and scrolled windows 342
and Text widgets 388
creating 389
desensitizing 394
dragging and dropping 46, 703, 716
fonts 396, 817
help 286
images 391
justi?cation 395
multi-colored 85
text 390

LabelGadget 389

Index

928 Motif Programming Manual

LANG environment variable 20, 82
language procedure 20, 582, 807
libraries

Xlib 17
Xm 17
Xt 17

line wrapping
and Text widgets 543

linear search
and lists 443

linking data via drag and drop 702
List 433–461

and color 85
and tab groups 65
callback routines 454–460

installing 455
CheckBox, compared to 406
creating 434–437
dragging and dropping 49, 703, 717
RadioBox, compared to 406
selection policies 434, 436, 455

browse 434, 455
extended 434, 459
multiple 434, 458
single 434, 455

(see also lists)
lists

adding items to 440
example 440–442

deleting items from 444
deselecting items from 446
displaying 433
double-clicking on an item 455
?nding items in 442
making items visible 437
positioning items in 452
replacing items in 444
scrolled (see scrolled lists)
searching

binary 442
linear 443

selecting items from 439, 445, 455
default action 455
example 447

loading pixmaps 117
locale 19, 582, 807
localization 20, 582, 807
locking

clipboards 682, 685, 692

M
main windows 66

command areas 118
con?gurability 123
message areas 118
suggested layout 97
using resources with 123
(see also MainWindow)

MainWindow 66, 553
creating 98
default size 101
layout for 67
using a ScrolledList in 102
when to use 97

manager widgets 25, 53–65, 233–294
and composite widgets 55
and dialogs 130, 205
and gadgets 63
and geometry management 61
and keyboard traversal 65, 356
and Shells 53
and XmNnavigationType 287
class hierarchy 55
creating 235–237
DrawingArea 362
translation table 288

ManagerEnter() 289
ManagerFocusIn() 289
ManagerFocusOut() 289
ManagerGadgetActivate() 290
ManagerGadgetArm() 290
ManagerGadgetButtonMotion() 290
ManagerGadgetDrag() 290
ManagerGadgetHelp() 290
ManagerGadgetKeyInput() 290
ManagerGadgetMultiActivate() 290
ManagerGadgetMultiArm() 290
ManagerGadgetNextTabGroup() 289
ManagerGadgetPrevTabGroup() 289
ManagerGadgetSelect() 290
ManagerGadgetTraverseDown() 289
ManagerGadgetTraverseHome() 289
ManagerGadgetTraverseLeft() 289
ManagerGadgetTraverseRight() 289
ManagerGadgetTraverseUp() 289
ManagerLeave() 289
ManagerParentActivate() 290
ManagerParentCancel() 290
mask variables

Motif Programming Manual 929

Index

and CheckBoxes 420
menu bars

de?nition 4
MenuBar 103–118, 556

and CascadeButtons 103–105
and main windows 103
callback routines 108
children of 68
creating 103, 605, 620
example 110
item types 106

menus 591–639
accelerators 593, 610

Motif versus X Toolkit 610
and buttons 593

CascadeButtons 591
GUI buttons 593
ToggleButtons 626

and mnemonics 593, 609
and shell widgets 72
cascading 42, 600

creating 621
creating

example 619
designing 605–617
help 611–614
items 608

data structure 617
deactivating 614
setting and resetting sensitivity 614

Motif versus standard Xt 594
option 634–638
pop-up

building 626
pulldown 42, 106, 621
pulldown;

(see also pulldown menus)
pullright (see menus, cascading)
simple 594–605
submenus, building 625
titles 608, 614

message areas 67
in main windows 118

MessageB.h 133
MessageBox 130
MessageDialog 127

convenience routines for 151
creating 133, 142
de?nition 130

example 164
modifying 196–198
symbols 891–896
types of 133

messages
clipboard, posting by name 679

Microsoft Windows
Common User Access (CUA) speci?cat-

ions 6
mnemonics

and menus 593, 609
case sensitivity of 609

modal dialogs 79, 156–167
example 162–164
implementing 159

Motif
about 3–6
and Microsoft Windows 6
library 14–16
programming with 16–39
speci?cations 5
toolkit 5
versus X Toolkit 594, 610

Motif 1.2 35, 46, 49, 51, 57, 69, 75, 80, 84,
85–95, 271, 529, 531, 534, 535, 537, 593,
616, 810, 816, 817

drag and drop 701–759
Label 716
List 716
MessageDialog

additional children in 198
tear-off menus 69, 593, 616–617
TemplateDialog 75
Text and TextField 716
XmChangeColor() 84
XmFONTLIST_DEFAULT_TAG 816
XmGetFocusWidget() 293
XmGetPixmapByDepth() 80
XmGetTabGroup() 293
XmGetTearOffControl() 617
XmIsTraversable() 293
XmListAddItemsUnselected() 440
XmListDeletePositions() 445
XmListGetKbdItemPos() 453
XmListPosSelected() 446
XmListPosToBounds() 453
XmListReplaceItemsPosUnselected() 444
XmListReplaceItemsUnselected() 444
XmListReplacePositions() 444

Index

930 Motif Programming Manual

XmListSetKbdItemPos() 453
XmListYToPos() 453
XmNchildHorizontalAlignment 273
XmNchildHorizontalSpacing 273
XmNchildVerticalAlignment 273
XmNdialogType value 198
XmNmodifyVerifyCallbackWcs 584
XmNpositionIndex 276
XmNtearOffMenuActivateCallback 617
XmNtearOffMenuDeactivateCallback 617
XmNtearOffModel 616
XmNtraverseObscuredCallback 357
XmNvalueWcs 583
XmRegisterSegmentEncoding() 817
XmStringCreateLocalized() 810
XmTextDisableRedisplay() 534
XmTextEnableRedisplay() 534
XmTextFindString() 547
XmTextGetSubstring() 535
XmTrackingEvent() 873
XmTranslateKey() 35

Motif Style Guide 41
key mapping conventions 702
mouse button conventions 702

moving data via drag and drop 702
multibyte strings 583, 808
multiClickTime 402, 558
multi-colored buttons 85
multi-colored labels 85
multi-font strings 813, 821–823
multi-line editing

and Text widgets 529, 536
multiple button clicks 403
multiple items

deleting from a list 445
selecting from a list 446, 458

MWM_DECOR_ALL 653
MWM_DECOR_BORDER 652
MWM_DECOR_MAXIMIZE 653
MWM_DECOR_MENU 653
MWM_DECOR_MINIMIZE 653
MWM_DECOR_RESIZEH 653
MWM_DECOR_TITLE 653
MWM_FUNC_ALL 654
MWM_FUNC_CLOSE 654
MWM_FUNC_MAXIMIZE 654
MWM_FUNC_MINIMIZE 654
MWM_FUNC_MOVE 654
MWM_FUNC_RESIZE 654

