
Perforce 2002.1
System Administrator’s Guide

April 2002

This manual copyright 1997-2002 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com. You may download and use
Perforce programs, but you may not sell or redistribute them. You may download, print, copy, edit, and redistribute
the documentation, but you may not sell it, or sell any documentation derived from it. You may not modify or attempt
to reverse engineer the programs.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warran-
ties and support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.

By downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software. Perforce software includes software developed
by the University of California, Berkeley and its contributors.

All other brands or product names are trademarks or registered trademarks of their respective companies or organi-
zations.

Table of Contents
Preface About This Manual ... 9
Please Give Us Feedback ...9

Chapter 1 Welcome to Perforce:
Installing and Upgrading... 11
Getting Perforce ..11
Installing Perforce on UNIX..11

Download the files and make them executable12
Create a Perforce server root directory ...12
Telling the Perforce server which port to listen to...................................13
Telling Perforce client programs which port to talk to13
Starting the Perforce server...14
Stopping the Perforce server...14

Installing Perforce on Windows ...14
Terminology note: Windows services and servers15
Starting and stopping Perforce on Windows ...16

Upgrading a Perforce Server...16
Using old client programs with a new server ..16
Important Notes for 2001.1 and later...16
UNIX upgrades...17
Windows upgrades ..18

Installation and Administration Tips...18
Release and license information...18
Observe proper backup procedures ..19
Use separate physical drives for server root and journal.......................19
Use protections and passwords..19
Allocate disk space for anticipated growth ..20
Managing disk space after installation ...20
Large filesystem support...21
UNIX and NFS support ...21
Windows: Username and password required for network drives........22
UNIX: Run p4d as a non-privileged user ...22
Logging errors...23
Case sensitivity issues..23
Perforce 2002.1 System Administrator’s Guide 3

Table of Contents
Tune for performance.. 23

Chapter 2 Supporting Perforce:
Backup and Recovery ...25
Backup and Recovery Concepts .. 25

Checkpoint files ... 26
Journal files... 28
Versioned files .. 30

Backup Procedures .. 31
Recovery Procedures ... 33

Database corruption, versioned files unaffected..................................... 33
Both database and versioned files lost or damaged 35
Ensuring system integrity after any restoration 37

Chapter 3 Administering Perforce:
Superuser Tasks ...39
Basic Perforce Administration ... 39

Resetting user passwords... 39
Creating new users.. 39
Preventing creation of new users .. 40
Deleting obsolete users ... 41
Reverting files left open by obsolete users... 41
Reclaiming disk space by obliterating files.. 42
Deleting changelists and editing changelist descriptions 43
File verification by signature ... 43
Defining filetypes with p4 typemap ... 44
Forcing operations with the -f flag.. 45

Advanced Perforce Administration .. 46
Running Perforce through a firewall .. 46
Specifying IP addresses in P4PORT.. 49
Running from inetd on UNIX.. 49
Case sensitivity and multi-platform development................................. 50
Perforce server trace flags .. 52

Migrating to a new machine .. 52
Moving your versioned files and Perforce database 53
Changing the IP address of your server... 55
4 Perforce 2002.1 System Administrator’s Guide

Table of Contents
Changing the hostname of your server...55
Using Multiple Depots...55

Remote depot notes..56
Defining new depots..57
Other depot operations ...59
Limiting access from other servers ..59
Users working with multiple depots...60

Chapter 4 Administering Perforce:
Protections.. 61
When Should Protections Be Set?...61
Setting Protections with “p4 protect” ..61

The permission lines’ five fields...61
Access levels..62
Which users should receive which permissions?63
Default protections...64
Interpreting multiple permission lines ...64
Exclusionary protections ...65

Granting Access to Groups of Users..66
Creating and editing groups...66
Groups and protections ...66
Deleting groups ..67

How Protections are Implemented ..67
Access Levels Required by Perforce Commands...68

Chapter 5 Customizing Perforce:
Job Specifications... 71
The Default Perforce Job Template...71
The Job Template’s Fields ..72

The Fields: field...73
The Presets: field...75
The Values: fields..75
The Comments: field..76

Caveats, Warnings, and Recommendations ...77
Example: A Custom Template ..78
Working with third-party defect tracking systems......................................79
Perforce 2002.1 System Administrator’s Guide 5

Table of Contents
Using P4DTI - Perforce Defect Tracking Integration.............................. 80
Building your own integration.. 80
Getting more information .. 80

Chapter 6 Scripting Perforce:
Daemons and Triggers..83
Triggers.. 83

Using triggers... 85
Triggers and security... 87
Triggers and Windows.. 87

Daemons.. 87
Perforce’s change review daemon .. 87
Creating other daemons ... 88
Commands used by daemons ... 89
Daemons and counters ... 90
Scripting and buffering... 90

Chapter 7 Tuning Perforce for Performance..............................91
Tuning for Performance .. 91

Memory... 91
Filesystem performance.. 91
Disk space allocation... 92
Network .. 93
CPU.. 93

Diagnosing Slow Response Times... 94
Hostname vs. IP address .. 94
Try p4 info vs. P4Win .. 94
Windows wildcards... 95
DNS lookups and the hosts file ... 95
Location of the “p4” executable .. 95

Preventing Server Swamp .. 96
Using tight views... 96
Assigning protections ... 97
Limiting database queries .. 98
Scripting efficiently ... 100

Checkpoints for Database Tree Rebalancing.. 102
6 Perforce 2002.1 System Administrator’s Guide

Table of Contents
Chapter 8 Perforce and Windows ... 103
Using the Perforce installer ...103

Upgrade notes...103
Installation options...103

Windows services vs. Windows servers..105
Starting and stopping the Perforce service...106
Starting and stopping the Perforce server ..106
Installing the Perforce service on a network drive................................107

Multiple Perforce services under Windows..107
Windows configuration parameter precedence ...108
Resolving Windows-related instabilities...109
Users having trouble with P4EDITOR or P4DIFF110

Appendix A Perforce Server (p4d) Reference...............................111
Synopsis ...111
Syntax...111
Description ..111
Exit Status ..111
Options...111
Usage Notes ..112
Related Commands..113

Index ... 115
Perforce 2002.1 System Administrator’s Guide 7

Table of Contents
8 Perforce 2002.1 System Administrator’s Guide

Preface About This Manual
This is the Perforce 2002.1 System Administrator’s Guide.

It describes the installation, configuration, and operation of a Perforce server from an
administrator’s perspective. This includes the set of tasks typically performed by a
“system administrator” (for instance, installation and configuration of the software, as
well as ensuring uptime and data integrity), as well as those performed by a “Perforce
administrator”, including setting up Perforce users, setting Perforce depot access controls,
resetting Perforce user passwords, and so on.

Since Perforce requires no special system permissions, the Perforce administrator
typically does not require root-level access. Depending on your site’s needs, your Perforce
administrator need not be your system administrator.

Both the UNIX and Windows versions of the Perforce server are administered from the
command line. If you are unfamiliar with the command line interface to Perforce, you will
find the Perforce Command Reference, which describes the Perforce command line interface
in detail, to be a good companion to this guide.

Although this guide will teach you how to administer a Perforce server, it won’t teach you
the basics of actually using Perforce. You may also wish to consult the Perforce User’s
Guide for more information on Perforce from a user’s perspective.

All our documentation is available from our web site at http://www.perforce.com.

Please Give Us Feedback

We are interested in receiving opinions on it from our users. In particular, we’d like to
hear from users who have never used Perforce before. Does this guide teach the topic
well? Please let us know what you think; we can be reached at manual@perforce.com.
Perforce 2002.1 System Administrator’s Guide 9

Preface: About This Manual
10 Perforce 2002.1 System Administrator’s Guide

Chapter 1 Welcome to Perforce:
Installing and Upgrading
This chapter describes how to install a Perforce server or upgrade an existing installation.

A short checklist of things to consider at installation time is offered, along with some basic
security and administration tips. More detailed notes on administrative tasks are found in
later chapters.

Getting Perforce

Perforce requires at least two executables: the server (p4d), and any of the Perforce client
programs (for instance, p4 on UNIX, p4.exe or p4win.exe on Windows).

The programs are available from the Downloads page on the Perforce web site:
http://www.perforce.com/perforce/loadprog.html

Go to the web page, select the files for your platform, and save the files to disk.

Installing Perforce on UNIX

Although p4 and p4d can be installed in any directory, on UNIX the Perforce client
programs typically reside in /usr/local/bin, and the Perforce server is usually located
either in /usr/local/bin or in its own server root directory. Perforce client programs can
be installed on any machine that has TCP/IP access to the p4d host.

To limit access to the Perforce server files, we recommend that p4d be owned and run by a
Perforce user account that has been created for that purpose.

Warning! If you’re upgrading an existing installation to Release 2001.1 or later, see the
notes in “Upgrading a Perforce Server” on page 16 before proceeding.

Windows Windows administrators will note that many of the examples in this book
are based on the UNIX version of the Perforce server. In almost all cases,
they are common to both Windows and UNIX installations; Perforce’s
behavior is generally the same regardless of whether executed in a UNIX
shell or from the MS-DOS command line.

Where the UNIX and Windows versions of Perforce differ, a note to that
effect will be made. For Windows-specific information, see “Perforce and
Windows” on page 103.

OS X The material for UNIX also applies to Mac OS X.
Perforce 2002.1 System Administrator’s Guide 11

Chapter 1: Welcome to Perforce: Installing and Upgrading
Once you’ve downloaded p4 and p4d, you need to do a few more things before you can
use Perforce. Briefly:

• Download the files and make them executable,

• Create a root directory for the Perforce files,

• Provide a TCP/IP port to p4d,

• Provide the name of the Perforce server and the p4d port number to the Perforce client
program(s), and

• Start the Perforce server (p4d).

Download the files and make them executable

On UNIX (or MacOS X), you’ll also have to make the Perforce executables (p4 and p4d)
executable. After downloading the programs, use the chmod command to make them
executable:

Create a Perforce server root directory

Perforce stores all of its data in files and subdirectories of its own root directory, which
can reside anywhere on the server system. This directory is called the server root. This
directory should be owned by the account that runs p4d, and can be named anything at
all. The only necessary permissions are read, write, and execute for the user who
invokes p4d.

Since Perforce will store all submitted files under this directory, the size of the directory
can become quite large. Disk space management is reviewed in “Installation and
Administration Tips” on page 18 and described in more detail in “Disk space allocation”
on page 92.

For security purposes, read and write access to the server root should be restricted to
prevent anyone but the account owner from reading, modifying or even listing the actual
depot files. To ensure that temporary files cannot be read by unauthorized users, set the
umask(1) file creation-mode mask of the account owner to a value that will not permit
other users to read the contents of the server root directory or its files.

You are strongly advised not to run p4d as root or any other privileged user. For more
information, see the section entitled “UNIX: Run p4d as a non-privileged user” on
page 22.

The environment variable P4ROOT should be set to point to the server root. Alternatively,
the -r root_dir flag can be provided when p4d is started to specify a server root
directory. The Perforce client programs never use this directory directly, and do not need

chmod +x p4
chmod +x p4d
12 Perforce 2002.1 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
to know the value of P4ROOT; the p4d server is the only process which uses the P4ROOT
environment variable.

Unlike P4ROOT, the environment variable P4PORT is used by both the Perforce server and
Perforce client programs, and should be set on both. Its use is discussed in the next two
sections.

Telling the Perforce server which port to listen to

The p4d server and Perforce client programs communicate with each other via TCP/IP.
When p4d starts, it listens (by default) on port 1666. The Perforce client assumes (also by
default) that its p4d server is located on host perforce, listening on port 1666.

If p4d is to listen on a different port, the port can be specified with the -p port_num flag
when starting p4d (as in, p4d -p 1818), or the port can be set with the P4PORT
environment or registry variable.

Telling Perforce client programs which port to talk to

Perforce client programs need to know the TCP/IP port on which the p4d server program
is listening. The easiest way to do this under UNIX is to set each Perforce user’s P4PORT
environment variable to host:port#, where host is the name of the machine on which
p4d is running, and port# is the port on which p4d is listening.

Examples:

The definition of P4PORT can be shortened if the Perforce client program is running on the
same host as p4d. In this case, only the p4d port number need be provided to the client. If
p4d is running on a host named or aliased perforce, listening on port 1666, the definition
of P4PORT for the client can be dispensed with altogether.

Examples:

If P4PORT is... Then...

dogs:3435 The client program uses the p4d server on host dogs listening at
port 3435.

x.com:1818 The client program uses the p4d server on host x.com listening at
port 1818.

If P4PORT is... Then...

3435 The client program will use the p4d server on its local host listening
at port 3435.

<not set> The client program will use the p4d server on the host named or
aliased perforce listening on port 1666.
Perforce 2002.1 System Administrator’s Guide 13

Chapter 1: Welcome to Perforce: Installing and Upgrading
If your p4d host is not named perforce, you can choose to simplify life somewhat for
your Perforce users by setting perforce as an alias to the true host name in their
workstations’ /etc/hosts files, or by doing so via Sun’s NIS or Internet DNS.

Starting the Perforce server

After p4d’s P4PORT and P4ROOT environment variables have been set, p4d can be run in
the background with the command:

p4d &

Although this command is sufficient to run p4d, other flags, for instance, those that
control such things as error logging, checkpointing, and journaling, can be provided.

Example: Starting a Perforce server.

P4PORT can be overridden by starting p4d with the -p flag, and P4ROOT can be overridden by
starting p4d with the -r flag. A journal file may be specified with the -J flag, and errors may
be logged to a file specified with a -L flag. The startup command would then have this form:

These flags (and others) are discussed in “Supporting Perforce: Backup and Recovery” on
page 25. A complete list of server flags appears in the “Perforce Server (p4d) Reference” on
page 111.

Stopping the Perforce server

If you are running Perforce 99.2 or above, use the command
p4 admin stop

to shut down the Perforce server. Only a Perforce superuser may use this command.

If you are running an earlier version of Perforce, you’ll have to find the process ID of the
p4d server and kill it manually from the UNIX shell. The use of kill -15 (SIGTERM) is
preferable to kill -9 (SIGKILL), as the database could be left in an inconsistent state if
p4d happened to be in the middle of updating a file when a SIGKILL signal was received.

Installing Perforce on Windows

Installation of Perforce on Windows is handled by the installer. You can get the installer
by downloading it from the Downloads page of the Perforce web site.

p4d -r /usr/local/p4root -J /var/log/journal -L /var/log/p4err -p 1818 &
14 Perforce 2002.1 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
The Perforce installer (perforce.exe) allows you to:

• Install Perforce client software (“User install”).

This option allows for the installation of p4.exe (the Perforce command line client),
p4win.exe (P4Win, the Perforce Windows client), and p4scc.dll (Perforce’s
implementation of the Microsoft common SCM interface).

• Install Perforce as either a Windows server or service as appropriate. (“Administrator
typical” and “Administrator custom” install).

These options allow for the installation of both the Perforce client software as well as
the Perforce Windows server (p4d.exe) and service (p4s.exe) executables.

You can also use either of these options to automatically upgrade an existing Perforce
server or service running under Windows.

Under Windows 2000 or higher, you will need Administrator privileges to install
Perforce as a service, and Power User privileges to install Perforce as a server.

• Uninstall Perforce: remove the Perforce server, service, and client executables, registry
keys, and service entries. The database and depot files in your server root, however,
will be preserved.

For more about installing on Windows, see “Using the Perforce installer” on page 103.

Terminology note: Windows services and servers

In most cases, it makes no difference whether the Perforce server program was installed
on UNIX, as an NT service, or as an NT server. Consequently, the terms “Perforce server”
and “p4d” are used interchangeably to refer to “the process which handles requests from
Perforce clients”. In cases where the distinction between an NT server and an NT service
are important, the distinction is made.

On UNIX systems, there is only one Perforce “server” program (p4d) responsible for this
back-end task. On Windows, however, this back-end program can be started either as an
NT service (p4s.exe), which can be set to run at boot time, or as an NT server (p4d.exe),
which is invoked from an MS-DOS prompt.

The Perforce service (p4s.exe) and the Perforce server (p4d.exe) executables are copies
of each other; they are identical apart from their filenames. When run, they use the first
three characters of the name with which they were invoked (either p4s or p4d) to
determine their behavior. (For example, invoking copies named p4smyservice.exe or
p4dmyserver.exe will invoke a service and a server, respectively.)

In most cases, you will want to install Perforce as a service, not a server. For a more
detailed discussion of the distinction between the two options, see “Windows services vs.
Windows servers” on page 105.
Perforce 2002.1 System Administrator’s Guide 15

Chapter 1: Welcome to Perforce: Installing and Upgrading
Starting and stopping Perforce on Windows

If you’re running Perforce as a service under Windows, it will be started when the
machine boots. You can configure it within the Services applet in the Control Panel.

If you’re running Perforce as a server under Windows, invoke p4d.exe from an MS-DOS
command prompt. The flags under Windows are the same as those under UNIX.

If you are running Perforce 99.2 or above, whether as a service or a server, use the
command

p4 admin stop

to shut down the service or server. Only a Perforce superuser may use this command.

For older revisions of Perforce, you’ll have to shut down services by using the Services
applet in the Control Panel, and servers running in MS-DOS windows by typing CTRL-C
in the window or clicking on the icon to Close the window.

While these options will work with both Release 99.2 and earlier versions of Perforce, they
are not necessarily “clean”, in the sense that the server or service is shut down abruptly.
With the availability of the p4 admin stop command in 99.2, their use is no longer
recommended.

