
Perforce 2002.1
Command Reference

April 2002

This manual copyright 1999-2002 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com. You may download and use
Perforce programs, but you may not sell or redistribute them. You may download, print, copy, edit, and redistribute
the documentation, but you may not sell it, or sell any documentation derived from it. You may not modify or attempt
to reverse engineer the programs.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warran-
ties and support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.

By downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software. Perforce software includes software developed
by the University of California, Berkeley and its contributors.

All other brands or product names are trademarks or registered trademarks of their respective companies or organi-
zations.

Table of Contents
About This Manual ... 7
p4 add...9
p4 admin ..11
p4 branch ...13
p4 branches..16
p4 change ...17
p4 changes ...20
p4 client ..23
p4 clients ..29
p4 counter ..30
p4 counters...32
p4 delete ...33
p4 depot ...35
p4 depots..38
p4 describe ...39
p4 diff ...41
p4 diff2 ...43
p4 dirs...46
p4 edit...48
p4 filelog...51
p4 files...53
p4 fix ...55
p4 fixes..58
p4 flush...60
p4 fstat ..63
p4 group...66
p4 groups ...70
p4 have ...71
p4 help..73
p4 info...75
p4 integrate ..76
p4 integrated..81
p4 job ..83
p4 jobs...86
p4 jobspec...91
Perforce 2002.1 Command Reference 3

Table of Contents
p4 label .. 95
p4 labels... 97
p4 labelsync .. 98
p4 lock.. 100
p4 logger.. 101
p4 obliterate .. 102
p4 opened.. 105
p4 passwd ... 107
p4 print .. 109
p4 protect..111
p4 rename...117
p4 reopen..118
p4 resolve .. 120
p4 resolved.. 126
p4 revert .. 127
p4 review... 129
p4 reviews ... 131
p4 set .. 133
p4 submit... 136
p4 sync... 140
p4 triggers ... 143
p4 typemap ... 147
p4 unlock... 151
p4 user ... 152
p4 users.. 156
p4 verify .. 157
p4 where.. 159

Environment and Registry Variables......................161
P4CHARSET... 163
P4CLIENT ... 164
P4CONFIG.. 165
P4DEBUG.. 167
P4DIFF ... 168
P4EDITOR... 169
P4HOST... 170
P4JOURNAL... 171
P4LANGUAGE .. 172
4 Perforce 2002.1 Command Reference

Table of Contents
P4LOG ..173
P4PAGER ...174
P4MERGE ..175
P4PASSWD ..176
P4PORT ..177
P4ROOT ...178
P4USER ..179
PWD..180
TMP, TEMP..181

Additional Information.. 183
Global Options ..185
File Specifications ...189
Views ..193
File Types ...197

Index ... 203
Perforce 2002.1 Command Reference 5

Table of Contents
6 Perforce 2002.1 Command Reference

About This Manual
About This Manual

Synopsis

This is the Perforce 2002.1 Command Reference.

Description

This manual describes each Perforce command, the Perforce environment variables, and
certain features that can be used with multiple commands. The command reference is
intended for users who like to learn via UNIX-style man pages, and for users who already
understand the basics of Perforce and would like to quickly refer to information on a
specific command.

If you’d prefer to learn the basics of Perforce from a conceptual point of view, or you
prefer a style with more examples and tutorials than what you find here, please start with
the Perforce User’s Guide, available from our web site at: http://www.perforce.com.

Options

This manual is available in PDF and HTML.

Usage Notes

Both the PDF and HTML versions of this manual have been extensively cross-referenced.
When viewing the PDF manual online, you can read the description of any particular
command by clicking on a reference to that command from any other chapter.

If there’s anything we’ve left out that you think should be included, let us know. Please
send your comments to manual@perforce.com.
Perforce 2002.1 Command Reference 7

About This Manual
8 Perforce 2002.1 Command Reference

p4 add
p4 add

Synopsis

Open file(s) in a client workspace for addition to the depot.

Syntax
p4 [g-opts] add [-c changelist#] [-t type] file...

Description

p4 add opens files within the client workspace for addition to the depot. The specified
file(s) are linked to a changelist; the files are not actually added to the depot until the
changelist is sent to the server with p4 submit.

The added files must be contained in the user's current client view. These files need not
exist within the client workspace at the time of p4 add. They must, however, be in the
client workspace when p4 submit is run, or submission fails. p4 add does not create the
files; they must be created by the user.

The new files must either not already exist in the depot, or can exist in the depot but be
deleted at the head revision. Files may be deleted and re-added arbitrarily.

By default, the specified files are linked to the default changelist. Use -c to specify a
different changelist.

When adding files, Perforce first examines the typemap table (p4 typemap) to see if the
system administrator has defined a file type for the file(s) being added. If a match is
found, the file’s type is set as defined in the typemap table. If a match is not found,
Perforce examines the first 1024 bytes of the file to determine whether it is text or binary,
and the files are stored in the depot accordingly. Text file revisions are stored in reverse
delta format; binary file revisions are stored as full files.

The -t filetype flag specifies the file type explicitly, overriding any settings in the
typemap table and Perforce’s default file detection mechanism.

Options
-c changelist Opens the files for add within the specified changelist. If this flag is

not used, the files are linked to the default changelist.

-t filetype Adds the file as the specified filetype.

Please see the File Types chapter for a list of Perforce file types.

g_opts See the Global Options section.
Perforce 2002.1 Command Reference 9

p4 add
Usage Notes

• Wildcards in file specifications provided to p4 add are expanded by the local operating
system, not by the Perforce server. Thus, the ... wildcard cannot be used with p4 add.

• In Perforce, there is no difference between adding files to an empty depot and adding
files to a depot that already contains other files. Thus, you can populate new, empty
depots by adding files from a client workspace with p4 add.

Examples

Related Commands

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No open

p4 add -c 13 * Opens all the files within the user's current directory
for add, and links these files to changelist 13.

p4 add README ~/src/*.c Opens all *.c files in the user's ~/src directory for add;
also opens the README file in the user's current working
directory for add. These files are linked to the default
changelist.

p4 add -t binary file.pdf Assigns a specific file type to a new file, overriding any
settings in the typemap table

To open a file for edit p4 edit

To open a file for deletion p4 delete

To copy all open files to the depot p4 submit

To read files from the depot into the client workspace p4 sync

To create or edit a new changelist p4 change

To list all opened files p4 opened

To revert a file to its unopened state p4 revert

To move an open file to a different pending changelist p4 reopen

To change an open file’s file type p4 reopen -t filetype
10 Perforce 2002.1 Command Reference

p4 admin
p4 admin

Synopsis

Perform administrative operations on the server.

Syntax
p4 [g-opts] admin checkpoint [-z] [prefix]
p4 [g-opts] admin stop

Description

The p4 admin command allows Perforce superusers to perform administrative tasks
whether they are on the host running the Perforce server or not.

To stop the server, use p4 admin stop. This locks the database to ensure that it is in a
consistent state upon server restart, and then shuts down the Perforce background
process. (For Windows users, this works whether you are running Perforce as a server or
a service.)

To take a checkpoint, use p4 admin checkpoint [prefix]. This is equivalent to logging
in to the server machine and taking a checkpoint with p4d -jc [prefix]. A checkpoint is
taken and the journal is copied to a numbered file. If a prefix is specified, the files are
named prefix.ckp.n or prefix.jnl.n respectively, where n is a sequence number. If no
prefix is specified, the default filenames checkpoint.n and journal.n are used. Use the
-z option to save the checkpoint and journal files in compressed form.

The files are created in the server root specified when the Perforce server was started.

Options

Usage Notes

-z For p4 admin checkpoint, save the checkpoint and saved journal
file in compressed (gzip) format, appending the .gz suffix to the files.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A super
Perforce 2002.1 Command Reference 11

p4 admin
• Because p4 admin stop shuts down the Perforce server, you may see an error message
indicating that the connection between the client and server was closed unexpectedly.
You can ignore this message.

• For more about administering Perforce, see the Perforce System Administrator’s Guide.

Examples
p4 admin stop Stop the Perforce server

p4 admin checkpoint Create a checkpoint named checkpoint.n, and start a
new journal named journal, copying the old journal
file to journal.n, where n is a sequence number.

p4 admin checkpoint foo Create a checkpoint named foo.ckp.n, and start a new
journal named journal, copying the old journal file to
foo.jnl.n, where n is a sequence number.
12 Perforce 2002.1 Command Reference

p4 branch
p4 branch

Synopsis

Create or edit a branch view specification.

Syntax
p4 [g-opts] branch [-f] branchspec
p4 [g-opts] branch -o branchspec
p4 [g-opts] branch -d [-f] branchspec
p4 [g-opts] branch -i [-f]

Description

p4 branch allows you to store a mapping between two sets of files for use with p4

integrate. This command displays a form: enter a view that expresses the mappings
between the files you’re integrating from (the fromFiles) and the files you’re integrating
to (the toFiles), specifying both sides of the view in depot syntax.

Once the branch specification has been created and named, you can integrate files by
typing p4 integrate -b branchspecname; the branch specification automatically maps
all toFiles to their corresponding fromFiles.

Completing p4 branch has no immediate effect on any files in the depot. Perforce doesn’t
create the branched files in the client workspace until you first call p4 integrate -b
branchspecname.

Form Fields
Field Name Type Description

Branch: read-only The branch name, as provided on the command line.

Owner: mandatory The owner of the branch specification. By default, this
will be set to the user who created the branch. This field
is unimportant unless the Option: field value is
locked.

Access: read-only The date the branch specification was last accessed.

Update: read-only The date the branch specification was last changed.
Perforce 2002.1 Command Reference 13

p4 branch
Options

Usage Notes

Options: mandatory Either unlocked (the default) or locked.

If locked, only the Owner: can modify the branch spec,
and the spec can’t be deleted until it is unlocked.

Description: optional A short description of the branch’s purpose.

View: mandatory A set of mappings from one set of files in the depot (the
source files) to another set of files in the depot (the target
files). The view maps from one location in the depot to
another; it can’t refer to a client workspace.

For example, the branch view

//depot/main/... //depot/r2.1/...

will map all the files under //depot/main to
//depot/r2.1.

-d Delete the named branch specification. Files are not affected by this
operation; only the stored mapping from one codeline to another is
deleted. Normally, only the user who created the branch can use this
flag.

-f Force flag. Combined with -d, allows Perforce superusers to delete
branches they don’t own. Also allows superusers to change the
modification date of the branch specification (the Update: field
becomes writable when using the -f flag).

-i Read the branch specification from standard input without invoking
an editor.

-o Write the branch specification to standard output without invoking
an editor.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A open

Field Name Type Description
14 Perforce 2002.1 Command Reference

p4 branch
• A branch view usually expresses the relationship between two related codelines. For
example, if the development files for a particular project are stored under
//depot/project/dev/..., and you want to create a related codeline for the 2.0
release of the project under //depot/project/r2.0/..., specify the branch view as:

//depot/project/dev/... //depot/project/r2.0/...

Branch views may contain multiple mappings. See the Views chapter for more
information on specifying views.

• Branch views can also be used with p4 diff2 with the syntax p4 diff2 -b

branchname fromFiles. This will diff the files that match the pattern fromFiles

against their corresponding toFiles as defined in the branch view.

Related Commands
To view a list of existing branch specifications p4 branches

To copy changes from one set of files to another p4 integrate

To view differences between two codelines p4 diff2
Perforce 2002.1 Command Reference 15

p4 branches

16 Perforce 2002.1 Command Reference

p4 branches

Synopsis

List existing branch specifications.

Syntax
p4 [g-opts] branches

Description

Print the list of all branch specifications currently known to the system.

Options

Usage Notes

Related Commands

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A list

To create or edit a branch specification p4 branch

p4 change
p4 change

Synopsis

Create or edit a changelist specification.

Syntax
p4 [g-opts] change [-f -s] [changelist#]
p4 [g-opts] change -d [-f -s] changelist#
p4 [g-opts] change -o [changelist#]
p4 [g-opts] change -i [-f -s]

Description

When files are opened with p4 add, p4 delete, p4 edit, or p4 integrate, the files are
listed in a changelist. Edits to the files are kept in the local client workspace until the
changelist is sent to the depot with p4 submit. By default, files are opened within the
default changelist, but multiple changelists can be created and edited with the p4 change

command.

p4 change brings up a form for editing or viewing in the editor defined by the
environment or registry variable P4EDITOR. When no arguments are provided, this
command creates a new, numbered changelist. Changelist numbers are assigned in
sequence; Perforce may renumber changelists automatically on submission in order to
keep the numeric order of submitted changelists identical to the chronological order.

You can use p4 change changelist# can be used to edit the description of a pending
changelist, and to view the fields of a submitted changelist.

If p4 submit of the default changelist fails, a numbered changelist is created in its place.
The changelist must be referred to by number from that point forward.

Form Fields
Field Name Type Description

Change: Read-only Contains the change number if editing an existing
changelist, or new if creating a new changelist.

Client: Read-only Name of current client workspace.

User: Read-only Name of current Perforce user.
Perforce 2002.1 Command Reference 17

p4 change
Options

Status: Read-only value pending, submitted, or new. Not editable by the
user. The status is new when the changelist is
created, pending when it has been created but has
not yet been submitted to the depot with p4

submit, and submitted when its contents have
been stored in the depot with p4 submit.

Description: Writable,
mandatory

Textual description of changelist. This value must
be changed before submission, and cannot be
changed after submission, except by the Perforce
superuser.

Jobs: List A list of jobs that are fixed by this changelist. The
list of jobs that appears when the form is first
displayed is controlled by the p4 user form’s
JobView: setting. Jobs may be deleted from or
added to this list.

Files: List The list of files being submitted in this changelist.
Files may be deleted from this list, and files that are
found in the default changelist can be added.

-d Delete the changelist. This is usually allowed only with pending
changelists that contain no files, but the superuser can delete
changelists under other circumstances with the addition of the -f
flag.

-f Force flag. Allows the description of a submitted changelist to be
edited. Available only to Perforce superusers.

-f -d Forcibly delete a previously submitted changelist. Only the Perforce
superuser can use this command, and the changelist must have had
all of its files removed from the system with p4 obliterate.

-o Write a changelist description to standard output.

-i Read a changelist description from standard input. Input must be in
the same format used by the p4 change form.

-s Allows jobs to be assigned arbitrary status values on submission of
the changelist, rather than the default status of closed.

This option works in conjunction with the -s option to p4 fix, and is
intended for use by Perforce Defect Tracking Integration (P4DTI).

g_opts See the Global Options section.

Field Name Type Description
18 Perforce 2002.1 Command Reference

p4 change
Usage Notes

• You should create multiple changelists when editing files corresponding to different
logical tasks. For example, if edits to files foo and bar fix a particular bug, and edits to
file baz add a new feature, foo and bar should be opened in one changelist, and baz

should be opened in a different changelist.

• p4 change changelist# edits the specification of an existing changelist, but does not
display the files or jobs that are linked to the changelist. Use p4 opened -c
changelist# to see a list of files linked to a particular changelist and p4 fixes -c

changelist# to see a list of jobs linked to a particular changelist

• To move a file from one changelist to another, use p4 reopen, or use p4 revert to
remove a file from all pending changelists.

Examples

Related Commands

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A open

p4 change Create a new changelist.

p4 change -f 25 Edit previously submitted changelist 25. Superuser access is
required.

p4 change -d 29 Delete changelist 29. This succeeds only if changelist 29 is
pending and contains no files.

To submit a changelist to the depot p4 submit

To move a file from one changelist to another p4 reopen

To remove a file from all pending changelists p4 revert

To list changelists meeting particular criteria p4 changes

To list opened files p4 opened

To list fixes linked to particular changelists p4 fixes

To link a job to a a particular changelist p4 fix

To remove a job from a particular changelist p4 fix -d

To list all the files listed in a changelist p4 opened -c changelist#

To obtain a description of files changed in a changelist p4 describe changelist#
Perforce 2002.1 Command Reference 19

p4 changes
p4 changes

Synopsis

List submitted and pending changelists.

Syntax
p4 [g-opts] changes [-i -l -c client -m maxnum -s status -u user] [file...]

Description

Use p4 changes to view a list of submitted and pending changelists. When you use p4
changes without any arguments, all numbered changelists are listed. (The default
changelist is never listed.)

The format of each line is:
Change num on date by user@client [status] description

The status value appears only if the changelist is pending. The description is limited to
the first 31 characters unless you provide the -l (long) flag.

If you provide file patterns as arguments, the changelists listed are those that affect files
matching the patterns. Only submitted changelists are reported in this instance; pending
changelists (by definition) have not yet affected any files in the depot.

Revision specifications and revision ranges can be included in the file patterns. Including
a revision range lists all changes that affect files within the range; providing a single
revision specifier lists all changes from 1 to the specified revision.

Use the -c client and -u user flags to limit output to only those changelists made from
the named client workspace or the named user.

Use the -s status flag to limit output to only those changelists with the provided status

(pending or submitted) value.

You can combine flags and file patterns to substantially limit the changelists that are
displayed. Additionally, you can use the -m maxnum flag to further limit output to maxnum

changes.
20 Perforce 2002.1 Command Reference

p4 changes
Options

Usage Notes

Examples

-i Include changelists that affected files that were integrated with the
specified files.

-l Provide long output that includes the full descriptions of each
changelist.

-c client List only changes made from the named client workspace.

-m maxnum List only the highest numbered maxnum changes.

-s status Limit the list to the changelists with the given status (pending or
submitted)

-u user List only changes made from the named user.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes Yes list

p4 changes -m 5 //depot/project/... Show the last five submitted
changelists that include any file
under the project directory

p4 changes -m 5 -c eds_elm Show the last five submitted
changelists from client workspace
eds_elm.

p4 changes -m 5 -u edk Show the last five submitted
changelists from user edk.

p4 changes file.c@2000/05/01,2000/06/01 Show any changelists that include
file file.c, as mapped to the depot
through the client view, during the
month of May 2000.

p4 changes -m 1 -s submitted Output a single line showing the
changelist number of the last
submitted changelist.
Perforce 2002.1 Command Reference 21

p4 changes
Related Commands

p4 changes @2001/04/01,@now Display all changelists submitted
from April 1, 2001 to the present.

p4 changes @2001/04/01 Display all changelists submitted
before April 1, 2000.

To submit a pending changelist p4 submit

To create a new pending changelist p4 change

To read a detailed report on a single changelist p4 describe
22 Perforce 2002.1 Command Reference

p4 client
p4 client

Synopsis

Create or edit a client workspace specification and its view.

Syntax
p4 [g-opts] client [-f -t template] [clientname]
p4 [g-opts] client -o [-t template] [clientname]
p4 [g-opts] client -d [-f] clientname
p4 [g-opts] client -i [-f]

Description

A Perforce client workspace is a set of files on a user’s machine that mirror a subset of the
files in the depot. The p4 client command is used to create or edit a client workspace
specification; invoking this command displays a form in which the user enters the
information required by Perforce to maintain the client workspace.

Although there is always a one-to-one mapping between a client workspace file and a
depot file, these files do not need to be stored at the same relative locations, nor must they
have the same names. The client view, which is specified in the p4 client form’s View:
field, specifies how files in the client workspace are mapped to the depot, and vice-versa.

When called without a clientname argument, p4 client operates on the client
workspace specified by the P4CLIENT environment variable or one of its equivalents. If
called with a clientname argument on a locked client, the client specification is read-
only.

When p4 client completes, the new or altered client workspace specification is stored
within the Perforce database; the files in the client workspace are not touched. The new
client view doesn’t take effect until the next p4 sync.

Form Fields
Field Name Type Description

Client: Read-only The client workspace name, as specified in the
P4CLIENT environment variable or its equivalents.

Owner: Writable The Perforce user name of the user who owns the client
workspace. The default is the user who created the
client workspace.

Update: Read-only The date the client workspace specification was last
modified.
Perforce 2002.1 Command Reference 23

p4 client
Options

Access: Read-only The date and time that any part of the client workspace
specification was last accessed by any Perforce
command.

Host: Writable,
optional

The name of the host machine on which this client
workspace resides. If included, operations on this client
workspace can be run only from this host.

The hostname must be provided exactly as it appears in
the output of p4 info when run from that host.

This field is meant to prevent accidental misuse of
client workspaces on the wrong machine. It doesn’t
provide security, since the actual value of the host
name can be overridden with the -H flag to any p4

command, or with the P4HOST environment variable.
For a similar mechanism that does provide security, use
the IP address restriction feature of p4 protect.

Description: Writable,
optional

A textual description of the client workspace. The
default text is Created by owner.

Root: Writable,
mandatory

The directory (on the local host) relative to which all
the files in the View: are specified. The default is the
current working directory.

Options: Writable,
mandatory

A set of seven switches that control particular client
options. See the Usage Notes, below, for a listing of these
options.

LineEnd: Writable,
mandatory

A set of four switches that control carriage-
return/linefeed (CR/LF) conversion. See the Usage
Notes, below, for a listing of these options.

View: Writable,
multi-line

Specifies the mappings between files in the depot and
files in the client workspace. See Using Views for more
information.

-t clientname Copy client workspace clientname’s view and client options
into the View: and Options: field of this client workspace.
(i.e, use clientname’s View: as a template)

-f Allows the last modification date, which is normally read-
only, to be set. Can also be used by Perforce superusers to
delete or modify clients that they don’t own.

Field Name Type Description
24 Perforce 2002.1 Command Reference

p4 client
Usage Notes

• The Options: field contains six values, separated by spaces. Each of the six options
have two possible settings; the following table provides the option values and their
meanings:

-d [-f] clientname Delete the specified client workspace, if the client is owned
by the invoking user and it is unlocked. The -f flag allows
Perforce superusers to delete client workspaces that they
don’t own.

-i Read the client description from standard input.

-o Write the client specification to standard output.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A list

Option Choice Default

[no]allwrite If set, unopened files on the client are left writable. noallwrite

[no]clobber If set, a p4 sync overwrites (“clobbers”) writable-
but-unopened files in the client that have the same
name as the newly-synced files

noclobber

[no]compress If set, the data stream between the client and the
server is compressed. (Both client and server must
be version 99.1 or higher, or this setting is ignored.)

nocompress

[no]crlf Note: 2000.2 or earlier only!

On Windows, if crlf is set, CR/LF translation is
performed automatically when copying files
between the depot and the client workspace.

crlf

[un]locked Grant or deny other users permission to edit the
client specification (To make a locked client
specification truly effective, you should also set a
the client’s owner’s password with p4 passwd.)

If locked, only the owner is able to use, edit, or
delete the client spec. Perforce superusers can
override the lock by using the -f (force) flag with
p4 client.

unlocked
Perforce 2002.1 Command Reference 25

p4 client
• By default, any user can edit any client workspace specification with p4 client -c

clientname. To prevent this from happening, set the locked option and use p4 passwd

to create a password for the client workspace owner.

• If you create a client workspace name with a space in it, the space will be translated to
an underscore (for example, p4 client “my client” will create client workspace
my_client).

• The compress option speeds up client/server communications over slow links by
reducing the amount of data that has to be transmitted. Over fast links, the compression
process itself may consume more time than is saved in transmission. In general,
compress should be set for line speeds under T1, and should be left unset otherwise.

[no]modtime For files without the +m (modtime) file type
modifier:

• For Perforce clients at the 99.2 level or earlier, if
modtime is set, the modification date (on the
local filesystem) of a newly synced file is the date
and time at the server when the file was submit-
ted to the depot.

• For Perforce clients at the 2000.1 level or higher,
if modtime is set, the modification date (on the
local filesystem) of a newly synced file is the dat-
estamp on the file when the file was submitted to
the depot.

• If nomodtime is set, the modification date is the
date and time of sync, regardless of Perforce cli-
ent version.

For files with the +m (modtime) file type modifier:

• For Perforce clients at the 99.2 level or earlier, the
+m modifier is ignored, and the behavior of mod-
time and nomodtime is as documented above.

• For Perforce clients at the 2000.1 level or higher,
the modification date (on the local filesystem) of
a newly synced file is the datestamp on the file
when the file was submitted to the depot, regard-
less of the setting of modtime or nomodtime on
the client.

nomodtime
(i.e. date and
time of sync) for
most files.

Ignored for files
with the +m file
type modifier.

[no]rmdir If set, p4 sync deletes empty directories in a client
if all files in the directory have been removed.

normdir

Option Choice Default
26 Perforce 2002.1 Command Reference

p4 client
• The LineEnd: field controls the line-ending character(s) used for text files in the client
workspace.

The LineEnd: field accepts one of five values:

• By default, if a directory in the client workspace is empty, (for instance, because all files
in the depot mapped to that directory have been deleted since the last sync), a p4 sync

operation will still leave the directory intact. If you use the rmdir option, however, p4
sync deletes the empty directories in the client workspace.

If the rmdir option is active, a p4 sync operation may sometimes remove your current
working directory. If this happens, just change to an existing directory before
continuing on with your work.

• Files with the modtime (+m) type are primarily intended for use by developers who need
to preserve original timestamps on files. The use of +m in a file type overrides the
client’s modtime or nomodtime setting. For a more complete discussion of the +m
modifier, see the File Types section.

Note The LineEnd: option is new to Perforce 2001.1. It renders the
previous convention of specifying crlf or nocrlf in the
Options: field obsolete.

The behavior of the mutually-contradictory combination of
LineEnd: win and Options: crlf is undefined.

Option Meaning

local Use mode native to the client (default).

unix UNIX-style line endings: LF only.

mac Macintosh-style: CR only.

win Windows-style: CR, LF.

share Shared mode: Line endings are LF with any CR/LF pairs translated to LF-
only style before storage or syncing with the depot.

When you sync your client workspace, line endings will be LF. If you edit
the file on a Windows machine, and your editor inserts CRs before each LF,
the extra CRs will not appear in the archive file.

The most common use of the share option is for users of Windows
workstations who have UNIX home directories mounted as network
drives; if they sync files from UNIX, but edit the files on the Windows
machine, the share option eliminates any problems caused by Windows-
based editors’ insertion of extra carriage return characters at line endings.
Perforce 2002.1 Command Reference 27

p4 client
Examples

Related Commands

p4 client Edit or create the client workspace specification named by
the value of P4CLIENT or its equivalents.

p4 client -t sue joe Create or edit client workspace joe, opening the form with
the field values and workspace options in client workspace
sue as defaults.

p4 client -d release1 Delete the client workspace release1.

To list client workspaces known to the system p4 clients

To read files from the depot into the client workspace p4 sync

To open new files in the client workspace for addition to the depot p4 add

To open files in the client workspace for edit p4 edit

To open files in the client workspace for deletion p4 delete

To write changes in client workspace files to the depot p4 submit
28 Perforce 2002.1 Command Reference

p4 clients

Perforce 2002.1 Command Reference 29

p4 clients

Synopsis

List all client workspaces currently known to the system.

Syntax
p4 [g-opts] clients

Description

p4 clients lists all the client workspaces known to the Perforce server. Each workspace
is reported on a single line of the report. The format of each line is:

Client clientname moddate root clientroot description

For example:
Client paris 1999/02/19 root /usr/src 'Joe’s client'

describes a client workspace named paris, last modified on February 19, with a root of
/usr/src. The description of the workspace entered in the p4 client form is Joe’s
client.

This command takes no arguments other than the Global Options.

Options

Usage Notes

Related Commands

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A list

To edit or view a client workspace specification p4 client

To see the name of the current client workspace and other useful data p4 info

To view a list of Perforce users p4 users

p4 counter
p4 counter

Synopsis

Access, set, or delete a persistent variable.

Syntax
p4 [g-opts] counter countername
p4 [g-opts] counter countername value
p4 [g-opts] counter -d countername
p4 [g-opts] counter -f [change|job|journal]

Description

Counters provide long-term variable storage for scripts that access Perforce. For example,
the Perforce review daemon uses a counter (review) that stores the number of the last
processed changelist.

When used in the form p4 counter countername, the value of variable countername is
returned. When p4 counter countername value is used, the value of variable
countername is set to value.

The Perforce server uses three counters in the course of its regular operations: change,
job, and journal. Superusers may use the -f flag to force changes to these counters.
Changes to these counters are not without risk; see the Release Notes for examples of the
types of situations in which manually resetting these counters might be appropriate.

Options

Usage Notes

-d countername Delete variable countername from the Perforce server.

-f [change|job|journal] Force a change to one of three internal counters used by
Perforce. Most installations rarely, if ever, need to use this
flag.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level Required

N/A N/A list to display a counter’s
value;
review to set a new value
super to use the -f flag
30 Perforce 2002.1 Command Reference

p4 counter
• If a counter does not exist, its value is returned as zero; counter names are not stored in
the database until set to a nonzero value.