N
naming widgets 31
navigation groups 283, 284
navigation types

tab groups 287–288
newline character

interpreting as string separators 820

O
offsets

attachment 251–253
zero-length 253

off-the-spot interaction style 587
on-the-spot interaction style 587
Open Software Foundation (OSF) 5
operation icon (for a drag icon) 710
option menus 592

and CascadeButton 603
building 634–638

OptionMenu 69
output-only text 550
overriding~translation tables 373
over-the-spot interaction style 587

P
page length

scrollbars 332
PanedWindow 234, 275–283, 638

and DialogShells 216
bugs 216
example 276, 279, 280
resizing 216
sashes 283, 287
specifying resolution-independent dimen-

sions 279
use in dialogs 205

password ?les
returning information about 326

pattern searches 451, 545
pix_hoffset

and scrolled windows 354
pix_voffset

and scrolled windows 354
pixels

converting scrollbar units to 354

Motif Programming Manual 931

Index

pixmaps 80–83
and caching 80
and the clip window 354
icon 649
insensitive 394
loading 117
single-bit 80
single-plane 80
ToggleButton 409–412

pointers
xmLabelGadgetClass 390

popdown callbacks 141
popen() 396, 890
popup callbacks 141
popup dialogs 221, 231
popup menus 592, 595–597

building 626–634
compared to CheckBox and RadioBox 406

position attachments 253, 255
positioning dialogs 229–232
pre-edit area 587
PRIMARY selection property 699

and Text widgets 530
cut and paste 553

primary-application-modal dialogs 156
Primitive widgets 45

and tab groups 287
and XmNnavigationType 287
class hierarchy 45

private header ?les 18
programming

drag and drop 713–716
with Motif and Xt 16–39

PromptBoxes
(see also PromptDialog)

PromptDialog 134, 177–179
creating 177
TextField 179

properties
_MOTIF_WM_MESSAGES 671
and clipboards 698
de?nition 642
list of 643

protocol atoms 655
protocol callbacks 657
protocol widgets 658
protocols

adding 658
customizing 671–675

deactivating 674
for drag and drop 712–713
suites 674
window manager 71, 655–662

pulldown menus 42, 591
building 634
item types 106

pullright menus (see cascading menus)
PushButton 387, 400

and color 83
and DrawnButtons 427
and Labels 400
callbacks 367, 400
creating 197, 358, 400
fonts 817
in action areas 206
used in DrawingAreas 367
versus ArrowButton 49

Q
qualify search procedure 192
QuestionDialog 133

creating 196

R
radio buttons 48
RadioBox 115, 414–416

and XmVaRADIOBUTTON 107
compared to List 406
creating 414, 418

re_comp() 451
re_exec() 447, 451
realizing widgets 39
redraw()

and scrolling Text and List widgets 356
redrawing a DrawingArea 368
regcmp() 451
regex() 451
registering

clipboard data formats 693
regular expression matching 447
rendering compound strings 843–845
reparenting windows 145
replacing items in a list 444
resizing

BulletinBoards 241

Index

932 Motif Programming Manual

dialogs 146
Form widgets 244
handles, window manager 653
RowColumns 263
scrolled window DrawingArea 354
Text widgets 544

resource database 13
resources

attachment 217
callbacks 429
color 83
con?gurable 13
constraint 217
for dialogs 143–147
for drag and drop 707
getting 26–32
hard-coding 13, 27
names 26
passing to more than one widget 30
setting

after widget creation 27
for dialogs 135
with convenience functions 28

shell 643
time 402
using with main windows 123

resources (see XmN for individual resources)
restarting applications 660
return key

and tab key 284
reusing

dialogs 141, 163
root-window interaction style 587
RowColumn 234, 261–271, 395

and CheckBoxes 418
and DialogShells 269
and Frame widgets 272
and geometry management 262
and RadioBoxes 414
and ToggleButtons 408
as a menubar 103
callbacks 269
creating 264–268
example 262, 264, 266
homogeneous children 268
resizing 263

S
Sash 283

modifying 287
Scale 499–510

bugs 504
callbacks 505
children 58
color 506
creating 500–502
labels 502
movement 503
values 502–503

Screen 705, 711, 721
setting resources for 722

ScrollBar 298, 319–359, 525
and color 83
retrieving values from 355

scrollbars
and DrawingAreas 378
and main windows 101–103
callback routines 338
design of 331
directional arrows 331
managing in scrolled lists 438
placing 543

scrolled lists 437–439
and Form widgets 260

scrolled text 260, 536
scrolled windows

automatic 338
creating 323
semi-automatic 338

scrolled() 353
scrolled~windows 319, 463, 475
ScrolledList 437
ScrolledText 218, 536

and displaying text 551
creating 537
dropping ?le data into 748
parent 537

ScrolledWindow 319–359, 463, 475
and keyboard traversal 356–358
and Lists 434, 437
and Scrollbar 50
default size 101
setting resources 218

scrolling 321
application-de?ned 321

example 342–356, 899

Motif Programming Manual 933

Index

implementing 338
Lists 356
monitoring 338
Text widgets 356, 548

search and replace 548
search_item callback routine 451
SECONDARY selection property 530, 699
secondary windows 73
segments 818
select() system call 858
selecting items from a list 445
SelectioB.h 134
selection callbacks 455
selection methods (text)

modifying 557
selection policies 459
selection properties 699
SelectionBox 130, 169
SelectionDialog 128, 169, 170–177

callbacks 175
de?nition 134
example 170
types of 169

semi-automatic~scrolling 323
session managers 659–662

save-yourself protocol 660
setlocale() 20
Shell 70

and building dialogs 73, 204
class hierarchy 71
position 644
resizing 645–649
resources 643

shift key
and tab key 283

signal handling 847–863
in Xlib 850
in Xt 850–852
System V 858
timers 850, 858
work procedures 850

single-bit pixmaps 80
single-line editing

and Text widgets 528, 536
single-plane pixmaps 80
size

setting shell 645–649
source icon (for a drag icon) 710
spacebar key

and tab key 284
speci?cations

Motif 5
start_stop() 426
state icon (for a drag icon) 710
static~scrollbars 324
status area 586
strings

and menu accelerator text 611
arguments, passed to action functions 377
breaking into multiple lines 819
color, converting to 203
comparing in a list 443
compound 781, 807–846

and List widgets 436
and text Labels 390
(see also compound strings)

converting into pixels 203
direction 818
multibyte 583, 808
multi-font 813, 821–823
separators 819
wide-character 583, 808