Upgrading a Perforce Server

Whether your server is running on Windows or UNIX, you must back up your server (see
“Backup Procedures” on page 31) as part of any upgrade process.

Using old client programs with a new server

Although pre-98.1 Perforce client programs (p4, p4.exe, p4win.exe, and p4scc.dll)
generally work with newer server versions with no trouble, some features in new server
releases require client upgrades. In general, users with older client programs will still be
able to use features available from the Perforce server at the client’s release level, but will
not be able to use the new server features offered by subsequent server upgrades.

Perforce’s remote depot support is an exception: remote depot support is not guaranteed
to work unless all of your Perforce servers are at or above Release 98.2.

Important Notes for 2001.1 and later

On small installations (installations with fewer than 1000 submitted changelists), the
2001.1 server automatically upgrades the underlying database for versions 98.2 and up.

Warning! If you are upgrading to 2001.1, it is imperative that you read the notes
pertaining to the 2001.1 upgrade.
16 Perforce 2002.1 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
On larger installations, you will have to upgrade the database manually. Although the
new database will likely be smaller than the pre-2001.1 database, the upgrade process can
be disk space-intensive. You will need approximately three times the size of the existing
database to store the temporary files required by the upgrade.

If you are upgrading from Release 97.3 or earlier to 2001.1, you will likely have to make an
intermediate checkpoint. Please contact Perforce technical support for assistance before
upgrading your server.

UNIX upgrades

To upgrade your current Perforce server to a newer version, your Perforce license file
must be current. Expired licenses will not work with upgraded servers. (This is not a
problem if you are running a two-user installation with no license.)

You must back up your server as described on “Backup Procedures” on page 31 as part of
any upgrade process.

It is a good idea to run p4 verify as part of your upgrade. See “Verifying during server
upgrades” on page 44 for details.

Upgrading from UNIX Release 98.2 or later

If you have a valid license (or require no license) and are upgrading from Release 98.2 or
later:

1. Download the new p4d executable for your platform

2. Stop the current instance of p4d

3. Make a checkpoint and back up your old installation

Note If you are disk space-constrained, see the Release Notes for a more precise
estimate of the amount of disk space required.

By turning off journaling during the upgrade (by setting P4JOURNAL to
off), it may be possible to reduce the amount of disk space required for the
upgrade. (Remember to turn journaling back on when the upgrade is
complete!)

Warning! Upgrading to Release 2001.1 or later will require an upgrade of your
database files. Downgrading thereafter will require restoration from
backups.

If you wish to keep your pre-2001.1 server available as a fallback option
when performing your 2001.1 upgrade, you should back up your entire
server root (including the db.* files) after stopping the server.
Perforce 2002.1 System Administrator’s Guide 17

Chapter 1: Welcome to Perforce: Installing and Upgrading
4. Install the new p4d in the desired location

5. Run p4d -xu to upgrade the database.

6. Restart the new p4d with your site’s usual parameters.

Your users should then be able to use the new server.

Windows upgrades

On Windows, download the installer (perforce.exe) and follow the installation dialog.

The upgrade process on Windows is extremely conservative; if any error condition occurs
during the upgrade, you will always be able to revert to using your pre-upgrade Perforce
server or service.

If you have any questions or difficulties during an upgrade, contact Perforce technical
support.

Installation and Administration Tips

Release and license information

Perforce servers are licensed according to how many users they will support.

Note If your server has fewer than 1000 changes, the upgrade will run
automatically. Larger installations will require that p4d -xu be run
manually.

Either way, you must have sufficient disk space to complete the upgrade.
The required amount is typically two to three times the size of the larger of
the db.have or db.integ files.

The db.have and db.integ files reside in your P4ROOT directory.

Note If your server has fewer than 1000 changes, the upgrade will run
automatically. Larger installations will require that p4d -xu be run
manually.

Either way, you must have sufficient disk space to complete the upgrade.
The required amount is typically two to three times the size of the larger of
the db.have or db.integ files.

The db.have and db.integ files reside in your P4ROOT directory.
18 Perforce 2002.1 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
This licensing information lives in a file called license in the server root directory. It is a
plain text file supplied by Perforce Software. Without the license file, the Perforce server
will limit itself to two users and two client workspaces.

Current licensing information may be viewed by invoking p4d -V from the server root
directory or by specifying the server root directory either on the command line (p4d -V -

r server_root) or in the P4ROOT environment variable.

When the server is running, the license information may also be viewed with p4 info.

Version information will be displayed when invoking p4d -V or p4 -V.

Observe proper backup procedures

Regular backups of your Perforce data are vital. The key concepts are:

• Make sure journaling is active,

• Create checkpoints regularly, and

• Use p4 verify regularly.

See “Supporting Perforce: Backup and Recovery” on page 25 for a full discussion of
backup and restoration procedures.

Use separate physical drives for server root and journal

Whether installing on UNIX or Windows, it is usually advisable to have your P4ROOT
directory (that is, the directory containing your database and versioned files) on a
different physical drive than your journal file.

By storing the journal on a separate drive, you can be reasonably sure that if a disk failure
corrupts the drive containing P4ROOT, it will not affect your journal file. The journal file
can then be used to restore any lost or damaged metadata.

Further details are available in “Supporting Perforce: Backup and Recovery” on page 25.

Use protections and passwords

Until you define a Perforce superuser, every Perforce user is a Perforce superuser, and can
run any Perforce command on any file. The administrator who installs Perforce should
use:

p4 protect

to define a Perforce superuser as soon as possible after installing the Perforce server. For
more information, see “Administering Perforce: Protections” on page 61

Furthermore, until your users have passwords defined, any user will be able to
impersonate any other Perforce user, either with the -u flag or by setting P4USER to a
Perforce 2002.1 System Administrator’s Guide 19

Chapter 1: Welcome to Perforce: Installing and Upgrading
Perforce user’s username. Proper use of Perforce passwords (as described in the Perforce
User’s Guide) can protect against this. See the Perforce User’s Guide for details.

To set (or reset) a user’s password, use p4 passwd username (as a Perforce superuser),
and enter the new password for the user, or invoke p4 user -f username (also while as
a Perforce superuser) and enter the new password into the user specification form. The
former command will only work in release 99.1 or later; the latter command will work
under all releases from 97.3 onwards.

The security-conscious Perforce superuser will use p4 protect to make sure that no
access higher than list is granted to non-privileged users, and require that each user
have a Perforce password.

Allocate disk space for anticipated growth

In general, you’ll need sufficient space in your P4ROOT directory to hold your depot files
(that is, the files created by your users), and an additional 0.5K per user per file to hold the
data describing the files, their status, and their histories. As a rule of thumb, you also
probably want at least enough disk space to hold three times the size of your present
collection of versioned files.

For a more detailed example of a disk sizing estimate, see “Disk space allocation” on
page 92.

Managing disk space after installation

All of Perforce’s versioned files reside in subdirectories of the server root, as do its
database files, and (by default) the checkpoints and journals. The stored versioned file
depots are grow-only, and this can clearly present disk space problems on high use
systems. The following approaches may be used to remedy this:

• Tell Perforce to store the journal file on a separate physical disk. Use the P4JOURNAL
environment variable or p4d -J to specify the location of the journal file.

• Checkpoint on a daily basis to keep the journal file short.

• Compress checkpoints, or use the -z option to tell p4d to compress them while creating
them.

• Use the -jc prefix option with the p4d command to write the checkpoint to a different
disk. Alternately, use the default checkpoint files, but back up your checkpoints and
then delete them from the root directory. Old checkpoints are needed when recovering
from a crash, and if your checkpoint and journal files reside on the same disk as your
depot, a hardware failure could leave you without the ability to restore your database.

• On UNIX systems, some or all of the depot directories may be relocated to other disks
by using symbolic links. Creation of symbolic links and movement of depot files to
other volumes should be done only while the Perforce server is not running.
20 Perforce 2002.1 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
• Due to the nature of the implementation of their access methods, the database files
themselves may become internally unbalanced, resulting in them taking up more space
than necessary. The database files can sometimes be reduced in size by recreating them
from a checkpoint. This should be done only if the database files are more than about 10
times the size of the checkpoint in total. See “Checkpoints for Database Tree
Rebalancing” on page 102.

Large filesystem support

Earlier versions of the Perforce server, as well as some operating systems, limit Perforce
database files (the db.* files in the P4ROOT directory which contain your metadata) to 2GB
in size.

The db.have file holds label contents and the list of files currently opened in client
workspaces, and tends to grow the most quickly. If you anticipate any of your Perforce
database files growing beyond the 2GB level, you should install the Perforce server on a
platform with support for large files.

As of this writing, the following combinations of operating system and Perforce server
revision will support database files larger than 2GB:

UNIX and NFS support

The Perforce server process has been tested and is supported on the Solaris 2.6
implementation of NFS. Because Perforce client programs never directly access the files in
P4ROOT, the only process needing access to P4ROOT is the p4d server itself.

Consequently, under Solaris 2.6 or higher, you can store your journal, log, depot, and
db.* files on NFS-mounted filesystems.

Operating System OS version: Perforce Server Revision

Tru64 UNIX
(a.k.a. Digital UNIX, OSF/1)

All versions 98.2/5713 or higher

FreeBSD All versions 98.2/5713 or higher

Windows NT, 2000 All versions,
SP6 recommended for NT

98.2/8127 or higher

SGI IRIX 6.2 All versions 98.2/5713 or higher

SGI IRIX 5.3 Only with the SGI-
supplied xfs upgrade

98.2/5713 or higher

xfs OS upgrade required

Solaris 2.6 and higher 98.2/7488 compiled for 2.6 or
higher
Perforce 2002.1 System Administrator’s Guide 21

Chapter 1: Welcome to Perforce: Installing and Upgrading
Some issues still remain regarding file locking on non-commercial implementations of
NFS (for instance, Linux and FreeBSD). On these platforms, we recommend that you store
your journal, log, depot, and db.* files on a drive local to the server machine, not on an
NFS-mounted volume.

These issues affect only the PERFORCE server process (p4d). Perforce clients (such as the p4
command-line client) have always been able to work with client workspaces on NFS-
mounted drives, such as workspaces located in users’ home directories.

Windows: Username and password required for network drives

By default, the Perforce service runs under the Windows local System account. Because
Windows requires a real account name and password to access files on a network drive, if
Perforce is installed as a service under Windows with P4ROOT pointing to a network drive,
the installer will query for an account name and a password. The Perforce service will be
configured with the supplied data and run as the specified user instead of System. (This
account must have Administrator privileges on the machine.)

Although Perforce operates reliably with its root directory on a network drive, does so at
a substantial performance penalty, as all writes to the database have to be performed over
the network. For optimal performance, it is still best to install the Windows service to use
local drives rather than networked drives.

For more information, see “Installing the Perforce service on a network drive” on
page 107.

UNIX: Run p4d as a non-privileged user

While it is possible to run the Perforce server as root, it is highly inadvisable to do so.
Sound administration practice demands that processes which don’t require root access
should never be run as root. For Perforce, this means that the owner of the p4d process
should never be a privileged account.

A good way to manage a Perforce installation on UNIX is to create a UNIX userid for it (for
example, “perforce”) and (optionally) a UNIX group for it (for example, “p4admin”). The
umask(1) command can be used to ensure that the server root (P4ROOT) and all files and
directories beneath it are created as writable only by the UNIX user perforce, and
(optionally) readable by members of the UNIX group p4admin.

Windows On Windows, directory permissions are set securely by default; when
running as a server, the Perforce server root is accessible only to the user
who invoked the server from the MS-DOS command line. When installed as
a service, the files are owned by the LocalSystem account, and are
accessible only to those with Administrator access.
22 Perforce 2002.1 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
The Perforce server (p4d), running as UNIX user perforce, can write to files in the server
root, but none of your users will be able to overwrite its files. Access to read the files
created by p4d (that is, the depot files, checkpoints, journals, and so on) can be granted to
trusted users by making them members of the UNIX group p4admin.

Logging errors

The Perforce server’s error output file can be specified with the -L flag to p4d, or can be
defined in the environment variable P4LOG. If no error output file is defined, errors are
dumped to p4d’s standard error.

Although p4d tries to ensure that all error messages reach the user, if an error occurs and
the client program disconnects before the error is received, p4d will also log these errors to
its error output.

The Perforce server also has trace flags used for debugging purposes. See “Perforce server
trace flags” on page 52 for details.

Case sensitivity issues

Whether your Perforce server is running on Windows or UNIX, if your site is involved in
cross-platform development (i.e. Perforce clients on both Windows and UNIX machines),
your users will still need to be made aware of certain details regarding case sensitivity
issues. See “Case sensitivity and multi-platform development” on page 50 for details.

Tune for performance

Perforce is a relatively light consumer of network traffic and CPU power. The most
important variables determining performance will be the efficiency of your server’s disk
I/O subsystem and the number of files referenced in any given user-originated Perforce
operation.

For more detailed performance tuning information, see “Tuning Perforce for
Performance” on page 91.
Perforce 2002.1 System Administrator’s Guide 23

Chapter 1: Welcome to Perforce: Installing and Upgrading
24 Perforce 2002.1 System Administrator’s Guide

Chapter 2 Supporting Perforce:
Backup and Recovery
The Perforce server stores two kinds of data: versioned files and metadata. Both are stored in
the server’s root directory.

• Versioned files are files submitted by Perforce users. Versioned files are stored in
directory trees called depots. There is one subdirectory under the server’s root directory
for each depot in your Perforce installation. The versioned files for a given depot are
stored in a tree of directories beneath this subdirectory.

• Database files store metadata, including changelists, opened files, client specs, branch
specs, and other data concerning the history and present state of the versioned files.
Database files appear as db.* files in the top level of the server root directory. Each db.*

file contains a single, binary-encoded database table.

Backup and Recovery Concepts

Disk space shortages, hardware failures, and system crashes can corrupt any of the
Perforce server’s files. That’s why the entire Perforce root directory structure (your
versioned files and your database) should be backed up regularly.

As mentioned earlier, versioned files are stored in subdirectories beneath your Perforce
server root, and can be restored directly from backups without any loss of integrity.

The files making up the Perforce database, on the other hand, may not have been in a state
of transactional integrity at the moment they were copied to the system backups.
Restoring the db.* files from system backups may result in an inconsistent database. The
only way to guarantee the integrity of the database after it’s been damaged is to
reconstruct the db.* files from Perforce checkpoint and journal files.

• A checkpoint is a snapshot or copy of the database at a particular moment in time.

• A journal is a log that records updates made to the database since the last snapshot was
taken.

The checkpoint file is often much smaller than the original database, and can be made
smaller still by compressing it. The journal file, on the other hand, can grow quite large; it
is truncated whenever a checkpoint is made, and the older journal is renamed. The older
journal files can then be backed up offline, freeing up more space locally.
Perforce 2002.1 System Administrator’s Guide 25

Chapter 2: Supporting Perforce: Backup and Recovery
Both the checkpoint and journal are text files, and have the same format. A checkpoint
and, if available, its subsequent journal, can restore the Perforce database.

Because the information stored in the Perforce database is as irreplaceable as your
versioned files, checkpointing and journaling are an integral part of administering a
Perforce server, and should be performed regularly.

Checkpoint files

A checkpoint is a file that contains all information necessary to recreate the metadata in the
Perforce database. When you create a checkpoint, the Perforce database is locked,
allowing you to take an internally consistent snapshot of that database.

Versioned files are backed up separately from checkpoints. This means that a checkpoint
does not contain the contents of versioned files, and as such, you cannot restore any
versioned files from a checkpoint. You can, however, restore all changelists, labels, jobs,
and so on, from a checkpoint.

To guarantee database integrity upon restoration, the checkpoint must be as old as, or
older than, the versioned files in the depot. This means that the database should be
checkpointed, and the checkpoint generation must be complete, before the backup of the
versioned files starts.

Regular checkpointing is important to keep the journal from getting too long. Making a
checkpoint immediately before backing up your system is good practice.

Creating a checkpoint

Checkpoints are not created automatically; someone or something must run the
checkpoint command on the Perforce server machine. You can create a checkpoint by
invoking the p4d program with the -jc (journal-create) flag:

p4d -r root -jc

This can be run while the Perforce server (p4d) is running.

To make the checkpoint, p4d locks the database and then dumps its contents to a file
named checkpoint.n, where n is a sequence number. Before it unlocks the database, p4d
also copies the journal file to a file named journal.n-1, and then truncates the current
journal. This guarantees that the last checkpoint (checkpoint.n) combined with the
current journal (journal) will always reflect the full contents of the database at the time
the checkpoint was created.

Warning! Checkpoints and journals archive only the Perforce database files, not the
files in the depot directories! You must always back up the depot files (your
versioned files) with the standard OS backup commands after
checkpointing.
26 Perforce 2002.1 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
(The sequence numbers reflect the roll-forward nature of the journal; to restore databases
to older checkpoints, match the sequence numbers. That is, the database reflected by
checkpoint.6 can be restored by restoring the database stored in checkpoint.5 and
rolling forward the changes recorded in journal.5. In most cases, you’re only interested
in restoring the current database, which is reflected by the highest-numbered
checkpoint.n rolled forward with the changes in the current journal.)

You can specify a prefix for the checkpoint and journal filename by using the -jc option.
That is, if you create a checkpoint with:

p4d -jc prefix

your checkpoint and journal files will be named prefix.ckp.n, or prefix.jnl.n
respectively, where prefix is as specified on the command line and n is a sequence
number. If no prefix is specified, the default filenames checkpoint.n and journal.n

will be used.