• The last changelist number known to the Perforce server (the output of p4 counter
change) includes pending changelists created by users, but not yet submitted to the
depot. If you’re writing change review daemons, you may also want to know the
changelist number of the last submitted changelist, which is the second field of the
output of the command:
p4 changes -m 1 -s submitted

Related Commands
To list all counters and their values p4 counters

List and track changelists p4 review

List users who have subscribed to particular files p4 reviews
Perforce 2002.1 Command Reference 31

p4 counters

32 Perforce 2002.1 Command Reference

p4 counters

Synopsis

Display list of long-term variables used by Perforce and associated scripts.

Syntax
p4 [g-opts] counters

Description

The Perforce server uses counters as variables to store the number of the last submitted
changelist and the number of the next job. p4 counters provides the current list of
counters, along with their values.

Options

Usage Notes

Related Commands

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A list

To view or change the value of a counter p4 counter

p4 delete
p4 delete

Synopsis

Open file(s) in a client workspace for deletion from the depot.

Syntax
p4 [g-opts] delete [-c changelist#] file...

Description

The p4 delete command opens file(s) in a client workspace for deletion from the depot.
The files are immediately removed from the client workspace, but are not deleted from
the depot until the corresponding changelist is sent to the server with p4 submit.

Although it will appear that a deleted file has been deleted from the depot, the file is never
truly deleted, as older revisions of the same file are always accessible. Instead, a new head
revision of the file is created which marks the file as being deleted. If p4 sync is used to
bring the head revision of this file into another workspace, the file is deleted from that
workspace.

A file that is open for deletion will not appear on the client's have list.

Options

Usage Notes

• A file that has been deleted from the client workspace with p4 delete can be reinstated
in the client workspace and removed from the pending changelist with p4 revert. To
do this, you must revert the deletion before submitting the changelist.

-c change# Opens the files for delete within the specified changelist.

If this flag is not provided, the files are linked to the default
changelist.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No open
Perforce 2002.1 Command Reference 33

p4 delete
• Perforce does not prevent users from opening files that are already open; its default
scheme is to allow multiple users to open a file simultaneously, and then resolve file
conflicts with p4 resolve. To prevent someone else from opening a file once you’ve
opened it, use p4 lock. To determine whether or not another user already has a
particular file open, use p4 opened -a file.

Examples

Related Commands

p4 delete //depot/README Opens the file called README in the depot's top level
directory for deletion. The corresponding file within
the client workspace is immediately deleted, but the
file is not deleted from the depot until the default
changelist is submitted.

p4 delete -c 40 file Opens file in the current client workspace for
deletion. The file is immediately removed from the
client workspace, but won't be deleted from the depot
until changelist 40 is sent to the server with p4 submit.

To open a file for add p4 add

To open a file for edit p4 edit

To copy all open files to the depot p4 submit

To read files from the depot into the client workspace p4 sync

To create or edit a new changelist p4 change

To list all opened files p4 opened

To revert a file to its unopened state p4 revert

To move an open file to a different changelist p4 reopen
34 Perforce 2002.1 Command Reference

p4 depot
p4 depot

Synopsis

Create or edit a depot specification.

Syntax
p4 [g-opts] depot depotname
p4 [g-opts] depot -d depotname
p4 [g-opts] depot -o depotname
p4 [g-opts] depot -i

Description

The files on a Perforce server are stored in a depot. By default, there is one depot on every
Perforce server, and its name is depot. However, it is possible to create multiple depots on
a single server with the p4 depot command. Although it is normally not necessary to
create multiple depots, there are two situations where this might be desirable:

• You’d like to have separate depots for separate projects stored on the same server.

• You want to access files on one Perforce server from another Perforce server.

In the former case, once a second depot has been created, it can be used exactly as the
default depot depot is used. For example, to sync a file README in the bar directory of the
depot foo, use p4 sync //foo/bar/README. It can also be used on the left-hand side of
any client or branch view, exactly as the default depot depot is used.

In the latter case, referred to as the use of remote depots, the Perforce client’s default
Perforce server (i.e. the machine specified in P4PORT) acts as a proxy client to the remote
Perforce server, so the client doesn’t need to know where the files are actually
stored.Remote depots are restricted to read-only access. Thus, a Perforce client program
can’t add, edit, delete, or integrate files that reside in the depots on the other servers.
For more information about remote depots, see the Perforce User’s Guide and the Perforce
System Administrator’s Guide.

To create or edit a depot, use p4 depot depotname and edit the fields in the form.
Perforce 2002.1 Command Reference 35

p4 depot
Form Fields

Options

Field Name Type Description

Depot: Read-Only The depot name as provided in p4 depot

depotname.

Owner: Writable The user who owns the depot. By default, this is
the user who created the depot.

Description: Writable A short description of the depot’s purpose.
Optional.

Type: Writable local or remote. Local depots are writable; remote
depots are proxies for depots residing on other
servers, and cannot be written to.

Address: Writable If the Type: is local, the address should be the
word subdir.

If the Type: is remote, the address should be the
P4PORT address of the remote server.

Map: Writable If the Type: is local, the map should be the
relative location of the depot subdirectory relative
to the Perforce server’s P4ROOT. It must contain the
... wildcard; for example, a local depot foo might
have a Map: of foo/... .

If the Type: is remote, the map should be a
location in the remote depot’s physical namespace,
for example, //depot/foo/bar/... . This
directory will be the root of the local proxy depot.

-d depotname Delete the depot depotname. The depot must not contain any files; the
Perforce superuser can remove files with p4 obliterate.

If the depot is remote, p4 obliterate must still be run: no files are
deleted, but any outstanding client or label records referring to that
depot are eliminated.

-i Read a depot specification from standard input.

-o Write a depot specification to standard output.

g_opts See the Global Options section.
36 Perforce 2002.1 Command Reference

p4 depot
Usage Notes

• A depot created with p4 depot is not physically created in the server until files have
been added to it with p4 add.

• Users will not be able to access a new depot created with p4 depot until permission to
access the depot is granted with p4 protect.

• Remote depots are always accessed by a virtual user named remote, and by default, all
files on any Perforce server may be accessed remotely. To limit or eliminate remote
access to a particular server, use p4 protect to set permissions for user remote on that
server.

For example, to eliminate remote access to all files in all depots on a particular server,
set the following permission on that server:

read user remote * -//...

Since remote depots can only be used for read access, it is not necessary to remove
write or super access.

The virtual user remote does not consume a Perforce license.

Related Commands

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A super

To view a list of all depots known to the Perforce server p4 depots

To populate a new depot with files p4 add

To add mappings from an existing client workspace to the new
depot

p4 client

To remove all traces of a file from a depot p4 obliterate

To limit remote access to a depot p4 protect
Perforce 2002.1 Command Reference 37

p4 depots

38 Perforce 2002.1 Command Reference

p4 depots

Synopsis

Display a list of depots known to the Perforce server.

Syntax
p4 [g-opts] depots

Description

Lists all the remote and local depots known to the Perforce server, in the form:
Depot name date type address map description

where name, date, type, address, map, and description are as defined in the p4 depot
form.

Options

Usage Notes

Related Commands

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A list

To create a remote depot or a new local depot p4 depot

To remove all traces of a file from a depot p4 obliterate

p4 describe
p4 describe

Synopsis

Provides information about a changelist and the changelist’s files.

Syntax
p4 [g-opts] describe [-dflag -s] changelist#

Description

p4 describe displays the details of a changelist. The output includes the changelist
number, the changelist’s creator, the client workspace name, the date the changelist was
created, and the changelist’s description.

If the changelist has been submitted, the output also includes a list of affected files and
the diffs of those files relative to the previous revision. If the changelist is pending, it is
flagged as such in the output (and the list of affected files and associated diffs are not
displayed). You cannot run p4 describe on the default changelist.

While running p4 describe, the server uses Perforce’s internal diff subroutine. The
P4DIFF variable has no effect on this command.

Options

Usage Notes

-s Display a shortened output that excludes the files’ diffs.

-dflag Runs the diff routine with one of a subset of the standard UNIX diff
flags. See the Usage Notes below for a flag listing.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A read;
list for p4 describe -s
Perforce 2002.1 Command Reference 39

p4 describe
The diff flags supported by p4 describe are:

Related Commands

Flag Meaning

-dn RCS

-dc context

-ds summary

-du unified

To view a list of changelists p4 changes

To view a list of all opened files p4 opened

To compare any two depot file revisions p4 diff2

To compare a changed file in the client to a depot file revision p4 diff
40 Perforce 2002.1 Command Reference

p4 diff
p4 diff

Synopsis

Compare a client workspace file to a revision in the depot.

Syntax
p4 [g-opts] diff [-dflag -f -sa -sd -se -sr -t] [file[rev#] ...]

Description

p4 diff runs a diff program on the Perforce client, comparing files in the client
workspace to revisions in the depot.

This command takes a file argument, which can contain a revision specifier. If a revision
specifier is included, the file in the client workspace is diffed against the specified
revision. If a revision specifier is not included, the client workspace file is compared
against the revision currently being edited (usually the head revision). In either case, the
client file must be open for edit, or the comparison must be against a revision other than
the one to which the client file was last synced.

If the file argument includes wildcards, all open files that match the file pattern are diffed.
If no file argument is provided, all open files are diffed against their depot counterparts.

By default, the diff routine used is the one provided with the Perforce client. You can
change this diff routine to any other diff program by setting the P4DIFF environment or
registry variable.

Options
-f Force the diff, even when the client file is not open for edit.

-dflag Pass flag flag to the underlying diff routine (see the Examples below
for details)

-sa Diff only open files that are different from the revision in the depot, or
are missing.

-sd Diff only unopened files that are missing on the client.

-se Diff only unopened files that are different than the revision in the
depot.

-sr Diff only opened files that are identical to the revision in the depot.

-t Diff the revisions even if the files are not of type text.

g_opts See the Global Options section.
Perforce 2002.1 Command Reference 41

p4 diff
Usage Notes

Examples

Related Commands

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes No read

p4 diff foo#5 Compare the client workspace revision of file foo
to the fifth depot revision.

p4 diff @1999/05/22 Compare all open files in the client workspace to
the revisions in the depot as of midnight on May
22, 1999.

p4 diff -du foo Run the comparison on file foo, passing the -u flag
to the underlying diff routine.

p4 diff -d-brief foo Run the comparison on foo, passing the --brief
flag to the underlying diff routine.

p4 diff -sr | p4 -x - revert Revert all open, unchanged files.

This differs from p4 revert -a (revert all
unchanged files, where resolving a file, even if no
changes are made, counts as a change), in that it
reverts files whose workspace content matches the
depot content, including resolved files that happen
to be identical to those in the depot.

The first command lists all unchanged files; the
second command (running p4 -x and taking
arguments, one per line, from standard input,
abbreviated as “-”) reverts each file in that list.

(This is the UNIX version of this command; it uses a
pipe. Most operating systems have some
equivalent way of performing these operations in
series).

For more information about the -x option to p4, see
the Global Options section.

To compare two depot revisions p4 diff2

To view the entire contents of a file p4 print
42 Perforce 2002.1 Command Reference

p4 diff2
p4 diff2

Synopsis

Compare two depot file revisions.

Syntax
p4 [g-opts] diff2 [-dflag -q -t] file1[rev] file2[rev]
p4 [g-opts] diff2 [-dflag -q -t] -b branch [[fromfile[rev]] tofile[rev]]

Description

p4 diff2 uses the Perforce server’s built-in diff routine to compare two file revisions
from the depot. These revisions are usually two versions of the same file, but they can be
revisions of entirely separate files. If no file revision is explicitly provided with the file
argument, the head revision is used.

p4 diff2 does not use the diff program specified by the environment variable P4DIFF.
The diff algorithm used by p4 diff2 runs on the machine hosting the Perforce server, and
always uses the server’s built-in diff routine.

You can specify file patterns as arguments in place of specific files, with or without
revision specifiers; this causes Perforce to perform multiple diffs for each pair of files that
match the given pattern. If you invoke p4 diff2 with file patterns, escape the file patterns
from the OS shell by using quotes or backslashes, and be sure that the wildcards in the two
file patterns match.

Perforce presents the diffs in UNIX diff format, prepended with a header. The header is
formatted as follows:

==== file1 (filetype1) - file2 (filetype2) ==== summary

The possible values and meanings of summary are:

• content: the file revisions’ contents are different,

• types: the revisions’ contents are identical, but the filetypes are different,

• identical: the revisions’ contents and filetypes are identical.

If either file1 or file2 does not exist at the specified revision, the header will display the
summary as <none>.
Perforce 2002.1 Command Reference 43

p4 diff2
Options

Usage Notes

• The diff flags supported by p4 diff2 are:

• When p4 diff2 is used to diff binary files, the line
... files differ ...

is printed if they are not identical.

• The option -b branch [[fromfile[rev]] tofile[rev]] may seem incorrect at
first. Since the branch specification maps fromfiles to tofiles, why would you
specify both fromfile and tofile file patterns? You wouldn’t, but this syntax allows
you to specify a fromfile file pattern and a tofile revision, or a fromfile revision
and a tofile file pattern.

-q Quiet diff. Display only the header, and don’t even
display that when the file revisions’ contents and
types are identical.

-dflag Runs the diff routine with one of a subset of the
standard UNIX diff flags. See the Usage Notes below
for a listing of these flags.

-b branchname
fromfile[rev] tofile[rev]

Use a branch specification to diff files in two
branched codelines. The files that are compared can
be limited by file patterns in either fromfile or
tofile.

-t Diff the file revisions even if the file(s) are not of type
text.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes No read access necessary
for both file revisions

Flag Name

-dn RCS

-dc context

-ds summary

-du unified
44 Perforce 2002.1 Command Reference

p4 diff2
Examples

Related Commands

p4 diff2 -ds foo#1 foo Compare the second revision of file foo to
its head revision, in UNIX diff summary
format.

p4 diff2
foo@34 foo@1998/12/04

Diff the revision of foo that was in the
depot after changelist 34 was submitted
against the revision in the depot at
midnight on December 4, 1998.

p4 diff2
//depot/bar/... //depot/bar2/...#4

Compare the head revisions of all files
under //depot/bar to the fourth revision
of all files under //depot/bar2

p4 diff2
//depot/bar/* //depot/bar2/...

Not allowed. The wildcards in each file
pattern need to match.

p4 diff2
-b foo //depot/bar/...#2 @50

Compare the second revision of the files in
//depot/bar/... to the files branched
from it by branch specification foo at the
revision they were at in changelist 50.

To compare a client workspace file to a depot file revision p4 diff

To view the entire contents of a file p4 print
Perforce 2002.1 Command Reference 45

p4 dirs
p4 dirs

Synopsis

List the immediate subdirectories of specified depot directories.

Syntax
p4 [g-opts] dirs [-C -D -H] [-t type] depot_directory[revRange]...

Description

Use p4 dirs to find the immediate subdirectories of any depot directories provided as
arguments. Any directory argument must be provided in depot syntax and must end with
the * wildcard. If you use the “...” wildcard, you will receive the wrong results!

p4 dirs only lists the immediate subdirectories of the directory arguments. To
recursively list all of a directory’s subdirectories, call p4 dirs multiple times.

By default, only subdirectories that contain at least one undeleted file will be returned. To
include those subdirectories that contain only deleted files, use the -D flag.

This command is meant to be used in scripts that call Perforce; it is unlikely that you’ll
have a need to call it from the command line.

Options

Usage Notes

• If you include a revision specifier or revision range as part of a directory argument,
then the only subdirectories returned are those that contain at least one file revision that
matches the given specifier.

-C Display only those directories that are mapped through the current client
workspace view.

-D Include subdirectories that contain only deleted files. By default, these
directories are not displayed.

-H Include only those directories that contain files on the current client
workspace’s p4 have list.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes Yes list
46 Perforce 2002.1 Command Reference

p4 dirs
• Perforce does not track directories in its database; thus, the subdirectory values are not
looked up, but are computed. This accounts for some of the strange details of the p4
dirs implementation, such as the fact that the “...” wildcard is not supported.

Examples

Related Commands

p4 dirs //depot/projects/* Returns a list of all the immediate
subdirectories of //depot/projects.

p4 dirs //depot/a/* //depot/b/* Returns a list of all immediate subdirectories
of //depot/a and //depot/b.

p4 dirs //depot/... The “...” wildcard is not supported by p4

dirs.

To list all the files that meet particular criteria p4 files

To list all depots on the current Perforce server p4 depots
Perforce 2002.1 Command Reference 47

p4 edit
p4 edit

Synopsis

Opens file(s) in a client workspace for edit.

Syntax
p4 [g-opts] edit [-c changelist#] [-t type] file...

Description

p4 edit opens files for editing within the client workspace. The specified file(s) are linked
to a changelist, but the files are not actually changed in the depot until the changelist is
sent to the server by p4 submit.

Perforce controls the local OS file permissions; when p4 edit is run, the OS write
permission is turned on for the specified files.

When a file that has been opened for edit with p4 edit is submitted to the depot, the file
revision that exists in the depot is not replaced. Instead, the new file revision is assigned
the next revision number in sequence, and previous revisions are still accessible. By
default, the newest revision (the head revision) is used by all commands that refer to the
file.

By default, the specified files are added to the default changelist. Use -c to specify a
different changelist.

If p4 edit is run on any files that are already opened for edit, these files are simply
moved into the specified changelist, which must have a status of pending.

Options
-c change# Opens the files for edit within the specified changelist. If this flag is

not provided, the files are linked to the default changelist.

-t type Stores the new file revision as the specified type, overriding the file
type of the previous revision of the same file. See the File Types section
for a list of file types.

g_opts See the Global Options section.
48 Perforce 2002.1 Command Reference

p4 edit
Usage Notes

Since p4 edit turns local OS write permissions on for the specified files, this command
should be given before the file is actually edited. The process is:

1. Use p4 edit to open the file in the client workspace,

2. Edit the file with any editor,

3. Submit the file to the depot with p4 submit.

To edit an older revision of a file, use p4 sync to retrieve the previously stored file
revision into the client workspace, and then p4 edit the file. Since this file revision is not
the head revision, you muse use p4 resolve before the file can be stored in the depot
with p4 submit.

By default, Perforce does not prevent users from opening files that are already open; its
default scheme is to allow multiple users to edit the file simultaneously, and then resolve
file conflicts with p4 resolve. To determine whether or not another user already has a
particular file opened, use p4 opened -a file.

If you need to prevent other users from working on files you’ve already opened, you can
either use the p4 lock command (to allow other users to edit files you have open, but
prevent them from submitting the files until you first submit your changes), or you can
use the +l (exclusive-open) filetype to prevent other users from opening the files for edit
at all.

In older versions of Perforce, p4 edit was called p4 open.

Examples

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No open

p4 edit -t text+k doc/*.txt Opens all files ending in .txt within the current
directory's doc subdirectory for edit. These files
are linked to the default changelist; these files are
stored as type text with keyword expansion.

p4 edit -c 14 ... Opens all files anywhere within the current
working directory's file tree for edit. These files
are examined to determine whether they are text
or binary, and changes to these files are linked to
changelist 14.
Perforce 2002.1 Command Reference 49

p4 edit
Related Commands
To open a file for add p4 add

To open a file for deletion p4 delete

To copy all open files to the depot p4 submit

To copy files from the depot into the client workspace p4 sync

To create or edit a new changelist p4 change

To list all opened files p4 opened

To revert a file to its unopened state p4 revert

To move an open file to a different changelist or change its filetype p4 reopen
50 Perforce 2002.1 Command Reference

p4 filelog
p4 filelog

Synopsis

Print detailed information about files’ revisions.

Syntax
p4 [g-opts] filelog [-i] [-l] [-m maxrev] file...

Description

p4 filelog describes each revision of the files provided as arguments. At least one file or
file pattern must be provided as an argument.

The output lists one line per revision in reverse chronological order. The format of each
line is:

... #rev change chnum action on date by user@client (type)
'description'

where:

• rev is the revision number;

• chnum is the number of the submitting changelist;

• action is the operation the file was open for: add, edit, delete, branch, or integrate;

• date is the submission date;

• user is the name of the user who submitted the revision;

• client is the name of the client workspace from which the revision was submitted;

• type is the type of the file at the given revision; and

• descrip is the first 30 characters of the corresponding changelist’s description.

If the action is integrate, Perforce displays a second line, formatted as
... #integration-action partner-file

See p4 integrated for a full description of integration actions.
Perforce 2002.1 Command Reference 51

p4 filelog
Options

Usage Notes

• Since p4 filelog’s output can be quite large when called with highly non-restrictive
file arguments (for example, p4 filelog //depot/... will print the revision history
for every file in the depot), it may be subject to a maxresults limitation as set in p4

group.

• If both the -i and the -m maxrev flags are used, and a branch is encountered within the
most recent maxrev revisions of the file, the most recent maxrev revisions of the file
prior to the branch point are also displayed. p4 filelog -i follows branches down to
a depth of 50 levels, which should be more than sufficient for any site.

Examples

Related Commands

-i Follow file history across branches. If a file was created by integration
via p4 integrate, Perforce describes the file’s revisions and displays
the revisions of the file from which it was branched (back to the
branch point of the original file).

-l List the full description of each revision

-m maxrev List only the first maxrev changes per file output.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes No list

p4 filelog //depot/... Display the revision history for every file under
the depot’s proj1 directory.

p4 filelog foo bar Show the revision history for files foo and bar,
which reside locally in the current working
directory.

To read additional information about each file p4 files

To display file information in a format suitable for scripts p4 fstat

To view a list of open files p4 opened

To view a list of files you’ve synced to your client workspace p4 have
52 Perforce 2002.1 Command Reference

p4 files
p4 files

Synopsis

Provide information about files in the depot without accessing their contents.

Syntax
p4 [g-opts] files file[rev]...

Description

This command lists each file that matches the file patterns provided as arguments. If a
revision specifier is given, the files are described at the given revision. One file is listed per
line, and the format of each line is:

depot-file-location#rev - action change change# (filetype)

where

• depot-file-location is the file’s location relative to the top of the depot

• rev is the revision number of the head revision of that file

• action is the action taken at the head revision: add, edit, delete, branch, or
integrate

• change# is the number of the changelist that this revision was submitted in, and

• filetype is the Perforce file type of this file at the head revision.

Unlike most Perforce commands, p4 files reports on any file in the depot; it is not
limited to only those files that are visible through the client view. Of course, if a file
pattern on the command line is given in client syntax, only client files are shown.

The specified revision can be a revision range; in this case, only those files that have
revisions within the specified range are listed, and the highest revision in that range is the
listed revision.

Options

Usage Notes

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes Yes list
Perforce 2002.1 Command Reference 53

p4 files
• Since the output of p4 files can be quite large when called with highly non-restrictive
file arguments (for example, p4 files //depot/... prints information about all the
files in the depot), it may be subject to a maxresults limitation as set in p4 group.

Examples

Related Commands

p4 files //depot/... Provides information about all
files in the depot.

p4 files //clientname/... Provides information about all
depot files visible through the
client view.

p4 files @2000/12/10 Provides information about all
depot file revisions that existed on
December 10, 2000.

p4 files
@2001/03/31:08:00,@2001/03/31:17:00

Lists all files and revisions
changed during business hours on
March 31, 2001.

p4 files //depot/proj2/...@p2lab Lists files and revisions under the
directory//depot/proj2/... that
are included in label p2lab.

To list the revision history of files p4 filelog

To see a list of all currently opened files p4 opened

To see a list of the file revisions you’ve synced to p4 have

To view the contents of depot files p4 print
54 Perforce 2002.1 Command Reference

p4 fix
p4 fix

Synopsis

Link jobs to the changelists that fix them.

Syntax
p4 [g-opts] fix [-d] [-s status] -c changelist# jobName ...

Description

The p4 fix command links jobs (descriptions of work to be done) to a changelist (a set of
changes to files that does the work described by a job).

If the changelist has not yet been submitted, the job appears on the p4 submit or p4
change form for the changelist to which it’s linked, and under normal circumstances, the
status of the job is changed to closed when the changelist is submitted. If the changelist
has already been submitted when you run p4 fix, the job’s status is changed to closed

immediately.

To change a job status to something other than closed when you submit a changelist,
supply the -s option to p4 fix, p4 submit, or p4 change.

Because described work may be fixed over multiple changelists, one job may be linked to
multiple changelists. Since a single changelist might fix ten bugs, multiple jobs can be
linked to the same changelist. You can do this in one command execution by providing
multiple jobs as arguments to p4 fix.

Options
-d Delete the fix record for the specified job at the specified changelist.

The job’s status will not change.

-s status Upon submission of the changelist, change the job’s status to status,
rather than the default value closed.

If the changelist to which you’re linking the job been submitted, the
status value is immediately reflected in the job’s status.

If the changelist is pending, the job status is changed on submission
of the changelist, provided that the -s flag is also supplied to p4

submit and the desired status appears next to the job in the p4
submit form’s Jobs: field.

g_opts See the Global Options section.
Perforce 2002.1 Command Reference 55

p4 fix
Usage Notes

• Because the format of jobs can be changed from site to site, it is possible that the jobs on
your system no longer have a Status: field. If so, you can still link jobs to changelists
with p4 fix, but Perforce will not change any of the job fields’ values when the
changelist is submitted.

• You can change a fixed or unfixed job’s status at any time by editing the job with p4

job.

• Another way to fix (or unfix) a job is to add it to (or delete it from) the Jobs: field of an
unsubmitted changelist’s p4 submit or p4 change form.

• You can’t p4 fix a job to the default changelist; instead, add the job to the Jobs: field
of the default changelist’s p4 submit form when submitting it to the depot.

• If you use p4 fix -s status on a job, and then use the -s option with p4 submit or
p4 change, the Jobs: field of the changelist’s form will also require a status value (the
default value being the one specified by p4 fix -s status). The job(s) will be
assigned the specified status upon successful submission of the changelist. If no status
value is specified in the form, the error message:

Wrong number of words for field ’Jobs’.

is displayed.

p4 fix -s status, p4 submit -s, and p4 change -s are intended for use as part of
the Perforce Defect Tracking Integration (P4DTI). For more about P4DTI, see the P4DTI
product information page at:

http://www.perforce.com/perforce/products/p4dti.html

Under normal circumstances, end users do not use these commands, and use p4
submit and p4 change without the -s option. In this case, only the job number is
required in the Jobs: field, and each job’s status is set to closed on completion of the
submit.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A open
56 Perforce 2002.1 Command Reference

p4 fix
Examples

Related Commands

p4 fix -c 201 job000141 job002034 Mark two jobs as being fixed by
changelist 201.

If changelist 201 is still pending, the jobs’
status is changed to closed when the
changelist is submitted.

p4 fix -c 201 -s inprogress job002433 Mark job002433 as inprogress, rather
than closed, when changelist 201 is
submitted.

Requires use of the -s flag with p4

submit.

To add or delete a job from a pending changelist p4 change

To add or delete a job from the default changelist p4 submit

To view a list of connections between jobs and changelists p4 fixes

To create or edit a job p4 job

To list all jobs, or a subset of jobs p4 jobs

To change the format of jobs at your site (superuser only) p4 jobspec

To read information about the format of jobs at your site p4 jobspec -o
Perforce 2002.1 Command Reference 57

p4 fixes
p4 fixes

Synopsis

List jobs and the changelists that fix them.

Syntax
p4 [g-opts] fixes [-i] [-j jobname] [-c changelist#] [file[revRange]...]

Description

Once a job has been linked to a particular changelist with p4 fix, p4 change, or p4
submit, and once the changelist has been submitted, the job is said to have been fixed by
the changelist. The p4 fixes command lists changelists and the jobs they fix.

If invoked without arguments, p4 fixes displays all fix records. Fix records are
displayed in the following format:

jobname fixed by change changelist# on date by user

You can limit the listed fixes by combining the following flags when calling p4 fixes:

• Use the -c flag to specify a particular changelist. Only the jobs fixed by that
changelist are listed.

• Use the -j flag to specify a particular jobname. Only those changelists that fix that job
are listed.

• Provide one or more file pattern arguments. Only those changelists that affected files
that match the file patterns are listed. If a revision specifier or revision range is
included, only changelists that affected files at the given revisions are listed.

Options

Usage Notes

-c changelist# Limit the displayed fixes to those that include the specified
changelist.

-j jobname Limit the displayed fixes to those that include the specified job.

-i files... Include fixes made by changelists that affected files integrated
into the specified files.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes Yes list
58 Perforce 2002.1 Command Reference

p4 fixes
Examples

Related Commands

p4 fixes //depot/proj1/... Display all fixes made by changelists that included
any files under //depot/proj1.

p4 fixes -c 414 Display all jobs fixed by changelist 414.

To create or edit an existing job p4 job

To list all jobs known to the system p4 jobs

To attach a job to a particular changelist; the job is fixed by that
changelist

p4 fix

To change the format of jobs at your site (superuser only) p4 jobspec

To read information about the format of jobs at your site p4 jobspec -o
Perforce 2002.1 Command Reference 59

p4 flush
p4 flush

Synopsis

Update a client workspace’s have list without actually copying any files.