style guide 41
submenus

building 625
suites

protocol 674
sw_hoffset 354
sw_voffset 354
symbols

MessageDialog 891–896
system() 890
system-modal dialogs 156

T
tab groups 283

and primitive widgets 287
excluding widgets from 285
navigation groups 284
navigation types 287–288
translation tables 288
traversing 64, 283

tab key 283
and shift key 283

target types
data 704

Index

934 Motif Programming Manual

tear-off button 617
tear-off menus 69, 593, 616–617
TemplateDialog 198
Text 527–590

and clipboards 679
and color 85
and Label widgets 388, 390
and tab groups 65
and text deletion 575
and text editors 529
automatic resizing of 544
byte capacity of 535, 538
callbacks

single-line 567
text modi?cation 570–580

clipboard functions 553–558, 696
clipboard selection 530

cut and paste 553
compound strings 809
creating 532
cut and paste 553
disabling drop site functionality 720
displaying ?le contents with, example 538
drag and drop 51, 716
dragging 703, 706
dropping data into 703, 717
editing modes 536
fonts 817
limitations of 527
line wrapping 543
modi?cation 570–580

preventing 573
multiline editing 536
output-only 550
positions 544–550
PRIMARY selection 530

cut and paste 553
retrieving text 534
scrollable 536
scrolling 356, 548
search and replace 548
secondary selection 530
selecting 530, 557
setting resources on 218
single-line editing 528, 536
user interface for 529
varargs 551
XmNeditable 721

text editors

and Text widgets 527, 529
dropping ?les into 740–749

providing help 754–757
sample program 559
widget 51

TextField 51, 451
and color 85
creating 532
disabling drop site functionality 720
drag and drop 51, 716
dragging 703
dropping data into 703, 717
XmNeditable 721
(see also Text)

tick marks 508
TimeoutCursors() 885
timers

example 892
using to process tasks 880
Xt 850, 858

title bars
dialog 146, 215
strings, setting 146
window 653

ToggleButtonGadget 406
ToggleButtons 406–421

and color 83
and menus 626
callbacks 412
creating 358, 406–407, 409
determining state of 412
fonts 817
gadget 406
pixmaps 409–412
resources associated with 407
setting indicator width and height 409
setting state of 413

toggles (see ToggleButtons)
toolkit

initializing 20–24
OSF/Motif 5

TopLevelShell
and dialogs 204, 227, 229, 231
creating 205
versus DialogShells 152

transient dialogs
de?nition 128

TransientShell 152
translation tables 14, 32

Motif Programming Manual 935

Index

and BulletinBoards 241
and tab groups 288
bugs 372
DrawingArea 363, 372
gadgets 290
manager widget 288
MenuShell 72

translations
and drag sources 706
and text widgets 529
overriding 730

traversal
processing manually 290

type conversion 203

U
unit length

scrollbars 331
UNIX signals 891
unlocking clipboards 685
unmanaging dialogs 140–143
uppercase

converting text to 570
user interface 6–9

V
values

scrollbar 331
varargs 23

and dialogs 135
VendorShell 152, 588, 643

resources 651–654
vertical scrollbars 51

and scrolled lists 438
vertically tiled format

and PanedWindows 275
vi

and Text widgets 529
view length

scrollbars 332
view_height

and scrolled windows 354
view_width

and scrolled windows 354
virtual bindings 33
virtual keysyms 33

W
WarningDialog 133
wide-character strings 583, 808
widgets

creating 12, 24–25
de?nition 12
drag and drop 703
event handling 32–39
instantiating 12
manager 25, 53–65

(see also manager widgets)
naming 31
overview 41–96
parent-child relationships 55
protocol 658
realizing 39
redrawing 427

window manager 641–676
and dialogs 141
and ICCCM 73
and shell widgets 70
borders 652
bugs 650
bypassing 72
close item 655
decorations 652
menu functions 654
protocols 71, 655–662
resize handles 653
resources

interactivePlacement 231
setting the title string 146
standard decorations 70

windows
border color 83
bypassing the window manager 72
clearing, in DrawingAreas 364
copying text between 677
drawing into 888
enlargening 653
iconifying 653
monitoring, example 888
moving text between 677
properties (see properties)
reparenting 145
scrolled

creating 323
secondary 73
sizing and placement conventions 642

Index

936 Motif Programming Manual

titlebars 653
WM_DELETE_WINDOW atom 655
WM_PROTOCOLS protocol 655
WM_SAVE_YOURSELF protocol 659
WMShell 643
work areas

and dialogs 78, 131
in main windows 67

work procedures 875–880
and WorkDialog 877
in Xt 850

WorkDialog
and work procedures 877
example 882

WorkingDialog 133, 875–891
wprint() 551
WWM_SAVE_YOURSELF atom 655
WWM_TAKE_FOCUS atom 655

X
X event control loop 848
X Input Context 587
X Input Method 586
X toolkit

and Motif 610
basic terminology 11

X Toolkit Intrinsics
selection mechanisms 704

X11/cursorfont.h 885
X11R5 19
XAllocNamedColor() 118
XAPPLRESDIR 82
XBMLANGPATH 82
XChangeProperty() 674
XChangeWindowAttributes() 885
XCheckMaskEvent() 886
XClearWindow()

example 343
XClientMessageEvent() 674
xclipboard 699
XCopyArea() 355

example 343, 373
XCopyPlane() 355
XCreateFontCursor() 874, 885
XCreateGC()

example 373
XCreateIC() 587

XCreatePixmapFromBitmapData() 217
example 209

XCreateSimpleWindow() 650
XDrawLine()

example 343, 373
XDrawString() 85

example 343
XFillRectangle()

example 343, 373
XFlush() 886
XFontSet 585, 808
XFreePixmap()

versus XmDestroyPixmap 896
XGetGeometry() 650
XGetImage() 82
XGetSelectionOwner() 698
XGetWindowProperty() 674
XIC 587
XIM 586
Ximp input method 588
XInternAtom() 698
XKeysymDB 34
Xlib 17

drawing 367
XLoadQueryFont()

example 396
Xm library 14–16, 17
Xm/ArrowB.h 421
Xm/ArrowBG.h 421
Xm/BulletinB.h 238
Xm/Command.h 134
Xm/DialogS.h

and identifying DialogShells 154
Xm/DrawingA.h 362
Xm/DrawnB.h 427
Xm/FileSB.h 134, 183
Xm/Frame.h 272
Xm/Label.h 389
Xm/LabelG.h 390
Xm/List.h 434
Xm/MainW.h 98
Xm/MessageB.h 133
Xm/MwmUtil.h 653
Xm/PanedW.h 276
Xm/SashP.h 283
Xm/SelectioB.h 134
Xm/Text.h 532
Xm/TextF.h 532
Xm/ToggleB.h 406