As of Release 99.2, if you need to take a checkpoint but are not on the machine running the
Perforce server, you can create a checkpoint remotely with the p4 admin command. Use:

p4 admin checkpoint [prefix]

to take the checkpoint and optionally specify a prefix to the checkpoint and journal files.
(You must be a Perforce superuser to use p4 admin.)

A checkpoint file may be compressed, archived, or moved onto another disk. At that time
or shortly thereafter, the files in the depot subdirectories should be archived as well.

When recovering, the checkpoint must be at least as old as the files in the depots. (that is, the
versioned files can be newer than the checkpoint, but not the other way around.) As you
might expect, the shorter this time gap, the better.

You can set up an automated program to create your checkpoints on a regular schedule.
Be sure to always check the program’s output to ensure that the checkpoint creation was
successful. The first time you need a checkpoint is not a good time to discover your
checkpoint program wasn’t working.

If the checkpoint command itself fails, contact Perforce Technical Support immediately.
Checkpoint failure is usually a symptom of a resource problem (disk space, permissions,
etc.) that can put your database at risk if not handled correctly.

Note The meaning of the argument to -jc changed in Release 99.2.

Prior to Release 99.2, the files created with p4d -jc prefix would have
been prefix.n (for the checkpoint) and journal.n (for the old journal).

The behavior in 99.2 is a change from that in previous releases; if you have
scripts which rely on the old behavior, you may have to modify them.
Perforce 2002.1 System Administrator’s Guide 27

Chapter 2: Supporting Perforce: Backup and Recovery
Journal files

The journal is the running transaction log that keeps track of all database modifications
since the last checkpoint. It’s the bridge between two checkpoints.

If you have Monday’s checkpoint and the journal that was collected from then until
Wednesday, those two files (Monday’s checkpoint plus the accumulated journal) contain
the same information as a checkpoint made Wednesday. If a disk crash were to cause
corruption in your Perforce database on Wednesday at noon, for instance, you could still
restore the database even though Wednesday’s checkpoint hadn’t yet been made.

To restore your database, you only need to keep the most recent journal file accessible, but
it doesn’t hurt to archive old journals with old checkpoints, should you ever need to
restore to an older checkpoint.

Enabling journaling on Windows

For Windows installations, if you used the installer (perforce.exe) to install a Perforce
server or service, journaling is turned on for you.

If you installed Perforce without the installer (for an example of when you might do this,
see “Multiple Perforce services under Windows” on page 107), you do not have to create
an empty file named journal in order to enable journaling under a manual installation on
Windows.

Enabling journaling on UNIX

For UNIX installations, journaling is also automatically enabled.

If P4JOURNAL is left unset (and no location is specified on the command line), the default
location for the journal is $P4ROOT/journal.

After enabling journaling

Be sure to create a new checkpoint with p4d -jc (and -J journalfile if required)
immediately after enabling journaling. Once journaling is enabled, you’ll need make
regular checkpoints to control the size of the journal file. An extremely large current
journal is a sign that a checkpoint is needed.

Warning! By default, the current journal file name is journal and it resides in the
P4ROOT directory. However, if a disk failure corrupts that root directory,
your journal file will be inaccessible too.

We strongly recommend that you set up your system so that the journal is
written to a filesystem other than the P4ROOT filesystem. You can specify
this from the command line, or set P4JOURNAL before starting the Perforce
server to tell it where to write the journal.
28 Perforce 2002.1 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
Every checkpoint after your first checkpoint starts a new journal file and renames the old
one. The old journal is renamed to journal.n, (or prefix.jnl.n for Release 99.2 or
later) where n is a sequence number, and a new journal file is created.

By default, the journal is written to the file journal in the server root directory (P4ROOT).
Since there is no sure protection against disk crashes, the journal file and the Perforce
server root should be located on different filesystems, ideally on different physical disk
drives. The name and location of the journal can be changed by specifying the name of the
journal file in the environment variable P4JOURNAL, or by providing the -J filename flag
to p4d.

Whether you use P4JOURNAL or the -J journalfile option to p4d, the journal file name
can be provided either as an absolute path, or as a path relative to the server root.

Example: Specifying journal files

Starting the server with:

requires that you either checkpoint with:

or set P4JOURNAL to /usr/local/perforce/journal and use

If your P4JOURNAL environment variable (or command-line specification) doesn’t match the
setting used when you started the Perforce server, the checkpoint is still created, but the
journal is neither saved nor truncated. This is highly undesirable!

Disabling journaling

To disable journaling, stop the server, remove the existing journal file (if it exists), set the
environment variable P4JOURNAL to off, and restart p4d without the -J flag.

Warning! If you create a journal file with the -J filename flag, make sure that
subsequent checkpoints use the same file, or the journal will not be
properly renamed.

$ p4d -r $P4ROOT -p 1666 -J /usr/local/perforce/journalfile

Perforce Server starting...

$ p4d -r $P4ROOT -jc -J /usr/local/perforce/journalfile

Checkpointing to checkpoint.19...
Saving journal to journal.18...
Truncating /tmp/journalfile...

$ p4d -r $P4ROOT -jc

Checkpointing to checkpoint.19...
Saving journal to journal.18...
Truncating /tmp/journalfile...
Perforce 2002.1 System Administrator’s Guide 29

Chapter 2: Supporting Perforce: Backup and Recovery
Versioned files

Your checkpoint and journal files are used to reconstruct the Perforce database files only.
Your versioned files are stored in directories under the Perforce server root, and must be
backed up separately.

Versioned file formats

Versioned files are stored in subdirectories beneath your server root. Text files are stored
in RCS format, with filenames of the form filename,v. There is generally one RCS-format
(,v) file per text file. Binary files are stored in full in their own directories named
filename,d. Depending on the Perforce file type selected by the user storing the file,
there may be one or more archived binary files in each filename,d directory. If more than
one file resides in a filename,d directory, each one refers to a different revision of the
binary file, and is named 1.n, where n is the revision number.

As of Release 99.2, Perforce also supports the AppleSingle file format for Macintosh. On
the server, these files are stored in full, compressed, just like other binary files. They are
stored in the Mac’s AppleSingle file format; if need be, these files can be copied directly
from the server root, uncompressed, and used as-is on a Macintosh.

Because Perforce uses compression in the depot files, a system administrator should not
rely on the compressibility of the data when sizing backup media. Both text and binary
files are either compressed by the Perforce server (denoted by the .gz suffix) before
storage, or are stored uncompressed. At most installations, if any binary files in the depot
subdirectories are being stored uncompressed, they were probably incompressible to
begin with. (For example, many image, music, and video file formats are incompressible.)

Back up after checkpointing

In order to ensure that the versioned files reflect all the information in the database after a
post-crash restoration, the db.* files must be restored from a checkpoint that is at least as
old as (or older than) your versioned files. For this reason, you should create the
checkpoint before backing up the versioned files in the depot directory or directories.

While your versioned files can be newer than the data stored in your checkpoint, it is in
your best interest to keep this difference to a minimum; in general, you’ll want your
backup script to back up your versioned files immediately after successfully completing a
checkpoint.
30 Perforce 2002.1 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
Backup Procedures

To back up your Perforce server, perform the following steps as part of your nightly
backup procedure:

1. Verify the integrity of your server and add file signatures to any new files:
p4 verify //...
p4 verify -u //...

You may wish to pass the -q (quiet) option to p4 verify. If called with the -q option,
p4 verify will produce output only when errors are detected.

The first command (p4 verify) recomputes the MD5 signatures of all of your
archived files and compares them with those stored when p4 verify -u was first
run on them. It also ensures that all files known to Perforce actually exist in the depot
subdirectories; a disk-full condition that results in corruption of the database or
archived files during the day can be detected by examining the output of these
commands.

The second command (p4 verify -u) updates the database with MD5 signatures for
any new file revisions for which checksums have not yet been computed.

By running p4 verify -u before the backup, you ensure that you create and store
checksums for any files new to the depot since your last backup, and that these
checksums are stored as part of the backup you’re about to take.

The use of p4 verify is optional, but is good practice not only because it allows you
to spot any server corruption before a backup is made, but it also gives you the
ability, following a crash, to detect whether or not the files restored from your
backups are in good condition.

2. Make a checkpoint by invoking p4d with the -jc (journal-create) flag, or by using the
p4 admin command. Use one of:

p4d -jc

or (as of Release 99.2 or higher):
p4 admin checkpoint

Note If your site is very large, p4 verify may take some time to run, and you
may wish to perform this step on a weekly basis rather than on a daily
basis. For more about the p4 verify command, see “File verification by
signature” on page 43.
Perforce 2002.1 System Administrator’s Guide 31

Chapter 2: Supporting Perforce: Backup and Recovery
Because p4d locks the entire database when making the checkpoint, you do not
generally have to stop your Perforce server during any part of the backup procedure.

If you are using the -z flag to create a gzip-compressed checkpoint, the checkpoint
file will be named as specified. If you want the compressed checkpoint file to end in
.gz, you should explicitly specify the .gz on the command line.

3. Ensure that the checkpoint has been created successfully before backing up any files.
(After a disk crash, the last thing you want to discover is that the checkpoints you’ve
been backing up for the past three weeks were incomplete!)

You can tell that the checkpoint command has completed successfully by examining
the error code returned from p4d -jc, or by observing the truncation of the current
journal file.

4. Once the checkpoint has been created successfully, back up the checkpoint file, the
old journal file, and your versioned files.

(If you don’t require an audit trail, you don’t actually need to back up the journal. It
is, however, usually good practice to do so.)

You never need to back up the db.* files. Your latest checkpoint and journal contain
all the information necessary to re-create them. More significantly, a database

Note If your site is very large (say, several GB of .db files), creating a checkpoint
may take a considerable length of time.

Under such circumstances, you may wish to defer checkpoint creation and
journal truncation until times of low system activity. You might, for
instance, archive only the journal file in your nightly backup, and only
create checkpoints and roll the journal file on a weekly basis.

Note There are rare instances (for instance, users obliterating files during
backup, or submitting files on Windows during the file backup portion of
the process) in which your depot files may change during the interval
between the time the checkpoint was taken and the time at which the depot
files get backed up by the backup utility.

Most sites are affected by these issues; having the Perforce server available
on a 24/7 basis is generally a benefit worth this minor risk, especially if
backups are being performed at times of low system activity.

If, however, the reliability of every backup is of paramount importance,
consider stopping the Perforce server before checkpointing, and restarting
it after the backup process has completed. Doing so will eliminate all risk of
the system state changing during the backup process.
32 Perforce 2002.1 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
restored from db.* files is not guaranteed to be in a state of transactional integrity; a
database restored from a checkpoint is.

Recovery Procedures

If the database files become corrupted or lost, either because of disk errors, a hardware
failure such as a disk crash, the database can be recreated with your stored checkpoint
and journal.

There are many ways in which systems can fail; while this guide cannot address all of
them, it can at least provide a general guideline for recovery from the two most common
situations, specifically:

• corruption of your Perforce database only, without damage to your versioned files, and

• corruption to both your database and versioned files.

The recovery procedures for each failure are slightly different, and are discussed
separately in the following two sections.

If you suspect corruption in either your database or versioned files, contact Perforce
technical support.

Database corruption, versioned files unaffected

If only your database has been corrupted, (that is, your db.* files were on a drive that
crashed, but you were using symbolic links to store your versioned files on a separate
physical drive), you need only re-create your database.

You will need:

• The last checkpoint file, which should be available from the latest P4ROOT directory
backup.

Windows On Windows, if you make your system backup while the Perforce server is
running, you must ensure that your backup program doesn’t attempt to
back up the db.* files.

If you try to back up the db.* files with a running server, Windows locks
them while the backup program backs them up. During this brief period,
the Perforce server is unable to access the files; if a user attempts to perform
an operation that would update the file, the server may fail.

If your backup software doesn’t allow you to exclude the db.* files from
the backup process, you should stop the server with p4 admin stop before
backing up, and restart the server after the backup process is complete.
Perforce 2002.1 System Administrator’s Guide 33

Chapter 2: Supporting Perforce: Backup and Recovery
• The current journal file, which should be on a separate filesystem from your P4ROOT
directory, and which should therefore have been unaffected by any damage to the
filesystem where your P4ROOT directory was held.

You will not need:

• Your backup of your versioned files; if they weren’t affected by the crash, they’re
already up to date.

To recover the database

1. Stop the current instance of p4d:
p4 admin stop

(You must be a Perforce superuser to use p4 admin.)

2. Rename (or move) the corrupt database (“db.”) files:
mv your_root_dir/db.* /tmp

The corrupt db.* files aren’t actually used in the restoration process, but it’s safe
practice not to delete them until you’re certain your restoration was successful.

3. Invoke p4d with the -jr (journal-restore) flag, specifying your most recent
checkpoint and current journal. If you explicitly specify the server root ($P4ROOT),
the -r $P4ROOT argument must precede the -jr flag:

p4d -r $P4ROOT -jr checkpoint_file journal_file

This recovers the database as it existed when the last checkpoint was taken, and then
apply the changes recorded in the journal file since the checkpoint was taken.

Check your system

Your restoration is complete. See “Ensuring system integrity after any restoration” on
page 37 to make sure your restoration was successful.

Note If you’re using the -z (compress) option to compress your checkpoints
upon creation, you’ll have to restore the uncompressed journal file
separately from the compressed checkpoint.

That is, instead of using:

p4d -r $P4ROOT -jr checkpoint_file journal_file

you’ll use two commands:

p4d -r $P4ROOT -z -jr checkpoint_file.gz
p4d -r $P4ROOT -jr journal_file

You must explicitly specify the .gz extension yourself when using the -z
flag, and ensure that the -r $P4ROOT argument precedes the -jr flag.
34 Perforce 2002.1 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
Your system state

The database recovered from your most recent checkpoint, after you’ve applied the
accumulated changes stored in the current journal file, is up to date as of the time of
failure.

After recovery, both your database and versioned files should reflect all changes made up
to the time of the crash, and no data should have been lost.

Both database and versioned files lost or damaged

If both your database and your versioned files were corrupted, you need to restore both
the database and your versioned files, and you’ll need to ensure that the versioned files
are no older than the restored database.

You will need:

• The last checkpoint file, which should be available from the latest P4ROOT directory
backup.

• Your versioned files, which should be available from the latest P4ROOT directory
backup.

You will not need:

• Your current journal file. The journal contains a record of changes to the metadata and
versioned files that occurred between the last backup and the crash; because you’ll be
restoring a set of versioned files from a backup taken before that crash, the checkpoint
alone contains the metadata useful for the recovery, and the information in the journal
is of limited or no use.

To recover the database

1. Stop the current instance of p4d:
p4 admin stop

(You must be a Perforce superuser to use p4 admin.)

2. Rename (or move) the corrupt database (“db.”) files:
mv your_root_dir/db.* /tmp

The corrupt db.* files aren’t actually used in the restoration process, but it’s safe
practice not to delete them until you’re certain your restoration was successful.

3. Invoke p4d with the -jr (journal-restore) flag, specifying only your most recent
checkpoint:

p4d -r $P4ROOT -jr checkpoint_file
Perforce 2002.1 System Administrator’s Guide 35

Chapter 2: Supporting Perforce: Backup and Recovery
This recovers the database as it existed when the last checkpoint was taken, but does
not apply any of the changes in the journal file. (The -r $P4ROOT argument must
precede the -jr flag.)

The database recovery without the roll-forward of changes in the journal file brings
the database up to date as of the time of your last backup. In this scenario, you do not
want to apply the changes in the journal file, because the versioned files you restored
reflect only the depot as it existed as of the last checkpoint.

To recover your versioned files

4. After recovering the database, you then need to restore the versioned files according
to your system’s restoration procedures (for instance, the UNIX restore(1)

command) to ensure that they are as new as the database.

Check your system

Your restoration is complete. See “Ensuring system integrity after any restoration” on
page 37 to make sure your restoration was successful.

Note that files submitted to the depot between the time of the last system backup and the
disk crash will not be present in the depot.

Your system state

After recovery, your depot directories may not contain the newest versioned files. That is,
files submitted after the last system backup but before the disk crash may have been lost.

• In most cases, the latest revisions of such files can be restored from the copies still
residing in your users’ client workspaces.

• In a case where only your versioned files (but not the database, which may have resided
on a separate disk and remained unaffected by the crash) were lost, you may also be
able to make a separate copy of your database and apply your journal to it in order to

Note Although “new” files (submitted to the depot but not yet backed up) will
not appear in the depot after restoration, it’s possible (indeed, highly
probable!) that at one or more of your users will have up-to-date copies of
such files present in their client workspaces.

Your users can find such files by using Perforce to examine how files in
their client workspaces differ from those in the depot. If they run:

p4 diff -se

...they’ll be provided with a list of files in their workspace which differ from
the files Perforce believes them to have. After verifying that these files are
indeed the files you wish to restore, you may wish to have one of your
users open these files for edit and submit them to the depot in a changelist.
36 Perforce 2002.1 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
examine recent changelists to track down files submitted between the last backup and
the disk crash.

In either case, contact Perforce technical support for further assistance.

Ensuring system integrity after any restoration

After any restoration, it’s wise to run p4 verify to ensure the versioned files are at least
as new as the database:

p4 verify -q //...