Syntax
p4 [g-opts] flush [-n] [file[revRange]...]

Warning

Using p4 flush incorrectly can be dangerous.

If you use p4 flush incorrectly, the server’s metadata will not reflect the actual state of
your client workspace, and subsequent Perforce commands will not operate on the files
you expect! Do not use p4 flush until you fully understand its purpose.

It is rarely necessary to use p4 flush.

Description

p4 flush performs half the work of a p4 sync. Running p4 sync filespec has two
effects:

• The file revisions in the filespec are copied from the depot to the client workspace;

• The client workspace’s have list (which tracks which file revisions have been synced,
and is stored on the Perforce server) is updated to reflect the new client workspace
contents.

p4 flush performs only the second of these steps. Under most circumstances, this is not
desirable, since a client workspace’s have list should always reflect the client
workspace’s true contents. However, if the client workspace’s contents are already out
of sync with the have list, p4 flush can sometimes be used to bring the have list in sync
with the actual contents. Since p4 flush performs no actual file transfers, this command
is much faster then the corresponding p4 sync.

Use p4 flush only when you need to update the have list to match the actual state of the
client workspace. The Examples subsection describes two such situations.

Options
-n Display the results of the flush without actually performing the flush.

This lets you make sure that the flush does what you think it will do
before you do it.

g_opts See the Global Options section.
60 Perforce 2002.1 Command Reference

p4 flush
Usage Notes

• Since p4 flush updates the have list without copying files, and p4 sync -f updates
the client workspace to match the have list, p4 flush files followed by p4 sync -f

files is almost equivalent to p4 sync files. This means that a bad flush can be
almost entirely fixed by following it with a p4 sync -f of the same file revisions that
were originally flushed.

Unfortunately, this is not a complete remedy, since any file revisions that were deleted
from the have list by p4 flush will remain in the client workspace even after the p4
sync -f. In this case, you will need to manually remove deleted file revisions from the
client workspace.

Examples

• Ten users at the same site need to set up new, identical client workspaces from the same
depot at a remote location over a slow link. The standard method calls for each user to
run identical p4 sync commands, but since the line speed is slow, there’s a faster way:

• One user runs p4 sync files from his client workspace firstworkspace.

• The other users copy the newly synced files from the first user’s client workspace
into their own client workspaces using their local OS file-copying commands.

• The other users run p4 flush files @firstworkspace, which brings their client
workspaces’ have lists into sync with the files copied into the client workspaces in
the last step.

Since p4 flush moves no files across the slow link, the process can be much faster then
running the same p4 sync command ten separate times.

• Joe has a client workspace called ws that has a Root: of
/usr/joe/project1/subproj

and a View: of
//depot/joe/proj1/subproj/... //joe/...

He decides that all the files under /usr/joe/project1 need to be included in the
workspace, and accomplishes this by using p4 client to change the Root: to

/usr/joe/project1

and the View: to
//depot/joe/proj1/... //joe/...

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes Yes read
Perforce 2002.1 Command Reference 61

p4 flush
This keeps his current client workspace files in the same place, while extending the
scope of the workspace to include other files. But when Joe runs his next p4 sync, he’s
surprised to see that Perforce deletes every non-open file in the client workspace and
replaces it with an identical copy of the same file!

Perforce behaves this way because the have list describes each file’s location relative to
the client root, and the physical location of each file is only computed when each
Perforce command is run. Thus, Perforce thinks that each file has been relocated, and
the p4 sync deletes the file from its old location and copies it into its new location.

To make better use of Perforce, Joe might have performed a p4 flush #have instead.
This would have updated his client workspace’s have list to reflect the files’ “new”
locations without actually copying any files.

Related Commands
To copy files from the depot to the client workspace p4 sync

To bring the client workspace in sync with the have list after a
bad p4 flush

p4 sync -f
62 Perforce 2002.1 Command Reference

p4 fstat
p4 fstat

Synopsis

Dump file info in format suitable for parsing by scripts.

Syntax
p4 [g-opts] fstat [-c changelist#] [-C -l -H -P -s -W] file[rev]...

Description

The p4 fstat command dumps information about each file, with each item of
information on a separate line.

The output is best used within a Perforce API application where the items can be accessed
as variables, but is also suitable for parsing by scripts from the client command output.

Form Fields
Field Name Description Example

depotFile depot path to file //depot/src/file.c

clientFile local path to file (in local
syntax by default, or in
Perforce syntax with the
-P option)

/staff/userid/src/file.c

(or //workspace/src/file.c in
Perforce syntax)

haveRev revision last synced to
client, if on client

1, 2, 3... n

headAction action taken at head
revision, if in depot

one of add, edit, delete, branch,
or integrate

headChange head revision changelist
number, if in depot

1, 2, 3... n

headRev head revision number, if
in depot

1, 2, 3... n

headTime Head revision
modification time, if in
depot. Time is measured
in seconds since 00:00:00
UTC, January 1, 1970

919283152 is a date in early 1999

headType head revision type, if in
depot

text, binary, text+k, etc. (see the
chapter on File Types.)
Perforce 2002.1 Command Reference 63

p4 fstat
Options

action open action, if opened
on your client

one of add, edit, delete, branch,
or integrate

change open changelist number,
if opened on your client

1, 2, 3... n

unresolved the number, if any, of
unresolved integration
records

1, 2, 3... n

unresolvedotherOpen number of other users
who have the file open,
blank if no other users
have the file open

1, 2, 3... n, followed by n records
listing the users (0 through n-1):
... otherOpen 3
...... otherOpen0 user1@cws1
...... otherOpen1 user2@cws2
...... otherOpen2 user3@cws3

otherLock set if another user has
the file locked,
otherwise blank

1 or blank

ourLock set if the current user
has the file locked,
otherwise blank

1 or blank

fileSize file length in bytes
(requires -l option, may
be expensive to
compute)

63488

-c changelist# Displays only files affected since the given changelist number.
This option is much faster than using a revision range on the
affected files.

-C Limits output to files mapped into the current workspace.

-l Include a fileSize field displaying the length of the file.

Note that this field may be expensive to compute, particularly for
text files with many revisions.

-H Limits output to files on your have list; that is, files synced in the
current workspace.

-P Display the clientFile in Perforce syntax, as opposed to local
syntax.

Field Name Description Example
64 Perforce 2002.1 Command Reference

p4 fstat
Usage Notes

Examples

Related Commands

-s Shortens output by excluding client-related data (for instance, the
clientFile field).

-W Limit output to files opened in the current workspace.

g_opts See the Global Options section.

The -s global option (which prefixes each line of output with a
tag describing the type of output as error, warning, info, text,
or exit) can be particularly useful when used with p4 fstat.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes Yes list

p4 fstat file.c Displays information on file.c

p4 fstat -c 20 *.c Displays information on all .c files affected since checking-in of
files under changelist 20.

p4 fstat -s file.c No client information lines (i.e. clientFile) will be displayed

To read additional information about each file p4 files

To display file information including change descriptions p4 filelog
Perforce 2002.1 Command Reference 65

p4 group
p4 group

Synopsis

Add or delete users from a group or set the maxresults or maxscanrows limit for the
members of a group.

Syntax
p4 [g-opts] group groupname
p4 [g-opts] group -d groupname
p4 [g-opts] group -o groupname
p4 [g-opts] group -i

Description

A group is a list of Perforce users. Groups have two purposes:

• They can be used within p4 protect to set access levels for multiple users, and

• They control the maximum amount of data that can be accessed from the server by
particular users within a single command.

To delete a group, use p4 group -d groupname, or call p4 group groupname and remove
all the users from the resulting form.

Form Fields
Field Name Type Description

Group: Read-only The name of the group, as entered on the command
line.

MaxResults: Writable The maximum number of results that members of
this group can access from the server from a single
command. The default value is unlimited. See the
Usage Notes below for more details.

MaxScanRows: Writable The maximum number of rows that members of
this group can scan from the server from a single
command. The default value is unlimited. See the
Usage Notes below for more details.

Users: Writable,
multi-line

The Perforce usernames of the group members.
Each user name must be typed on its own line, and
should be indented.
66 Perforce 2002.1 Command Reference

p4 group
Options

Usage Notes

• As the number of files in the depot grows, certain commands can significantly slow
down the server if called with no parameters, or if called with non-restrictive
arguments. For example, p4 print //depot/... will print the contents of every file in
the depot on the user’s screen, and p4 filelog //depot/... will attempt to retrieve
data on every file in the depot at every revision.

The Perforce superuser can limit the amount of data that the server returns to the client
by setting the maxresults value for groups of users. The superuser can also limit the
amount of data scanned by the server (whether returned to the client or not) by setting
the maxscanrows value for groups of users.

If either of the maxresults or maxscanrows limits are violated, the server request fails
and the user is asked to limit his query.

Subgroups: Writable,
multi-line

Names of other Perforce groups.

To add all users in a previously defined group to
the group you’re presently working with, include
the group name in the Subgroups: field of the p4
group form. Note that user and group names
occupy separate namespaces, and thus, groups and
users can have the same names.

Every member of any previously defined group
you list in the Subgroups: field will be a member
of the group you’re now defining.

-d groupname Delete group groupname. The members of the group are affected only
if their access level or maxresults value changes as a result of the
group’s deletion.

-i Read the form from standard input without invoking the user’s
editor. The new group specification replaces the previous one.

-o Write the form to standard output without invoking the user’s editor.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A super

Field Name Type Description
Perforce 2002.1 Command Reference 67

p4 group
If a user belongs to multiple groups, the server computes her maxresults value to be
the maximum of the maxresults for all the groups of which the user is a member
(ignoring any settings still at the default value of unlimited). If a particular user is not
in any groups, her maxresults value is unlimited. (The user’s maxscanrows value is
computed in the same way.)

The speed of most server hardware should make it unnecessary to ever set a
maxresults value below 10,000, or a maxscanrows value below 50,000.

The commands that are affected by the maxresults and maxscanrows values are:

Command Counted Entity How Affected Users Can Reduce Command Output

p4 changes changes Using p4 changes -m numchanges.

p4 changes files file revisions Use a more restrictive file pattern on the
command line.

p4 diff2 files Use a more restrictive file pattern on the
command line.

p4 filelog file revisions Use a more restrictive file pattern on the
command line.

p4 files files Use a more restrictive file pattern on the
command line.

p4 fixes fixes The -c changenum or -j jobname flags restricts
this command appropriately.

p4 fixes files files Use a more restrictive file pattern on the
command line.

p4 integrate files Use a more restrictive file pattern on the
command line.

p4 integrated file revisions Use a more restrictive file pattern on the
command line.

p4 jobs jobs The -e jobquery flag restricts the output to
those jobs that meet particular criteria.

p4 jobs files file revisions Use a more restrictive file pattern on the
command line.

p4 labelsync files Use a more restrictive file pattern and the -a flag
to build the label’s file set in pieces.
68 Perforce 2002.1 Command Reference

p4 group
Related Commands

p4 print files Use a more restrictive file pattern on the
command line.

p4 sync files, as
mapped
through client
view

Use a more restrictive file pattern on the
command line.

To modify users’ access levels p4 protect

To view a list of existing groups p4 groups

Command Counted Entity How Affected Users Can Reduce Command Output
Perforce 2002.1 Command Reference 69

p4 groups

70 Perforce 2002.1 Command Reference

p4 groups

Synopsis

List groups of users.

Syntax
p4 [g-opts] groups [user]

Description

Shows a list of all current groups of users as created by p4 group. Only the group names
are displayed. If the optional user argument is provided, only the groups containing that
user are listed.

Options

Usage Notes

• To see all the members of a particular group, use p4 group -o groupname. This
variation of p4 group requires only list access.

Examples

Related Commands

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A list

p4 group bob Display the names of all groups of which user bob is a member.

To create or edit an existing group of users p4 group

To view a list of all the members and specifications of a particular group p4 group -o

To set Perforce access levels for the members of a particular group p4 protect

p4 have
p4 have

Synopsis

List files and revisions that have been synced to the client workspace

Syntax
p4 [g-opts] have [file...]

Description

List those files and revisions that have been copied to the client workspace with p4 sync.
If file patterns are provided, the list is limited to those files that match one of the patterns,
and to those files that are mapped to the client view.

p4 have lists the files, one per line, in the format:
depot-file#revision-number - local-path

• depot-file is the path to the file in depot syntax.

• revision-number is the have revision; the revision presently in the current client
workspace

• local-path is the path as represented in terms of the local filesystem (i.e., in local
syntax).

Options

Usage Notes

• Some Perforce documentation refers to a client workspace’s have list. The have list is
the list of files reported by p4 have, and is the list of file revisions that have been most
recently synced from the depot. It does not include files that exist in your client
workspace but not in the depot.

For instance, if you use p4 add to open a newly created file in your client workspace for
add, or if you use p4 integrate to create a group of files in your client workspace, but
haven’t submitted them, the new files do not appear in the output of p4 have.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No list
Perforce 2002.1 Command Reference 71

p4 have
The set of all files in your client workspace is the union of the set of files listed by p4

have with the set of files listed by p4 opened.

Examples

Related Commands

p4 sync //depot/foo...
p4 have //depot/foo

p4 sync //depot/foo/...#4
p4 have //depot/foo

In each of these two pairs of commands:

The first p4 have shows that the highest revision of
the file has been copied to the client workspace.

The second p4 have shows that the fourth revision
is the revision currently in the client workspace.

To copy file revisions from the depot to the client workspace p4 sync
72 Perforce 2002.1 Command Reference

p4 help
p4 help

Synopsis

Provide on-line help for Perforce.

Syntax
p4 [g-opts] help
p4 [g-opts] help keyword
p4 [g-opts] help command

Description

p4 help displays a help screen describing the named command or keyword. It’s very
similar to this manual, but the text is written by the developers.

p4 help with no arguments lists all the available p4 help options. p4 help command

provides help on the named command. p4 help keyword takes the following keywords as
arguments:

Command and Keyword Meaning Equivalent Chapter
in this Manual

p4 help simple Provides short descriptions of
the eight most basic Perforce
commands.

(none)

p4 help commands Lists all the Perforce
commands

Table of Contents

p4 help charset Describes how to control
Unicode translation

P4CHARSET description.

p4 help environment Lists the Perforce environment
variables and their meanings

Environment and Registry
Variables

p4 help filetypes Lists the Perforce filetypes and
their meanings

File Types

p4 help jobview Describes Perforce jobviews p4 jobs description

p4 help revisions Describes Perforce revision
specifiers

File Specification

p4 help usage Lists the six flags available
with all Perforce commands

Global Options

p4 help views Describes the meaning of
Perforce views

Views
Perforce 2002.1 Command Reference 73

p4 help
Usage Notes

Related Commands

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A none

To view information about the current Perforce configuration p4 info
74 Perforce 2002.1 Command Reference

p4 info

Perforce 2002.1 Command Reference 75

p4 info

Synopsis

Display information about the current client and server.

Syntax
p4 [g-opts] info

Description

The p4 info command displays information about the Perforce client and server.

Here’s an example of the output from p4 info:

To obtain the version of the Perforce client program (p4), use p4 -V.

Options

Usage Notes

Related Commands

User name: joe
Client name: joes_client
Client host: phillips.chills.com
Client root: /usr/joe/projects
Current directory: /usr/joe/projects/apes/source
Client address: 192.168.0.123:1818
Server address: p4server:1666
Server root: /usr/depot/p4d
Server date: 2000/07/28 12:11:47 PDT
Server version: P4D/FREEBSD/2000.1/16375 (2000/07/25)
Server license: P4Admin <p4adm> 20 users on freebsd (expires 2001/01/01)

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A none

To read Perforce’s help files p4 help

To view version information for your Perforce client program p4 -V

p4 integrate
p4 integrate

Synopsis

Open files for branching or merging.

Syntax
p4 [g-opts] integrate [options] fromFile[revRange] toFile
p4 [g-opts] integrate [options] -b branch [toFile[fromRevRange]...]
p4 [g-opts] integrate [options] -b branch -s fromFile[revRange] [toFile...]

options: -c changelist# -d -f -h -i -n -r -t -v

Description

When you’ve made changes to a file that need to be propagated to another file, start the
process with p4 integrate. The simplest form of this command is p4 integrate
fromFile toFile; this lets the Perforce server know that changes in fromFile need to be
propagated to toFile, and has the following effects:

• If toFile doesn’t yet exist, fromFile is copied to toFile, then toFile is opened for
branch in the client workspace.

• If toFile exists, and was originally branched from fromfile as above, then toFile is
opened for integrate. You can then use p4 resolve to propagate all of, portions of, or
none of the changes in fromFile to toFile. The p4 resolve command uses fromFile
as theirs, toFile as yours, and the previously integrated revision of fromFile as
base.

• If both toFile and fromFile exist, but toFile was not originally branched from
fromFile, the integration is rejected.

• If fromFile was deleted at its last revision, toFile is opened for delete in the client
workspace.

(Some of the available flags modify this behavior. See the Options section for details.)

The process is complete when you p4 submit toFile to the depot.

Multiple files can be specified by using wildcards in fromFile and toFile. If so, any
wildcards used in fromFile must match identical wildcards in toFile. Perforce
compares the fromFile pattern to the toFile pattern, creates a list of fromFile/toFile
pairs, and performs an integration on each pair.
76 Perforce 2002.1 Command Reference

p4 integrate
The syntax p4 integrate fromFiles toFiles requires you to specify the mapping
between fromFiles and toFiles each time changes need to be propagated from
fromFiles to toFiles. Alternatively, use p4 branch to store the mappings between
fromFiles and toFiles in a branch view, and then use p4 integrate -b branchview

whenever you need to propagate changes between fromFiles and toFiles.

Options

Because some of the more recent integration flags add complexity to the integration
process, we’ve divided the options into Basic Integration Flags and Advanced Integration
Flags

Basic Integration Flags

-b branchname
[toFiles...]

Integrate the files using the sourceFile/targetFile
mappings included in the branch view of branchname. If the
toFiles argument is included, include only those target files in
the branch view that match the pattern specified by toFiles.

-n Display the integrations this command would perform without
actually performing them.

-v Open files for branching without copying toFiles into the
client workspace.

Without this flag, p4 integrate copies newly-branched
toFiles into the client workspace from fromFiles. When the -
v (virtual) flag is used, Perforce won’t copy toFiles to the
client workspace. Instead, you can fetch them with p4 sync

when you need them.

-c changelist# Open the toFiles for branch, integrate, or delete in the
specified pending changelist.

If this option is not provided, the files are opened in the default
changelist.

g_opts See the Global Options section.
Perforce 2002.1 Command Reference 77

p4 integrate
Advanced Integration Flags

-b branchname -s
fromFile[RevRange]
[ToFiles...]

In its simplest form, p4 integrate -b branchname -s

fromFile allows you to integrate files using the source/target
mappings included in the branch view of branchname, but
include only those source files that match the patterns specified
by fromFile.

In its more complicated form, when both fromFile and toFile

are specified, integration is performed bidirectionally: first,
integration is performed from fromFile to toFile; then
integration is performed from toFile to fromFile.

This variation of p4 integrate was written to provide some
needed functionality to P4Win, the Perforce Windows client; it
is unlikely that you’ll need to use this more complex form.

-b branchname -r
[toFiles...]

Reverse the mappings in the branch view, integrating from the
target files to the source files.

-d Allow non-conforming adds and deletes.

By default, a non-existent toFile is only opened for branch or
add if fromFile conforms to the condition that its revRange
starts with a branch or add. (When revRange is not given, this
condition is always met, because the implied revRange is #1 to
#head.) The -d flag allows a non-existent toFile to be opened
for branch or add even if the first revision of fromFile in
revRange is an edit or an integrate.

An existing toFile is only opened for delete if it conforms to
the condition that all of its revisions are already accounted for
in previous integrations to or from fromFile.

In other words, toFile is only opened for delete if all of its
changes either came from fromFile or have been merged into
fromFile. The -d flag allows an existing toFile to be opened
for delete even if it doesn't conform to these conditions.

-f Force the integration on all revisions of fromFile and toFile,
even if some revisions have been integrated in the past. Best
used with a revision range.

-h Don’t automatically sync target files to the head revision before
integrating. Use the have revision instead.

-i Perform the integration even if toFile was not originally
branched from fromFile. In this case, the last revision of
fromFile that was opened for add is used as base (this is
almost always the first revision of fromFile).
78 Perforce 2002.1 Command Reference

p4 integrate
Usage Notes

• FromFiles are often called source files, and toFiles are often called target files.

• Any toFiles that p4 integrate needs to operate on must be included in the p4
client workspace view.

• By default, files that have been opened for branch or integrate with p4 integrate

are read-only in the client workspace. You can edit these files before submitting them
using p4 edit to reopen the file for edit.

• You can use p4 integrate to rename files. The method is described in the p4 rename
description.

• p4 integrate can be abbreviated as p4 integ. (We’ve used this abbreviation in the
examples below to allow for more room in the second column).

• Whenever a toFile is integrated from a fromFile, Perforce creates an integration record
in its database that describes the effect of the integration. The integration record
includes the names of the fromFile, and toFile, the revisions of fromFile that were
integrated into toFile, the new revision number for toFile, and the action that was
taken at the time of the integration. See p4 integrated for a full description of
integration actions.

-t Propagate the source file’s filetype to the target file.

(Newly-branched files always use the source file’s filetype, but
without -t, the target file retains its previous filetype.)

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes Yes open
Perforce 2002.1 Command Reference 79

p4 integrate
Examples

Related Commands

p4 integ //depot/dev/... //depot/rel2/... Branch or merge all files in
//depot/dev/... to the
corresponding files in
//depot/rel2/...

If there is no corresponding file
in //depot/rel2/..., this
creates it.

p4 integ -b rel2br Branch or merge all fromFiles
contained in the branch view
rel2br into the corresponding
toFiles as mapped through the
branch view.

p4 integ -b rel2br //depot/rel2/headers/... Branch or merge those
fromFiles contained in the
branch view rel2br that map to
the toFiles
//depot/rel2/headers/...

p4 integ -b rel2br -r //depot/rel2/README Branch or merge fromFile
//depot/rel2/README from its
toFile as mapped through the
branch view rel2br.

To create or edit a branch specification p4 branch

To view a list of existing branch specifications p4 branches

To view a list of integrations that have already been
performed and submitted

p4 integrated

To propagate changes from one file to another after
opening files with p4 integrate

p4 resolve

To view a history of all integrations performed on a
particular file

p4 filelog
80 Perforce 2002.1 Command Reference

p4 integrated
p4 integrated

Synopsis

Show integrations that have been submitted.

Syntax
p4 [g-opts] integrated file...

Description

The p4 integrated command shows the integration history of the selected files, in the
format:

file#revision-num# - integrate-action partner-file#revision-range

where

• file is the file argument provided to p4 integrated;

• partner-file is the file it was integrated from or into; and

• integrate-action describes what the user did during the p4 resolve process, and is
one of the following:

Integrate Action What the User Did During the p4 Resolve Process

branch from file did not previously exist; it was created as a copy of partner-
file.

branch into partner-file did not previously exist; it was created as a copy of
file.

merge from file was integrated from partner-file, accepting merge.

merge into file was integrated into partner-file, accepting merge.

copy from file was integrated from partner-file, accepting theirs.

copy into file was integrated into partner-file, accepting theirs.

ignored file was integrated from partner-file, accepting yours.

ignored by file was integrated into partner-file, accepting yours.

delete from file was integrated from partner-file, and partner-file had
been previously deleted.

delete into file was integrated into partner-file, and file had been
previously deleted.
Perforce 2002.1 Command Reference 81

p4 integrated
If a file toFile was ever integrated from a file fromFile, and both toFile and fromFile

match the p4 integrated filepattern argument, each integrated action is listed twice
in the p4 integrated output: once in its from form, and once in its into form, as
described above.

Options

Usage Notes

Related Commands

edit from file was integrated into partner-file, and partner-file was
edited within the p4 resolve process. This allows you to determine
whether the change should ever be integrated back; automated
changes (merge from) needn’t be, but original user edits (edit from)
performed during the resolve should be (Perforce 2001.1 and later).

edit into file was integrated into partner-file, and partner-file was
reopened for edit before submission (Perforce 99.2 and later).

add into file was integrated into previously nonexistent partner-file, and
partner-file was reopened for add before submission (Perforce 99.2
and later).

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No list

To see a list of integrations that have not yet been resolved p4 resolve -n

To view a list of integrations that have been resolved but
not yet submitted

p4 resolved

To perform an integration p4 integrate

To view the actions taken for all revisions of a particular file
(including all the files from which that particular file was
integrated)

p4 filelog [-i] file

Integrate Action What the User Did During the p4 Resolve Process
82 Perforce 2002.1 Command Reference

p4 job
p4 job

Synopsis

Create or edit a defect, enhancement request, or other job specification.

Syntax
p4 [g-opts] job [-f] [jobName]
p4 [g-opts] job -d jobName
p4 [g-opts] job -o [jobName]
p4 [g-opts] job -i [-f]

Description

A job is a written-language description of work that needs to be performed on files in the
depot. It might be a description of a bug (for instance, “the scroll mechanism isn’t
working correctly”) or an enhancement request (for instance, “please add a flag that
forces a certain operation to occur”) or anything else requiring a change to some files
under Perforce control.

Jobs are similar to changelist descriptions in that they both describe changes to the system
as arbitrary text, but whereas changelist descriptions describe completed work, jobs tell
developers what work needs to be done.

Jobs are created and edited in forms displayed by p4 job. The user enters the textual
description of the job into the form, along with information such as the severity of the bug,
the developer to whom the bug is assigned, and so on. Since the Perforce superuser can
change the fields in the job form with p4 jobspec, the fields that make up a job may vary
from one Perforce server to another.

When p4 job is called with no arguments, a new job named jobNNNNNN is created, where
NNNNNN is a sequential six-digit number. You can change the job’s name within the form
before quitting the editor. If p4 job is called with a jobname argument, a job of that name
is created; if that job already exists, it is edited.

Once a job has been created, you can link the job to the changelist(s) that fix the job with
p4 fix, p4 change, or p4 submit. When a job is linked to a changelist, under most
circumstances the job’s status is set to closed. (See the Usage Notes below for more
information).
Perforce 2002.1 Command Reference 83

p4 job
Form Fields

These are the fields as found in the default job form. Since the fields that describe a job can
be changed by the Perforce superuser, the form you see at your site may be very different.

Options

Usage Notes

• If the Perforce superuser has eliminated field ID# 102 (the Status: field) with p4

jobspec, Perforce is unable to close jobs when the changelists to which they are linked
are submitted. Please see the p4 jobspec page and the Perforce System Administrator’s
Guide for more information.

Field Name Type Description

Job: Writable The job’s name. For a new job, this is new. When the
form is closed, this is replaced with the name
jobNNNNNN, where NNNNNN is the next six-digit
number in the job numbering sequence.

Alternately, you can name the job anything at all by
replacing the text in this field.

Status: Writable Value The value of this field must be open, closed, or
suspended. When the job is linked to a changelist,
the value of this field is set to closed when the
changelist is submitted.

User: Writable The name of the user who created the job.

Date: Writable The date the job was created.

Description: Writable An arbitrary text description of the job.

-d jobname Delete job jobname.

-f Force flag. Allows Perforce superusers to edit read-only fields.

-i Read the job form from standard input without invoking an editor.

-o Write the job form to standard output without invoking an editor.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A open
84 Perforce 2002.1 Command Reference

p4 job
• After a job has been created or changed, Perforce indexes the job so that p4 jobs -e
can locate the job quickly. The index keys are word, fieldname where word is a case-
insensitive alphanumeric word. Values in date fields are stored as the number of
seconds since January 1, 1970, 00:00:00.

Examples

Related Commands

p4 job Create a new job; by default, its name is of the form jobNNNNNN.

p4 job job000135 Edit job job000135.

To list all jobs, or a subset of jobs p4 jobs

To attach a job to an existing changelist p4 fix

To view a list of connections between jobs and changelists p4 fixes

To add or delete a job from a pending changelist p4 change

To change the format of jobs at your site (superuser only) p4 jobspec

To read information about the format of jobs at your site p4 jobspec -o
Perforce 2002.1 Command Reference 85

p4 jobs
p4 jobs

Synopsis

List jobs known to the Perforce server.

Syntax
p4 [g-opts] jobs [-e jobview] [-i] [-l] [-r] [-m max] [file[rev] ...]
p4 jobs -R

Description

When called without any arguments, p4 jobs lists all jobs stored on the server. You can
limit the output of the command by specifying various criteria with flags and arguments.
If you specify a file pattern, the jobs listed will be limited to those linked to changelists
affecting particular files. The -e flag can be used to further limit the listed jobs to jobs
containing certain words.