Motif Programming Manual 937

Index

Xm/ToggleBG.h 407
XmActivateWMProtocol() 674
XmADDITION 460
XmAddProtocolCallback()

example 671
XmAddProtocols()

example 671
XmAddTabGroup() 288
XmAddWMProtocolCallback() 657

example 655, 660
XmAddWMProtocols() 659

example 660
XmALIGNMENT_BASELINE_BOTTOM
268, 273, 395
XmALIGNMENT_BASELINE_TOP 268,
273, 395
XmALIGNMENT_BEGINNING 268, 273,
394, 844
XmALIGNMENT_CENTER 268, 273, 394,
844
XmALIGNMENT_CONTENTS_BOTTOM
268, 395
XmALIGNMENT_CONTENTS_TOP 268,
395
XmALIGNMENT_END 268, 273, 394, 844
XmALIGNMENT_WIDGET_BOTTOM 273
XmALIGNMENT_WIDGET_TOP 273
XmAnyCallbackStruct 38, 108, 149, 580
XmAPPLICATION_DEFINED 323, 325
XMapRaised() 872
XmARROW_DOWN 423
XmARROW_LEFT 423
XmARROW_RIGHT 423
XmARROW_UP 423
XmArrowButtonCallbackStruct 423
XmAS_NEEDED 101, 324, 438
XmATTACH_FORM 245
XmATTACH_NONE 245, 247
XmATTACH_OPPOSITE_FORM 245
XmATTACH_OPPOSITE_WIDGET 245, 246
XmATTACH_POSITION 245, 247
XmATTACH_SELF 245, 248
XmATTACH_WIDGET 245, 246
XmAUTOMATIC 101, 323
xmbind 35
XmbLookupString() 587
XmBOTTOM_LEFT 336
XmBOTTOM_RIGHT 336
XmBROWSE_SELECT 436, 455

XmCascadeButtonGadgetClass 608
XmCascadeButtonWidgetClass 608
XmChangeColor() 84
XmClipboardBeginCopy() 688

example 688
XmClipboardCancelCopy() 692
XmClipboardCopy() 682, 683

example 679, 688, 694
XmClipboardCopyByName() 692

and incremental copying 692
example 688

XmClipboardEndCopy() 682, 683
example 679, 688, 694

XmClipboardEndRetrieve() 684
example 685, 688

XmClipboardInquireCount() 695
XmClipboardInquireFormat() 695
XmClipboardInquireLength() 686

example 687
XmClipboardLock() 692
XmClipboardRegisterFormat() 693

example 694
XmClipboardRetrieve()

example 679, 685, 687, 688
XmClipboardStartCopy() 682

example 679, 694
XmClipboardStartRetrieve() 684

example 685, 688
XmClipboardUndoCopy() 683
XmClipboardUnlock() 692
XmClipboardWithdrawFormat() 684, 693, 695
XmCommandAppendValue() 181
XmCommandCallbackStruct 181
XmCommandError() 181
XmCommandGetChild() 181
XmCommandSetValue() 181
XmCommandWidgetClass 180
XmCONSTANT 324, 439
XmCR_ACTIVATE 109, 269, 367

and DrawnButton 429
and PushButton 402

XmCR_APPLY 176, 186
XmCR_ARM 426

and DrawnButton 429
and PushButton 402

XmCR_BROWSE_SELECT 457
XmCR_CANCEL 149, 176, 186
XmCR_CLIPBOARD_DATA_DELETE 692
XmCR_CLIPBOARD_DATA_REQUEST

Index

938 Motif Programming Manual

692
XmCR_COMMAND_CHANGED 181
XmCR_COMMAND_ENTERED 181
XmCR_DECREMENT 339
XmCR_DEFAULT_ACTION 457
XmCR_DISARM 426

and DrawnButton 429
and PushButton 402

XmCR_DRAG 339, 505
XmCR_EXPOSE 367, 429
XmCR_EXTENDED_SELECT 457
XmCR_HELP 149, 176, 186
XmCR_INPUT 366, 367
XmCR_MODIFYING_TEXT_VALUE 572,
585
XmCR_MOVING_INSERT_CURSOR 580
XmCR_MULTIPLE_SELECT 457
XmCR_NO_MATCH 176, 186
XmCR_OK 149, 176, 186
XmCR_PAGE_DECREMENT 339
XmCR_PROTOCOLS 658
XmCR_RESIZE 367, 429
XmCR_SINGLE_SELECT 457
XmCR_TO_BOTTOM 339
XmCR_TO_TOP 339
XmCR_VALUE_CHANGED 109, 339, 412,
505, 580
XmCreateCommand() 134, 170, 180
XmCreateDialogShell() 205, 215
XmCreateDragIcon() 711, 722, 731
XmCreateErrorDialog() 134
XmCreateFileSelectionBox() 134, 169, 183
XmCreateFileSelectionDialog() 117, 134,
170, 183

example 184, 538, 559, 614
XmCreateInformationDialog() 134

example 866, 869
XmCreateMenuBar() 605

example 606
XmCreateMessageBox() 134
XmCreateMessageDialog() 134, 895

example 133, 170–171, 866, 892
XmCreateOptionMenu() 634

example 634
XmCreatePopupMenu() 628

example 626
XmCreatePromptDialog() 134, 169

example 177
XmCreatePulldownMenu() 606

example 613, 626
XmCreatePushButton() 24
XmCreatePushButtonGadget() 24
XmCreateQuestionDialog() 134

example 136, 162
XmCreateRadioBox() 268, 406, 414

example 414
XmCreateScrolledList() 437

and Form widgets 260
example 102, 455, 918

XmCreateScrolledList(^^)
example 396

XmCreateScrolledText() 122, 218, 529, 537
and Form widgets 260
example 209, 333

XmCreateSelectionBox() 134, 169
XmCreateSelectionDialog() 134, 169
XmCreateSimpleCheckBox() 406, 418
XmCreateSimplePulldownMenu()

example 559
XmCreateTemplateDialog() 134
XmCreateWarningDialog() 134
XmCreateWarningDialog(^)

example 144
XmCreateWorkingDialog() 134, 879

example 877
XmDeactivateWMProtocol() 674
XmDESTROY 141, 895
XmDestroyPixmap() 80, 118

versus XFreePixmap 896
XmDIALOG_CANCEL_BUTTON 143
XmDIALOG_COMMAND 170
XmDIALOG_ERROR 152
XmDIALOG_FILE_SELECTION 170
XmDIALOG_HELP_BUTTON 143
XmDIALOG_INFORMATION 152
XmDIALOG_MESSAGE 152
XmDIALOG_NONE 143
XmDIALOG_OK_BUTTON 143
XmDIALOG_PROMPT 170
XmDIALOG_SELECTION 170
XmDIALOG_TEMPLATE 152
XmDIALOG_WARNING 152
XmDIALOG_WORK_AREA 170
XmDIALOG_WORKING 152
XmDialogShellWidgetClass 151
XmDO_NOTHING 141
XmDRAG_DROP_ONLY style 719
XmDragCancel() 739