This command verifies the integrity of the versioned files. The -q (quiet) option tells the
command to only produce output on error conditions. Ideally, this command should
produce no output.

If any versioned files are reported as MISSING by the p4 verify command, you’ll know
that there is information in the database concerning files that didn’t get restored. The
usual cause is that you restored from a checkpoint and journal made after the backup of
your versioned files. (that is, that your backup of the versioned files was older than the
database.)

If (as recommended) you’ve been using p4 verify -u to generate and store MD5
signatures for your versioned files as part of your backup routine, you can run p4 verify

on the server after restoration to reassure yourself that your restoration was successful.

If you have any difficulties restoring your system after a crash, contact Perforce Technical
Support for assistance.
Perforce 2002.1 System Administrator’s Guide 37

Chapter 2: Supporting Perforce: Backup and Recovery
38 Perforce 2002.1 System Administrator’s Guide

Chapter 3 Administering Perforce:
Superuser Tasks
This chapter describes both basic tasks associated with day-to-day Perforce
administration as well as setting up advanced Perforce configurations, dealing with cross-
platform development issues, migrating Perforce servers from one machine to another,
and setting up remote and local depots.

Each of the tasks described in this chapter requires that you be a Perforce superuser as
defined in the Perforce protections table. For more about controlling Perforce superuser
access, and protections in general, see “Administering Perforce: Protections” on page 61.

Basic Perforce Administration

The following tasks commonly performed by Perforce administrators are covered:

• User operations, including resetting passwords, creating new users, disabling the
automatic creation of new users, and cleaning up files left open by former users,

• Administrative operations, including obliterating files to reclaim disk space, editing
previously submitted changelists, verifying server integrity, defining filetypes to fine-
tune Perforce’s file type detection mechanism, and the use of the -f flag to force
operations.

Resetting user passwords

From time to time, it is inevitable that users forget Perforce passwords. A Perforce
superuser can set a new password for any user with:

• Release 99.1 and later:
p4 passwd username

(Perforce prompts the superuser for a new password for user username.)

• Pre-99.1 releases:
p4 user -f username

(The user specification form for username appears, and the new password may be
entered.)

Creating new users

By default, Perforce creates a new user in its database whenever a command is issued by a
username it hasn’t seen before.
Perforce 2002.1 System Administrator’s Guide 39

Chapter 3: Administering Perforce: Superuser Tasks
You can use the -f (force) flag to create a new user as follows:
p4 user -f username

Fill in the form fields with the information for the user you wish to create.

The p4 user command also has an option (-i) to take its input from the standard input
instead of the forms editor. If you wish to create a large number of new users at once, you
can write a script which creates output in the same format as that used by the forms editor
and then pipes each pre-generated “form” to p4 users -i -f username, where the
username is also specified by a variable within your calling script.

Preventing creation of new users

As mentioned, Perforce’s default behavior is to create a new user in its database whenever
a command is issued by a username it hasn’t seen before.

To prevent Perforce from automatically creating new users, all users must be explicitly
listed in the protections table. The easiest way to ensure that this is the case is to put all
users into a Perforce group, and to configure Perforce to only permit access to members of
that group.

Example: Setting up users in a group.

A Perforce superuser wants to prevent the server from creating new users. He starts by
setting up a group called p4users for the three users currently at his site. He types:

p4 group p4users

and fills in the form as follows:

He then uses p4 protect to edit the protections table. The relevant line of the default
protections table looks like this:

A Perforce Group Specification.
#
Group: The name of the group.
MaxResults: A limit on the data size of operations for users in
this group, or ’unlimited’.
Subgroups: Other groups automatically included in this group.
Users: The users in the group. One per line.
Group: p4users
MaxResults: unlimited
MaxScanRows: unlimited
Subgroups:
Users:
 edk
 lisag
 sarahm

write user * * //...
40 Perforce 2002.1 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
This grants write permission to any user matching * (that is, to all users) from any host
(the second *) in all areas of the depot (that is, to files in //...).

After using p4 group p4users to create the Perforce group p4users, he uses p4 protect

to change this line in the protections table to read:

The replacement protection grants only write access to users whose group matches
p4users. Members of p4users may use Perforce from any host (*) and have write access to
all areas of the depot (//...).

As long as no other lines in the protections table grant permission to all users, all users are
now defined within p4 protect, and the server will no longer automatically create new user
entries when new users attempt to access Perforce.

For a more in-depth description of Perforce protections, see “Administering Perforce:
Protections” on page 61.

Deleting obsolete users

Each user on the system consumes one Perforce license. You can free up licenses from
unused users by deleting them.

p4 user -d username

You must first revert (or submit) any open files opened by a user before deleting that user.
If you attempt to delete a user who has opened files, Perforce will display an error
message to that effect.

Reverting files left open by obsolete users

If files have been left open by a nonexistent or obsolete user (for instance, a departing
employee), a Perforce superuser can revert the files by deleting the client spec in which
they were opened.

For example, if the output of p4 opened shows:
//depot/main/code/file.c#8 - edit default change (txt) by jim@stlouis

the “stlouis” client spec can be deleted with:
p4 client -d -f stlouis

Deleting a user’s client spec automatically reverts all files opened by that client, and also
removes that client’s “have list”. Note that it does not affect any files in the workspace
actually used by that client; the files can still be accessed by other employees.

write group p4users * //...
Perforce 2002.1 System Administrator’s Guide 41

Chapter 3: Administering Perforce: Superuser Tasks
Reclaiming disk space by obliterating files

The depot is always growing, and this is not always desirable: a submit might have been
performed incorrectly, creating hundreds of unneeded files, or perhaps there are simply a
lot of old files around that are no longer being used.

Because p4 delete merely marks files as deleted in their head revisions, it can’t be used
to free up disk space on the server. This is where p4 obliterate can be useful.
Superusers can use p4 obliterate filename to remove all traces of a file from a depot,
making the file indistinguishable from one that never existed in the first place.

By default, p4 obliterate filename does nothing; it merely reports on what it would
do. To actually destroy the files, use p4 obliterate -y filename.

If you need to destroy only one revision of a file (perhaps someone inadvertently stored
some line art as a 20-megabyte uncompressed TIFF in place of its 500K-long compressed
equivalent), specify only the desired revision number on the command line. For instance,
to destroy revision #5 of a file, use:

p4 obliterate -y file#5

Revision ranges are also acceptable: To destroy revisions 5 through 7 of a file:
p4 obliterate -y file#5,7

The p4 obliterate command has one more flag: -z. When you branch a file from one
area of the depot into another, a “lazy copy” is created - the file itself isn’t copied, only a
record that the branch has occurred. If, for some reason, you wish to undo the “lazy copy”

Warning! Use p4 obliterate with caution. This is the only command in Perforce
that actually removes file data.

Note The purpose of a software configuration management system is to allow
your site to maintain a history of which operations were performed on
which files.

The p4 obliterate command defeats this purpose; as such, it is only
intended to be used when cleaning up messes in the depot, and not as part
of your normal software development process.

Warning! If you mean to obliterate a revision range, be certain you’ve specified it
properly. If you omit the specify revision range, all revisions of the file will
be obliterated!

The safest way to use p4 obliterate is to use it without the -y
(confirmation) flag until you’re certain you’ve specified the files and
revisions correctly.
42 Perforce 2002.1 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
and create a new copy of the branched file’s contents in your depot subdirectories, you
could “obliterate” the lazy copy and create a new one by using p4 obliterate -z

filename.

Unlike the -y flag, the -z flag increases disk space usage by removing the lazy copies. It’s
generally not a flag you’ll use often, as its only use is to undo lazy copies in order to allow
you to manually remove archive files without breaking any linked metadata pointing to
the deleted files.

If a user sees the following error message while trying to access files:
Operation:user-sync
Librarian checkout path failed

where path is the path of a previously-obliterated file, the user has probably encountered
a problem that resulted from an earlier use of p4 obliterate from an older (pre-
98.2/10314) Perforce server. Contact Perforce technical support for a workaround.

Deleting changelists and editing changelist descriptions

You can use the -f (force) flag with p4 change to change the description or username of a
submitted changelist. The syntax is p4 change -f changenumber. This presents the
standard changelist form, but allows you to edit the change time, description, and/or
username.

You can also use the -f flag to delete any submitted changelists that have been emptied of
files with p4 obliterate. The full syntax is p4 change -d -f changenumber.

Example: Updating changelist 123 and deleting changelist 124

Use p4 change with the -f (force) flag:
p4 change -f 123
p4 change -d -f 124

The User: and Description: fields for change 123 are edited, and change 124 is deleted.

File verification by signature

The p4 verify filenames command can be used to generate 128-bit MD5 signatures of
each revision of the named files. A list of signatures stored by p4 verify -u can later be
used to confirm proper recovery in case of a crash: if the signatures of the recovered files
match the previously saved signatures, the files were recovered accurately.

To generate signatures and store them in the Perforce database, use the -u flag.
Subsequent verifications will be compared against the stored signatures; if a new
signature does not match the signature in the Perforce database for that file revision,
Perforce adds the characters BAD! after the signature.
Perforce 2002.1 System Administrator’s Guide 43

Chapter 3: Administering Perforce: Superuser Tasks
If you ever see a BAD! signature during a p4 verify command, your database or
versioned files may have been corrupted, and you should contact Perforce Technical
Support.

Because subsequent verifications can only be performed against previously stored
signatures, the p4 verify -u command should be used regularly. A good strategy, for
instance, might be to run p4 verify on a nightly basis before performing your system
backups, proceeding with the backup only if the p4 verify reports no corruption.
Generation and storage of new checksums (p4 verify -u) following a successful p4
verify could be performed nightly, or even weekly.

Verifying during server upgrades

It is also good practice to use p4 verify during server upgrades:

1. Before the upgrade, run:
p4 verify -qu //...

to generate the new checksums.

2. Take a checkpoint and copy the checkpoint and your versioned files to a safe place.

3. Perform the server upgrade.

4. After the upgrade, run:
p4 verify -q //...

to verify the integrity of your system.

Defining filetypes with p4 typemap

As of Release 2000.1, Perforce supports a new command: p4 typemap.

In previous releases, Perforce automatically determined if a file was of type text or
binary based on an analysis of the first 1024 bytes of a file. If the high bit was clear in each
of the first 1024 bytes, Perforce assumed it to be text; otherwise, it was binary. Although
this default behavior could be overridden by the use of the -t filetype flag, it was easy
to overlook this, particularly in cases where files’ types were usually (but not always)
detected correctly.

The p4 typemap command solves this problem by allowing system administrators to set
up a table that links Perforce file types with file name specifications. If an entry in the
typemap table matches an entry in the table, it overrides the file type that would
otherwise be assigned by the Perforce client.

One common use for p4 typemap is for users dealing with Adobe PDF (Portable
Document Format) files. Some PDF files start with a series of comment fields and textual
data, and if the comments are sufficiently long, the files will be erroneously detected by
44 Perforce 2002.1 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Perforce as being of type text. Similarly, files in RTF (Rich Text Format) format may
sometimes be erroneously detected as text.

Perforce superusers may use p4 typemap to tell the Perforce server to regard all such files
as binary by modifying the typemap table as follows:

The first three periods (“...”) in the specification are a Perforce wildcard specifying that
all files beneath the root directory are to be included as part of the mapping. The fourth
period and the file extension specify that the specification applies to files ending in “.pdf”
(or “.rtf”).

For more information, see the p4 typemap page in the Perforce Command Reference.

Forcing operations with the -f flag

Certain commands allow the superuser to use the -f flag to force certain operations
unavailable to ordinary users. This flag can be used with p4 branch, p4 change, p4
client, p4 job, p4 label, p4 unlock and p4 user. The usages and meanings of this flag
are as follows:

Typemap:
 binary //....pdf
 binary //....rtf

Command Syntax Function

p4 branch p4 branch -f branchname Allows the modification date to
be changed while editing the
branch specification

p4 branch -f -d branchname Deletes the branch, ignoring
ownership

p4 change p4 change -f [changelist#] Allows the modification date to
be changed while editing the
changelist specification

p4 change -f changelist# Allows the description field and
username in a committed
changelist to be edited

p4 change -f -d changelist# Deletes empty, committed
changelists

p4 client p4 client -f clientname Allows the modification date to
be changed while editing the
client specification
Perforce 2002.1 System Administrator’s Guide 45

Chapter 3: Administering Perforce: Superuser Tasks
Advanced Perforce Administration

Running Perforce through a firewall

Perforce clients communicate with a Perforce server using TCP/IP. The server listens for
connections at a specified port on the machine on which it’s running, and clients make
connections to that port.

The port on which the server listens is specified when the server is started. The number is
arbitrary, so long as it does not conflict with any other networking services and is greater
than 1024. The port number on the client machine is dynamically allocated.

p4 client -f -d clientname Deletes the client, ignoring
ownership, even if the client has
opened files

p4 job p4 job -f [jobname] Allows the manual update of
read-only fields

p4 label p4 label -f labelname Allows the modification date to
be changed while editing the
label specification

p4 label -f -d labelname Deletes the label, ignoring
ownership

p4 unlock p4 unlock -c changelist -f file Releases a lock (set with p4

lock) on an open file in a
pending numbered changelist,
ignoring ownership.

p4 user p4 user -f username Allows the update of all fields,
ignoring ownership

p4 user -f -d username Deletes the user, ignoring
ownership.

Command Syntax Function

the network
3710

(arbitrary port)

p4dboxuserbox

P4PORT=p4dbox:3710
46 Perforce 2002.1 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
A firewall is a network element which prevents any packets from outside a local (trusted)
network from reaching that local network. This is done at a low level in the network
protocol; any packets not coming from a trusted IP address are simply ignored.

In the following diagram, the Perforce client is on an untrusted part of the network. None
of its connection requests reach the machine with the Perforce server. Consequently, the
user running the client through the firewall is unable to use Perforce.

Secure shell

To solve this problem, you have to make the connection to the Perforce server from within
the trusted network. This can be done securely using a package called secure shell (ssh).

Secure shell (ssh) is meant to be a replacement for the UNIX rsh (remote shell) command,
which allows you to log into a remote system and execute commands on it. The “secure”
part of “secure shell” comes from the fact that the connection is encrypted, so none of the
data is visible while it passes through the untrusted network. With simple utilities like
rsh, all traffic - even passwords - is unencrypted and visible to all intermediate hosts,
creating an unacceptable security hazard.

Secure shell is available for free in source form for a multitude of UNIX platforms from
http://www.openssh.com. This page also links to ports of ssh for OS/2 and Amiga, as
well as commercial implementations for Windows and Macintosh from Data Fellows
(http://www.datafellows.com) and SSH (http://www.ssh.com).

The OpenSSH FAQ (Frequently Asked Questions) can also be found online at the main site
(http://www.openssh.com/faq.html).

Solving the problem

Once you have ssh up and running, the simplest thing to do is to use it to log into the
firewall machine and run the Perforce client from the firewall. While it has the advantage
of simplicity, it’s a poor solution: you typically want your client files accessible on your
local machine, and of course, there’s no guarantee that your firewall machine will match
your development platform.

A good solution takes advantage of ssh’s ability to forward arbitrary TCP/IP connections.
By using ssh, you can make your Perforce client appear as though it’s connecting from the
firewall machine over the local (trusted) network. In reality, your client remains on your

3710

p4dboxfirewall

local, trusted
network

big, bad,
untrusted
network

“I’m listening, but nobody’s talking”

userbox

“Hey, where’d p4dbox go?”
Perforce 2002.1 System Administrator’s Guide 47

Chapter 3: Administering Perforce: Superuser Tasks
local machine, but all packets from your local machine are first sent to the firewall
through the secure channel set up by ssh.

Suppose the Perforce server is on p4dbox.bigcorp.com, and the firewall machine is
called firewall.bigcorp.com. In our example, we’ll arbitrarily choose local port 4242,
and assume that the Perforce server is listening on port 3710.

Packets ultimately destined for your client’s port 4242 are first sent to the firewall, and
ssh forwards them securely to your client. Likewise, connections made to port 4242 of the
firewall machine will end up being routed to port 3710 of the Perforce server.

On UNIX, the ssh command on your own machine to set up and forward the TCP/IP
connection would be:

ssh -L 4242:p4dbox.bigcorp.com:3710 firewall.bigcorp.com

At this point, it may be necessary to provide a password to log into
firewall.bigcorp.com. Once the connection is established, ssh listens at port 4242 on
the local machine, and forwards packets over its encrypted connection to
firewall.bigcorp.com; the firewall then forwards them by normal channels to port
3710 on p4dbox.bigcorp.com.

All that remains is to tell the Perforce client to use port 4242 by setting the environment
variable P4PORT to 4242.

Normally, setting P4PORT=4242 would normally indicate that we are trying to connect to
a Perforce server on the local machine listening at port 4242. In this case, ssh takes the
role of the Perforce server. Anything a client sends to port 4242 of the local machine is
forwarded by ssh to the firewall, which passes it to the real Perforce server at
p4dbox.bigcorp.com. Since all of this is transparent to the Perforce client, it doesn’t
matter whether the client is talking to an instance of ssh that’s forwarding traffic from
port 4242 of the local machine, or if it’s talking to a real Perforce server residing on the
local machine.

The only glitch is that there’s a login session you don’t normally want on the firewall
machine.