Jobs are listed in alphanumeric order (or, if you use the -r flag, in reverse alphanumeric
order) by name, one job per line. The format of each line is:

jobname on date by user *status* description

The description is limited to the first 31 characters, unless the -l (long) flag is used.

If any of the date, user, status, or description fields have been removed by the
Perforce superuser with p4 jobspec, the corresponding value will be missing from each
job’s output.

To limit the list of jobs to those that have been fixed by changelists that affected particular
files, use p4 jobs filespec. The files or file patterns provided may contain revision
specifiers or a revision range.

Options
-e jobview List only those jobs that match the criteria specified by jobview.

Please see the Usage Notes below for a discussion of job views.

-i files... Include jobs fixed by changelists that affect files integrated into the
named files.

-l Output the full description of each job.

-m max Include only the first max jobs, sorted alphanumerically. If used
with the -r flag, the last max jobs are included.

-r Display jobs in reverse alphabetical order by job name.
86 Perforce 2002.1 Command Reference

p4 jobs
Usage Notes

Job Views

Use p4 jobs -e jobview to limit the list of jobs to those that contain particular words.
You can specify that the search terms be matched only in particular fields, or anywhere in
the text of the job. You can use jobviews to match jobs by values in date fields, though
there are fewer options for dates than there are for straight text.

Text matching is case-insensitive. All alphanumeric strings (including words including
embedded punctuation) separated by whitespace are indexed as words.

The jobview ‘word1 word2 ... wordN’ can be used to find jobs that contain all of word1
through wordN in any of the job’s fields.

Spaces between search terms in jobviews act as boolean AND operations. To find jobs that
contain any of the terms (boolean OR), separate the terms with the “|” character.

Ampersands (&) can be used as boolean ANDs as well; the boolean operators bind in the
order &, |, space (highest precedence to lowest precedence). Use parentheses to change
the grouping order.

Search results can be narrowed by matching values within specific fields with the jobview
syntax”fieldname=value”. The value must be a single token, including both
alphanumeric characters and punctuation.

The wildcard “*” allows for partial word matches. The jobview “fieldname=string*”
matches “string”, “stringy”, “stringlike”, and so on.

Date fields can be matched by expressing the jobview date as yyyy/mm/dd or
yyyy/mm/dd:hh:mm:ss. If a specific time is not provided, the equality operator (=)
matches the entire day.

The usual comparison operators (=, >, <, >=, and <=) are available.

-R Rebuild the job table and reindex each job.

Reindexing the table is necessary either when upgrading from
version 98.2 or earlier, or when upgrading from 99.1 to 2001.1 or
higher and you wish to search your body of existing jobs for strings
containing punctuation.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes Yes list
Perforce 2002.1 Command Reference 87

p4 jobs
Additionally, you can use the NOT operator (^) to negate the sense of some comparisons.
(See Limitations below for details).

To search for words containing characters that are job search expression operators, escape
the characters with a backslash (\) character.

The behavior of these operators depends on the type of job field you’re comparing
against:

If you’re not sure of a field’s type, run p4 jobspec -o, which outputs the job
specification used at your site. The p4 jobspec field called Fields: contains the job
fields’ names and datatypes. See p4 jobspec for a discussion of the different field types.

Other Usage Notes

• The p4 user form has a JobView: field that allows a jobview to be linked to a particular
user. After a user enters a jobview into this field, any changelists he creates
automatically list jobs that match the jobview in this field. The jobs that are fixed by the
changelist can be left in the form, and the jobs that aren’t should be deleted.

• p4 jobs sorts its output alphanumerically by job name, which also happens to be the
chronological order in which the jobs were entered. If you use job names other than the
standard Perforce names, this ordering may not help much.

Field Type Use of Comparison Operators in Jobviews

word The equality operator (=) must match the value in the word field
exactly.

The inequality operators perform comparisons in ASCII order.

text The equality operator (=) matches the job if the word given as the value
is found anywhere in the specified field.

The inequality operators are of limited use here, since they match the
job if any word in the specified field matches the provided value.

For example, if a job has a text field ShortDescription that contains
only the phrase gui bug, and the jobview is “ShortDesc<filter”, the
job matches the jobview, because bug<filter.

line As for field type text, above.

select The equality operator (=) matches a job if the value of the named field is
the specified word. The inequality operators perform comparisons in
ASCII order.

date Dates are matched chronologically. If a specific time is not provided, the
operators =, <=, and >= match the entire day.
88 Perforce 2002.1 Command Reference

p4 jobs
• The -m max -r construct displays the last max jobs in alphanumeric order, not the max
most recent jobs, but if you’re using Perforce’s default job naming scheme (jobs
numbered like job001394), alphanumeric job order is identical to order by entry date.

• You can use the * wildcard to determine if a text field contains a value or not by
checking for the jobview “field=*”; any non-null value for field matches.

Limitations

• Jobviews cannot be used to search for jobs containing null-valued fields. In other
words, if a field has been deleted from an existing job, then the field is not indexed, and
there is no jobview that matches this “deleted field” value.

• The jobview NOT operator (^) can be used only after an AND within the jobview. Thus,
the jobviews “gui ^name=joe” and “gui&^name=joe” are valid, while the jobviews
“gui|^name=joe” and “^name=joe” are not.

• The * wildcard is a useful way of getting around both of these limitations.

For instance, to obtain all jobs without the string “unwanted”, query for ‘job=*
^unwanted”. All jobs will be selected by the first portion of the jobview and logically
ANDed with all jobs NOT containing the string “unwanted”.

Likewise, because the jobview “field=*” matches any non-null value for field, (and
the job field can be assumed not to be null), you can search for jobs with null-valued
fields with “job=* ^field=*”

Examples
p4 jobs //depot/proj/foo#1 List all jobs attached to changelists that

include revisions of //depot/proj/foo.

p4 jobs -i //depot/proj/foo List all jobs attached to changelists that
include revisions of //depot/proj/foo or
revisions of files that were integrated into
//depot/proj/foo

p4 jobs -e gui List all jobs that contain the word gui in
any field.

p4 jobs -e 'gui Submitted-By=joe' List all jobs that contain the word gui in
any field and the word joe in the
Submitted-By: field.

p4 jobs -e 'gui ^Submitted-By=joe' List all jobs that contain the word gui in
any field and any value other than joe in
the Submitted-By: field.
Perforce 2002.1 Command Reference 89

p4 jobs
Related Commands

p4 jobs -e 'window*' List all jobs containing the word “window”,
“window.c”, “Windows”, in any field. The
quotation marks are used to prevent the
local shell from expanding the “*” on the
command line.

p4 jobs -e window.c List all jobs referring to window.c in any
field.

p4 jobs -e 'job=* ^unwanted' List all jobs not containing the word
unwanted in any field.

p4 jobs -e
'(fast|quick)&date>1998/03/14'

List all jobs that contain the word fast or
quick in any field, and have a date: field
pointing to a date on or after 3/14/98.

p4 jobs -e
'fast|quick' //depot/proj/...

List all jobs that have the word fast or
quick in any field, and that are linked to
changelists that affected files under
//depot/proj.

To create or edit an existing job p4 job

To attach a job to a particular changelist, indicating that the job is
fixed by that changelist

p4 fix

To list all jobs and changelists that have been linked together p4 fixes

To view all the information about a particular changelist, including
the jobs linked to the changelist

p4 describe

To change the format of the jobs used on your server (superuser only) p4 jobspec

To read information about the format of jobs used on your site (any
user)

p4 jobspec -o

To set a default jobview that includes jobs matching the jobview in all
new changelists

p4 user
90 Perforce 2002.1 Command Reference

p4 jobspec
p4 jobspec

Synopsis

Edit the jobs template.

Syntax
p4 [g-opts] jobspec
p4 [g-opts] jobspec [-i]
p4 [g-opts] jobspec -o

Description

The p4 jobspec command presents the Perforce superuser with a form in which job
fields can be edited, created, deleted, and refined.

Do not confuse the names of the fields in the p4 jobspec form with the names of the
fields within a job. The fields in the p4 jobspec form are used to store information about
the fields in the p4 jobs form.
Perforce 2002.1 Command Reference 91

p4 jobspec
Form Fields
Field Name Description

Fields: A list of field definitions for your site’s jobs, one field per line. Each line
has five parts, and is of the form code name type length persistence.

• code: a unique integer that identifies the field internally to Perforce.
The code must be between 101 and 199. Codes 101 to 105 have addi-
tional restrictions; please see the Usage Notes below for more details.

• name: the name of the field. This can be changed at any time, while the
code should not change once jobs have been created.

• datatype: the datatype of the field. Possible values are:
• word: a single arbitrary word
• date: a date/time field
• select: one of a fixed set of words
• line: one line of text
• text: a block of text, starting on the line underneath the fieldname.

• length: recommended length for display boxes in GUI clients accessing
this field. Use a value of 0 to let the client choose its own value.

• persistence: does the field have a default value? Is it required? Is it
read-only? Possible values are:
• optional: field can take any value or be erased.
• default: a default value is provided; it can be changed or erased.
• required: a default value is provided; it can be changed but the user

must enter a value.
• once: read-only; the field value is set once to a default value and is

never changed.
• always: read-only; the field’s value is set to a new default when the

job is edited. This is useful only with the $now and $user variables; it
allows you to change the date a job was modified and the name of
the modifying user.

Values: Contains a lists of fields and valid values for select fields.

Enter one line for each field of datatype select. Each line must contain
the fieldname, a space, and the list of acceptable values separated by
slashes. For example:

JobType bug/request/problem.
92 Perforce 2002.1 Command Reference

p4 jobspec
Options

Usage Notes

• Certain field codes have special significance to Perforce. Do not delete the default fields
101 through 105 in the jobs system; use p4 jobspec only to add new fields (106 and
above) to your jobs. Do not change the names or types of the following fields for any
reason:

Presets: Contains a list of fields and their default values for each field that has a
persistence of default, required, once, or always.

Each line must contain the field name and the default value, separated by
a space. For example:

JobType bug

Any one-line string can be used, or one of three built-in variables:

• $user: the user who created the job
• $now: the current date
• $blank: the phrase <enter description here>

When users enter jobs, any fields in your jobspec with a preset of
$blank must be filled in by the user before the job is added to the sys-
tem.

Comments: Textual comments that appear at the top of each p4 job form. Each line
must begin with the comment character #.

See the Usage Notes below for special considerations for these comments if
your users need to enter jobs through P4Win, the Perforce Windows
client.

-o Write the jobspec form to standard output.

-i Read the jobspec form from standard input.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A super, or list to use the -
o flag

Field Name Description
Perforce 2002.1 Command Reference 93

p4 jobspec
• 101: the job name. Required.

• 102: the job status. Optional; if present, p4 submit and p4 fix will set its value to
closed, even if closed is not one of the status values defined in the jobspec.

• 103: the user who created the job.

• 104: the date the job was created.

• 105: the job description. Optional, but if not present, p4 change and p4 submit will
no longer be able to display the job text.

• The jobspecs chapter of the Perforce System Administrator’s Guide contains sample
jobspecs; it’s available at our Web site (http://www.perforce.com).

• The information in the Comments: fields is the only information available to your users
to tell them how to fill in the job form. Please make your comments complete and
understandable.

• The first line of each field’s comment is also used by P4Win, the Perforce Windows
client, to display tooltips. The first line of each field’s comment should be readable on
its own.

Related Commands
To create, edit, or view a job p4 job

To attach a job to a changelist p4 fix

To list jobs p4 jobs

To list jobs attached to specific changelists or changelists attached to
specific jobs

p4 fixes
94 Perforce 2002.1 Command Reference

p4 label
p4 label

Synopsis

Create or edit a label specification and its view.

Syntax
p4 [g-opts] label [-f -t template] labelname
p4 [g-opts] label -o [-t template] labelname
p4 [g-opts] label -d [-f] labelname
p4 [g-opts] label -i [-f]

Description

Create a new label specification or edit an existing label specification. A labelname is
required.

Running p4 label merely allows you to configure the mapping that controls the set of
files that are allowed to be included in the label. After configuring the label, you then need
to use p4 labelsync to store files within the label.

Only the Owner: of a label may use p4 labelsync.

Form Fields
Field Name Type Description

Label: Read-only The label name as provided in the invoking
command.

Owner: Writable The label’s owner. By default, the user who created
the label. Only the owner of a label may update its
contents with p4 labelsync.

Update: Read-only The date the label specification was last modified.

Access: Read-only The date and time the label was last accessed,
either via p4 labelsync on the label, or syncing a
file with the label revision specifier @label.

Description: Writable,
optional

A description of the label’s purpose. Optional.
Perforce 2002.1 Command Reference 95

p4 label
Options

Usage Notes

Related Commands

Options: Writable locked or unlocked. If the label is locked, its
contents can’t be changed with p4 labelsync.

View: Writable A list of depot files that can be included in this
label. No files are actually included until p4
labelsync is invoked.

Unlike client views or branch views, which map
one set of files to another, label views consist of a
simple list of depot files. Please see the Views
chapter for more information.

-d [-f] Delete the named label if it’s unlocked. The -f flag forces the deletion
even if the label is locked.

-i Read the label definition from standard input without invoking the
editor.

-o Write the label definition to standard output without invoking the
editor.

-f Allow the Update: field’s date to be set. Can be used with either the -
i flag or the -t flag for the same purpose.

-t template Copy label template’s view and options into the View: and
Options: fields of this label.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A open

To include client workspace files in a label p4 labelsync

To list all labels known to the system p4 labels

Field Name Type Description
96 Perforce 2002.1 Command Reference

p4 labels

Perforce 2002.1 Command Reference 97

p4 labels

Synopsis

Display list of defined labels.

Syntax
p4 [g-opts] labels file[revrange]

Description

p4 labels lists all the labels known to the Perforce server in the form:
Label labelname date description

To see a list of labels containing specific revisions, specify the revision range.

Options

Usage Notes

• To see a list of files included in a particular label, use p4 files @labelname.

Examples

Related Commands

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A list

To list all labels in the system p4 labels

To list all labels that contain any revision of file.c p4 labels file.c

To list only labels containing revisions #3 through #5 of
file.c

p4 labels file.c#3,5

To create or edit a label specification p4 label

To add, delete, or change the files included in a label p4 labelsync

To view a list of files included in a label p4 files @labelname

p4 labelsync
p4 labelsync

Synopsis

Synchronize a label with the contents of the current client workspace.

Syntax
p4 [g-opts] labelsync [-a -d -n] -l labelname [file[revRange]...]

Description

p4 labelsync causes the named label to reflect the current contents of the client
workspace. It records the last revision of each file synced into the client. The label's name
can subsequently be used in a revision specification as @label to refer to the revision of a
file as stored in the label.

Without a file argument, p4 labelsync causes the label to reflect the contents of the
whole client by adding, deleting, and updating the list of files in the label.

If a file is given, p4 labelsync updates only that named file. If the file argument includes
a revision specification, then that revision is used instead of the revision existing in the
client. If the file argument includes a revision range, then only the highest revision in that
range is used.

You can only update labels you own; if the label’s Owner: field is not your userid, you
cannot update it with p4 labelsync.

A label that has its Options: field set to locked cannot be updated with p4 labelsync.

Options

Usage Notes

-a Add files that match the file pattern arguments to the label without
deleting any files, even if some of the files are deleted at their head
revision.

-d Delete the named files from the label.

-n Display what p4 labelsync would do without actually performing
the operation.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes No open
98 Perforce 2002.1 Command Reference

p4 labelsync
Related Commands
To create or edit a label p4 label

To list all labels known to the system p4 labels
Perforce 2002.1 Command Reference 99

p4 lock

100 Perforce 2002.1 Command Reference

p4 lock

Synopsis

Lock an opened file against changelist submission.

Syntax
p4 [g-opts] lock [-c changelist#] [file ...]

Description

Locking files prevents all other users from submitting changes to those files. If the files are
already locked by another user, p4 lock fails. When the user who locked a particular file
submits the file, the lock h released.

This command is normally called with a specific file argument; if no file argument is
provided, all open files in the default changelist are locked. If the -c changelist# flag is
used, all open files matching the given file pattern in changelist changelist# are locked.

Options

Usage Notes

Related Commands

-c changelist# Lock only files included in changelist changelist#

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No write

To unlock locked files p4 unlock

p4 logger

Perforce 2002.1 Command Reference 101

p4 logger

Synopsis

Report changed jobs and changelists.

Syntax
p4 [g-opts] logger [-c sequence#] [-t countername]

Description

The p4 logger command is meant for use in external programs that call Perforce.

The Perforce Defect Tracking Integration (P4DTI) uses p4 logger.

Options

Usage Notes

• The p4 logger command is not intended for use by end-users. It exists to support
propagating information to an external defect tracking system.

Related Commands

-c sequence# List all events happening after this sequence
number.

-t countername List all events after this counter number.

-c changelist# -t countername Update the supplied counter with the current
sequence number and clear the log; as this
clears the log regardless of which counter
name is specified, only one user can make use
of this option.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A review

To list users who have subscribed to review particular files p4 reviews

To set or read the value of a Perforce counter p4 counter

To see full information about a particular changelist p4 describe

To see a list of all changelists, limited by particular criteria p4 changes

p4 obliterate
p4 obliterate

Synopsis

Removes files and their history from the depot.

Syntax
p4 [g-opts] obliterate [-y] file[revRange] ...

Warning

The p4 delete command marks the latest revision as deleted, but leaves the file
information intact in the depot. As such, recovery from the server data is always possible.

In contrast, p4 obliterate deletes the file data itself, precluding any possibility of
recovery.

Use p4 obliterate with caution. This is the only command in Perforce that actually
removes file data.

Description

p4 obliterate can be used by Perforce superusers to permanently remove files from the
depot. All information about the files is wiped out, including the files’ revisions, the files’
metadata, and any records in any labels or client workspace records that refer directly to
those files. Once p4 obliterate completes, it appears to the server as if the affected file(s)
had never existed. Copies of files in client workspaces are left untouched, but are no
longer recognized as being under Perforce control.

p4 obliterate requires at least one file pattern as an argument. To actually perform the
obliteration, the -y flag is required; without it, p4 obliterate merely reports what it
would do without actually performing the obliteration.

If you specify a single revision (for instance, p4 obliterate file#3), only that revision
of the file is obliterated. If you specify a revision range (for instance, p4 obliterate
file#3,5), only the revisions in that range are obliterated.

The -z flag is used with branches; after branching a file from one area of the depot into
another. When a branch is made, a “lazy copy” is performed - the file itself isn’t copied;
only a record of the branch is made. If you want to “obliterate” the lazy copy performed
by the branch, thereby creating an extra copy of the file in the depot, use p4 obliterate
-z on it. Note that this typically increases disk space usage.
102 Perforce 2002.1 Command Reference

p4 obliterate
Options

Usage Notes

• p4 obliterate is most often used to reclaim disk space from files that are no longer
required, or to clean up mistakes made by users who, for instance, may have created a
file hierarchy in the wrong place.

• Obliterating files can alter the behavior of user commands. Syncing to an obliterated
revision will remove the file from your client workspace, syncing to the head revision
will either remove the file from your client workspace (if all revisions were obliterated),
or provide you with the most recent non-obliterated revision of the file.

• Obliterating files in revision ranges can also change the behavior of scripts, as revision
numbers of files may “skip” obliterated revisions. For instance, the output of p4
filelog after obliterating revisions #2 and #3 might look like this:

... #4 change 1276 edit on 2001/04/18 by user@dev1 (binary) ’Fixed’

... #1 change 1231 add on 2001/04/12 by user@dev1 (binary) ’First try’

In this case, a developer using the #4 in the first line of the output to assume the
existence of four change descriptions in the output of p4 filelog would be in trouble.

Examples

-y filespec Perform the obliterate operation. Without this flag, p4 obliterate
merely reports what it would do.

-z filespec Undo “lazy copies” only; remove no files nor metadata. This option is
most commonly used when working with branches in order to ensure
that no other files in the database refer to the named files.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes Yes super

p4 obliterate dir/... Do not obliterate any files; list the files that would be
obliterated with the -y option.

In this case, all files in directory dir and below would
be subject to deletion with the -y option.

p4 obliterate -y file Obliterate file from the depot. All history and
metadata for every revision of file are erased.
Perforce 2002.1 Command Reference 103

p4 obliterate
Related Commands

p4 obliterate -y file#3 Obliterate only the third revision of file.

If #3 was the head revision, the new head revision is
now #2 and the next revision will be revision #3.

If #3 was not the head revision, the head revision
remains unchanged.

p4 obliterate -y file#3,5 Obliterate revisions 3, 4, and 5 of file.

If #5 was the head revision, the new head revision is
now #2, and the next revision will be #3.

If #5 was not the head revision, the head revision
remains unchanged.

To mark a file deleted at its head revision but leave it in the depot.
This is the normal way of deleting files.

p4 delete
104 Perforce 2002.1 Command Reference

p4 opened
p4 opened

Synopsis

List files that are open in pending changelists.

Syntax
p4 [g-opts] opened [-a] [-c changelist#] [file ...]

Description

Use p4 opened to list files that are currently open via p4 add, p4 edit, p4 delete, or p4
integrate. By default, all open files in the current client workspace are listed. You can
use command line arguments to list only those files in a particular pending changelist, or
to show open files in all pending changelists.

If file specifications are provided as arguments to p4 opened, only those files that match
the file specifications are included in the report.

The information displayed for each opened file includes the file’s name, its location in the
depot, the revision number that the file was last synced to, the number of the changelist
under which the file was opened, the operation it is opened for (add, edit, delete, or
integrate), and the type of the file. The output for each file looks like this:

depot-file#rev - action chnum change (type) [lock-status]

where:

• depot-file is the path in depot syntax;

• rev is the revision number;

• action is the operation the file was open for: add, edit, delete, branch, or integrate;

• chnum is the number of the submitting changelist; and

• type is the type of the file at the given revision.

• If the file is locked (see p4 lock), a warning that it is *locked* appears at the line’s
end.

Options
-a List opened files in any client workspace.

-c changelist# List the files in pending changelist changelist#. To list files in
the default changelist, use p4 opened -c default.

g_opts See the Global Options section.
Perforce 2002.1 Command Reference 105

p4 opened
Usage Notes

• Perforce does not prevent users from opening already open files; its default scheme is to
allow multiple users to edit the file simultaneously, and then resolve file conflicts with
p4 resolve. To determine whether or not another user already has a particular file
opened, use p4 opened -a file.

Examples

Related Commands

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No list

p4 opened -c 35 //depot/foo/... List all files in pending changelist 35 that lie
under the depot’s foo subdirectory.

p4 opened -a -c default List all opened files in the default changelists
for all clients.

To open a file in a client workspace and list it in a changelist p4 add
p4 edit
p4 delete
p4 integrate

To move a file from one changelist to another p4 reopen

To remove a file from all changelists, reverting it to its previous state p4 revert

To create a new, numbered changelist p4 change

To view a list of changelists that meet particular criteria p4 changes
106 Perforce 2002.1 Command Reference

p4 passwd
p4 passwd

Synopsis

Change a user’s Perforce password on the server.

Syntax
p4 [g-opts] passwd [-O oldpassword] [-P newpassword] [user]

Description

By default, user records are created without passwords, and any Perforce user can
impersonate another by setting P4USER or by using the globally-available -u flag. To
prevent another user from impersonating you, use p4 passwd to set your password to any
string that doesn’t contain the comment character #.

Once you have set a password, it must be provided to the Perforce server program when
any Perforce client command is run. You can do this in one of three ways:

• Set the environment or registry variable P4PASSWD to the password value;

• Create a setting for P4PASSWD within the P4CONFIG file;

• Use the -P password flag on the Perforce client command line, as in p4 -u ida -P

idaspwd edit .

Each of these three methods overrides the methods above it.

On Windows clients, p4 passwd stores the password for you by performing p4 set to
change the local registry variable. (The registry variable holds only the encrypted MD5
hash, not the password itself.)

To delete a password, set the password value to an empty string.

Options
-O oldpassword Avoid prompting by specifying the old password on the

command line.

-P newpassword Avoid prompting by specifying the new password on the
command line.

user Superusers can provide this argument to change the password of
another user.

g_opts See the Global Options section.
Perforce 2002.1 Command Reference 107

p4 passwd
Usage Notes

• The p4 passwd command never sends plaintext passwords over the network; a
challenge/response mechanism is used to send the MD5 hash of the password to the
server.

• Passwords may contain spaces; command line use of such passwords requires quotes. If
a user’s password is my passw, it would be provided in a Perforce command as p4 -P
"my passw" command .

• If a user forgets his or her password, a Perforce superuser can reset it by specifying the
username on the command line: p4 passwd username

• The maximum password length is 1024 characters on all platforms.

Related Commands

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A list

To change other user options p4 user

To change users’ access levels p4 protect
108 Perforce 2002.1 Command Reference

p4 print
p4 print

Synopsis

Print the contents of a depot file revision.

Syntax
p4 [g-opts] print [-o outfile] [-q] file[rev] ...

Description

The p4 print command writes the contents of a depot file to standard output. A revision
specification can be included; if it is not, the head revision is printed.

Any file in the depot can be printed, subject to permission limitations as granted by p4

protect. If the file argument does not map through the client view, you must provide it
in depot syntax.

By default, the file is written with a header that describes the location of the file in the
depot, the revision number of the printed file, and the number of the changelist that the
revision was submitted under. To suppress the header, use the -q (quiet) flag.

Multiple file patterns can be included; all files matching any of the patterns are printed.

Options

Usage Notes

• p4 print’s file arguments can take a revision range. Only the highest revision matched
by any particular file is printed. If a file has no revisions within the specified range, is
not printed.

-q Suppress the one-line file header normally added by Perforce.

-o outfile Redirect output to the specified output file on the local disk,
preserving the same file type, attributes, and/or permission bits as
the original file in the depot.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes Yes read
Perforce 2002.1 Command Reference 109

p4 print
• Because p4 print’s output can be quite large when called with highly non-restrictive
file arguments (for instance, p4 print //depot/... prints the contents of all files in
the depot), it may be subject to a maxresults limitation as set in p4 group.

• In many cases, redirecting p4 print’s output to a file via your OS shell will suffice.

The -o option is intended for users who require the automatic setting of file type
and/or permission bits. This is handy for files such as UNIX symbolic links (stored as
type symlink), files of type apple, automatically setting the execute bit on UNIX shell
scripts stored as type text+x, and so on.

Related Commands
To compare the contents of two depot file revisions p4 diff2

To compare the contents of an opened file in the client
workspace to a depot file revision

p4 diff
110 Perforce 2002.1 Command Reference

p4 protect
p4 protect

Synopsis

Control users’ access to files, directories, and commands.

Syntax
p4 [g-opts] protect
p4 [g-opts] protect -o
p4 [g-opts] protect -i

Description

Use p4 protect to control Perforce permissions. You can use p4 protect to:

• Control which files particular users can access;

• Manage which commands particular users are allowed to use;

• Combine the two, allowing one user to write one set of files but only be able to read
other files;

• Grant permissions to groups of users, as defined with p4 group;

• Limit access to particular IP addresses, so that only users at these IP addresses can run
Perforce.

Perforce provides six levels of access. The access levels are:

Access Level What the User Can Do

list The user can access all the Perforce metadata, but has no access to file
contents. The user can run all the commands that describe Perforce
objects, such as p4 files, p4 client, p4 job, p4 describe, p4
branch, etc.

read The user can do everything permitted with list access, and also run
any command that involves reading file data, including p4 print, p4
diff, p4 sync, and so on.

open This gives the user permission to do everything she can do with read

access, and gives her permission to p4 add, p4 edit, and p4 delete

files. However, the user is not allowed to lock files or submit files to
the depot.

write The user can do all of the above, and can also write files with p4

submit and lock them with p4 lock.
Perforce 2002.1 Command Reference 111

p4 protect
Form Fields

When you run p4 protect, Perforce displays a form with a single field, Protections:.
Each permission is specified in its own indented line under the Protections: header,
and has five values:

When exclusionary mappings are not used, a user is granted the highest permission level
listed in the union of all the mappings that match the user, the user’s IP address, and the
files the user is trying to access. In this case, the order of the mappings is irrelevant.

When exclusionary mappings are used, order is relevant: the exclusionary mapping
override any matching protections listed above it in the table. No matter which access
level is being denied in the exclusionary protection, all the access levels for the matching
users, files, and IP addresses are denied.

Options

review This permission is meant for external programs that access Perforce.
It gives the external programs permission to do anything that list
and read can do, and grants permission to run p4 review and p4

counter. It does not include open or write access.

super Includes all of the above, plus access to the superuser commands
such as p4 verify, p4 obliterate, p4 jobspec, and so on.

Column Description

Access Level One of the access levels list, read, open, write, review, or super,
as defined above.

User or Group Does this protection apply to a user or a group? The value of this
field must be user or group.

Group Name or
User Name

The name of the user or the name of the group, as defined by p4

group. To grant this permission to all users, use the * wildcard.