Motif Programming Manual 939

Index

XmDragDropFinishCallbackStruct 740
XmDragProcCallbackStruct 758
XmDragStart() 706, 715, 731, 733, 734, 735
XmDrawingAreaCallbackStruct 366
XmDrawnButtonCallbackStruct 429
XmDropProcCallbackStruct 751, 758
XmDropSiteCon?gureStackingOrder() 710
XmDropSiteEndUpdate() 751
XmDropSiteEnterCallbackStruct 738, 739
XmDropSiteQueryStackingOrder() 710
XmDropSiteRegister() 708

for registering Label 749
XmDropSiteRetrieve() 708, 739, 750
XmDropSiteStartUpdate() 751
XmDropSiteUnregister() 720, 721
XmDropSiteUpdate() 708, 720, 721, 750, 751
XmDropStartCallbackStruct 739
XmDropTransferAdd() 709, 753
XmDropTransferEntryRec 752, 753
XmDropTransferStart() 709, 713, 716, 751,
752, 757
xmemo.c program 918
XmEXCLUSIVE_TAB_GROUP 288
XmEXTENDED_SELECT 436
XmEXTENDED_SELECT selection policy
459
XmFILE_ANY_TYPE ?le type mask 192
XmFILE_DIRECTORY ?le type mask 192
XmFILE_REGULAR ?le type mask 192
XmFileSelectionBoxCallbackStruct 186
XmFileSelectionBoxWidgetClass 183
XmFileSelectionDoSearch() 186
XmFONTLIST_DEFAULT_TAG 585, 810,
816
XmFontListAppendEntry()

example 396
XmFontListEntryCreate()

example 396
XmFontListFree()

example 396
XmFRAME_TITLE_CHILD 272
XmFRAME_WORKAREA_CHILD 272
XmGetDragContext() 737
XmGetFocusWidget() 293
XmGetPixmap() 118, 393, 411, 730

and XCreatePixmapFromBitmapData()
217

example 409
XmGetPixmap(^^)

example 427
XmGetPixmapByDepth() 731
XmGetTabGroup() 293
XmGetTearOffControl() 617
XmGetXmDisplay() 717, 719
XmGetXmScreen() 721, 722
XmHORIZONTAL 263, 266, 336, 503
XmINITIAL 460
XmInstallImage() 80, 81, 82
XmInternAtom() 657, 698, 730, 750

example 655, 671
versus XInternAtom() 657

XmIsDialogShell macro 154
XmIsMessageBox macro 155
XmIsTraversable() 293
xmLabelGadgetClass pointer 390
XmListAddItem() 440
XmListAddItems() 440
XmListAddItemsUnselected() 440
XmListAddItemUnselected() 440

example 440, 447
XmListDeleteAllItems() 445
XmListDeleteItem() 444
XmListDeleteItems() 445
XmListDeleteItemsPos() 445
XmListDeletePos() 444
XmListDeletePositions() 445
XmListDeselectAllItems() 446
XmListDeselectItem() 446
XmListDeselectPos() 446
XmListGetKbdItemPos() 453
XmListGetMatchPos() 443
XmListGetSelectedPos() 447
XmListItemExists() 442
XmListItemPos() 443
XmListPosSelected() 446
XmListPosToBounds() 453
XmListReplaceItems() 444
XmListReplaceItemsPos() 444
XmListReplaceItemsPosUnselected() 444
XmListReplaceItemsUnselected() 444
XmListReplacePositions() 444
XmListSelectPos()

example 918
XmListSetBottomItem() 452
XmListSetBottomPos() 452

example 452
XmListSetItem() 452
XmListSetKbdItemPos() 453

Index

940 Motif Programming Manual

XmListSetPos() 452
example 452

XmListWidgetClass 434
XmListYToPos() 453
XmMainWindowSetAreas() 122

example 538
XmMAX_ON_BOTTOM 336, 503
XmMAX_ON_LEFT 336, 503
XmMAX_ON_RIGHT 336, 503
XmMAX_ON_TOP 336, 503
XmMENU_BAR 122, 262
XmMENU_POPUP 262
XmMenuPosition()

example 595, 628
XmMessageBoxGetChild() 198

example 162, 866, 869, 882, 892
XmMODIFICATION 460
XmMULTI_LINE_EDIT 536
XmMULTICLICK_DISCARD 405
XmMULTICLICK_KEEP 406
XmMULTIPLE_SELECT 436, 446, 458
XmNaccelerator 610
XmNacceleratorText 610, 611
XmNactivateCallback

and DrawnButton 429
and nonstandard buttons 197
and PushButton 367, 400
and Text widgets 567
and TextField widgets 567
automation of 569
example 567
reasons 367

XmNalignment 268, 394
XmNallowShellResize 648
XmNanimationMask

for DropSite 758
XmNanimationPixmap

for DropSite 758
XmNanimationStyle 709, 759

for DropSite 758
XmNapplyCallback 135, 177
XmNapplyLabelString 135
XmNarmCallback 400
XmNarmColor 83
XmNarrowDirection 423
XmNattachment 711
XmNaudibleWarning 573
XmNautoShowCursorPosition 548
XmNautoUnmanage 140, 179

XmNbackground 83
XmNbackgroundPixmap 431
XmNbaseHeight 645
XmNbaseWidth 645
XmNblendModel 711, 732
XmNborderColor 83
XmNbottomAttachment 245
XmNbottomOffset 251
XmNbottomPosition 248
XmNbottomShadowColor 83
XmNbottomWidget 246
XmNbrowseSelectionCallback 455
XmNbuttonFontList 147, 238, 817
XmNcancelCallback 135
XmNcancelLabelString 135
XmNchildHorizontalAlignment 273
XmNchildHorizontalSpacing 273
XmNchildPlacement 199
XmNchildType 272
XmNchildVerticalAlignment 273
XmNclientData 733
XmNclipWindow 325
XmNcolormap 385
XmNcolumns 542
XmNcommandWindow 123
XmNconvertProc 707, 708, 713, 715, 716,
733, 734, 737, 753
XmNcursorPositionVisible 543
XmNdecimalPoints 502
XmNdecrementCallback 339
XmNdefaultActionCallback 455
XmNdefaultButton 145, 155, 227
XmNdefaultButtonShadowThickness 219
XmNdefaultButtonType 143
XmNdefaultCopyCursorIcon 721
XmNdefaultFontList 817
XmNdefaultInvalidCursorIcon 721
XmNdefaultLinkCursorIcon 721
XmNdefaultMoveCursorIcon 721
XmNdefaultNoneCursorIcon 721
XmNdefaultPosition 153
XmNdefaultSourceCursorIcon 721, 722
XmNdefaultValidCursorIcon 721
XmNdefaultVirtualBindings 35
XmNdeleteResponse 141, 895
XmNdepth 711
XmNdestroyCallback 615