3710

p4dboxfirewall

local, trusted
network

ssh-based
encrypted
connection

userbox

4242

“Something at 4242 looks
“userbox:4242 <-> p4dbox:3710” “There’s a client at 3710!”like a Perforce server to me”
48 Perforce 2002.1 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
This can be solved by running
ssh -L 4242:p4dbox.bigcorp.com:3710 firewall.bigcorp.com -f sleep 9999999 -f

on the remote system.

This tells ssh on firewall.bigcorp.com to fork a long-running sleep command in the
background after the password prompt. Effectively, this sets up the ssh link and keeps it
up; there is no login session to terminate.

Finally, ssh can be configured to “do the right thing” so that it is unnecessary to type such
a long command with each session. The Windows version of ssh, for instance, has a GUI
to configure this.

One final concern: with port 4242 on the local machine now forwarded to a supposedly
secure server, your local machine is part of the trusted network; it is prudent to make sure
the local machine really is secure. The Windows version of ssh has an option to only allow
local connections to the forwarded port, which is a wise precaution; your machine will be
able to use port 4242, but a third party’s machine will be ignored.

Specifying IP addresses in P4PORT

Under most circumstances, your Perforce server’s P4PORT setting consists solely of a port
number.

If, however, you specify both an IP address and a port number in P4PORT when starting
p4d, the Perforce server takes the IP address into account, and ignores requests from any
IP addresses other than the one specified in P4PORT.

Although this isn’t the default behavior, it can be useful. For instance, if you want to tell
p4d to listen only to a specific network interface or IP address, you can make your Perforce
server ignore all non-local connection requests by setting P4PORT=localhost:port.

Running from inetd on UNIX

Under a normal installation, the Perforce server is run on UNIX as a background process
which waits for connections from clients. It is possible, however, to have p4d start up only
when connections are made to it, using inetd and p4d -i.

If you wish to do this, add the following line to /etc/inetd.conf:
p4dservice stream tcp nowait username /usr/local/bin/p4d p4d -i -rp4droot

and add the following to /etc/services:
p4dservice nnnn/tcp

where:

• p4dservice is the service name you choose for this Perforce server

• /usr/local/bin is the directory holding your p4d binary
Perforce 2002.1 System Administrator’s Guide 49

Chapter 3: Administering Perforce: Superuser Tasks
• p4droot is the root directory (P4DROOT) to use for this Perforce server (for example,
/usr/local/p4d)

• username is the UNIX user name to use for running this Perforce server

• nnnn is the port number for this Perforce server to use

Note the “extra” p4d on the /etc/inetd.conf line must be there; inetd passes this to the
OS as argv[0]. The first argument, then, is the -i flag, which causes p4d not to run in the
background as a daemon, but rather to serve the single client connected to it on
stdin/stdout. (This is the convention used for services started by inetd.)

This method is an alternative to running p4d from a startup script. It can also be useful for
providing special services; for example, at Perforce, we have a number of test servers
running on UNIX, each defined as an inetd service with its own port number.

There are caveats with this method:

• inetd may disallow excessive connections, so a script which invokes several thousand
p4 commands, each of which spawns an instance of p4d via inetd may cause inetd to
temporarily disable the service. Depending on your system, you may need to configure
inetd to ignore or raise this limit.

• There is no easy way to disable the server, since the p4d executable is run each time;
disabling the server requires modifying /etc/inetd.conf and restarting inetd.

Case sensitivity and multi-platform development

Early (pre-97.2) releases of the Perforce server treated all filenames, pathnames, and
database entity names with case significance, whether the server was running on UNIX or
Windows.

For example, //depot/main/foo.c and //depot/MAIN/FOO.C were treated as two
completely different files. This caused problems where users on UNIX were connecting to
a Perforce server running on Windows, because the filesystem underlying the server
could not store files with the case-variant names submitted by UNIX users.

If you are running a pre-97.2 server on Windows, please contact support@perforce.com
to discuss upgrading your server and database. In release 97.3, the behavior was changed,
and only the UNIX server supports case-sensitive names. However, there are still some
case-sensitivity problems which users can run into when sharing development projects
across UNIX and Windows.
50 Perforce 2002.1 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
To summarize:

• The Perforce server on UNIX supports case-sensitive names.

• The Perforce server on Windows ignores case differences.

• Case is always ignored in keyword-based job searches, regardless of platform

To find out what platform your Perforce server runs on, use p4 info.

Perforce server on UNIX

If your Perforce server is on UNIX, and you have users on both UNIX and Windows, your
UNIX users must be very careful not to submit files whose names differ only by case.
Although the UNIX server can support these files, when Windows users sync their
workspaces, they’ll find files overwriting each other.

Conversely, Windows users will have to be careful to use case consistently in file and path
names when adding new files. They may not realize that files added as
//depot/main/foo.c and //depot/MAIN/bar.c will appear in two different directories
in a UNIX user’s workspace.

The UNIX Perforce server always respects case in client names, label names, branch view
names, and so on. Windows users connecting to a UNIX server should be aware that the
lowercased workstation names are used as the default names for new client workspaces.
For examples, if a new user creates a client spec on a Windows machine named ROCKET,
his client workspace is named rocket by default. If he later sets P4CLIENT to ROCKET (or
Rocket), Perforce will tell him his client is undefined. He must set P4CLIENT to rocket (or
unset it) to use the client workspace he defined.

Perforce server on Windows

If your Perforce server is running on Windows, your UNIX users must be aware that their
Perforce server will store case-variant files in the same namespace.

For example, users who try something like this:
p4 add foo/file1
p4 add foo/file2
p4 add FOO/file3

should be aware that all three files will be stored in the same depot directory. The depot
path and filenames assigned to the Windows server will be those first referenced. (In this
case, the depot path name would be foo, and not FOO.)

Case-sensitive UNIX server Windows server

Pathnames and filenames Yes No

Database entities (clients, labels, etc.) Yes No

Job search keywords No No
Perforce 2002.1 System Administrator’s Guide 51

Chapter 3: Administering Perforce: Superuser Tasks
Perforce server trace flags

You can turn on command tracing in the Perforce server by adding the -v server=1 flag
to the p4d startup command. Use P4LOG or the -L logfile flag to name a log file. For
example:

p4d -r /usr/perforce -v server=1 -p 1666 -L /usr/perforce/logfile

Trace output appears in the specified log file, and shows the date, time, username, IP
address, and command for each request processed by the server. Before turning on
logging, you should make sure that you have adequate disk space.

In most cases, the Perforce server trace flags are useful only to administrators working
with Perforce Technical Support to diagnose or investigate a problem.

Migrating to a new machine

The procedure for moving an existing Perforce installation from one machine to another
depends on whether or not you’re moving between machines

• of identical architecture,

• of different architectures using the same text file (CR/LF) format, or

• of different architecture and different text file format.

There are also additional considerations if the new machine has a different IP address or
hostname.

The Perforce server stores two types of data under the Perforce root directory: versioned
files and a database containing metadata describing those files. Your versioned files are the
ones created and maintained by your users, and your database is a set of Perforce-
maintained binary files holding the history and present state of the versioned files. In
order to move a Perforce server to a new machine, both the versioned files and the
database must be successfully migrated from the old machine to the new machine.

Windows Prior to Release 98.1, you could not set this trace flag when running
Perforce as a service; you could set this flag (on Windows only) when
running p4d.exe a server process from the MS-DOS command line.

As of Release 98.1, you can use the p4 set command to set P4DEBUG as a
registry variable to “server=1” and thereby use this trace flag with
Perforce installed as a service on Windows.

Prior to Release 97.3, the server trace flag was unavailable on any server
platform.
52 Perforce 2002.1 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
For more about the distinction between versioned files and database, as well as for an
overview of backup and restore procedures in general, see “Backup and Recovery
Concepts” on page 25.

Moving your versioned files and Perforce database
Between machines of the same architecture

If the architecture of the two machines is the same (e.g., SPARC/SPARC, x86/x86), the
versioned files and database can be copied directly between the machines, and you only
need to move the server root directory tree to the new machine. You can use tar, cp,
xcopy.exe, or any other method. Copy everything in and under the P4ROOT directory -
the db.* files (your database) as well as the depot subdirectories (your versioned files).

1. Back up your server (including a p4 verify before the backup) and take a
checkpoint.

2. On the old machine, stop p4d.

3. Copy the contents of your old server root (P4ROOT) and all its subdirectories on the
old machine into the new server root directory on the new machine.

4. Start p4d on the new machine with the desired flags.

5. Run p4 verify on the new machine to ensure that the database and your versioned
files were transferred correctly to the new machine.

(Although the backup, checkpoint, and subsequent p4 verify are not strictly necessary
in this case, it’s always good practice to verify, checkpoint, and back up your system
before any migration, and likewise to perform a subsequent verification after migration.)

Between different architectures using the same text format

If the internal data representation (big-endian vs. little-endian) convention differs
between the two machines (e.g., Linux-on-x86/SPARC, NT-on-Alpha/NT-on-x86), but
their operating systems use the same CR/LF text file conventions, you can still simply
move the server root directory tree to the new machine.

Although the versioned files are portable across architectures, the database, as stored in
the db.* files, is not. To transfer the database, you will need to create a checkpoint of your
Perforce server on the old machine and use that checkpoint to recreate the database on the
new machine. The checkpoint is a text file which can be read by a Perforce server on any
architecture. For more details, see “Creating a checkpoint” on page 26.

After creating the checkpoint, you can use tar, cp, xcopy.exe, or any other method to
copy the checkpoint file and the depot directories to the new machine. (You don’t need to
copy the db.* files, because they will be recreated from the checkpoint you took.)
Perforce 2002.1 System Administrator’s Guide 53

Chapter 3: Administering Perforce: Superuser Tasks
1. On the old machine, use p4 verify to ensure that the database is in a consistent
state.

2. On the old machine, stop p4d.

3. On the old machine, create a checkpoint:
p4d -jc checkpointfile

4. Copy the contents of your old server root (P4ROOT) and all its subdirectories on the
old machine into the new server root directory on the new machine.

(To be precise, you don’t need to copy the db.* files, just the checkpoint and the
depot subdirectories. The db.* files will be recreated from the checkpoint. If it’s more
convenient to copy everything, then copy everything.)

5. On the new machine, if you copied the db.* files, be sure to remove them from the
new P4ROOT before continuing.

6. Recreate a new set of db.* files suitable for your new machine’s architecture from the
checkpoint you created:

p4d -jr checkpointfile

7. Start p4d on the new machine with the desired flags.

8. Run p4 verify on the new machine to ensure that the database and your versioned
files were transferred correctly to the new machine.

Between Windows and UNIX

In this case, both the architecture of the system and the CR/LF text file convention may be
different. You still have to create a checkpoint, copy it, and recreate the database on the
new platform, but when you move the depot subdirectories containing your versioned
files, you will also have to address the issue of the differing linefeed convention between
the two platforms.

Depot subdirectories can contain both text and binary files. The text files (in RCS format,
ending with “,v”) and binary files (directories of individual binary files, each directory
ending with “,d”) will need to be transferred differently in order to translate the line
endings on the text files while leaving the binary files unchanged.

As with all other migrations, be sure to run p4 verify after your migration.

Contact Perforce Technical Support for assistance when migrating a Perforce server from
Windows to UNIX or vice-versa.
54 Perforce 2002.1 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Changing the IP address of your server

If the IP address of the new machine is not the same as that of the old machine, you may
need to update any IP-address-based protections in your protections table. See
“Administering Perforce: Protections” on page 61 for information on setting protections
for your Perforce server.

If you are a licensed Perforce customer, you will also need a new license file to reflect the
new IP address. Contact Perforce technical support to obtain an updated license.

Changing the hostname of your server

If the hostname of the new machine serving Perforce is different from that of its
predecessor, your users will need to change their P4PORT settings. If the old machine is
being retired or renamed, consider setting an alias for the new machine to match that of
the old machine, so that your users won’t have to change their P4PORT settings.

Using Multiple Depots

Just as Perforce servers can host multiple depots, Perforce client programs can access files
from multiple depots. These other depots may reside within the Perforce server normally
accessed by the Perforce client, or they may reside within other, remote, Perforce servers.

When using local depots, the user’s Perforce client program communicates with the
Perforce server specified by the user’s P4PORT environment variable or equivalent setting.

When using remote depots, the user’s Perforce client uses its default Perforce server as a
proxy client to a second, remote, Perforce server. Because of this proxy behavior, the client
doesn’t need to know where the files are actually stored, and doesn’t need direct access to
the remote Perforce server.

The use of depots on remote servers (“remote depots”) is limited to read-only operations;
a Perforce client may not add, edit, integrate into, or delete files that reside in depots on
other servers. Depots sharing the same Perforce server as the client (“local depots”) are
not subject to this limitation.

The following diagram illustrates how remote depots use a user’s default Perforce server
as a proxy.
Perforce 2002.1 System Administrator’s Guide 55

Chapter 3: Administering Perforce: Superuser Tasks
Remote depot notes

The term “remote depot” is actually somewhat misleading. New Perforce customers tend
to assume that if their users are geographically distributed, they need to set up separate
Perforce installations (servers running p4d) and interconnect them with remote depot
support.

This is not the case. Perforce is designed to cope with the latencies of large networks and
inherently supports users with client workspaces at remote sites. A single Perforce
installation is ready, out of the box, to support a shared development project, regardless
of the geographic distribution of its contributors.

Remote depots are designed to support shared code, not shared development. They enable
independent organizations with their own Perforce installations to view files and
integrate changes from depots in other installations. Remote depots are not a generalized
solution for load-balancing or network access problems.

When and when not to use remote depots

If you’re doing distributed development, you probably want to use a single Perforce
installation, with all code in depots managed by one Perforce server. Partitioning joint

P4PORT=oak:1234

1234

1818
oak

pine

Depot name: depot
Type: local
Address: subdir
Map: depot/...

Depot name: gui
Type: remote
Address: pine:1818
Map: //depot/gfx/gui/...

Depot name: depot
Type: local
Address: subdir
Map: depot/...

//depot/gfx/gui/file.c

...ask the remote depot for it......//gui is not here locally...

p4 sync //gui/file.c

user
56 Perforce 2002.1 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
development projects into separate Perforce installations will not improve throughput,
and usually only complicates administration.

If, however, you regularly import works from other organizations as part of your own
organization’s body of software, you may wish to consider using Perforce’s remote depot
features. This is what remote depots were designed for: facilitating the sharing of code,
not development, across organizations.

Restrictions on remote depots

Users of remote depots encounter several restrictions:

• Access is restricted to read-only operations. You cannot submit files into a remote
depot. You cannot edit files in remote depots. You can, however, create a branch in a
local depot from files in a remote depot, and then integrate changes from the remote
depot into the local branch. This integration is a one-way operation, as you cannot
make changes in the local branch and integrate them back into the remote depot.

• Remote depots may be accessed only by Perforce servers running at the same release
levels.

• Windows and UNIX servers are incompatible; you will get unpredictable results
accessing remote depots on Windows from a UNIX server or vice versa.

• A Perforce server’s metadata (information about client workspaces, changelists, labels,
and so on) cannot be accessed using remote depots. Commands like p4 client only
return specifications of entities defined in the local server’s metadata.

In general, most of the restrictions associated with remote depots are either insignificant
(lack of remote access to metadata) or beneficial (read-only access) if you’re using remote
depots for their intended purpose, namely the sharing of code, not development, between
separate organizations.

Defining new depots

New depots (local or remote) in a server namespace are defined with the command p4

depot depotname. Depots may be defined as either local or remote depots.

Defining local depots

To define a new local depot (that is, a new depot in the current Perforce server
namespace), call p4 depot with the new depot name, and edit only the Map: field in the
resulting form. For example, to create a new depot called book with the files stored in the
local Perforce server namespace in a root subdirectory called book (that is,
$P4ROOT/book), enter the command p4 depot book, and fill in the resulting form as
follows:
Perforce 2002.1 System Administrator’s Guide 57

Chapter 3: Administering Perforce: Superuser Tasks
Although you can set the Map: field to point to a depot directory other than one matching
the depot name, there is rarely any advantage to be had by doing so, and it can make life
confusing if you (as an administrator) ever need to work with the directories in the server
root.

Defining remote depots

Defining a new depot on a remote Perforce server is only slightly more complicated than
defining a local depot. Set the Type: to remote, provide the server’s address in the
Address: field, and set the Map: field to map into the remote depot namespace.

Example: Defining a remote depot

Lisa is working on a GUI porting project. She and Ed are using different Perforce servers; his
is on host pine, and it’s listening on port 1818. Lisa wants to grab Ed’s GUI routines for her
own use; she knows that Ed’s color routine files are located on his Perforce server’s single
depot under the subdirectory graphics/GUI.

Lisa’s first step towards accessing Ed’s files is to create a new depot. She’ll call this depot gui;
she’d type p4 depot GUI and fill in the form as follows:

This creates a remote depot called gui on Lisa’s Perforce server; this depot (gui) maps to Ed’s
depot’s namespace under its graphics/gui subdirectory.

The Map: field

The Map: field is analogous to a client’s view, except that the view may contain multiple
mappings and the Map: field always contains a single mapping. This single client
mapping format changes depending on whether the depot being defined is local or
remote:

• For local depots, the mapping should contain a subdirectory relative to the file space of
the Perforce server root directory. For example, graphics/gui/... maps to the
graphics/gui subdirectory of the server root.

Depot: book
Type: local
Address: subdir
Map: book/...

Depot: gui
Type: remote
Address: pine:1818
Map: //depot/graphics/gui/...
58 Perforce 2002.1 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
• For remote depots, the mapping should contain a subdirectory relative to the remote
depot namespace. For example, //depot/graphic/gui/... would map to the
graphic/gui subdirectory of the remote server depot named depot.