Host The IP address. Use the * wildcard to refer to all IP addresses.

Depot File Path The depot file path this permission is granted on, in Perforce depot
syntax. The file specification can contain Perforce wildcards.

To exclude this mapping from the permission set, use a dash (-) as
the first character of this value.

-i Read the form from standard input without invoking an editor.

-o Write the form to standard output without invoking an editor.

g_opts See the Global Options section.

Access Level What the User Can Do
112 Perforce 2002.1 Command Reference

p4 protect
Usage Notes

• Each access level includes all the access levels below it, as illustrated in this chart:

• Access levels determine which commands the user is allowed to use. The following
table lists the minimum access level required for a user to run each command For
example, since p4 add requires at least open access, p4 add can be run if open, write,
or super protections are granted.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No super

Command Access Level Command Access Level

add open integrate d open

admin super integrated list

branch open job b open

branches list jobs a list

change open jobspec a b super

changes a list label a open

client list labels a b list

clients list labelsync open

counter c review lock write

super

read

review
open

write

list
Perforce 2002.1 Command Reference 113

p4 protect
a This command doesn’t operate on specific files. Thus, permission is granted to run the
command if the user has the specified access to at least one file in the depot.

b The -o flag to this command, which allows the form to be read but not edited, requires only
list access.

c list access is required to view an existing counter’s value; review access is required to
change a counter’s value or create a new counter.

d To run p4 integrate, the user needs open access on the target files and read access on the
donor files.

counters list obliterate super

delete open opened list

depot a b super passwd list

depots a list print read

describe read protect a super

describe -s list reopen open

diff read resolve open

diff2 read resolved open

dirs list revert open

edit open review a review

filelog list reviews a list

files list set list

fix a open submit write

fixes a list sync read

fstat list triggers super

group a b super typemap super

groups a list unlock open

have list user a b list

help none users a list

info none verify review

where a none

Command Access Level Command Access Level
114 Perforce 2002.1 Command Reference

p4 protect
• When a new Perforce server is installed, anyone who wants to use Perforce is allowed
to, and all Perforce users are superusers. The first time anyone runs p4 protect, the
invoking user is made the superuser, and everyone else is given write permission on
all files. For your safety, run p4 protect immediately after installation.

It is possible to deny yourself super access; if you accidentally deny yourself super
access, you will subsequently be unable to run p4 protect. To get around this, remove
the db.protect table under P4ROOT of the Perforce server.

• In the course of normal operation, you’ll primarily grant users list, read, write, and
super access levels. The open and review access levels are used less often.

• Those commands that list files, such as p4 describe, will only list those files to which
the user has at least list access.

• Some commands (for instance, p4 change, when editing a previously submitted
changelist) take a -f flag which can only be run by Perforce superusers.

• The open access level gives the user permission to change files but not submit them to
the depot. Use this when you’re temporarily freezing a codeline, but don’t want to stop
your developers from working, or when you employ testers who are allowed to change
code for their own use but aren’t allowed to make permanent changes to the codeline.

• The review access level is meant for review daemons that need to access counter
values.

• If you write a review daemon that requires both review and write access, but
shouldn’t have super access, grant the daemon both review and write access on two
separate lines of the protections table.

• To limit or eliminate the use of the files on a particular server as a remote depot from a
different server (as defined by p4 depot), create protections for user remote. Remote
depots are always accessed by a virtual user named remote.

• For further information, consult the Protections chapter of the Perforce System
Administrator’s Guide.

Examples

Suppose that user joe is a member of groups devgroup and buggroup, as set by p4

group, and the protections table reads as follows:

super user bill * //...
write group devgroup * //depot/...
write group buggroup * -//depot/proj/...
write user joe 192.168.100.* //...
Perforce 2002.1 Command Reference 115

p4 protect
Joe attempts a number of operations. His success or failure at each is described below:

Related Commands

From IP address... Joe tries... Results

10.14.10.1 p4 print //depot/misc/... Succeeds. The second line
grants Joe write access on
these files; write access
includes read access, and this
protection isn’t excluded by
any subsequent lines.

10.14.10.1 p4 print //depot/proj/README Fails. The third line removes
all of Joe’s permissions on any
files in this directory. (If the
second protection and the
third protection had been
switched, then the subsequent
protection would have
overridden this one, and Joe
would have succeeded).

192.168.100.123 p4 print //depot/proj/README Succeeds. Joe is sitting at an IP
address from which he is
granted this permission in the
fourth line.

192.168.100.123 p4 verify //depot/misc/... Fails. p4 verify requires
super access; Joe doesn’t have
this access level no matter
which IP address he’s coming
from.

To create or edit groups of users p4 group

To list all user groups p4 groups
116 Perforce 2002.1 Command Reference

p4 rename

Perforce 2002.1 Command Reference 117

p4 rename

Synopsis

Renaming files under Perforce.

Syntax
p4 [g-opts] integrate fromFile toFile
p4 [g-opts] delete fromFile
p4 [g-opts] submit fromFile

Description

Although Perforce doesn’t have a rename command, renaming a file can be accomplished
by using p4 integrate to copy fromFile into a new toFile, using p4 delete to delete
fromFile, and then using p4 submit to store these file changes in the depot.

You can rename multiple files with this method by including matching wildcards in
fromFile and toFile.

Usage Notes

Examples

Related Commands

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

fromFile: Yes
toFile: NO

No read access for fromFile
write access for toFile

p4 integrate -c 413
//depot/p2/...
//depot/guiProj/...

p4 delete -c 413 //depot/p2/...

p4 submit -c 413

Renaming a set of files, in three steps:

• p4 integrate copies all the files in the p2
directory to the guiProj directory.

• p4 delete deletes all files in the p2 direc-
tory.

• p4 submit makes these changes to the depot
in a single atomic changelist.

To copy a file and keep it under Perforce’s control p4 integrate

To delete a file from the depot p4 delete

To submit changes to the depot p4 submit

p4 reopen
p4 reopen

Synopsis

Move opened files between changelists or change the files’ type.

Syntax
p4 [g-opts] reopen [-c changelist#] [-t filetype] file...

Description

p4 reopen has two different but related uses:

• Use p4 reopen -c changelist# file to move an open file from its current pending
changelist to pending changelist changelist#.

• Use p4 reopen -c default to move a file to the default changelist.

• Use p4 reopen -t filetype to change the type of a file.

If file patterns are provided, all open files matching the patterns are moved or retyped.
The two flags may be combined to move a file and change its type in the same operation.

Options

Usage Notes

-c changelist# file Move all open files matching file pattern file to pending
changelist changelist#. To move a file to the default
changelist, use default as the changelist number.

-t filetype file When submitted, store file as type filetype. All subsequent
revisions will be of that file type until the type is changed
again.

See the File Types section for a list of file types.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No open
118 Perforce 2002.1 Command Reference

p4 reopen
Examples

Related Commands

p4 reopen -t text+k //... Reopen all open files as text files
with keyword expansion.

p4 reopen -c 410
//depot/proj1/... //.../README

Move all open files under
directory //depot/proj1 or that
are named README to pending
changelist 410.

p4 reopen -c default -t binary+S //....exe Move all open .exe files to the
default changelist, overwriting
older revisions of those files in the
depot.

To submit a changelist to the depot p4 submit

To create a new changelist p4 change

To remove a file from all pending changelists p4 revert

To list opened files p4 opened

To list all the files included in a changelist p4 opened -c changelist#

To list all pending changelists p4 changes -p pending

To open a file for edit under a particular pending
changelist and as a particular type

p4 edit -c changelist# -t type

To open a file for add under a particular pending
changelist and as a particular type

p4 add -c changelist# -t type
Perforce 2002.1 Command Reference 119

p4 resolve
p4 resolve

Synopsis

Resolve conflicts between file revisions.

Syntax
p4 [g-opts] resolve [-af -am -as -at -ay -f -n -t -v] [file ...]

Description

Use p4 resolve to combine the contents of two files or file revisions into a single file
revision. Two situations require the use of p4 resolve before a file can be submitted:

• When a simple conflict exists: the revision of a file last synced to the client workspace is
not the head revision at the time of the submit.

For example, Alice does a p4 sync followed by a p4 edit of file foo, and Bob does the
same thing. Alice p4 submits foo, and then Bob tries to submit foo. Bob’s submit fails
because if his version of foo were accepted into the depot, Alice’s changes to foo would
no longer be visible. Bob must resolve the conflict before he can submit the file.

• When p4 integrate has been used to schedule the integration of changes from one file
to another.

The primary difference between these two cases is that resolving a simple file conflict
involves multiple revisions of a single file, but resolving for integration involves
combining two separate files. In either case:

• If the file is of type text, p4 resolve allows the user to choose whether to overwrite
the file revision in the depot with the file in the client workspace, overwrite the file in
the client workspace with the file in the depot, or merge changes from both the depot
revision and the client workspace revision into a single file.

• If the file is of type binary, only the first three options are normally available, since
merges don’t generally work with binary files.
120 Perforce 2002.1 Command Reference

p4 resolve
The p4 resolve dialog refers to four file revisions whose meaning depends on whether
or not the resolution fixes a simple file conflict or is resolving for integration:

The p4 resolve dialog presents the following options:

Term Meaning when Resolving Con-
flicts

Meaning when Resolving for Integration

yours The revision of the file in the
client workspace

The file to which changes are being
propagated (in integration terminology,
this is the target file). Changes are made to
the version of this file in the client
workspace, and this file is later submitted
to the depot.

theirs The head revision of the file in
the depot.

The file revision in the depot from which
changes are being propagated (in
integration terminology, this is the source
file). This file is not changed in the depot or
the client workspace.

base The file revision synced to the
client workspace before it was
opened for edit.

The previously-integrated revision of
theirs. The latest common ancestor of
both yours and theirs.

merge A file version generated by
Perforce from yours, theirs,
and base. The user can edit this
revision during the resolve
process if the file is a text file.

Same as the meaning at left.

Option Short
Meaning

What it Does Available by
Default for Binary
Files?

e edit
merged

Edit the preliminary merge file generated by
Perforce.

no

ey edit
yours

Edit the revision of the file currently in the
client.

yes

et edit
theirs

Edit the revision in the depot that the client
revision conflicts with (usually the head
revision). This edit is read-only.

yes

dy diff
yours

Show diffs between yours and base. no

dt diff
theirs

Show diffs between theirs and base. no
Perforce 2002.1 Command Reference 121

p4 resolve
dm diff
merge

Show diffs between merge and base. no

d diff Show diffs between merge and yours. yes

m merge Invoke the command:

P4MERGE base theirs yours merge

To use this option, you must set the
environment variable P4MERGE to the name of a
third-party program that merges the first three
files and writes the fourth as a result. This
command has no effect if P4MERGE is not set.

no

? help Display help for p4 resolve. yes

s skip Don’t perform the resolve right now. yes

ay accept
yours

Accept yours, ignoring changes that may have
been made in theirs.

yes

at accept
theirs

Accept theirs into the client workspace as the
resolved revision. The revision (yours) that
was in the client workspace is overwritten.

When resolving simple conflicts, this option is
identical to performing p4 revert on the
client workspace file. When resolving for
integrate, this copies the source file to the
target file.

yes

am accept
merge

Accept the merged file into the client
workspace as the resolved revision without
any modification. The revision (yours)
originally in the client workspace is
overwritten.

no

Option Short
Meaning

What it Does Available by
Default for Binary
Files?
122 Perforce 2002.1 Command Reference

p4 resolve
Resolution of a file is completed when any of the accept options are chosen, or if the file
is skipped with the skip option.

To help decide which option to choose, counts of four types of changes that have been
made to the file revisions are displayed by p4 resolve:

Diff Chunks: 2 yours + 3 theirs + 5 both + 7 conflicting

The meanings of these values are:

If there are no conflicting chunks, it is often safe to accept Perforce’s generated merge file,
since Perforce will substitute all the changes from yours and theirs into base.

If there are conflicting chunks, the merge file must be edited. In this case, Perforce will
include the conflicting yours, theirs, and base text in the merge file; it’s up to you to choose
which version of the chunk you want to keep.

ae accept
edit

If you edited the file (i.e., by selecting “e” from
the p4 resolve dialog), accept the edited
version into the client workspace. The revision
(yours) originally in the client workspace is
overwritten.

no

a accept Keep Perforce’s recommended result:

• if theirs is identical to base, accept yours;
• if yours is identical to base, accept theirs;
• if yours and theirs are different from base,

and there are no conflicts between yours

and theirs; accept merge;
• otherwise, there are conflicts between yours

and theirs, so skip this file

no

Count Meaning

n yours n segments of yours are different than base.

n theirs n segments of theirs are different than base.

n base n segments of theirs and yours are different from base, but
are identical to each other.

n conflicting n segments of theirs and yours are different from base and
different from each other.

Option Short
Meaning

What it Does Available by
Default for Binary
Files?
Perforce 2002.1 Command Reference 123

p4 resolve
The different text is clearly delineated with file markers:

Choose the text you want to keep; delete the conflicting chunks and all the difference
markers.

Options

>>>> ORIGINAL VERSION foo#n
<text>
==== THEIR VERSION foo#m
<text>
==== YOUR VERSION foo
<text>
<<<<

-am
-af
-as
-at
-ay

Skip the resolution dialog, and resolve the files automatically as follows:

• -am: Automatic Mode. Automatically accept the Perforce-recom-
mended file revision: if theirs is identical to base, accept yours; if yours is
identical to base, accept theirs; if yours and theirs are different from base,
and there are no conflicts between yours and theirs; accept merge; other-
wise, there are conflicts between yours and theirs, so skip this file.

• -ay: Accept Yours, ignore theirs.
• -at: Accept Theirs. Use this flag with caution, as the file in the client

workspace will be overwritten!
• -as: Safe Accept. If either, but not both, of yours and theirs is different

from base, accept that revision. If both are different from base, skip this
file.

• -af: Force Accept. Accept the merge file no matter what. If the merge file
has conflict markers, they will be left in, and you’ll need to remove
them by editing the file.

-n List the files that need resolving without actually performing the resolve.

-v Include conflict markers in the file for all changes between yours and
base, and between theirs and base. Normally, conflict markers are
included only when yours and theirs conflict.

-b (An old flag, equivalent to -t. No longer “officially” documented, but still
supported. Changed to -t for its equivalence to p4 diff’s and p4

diff2’s -t flag.)

-f Allow already resolved, but not yet submitted, files to be resolved again.
124 Perforce 2002.1 Command Reference

p4 resolve
Usage Notes

• p4 resolve works only with files that have been scheduled for resolve. Three
operations schedule files for resolution:

• Integrating the file with p4 integrate.

• Submitting an open file that was synced from a revision other then the current head
revision; the submit fails, and the file is scheduled for resolve.

• Instead of running p4 submit, running p4 sync on the open file. Nothing is copied
into the client workspace; instead, the file is scheduled for resolve. (The only benefit
of scheduling files for resolve with p4 sync instead of a failed submit is that the
submit will not fail).

When p4 resolve is run with no file arguments, it operates on all files in the client
workspace that have been scheduled for resolve.

Related Commands

-t Force a three-way merge, even on binary (non-text) files. This allows you
to inspect diffs between files of any type, and lets you merge non-text files
if P4MERGE is set to a utility that can do such a thing.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No open

To view a list of resolved but unsubmitted files p4 resolved

To schedule the propagation of changes between two separate
files

p4 integrate

To submit a set of changed files to the depot p4 submit

To copy a file to the client workspace, or schedule an open file
for resolve

p4 sync
Perforce 2002.1 Command Reference 125

p4 resolved

126 Perforce 2002.1 Command Reference

p4 resolved

Synopsis

Display a list of files that have been resolved but not yet submitted.

Syntax
p4 [g-opts] resolved [file...]

Description

p4 resolved lists files that have been resolved, but have not yet been submitted. The files
are displayed one per line in the following format:

localFilePath - action from depotFilePath#revisionRange

where localFilePath is the full path name of the resolved file on the local host,
depotFilePath is the path of the depot file relative to the top of the depot,
revisionRange is the revision range that was integrated, and action is one of merge,
branch, or delete.

If file pattern arguments are provided, only resolved, unsubmitted files that match the file
patterns are included.

Although the name p4 resolved seems to imply that only files that have gone through
the p4 resolve process are listed, this is not the case. A file is also considered to be
resolved if it has been opened by p4 integrate for branch, opened by p4 integrate for
delete, or has been resolved with p4 resolve.

Usage Notes

Related Commands

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A open

To see a list of integrations that have been submitted p4 integrated

To view a list of integrations that have not yet been resolved p4 resolve -n

To schedule the propagation of changes from one file to
another

p4 integrate

To resolve file conflicts, or to propagate changes as scheduled
by p4 integrate

p4 resolve

p4 revert
p4 revert

Synopsis

Discard changes made to open files.

Syntax
p4 [g-opts] revert [-a -c changelist#] file...

Description

Use p4 revert to discard changes made to open files, reverting them to the revisions last
p4 synced from the depot. This command also removes the reverted files from the
pending changelists with which they’re associated.

When files you’ve opened with p4 delete are reverted, the files are reinstated in the
client workspace. When you revert files that have been opened by p4 add, Perforce leaves
the client workspace files intact. When you revert files you’ve opened with p4

integrate, Perforce removes the files from the client workspace.

Options

Usage Notes

• p4 revert differs from most Perforce commands in that it usually requires a file
argument. The files that are reverted are those that lie in the intersection of the
command line file arguments and the client workspace view.

You don’t need to specify a file argument when using the -a flag.

-a Revert only those files that haven’t changed since they were
opened.

Specifically, the only files reverted are those whose client revisions
are:

• open for edit but have unchanged content; or
• open for integrate via p4 integrate and have not yet been

resolved with p4 resolve.

-c changelist# Reverts only those files in the specified changelist.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No open
Perforce 2002.1 Command Reference 127

p4 revert
• Reverting a file that has been opened for edit will overwrite any changes you have
made to the file since the file was opened. It may be prudent to copy the file before
running p4 revert.

Examples

Related Commands

p4 revert //depot/... Revert all open files to their pre-opened state.

p4 revert -c default //... Revert all open files in the default changelist to
their pre-opened state.

p4 revert -c 31 *.txt Revert all files in changelist 31 with the suffix .txt

in the current directory to their pre-opened state.

To open a file for add p4 add

To open a file for deletion p4 delete

To copy all open files to the depot p4 submit

To read files from the depot into the client workspace p4 sync

To list all opened files p4 opened

To forcibly bring the client workspace in sync with the files that
Perforce thinks you have, overwriting any unopened, writable files
in the process.

p4 sync -f
128 Perforce 2002.1 Command Reference

p4 review
p4 review

Synopsis

List all submitted changelists above a provided changelist number.

Syntax
p4 [g-opts] review [-c changelist#] [-t countername]

Description

p4 review -c changelist# provides a list of all submitted changelists between
changelist# and the highest-numbered submitted changelist. Each line in the list has this
format:

Change changelist# username <email-addr> (realname)

The username, email-addr, and realname are taken from the p4 user form for username
whenever p4 review is executed.

When used as p4 review -t countername, all submitted changelists above the value of
the Perforce counter variable countername are listed. (Counters are set by p4 counter).
When used with no arguments, p4 review lists all submitted changelists.

The p4 review command is meant for use in external programs that call Perforce. The
Perforce change review daemon, which is described in the Perforce System Administrator’s
Guide, and is available from our Web site, uses p4 review.

Options

Usage Notes

-c changelist# List all submitted changelists above and
including changelist#.

-t countername List all submitted changelists above the value
of the Perforce counter countername.

-c changelist# -t countername Set the value of counter countername to
changelist#. This command has been
replaced by p4 counter, but has been
maintained for backwards compatibility.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A review
Perforce 2002.1 Command Reference 129

p4 review
• The commands p4 review, p4 reviews, and p4 counter are all intended for use by
external programs that call Perforce. p4 review and p4 reviews are strange animals;
they’re used by our own review daemon (available at our Web site), but it’s hard to
imagine other uses for them .

• The warnings applicable to p4 counter apply here as well.

Related Commands
To list users who have subscribed to review particular files p4 reviews

To set or read the value of a Perforce counter p4 counter

To see full information about a particular changelist p4 describe

To see a list of all changelists, limited by particular criteria p4 changes
130 Perforce 2002.1 Command Reference

p4 reviews
p4 reviews

Synopsis

List all the users who have subscribed to review particular files.

Syntax
p4 [g-opts] reviews [-c changelist#] [file...]

Description

The p4 reviews command is intended for use in external programs that call Perforce.

Users subscribe to review files by providing file patterns in the Reviews: field in their p4
user form.

p4 reviews -c changelist# lists each user who has subscribed to review any files
included in the submitted changelist changelist#. The alternate form, (p4 reviews
file...), lists the users who have subscribed to review any files that match the file
patterns provided as arguments. If you provide no arguments to p4 reviews, all users
who have subscribed to review any files are listed.

Options

Usage Notes

• The syntax p4 reviews -c changelist# file... ignores the file arguments entirely.

• p4 reviews is an unusual command. It was created to support external daemons, but it
is completely useless without the Reviews: field of the p4 users form, which has a
very specific meaning.

It is possible to enter values in the Reviews: field that mean something originally
unintended by Perforce in order to create more generalized daemons. At Perforce, for
example, we run a jobs daemon that sends email to any users who have subscribed to
review jobs anytime a new job is submitted. Since there’s nothing built into Perforce
that allows users to subscribe to review jobs, we co-opt a single line of the Reviews:

-c changelist# List all users who have subscribed to reviews any files included
in submitted changelist changelist#.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No list
Perforce 2002.1 Command Reference 131

p4 reviews
field: Perforce sends job email to any users who have subscribed to review the non-
existent path //depot/jobs/... .

Thus, it is possible to use p4 reviews for purposes it wasn’t meant to support, but you
must be somewhat clever about it.

Related Commands
To subscribe to review files p4 user

List all submitted changelists above a provided changelist number p4 review

To set or read the value of a Perforce counter p4 counter

To read full information about a particular changelist p4 describe
132 Perforce 2002.1 Command Reference

p4 set
p4 set

Synopsis

Set Perforce variables in the Windows registry.

Syntax
p4 [g-opts] set [-s] [-S svcname] [var=[value]]

Description

The Perforce client and server require the use of certain system variables.

On Windows, you can set the values of these variables in the registry with p4 set; on
other operating systems, Perforce uses environment variables for the same purpose.

To set the value of a registry variable for the current user, use p4 set var=value.
Windows administrators can use p4 set -s var=value to set the registry variable’s
default values for all users on the local machine.

Windows administrators running the Perforce server as a service can set variables used by
the service (for instance, P4JOURNAL and others) with p4 set -S svcname var=value.

To unset the value for a particular variable, leave value empty.

To view a list of the values of all Perforce variables, use p4 set without any arguments.
On UNIX, this displays the values of the associated environment variables. On Windows,
this displays either the MS-DOS environment variable (if set), or the value in the registry
and whether it was defined with p4 set (for the current user) or p4 set -s (for the local
machine).

p4 set can be used on non-Windows operating systems to view the values of variables,
but if you try to use p4 set to set variables on non-Windows operating systems, Perforce
will display an error message.

Options
-s Set the value of the registry variables for the local machine.

Without this flag, p4 set sets the variables in the HKEY_CURRENT_USER
hive; when you use the -s flag, the variables are set in the
HKEY_LOCAL_MACHINE hive.

These locations are reflected in the output of p4 set on Windows.

-S svcname Set the value of the registry variables as used by service svcname. You
must have administrator privileges to do this.

g_opts See the Global Options section.
Perforce 2002.1 Command Reference 133

p4 set
Usage Notes

• You’ll find a listing and discussion of the Perforce variables in the Environment Variables
section of this manual.

• Changes to registry values under Windows affect the local machine only; an
administrator setting P4JOURNAL for a Perforce NT service must be present at the
machine running the service.

• On Windows, you can override the values of the registry keys in any of three ways:

• Environment variables with the same names have precedence;

• Values within P4CONFIG files have precedence over both of these;

• The global option flags have the highest precedence.

Examples

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A list

p4 set On all platforms, display a list of
Perforce variables without changing
their values.

p4 set P4MERGE= On Windows, unset the value of
P4MERGE.

p4 set P4PORT=tea:1666 On Windows, set a registry variable
telling Perforce client programs to
connect to a Perforce server at host tea,
port 1666.

The variable would be set only for the
current local user. .

p4 set -s P4PORT=tea:1666 Set P4PORT as above, but for all users on
the system.

You must have administrative privileges
to do this.
134 Perforce 2002.1 Command Reference

p4 set
p4 set -S p4svc P4PORT=1666 For the NT service p4svc, instruct
p4s.exe to listen on port 1666 for
incoming connections from Perforce
client programs.

You must have administrative privileges
to do this.

p4 set
P4EDITOR=“C:\File Editor\editor.exe”

On Windows, for the current local user,
set the path for the default text editor.

The presence of spaces in the path to the
editor’s executable requires that the path
be enclosed in quotation marks.
Perforce 2002.1 Command Reference 135

p4 submit
p4 submit

Synopsis

Send changes made to open files to the depot.

Syntax
p4 [g-opts] submit [-r] [-s] [files]
p4 [g-opts] submit [-r] -c changelist#
p4 [g-opts] submit -i [-r] [-s]

Description

When a file has been opened by p4 add, p4 edit, p4 delete, or p4 integrate, the file is
listed in a changelist. The user’s changes to the file are made only within in the client
workspace copy until the changelist is sent to the depot with p4 submit.

By default, files are opened within the default changelist, but new numbered changelists
can be created with p4 change. To submit the default changelist, use p4 submit; to
submit a numbered changelist, use p4 submit -c changelist#.

By default, files open for edit or add are closed when submitted. Use the -r (reopen) flag
if you want files reopened for edit after submission.

When used with the default changelist, p4 submit brings up a form for editing in the
editor defined by the EDITOR (or P4EDITOR) environment or registry variable. Files can be
deleted from the changelist by deleting them from the form, but these files will remain
open in the next default changelist. To close a file and remove it from all changelists, use
p4 revert.

All changelists have a Status: field; the value of this field is pending or submitted.
Submitted changelists have been successfully submitted with p4 submit; pending
changelists have been created by the user but not yet been submitted successfully.

p4 submit works atomically: either all the files listed in the changelist are saved in the
depot, or none of them are. p4 submit fails if it is interrupted, or if any of the files in the
changelist are not found in the current client workspace, are locked in another client
workspace, or require resolution and remain unresolved.

If p4 submit fails while processing the default changelist, the changelist is assigned the
next number in the changelist sequence, and the default changelist is emptied. The
changelist that failed submission must be resubmitted by number after the problems are
fixed.
136 Perforce 2002.1 Command Reference

p4 submit
Form Fields

Options

Field Name Type Description

Change: Read-only The change number, or new if submitting the
default changelist.

Client: Read-only Name of current client workspace.

User: Read-only Name of current Perforce user.

Status: Read-only,
value

One of pending, submitted, or new. Not editable
by the user.

The status is new when the changelist is created;
pending when it has been created but has not yet
been submitted to the depot with p4 submit,
and submitted when its contents have been
stored in the depot with p4 submit .

Description: Writable Textual description of changelist. This value must
be changed.

Jobs: List A list of jobs that are fixed by this changelist. This
field does not appear if there are no relevant jobs.

Any job that meets the jobview criteria as
specified on the p4 user form are listed here by
default, but can be deleted from this list.

Files: List A list of files being submitted in this changelist.
Files may be deleted from this list, but may not
be changed or added.

-c changelist# Submit changelist number changelist#.

Changelists are assigned numbers either manually by the user
with p4 change, or automatically by Perforce when submission
of the default changelist fails.

-i Read a changelist specification from standard input. Input must
be in the same format at that used by the p4 submit form.

-r Reopen files for edit in the default changelist after submission.
Files opened for add or edit in will remain open after the submit
has completed.
Perforce 2002.1 Command Reference 137

p4 submit
Usage Notes

• A file’s location within the depot is determined by intersection of its locations in the
client workspace with the client view as set within the p4 client form.

• The atomic nature of p4 submit allows files to be grouped in changelists according to
their purpose. For example, a single changelist might contain changes to three files that
fix a single bug.

• When used with a numbered changelist, p4 submit does not display a form. To change
the description information for a numbered changelist, use p4 change -c
changelist#.

• A single file pattern may be specified as a parameter to a p4 submit of the default
changelist. This file pattern limits which files in the default changelist are included in
the submission; files that don’t match the file pattern are moved to the next default
changelist.

The file pattern parameter to p4 submit can only be used when submitting the default
changelist.

Examples

-s Allows jobs to be assigned arbitrary status values on submission
of the changelist, rather than the default status of closed.

This option works in conjunction with the -s option to p4 fix,
and is intended for use by Perforce Defect Tracking Integration
(P4DTI).