and destroying dialogs 892
and Text widgets 538

Motif Programming Manual 941

Index

callback routine 152
XmNdialogStyle 159
XmNdialogTitle 146
XmNdialogType 152, 170

in Motif 1.2 198
XmNdirectoryValid 191
XmNdirListItemCount 191
XmNdirListItems 191
XmNdirListLabelString 135
XmNdirSearchProc 191, 192
XmNdirSpec 187
XmNdisarmCallback 400
XmNdoubleClickInterval 455
XmNdragCallback 505

and ScrollBars 339
XmNdragDropFinishCallback 716, 733, 740
XmNdragInitiatorProtocolStyle 713, 717, 718,
719, 720
XmNdragMotionCallback 738
XmNdragOperations 706, 732

for DragContext 759
XmNdragProc 709, 712, 713, 715, 719, 758,
759
XmNdragReceiverProtocolStyle 713, 717,
719, 720
XmNdropFinishCallback 716, 740
XmNdropProc 715, 716, 751, 753

for DropSite 739, 750, 753
for Text drop site 750

XmNdropRectangles 710
XmNdropSiteActivity 720, 721
XmNdropSiteEnterCallback 738
XmNdropSiteLeaveCallback 738
XmNdropSiteOperations 708, 750, 759
XmNdropSiteType 710
XmNdropStartCallback 716

of DragContext 739
XmNdropTransfers 709, 752
XmNeditable 218, 543, 550, 721
XmNeditMode 536
XmNentryAlignment 267, 395
XmNentryCallback 269

and menus 609
example 270

XmNentryClass 268
XmNentryVerticalAlignment 268, 395
XmNexportTargets 707, 732, 737

for DragContext 753
for DragSource 759

XmNexposeCallback
and DrawingArea 352
and DrawnButton 429
and Expose events 363
and expose_resize() 353
and Scrollbars 378
Eventtypes 367

XmNextendedSelectionCallback 455, 459
XmN?leListItemCount 187
XmN?leListItems 187
XmN?leListLabelString 135
XmN?leSearchProc 187
XmN?lterLabelString 135
XmNfocusCallback 237, 582
XmNfontList 396, 585, 813, 823
XmNforeground 83
XmNfractionBase 227, 248, 253
XmNheight 230, 711
XmNheightInc 645
XmNhelpCallback 135, 389, 868
XmNhelpLabelString 135, 167
XmNhightlightColor 83
XmNhorizontalScrollBar 123, 325
XmNhorizontalSpacing 257
XmNhotX 711
XmNhotY 711
XmNiconic 650
XmNiconName 651
XmNiconPixmap 649
XmNiconWindow 650
XmNiconX 651
XmNiconY 651
XmNimportTargets 708

for DropSite 750, 759
for Text drop site 750

XmNincrement 332, 335
XmNincremental 707, 713
XmNincrementCallback 339
XmNindicatorOn 411
XmNindicatorSize 409
XmNindicatorType 407, 408, 414
XmNinitialFocus 145
XmNinputCallback 363, 366

Eventtypes 367
XmCR_INPUT as reason 366

XmNinputMethod 588
XmNinvalidCursorForeground 722

of DragContext 739
XmNisAligned 267

Index

942 Motif Programming Manual

XmNisHomogeneous 268, 414
XmNitemCount 436
XmNitems 436
XmNlabelFontList 147, 239, 817
XmNlabelInsensitivePixmap 394, 429
XmNlabelPixmap 217, 391, 429, 730
XmNlabelString 390, 753
XmNlabelType 217, 390, 391, 409

XmPIXMAP as value 217
XmNleftAttachment 245
XmNleftOffset 251
XmNleftPosition 248
XmNleftWidget 246
XmNlistItemCount 174
XmNlistItems 174
XmNlistLabelString 135, 174
XmNlistSizePolicy 438
XmNlistUpdated 187, 191
XmNlistVisibleItemCount 174
XmNlosingFocusCallback 582
XmNmainWindowMarginHeight 124
XmNmainWindowMarginWidth 124
XmNmapCallback 229, 237

and positioning dialogs 229
XmNmask 711, 731
XmNmaxHeight 645
XmNmaximum 333, 335, 502
XmNmaxLength 535
XmNmaxWidth 645
XmNmenuBar 103, 123
XmNmenuHelpWidget 115, 613, 621
XmNmenuPost 633
XmNmessageString 135, 198
XmNmessageWindow 123
XmNminHeight 645
XmNminimizeButtons 145
XmNminimum 333, 335, 502
XmNminWidth 645
XmNmnemonic 609
XmNmodifyVerifyCallback 570, 585
XmNmodifyVerifyCallbackWcs 584
XmNmotionVerifyCallback 580
XmNmultiClick 405
XmNmultipleSelectionCallback 455, 458
XmNmustMatch 175
XmNmwmDecorations 652
XmNmwmFunctions 654
XmNmwmMenu 673
XmNnavigationType 287

XmNnoMatchCallback 175
XmNnoneCursorForeground

of DragContext 739
XmNnoResize 146
XmNnumColumns 265, 393
XmNnumDropRectangles 710
XmNnumDropTransfers 709, 752
XmNnumExportTargets 707, 732, 737
XmNnumImportTargets 708

for Text drop site 750
XmNoffsetX 711
XmNoffsetY 711
XmNokCallback 135, 175
XmNokLabelString 135
XmNONE 287
XmNoperationChangedCallback 738
XmNoperationCursorIcon 707, 721, 732

of DragContext 739
XmNorientation 336, 503

and RowColumns 263, 265, 266
XmNpacking 265
XmNpageDecrementCallback 339
XmNpageIncrement 332
XmNpageIncrementCallback 339
XmNpaneMaximum 227, 278
XmNpaneMinimum 227, 278
XmNpixmap 711, 731
XmNpopdownCallback 142, 231, 615
XmNpopupCallback 142, 231
XmNpositionIndex 276
XmNpreeditType 588
XmNprocessingDirection 336, 503
XmNpromptString 135
XmNpushButtonEnabled 430
XmNqualifySearchProc 192
XmNradioAlwaysOne 414