Note that the mapping subdirectory must always contains the “...” wildcard on its right
side.

If you are unfamiliar with client views and mappings, please consult the Perforce User’s
Guide for general information about how Perforce mappings work.

Other depot operations
Naming depots

Depot names share the same namespace as branches, clients, and labels. For example,
//foo refers uniquely to one of the depot foo, the client foo, the branch foo, or the label
foo; you can’t simultaneously have both a depot and a label named foo.

Listing depots

You can list all depots known to the current Perforce server with the p4 depots
command.

Deleting depots

You can delete depots with p4 depot -d depotname.

To delete a depot, it must be empty; you must first obliterate all files in the depot with p4

obliterate.

For local depots, p4 obliterate deletes the versioned files as well as all their associated
metadata. For remote depots, p4 obliterate erases only the locally held client and label
records; the files and metadata still residing on the remote server remain intact.

Before using p4 obliterate, and especially if you’re about to use it to obliterate all files in
a depot, read and understand the warnings in “Reclaiming disk space by obliterating
files” on page 42.

Limiting access from other servers

Remote depots are always accessed by a virtual user named remote, which does not
consume a Perforce license. By default, all the files on any Perforce server may be accessed
remotely.

To limit or eliminate remote access to a particular server, use p4 protect to set
permissions for user remote on that server.
Perforce 2002.1 System Administrator’s Guide 59

Chapter 3: Administering Perforce: Superuser Tasks
For example, to eliminate remote access to all files in all depots on a particular server, set
the following permission on that server:

read user remote * -//...

Since remote depots can only be used for read access, it is not necessary to remove write
or super access.

Users working with multiple depots

If your users will be using remote depots as well as local depots, they should be aware of
certain caveats regarding the behavior of files in remote depots as opposed to local
depots, as described in the preceding sections.

The Perforce User’s Guide contains detailed information for users who will be working with
more than one depot.
60 Perforce 2002.1 System Administrator’s Guide

Chapter 4 Administering Perforce:
Protections
Perforce provides a protection scheme to prevent unauthorized or inadvertent access to
the depot. The protections determine which Perforce commands can be run, on which
files, by whom, and from which host. Protections are set with the p4 protect command.

When Should Protections Be Set?

Before p4 protect is run, every Perforce user is a superuser, and can access and change
anything in the depot. The first time protect is invoked, a protections table is created that
gives the invoking user superuser access from all hosts, and lowers everyone else’s access
level to write permission on all files from all hosts. Therefore, protect should be run as
the concluding step of all new Perforce installations; the superuser can change the access
levels as needed at any time.

The Perforce protections are stored in the db.protect file in the server root directory; if
p4 protect is first run by an unauthorized user (or if you accidentally lock yourself out!)
the depot can be brought back to its unprotected state by removing this file.

Setting Protections with “p4 protect”

The p4 protect form contains a single form field called Protections: that consists of
multiple lines. Each line in Protections: contains subfields, and the table looks like this:

Example: A sample protections table:

(The five fields may not line up vertically on your screen; they are aligned here for readability.)

The permission lines’ five fields

Each line specifies a particular permission; each permission is defined by five fields.

Protections:
read user emily * //depot/elm_proj/...
write group devgrp * //...
write user * 195.3.24.* -//...
write user joe * -//...
write user lisag * -//depot/...
write user lisag * //depot/doc/...
super user edk * //...
Perforce 2002.1 System Administrator’s Guide 61

Chapter 4: Administering Perforce: Protections
The meanings of these fields are:

Access levels

The access level is described by the first value on each line. The six access levels are:

Field Meaning

Access Level Which access level is being granted: list, read, open, write, review,
or super. These are described below.

User/Group Does this protection apply to a user or a group? The value must be
user or group.

Name The user or group whose protection level is being defined. This field
may contain the “*” wildcard. A “*” by itself grants this protection to
everyone, “*e” grants this protection to every user (or group) whose
username ends with an “e”.

Host The TCP/IP address of the host being granted access. This must be
provided as the numeric address of the host in dotted quad notation
(for instance, 192.168.41.2).

This field may contain the “*” wildcard. A “*” by itself means that
this protection is being granted for all hosts. The wildcard can be used
as in any string, so “192.168.41.*” would define access to any
subnet within 192.168.41, and “*3*” would refer to any IP address
with a “3” in it.

Since the client’s IP address is provided by the Internet Protocol itself,
this field provides as much security as is provided by the network.

Files A file specification representing the files in the depot on which
permissions are being granted. Perforce wildcards can be used in the
specification.

“//...” means all files in all depots.

Access Level Meaning

list Permission is granted to run Perforce commands that display file
metadata, such as p4 filelog. No permission is granted to view or
change the contents of the files.

read The user(s) can run those Perforce commands that are needed to read
files, such as p4 client and p4 sync. The read permission includes
list access.
62 Perforce 2002.1 System Administrator’s Guide

Chapter 4: Administering Perforce: Protections
Each Perforce command is associated with a particular minimum access level. For
example, to run p4 sync on a particular file, the user must have been granted at least read
access on that file. The access level required to run a particular command can usually be
reasoned from knowledge of what the command does. For example, it is somewhat
obvious that p4 print would require read access. For a full list of the minimum access
levels required to run each Perforce command, see “How Protections are Implemented”
on page 67.

Which users should receive which permissions?

The simplest method of granting permissions is to give write permission to all users who
don’t need to manage the Perforce system, and give super access to those who do, but
there are times when this simple solution isn’t sufficient.

Read access to particular files should be granted to users who don’t ever need to edit those
files. For example, an engineer might have write permission for source files, but have
only read access to the documentation, while managers might be granted only read

access to all files.

Because open access allows local editing of files, but doesn’t allow these files to be written
to the depot, open access is usually granted only in unusual circumstances. You might
choose open access over write access when users are testing their changes locally, but
when these changes should not be seen by other users. For instance, bug testers may want
to change code in order to test theories as to why particular bugs occur, but these changes

open Grants permission to read files from the depot into the client
workspace, and gives permission to open and edit those files. This
permission does not allow the user to write the files back to the depot.
open is similar to write, except that with open permission, users are
not allowed to run p4 submit or p4 lock.

The open permission includes read and list access.

write Permission is granted to run those commands that edit, delete, or add
files. The write permission includes read, list, and open access.

This permission allows use of all Perforce commands except protect,
depot, obliterate, and verify.

review A special permission granted to review daemons. It includes list and
read access, plus use of the p4 review command. Only review
daemons require this permission.

super For Perforce superusers; grants permission to run all Perforce
commands. Provides write and review access plus the added ability
to edit protections, create depots, obliterate files, and verify files.

Access Level Meaning
Perforce 2002.1 System Administrator’s Guide 63

Chapter 4: Administering Perforce: Protections
would be for their own use, and would not be written to the depot. Perhaps a codeline has
been frozen, and local changes are to be submitted to the depot only after careful review
by the development team. In these cases, open access would be granted until the code
changes have been approved, after which time the protection level would be upgraded to
write and the changes submitted.

Default protections

Before p4 protect is invoked, every user has superuser privileges. When p4 protect is
first run, two permissions are set by default. The default protections table looks like this:

This indicates that write access is granted to all users, on all hosts, to all files.
Additionally, the user who first invoked p4 protect (in this case, edk) is granted
superuser privileges.

Interpreting multiple permission lines

The access rights granted to any user are defined by the union of mappings in the
protection lines that match her user name and client IP address. (This behavior is slightly
different when exclusionary protections are provided and is described in the next section.)

Example: Multiple Permission Lines

Lisa, whose Perforce username is lisag, is using a client with the IP address
195.42.39.17. The protections file reads as follows:

The union of the first three permissions apply to Lisa. Her username is lisag, and she’s
currently using a client workspace on the host specified in lines 1 and 2. Thus, she can write
files located in the depot’s doc subdirectory, but can only read other files. Lisa tries the
following:

She types p4 edit //lisag/doc/elm-help.1, and is successful.

She types p4 edit //lisag/READ.ME, and is told that she doesn’t have the proper
permission. She is trying to write to a file to which has only read access. She types p4 sync

//lisag/READ.ME, and this command succeeds, as only read access is needed, and this is
granted to her on line 1.

write user * * //...
super user edk * //...

read user * 195.42.39.17 //...
write user lisag 195.42.39.17 //depot/elm_proj/doc/...
read user lisag * //...
super user edk * //...
64 Perforce 2002.1 System Administrator’s Guide

Chapter 4: Administering Perforce: Protections
Lisa later switches to another machine with IP address 195.42.39.13. She types p4 edit
//lisag/doc/elm-help.1, and the command fails; when she’s using this host, only the
third permission applies to her, and she only has read privileges.

Exclusionary protections

A user can be denied access to particular files by prefacing the fifth field in a permission
line with a minus sign (“-”). This is useful for giving most users access to a particular set
of files, while denying access to the same files to only a few users.

To use exclusionary mappings properly, it is necessary to understand some of their
peculiarities:

• When an exclusionary protection is included in the protections table, the order of the
protections is relevant: the exclusionary protection is used to remove any matching
protections above it in the table.

• No matter what access level is provided in an exclusionary protection, all access levels
for the matching files and IP addresses are denied. The access levels provided in
exclusionary protections are irrelevant. The reasons for this counterintuitive behavior
are described in the section “How Protections are Implemented” on page 67.

Example: Exclusionary protections.

Ed has used p4 protect to set up protections as follows:

The first permission looks like it grants write access to all users to all files in all depots, but
this is overruled by later exclusionary protections for certain users.

The third permission denies Joe permission to access any file from any host. No subsequent
lines grant Joe any further permissions; thus, Joe has been effectively locked out of Perforce.

The fourth permission denies Lisa all access to all files on all hosts, but the fifth permission
gives her back write access on all files within a specific directory. If the fourth and fifth lines
were switched, Lisa would be unable to run any Perforce command.

write user * * //...
read user emily * //depot/elm_proj/...
super user joe * -//...
list user lisag * -//...
write user lisag * //depot/elm_proj/doc/...
Perforce 2002.1 System Administrator’s Guide 65

Chapter 4: Administering Perforce: Protections
Granting Access to Groups of Users

Perforce groups simplify maintenance of the protections table. The names of users with
identical access requirements can be stored in a single group; the group name can then be
entered in the table, and all the users in that group receive the specified permissions.

Groups are maintained with p4 group and their protections assigned with p4 protect.
Only Perforce superusers may use these commands.

Creating and editing groups

If p4 group groupname is called with a non-existent groupname, a new group named
groupname is created. Calling p4 group with an existing groupname allows editing of the
user list for this group.

The command p4 group groupname displays a form with two fields: Group: and Users:.
The Group: field stores the group name, and cannot be edited; Users: is empty when the
group is first created, and must be filled in. User names are entered under the Users:
field header; each user name must be typed on its own line, and should be indented. A
single user may be listed in any number of groups.

As of Release 99.2, groups can contain other groups, not just users. To add all users in a
previously defined group to the group you’re presently working with, include the group
name in the Subgroups: field of the p4 group form. User and group names occupy
separate namespaces, so groups and users can have the same names.

Groups and protections

To use a group with the p4 protect form, specify a group name instead of a user name in
any line in the protections table, and set the value of the second field on the line to group

instead of user. All the users in that group will be granted the specified access.

Example: Granting access to Perforce groups.

This protections table grants list access to all members of the group devgrp, and super

access to user edk:

If a user belongs to multiple groups, one permission may override another, but the actual
permissions granted to a specific user can be determined by replacing the names of all
groups that a particular user belongs to with the user’s name within the protections table,
and applying the rules described earlier in this chapter.

list group devgrp * //...
super user edk * //...
66 Perforce 2002.1 System Administrator’s Guide

Chapter 4: Administering Perforce: Protections
Deleting groups

To delete a group, invoke
p4 group -d groupname

Alternately, invoke p4 group groupname and delete all the users from the group in the
resulting editor form. The group will be deleted when the form is closed.

How Protections are Implemented

This section describes the algorithm that Perforce follows to implement its protection
scheme. Protections can be used properly without reading this section, as the material
here is provided to explain the logic behind the behavior described above.

Users’ access to files is determined by the following steps:

• The command is looked up in the command access level table shown in “Access Levels
Required by Perforce Commands” on page 68 to determine the minimum access level
needed to run that command. In our example, p4 print is the command, and the
minimum access level required to run that command is read.

• Perforce makes the first of two passes through the protections table. Both passes move
up the protections table, bottom to top, looking for the first relevant line.

The first pass determines whether or not the user is allowed to know whether or not the
file exists. This search simply looks for the first line encountered that matches the user
name, host IP address, and file argument. If the first matching line found is an
inclusionary protection, then the user has permission to at least list the file, and Perforce
proceeds to the second pass. Otherwise, if the first matching protection found is an
exclusionary mapping, or if the top of the protections table is reached without a
matching protection being found, then the user has no permission to even list the file,
and will receive a message like File not on client.

Example: Interpreting the order of mappings in the protections table.

Suppose that our protections table is set as follows:

If Ed runs p4 print //depot/foo, Perforce examines the protections table bottom to top,
and first encounters the last line. The files specified there don’t match the file that Ed wants to
print, so this line is irrelevant. The second-to-last line is examined next; this line matches Ed’s
user name, his IP address, and the file he wants to print; since this line is an exclusionary
mapping, Ed isn’t allowed to even list the file.

write user * * //...
read user edk * -//...
read user edk * //depot/elm_proj/...
Perforce 2002.1 System Administrator’s Guide 67

Chapter 4: Administering Perforce: Protections
• If the first pass is successful, a second pass is made at the protections table; this pass is
the same as the first, except that access level is now taken into account.

If an inclusionary protection line is the first line encountered that matches the user
name, IP address, file argument, and has an access level greater than or equal to the
access level required by the given command, then the user is given permission to run
the command.

If an exclusionary mapping is the first line encountered that matches according to the
above criteria, or if the top of the protections table is reached without finding a
matching protection, then the user has no permission to run the command, and will
receive the message “You don’t have permission for this operation”.

Access Levels Required by Perforce Commands

The following table lists the minimum access level required to run each command. For
example, since p4 add requires at least open access, p4 add can be run if open, write or
super protections are granted.

Command Access Level Command Access Level

add open integrate d open

admin super integrated list

branch open job b open

branches list jobs a list

change open jobspec a b super

changes a list label a open

client list labels a b list

clients list labelsync open

counter c review lock write

counters list obliterate super

delete open opened list

depot a b super passwd list

depots a list print read

describe read protect a super

describe -s list reopen open

diff read resolve open

diff2 read resolved open
68 Perforce 2002.1 System Administrator’s Guide

Chapter 4: Administering Perforce: Protections
a This command doesn’t operate on specific files. Thus, permission is granted to run the
command if the user has the specified access to at least one file in the depot.

b The -o flag, which allows the form to be read but not edited, requires only list access.
c list access is required to view an existing counter’s value; review access is required to

change a counter’s value or create a new counter.
d To run p4 integrate, the user needs open access on the target files and read access on the

donor files.

Those commands that list files, such as p4 describe, will only list those files to which the
user has at least list access.

Some of these commands (for instance, p4 change, when editing a previously submitted
changelist) take a -f flag which can only be used by Perforce superusers. See “Forcing
operations with the -f flag” on page 45 for details.

dirs list revert open

edit open review a review

filelog list reviews a list

files list set list

fix a open submit write

fixes a list sync read

fstat list triggers super

group a b super typemap super

groups a list unlock open

have list user a b list

help none users a list

info none verify review

where a none

Command Access Level Command Access Level
Perforce 2002.1 System Administrator’s Guide 69

Chapter 4: Administering Perforce: Protections
70 Perforce 2002.1 System Administrator’s Guide

Chapter 5 Customizing Perforce:
Job Specifications
Perforce’s jobs feature allows changelists to be linked to enhancement requests, problem
reports, and other user-defined tasks. Perforce also offers P4DTI (Perforce Defect Tracking
Integration) as a way to integrate third-party defect tracking tools with Perforce. See
“Working with third-party defect tracking systems” on page 79 for details.

The Perforce user’s use of p4 job is discussed in the Perforce User’s Guide. This chapter
covers superuser modification of the jobs system.

Perforce’s default jobs template has five fields for tracking jobs. These fields are sufficient
for small-scale operations, but as projects managed by Perforce grow, the information
stored in these fields may be insufficient. To modify the job template, use the p4 jobspec

command. You must be a Perforce superuser to use p4 jobspec.

This chapter discusses the mechanics of altering the Perforce job template. Certain
changes to the template are forbidden. Others are permissible, but are not recommended.

The Default Perforce Job Template

To understand how Perforce jobs are specified, we will examine the default Perforce job
template. The examples that follow in this chapter are based upon modifications to the
default Perforce job template.

A job created with the default Perforce job template has this format:

Warning! Improper modifications to the Perforce job template can lead to corruption
of your server’s database. Recommendations, caveats, and warnings about
changes to job templates are summarized at the end of this chapter.