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No write

p4 submit Submit the default changelist. The user’s revisions of the files in
this changelist are stored in the depot.

p4 submit -c 41 Submit changelist 41.

p4 submit *.txt Submit only those files in the default changelist that have a suffix
of .txt. Move all the other files in the default changelist to the
next default changelist.
138 Perforce 2002.1 Command Reference

p4 submit
Related Commands
To create a new, numbered changelist p4 change

To open a file in a client workspace and list it in a changelist p4 add
p4 edit
p4 delete
p4 integrate

To move a file from one changelist to another p4 reopen

To remove a file from all changelists, reverting it to its previous
state

p4 revert

To view a list of changelists that meet particular criteria p4 changes

To read a full description of a particular changelist p4 describe

To read files from the depot into the client workspace p4 sync

To edit the mappings between files in the client workspace and
files in the depot

p4 client
Perforce 2002.1 Command Reference 139

p4 sync
p4 sync

Synopsis

Copy files from the depot into the workspace.

Syntax
p4 [g-opts] sync [-f] [-n] [file[revRange]...]

Description

p4 sync brings the client workspace into sync with the depot by copying files matching
its file pattern arguments from the depot to the client workspace. When no file patterns
are specified on the command line, p4 sync copies a particular depot file only if it meets
all of the following criteria:

• The file must be visible through the client view;

• It must not already be opened by p4 edit, p4 delete, p4 add, or p4 integrate;

• It must not already exist in the client workspace at its latest revision (the head revision).

In new, empty, workspaces, all depot files meet the last two criteria, so all the files visible
through the workspace view are copied into the user’s workspace.

If file patterns are specified on the command line, only those files that match the file
patterns and that meet the above criteria are copied.

If the file pattern contains a revision specifier, the specified revision is copied into the
client workspace.

If the file argument includes a revision range, only files selected by the revision range are
updated, and the highest revision in the range is used.

The newly synced files are not available for editing until opened with p4 edit or p4
delete. Newly synced files are read-only; p4 edit and p4 delete make the files
writable. Under normal circumstances, you should not use your operating system’s
commands to make the files writable; let Perforce do this for you.
140 Perforce 2002.1 Command Reference

p4 sync
Options

Usage Notes

• If the client view has changed since the last sync, the next sync removes from the client
workspace those files that are no longer visible through the client view, and copies into
the client workspace those depot files that were not previously visible.

By default, any empty directories in the client view are cleared of files, but the
directories themselves are be deleted. To remove empty directories upon syncing, turn
on the rmdir option in the p4 client form.

• If a user has made certain files writable by using OS commands outside of Perforce’s
control, p4 sync will not normally overwrite those files. If the clobber option in the p4
client form has been turned on, however, these files will be overwritten.

Examples

-n Display the results of the sync without actually performing the sync.

This lets you make sure that the sync does what you think it does
before you do it.

-f Force the sync. Perforce performs the sync even if the client
workspace already has the file at the specified revision, and even if
the file is not writable.

This flag does not affect open files, but it does override the noclobber
client option.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes Yes read

p4 sync Copy the latest revision of all files from the depot
to the client workspace, as mapped through the
client view.

If the file is already open in the client workspace,
or if the latest revision of the file exists in the
client workspace, it is not copied.

p4 sync #4 Copy the fourth revision of all files from the
depot to the client workspace, with the same
exceptions as in the example above.
Perforce 2002.1 Command Reference 141

p4 sync
Related Commands

p4 sync //depot/proj1/...@21 Copy all the files under the //depot/proj1
directory from the depot to the client workspace,
as mapped through the client view.

Don’t copy the latest revision; use the revision of
the file in the depot after changelist 21 was
submitted.

p4 sync @labelname If labelname is a label created with p4 label,
and populated with p4 labelsync, bring the
workspace into sync with the files and revision
levels specified in labelname.

Files listed in labelname, but not in the
workspace view, are not copied into the
workspace.

Files not listed in labelname are deleted from the
workspace. (That is, @labelname is assumed to
apply to all revisions up to, and including, the
revisions specified in labelname. This includes
the nonexistent revision of the unlisted files.)

p4 sync @labelname,@labelname Bring the workspace into sync with a label as
with p4 sync @labelname, but preserve
unlabeled files in the workspace.

(The revision range @labelname,@labelname
applies only to the revisions specified in the label
name itself, and excludes the nonexistent
revision of the unlisted files.)

p4 sync @2001/06/24 Bring the workspace into sync with the depot as
of midnight, June 24, 2001. (That is, include all
changes made during June 23.)

To open a file in a client workspace and list it in a changelist p4 add
p4 edit
p4 delete
p4 integrate

To copy changes to files in the client workspace to the depot p4 submit

To view a list of files and revisions that have been synced to the
client workspace

p4 have
142 Perforce 2002.1 Command Reference

p4 triggers
p4 triggers

Synopsis

Edit a list of scripts to be run conditionally whenever changelists are submitted.

Syntax
p4 [g-opts] triggers
p4 [g-opts] triggers -i
p4 [g-opts] triggers -o

Description

A pre-submit trigger is a user-written script that Perforce has been told to run whenever
particular files are submitted in a changelist. If the script returns a value of 0, the submit
continues; if it returns any other value, the submit fails. Upon failure, the script’s standard
output (not error output) is used as the text of the failed command’s error message.

Triggers are run in the order listed in the table; if one trigger script fails, subsequent
trigger scripts are not run. Even when a trigger script succeeds, the submit may fail
because of subsequent triggers, or for other reasons. Thus, pre-submit triggers should be
used only for validation, and should not perform operations that are dependent on the
successful completion of the submit. If this is necessary, create a daemon instead.

To use the same trigger script with multiple file patterns, list the same trigger multiple
times in the trigger table. Exclusionary mappings can be provided to exclude files from
activating the trigger script; in this case, the order of the trigger entries matters, just as it
does when exclusionary mappings are used in views (see the Examples section, below).

If a particular trigger name is listed multiple times, only the script corresponding to the
first use of the trigger name is activated.

Form Fields

The p4 triggers form contains a single field, called Triggers:. Each row in the table
holds three values:

Column Description

Trigger Name The name of the trigger; an arbitrary string.

File Pattern A file pattern in depot syntax. When a user submits a changelist that
contains any files that match this file pattern, the script linked to this
trigger will be run.
Perforce 2002.1 Command Reference 143

p4 triggers
Options

Usage Notes

• Arguments may be passed to the trigger script, and are specified in the trigger table as
follows:

Trigger Script A script accessible from the Perforce server. Arguments can be passed
to this script; a list of valid arguments is provided in the Usage Notes
below.

The script and its arguments should be quoted.

-i Reads the trigger table from standard input without invoking the user’s
editor.

-o Writes the trigger table to standard output without invoking the user’s
editor.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A super

Argument Description

%changelist% The number of the changelist being submitted. (The abbreviated form
%change% is also acceptable)

%client% Name of the client workspace that submitted the changelist

%clienthost% Hostname of the client

%clientip% The IP address of the client

%serverhost% Hostname of the Perforce server

%serverip% The IP address of the server

%serverport% The IP address and port of the Perforce server, in the format
ip_address:port

%serverroot% The value of the server's P4ROOT; the top-level directory of the
server’s files and metadata

%user% The Perforce username of the user who submitted the changelist

Column Description
144 Perforce 2002.1 Command Reference

p4 triggers
• If your trigger script needs to know which files were submitted in the changelist, use
the command p4 opened -ac changelist#.

• The trigger script can’t access the submitted file contents from the server, since the files
have not yet been stored there. But if the server has access to the client machine, the file
contents can be obtained from the client via OS commands.

• Perforce commands in trigger scripts are always run by a specific Perforce user. If this is
not properly planned for, an extra Perforce license for a user named SYSTEM might be
consumed. Some of the other options are:

• Use the %user% argument to the script within each Perforce command so that the
script is run by the submitting user. For example, if Joe has submitted a changelist
that activates trigger script foo.pl, and this script runs the p4 changes command,
the script can run the command p4 -u %user% changes.

• Set P4USER for the account that runs the trigger script to the name of an existing user.
(If your Perforce server is installed as a service under Windows, note that Windows
services can’t have P4USER values, and you must therefore use the script’s %user%
value).

• In order to use triggers, the server (p4d) must be able to “fork”, or spawn off processes
to run the triggers. This is the default configuration of Perforce. If you start p4d with the
-f (run in foreground without forking) option, however, you will not be able to use
triggers until you restart the server without the -f option.

Examples

Suppose that the trigger table consists of the following entries:

Both the first and fourth lines call the script /bin/s1.pl %changelist%, since the first
occurrence of a particular trigger name determines which script is run when that trigger
name is subsequently used.

No triggers are activated if the user submits file //depot/bar/zebra, since the third line
excludes this file, but if //depot/bar/zed is submitted, the trig1 script /usr/bin/s1.pl
%change% will be run, since the fourth line overrides the third, and because the first script
listed with the name trig1 is used.

trig1 //depot/bar/... "/usr/bin/s1.pl %changelist%"
trig2 //depot/bar/foo "/usr/bin/s2.pl %user%"
trig1 -//depot/bar/z* "/usr/bin/s1.pl %user%"
trig1 //depot/bar/zed "/usr/bin/s3.pl %client%"
Perforce 2002.1 Command Reference 145

p4 triggers
Related Commands
To obtain information about the changelist being submitted p4 describe

p4 opened

To aid daemon creation p4 review
p4 reviews
p4 counter
p4 counters
p4 user
146 Perforce 2002.1 Command Reference

p4 typemap
p4 typemap

Synopsis

Modify the file name-to-type mapping table.

Syntax
p4 [g-opts] typemap
p4 [g-opts] typemap -i
p4 [g-opts] typemap -o

Description

The p4 typemap command allows system administrators to set up a table linking Perforce
file types to file name specifications. If a filename matches an entry in the typemap table,
it overrides the file type that would otherwise have been assigned by the Perforce client.

By default, Perforce automatically determines if a file is of type text or binary based on
an analysis of the first 1024 bytes of a file. If the high bit is clear in each of the first 1024
bytes, Perforce assumes it to be text; otherwise, it’s binary.

Although this default behavior can be overridden by the use of the -t filetype flag, it’s
easy to overlook this, particularly in cases where files’ types were usually (but not
always!) detected correctly. The most common examples of this are associated with PDF
files (which sometimes begin with over 1024 bytes of ASCII comments) and RTF files,
which usually contain embedded formatting codes.

The p4 typemap command provides a more complete solution, allowing administrators to
bypass the default type detection mechanism, ensuring that certain files (for example,
those ending in .pdf or .rtf) will always be assigned the desired Perforce filetype upon
addition to the depot.

Users can override any file type mapping defined in the typemap table by explicitly
specifying the file type on the Perforce command line.
Perforce 2002.1 Command Reference 147

p4 typemap
Form Fields

The p4 typemap form contains a single TypeMap: field, consisting of pairs of values
linking file types to file patterns specified in depot syntax:

Options

Usage Notes

• To specify all files with a given extension at or below a desired subdirectory, use four
periods after the directory name, followed by the extension. (for instance,
//path/....ext) The first three periods specify “all files below this level”. The fourth
period and accompanying file extension are parsed as “ending in these characters”.

• File type modifiers can be used in the typemap table. Useful applications include
forcing keyword expansion on or off across directory trees, or enforcing the
preservation of original file modification times (the +m file type modifier) in directories
of third-party DLLs.

• If you use the -t flag and file type modifiers to specify a file type on the command line,
and the file to which you are referring falls under a p4 typemap mapping, the file type
specified on the command line overrides the file type specified by the typemap table.

Column Description

filetype Any valid Perforce file type.

For a list of valid file types, see the File Types section.

pattern A file pattern in depot syntax.

When a user adds a file matching this pattern, its default filetype will be
the file type specified in the table.

-i Reads the typemap table from standard input without invoking the user’s
editor.

-o Writes the typemap table to standard output without invoking the user’s
editor.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A super
148 Perforce 2002.1 Command Reference

p4 typemap
Examples

To tell the Perforce server to regard all PDF and RTF files as binary, set the typemap table
as follows:

The first three periods (“...”) in the specification are a Perforce wildcard specifying that
all files beneath the root directory are included as part of the mapping. The fourth period
and the file extension specify that the specification applies to files ending in “.pdf” (or
“.rtf”)

A more complicated situation might arise in a site where users in one area of the depot
use the extension .doc for plain ASCII text files containing documentation, and users
working in another area use .doc to refer to files in a binary file format used by a popular
word processor. A useful typemap table in this situation might be:

To enable keyword expansion for all .c and .h files, but disable it for your .txt files, do
the following:

To ensure that files in a specific directory have their original file modification times
preserved (regardless of submission date), use the following:

All files at or below the bin directory are assigned type binary. Because later mappings
override earlier mappings, files in the bin/thirdpartydll subdirectory are assigned
type binary+m instead.

For more information about the +m (modtime) file type modifier, see the File Types section.

Typemap:
 binary //....pdf
 binary //....rtf

Typemap:
 text //depot/dev_projects/....doc
 binary //depot/corporate/annual_reports/....doc

Typemap:
 text+k //depot/dev_projects/main/src/...*.c
 text+k //depot/dev_projects/main/src/...*.h
 text //depot/dev_projects/main/src/...*.txt

Typemap:
 binary //depot/dev_projects/main/bin/...
 binary+m //depot/dev_projects/main/bin/thirdpartydll/...
Perforce 2002.1 Command Reference 149

p4 typemap
Related Commands
To add a new file with a specific type, overriding the
typemap table

p4 add -t type file

To change the filetype of an opened file, overriding any
settings in the typemap table

p4 reopen -t type file
150 Perforce 2002.1 Command Reference

p4 unlock

Perforce 2002.1 Command Reference 151

p4 unlock

Synopsis

Release the lock on a file.

Syntax
p4 [g-opts] unlock [-c changelist#] [-f] file...

Description

The p4 unlock command releases locks created by p4 lock.

If the file is open in a pending changelist other than default, then you must use the -c
flag to specify the pending changelist. If no changelist is specified, p4 unlock unlocks
files in the default changelist.

Superusers can use the -f option to forcibly unlock a file opened by another user.

If no file name is given, all files in the designated changelist are unlocked.

Options

Usage Notes

Related Commands

-c changelist# Unlock files in pending changelist changelist#

-f Superuser force flag; allows unlocking of files opened by other
users.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No write

To lock files so other users can’t submit them p4 lock

p4 user
p4 user

Synopsis

Create or edit Perforce user specifications and preferences.

Syntax
p4 [g-opts] user [-f] [username]
p4 [g-opts] user -d [-f] username
p4 [g-opts] user -o [username]
p4 [g-opts] user -i [-f]

Description

By default, any system user becomes a valid Perforce user the first time he uses any
Perforce command; Perforce automatically creates a user spec with default settings for the
invoking user. Use the p4 user command to edit these settings or to create new user
records.

Perforce superusers can prevent random users from accessing Perforce with p4 protect.

When p4 user is called, a form is brought up in the editor defined by the P4EDITOR
environment or registry variable. Perforce expects the form’s entries to be entered in
Perforce’s standard forms format.

When called without a username, p4 user edits specification of the current user. When
called with a username, the user specification is displayed, but can’t be changed. Perforce
superusers can edit other users’ specifications with the -f (force) flag: p4 user -f
username.

The user who gives a Perforce command is not necessarily the user under whose name the
command runs. The user for any particular command is determined by the following:

• If the user running the command is a Perforce superuser, and uses the syntax p4 user

-f username, user username will be edited.

• If the -u username flag is used on the command line (for instance, p4 -u joe submit),
the command runs as that user (a password may be required);

• If the above hasn’t been done, but the file pointed to by the P4CONFIG environment or
registry variable contains a setting for P4USER, then the command runs as that user.

• If neither of the above has been done, but the P4USER environment or registry variable
has been set, then the command runs as that user.

• If none of the above apply, then the username is taken from the OS level USER or
USERNAME environment variable.
152 Perforce 2002.1 Command Reference

p4 user
Form Fields

Options

Usage Notes

• The -d flag may be used by non-superusers only to delete the user specification that the
command runs as. Perforce superusers can delete any Perforce user.

• User deletion fails if the specified user has any open files. Submit (or revert) these files
before deleting users.

Field Name Type Description

User: Read-only The Perforce username under which p4 user was
invoked. By default, this is the user’s system username.

Email: Writable The user’s email address. By default, this is
user@client.

Update: Read-only The date and time this specification was last updated.

Access: Read-only The date and time this user last ran a Perforce command.

FullName: Writable The user’s full name.

JobView: Writable A description of the jobs to appear automatically on all
new changelists (described in the Usage Notes below).

Password: Writable The user’s password (described in the Usage Notes
below).

Reviews: Writable List A list of files the user would like to review (see the Usage
Notes below).

-d username Deletes the specified user. Only user username, or the Perforce
superuser, can run this command.

-f Superuser force flag; allows the superuser to modify or delete the
specified user.

-i Read the user specification from standard input. The input must
conform to the p4 user form’s format.

-o Write the user specification to standard output.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A list
Perforce 2002.1 Command Reference 153

p4 user
• Passwords can be created, edited, or changed in the p4 user form or with the p4
passwd command. If you edit a password in the p4 user form, do not use the comment
character # within the password; Perforce interprets everything following that
character on the same line is a comment, and does not store it as part of the password.

No matter what the length of the password is, it is displayed as six asterisks whenever
you subsequently call p4 user.

• By default, user records are created without passwords, and any Perforce user can
impersonate another by setting P4USER or by using the globally available -u flag. To
prevent another user from impersonating you, set the value of the Password: field to
any string that doesn’t contain whitespace or the comment character #. Once a
password has been set, it must be provided to each Perforce command; this can be done
in one of three ways:

• The value of the environment or registry variable P4PASSWD can be set to the
password value;

• The file pointed to by P4CONFIG can contain a setting for P4PASSWD;

• The -P password flag can be used on the command line, as in p4 -u ida -P idapwd

submit.

Each of these three methods overrides the methods above it. For more information on
passwords, please see p4 passwd.

• The collected values of the Email: fields can be listed for each user with the p4 users
command, and can used for any purpose.

• The p4 reviews command, which is used by the Perforce change review daemon, uses
the values in the Reviews: field; when activated, it will send email to users whenever
files they’ve subscribed to in the Reviews: field have changed. Files listed in this field
must be specified in depot syntax; for example, if user joe has a Reviews: field value of
//depot/foo/...
//depot/.../README

then the change review daemon sends joe email whenever any README file has been
submitted, and whenever any file under //depot/foo has been submitted.

• There is a special setting for job review when used with the Perforce change review
daemon. If you include the value:

//depot/jobs

in your Reviews: field, you will receive email when jobs are changed.

• If you the Jobview: field to any valid jobview, jobs matching the jobview appear on
any changelists created by this user. Jobs that are fixed by the changelist should be left
in the changelist when it’s submitted with p4 submit; other jobs should be deleted
from the form before submission.
154 Perforce 2002.1 Command Reference

p4 user
For example, suppose the jobs at your site have a field called Owned-By:. If you set the
Jobview: field on your p4 user form to Owned-By=yourname&status=open, all open
jobs owned by you appear on all changelists you create. Please see p4 jobs for a full
description of jobview usage and syntax.

Examples

Related Commands

p4 user joe View the user specification of Perforce user joe.

p4 user Edit the user specification for the current Perforce user.

p4 user -d sammy Delete the user specification for the Perforce user
sammy.

p4 -u joe -P hey submit Run p4 submit as user joe, whose password is hey.

To view a list of all Perforce users p4 users

To change a user’s password p4 passwd

To view a list of users who have subscribed to review particular files p4 reviews
Perforce 2002.1 Command Reference 155

p4 users

156 Perforce 2002.1 Command Reference

p4 users

Synopsis

Print a list of all known users of the current server.

Syntax
p4 [g-opts] users [user...]

Description

p4 users displays a list of all the users known to the current Perforce server. For each
user, the information displayed includes their Perforce user name, their email address,
their real name, and the date and time the user last accessed the server.

If a user argument is provided, only information pertaining to that user is displayed. The
user argument may contain the * wildcard; in this case, all users matching the given
pattern are reported on. (If using wildcards, be sure to quote the user argument, since the
OS will likely attempt to expand the wildcard to match file names in the current
directory).

Options

Usage Notes

Related Commands

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

N/A N/A list

To add or edit information about a particular user p4 user

To edit information about the current client workspace p4 client

p4 verify
p4 verify

Synopsis

Verify that the server archives are intact.

Syntax
p4 [g-opts] verify [-q -u -v] file[revRange]...

Description

p4 verify reports for each revision of the named files the revision specific information
and an MD5 digest (fingerprint) of the revision's contents.

If invoked without arguments, p4 verify computes and displays the digest of each
revision. If a revision is missing from the archive and therefore can’t be reproduced, the
revision's output line ends with MISSING!

To save MD5 fingerprints in the Perforce database, use p4 verify -u. Subsequent
invocations of p4 verify compute checksums for the desired files and compare them
against those stored by p4 verify -u. If the checksums differ, the output line for the
corrupt file ends with BAD!

Once stored, a digest is not recomputed unless p4 verify -v flag is used to overwrite it.
The -v flag is generally used only to update the saved digest of archive files which have
been deliberately altered outside of Perforce control by a Perforce system administrator.

Options

Usage Notes

-q Run quietly; only display output if there are errors.

-u Store the MD5 digest of each file in the Perforce database if and only if
no digest has been previously stored. Subsequent uses of p4 verify
will compare the computed version against this stored version.

-v Store the MD5 digest of each file in the Perforce database, even if
there’s already a digest stored for that file, overwriting the existing
digest.

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

Yes Yes super
Perforce 2002.1 Command Reference 157

p4 verify
It is good administrative practice to run p4 verify -qu //... (to generate new
checksums and verify old ones across your entire depot) as part of your nightly backup
process, as well as immediately before any server upgrade.

Similarly, it is also good administrative practice to use p4 verify -q //... (to verify the
integrity of your files) after restoring from backups, or immediately following any server
upgrade.

If p4 verify returns errors, contact Perforce technical support.

For more about sound administrative practices, see the Perforce System Administrator’s
Guide.
158 Perforce 2002.1 Command Reference

p4 where
p4 where

Synopsis

Show where a particular file is located, as determined by the client view.

Syntax
p4 [g-opts] where [file...]

Description

p4 where uses the client view and client root, as set in p4 client, to print files’ locations
relative to the top of the depot, relative to the top of the client workspace, and relative to
the top of the local OS directory tree. The command does not check to see if the file exists;
it merely reports where the file would be located if it did exist.

For each file provided as a parameter, a set of mappings is output. Each set of mappings is
composed of lines consisting of three parts: the first part is the filename expressed in
depot syntax, the second part is the filename expressed in client syntax, and the third is
the local OS path of the file.

Options

Usage Notes

• The mappings are derived from the client view: a simple client view, mapping the
depot to one directory in the client workspace, produces one line of output.

More complex client views produce multiple lines of output, possibly including
exclusionary mappings. For instance, given the client view:

View: //a/... //client/a
 //a/b/... //client/b

Running p4 where //a/b/file.txt gives:
//a/b/file.txt //client/a/b/file.txt /home/user/root/a/b/file.txt
-//a/b/file.txt //client/a/b/file.txt //home/user/root/a/b/file.txt
//a/b/file.txt //client/b/file.txt /home/user/root/b/file.txt

This can be interpreted as saying that the first line of the client view would have caused
the file to appear in /home/user/root/a/b/file.txt, except that it was overridden by

g_opts See the Global Options section.

Can File Arguments Use
Revision Specifier?

Can File Arguments Use
Revision Range?

Minimal Access Level
Required

No No none
Perforce 2002.1 Command Reference 159

p4 where
the second mapping in the view. An exclusionary mapping was applied to perform the
override, and the second mapping applies, sending the file to
/home/user/root/b/file.txt.

• The simplest case (one line of output per file, showing each filename in depot, client,
and local syntax) is by far the most common.

Related Commands
To list the revisions of files as synced from the depot p4 have
160 Perforce 2002.1 Command Reference

Environment and Registry Variables
Environment and Registry Variables

Each operating system and shell has its own syntax for setting environment variables. The
following table shows how to set the P4CLIENT environment variable in each OS and shell:

Perforce’s environment variables can be loosely grouped into the following four
categories:

• Crucial: The variable almost certainly needs to be set on the client; the default values are
rarely sufficient. Understanding these variables is crucial for users and administrators
alike.

• Useful: Setting this variable can provide additional functionality to the user, but is not
required for most Perforce operations.

• Esoteric: The default value of this variable is normally sufficient; it rarely needs to be
changed.

• Server: The variable is set by the Perforce system administrator on the machine running
the Perforce server. Some of these variables are used by Perforce clients as well; in these
cases, the variable is categorized twice.

OS or Shell Environment Variable Example

UNIX: ksh, sh, bash P4CLIENT=value ; export P4CLIENT

UNIX: csh setenv P4CLIENT value

VMS def/j P4CLIENT “value”

Mac MPW set -e P4CLIENT value

Windows p4 set P4CLIENT=value

Windows administrators running Perforce as a service can set
variables for use by a specific service with p4 set -S svcname

var=value, or set variables for all users on the local machine
with p4 set -s var=value.

(See the p4 set chapter for more details on setting Perforce’s
registry variables in Windows).

Crucial Variables Useful Variables Esoteric Variables Server Variables

P4CLIENT P4CONFIG P4PAGER P4JOURNAL

P4PORT P4DIFF PWD P4LOG

P4PASSWD P4EDITOR TMP, TEMP P4PORT

P4USER P4MERGE P4LANGUAGE P4ROOT

P4CHARSET P4DEBUG
Perforce 2002.1 Command Reference 161

Environment and Registry Variables
162 Perforce 2002.1 Command Reference

P4CHARSET

Perforce 2002.1 Command Reference 163

P4CHARSET

Description

Character set used for translation of unicode files.

Usage Notes

Value if not Explicitly Set

Examples

Notes

P4CHARSET only affects files of type unicode; non-unicode files are never translated.

For servers operating in the default (non-internationalized mode), P4CHARSET must be left
unset. If P4CHARSET is set, but the server is not operating in internationalized mode, the
server returns the following error message:

Unicode clients require a unicode enabled server.

For servers operating in the internationalized mode, P4CHARSET must be set. If P4CHARSET
is unset, but the server is operating in internationalized mode, the client program returns
the following error message:

Unicode server permits only unicode enabled clients.

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

Yes No p4 -C charset cmd Yes

Operating System Value

All None.

If the Perforce server is operating in internationalized mode
and P4CHARSET is unset, Perforce client programs will return an
error message.

iso8859-1

eucjp

shiftjis

winansi

P4CLIENT

164 Perforce 2002.1 Command Reference

P4CLIENT

Description

Name of current client workspace.

Usage Notes

Value if not Explicitly Set

Examples

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

Yes No p4 -c clientname cmd Yes

Operating System Value

Windows Value of COMPUTERNAME environment variable

All others Name of host machine

cinnamon

computer1

WORKSTATION

P4CONFIG
P4CONFIG

Description

Contains a file name without a path. The file(s) it points to are used to store other Perforce
environment or registry variables. The current working directory (returned by PWD) and
its parents are searched for the file. If the file exists, then the variable settings within the
file are used.

The variable settings in the file must sit alone on each line and be in the form
variable=value.

Usage Notes

Value if not Explicitly Set

Examples

A sample P4CONFIG file might contain the following lines:

Notes

P4CONFIG makes it trivial to switch Perforce settings when switching between different
projects. If you place a configuration file in each of your client workspaces and set
P4CONFIG to point to that file, your Perforce settings will change to the settings in the
configuration files automatically as you move from directories in one workspace to
another.

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

Yes No None N/A

Operating System Value

All If not set, this variable is not used.

P4CLIENT=joes_client
P4USER=joe
P4PORT=ida:3548
Perforce 2002.1 Command Reference 165

P4CONFIG
You can set the following variables from within the P4CONFIG file:

• P4CLIENT

• P4DIFF

• P4EDITOR

• P4HOST

• P4MERGE

• P4PASSWD

• P4PORT

• P4USER
166 Perforce 2002.1 Command Reference

P4DEBUG

Perforce 2002.1 Command Reference 167

P4DEBUG

Description

Set Perforce server trace flags.

Usage Notes

Value if not Explicitly Set

Examples

Notes

In most cases, the Perforce server trace flags are useful only to administrators working
with Perforce Technical Support to diagnose or investigate a problem.

The preferred way to set trace flags for the Perforce server is to set them on the p4d
command line. For technical reasons, this does not work for sites running Perforce as a
service under Windows. Administrators at such sites can use p4 set to set the trace flags
within P4DEBUG, allowing the NT service to run with the flags enabled.

For further information, see the Perforce System Administrator’s Guide.