used in menus 115
XmNradioBehavior

and CheckBox 418
and RadioBox 414
and RowColumn 408
used in menus 115

XmNresizable 257
XmNresizeCallback 363

and DrawingAreas 352
and DrawnButton 429
and expose_resize() 353
Eventtypes 367

XmNresizeHeight 544

Motif Programming Manual 943

Index

XmNresizePolicy 439
XmNresizeWidth 544
XmNrightAttachment 245
XmNrightOffset 251
XmNrightPosition 248
XmNrightWidget 246
XmNrowColumnType 122, 262
XmNrows 542
XmNrubberPositioning 257
XmNsashHeight 216
XmNsashWidth 216
XmNscaleMultiple 504
XmNscrollBarDisplayPolicy 101, 323, 325,
438
XmNscrollBarPlacement 336
XmNscrollHorizontal 543
XmNscrollingPolicy 101, 323, 325, 378
XmNscrollLeftSide 543
XmNscrollTopSide 543
XmNscrollVertical 543
XmNselectColor 83
XmNselectedItemCount 445
XmNselectedItems 445
XmNselectInsensitivePixmap 412
XmNselectionArray 557
XmNselectionArrayCount 558
XmNselectionLabelString 135
XmNselectionPolicy 436, 446, 455, 458
XmNselectPixmap 409
XmNselectThreshold 558
XmNsensitive 205

and deactivating menus 608
and pixmaps 412

XmNset 409
XmNshadowThickness 238
XmNshadowType 238, 272, 430
XmNshowAsDefault 219
XmNshowSeparator 124
XmNshowValue 502, 503
XmNsingleSelectionCallback 455
XmNskipAdjust 216
XmNsliderSize 333
XmNsource 590
XmNsourceCursorIcon 707, 721, 732, 739

of DragContext 739
XmNsourcePixmapIcon 739

of DragContext 739
XmNstateCursorIcon 707, 721

of DragContext 739

XmNstringDirection 394, 544, 812, 818
XmNsubMenuId 607
XmNsymbolPixmap 135, 198, 892

example 892
XmNtearOffMenuActivateCallback 617
XmNtearOffMenuDeactivateCallback 617
XmNtearOffModel 616
XmNtextFontList 147, 239, 817
XmNtextString 179
XmNtitle 146, 215, 651
XmNtitleString 502
XmNtoBottomCallback 339
XmNtopAttachment 245
XmNtopItemPosition 453
XmNtopLevelEnterCallback 738
XmNtopLevelLeaveCallback 738
XmNtopOffset 251
XmNtopPosition 248
XmNtopShadowColor 83
XmNtopWidget 246
XmNtoTopCallback 339
XmNtransferProc 709, 713, 716

for DropTransfer 752
of DropSite 740

XmNtransferStatus 709, 758
XmNtranslations 373, 706, 720, 730, 735
XmNtraversalOn 285, 439
XmNtraverseObscuredCallback 357

example 357
XmNtroughColor 83
XmNuserData 202, 367, 730, 735

for Label 734
XmNvalidCursorForeground 722

of DragContext 739
XmNvalue

and Scale 502
and ScrollBars 333
and Text widget 218, 533, 583
and TextField widget 533, 583

XmNvalueChangedCallback 339, 412, 414,
505, 570, 580, 626
XmNvalueWcs 583
XmNverifyBell 573
XmNverticalScrollBar 123
XmNverticalSpacing 257
XmNvisibleItemCount 261, 437, 438
XmNvisibleWhenOff 414
XmNvisualPolicy 323
XmNwidth 230, 711

Index

944 Motif Programming Manual

XmNwidthInc 645
XmNwordWrap 543
XmNworkWindow 123, 325
XmNx 230
XmNy 230
XmONE_OF_MANY 414
XmPACK_COLUMN 265
XmPIXMAP 217, 390, 391, 409
XmPLACE_ABOVE_SELECTION 199
XmPLACE_BELOW_SELECTION 199
XmPLACE_TOP 199
XmProcessTraversal() 292, 569, 582
XmPULLDOWN 262
XmPushButtonCallbackStruct 38, 108, 401
XmRegisterSegmentEncoding() 817
XmRESIZE_IF_POSSIBLE 438
XmRESIZE_NONE 439
XmRowColumn 261–271
XmRowColumnCallbackStruct 269
XmScaleCallbackStruct 505
XmScaleGetValue() 503
XmScaleSetValue() 503
XmScrollBarCallbackStruct 338
XmScrollBarGetValues() 355
XmScrollBarSetValues() 355
XmScrolledWindowSetAreas() 353

example 343
XmScrollVisible() 358
XmSELECT_ALL 558
XmSELECT_LINE 558
XmSELECT_PARAGRAPH 558
XmSELECT_POSITION 558
XmSELECT_WHITESPACE 558
XmSELECT_WORD 558
XmSelectionBoxCallbackStruct 176
XmSelectionBoxGetChild() 176, 179

example 170, 177, 202
XmSelectItem() 445
XmSelectPos() 445
XmSHADOW_ETCHED_IN 238, 272, 430
XmSHADOW_ETCHED_OUT 238, 272, 430
XmSHADOW_IN 238, 272, 430
XmSHADOW_OUT 238, 272, 430
XmSINGLE_LINE_EDIT 536
XmSINGLE_SELECT 436, 455
XmSTATIC 438

value 324
XmSTATIC value 325
XmSTICKY_TAB_GROUP 288

XmSTRING 390
XmString type

example 16
XmSTRING_DIRECTION_L_TO_R 819, 844
XmSTRING_DIRECTION_R_TO_L 819, 844
XmStringBaseline() 845
XmStringByteCompare() 443
XmStringConcat() 821
XmStringCreate() 812, 821

example 396
XmStringCreateLocalized() 809, 868

example 16, 133, 136, 160, 416, 447,
538, 553, 559, 595, 918

XmStringCreateLocalized(^^)
example 403

XmStringCreateLtoR() 820, 868
example 144, 170–171, 396

XmStringCreateSimple()
example 209

XmStringDirection type 819
XmStringDirectionCreate() 812, 819
XmStringDraw() 843
XmStringDrawImage() 843, 845
XmStringDrawUnderline() 843, 845
XmStringExtent() 845
XmStringFree() 810

example 16, 210, 396, 440, 447, 553,
559

XmStringFree(^^)
example 403

XmStringFreeContext() 826
example 827

XmStringGetLtoR() 176, 186, 458
example 170–171, 455, 458, 538

XmStringGetNextSegment() 826
example 827

XmStringHeight() 845
XmStringInitContext() 825

example 827
XmStringLineCount() 821
XmStringSegmentCreate() 818
XmStringTable

example 396
XmStringWidth() 845
XmTAB_GROUP 287
XmTEAR_OFF_DISABLED 616
XmTEAR_OFF_ENABLED 616
XmTEXT_BACKWARD 548
XmTEXT_FORWARD 548