A Perforce Job Specification.
#
Job: The job name. ’new’ generates a sequenced job number.
Status: Either ’open’, ’closed’, or ’suspended’. Can be changed.
User: The user who created the job. Can be changed.
Date: The date this specification was last modified.
Description: Comments about the job. Required.
Job: new
Status: open
User: edk
Date: 1998/06/03 23:16:43
Description:
 <enter description here>
Perforce 2002.1 System Administrator’s Guide 71

Chapter 5: Customizing Perforce: Job Specifications
The template from which this job was created can be viewed and edited with p4 jobspec.
The default job specification template looks like this:

The Job Template’s Fields

There are six fields and field types in the p4 jobspec form. These fields define the
template for all Perforce jobs stored on your server. The fields and field types are:

A Perforce Job Specification.
#
Updating this form can be dangerous!
See ’p4 help jobspec’ for proper directions.
Fields:
 101 Job word 32 required
 102 Status select 10 required
 103 User word 32 required
 104 Date date 20 once
 105 Description text 0 required
Comments:
 # A Perforce Job Specification.
 #
 # Job: The job name. ’new’ generates a sequenced job number.
 # Status: Either ’open’, ’closed’, or ’suspended’. Can be changed.
 # User: The user who created the job. Can be changed.
 # Date: The date this specification was last modified.
 # Description: Comments about the job. Required.
Values:
 Status open/suspended/closed
Presets:
 Status open
 User $user
 Date $now
 Description $blank

Field / Field Type Meaning

Fields: A list of fields to be included in each job.

Each field consists of an ID#, a name, a datatype, a length, and a
setting.

Required: A list of fields for which values must be entered.

Readonly: A list of fields, the default values of which cannot be changed
by the user.

Each field in this list requires a corresponding Presets: entry
in the job specification.
72 Perforce 2002.1 System Administrator’s Guide

Chapter 5: Customizing Perforce: Job Specifications
The Fields: field

The p4 jobspec field Fields: lists the fields to be tracked by your jobs, and specifies the
order in which they appear on the p4 job form.

The default Fields: field lists these fields:

Each field must be listed on a separate line, and is comprised of five separate descriptors:

Values: A list of fields whose datatype is select.

For each select field, you must add a line containing the
field’s name, a space, and its list of acceptable values, separated
by slashes.

Presets: A list of fields and their default values.

Values can be either literal strings or variables supported by
Perforce.

Comments: The comments that appear at the top of the p4 job form.

These comments are also used by P4Win, the Perforce Windows
client.

Fields:
 101 Job word 32 required
 102 Status select 10 required
 103 User word 32 required
 104 Date date 20 once
 105 Description text 0 required

Field
Descriptor

Meaning

ID# A unique integer identifier by which this field is indexed. After a field
has been created and jobs entered into the system, the name of this field
can change, but the data becomes inaccessible if the ID number changes.

ID numbers must be between 101 and 199.

Name The name of the field as it should appear on the p4 job form.

Data Type One of five datatypes (word, text, line, select, or date), as described
in the next table.

Field / Field Type Meaning
Perforce 2002.1 System Administrator’s Guide 73

Chapter 5: Customizing Perforce: Job Specifications
The five field datatypes are:

Length The recommended size of the field’s text box as displayed in P4Win, the
Perforce Windows client. To display a text box with room for multiple
lines of input, use a length of 0; to display a single line, enter the Length
as the maximum number of characters in the line.

The value of this field has no effect on jobs edited from the Perforce
command line, and is not related to the actual length of the values
stored by the server.

Persistence Determines whether a field is read-only, contains default values, is
required, and so on. The valid values for this field are:

• optional: field can take any value or can be deleted.
• default: a default value is provided, but it can be changed or

erased.
• required: a default is given; it can be changed but the field can’t be

left empty.
• once: read-only; the field is set once to a default value and is never

changed.
• always: read-only; the field value is reset to the default value when

the job is saved. Useful only with the $now variable to change job
modification dates, and with the $user variable to change the name
of the user who last modified the job.

In version 98.2 of Perforce, a field’s persistence was specified in a very
different way. If you have upgraded from 98.2, no conversion need be
done; the old persistences will appear in the p4 jobspec form in the
new template.

Field Type Explanation Example

word A single word. A userid: edk

text A block of text that can span multiple lines. A job’s description

line One line of text. A user’s real name: Ed K.

Field
Descriptor

Meaning
74 Perforce 2002.1 System Administrator’s Guide

Chapter 5: Customizing Perforce: Job Specifications
The Presets: field

All fields with a persistence of anything other than optional require default values. To
assign a default value to a field, create a line in the jobspec form under Presets,
consisting of the field name to which you’re assigning the default value. Any single-line
string can be used as a default value.

Three variables are available for use as default values:

The lines in the Presets: field for the standard jobs template are:

The Values: fields

You specify the set of possible values for any field of datatype select by entering lines in
the Values: field. Each line should contain the name of the field, a space, and the list of
possible values, separated by slashes.

select One of a set of values.

Each field with datatype select must
have a corresponding line in the Values:
field entered into the job specification.

A job’s status. One of:
open/suspended/closed

date A date value. The date and time of job
creation:
1998/07/15:13:21:46

Variable Value

$user The Perforce user creating the job, as specified by the P4USER
environment or registry variable, or as overridden with p4 -u username

job.

$now The date and time at the moment the job is saved.

$blank The text <enter description here>.

When users enter jobs, any fields in your jobspec with a preset of $blank
must be filled in by the user before the job is added to the system.

Presets:
 Status open
 User $user
 Date $now
 Description $blank

Field Type Explanation Example
Perforce 2002.1 System Administrator’s Guide 75

Chapter 5: Customizing Perforce: Job Specifications
In the default Perforce job specification, the Status: field is the only select field, and its
possible values are defined as follows:

The Comments: field

The Comments: field supplies the comments that appear at the top of the p4 job form.
Because p4 job does not automatically tell your users the valid values of select fields,
which fields are required, and so on, your comments must tell your users everything they
need to know about each field.

Each line of the Comments: field must be indented by at least one tab stop from the left
margin, and must begin with the comment character #.

The comments for the default p4 job template appear as:

If you administer a Perforce server and your users use P4Win, the Perforce Windows
client, you must take extra care when writing your comments.

P4Win displays these comments in two ways:

• When the P4Win user creates or edits a job and presses the Form Info button in the job
dialog box, a popup window displays the comments.

• As the (Windows) cursor moves over each field, the first line of the comment following
the colon after the field name in the jobspec is displayed in a ToolTip. The remainder of
each of these lines is displayed as the ToolTip for the field that matches the first word of
the line. Only the first line of the comment is displayed.

For instance, the ToolTip for the Status: field in the preceding jobspec reads:
Either ’open’, ’closed’, or ’suspended’. Can be changed

Values:
 Status open/suspended/closed

Note Prior to version 2000.1 of Perforce, the Values: and Presets: fields were
specified differently.

If you have scripts that rely upon the old style of jobspecs, you might
have to modify them. (Scripts that manipulate jobs, but not jobspecs, do
not require modification.)

Comments:
 # A Perforce Job Specification.
 # Job: The job name. ’new’ generates a sequenced job number.
 # Status: Either ’open’, ’closed’, or ’suspended’. Can be changed
 # User: The user who created the job. Can be changed.
 # Date: The date this specification was last modified.
 # Description: Comments about the job. Required.
76 Perforce 2002.1 System Administrator’s Guide

Chapter 5: Customizing Perforce: Job Specifications
Caveats, Warnings, and Recommendations

Although the material in this section has already been presented elsewhere in this
chapter, it is important enough to bear repeating. Please follow the guidelines presented
here when editing job specifications with p4 jobspec.

• After a field has been created and jobs have been entered, do not change the field’s ID#.
Any data entered in that field through p4 job will be inaccessible.

• Field names can be changed at any time. When changing a field’s name, be sure to also
change the fieldname in other p4 jobspec fields that reference this fieldname. For
example, if you create a new field 106 named severity and subsequently rename it to
bug-severity, then the corresponding line in the jobspec’s Presets: field must be
changed to bug-severity to reflect the change.

• The comments that you write in the Comments: field are the only way to let your users
know the requirements for each field. Make these comments understandable and
complete. These comments are treated specially in P4Win, the Perforce Windows client.
For P4Win ToolTip compatibility, the first line of each field’s comment should be
understandable if read on its own.

• Leave the default fields 101 to 105 in the jobs system, and use p4 jobspec only to work
with new fields. Do not change the names or types of fields 101 to 105 for any reason.

• Field ID# 101, the job’s name, is required by Perforce and must not be deleted.

• Field ID# 102, the job’s status, can be deleted; however, Perforce will subsequently be
unable to update the status of jobs linked to particular changelists. If this field is
present, Perforce will always set the value of this field to closed when a changelist
containing this job is submitted, even if closed has been deleted from the list of
possible values in the jobspec. This is highly undesirable behavior; do not change the
name of field 102.

• Field ID# 105 is assumed to be a job description by Perforce clients. If present, it is
also used by p4 change and p4 submit to describe the jobs fixed by the changelist.

Warning! Please read and understand the material in this section before attempting to
edit a job specification.
Perforce 2002.1 System Administrator’s Guide 77

Chapter 5: Customizing Perforce: Job Specifications
Example: A Custom Template

The following example shows a more complicated jobspec and the resulting job form:

A Custom Job Specification.
#
Updating this form can be dangerous!
See ’p4 help jobspec’ for proper directions.
Fields:
 101 Job word 32 required
 102 Status select 10 required
 111 Type select 10 required
 112 Priority select 10 required
 113 Subsystem select 10 required
 114 Reported_by word 32 required
 115 Reported_date date 20 once
 105 Description text 0 required
Values:
 Type bug/sir/problem/unknown
 Status open/closed/suspended
 Priority A/B/C/unknown
 Subsystem server/gui/doc/mac/misc/unknown
Presets:
 Status open
 Type setme
 Priority unknown
 Subsystem setme
 Reported_by $user
 Reported_date $now
 Description $blank
Comments:
 # Custom Job fields:
 # Job: Job number
 # Status: Has the job been fixed: Acceptable values are
 # ’open’, ’closed’, or ’suspended’
 # Type: The type of the job. Acceptable values are
 # ’bug’, ’sir’, ’problem’ or ’unknown’
 # Priority: How soon should this job be fixed?
 # Values are ’a’, ’b’, ’c’, or ’unknown’
 # Subsystem: One of server/gui/doc/mac/misc/unknown
 # Reported_by: Who’s fixing the bug
 # Reported_date: When the bug was first entered
 # Description: Textual description of the bug
78 Perforce 2002.1 System Administrator’s Guide

Chapter 5: Customizing Perforce: Job Specifications
Running p4 job against this jobspec displays the following job form:

The order of the listing under Fields: in the p4 jobspec form determines the order in
which the fields appear to users in job forms; fields need not be ordered by numeric
identifier.

Working with third-party defect tracking systems

With P4DTI, you can integrate Perforce with any third-party defect tracking or process
management software.

Activity in your Perforce depot (enhancements, bug fixes, propagation of changes into
release branches, and so forth) can be automatically entered into your defect tracking
system by P4DTI. Conversely, issues and status entered into your defect tracking system
(such as bug reports, change orders, work assignments) can be converted automatically to
Perforce metadata for access by Perforce users.

P4DTI can be easily extended to other products; TeamShare and Bugzilla are the first two
integrations published.

P4DTI is open source and available under a FreeBSD-like license.

Custom Job fields:
Job: Job number
Status: Has the job been fixed: Acceptable values are
’open’, ’closed’, or ’suspended’
Type: The type of the job. Acceptable values are
’bug’, ’sir’, ’problem’ or ’unknown’
Priority: How soon should this job be fixed?
Values are ’a’, ’b’, ’c’, or ’unknown’
Subsystem: One of server/gui/doc/mac/misc/unknown
Reported_by: Who’s fixing the bug
Reported_date: When the bug was first entered
Description: Textual description of the bug

Job: new

Status: open

Type: setme

Priority: unknown

Subsystem: setme

Reported_by: edk

Description:
 <enter description here>
Perforce 2002.1 System Administrator’s Guide 79

Chapter 5: Customizing Perforce: Job Specifications
Using P4DTI - Perforce Defect Tracking Integration

If you want to integrate Perforce with your in-house defect tracking system, or develop an
integration with a third-party defect tracking system, P4DTI is probably the best place to
start.

To get started with P4DTI, see the P4DTI product information page at:
http://www.perforce.com/perforce/products/p4dti.html

Available from this page are the TeamShare and Bugzilla implementations, an overview
of the P4DTI’s capabilities, and a kit (including source code and developer documentation)
for building integrations with other products or in-house systems.

Building your own integration

Even if you don’t use the P4DTI kit as a starting point, you can still use Perforce’s job
system as the interface between Perforce and your defect tracker. Depending on the
application, the interface you set up will consist of one or more of the following:

• A trigger or script on the defect tracking system side that adds, updates, or deletes a job
in Perforce every time a bug is added, updated, or deleted in the defect tracking system.

The third-party system should generate the data and pass it to a script which reformats
the data to resemble the form used by a manual (interactive) invocation of p4 job. The
script can then pipe the generated form to a the standard input of a p4 job -i

command.

(The -i flag to p4 job allows p4 job to read a job form directly from the standard
input, rather than using the interactive “form-and-editor” approach typical of user
operations. Further information on automating Perforce with the -i option is available
in the Perforce Command Reference.)

• A trigger on the Perforce side that checks changelists being submitted for any necessary
bug fix information.

• A Perforce review daemon that checks successfully-submitted changelists for job fixes
and issues the appropriate commands to update the corresponding data in your defect
tracking system.

For more about triggers and review daemons, including examples, see “Scripting
Perforce: Daemons and Triggers” on page 83.

Getting more information

In addition to the P4DTI-based TeamTrack and Bugzilla integrations, Perforce customers
currently integrate Perforce with their own home-grown defect tracking systems, and
with third-party systems such as Remedy, Scopus, and ClearTrack.
80 Perforce 2002.1 System Administrator’s Guide

Chapter 5: Customizing Perforce: Job Specifications
If you are interested in seeing what other Perforce users have done, visit the Perforce web
site and examine the perforce-user mailing list archives, which are available under our
Documentation page.

You may also wish to consider posting to perforce-user to ask if anyone has integrated
Perforce with the third-party tool you’re interested in, as someone may have already done
all the setup work required to work with your system.
Perforce 2002.1 System Administrator’s Guide 81

Chapter 5: Customizing Perforce: Job Specifications
82 Perforce 2002.1 System Administrator’s Guide

Chapter 6 Scripting Perforce:
Daemons and Triggers
User-written scripts can enhance Perforce’s functionality. There are three primary
methods of scripting PERFORCE:

• Wrappers are scripts that call Perforce commands. Wrappers can be written in any
scripting language, are usually tailored to your own site’s needs, and are not discussed
here.

• Daemons run at predetermined times, looking for changes to the Perforce metadata.
When a daemon determines that the state of the depot has changed in some useful way,
it runs other commands. For example, a daemon might look for newly submitted
changelists and send email to users who have previously updated the files that were
submitted in those changelists. Perforce provides a number of tools that make daemon-
writing easier.

• Pre-submit triggers are scripts that Perforce runs whenever users attempt to submit files.
A trigger script returns a value to Perforce that determines whether or not the submit
should succeed. For example, you might write a script that watches for a particular
executable file to be submitted; when this file is submitted, the trigger script might tell
the submit to fail if the release notes file has not been updated within the same
changelist.

This chapter assumes that you know how to write scripts.

Triggers

A pre-submit trigger is a script called by Perforce when files that you’ve specified have
been submitted. If the script exits with status 0, the submit continues. If it exits with a
nonzero status, the submit fails. In the event of failure, the script’s standard output is
displayed as part of the error message returned to the user by the failed submit.

Triggers can be useful in many situations. Consider the following common uses:

• To validate submits above and beyond the Perforce protections mechanism. For
example, it might ensure that Ed isn’t allowed to submit file foo until Courtney has
submitted file bar.

Warning! Although Perforce commands that only read data from the depot can be
called in a trigger script, running PERFORCE commands that write data to
the depot is dangerous and should be avoided. In particular, do not run the
p4 submit command from within a trigger script.
Perforce 2002.1 System Administrator’s Guide 83

Chapter 6: Scripting Perforce: Daemons and Triggers
• To tell the submit to fail if file foo is not submitted in the same changelist as file bar.

• To ensure that every submit to a particular codeline fixes at least one job.

Triggers are created and edited with p4 triggers. Only the Perforce superuser can run
this command. The p4 triggers form looks like this:

Each line in the trigger table has three fields:

Triggers:
 relnotes_check //depot/bld/... "perl relcheck.pl %user%"
 verify_jobs //depot/... "python /usr/bin/job.py %change%"

Field Meaning

Trigger Name The name of the trigger. The name can be any arbitrary string.

File Specification A file specification in depot syntax. If a changelist contains any files
that match this specification, the script will be run.

Multiple file specifications can be linked to the same trigger by
listing the trigger multiple times in the trigger table.

Script The command that Perforce should run when a matching file is
submitted.

The submit will continue if the trigger script exits with 0, and fail
otherwise.

The script must be specified in a way that allows the Perforce server
account to find the file. You can place the directory of the script in
the PATH of the environment in which p4d is running, or specify the
full path name of the script within the trigger table.

This command should be quoted, and can take any or all of a
number of variables as parameters. The most useful of these
variables are:

• %user%, which provides the Perforce name of the user who sub-
mitted the changelist;

• %changelist%, (also abbreviated as %change%), the number of
the changelist that’s being submitted; and

• %client%, the name of the client workspace from which the sub-
mit was run.
84 Perforce 2002.1 System Administrator’s Guide

Chapter 6: Scripting Perforce: Daemons and Triggers
Example: Creating a trigger

The development group wants to make sure that whenever a .exe file is submitted to the
depot, the release notes for the program are submitted at the same time.