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

No Yes None No

Operating System Value

All If not set, this variable is not used.

server=1

P4DIFF

168 Perforce 2002.1 Command Reference

P4DIFF

Description

The name and location of the diff program used by p4 resolve and p4 diff.

Usage Notes

Value if not Explicitly Set

Examples

Notes

The value of P4DIFF can contain flags to the called program, for example, diff -u.

The commands p4 describe, p4 diff2, and p4 submit all use a diff program built into
the Perforce server program p4d. This cannot be changed.

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

Yes No None Yes

Operating System Value

Windows If the environment variable DIFF has been set, then the value of
DIFF; otherwise, if the environment variable SHELL has been set
to any value, then the program diff is used; otherwise,
p4diff.exe.

All Others If the environment variable DIFF has been set, then the value of
DIFF; otherwise, Perforce’s internal diff routine is used.

diff

diff -b

windiff.exe

P4EDITOR

Perforce 2002.1 Command Reference 169

P4EDITOR

Description

The editor invoked by those Perforce commands that use forms.

Usage Notes

Value if not Explicitly Set

Examples

Notes

The regular Perforce commands that use forms (and therefore, use this variable), are p4
branch, p4 change, p4 client, p4 job, p4 label, p4 submit, and p4 user.

The superuser commands that use forms are p4 depot, p4 group, p4 jobspec, p4
protect, p4 triggers, and p4 typemap.

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

Yes No None Yes

Operating System Value

UNIX vi

Windows If SHELL is set to any value, then vi;

otherwise, notepad

VMS If POSIX$SHELL is set, then vi;

otherwise, edit.

Macintosh If EDITOR_SIGNATURE is set, then the program with that four-
character creator;

otherwise, SimpleText.

vi

emacs

SimpleText

P4HOST

170 Perforce 2002.1 Command Reference

P4HOST

Description

Name of host computer to impersonate.

Usage Notes

Value if not Explicitly Set

Examples

Notes

Perforce users can use the Host: field of the p4 client form to specify that a particular
client workspace can be used only from a particular host machine. When this field has
been set, the P4HOST variable can be used to fool the server into thinking that the user is on
the specified host machine regardless of the machine being used by the user. As this is a
very esoteric need, there’s usually no reason to set this variable.

The hostname must be provided exactly as it appears in the output of p4 info when run
from that host.

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

Yes No p4 -H hostname command Yes

Operating System Value

All The value of the client hostname as returned by p4 info.

workstation123.perforce.com

anamorph.glyphic.com

P4JOURNAL

Perforce 2002.1 Command Reference 171

P4JOURNAL

Description

A file that holds the Perforce server database’s journal data.

Usage Notes

Value if not Explicitly Set

Examples

Notes

If a relative path is provided, it should be specified relative to the Perforce server root.

Setting P4JOURNAL to off will disable journaling. This is not recommended.

For further information, see the Perforce System Administrator’s Guide.

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

No Yes p4d -J file N/A

Operating System Value

All P4ROOT/journal

journal

off

/disk2/perforce/journal

P4LANGUAGE

172 Perforce 2002.1 Command Reference

P4LANGUAGE

Description

This environment variable is reserved for system integrators.

Usage Notes

Value if not Explicitly Set

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

Yes No p4 -L language cmd Yes

Operating System Value

All N/A

P4LOG

Perforce 2002.1 Command Reference 173

P4LOG

Description

Name and path of the file to which Perforce server errors are written.

Usage Notes

Value if not Explicitly Set

Examples

Notes

If a relative path is provided, it should be specified relative to the Perforce server root.

For further information, see the Perforce System Administrator’s Guide.

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

No Yes p4d -L file N/A

Operating System Value

All Standard error

log

/disk2/perforce/log

P4PAGER

174 Perforce 2002.1 Command Reference

P4PAGER

Description

The program used to page output from p4 resolve’s diff option.

Usage Notes

Value if not Explicitly Set

Examples

Notes

The value of this variable is used only to display the output for p4 resolve’s diff routine.
If the variable is not set, the output is not paged.

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

Yes No None No

Operating System Value

All If the variable PAGER is set, then the value of PAGER; otherwise,
none.

/bin/more (UNIX)

P4MERGE

Perforce 2002.1 Command Reference 175

P4MERGE

Description

A third-party merge program to be used by p4 resolve’s merge option.

Usage Notes

Value if not Explicitly Set

Examples

Notes

The program represented by the program name stored in this variable is used only by p4

resolve’s merge option. When p4 resolve calls this program, it passes four arguments,
representing (in order) base, theirs, and yours, with the fourth argument holding the
resulting merge file.

If the program you use takes its arguments in a different order, set P4MERGE to a shell
script or batch file that reorders the arguments and calls the proper merge program with
the arguments in the correct order.

If you are running under Windows, you must call a batch file, even if your third-party
merge program already accepts arguments in the order provided by Perforce. This is due
to a limitation within Windows. For instance, if you want to use a program called
MERGE.EXE under Windows, your batch file might look something like this:

SET base=%1
SET theirs=%2
SET yours=%3
SET merge=%4
C:\FULL\PATH\TO\MERGE.EXE %base %theirs %yours %merge

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

Yes No None Yes

Operating System Value

All If the MERGE environment variable (or registry variable on
Windows, as set by p4 set) is set, then its value; otherwise,
nothing.

c:\Perforce\p4winmrg.exe

c:\progra~1\Perforce\p4winmrg.exe

P4PASSWD

176 Perforce 2002.1 Command Reference

P4PASSWD

Description

Supplies the current Perforce user’s password for any Perforce client command.

Usage Notes

Value if not Explicitly Set

Notes

Perforce passwords are set via p4 passwd, or in the form invoked by p4 user. The setting
of P4PASSWD is used to verify the user’s identity. If a password has not been set, the value
P4PASSWD is not used, even if set.

While it is possible to manually set the P4PASSWD environment variable to your plaintext
password, the more secure way is to use the p4 passwd command. On UNIX, this will
invoke a challenge/response mechanism which securely sends your password to the
Perforce server. On Windows, this sets P4PASSWD to the encrypted MD5 hash of your
password.

On Windows platforms, if you set a password via P4Win (the Perforce Windows client)
the value of the registry variable P4PASSWD is set for you. Setting the password in P4Win is
like using p4 passwd (or p4 set P4PASSWD) from the MS-DOS command line, setting the
registry variable to the encrypted MD5 hash of the password. The unencrypted password
itself is never stored in the registry.

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

Yes No p4 -P passwd command Yes

Operating System Value

All None

P4PORT

Perforce 2002.1 Command Reference 177

P4PORT

Description

For the Perforce server, the port number on which it listens.

For Perforce clients, the host and port number of the Perforce server with which to
communicate.

Usage Notes

Value if not Explicitly Set

Examples

Notes

The format of P4PORT on the Perforce client is host:port, or port by itself if both the
Perforce client and server are running on the same host.

To use the default value, perforce, with a Perforce server, define perforce as an alias to
the host running the server in /etc/hosts on UNIX, or in
%SystemRoot%\system32\drivers\etc\hosts on Windows, or use DNS.

Port numbers must be in the range 1024 through 32767.

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

Yes Yes p4 -p host:port cmd Yes

Program Value

Perforce server 1666

Perforce client perforce:1666

Perforce client examples Perforce server examples

1818 1818

squid:1234 1234

perforce.squid.com:1234 1234

192.168.0.123:1818 1818

P4ROOT

178 Perforce 2002.1 Command Reference

P4ROOT

Description

Directory in which the Perforce server stores its files and subdirectories.

Usage Notes

Value if not Explicitly Set

Notes

Create this directory before starting the Perforce server (p4d).

Only the account running p4d needs to have read/write permissions in this directory.

For more information on setting up a Perforce server, see the Perforce System
Administrator’s Guide.

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

No Yes p4d -r directory N/A

Operating System Value

All p4d’s directory.

Windows administrators running the Perforce back-end
process as a service should use p4 set -S svcname

P4ROOT=directory to set the value of P4ROOT for the named
service.

P4USER

Perforce 2002.1 Command Reference 179

P4USER

Description

Current Perforce username.

Usage Notes

Value if not Explicitly Set

Examples

Notes

By default, the Perforce username is the same as the OS username.

If a particular Perforce user does not have a password set, then any other Perforce user
can impersonate this user by using the -u flag with their Perforce client commands. To
prevent this, users should set their password with the p4 user or p4 passwd command.

If a user has set their Perforce password, you can still run commands as that user (if you
know the password) with p4 -u username -P password command.

Perforce superusers can impersonate users without knowing their passwords. For more
information, see the Perforce System Administrator’s Guide.

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

Yes No p4 -u username command Yes

Operating System Value

Windows The value of the USERNAME environment variable.

All Others The value of the USER environment variable.

edk

lisag

PWD

180 Perforce 2002.1 Command Reference

PWD

Description

The directory used to resolve relative filename arguments to Perforce client commands.

Usage Notes

Value if not Explicitly Set

Notes

Sometimes the PWD variable isn’t inherited properly across shells. For instance, if you’re
running ksh or sh on top of csh, PWD will be inherited from your csh environment but not
updated properly, causing possible confusion in subsequent Perforce commands.

If you encounter such difficulties, check to be sure you’ve unset PWD in your .profile or
.kshrc file. (If you’re running sh or ksh as your login shell, PWD will be managed properly
by the shell regardless of any unsettings you’ve placed in your startup files; the confusion
only occurs when variables are exported to subshells.)

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

Yes No p4 -d directory command No

Operating System Value

UNIX The value of PWD as set by the shell; if not set by the shell,
getcwd() is used.

All Others The actual current working directory.

TMP, TEMP
TMP, TEMP

Description

The directory to which Perforce clients and servers write temporary files.

Usage Notes

Value if not Explicitly Set

Notes

If TEMP is set, TEMP is used. Otherwise, if TMP is set, this is used. If neither TEMP nor TMP are
set, temporary files will be written in the directories described in the table above.

Used by
Client?

Used by
Server?

Command-Line Alternative Can be set in
P4CONFIG file?

Yes Yes None No

Operating System Value

UNIX /tmp

All Others On Perforce clients: the current working directory.

On Perforce servers: P4ROOT
Perforce 2002.1 Command Reference 181

TMP, TEMP
182 Perforce 2002.1 Command Reference

Additional Information
Additional Information

This section describes features of Perforce that you’ll use with multiple commands. We’ve
included information on the following topics:

• Flags that can be used with any Perforce command,

• How to use Perforce file specifications in depot syntax, client syntax, and local syntax,

• Perforce file types, and

• How to create and use views to describe client workspaces, branches, and labels.

For an in-depth treatment of these and other topics from a conceptual level, please see the
Perforce User’s Guide, which is available at our web site: http://www.perforce.com.
Perforce 2002.1 Command Reference 183

Additional Information
184 Perforce 2002.1 Command Reference

Global Options
Global Options

Synopsis

Global options for Perforce commands; these options may be supplied on the command
line before any Perforce command.

Syntax
p4 [-cclient -ddir -Hhost -pport -Ppass -uuser -xfile -Ccharset] [-G] [-s] cmd [args ...]
p4 -V
p4 -h

Options
-c client Overrides any P4CLIENT setting with the specified client name.

-d dir Overrides any PWD setting (i.e. current working directory) and
replaces it with the specified directory.

-G Causes all output (and batch input for form commands with -i) to
be formatted as marshalled Python dictionary objects. This is most
often used when scripting.

-H host Overrides any P4HOST setting and replaces it with the specified
hostname.

-p port Overrides any P4PORT setting with the specified port number.

-P pass Overrides any P4PASSWD setting with the specified password.

-s Prepends a descriptive field (for example, text:, info:, error:,
exit:) to each line of output produced by a Perforce command.
This is most often used when scripting.

-u user Overrides any P4USER, USER, or USERNAME setting with the specified
user name.

-x file Instructs Perforce to read arguments, one per line, from the
specified file. If file is a single hyphen (-), then standard input is
read.

-C charset Overrides any P4CHARSET setting with the specified character set.

-L language This feature is reserved for system integrators.

-V Displays the version of the p4 client program and exits.

-h Displays basic usage information and exits.
Perforce 2002.1 Command Reference 185

Global Options
Usage Notes

• Be aware that the global options must be specified on the command line before the
Perforce command. Options specified after the Perforce command will not be
interpreted as global options, but as options for the command being invoked. It is
therefore possible to have the same command line option appearing twice in the same
command, being interpreted differently each time.

For example, the command p4 -c anotherclient edit -c 140 foo will open file
foo for edit in pending changelist 140 under client workspace anotherclient.

• The -x option is useful for automating tedious tasks; a user adding several files at once
could create a text file with the names of these files and invoke p4 -x textfile add to
add them all at once.

The -x option can be extremely powerful - as powerful as whatever generates its input.
For example, a UNIX developer wishing to edit any file referring to an included foo.h

file, for instance, could grep -l foo.h *.c | cut -f1 -d: | p4 -x - edit.

In this example, the grep command lists occurrences of foo.h in the *.c files, the -l
option tells grep to list each file only once, and the cut command splits off the filename
from grep’s output before passing it to the p4 -x command.

• The -s option can be useful in automated scripts.

For example, a script could be written as part of an in-house build process which
executes p4 -s commands, discards any output lines beginning with “info:”, and
alerts the user if any output lines begin with “error:”.

• Python developers will find the -G option extremely useful for scripting. For instance,
to get a dictionary of all fields of a job whose ID is known, use the following:

job_dict = marshal.load(os.popen(’p4 -G job -o ’ + job_id, ’r’))

In some cases, it may not be intuitively obvious what keys the client program uses. If
you pipe the output of any p4 -G invocation to the following script, you will see every
record printed out in key/value pairs:

#!/usr/local/bin/python

import marshal, sys

try:
 num=0
 while 1:
 num=num+1
 print ’\n--%d--’ % num
 dict = marshal.load(sys.stdin)
 for key in dict.keys(): print "%s: %s" % (key,dict[key])

except EOFError: pass
186 Perforce 2002.1 Command Reference

Global Options
Python developers on Windows should be aware of potential CR/LF translation issues;
in the example, it may be necessary to call marshal.load() to read the data in binary
(“rb”) mode.

• Some uses of the global options are absurd.

For example, p4 -c anotherclient help provides exactly the same output as p4
help.

Examples
p4 -p new_server:1234 sync Performs a sync using server new_server and

port 1234, regardless of the settings of the
P4PORT environment variable or registry setting.

p4 -c new_client submit -c 100 The first -c is the global option to specify the
client name. The second -c specifies a changelist
number.

p4 -s -x filelist.txt edit If filelist.txt contains a list of files, this
command opens each file on the list for editing,
and produces output suitable for parsing by
scripts.

Any errors as a result of the automated p4 edit

commands (for example, a file in filelist.txt

not being found) can then be easily detected by
examining the command’s output for lines
beginning with “error:”
Perforce 2002.1 Command Reference 187

Global Options
188 Perforce 2002.1 Command Reference

File Specifications
File Specifications

Synopsis

Any file can be specified within any Perforce command in client syntax, depot syntax, or
local syntax. Client workspace names and depot names share the same namespace; there
is no way for the Perforce server to confuse a client name with a depot name.

Syntax forms

Local syntax refers to filenames as specified by the local shell or operating system.
Filenames referred to in local syntax may be specified by their absolute paths or relative to
the current working directory. (Relative path components may only appear at the
beginning of a file specifier.)

Perforce has its own method of file specification which remains unchanged across
operating systems. If a file is specified relative to a client root, it is said to be in client
syntax. If it is specified relative to the top of the depot, it is said to be in depot syntax. A file
specified in either manner can be said to have been specified in Perforce syntax.

Perforce file specifiers always begin with two slashes (//), followed by the client or depot
name, followed by the full pathname of the file relative to the client or depot root
directory.

Path components in client and depot syntax are always separated by slashes (/),
regardless of the component separator used by the local operating system or shell.

An example of each syntax is provided below

Wildcards

The Perforce system allows the use of three wildcards:

Syntax Example

Local syntax /staff/user/usercws/file.c

Depot syntax //depot/source/module/file.c

Client syntax //usercws/file.c

Wildcard Meaning

* Matches all characters except slashes within one directory.

... Matches all files under the current working directory and all
subdirectories. (matches anything, including slashes, and does so
across subdirectories)

%1 - %9 Positional specifiers for substring rearrangement in filenames.
Perforce 2002.1 Command Reference 189

File Specifications
Using revision specifiers

File specifiers may be modified by appending # or @ to them.

The # and @ specifiers refer to specific revisions of files as stored in the depot:

Revision specifiers can be used to operate on many files at once: p4 sync
//myclient/...#4 copies the fourth revision of all non-open files into the client
workspace.

Modifier Meaning

file#n Revision specifier: The nth revision of file.

file#none

file#0

The nonexistent revision: If a revision of file exists in the depot,
it is ignored.

This is useful when you want to remove a file from the client
workspace while leaving it intact in the depot, as in p4 sync

file#none.

The filespec #0 may be used as a synonym for #none - the
nonexistent revision can be thought of as the one “existed” before
the first revision was submitted to the depot.

file#head The head revision (latest version) of file. Except where explicitly
noted, this is equivalent to referring to the file without a revision
specifier.

file#have The revision on the current client: the revision of file last p4
synced into the client workspace

file@n Change number: The revision of file immediately after
changelist n was submitted.

file@labelname Label name: The revision of file in the label labelname.

file@clientname Client name: The revision of file last taken into client workspace
clientname.

file@datespec Date and time: The revision of file at the date and time
specified.

If no time is specified, the head revision at 00:00:00 on the
morning of the date specified is returned.

Dates are specified yyyy/mm/dd:hh:mm:ss or yyyy/mm/dd
hh:mm:ss (with either a space or a colon between the date and the
time).

The datespec @now may be used as a synonym for the current date
and time.
190 Perforce 2002.1 Command Reference

File Specifications
If specifying files by date and time (i.e., using specifiers of the form file@datespec), the
date specification should be parsed by your local shell as a single token. You may need to
use quotation marks around the date specification if you use it to specify a time as well as
a date.

Some of Perforce’s file specification characters may be intercepted and interpreted by the
local shell, and need to be escaped before use. For instance, # is used as the comment
character in most UNIX shells, / may be interpreted by (non-Perforce) DOS commands as
an option specifier, and MacOS uses the : character as the separator between local path
components. File names with spaces in them may have to be quoted on the command line.

For information on these and other platform-specific issues, see the release notes for your
platform.

Using revision ranges

A few Perforce commands can use revision ranges to modify file arguments. Revision
ranges are two separate revision specifications, separated by a comma. For example, p4
changes foo#3,5 lists the changelists that submitted file foo at its third, fourth, and fifth
revisions.

Revision ranges have two separate meanings, depending on which command you’re
using. The two meanings are:

• Run the command on all revisions in the specified range. For example, p4 jobs
//...#20,52 lists all jobs fixed by any changelist that submitted any file at its 20th
through 52nd revision.

This interpretation of revision ranges applies to p4 changes, p4 fixes, p4 integrate,
p4 jobs, and p4 verify.

• Run the command on only the highest revision in the specified range. For example, the
command p4 print foo@30,50 prints the highest revision of file foo submitted
between changelists 30 and 50. This is different than p4 print foo@50: if revision 1 of
file foo was submitted in changelist 20, and revision 2 of file foo was submitted in
changelist 60, then p4 print foo@30,50 prints nothing, while p4 print foo@50
prints revision 1 of foo.

The commands p4 files, p4 print, and p4 sync all use revision ranges in this
fashion.

Revision ranges can be very powerful. For example, p4 changes foo#3,@labelname lists
all changelists that submitted file foo between its third revision and the revision stored in
label labelname.
Perforce 2002.1 Command Reference 191

File Specifications
Limitations on characters in filenames and entities

In order to support internationalization, Perforce allows the use of “unprintable” (non-
ASCII) characters in filenames, label names, client workspace names, and other identifiers.
Perforce wildcards and the revision-specifying characters @ and #, are not allowed in file
names, label names, or other identifiers

Observe that most of these characters tend to be difficult to use in filenames in cross-
platform environments: UNIX separates path components with /, while many DOS
commands interpret / as a command line switch. Most UNIX shells interpret # as the
beginning of a comment. Both DOS and UNIX shells automatically expand * to match
multiple files, and the DOS command line uses % to refer to variables.

Similarly, although non-ASCII characters are allowed in filenames and Perforce
identifiers, entering them from the command line may require platform-specific solutions.
Users of GUI-based file managers can manipulate such files with drag-and-drop
operations.

Character Reason

@ Perforce revision specifier for date, label name, or changelist number.

Perforce revision specifier for revision numbers.

* Perforce wildcard: matches anything, works within a single directory

... Perforce wildcard: matches anything, works at the current directory level
and includes files in all directory levels below the current level.

% Perforce wildcard: %0 through %9 are used for positional substitutions.

/ Perforce separator for pathname components.
192 Perforce 2002.1 Command Reference

Views
Views

Synopsis

There are three types of views: client views, branch views, and label views.

• Client views map files in the depot to files in the client workspace

• Branch views map files in the depot to other parts of the depot

• Label views associate groups of files in the depot with a single label.

Each type of view consists of lines which map files from the depot into the appropriate
namespace. For client and branch views, the mappings consist of two file specifications.
The left side of the mapping always refers to the depot namespace, and the right side of
the mapping refers to the client workspace or depot namespace. For label views, only the
left side (the depot namespace) of the mapping need be provided - the files thus specified
are then associated with the desired label.

All views construct a one-to-one mapping between files in the depot and the files in the
client workspace, branch, or label. If more than one mapping line refers to the same file(s),
the earlier mapping are overridden. Mappings beginning with a hyphen (-) specifically
exclude any files that match that mapping. If multiple mappings in a single view lead to
files which fail to map the same way in both directions, the files are ignored.

File specifications within mappings are provided in the usual Perforce syntax, beginning
with //, followed by the depot, client, or label name, and followed by the actual file
name(s) within the depot or client. File specifications within mappings may contain the
usual Perforce wildcards of *, ..., and the substring positional specifiers %1 through %9.

Usage Notes

Views are set up through the p4 client, p4 branch, or p4 label commands as part of
the process of creating a client workspace, label view, or branch view respectively.

The order of mappings in a client or branch view is important. For instance, in the view
defined by the following two mappings:

//depot/... //cws/...
//depot/dir1/... //cws/dir2/...

the entire depot is mapped to the client workspace, but the file //depot/dir1/file.c is
mapped to //cws/dir2/file.c. If the order of the lines in the view is reversed, however:

//depot/dir1/... //cws/dir2/...
//depot/... //cws/...

then the file //depot/dir1/file.c is mapped to //cws/dir1/file.c, as the first
mapping (mapping the file into //cws/dir2) is overridden by the second mapping
Perforce 2002.1 Command Reference 193

Views
(which maps the entire depot onto the client workspace). A later mapping in a view
always overrides an earlier mapping.

If a path listed in a client view contains spaces, make sure to quote the path:
//depot/dir1/... "//cws/dir one/..."

Client Views

Client views are used to map files in the depot to files in client workspaces, and vice versa.
A client workspace is an area in which users perform their work; files are checked out to a
client workspace, opened for editing, edited, and checked back into the depot.

When files are checked out, they are copied from the depot to the locations in the client
workspace to which they were mapped. Likewise, when files are submitted back into the
depot, the mapping is reversed and the files are copied from the client workspace back to
their proper locations in the depot.

The following table lists some examples of client views:

To create a client view, use p4 client. This brings up a screen where you can specify
which files in the depot map to the files in your client workspace.

Client View Sample Mapping

Full client workspace mapped to entire
depot

//depot/... //cws/...

Full client workspace mapped to part
of depot

//depot/dir1/... //cws/...

Some files in the depot are mapped to
a different part of the client workspace

//depot/... //cws/...
//depot/dir1/dir2/files.*
//cws/newdir/files.*

Some files in the depot are excluded
from the client workspace

//depot/dir1/... //cws/...
-//depot/dir1/excludedfiles/...
//cws/dir1/...

Files in the client workspace will have
different names as compared to their
depot names.

//depot/dir1/oldname.*
//cws/renamed/newname.*

Portions of filenames in the depot are
rearranged in the client workspace

//depot/dir1/%1.%2 //cws/dir1/%2.%1

The files do not map the same way in
each direction. Both lines are ignored.

//depot/dir1/... //cws/dir1/...
//depot/nowhere/... //cws/dir1/dir2/*
194 Perforce 2002.1 Command Reference

Views
Branch Views

Branching of the source tree allows multiple sets of files to evolve along different paths.
The creation of a branch view allows Perforce to automatically manage the file copying
and edit propagation tasks associated with branching.

Branch views map existing areas of the depot (the source files) onto new areas of the
depot (the target files). They are defined in a manner similar to that used for defining
client views, but rather than mapping files directly into a client workspace, they merely
set up mappings within the depot.

To create a branch view, use p4 branch newbranch. This will bring up a screen (similar to
the one associated with p4 client) and allow you to map the donor files from the main
source tree onto the target files of the new branch.

No files are copied when the branch is first created. To copy the files, you must ensure
that the newly-created files are included in any client workspace view intending to use
those files. This may be done by adding the newly-mapped branch of the depot to your
current client workspace view and performing a p4 sync command.

Label Views

Label views assign a label to a set of files in the depot. Unlike client views and branch
views, a label view doesn’t copy any files; it is merely a convenient way to refer to a group
of file in order to reproduce the state of those files within a client workspace at some point
in the future.

To create a label, use p4 label labelname, and enter the depot side of the view. As a
label is merely a list of files and revision levels, only the depot side (the left side) of the
view needs to be specified.

Branch View Sample Mapping

New code branching off from
the main codeline

//depot/main/... //depot/1.1dev/...

Rearranging directories in the
new release

//depot/main/... //depot/1.1dev/...
//depot/main/*.c //depot/1.1dev/src/...
//depot/main/*.txt //depot/1.1dev/docs/...

Label View Sample Mapping

A new release //depot/1.1final/...

The source code for the new release //depot/1.1final/src/...

A distribution suitable for clients //depot/1.1final/bin/...
//depot/1.1final/docs/...
//depot/1.1final/readme.txt
Perforce 2002.1 Command Reference 195

Views
196 Perforce 2002.1 Command Reference

File Types
File Types

Synopsis

Perforce supports five base file types:

• text files,

• compressed binary files,

• native apple files on the Macintosh,

• Mac resource forks, and

• symbolic links.

File type modifiers are then applied to the base types allowing for support of RCS
keyword expansion, file compression on the server, and more.

When a file is opened for add, Perforce attempts to determine the type of the file
automatically. If the file is a regular file or a symbolic link, its type is set accordingly.
Perforce then examines the first 1024 bytes of the file to determine whether it is text or
binary. If any non-text characters are found, the file is assumed to be binary; otherwise,
the file is assumed to be text.

Perforce administrators can use the type mapping feature (p4 typemap) to override
Perforce’s default file type detection mechanism. This feature is useful for binary file
formats (such as Adobe PDF, or Rich Text Format) where files can start with 1024 or more
characters of ASCII text, and might otherwise be mistaken for text files.

The base Perforce file types are:

Keyword Description Comments Server Storage
Type

text Text file Treated as text on the client. Line-ending
translations are performed automatically
on Windows and Macintosh clients.

delta

binary Non-text file Accessed as binary files on the client.
Stored compressed within the depot.

full file,
compressed

symlink Symbolic link UNIX clients (and the BeOS client) access
these as symbolic links. Non-UNIX
clients treat them as (small) text files.

delta
Perforce 2002.1 Command Reference 197

File Types
The file type modifiers are:

apple Multi-forked
Macintosh file

AppleSingle storage of Mac data fork,
resource fork, file type and file creator.
New to Perforce 99.2.

For full details, please see the Mac client
release notes.

full file,
compressed,
AppleSingle
format.

resource Macintosh
resource fork

The only file type for Mac resource forks
in Perforce 99.1 and before. Still
supported, but we recommend using the
new apple file type instead.

For full details, please see the Mac client
release notes.

full file,
compressed

unicode Unicode file Perforce servers operating in
internationalized mode support a
Unicode file type. These files are
translated into the local character set.

For details, see the System Administrator’s
Guide.

Stored as UTF-8

Modifier Description Comments

+w File is always writable on
client

+x Execute bit set on client Used for executable files.

+ko Old-style keyword expansion Expands only the Id and $Header$

keywords:

This pair of modifiers exists primarily for
backwards compatibility with versions of
Perforce prior to 2000.1, and corresponds
to the +k (ktext) modifier in earlier
versions of Perforce.

Keyword Description Comments Server Storage
Type
198 Perforce 2002.1 Command Reference

File Types
+k RCS keyword expansion Expands RCS (Revision Control System)
keywords.

RCS keywords are case-sensitive.

When using keywords in files, a colon after
the keyword (for instance, $Id:$) is
optional.