Motif Programming Manual 945

Index

XmTextBlock 572
XmTextBlockWcs 585
XmTextClearSelection() 557, 697
XmTextCopy() 556, 696
XmTextCut() 556, 696
XmTextDisableRedisplay() 534
XmTextEnableRedisplay() 534
XmTextField

used in selection box 169
XmTextFieldGetString() 535
XmTextFieldSetCursorPosition()

example 538
XmTextFieldSetString() 534

example 440, 447, 538
XmTextFindString() 547
XmTextFindStringWcs() 584
XmTextGetCursorPosition() 544

example 545, 559
XmTextGetInsertionPosition() 544
XmTextGetLastPosition() 548, 574

example 559
XmTextGetSelection() 557, 697
XmTextGetSelectionPosition() 557
XmTextGetSelectionWcs() 584
XmTextGetString() 534

example 549, 559
XmTextGetStringWcs() 584
XmTextGetSubstring() 535
XmTextGetSubstringWcs() 584
XmTextHighlight() 559
XmTextInsert() 552

example 551
XmTextInsertWcs() 584
XmTextPaste() 696
XmTextPosition type 544
XmTextReplace() 548

example 549, 559
XmTextReplaceWcs() 584
XmTextScanType type 558
XmTextScroll() 548
XmTextSetCursorPosition() 544
XmTextSetHighlight()

example 559
XmTextSetInsertionPosition() 544, 580

example 545
XmTextSetSelection() 697
XmTextSetString() 181, 534, 753

example 538, 545, 549, 553
XmTextSetStringWcs() 584

XmTextShowPosition() 548, 552
example 551

XmTextVerifyCallbackStruct 571
XmTextVerifyCallbackStructWcs 585
XmToggleButtonCallbackStruct 412
XmToggleButtonGadgetGetState() 412
XmToggleButtonGadgetSetState() 413
XmToggleButtonGetState() 412
XmToggleButtonSetState() 413
XmTOP_LEFT 336
XmTOP_RIGHT 336
XmTrackingEvent() 873
XmTranslateKey() 35
XmTRAVERSE_CURRENT 292
XmTRAVERSE_DOWN 292
XmTRAVERSE_HOME 292
XmTRAVERSE_LEFT 292
XmTRAVERSE_NEXT 292
XmTRAVERSE_NEXT_TAB_GROUP 292,
569
XmTRAVERSE_PREV 292
XmTRAVERSE_PREV_TAB_GROUP 292
XmTRAVERSE_RIGHT 292
XmTRAVERSE_UP 292
XmTraverseObscuredCallbackStruct 358
XmUninstallImage() 82
XmUNMAP 141
XmUNSPECIFIED_PIXMAP 393
XmUpdateDisplay() 888

example 882, 888
XmVaCASCADEBUTTON 107
XmVaCHECKBUTTON 107
XmVaCreateSimpleCheckBox() 418
XmVaCreateSimpleMenuBar() 104, 594

example 106, 210, 538, 553
XmVaCreateSimpleOptionMenu() 594

example 603
XmVaCreateSimplePopupMenu() 594

example 595, 600
XmVaCreateSimplePulldownMenu() 105,
116, 594

example 538, 553, 600
XmVaCreateSimpleRadioBox() 416

example 416
XmVaDOUBLE_SEPARATOR 107
XmVaPUSHBUTTON 106
XmVaRADIOBUTTON 107, 416
XmVARIABLE 438

value 325

Index

946 Motif Programming Manual

XmVaSEPARATOR 107
XmVaSINGLE_SEPARATOR 107
XmVaTITLE 107
XmVaTOGGLEBUTTON 106
XmVERTICAL 263, 266, 336, 503
XmWORK_AREA 262
XOpenIM() 586
XQueryBestCursor() 719
XQueryTree() 674
XSendEvent() 674
XSetErrorHandler() 552
XSetFont()

example 343
XSetForeground()

example 343, 373
XSetWindowBackgroundPixmap() 431

example 650
xshowbitmap.c program 911
Xsi input method 588
Xt

programming with 16–39
Xt library 14–16, 17
Xt selection mechanisms 713
XtActionsRec 241
XtAddActions() 241
XtAddCallback() 198, 227

adding dialog callbacks 148
example 148, 170–171, 368, 500, 506

XtAddEventHandler() 633
example 647

XtAppAddActions() 706, 730, 735
XtAppAddInput() 890
XtAppAddTimeOut() 875, 881

and signal handling 858
example 892

XtAppAddWorkProc() 851, 879
XtAppMainLoop()

and signal handling 850
XtAppSetErrorHandler() 552
XtAppSetWarningHandler() 552
XtCallCallbacks() 874
XtConvertSelectionIncrProc 707
XtConvertSelectionProc 707, 733
XtCreateApplicationShell() 205
XtCreatePopupShell() 151, 205
XtDestroyWidget() 220, 740
XtDisplayOfObject() 682
XtGetMultiClickTime() 558
XtGetValues() 737

XtGrabExclusive 137
XtGrabKind 137
XtGrabNone 137
XtGrabNonexclusive 137
XtInitialize() 21
XtIsVendorShell() 643
XtMalloc()

example 170–171
XtManageChild() 136

and popping up dialogs 136, 231
XtNew() 895
XtNtitle 215
XtOverrideTranslations() 241, 372

example 239
XtParent() 137, 537
XtParseTranslationTable() 241, 706, 730, 735

example 239, 373
XtPopdown() 231
XtPopup() 231
XtQueryGeometry() 845

and PanedWindows 280
XtRemoveEventHandler()

example 647
XtRemoveWorkProc() 880
XtResolvePathname() 807
XtSelectionCallbackProc 709, 752
XtSetArg()

example 211
XtSetLanguageProc() 20, 582, 807
XtSetMultiClickTime() 402, 558
XtSetSensitive() 394, 614

example 170–171, 614
XtSetValues()

example 102
XtVaAppCreateShell() 205
XtVaAppInitialize() 21
XtVaCreateApplicationShell() 205
XtVaCreateArgsList() 508

example 506
XtVaCreateManagedWidget() 149, 406

and creating Frame widgets 272
and creating List widgets 434
versus XtVaCreateWidget() 235

XtVaCreatePopupShell() 205
example 215, 222

XtVaCreateWidget() 149
versus XtVaCreateManagedWidget() 235

XtVaGetValues() 27, 534, 708, 719, 750
XtVaSetValues() 27, 708, 719, 721

Motif Programming Manual 947

Index

XtVaTypedArg 84, 102, 203
and compound strings 810

XtWidgetGeometry type 282
XtWindowOfObject() 682
XwcLookupString() 587

Z
zero-length attachment offsets 253