Supported keywords are:

• Id

• $Header$

• $Date$

• $DateTime$

• $Change$

• $File$

• $Revision$

• $Author$

+l Exclusive open (locking) If set, only one user at a time will be able to
open a file for editing.

Useful for binary file types (such as
graphics) where merging of changes from
multiple authors is meaningless.

+C Server stores the full
compressed version of each
file revision

Default server storage mechanism for
binary files.

+D Server stores deltas in RCS
format

Default server storage mechanism for text
files.

+F Server stores full file per
revision

Useful for long ASCII files that aren’t read
by users as text, such as PostScript files.

+S Only the head revision is
stored on the server

Older revisions are overwritten within the
depot. Useful for executable or .obj files.

+m Preserve original modtime The file’s timestamp on the local filesystem
is preserved upon submission and restored
upon sync. Useful for third-party DLLs in
Windows environments.

Modifier Description Comments
Perforce 2002.1 Command Reference 199

File Types
A file’s type is normally preserved between revisions, but can be overridden or changed
with the -t flag during add, edit, or reopen operations:

• p4 add -t filetype filespec adds the files as the specified type.

• p4 edit -t filetype filespec opens the file for edit as the specified type. The file’s
type is changed to the specified filetype only after it is submitted to the depot.

• p4 reopen -t filetype filespec changes the type of a file already open for add or
edit.

The filetype argument is specified as basetype+modifiers. For example, to change file
foo’s type to executable text with RCS keyword expansion, use p4 edit -t text+kx
foo.

Keyword Expansion

RCS keywords are expanded as follows:

Keyword Expands To Example

Id File name and revision
number in depot syntax

$Id: //depot/path/file.txt#3 $

$Header$ Synonymous with Id $Header: //depot/path/file.txt#3 $

$Date$ Date of last submission in
format YYYY/MM/DD

$Date: 2000/08/18 $

$DateTime$ Date and time of last
submission in format
YYYY/MM/DD hh:mm:ss

Date and time are as of the
local time on the Perforce
server at time of
submission.

$DateTime: 2000/08/18 23:17:02 $

$Change$ Perforce changelist
number under which file
was submitted

$Change: 439 $

$File$ File name only, in depot
syntax (without revision
number)

$File: //depot/path/file.txt $

$Revision$ Perforce revision number $Revision: #3 $

$Author$ Perforce user submitting
the file

$Author: edk $
200 Perforce 2002.1 Command Reference

File Types
Usage Notes

• The type of an existing file can be determined with p4 opened or p4 files.

• Delta storage (the default mode with text files) is a method whereby only the
differences (or deltas) between revisions of files are stored. Full file storage (the default
mode with binary files) involves the storage of the entire file. The file’s type determines
whether full file or delta storage is used. Perforce uses RCS format for delta storage.

• Some of the file types are compressed to gzip format for storage in the depot. The
compression occurs during the submission process, and decompression happens while
syncing. The process is transparent to the user; the client workspace always contains
the file as it was submitted.

• Symbolic links on non-UNIX clients appear as small text files containing a relative path
to the linked file. Editing these files on a non-UNIX client should be done with caution,
as submitting them to the depot may result in a symbolic link pointing to a nonexistent
file on the UNIX client.

• Some file type changes do not affect earlier revisions stored in the depot. For instance,
changing a file’s type by adding the +S (temporary object) modifier tells Perforce to
store only the head revision of the file in the depot. If you do this to a previously-
existing file, any subsequent changes to the file will overwrite the one stored at the head
revision, but revisions to the file stored in the depot before the +S modifier was used will
remain unaffected.

• The modtime (+m) modifier is a special case: It is intended for use by developers who
need to preserve a file’s original timestamp. (Normally, Perforce updates the timestamp
when a file is synced.) It allows a user to ensure that the timestamp of a file in a client
workspace after a p4 sync will be the original timestamp existing on the file at the time
of submission (that is, not the time at the Perforce server at time of submission, and not
the time on the client at the time of sync).

The most common case where this is useful is development involving the third-party
DLLs often encountered in Windows environments. Because the timestamps on such
files are often used as proxies for versioning information (both within the development
environment and also by the operating system), it is sometimes necessary to preserve
the files’ original timestamps regardless of a Perforce user’s client settings.

The +m modifier on a file allows this to happen; if set, Perforce will ignore the modtime
(“file’s timestamp at time of submission”) or nomodtime (“date and time on the client at
time of sync”) option setting of the client workspace when syncing the file, and always
restore the file’s original timestamp at the time of submit.
Perforce 2002.1 Command Reference 201

File Types
• Versions of Perforce prior to 99.1 used a set of keywords to specify file types. These
keywords are still supported, but have been made redundant. The following table lists
the old keywords alongside their current base file types and modifiers:

Old Keyword Description Base Filetype Modifiers

text Text file text none

xtext Executable text file text +x

ktext Text file with RCS keyword expansion text +k

kxtext Executable text file with RCS keyword
expansion

text +kx

binary Non-text file binary none

xbinary Executable binary file binary +x

ctext Compressed text file text +C

cxtext Compressed executable text file text +Cx

symlink Symbolic link symlink none

resource Macintosh resource fork resource none

ltext Long text file text +F

xltext Executable long text file text +Fx

ubinary Uncompressed binary file binary +F

tempobj Temporary object binary +S

xtempobj Temporary executable object binary +Sx
202 Perforce 2002.1 Command Reference

Index
Symbols
#

as revision specifier 190
#

as comment character 93
not allowed in passwords 154

%n

as wildcard 189
&

as boolean AND 87
*

as wildcard 189
as wildcard in job searches 87
as wildcard, in p4 users 156
as wildcard, in protections table 112
masks out password in p4 user form 154

+m

modification time preservation 148
...

as wildcard 189
wildcard, required with p4 depot 36
wildcard, restrictions with p4 add 10

/

as path component separator 189
as values separator in job templates 92

/tmp

and TEMP 181
=, >, , >=,

as comparison operators 87
@

as revision specifier 190
^

as boolean NOT 88
|

as boolean OR 87
A
access

levels 111
limiting by IP address 111

superuser 112
access level

and commands, listing of 113
access levels

and p4 group 66
adding files

specifying default file types 9, 147, 197
administering Perforce 11
administration

resetting passwords 108
allwrite 25
API

Perforce and p4 fstat 63
atomic changes 136
B
base file types 197
batch file

and P4MERGE 175
BeOS

and symbolic links 197
binary files 197

comparing 44
boolean operators

and jobviews 87
branch specifications

creating and editing 13
listing 16

branch view 195
and p4 branch 13
and p4 diff2 15
and p4 integrate 77
and p4 sync 195
codeline example 15
defined 193

branches
comparing files across 44

branching 13
C
carriage return 25
Perforce 2002.1 Command Reference 203

Index
change review daemon 112, 115, 129, 131, 154
changelist numbers

pending vs. submitted changelists 31
changelists

and jobs 18, 55
creating or editing 17
default, and p4 submit 136
defined 17
deleting 18
details, describing 39
full descriptions, displaying 20
jobviews and users 88
listing 20
listing associated files with p4 opened 19
listing associated jobs with p4 fixes 19
listing jobs linked to 58
listing with p4 review 129
meaning of 19
moving files between 118
moving files between with p4 reopen 19
numbered 136
numbered, changing description of 138
numbering of 17
pending vs. submitted 136
pending, listing files in 105
purpose of 138
removing files from with p4 revert 19
specifying when adding files 9
specifying when deleting files 33
specifying when editing files 48
specifying when resubmitting 136
submitting 136

changes
atomic 136
conflicting, resolving 120

changing file type
with -t 200

characters
allowable in file names 192

checkpoint 11
client syntax 189

and p4 files 53
translating 159

client view 194
and p4 client 23
and p4 print 109
and p4 sync 140
defined 193

client workspace
automatically changing settings for 165
comparing files with depot 41
creating and editing 23
defined 23
deleting 25
files in, vs. p4 have 71
listing all 29
name of 164
options 25
populating with depot files 140
synchronizing labels with 98
using file types to set permissions of files

in 198
client workspace templates 24
clients

and labels 98
and temporary files 181

clobber 25, 141
closing jobs

with p4 submit 137
codelines

and branch views 15
comparing files across 44

command-line options
globally-available 185

commands
controlling access to 111
help on 73
listed by access level 113

comments
in job templates, and P4Win 93

comparing
binary files 44
files 41, 43

comparison operators
and jobviews 87

compress 25
204 Perforce 2002.1 Command Reference

Index
compression
of files, automatic 201

COMPUTERNAME

default client workspace on Windows
164

counters
and p4 review 129
and review access 115
listing 32
setting 30

CR/LF translation 25
and LineEnd setting 27

creating
branch views 13
depot specifications 35

creating users 152
crlf 25
cross-platform development

line endings 27
current directory 180

and temporary files on non-UNIX clients
181

D
-d flag

deleting changelists with 18
daemons

and review access 115
change review 112, 115, 129, 131, 154
changelist numbers 31
tips for creating 145

default changelist
listing open files in 105

default changelists
and p4 submit 136

deleting files 33
deleting passwords 107
deleting users 153
delta storage

defined 201
depot

comparing files with client workspace 41
comparing two revisions of files in 43
files, getting from 140

how files are stored in 201
listing files in 53
submitting changes to 136
verifying integrity of 157

depot syntax 189
and have list 71
and p4 branch 13
and p4 print 109
and protections table 112
translating 159

depots
creating or editing 35
deleting 36
empty 10
listing 38
populating 10
remote 35, 37
remote, and protections 115

diff chunks
and file conflicts 123

diff program
and p4 describe 39
and p4 diff 41
and p4 diff2 43
Perforce internal routine 168
third-party, specifying 168

diffing files 41, 43
directories, empty

removing on sync 26
directory

current 180
discarding changes 127
disk space

reclaiming 103
DNS

and P4PORT 177
E
editing

branch views 13
depot specifications 35
files 48
user specifications 152

editor
Perforce 2002.1 Command Reference 205

Index
form, commands which use 169
form, specifying with P4EDITOR 169

EDITOR_SIGNATURE

and P4EDITOR on Macintosh 169
emacs

setting as default form editor 169
empty depots

populating 10
environment variables

and Windows registry 133
how to set 161
overriding with global options 185
P4CHARSET 163
P4CLIENT 164
P4CONFIG 165
P4DEBUG 167
P4DIFF 168
P4EDITOR 169
P4HOST 170
P4JOURNAL 171
P4LANGUAGE 172
P4LOG 173
P4MERGE 175
P4PAGER 174
P4PASSWD 176
P4PORT 177
P4ROOT 178
P4USER 179
PWD 180
setting for a Windows service 161
setting with P4CONFIG 165
TMP, TEMP 181

example
branching and codelines 15
changing file types 119
comparing files across a branch 45
creating a job 85
deleting a user 155
editing a job 85
editing user information 155
effects of protections 115
generating output for scripts 65
getting files from depot 141

integrating files 80
listing jobs by various criteria 89
listing opened files 106
moving files between changelists 119
p4 typemap 149
pending changelist, listing files in 106
pipes and -x 42
pre-submit triggers, use of 145
propagating changes 80
protections table 115
RCS keyword expansion 200
renaming files 117
reverting files to pre-opened states 128
scheduling a resolve 80
submitting files in changelists 138
syncing a client workspace 141
viewing user information 155
working as another user 155

exclusionary mappings 193
and p4 protect 112
and triggers 143

F
-f flag

editing previously-submitted changelists
18

editing read-only job fields with 84
forcing label deletion with 96
overriding client workspace settings 24

fields
null, in jobs 89

file names
valid characters for 192
with spaces, in views 194
with spaces, on command line 191

file specifications
and p4 revert 127
and p4 submit 138
help on 73
interpreted by local shell 191

file types
and p4 add 9
and p4 edit 48
and permissions in client workspace 198
206 Perforce 2002.1 Command Reference

Index
and storage in depot 201
apple 198
binary 197
changing 118
determined by Perforce 197
explained 197
help on 73
listed 202
mapping to filenames 147
modifiers 202
old keywords 202
resource 198
showing 201
specifying 198
specifying with -t 200
symlink 197
text 197

filenames
mapping to file types 147

files
adding to depot 9
adding to label 98
adding, specifying default type 9, 147, 197
binary, comparing 44
changing type 118
changing type with -t 200
checkpoints and journals 11
comparing 41, 43
comparing between codelines 44
conflicts between, resolving 120
controlling access 111
copying from depot 140
deleting from depot 33
deleting from label 98
deleting permanently 102
delta and full-file storage 201
displaying info for scripts 63
displaying revision histories 51
editing 48
editing older revisions 49
getting from depot 140
getting latest revision 190
in a label, listing 97

in changelists, detailed information 39
including in labels 95
integrated, listing 81
integrating changes between 120
linked to changelist, listing 19
listing 53
listing contents of, by revision 109
listing open files 105
locating 159
locking 100
mapping Perforce file types to filenames

147
modification time, preserving 148
moving between changelists 19, 118
multi-forked 198
obliterating 102
on other depots, accessing 35
open, discarding changes 127
open, listing 105
open, submitting 136
opening for add 9
opening for branch with p4 integrate

76
opening for delete 33
opening for delete with p4 integrate

76
opening for edit 48
opening for integrate 76
permanent removal of 102
preventing other users from editing 100
re-adding after prior deletion 9
removing from changelists 19, 127
removing with #none 190
renaming 117
reopening 19
resolving conflicts between 120
reverting 19
reverting to pre-edit state 127
saving changes to depot 136
scheduled for resolve, listing 126
scheduling for resolve 125
specifying 189
specifying by change number 190
Perforce 2002.1 Command Reference 207

Index
specifying by date and time 190
specifying by revision 190
specifying type of 198
stored compressed 201
submitting 136
syncing 140
types of 197
unlocking 151
unresolved, listing 126
verifying integrity of 157
yours, theirs, base, merge, meaning

when resolving 121
fixes

deleting fix records with p4 fix -d 55
listing 58
to jobs over multiple changelists 55

forms
commands which use 169
specifying editor with P4EDITOR 169

full file storage
defined 201

G
-G option 185
getcwd()

in lieu of PWD 180
getting files from depot 140
global options 185

help on 73
groups

and subgroups 67
controlling access 111
creating 66
deleting 66
listing users in 70

gzip 201
H
have list

and p4 delete 33
defined 71
listing with p4 have 71
vs. files in workspace 71

have revision 71, 190
head revision

and p4 delete 33
and p4 edit 48
specifying 190

help
use p4 help 73

hosts file
and P4PORT 177

hosts, impersonating
impersonating hosts 170

I
-i flag

changelists and integrated files 21
integrate

files, opening for 76
integration

listing 81
scheduling 120

IP addresses
controlling access by 111

J
-J option

and p4d 171
job specification

displaying 88
job table

reindexing 87
job templates

comments in, and P4Win 93
job views

help on 73
jobs

* wildcard 87
and changelists 18
changing status of 56
closing with p4 submit 137
creating and editing 83
defined 83
excluding from query 89
fixing over multiple changelists 55
linked to changelist, showing 19
linked to changelists, listing 58
linking to changelists with p4 fix 55
listing 86
208 Perforce 2002.1 Command Reference

Index
null fields 89
wildcards 89

jobs template
modifying 91

JobView field
and p4 user form 88
use of 88

Jobview field
and changelists 18
and p4 user 154

jobviews
and comparison operators 88
and field types 88
limitations 89
searching jobs 86

journal 11
journal file

specifying with P4JOURNAL 171
K
keywords

RCS, examples 200
RCS, expanding 199
specifying old Perforce file types 202

L
-l flag

and long change descriptions 20, 52
and long job descriptions 86

-L option
and p4d 173

label
adding files to 98
deleting files from 98
listing files in 97
unlocking 96

label view 195
defined 193

labels
and clients 98
listing 97
owner of, changing 95
synchronizing with clients 98

labelsync
ownership of label required 98

ownership required 95
latest revision

specifying 190
licence

and pre-submit triggers 145
license

and remote virtual user 37
limitations

and jobviews 89
line endings 27
LineEnd 27

CR/LF 24
linefeed convention 25
list access level 111
listing

branches 16
changelists 20
client workspaces 29
counters 32
depots 38
file contents by revision 109
file integrations 81
files in a label 97
files in depot 53
files scheduled for resolve 126
fixes 58
groups 70
jobs 86
jobs linked to changelists 58
labels 97
open files 105

listing subdirectories 46
listing users 156
local syntax 189

and have list 71
translating 159

locked 25
locking files 100
M
Macintosh

and file types 198
and linefeed convention 25
changing default form editor 169
Perforce 2002.1 Command Reference 209

Index
line-ending convention 27
resource fork file type 198

mappings
and p4 client 23
and protections table 112
exclusionary 193
exclusionary, and protections table 112
exclusionary, and triggers 143
in branch views 13, 195
in client views 194
in label views 96, 195
integration, and p4 branch 77
local and remote depots 36

mappings, order of
and triggers 143
in protections 112
in views 193

maxresults
and p4 filelog 52
and p4 files 54
and p4 print 110
commands affected by 68
setting with p4 group 66

maxscanrows
commands affected by 68
setting with p4 group 66

MD5
and p4 verify 157
and passwords 107, 176

MERGE environment variable
and P4MERGE 175

merge programs
third-party, specifying 175

modifier
file type, +m 148

modtime 26
changes as of 2000.1 26

multi-forked file 198
N
network

data compression 25
noallwrite 25
noclobber 25, 141

nocompress 25
nocrlf 25
nomodtime 26

changes as of 2000.1 26
nonexistent revision

specifying 190
normdir 26
numbered changelists 136
O
obliterating files 102
online help

use p4 help 73
open access level 111
open files

changing type with p4 reopen 118
opening files

for add 9
for delete 33
for edit 48

operators
boolean, and jobviews 87
comparison, and jobviews 87

options
for client workspaces 25
global 185

output
formatting for scripts with -s 185

overriding
registry variable settings 134

owner
of label, changing 95

P
p4

version of 185
p4 add 9
p4 admin 11
p4 branch 13

and p4 integrate 77
p4 branches 16
p4 change 17
p4 changes 20
p4 client 23

options, and p4 sync 141
210 Perforce 2002.1 Command Reference

Index
p4 clients 29
p4 counter 30
p4 counters 32
p4 delete 33

vs. p4 obliterate 102
p4 depot 35
p4 depots 38
p4 describe 39
p4 diff 41

and P4DIFF 168
p4 diff2 43

and branch views 15
p4 dirs 46
p4 edit 48
p4 executable

version of 75
p4 filelog 51
p4 files 53
p4 fix 55
p4 fixes

and changelists 19
p4 flush 60
p4 fstat 63
p4 group 66
p4 groups 70
p4 have 71

vs. files in workspace 71
p4 help 73
p4 info 75
p4 integ

abbreviation for p4 integrate 79
p4 integrate 76
p4 integrated 81
p4 job 83
p4 jobs 86
p4 jobspec 91

and P4Win 94
warnings 93

p4 labels 97
p4 labelsync 98

and p4 label 95
p4 lock 100
p4 logger 101

p4 obliterate 102
and deleting depots 36

p4 open 49
p4 opened 105

and changelists 19
p4 passwd 107

and P4PASSWD 176
setting passwords with 176

p4 print 109
p4 protect 111

and Protections field 112
required after server installation 115
required when creating new depots 37

p4 rename 117
p4 reopen 118

and changelists 19
p4 resolve 120

and P4DIFF 168
and P4MERGE 175
and P4PAGER 174

p4 resolved 126
p4 revert 127

and changelists 19
and p4 resolve -at 122

p4 review 129
p4 reviews 131
p4 set 133
p4 submit 136
p4 sync 140

and branch view 195
p4 triggers 143
p4 typemap 147, 197

and p4 add 9
p4 unlock 151
p4 user 152

and JobView field 88
and Reviews field 131
jobviews, and p4 submit 137
setting passwords with 176
specifying username with 179

p4 users 156
p4 verify 157
p4 where 159
Perforce 2002.1 Command Reference 211

Index
P4CHARSET 163
P4CLIENT 164
P4CONFIG 165
p4d

-f option, and triggers 145
logging errors to a file 173
specifying journal file 171

P4DEBUG 167
P4DIFF 168

and p4 diff 41
not used in p4 describe 39
not used in p4 diff2 43

P4EDITOR 169
commands affected by 169

P4HOST 170
P4JOURNAL 171
P4LANGUAGE 172
P4LOG 173
P4MERGE 122, 175

batch file required on Windows 175
P4PAGER 174
P4PASSWD 176

and p4 passwd 176
P4PORT 177
P4ROOT 178

and temporary files on Windows servers
181

P4USER 179
and pre-submit triggers on Windows 145

P4Win
and comments in job templates 93
tooltips and jobspecs 94

PAGER environment variable
and P4PAGER 174

password
maximum length of 108

passwords
and P4PASSWD 176
and users 154, 179
deleting 107
resetting 108
setting 107
special characters in 154

specifying on command line 107, 179
pending changelists 136

editing description of 17
listing 20
listing files in 105

Perforce API
and p4 fstat 63

Perforce client
and P4PORT 177
and temporary files 181

Perforce client and server
obtaining version of 75

Perforce server
administering 11
and P4PORT 177
and P4ROOT 178
and temporary files 181
checkpoints and journals 11
installing securely 115
stopping 11
verifying integrity of 157

Perforce syntax 189
Perforce usernames

and passwords 179
permissions

files, and p4 edit 48
granting and denying 111
required before accessing new depot 37
setting in client workspace via file type

198
populating depots 10
port number

setting, on clients and servers 177
positional specifiers 189
POSIX$SHELL

and P4EDITOR on VMS 169
preserving modification times 148
pre-submit triggers 143

tips for creating scripts 145
protections

and IP addresses 111
granting and denying 111

Protections field 112
212 Perforce 2002.1 Command Reference

Index
protections table 111
example 115

PWD 180
Python 185
R
RCS file format 201
RCS keyword expansion 199

examples 200
read access level 111
registry

never stores plaintext passwords 107, 176
setting variables in 133

registry variables
overriding settings of 134

remote depots 35, 37
and protections 115

removing files
permanently 102

renaming files 117
resetting passwords 108
resolve

scheduling files for 125
resolving files 120
resource fork 198
reverting changes 19, 127
review access level 112
Reviews field

and p4 user 131
use of 154

revision
latest, specifying 190
of file on current client 190
of file, displaying 109
specifying 190

revision history
displaying 51
obliterating 102

revision ranges
and p4 changes 20
and p4 files 53
and p4 fixes 58
and p4 integrate 76
and p4 print 109

and p4 resolved 126
and p4 sync 140
specifying 191

revision specifiers 190
and labels 98
and p4 changes 20
and p4 print 109
and p4 sync 140
help on 73

rmdir 26
S
-s option

and p4 fstat 65
formatting output for scripting 185

scripting
and p4 dirs 46
and p4 fstat 63
and -s option 185
and triggers 143
and -x option 185
-s and p4 fstat 65
triggers, tips for creating scripts 145
with Python 185
-x option, example 42

searching
for null job fields 89
jobs, with jobviews 86

security
and p4 protect 115

server
administering 11
and P4PORT 177
and temporary files 181
checkpoints and journals 11
forking, and triggers 145
installation, and p4 protect 115
reclaiming disk space 103
specifying error log file 173
specifying journal file 171
stopping 11
upgrading 87
verifying integrity of 157

server root 178
Perforce 2002.1 Command Reference 213

Index
and temporary files on Windows servers
181

server variables
listing 32
setting 30

setting environment variables 161
for Windows services 133
on Windows services 161

shell
interpreting file specifications 156, 191

SHELL environment variable
and P4DIFF on Windows 168
and P4EDITOR on Windows 169

spaces and client workspaces
translated to underscores 26

spaces in file names
quotes around 191

spaces in filenames
quotes around, in views 194

spaces in passwords
quotes around 108

specification
job, displaying 88

specifiers
positional 189
revision 190

specifying
default editor with P4EDITOR 169
file type 198
files for integration 76
files, by change number 190
files, by date and time 190
files, by revision 190
files, for integration 76
files, latest version of 190
program to display p4 resolve output

174
revision ranges 191
third-party diff programs 168
third-party merge programs 175
username with -u and P4USER 179

standard input
reading from 185

standard output
and p4 print 109

status
of jobs, changing 56

Status field
and p4 submit 136

storage
of files in depot 201

subdirectories
listing 46

subgroups
and groups 67

submitted changelists 136
listing 20
viewing 17

submitting changelists 136
submitting files 136
super access level 112
superuser 112

and creating users 152
and new server 115

symbolic links 197
on non-UNIX systems 197, 201

sync 140
syntax forms

local, client, depot 189
translating between with p4 where 159

T
-t flag

and client workspace templates 24
and file type 200

template
jobs, modifying 91

templates
client workspace 24

temporary files
where stored 181

text files 197
timestamps

on DLLs, preserving 27, 201
TMP, TEMP 181
tooltips 94
translation
214 Perforce 2002.1 Command Reference

Index
CR/LF 25
triggers 143

and Windows services 145
passing arguments to 144
server must be able to fork 145

troubleshooting
local shell and file specifications 191

type mapping 147
typemap 9
types

of files, changing 118
U
-u flag

impersonating users with 179
undoing file edits 127
unicode 198
UNIX

and linefeed convention 25
changing default form editor 169
line-ending convention 27

unlocked 25
unlocking files 151
unresolved files

listing 126
upgrading

from 98.2 or earlier 87
USER

and P4USER 179
user preferences

setting 152
USERNAME

and P4USER on Windows 179
users

and files, unlocking 151
and forgotten passwords 108
and groups 66
and P4PASSWD 176
and passwords 107, 154, 179
changing with P4CONFIG and P4USER 152
controlling access 111
creating and editing 152
deleting 153
groups of, listing 70

groups, granting access to 111
listing 156
listing with p4 reviews 131
preventing others from editing files 100
running commands as 154, 179
virtual, remote 37, 115

V
variables

environment, how to set 161
overriding with global options 185
registry 133
server, listing 32
server, setting 30

verifying file integrity 157
version

of p4 185
of Perforce client and server programs 75

vi

as default form editor, changing 169
view

branch 195
branch, and p4 diff2 15
branch, and p4 integrate 77
branch, and p4 sync 195
branch, creating or editing 13
client 194
client, and p4 sync 140
help on 73
introduced 193
label 195

VMS
changing default form editor 169

W
warnings

about counters and p4 review 130
about p4 counters 30
about p4 flush 60
about p4 jobspec 84, 93
about p4 obliterate 102
about p4 revert 128
about pre-submit triggers 143
superuser access and p4 protect 115

wildcards
Perforce 2002.1 Command Reference 215

Index
and p4 add 10
and p4 integrate 76
in jobviews 87
in views 193
listing users with 156
specifying files with 189

Windows
and linefeed convention 25
batch file required for P4MERGE 175
COMPUTERNAME as default client work-

space 164
default client workspace name 164
default forms editor 169
line-ending convention 27
overriding registry variables 134
registry variables 133
services, and triggers 145
setting passwords on 176
setting variables for Windows services

161
third-party DLLs 27, 201

workspace
client, creating and editing 23
client, listing 29
files in, vs. have list 71

write access level 111
X
-x option

example with p4 diff 42
reading from standard input 185
216 Perforce 2002.1 Command Reference

	Table of Contents
	About This Manual
	p4 add
	p4 admin
	p4 branch
	p4 branches
	p4 change
	p4 changes
	p4 client
	p4 clients
	p4 counter
	p4 counters
	p4 delete
	p4 depot
	p4 depots
	p4 describe
	p4 diff
	p4 diff2
	p4 dirs
	p4 edit
	p4 filelog
	p4 files
	p4 fix
	p4 fixes
	p4 flush
	p4 fstat
	p4 group
	p4 groups
	p4 have
	p4 help
	p4 info
	p4 integrate
	p4 integrated
	p4 job
	p4 jobs
	p4 jobspec
	p4 label
	p4 labels
	p4 labelsync
	p4 lock
	p4 logger
	p4 obliterate
	p4 opened
	p4 passwd
	p4 print
	p4 protect
	p4 rename
	p4 reopen
	p4 resolve
	p4 resolved
	p4 revert
	p4 review
	p4 reviews
	p4 set
	p4 submit
	p4 sync
	p4 triggers
	p4 typemap
	p4 unlock
	p4 user
	p4 users
	p4 verify
	p4 where
	Environment and Registry Variables
	P4CHARSET
	P4CLIENT
	P4CONFIG
	P4DEBUG
	P4DIFF
	P4EDITOR
	P4HOST
	P4JOURNAL
	P4LANGUAGE
	P4LOG
	P4PAGER
	P4MERGE
	P4PASSWD
	P4PORT
	P4ROOT
	P4USER
	PWD
	TMP, TEMP
	Additional Information
	Global Options
	File Specifications
	Views
	File Types
	Index