You write a trigger script that takes a changelist number as its only argument, does a p4
opened on the changelist, parses the results to find the files included in the changelist, and
ensures that for every executable file that’s been submitted, a RELNOTES file in the same
directory has been submitted. If the changelist includes a RELNOTES file, the script terminates
with an exit status of 0; otherwise the exit status is set to 1.

The script written, you add it to the trigger table by editing the form displayed by p4

trigger:

Whenever an .exe file is submitted, this trigger is run. If the script fails, it returns a nonzero
exit status, and Perforce aborts the submit.

Using triggers

Triggers are run in the order entered in the triggers table.

If you have multiple triggers associated with a file pattern, each will be run in the order in
which it appears in the triggers table. If one of these triggers fails, no further triggers are
executed.

Example: Multiple triggers on the same file:

In the next few examples, we’re using %change% as an abbreviation for %changelist%.
Either form is acceptable, as they are interchangeable.

All *.c files must pass through the scripts check1.sh, check2.sh, and check3.sh:

If any trigger fails (say, check1.sh), the submit fails immediately and none of the
subsequent triggers (that is, check2.sh and check3.sh) are called. Each time a trigger
succeeds, the next matching trigger is run.

If you have multiple filepatterns triggering the same script, you should create multiple
triggers with separate names pointing to the same script. This is due to a limitation of
Perforce.

Triggers:
rnotes //depot/....exe "/usr/bin/rnotetest.pl %changelist%"

Triggers:
 check1 //depot/src/*.c "/usr/bin/check1.sh %change%"
 check2 //depot/src/*.c "/usr/bin/check2.sh %change%"
 check3 //depot/src/*.c "/usr/bin/check3.sh %change%"
Perforce 2002.1 System Administrator’s Guide 85

Chapter 6: Scripting Perforce: Daemons and Triggers
Example: A limitation: activating the same trigger for multiple filespecs:

In this case, the detection of foo.c in a changelist causes subsequent triggers with the same
name (including the one intended for bar.h) to be ignored. The checkit.pl script only
runs for *.c files. The *.h files and *.cpp files will not have the trigger applied.

The workaround is to specify separately named triggers for each filespec: *.c, *.h, and
*.cpp

In this case, the bugcheck1 trigger runs on the *.c files, the bugcheck2 trigger runs for the
*.h files, and bugcheck3 runs on the *.cpp files.

Some trigger scripts need to know the files that are included in the changelist. Since p4d
can only pass 1K of data to a trigger script, the file list can’t be passed via the trigger. Use
p4 opened -ac changelist# in your trigger scripts to get the list of files for the
changelist number provided as an argument. The actual contents of the files are not
accessible from within the trigger script, since the files are not stored in the depot until the
submit completes.

Before p4 submit runs the trigger script, it creates the changelist, assigns it a number, and
locks the files in the changelist. After a trigger script completes, p4 submit may run
subsequent trigger scripts that cause the submit to fail. For this reason, trigger scripts
should not take any actions that assume the submit will succeed. Trigger scripts are meant
primarily for changelist validation; if you need to take particular actions based on the
success of a submit, use a daemon.

Triggers:
 bugcheck //depot/*.c "/usr/bin/checkit.pl %change%"
 bugcheck //depot/*.h "/usr/bin/checkit.pl %change%"
 bugcheck //depot/*.cpp "/usr/bin/checkit.pl %change%"

Triggers:
 bugcheck1 //depot/*.c "/usr/bin/checkit.pl %change%"
 bugcheck2 //depot/*.h "/usr/bin/checkit.pl %change%"
 bugcheck3 //depot/*.cpp "/usr/bin/checkit.pl %change%"

Note In order to use triggers, the server (p4d) must be able to “fork”, or spawn
off processes to run the triggers. This is the default configuration of
Perforce.

If you invoke p4d with the -f (run in foreground without forking) option,
however, you will not be able to use triggers until you restart the server
without the -f option.
86 Perforce 2002.1 System Administrator’s Guide

Chapter 6: Scripting Perforce: Daemons and Triggers
Triggers and security

Triggers and Windows

By default, the Perforce service runs under the Windows local System account.

Because Windows requires a real account name and password to access files on a network
drive, if the trigger script resides on a network drive, you must configure the service to
use a real userid and password to access the script.

For details, see “Installing the Perforce service on a network drive” on page 107.

Daemons

Daemons are processes that are called periodically or run continuously in the background.
Daemons that use Perforce usually work by examining the server metadata as often as
needed and taking action as often as necessary. Typical daemon applications include:

• A change review daemon that wakes up every ten minutes to see if any changelists
have been submitted to the production depot. If any changelists have been submitted,
the daemon sends email to those users who have “subscribed” to any of the files
included in those changelists. The message informs them that the files they’re interested
in have changed.

• A jobs daemon that generates a report at the end of each day to create a report on open
jobs. It shows the number of jobs in each category, the severity each job, and more. The
report is mailed to all interested users.

• A Web daemon that looks for changes to files in a particular depot subdirectory. If new
file revisions are found there, they are synced to a client workspace that contains the
live web pages.

Daemons can be used for almost any task that needs to occur when Perforce metadata has
changed. Unlike triggers, which are used primarily for submission validation, daemons
can also be used to write information (that is, submit files) to a depot.

Perforce’s change review daemon

The change review daemon described above can be downloaded from
http://www.perforce.com/perforce/loadsupp.html. It runs under Python, which can
be retrieved from http://www.python.org/. Before running the script, please be sure to
read and follow the configuration instructions included in the script itself.

Warning! Because triggers are spawned by the p4d process, p4d should never be run
as root on UNIX systems.
Perforce 2002.1 System Administrator’s Guide 87

Chapter 6: Scripting Perforce: Daemons and Triggers
The change review daemon looks at the files included in each newly submitted changelist
and emails those users who have “subscribed” to any of the files included in the
changelist, letting those users know that the file(s) they’re interested in have changed.

Users subscribe to files by calling p4 user and entering filepatterns in the Reviews: field
of the resulting form:

Users should enter their email addresses in the Email: field, and enter any number of
filepatterns corresponding to the files in which they’re interested into the Reviews: field.
The daemon reports changes to these files to the users.

By including the special path //depot/jobs in the Reviews: field, users can also receive
mail from the Perforce change review daemon whenever job data is updated.

The change review daemon implements the following scheme:

1. p4 counter is used to read and change a variable, called a counter, in the Perforce
metadata. The counter used by this daemon, review, stores the number of the latest
changelist that’s been reviewed.

2. The Perforce depot is polled for submitted, unreviewed changelists with the p4
review -t review command.

3. p4 reviews generates a list of reviewers for each of these changelists.

4. The Python mail module mails the p4 describe changelist description to each
reviewer.

5. The first three steps are repeated every three minutes, or at some other interval
configured the time of installation.

The command used in the fourth step (p4 describe) is a straightforward reporting
command. The other commands (p4 review, p4 reviews, and p4 counter) are used
almost exclusively by review daemons.

Creating other daemons

You can use p4review.py as a starting point to create your own daemons, changing it as
needed. As an example, another daemon might upload Perforce job information into an
external bug tracking system after changelist submission. It would use the p4 review

User: sarahm
Email: sarahm@elmco.com
Update: 1997/04/29 11:52:08
Access: 1997/04/29 11:52:08
FullName: Sarah MacLonnogan
Reviews:
 //depot/doc/...
 //depot.../README
88 Perforce 2002.1 System Administrator’s Guide

Chapter 6: Scripting Perforce: Daemons and Triggers
command with a new review counter to list new changelists, and use p4 fixes to get the
list of jobs fixed by the newly submitted changelists. This information might then be fed to
the external system, notifying it that certain jobs have been completed.

If you write a daemon of your own and would like to share it with other users, you can
submit it into the Perforce Public Depot. For more information, go to
http://www.perforce.com and follow the “Perforce Public Depot” link.

Commands used by daemons

Certain Perforce commands are used almost exclusively by review daemons.

These commands are:

Command Usage

p4 counter name [value] When a value argument is not included,
p4 counter returns the value of the
variable name.

When a value argument appears, p4
counter sets the value of the variable
name to value.

Requires at least review access to run.

WARNING: The review counters named
journal, job, and change are used
internally by Perforce; use of any of these
three names as review numbers could
corrupt the Perforce database.

For Release 99.2 and above, Perforce will
not let you change the values of journal,
job, and change.

p4 counters List all counters and their values.

p4 review -c changelist# For all changelists between changelist#

and the latest submitted changelist, this
command lists the changelists’ numbers,
creators, and creators’ email addresses.

Requires at least review access to run.
Perforce 2002.1 System Administrator’s Guide 89

Chapter 6: Scripting Perforce: Daemons and Triggers
Daemons and counters

If you’re writing a change review daemon or other daemon that deals with submitted
changelists, you may also wish to keep track of the changelist number of the last submitted
changelist, which is the second field in the output of a p4 changes -m 1 -s submitted

command.

This is not the same as the output of p4 counter change. The last changelist number
known to the Perforce server (the output of p4 counter change) includes pending
changelists created by users, but not yet submitted to the depot.

Scripting and buffering

Depending on your platform, the output of individual p4 commands may be fully-
buffered (output flushed only after a given number of bytes generated), line-buffered (as
on a tty, one line sent per linefeed), or unbuffered.

In general, stdout to a file or pipe is fully-buffered, and stdout to a tty is line-buffered. If
your trigger or daemon requires line-buffering (or no buffering), you can disable
buffering by supplying the -v0 debug flag to the p4 command in question.

If you’re using pipes to transfer standard output from a Perforce command (with or
without the -v0 flag), you may also experience buffering issues introduced by the kernel,
as the -v0 flag can only unbuffer the output of the command itself.

p4 reviews -c changelist# filespec Lists all users who have subscribed to
review the named files or any files in the
specified changelist.

It is hard to imagine any use for this
command outside of our own change
review daemon.

p4 changes -m 1 -s submitted Output a single line showing the
changelist number of the last submitted
changelist, as opposed to the highest
changelist number known to the Perforce
server.

Command Usage
90 Perforce 2002.1 System Administrator’s Guide

Chapter 7 Tuning Perforce for
Performance
Your Perforce server should normally be a light consumer of system resources. As your
installation grows, however, you may wish to revisit your system configuration to ensure
that it is configured for optimal performance.

The following chapter briefly outlines some of the factors that can affect the performance
of a Perforce server, provides a few tips on diagnosing network-related difficulties, and
offers some suggestions on decreasing server load for larger installations.

Tuning for Performance

The following variables can affect the performance of your Perforce server.

Memory

Server performance is highly dependent upon having sufficient memory. Two bottlenecks
are relevant: the first can be avoided by ensuring that the server doesn’t page when
running large queries, and the second by ensuring that the db.rev table (or at least as
much of it as practical) can be cached in main memory.

• Determining memory requirements for large queries is fairly straightforward: the
server requires about 1KB/file of RAM to avoid paging; 10,000 files will require 10MB of
RAM.

• To cache db.rev, the size of the db.rev file in an existing installation can be observed
and used as an estimate. New installations of Perforce can expect db.rev to require
about 150-200 bytes per revision, and roughly 3 revisions per file, or about 0.5KB of
RAM per file.

Thus, if there is 1.5KB of RAM available per file, or 150MB for 100,000 files, the server will
not page, even when performing an operation involving all files. It is still possible that
multiple large operations will be performed simultaneously and thus require more
memory to avoid paging. On the other hand, the vast majority of operations will only
involve a small subset of files.

For most installations, a system with enough RAM for 1.5KB per file in the depot will
suffice.

Filesystem performance

Perforce is judicious with regards to its use of disk I/O; its metadata is well-keyed and
accesses are mostly sequential scans of limited subsets of the data.
Perforce 2002.1 System Administrator’s Guide 91

Chapter 7: Tuning Perforce for Performance
The only disk-intensive activity is file check-in, where the Perforce server must write and
rename files in the archive. Server performance depends heavily upon the operating
system’s filesystem implementation, and in particular, whether directory updates are
synchronous.

Although Perforce does not recommend any specific filesystem, Linux servers are
generally fastest (owing to Linux’s asynchronous directory updating), but may have poor
recovery if power is cut at the wrong time. The BSD filesystem (also used in Solaris) is
relatively slow, but much more reliable. NTFS performance falls somewhere in between
these two ranges. The filesystems used by IRIX and OSF have demonstrated an excellent
combination of both speed and robustness.

Performance in systems where database and versioned files are stored on NFS-mounted
volumes is typically dependent on the implementation of NFS in question and/or the
underlying storage hardware. Perforce has been tested and is supported under the Solaris
implementation of NFS.

Under Linux and FreeBSD, database updates over NFS can be an issue as file locking is
relatively slow; if the journal is NFS-mounted on these platforms, all operations will be
slower. In general (but in particular on Linux and FreeBSD) we recommend that the
Perforce database, depot, and journal files be stored on disks local to the machine running
the Perforce server process.

These issues affect only the Perforce server process (p4d). Perforce clients (such as the p4
command-line client) have always been able to work with client workspaces on NFS-
mounted drives (for instance, workspaces in users’ home directories).

Disk space allocation

Perforce disk space usage is a function of three variables:

• Number and size of client workspaces

• Size of server database

• Size of server’s archive of all versioned files

All three variables depend on the nature of your data and how heavily you use Perforce.

The client file space required is the size of the files that your users will need in their client
workspaces at any one time.

The server’s database size can be calculated with a fair level of accuracy; as a rough
estimate, it requires 0.5KB per user per file. (For instance, a system with 10,000 files and 50
users will require 250M of disk space for the database). The database can be expected to
grow over time as histories of the individual files grow.
92 Perforce 2002.1 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
The size of the server’s archive of versioned files depends on the sizes of the original files
stored and grows as revisions are added. For most sites, allocate space equivalent to at
least three times the aggregate size of the original files.

If you anticipate your database growing into the gigabyte range, you should ensure that
your platform has adequate support for large filesystems. See “Allocate disk space for
anticipated growth” on page 20.

The db.have file holds label contents and the list of files opened in client workspaces, and
tends to grow the faster than other files in the database. If you are experiencing issues
related to the size of your db.have file and are unable to quickly switch to a server with
adequate support for large files, deleting unused clients and labels and reducing the scope
of client views can help alleviate the problem.

Network

Perforce can run over any TCP/IP network. Although we have not yet seen network
limitations, the more bandwidth the better. Presumably FDDI would be better than
10Mb/s Ethernet, but some users have reported that using a T1 (1.5 Mb/s) provides
response times comparable to using Perforce locally. Perforce employees work
successfully over ISDN (64 Kb/s) lines.

Perforce uses a TCP connection for each client interaction with the server. The server’s
port address is defined by P4PORT, but the TCP/IP implementation picks a client port
number. After the command completes and the connection is closed, the port is left in a
state called TIME_WAIT for two minutes. While the port number ranges from 1025 to
32767, generally only a few hundred or thousand can be in use simultaneously. It is
therefore possible to occupy all available ports by invoking a Perforce client command
many times in rapid succession, such as with a script.

Before release 99.2, both the server and client side of the connection remained in
TIME_WAIT, which meant that a script running on one user’s machine could deprive other
users of service by tying up all available ports on the server side. As of Release 99.2, only
the client side goes into TIME_WAIT, leaving the Perforce server free to handle other
clients.

CPU

Perforce is based on a client/server architecture. Both the client and server are lightweight
in terms of CPU resource consumption. By way of example, a server supporting 80 users
on a low-end (140 MHz) SPARC Ultra server can use as little as 7 CPU-minutes per day, or
about 0.5% of available processing power. Weighting this for peak use and headroom,
such a server could support upwards of 800 users.

In general, CPU power is not a major consideration when determining the platform on
which to install a Perforce server.
Perforce 2002.1 System Administrator’s Guide 93

Chapter 7: Tuning Perforce for Performance
Diagnosing Slow Response Times

Perforce is normally a light user of network resources. While it is possible that an
extremely large user operation could cause the Perforce server to respond slowly,
consistently slow responses to p4 commands are usually caused by network problems.
Any of the following may cause slow response times:

1. misconfigured domain name system (DNS)

2. misconfigured Windows networking

3. difficulty accessing the p4 executable on a networked file system

A good initial test is to run p4 info. If this does not respond immediately, then there is a
network problem. Although solving network problems is beyond the scope of this
manual, here are some suggestions for troubleshooting them:

Hostname vs. IP address

On a client machine, try setting P4PORT to the server’s IP address instead of its hostname.
For example, instead of using

P4PORT=host.domain:1666

try using:
P4PORT=1.2.3.4:1666

with your site-specific IP address and port number.

On most systems, you can determine the IP address of a host by invoking:
ping hostname

If p4 info responds immediately when you use the IP address, but not when you use the
hostname, the problem is likely related to DNS.

Try p4 info vs. P4Win

If you are using P4Win on a Windows client, you can compare the response of P4Win
“Show Connection Info” (Help -> Show Connection Info) with the response from the
command-line p4 info.

If the former is fast and the latter is slow, you have a DNS-related problem. (When the
Perforce server receives a p4 info request, it does a reverse name lookup in order to send
back the client and server hostnames along with other configuration information. When it
94 Perforce 2002.1 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
receives a P4Win“Show Connection Info” request, however, it simply returns the IP
addresses.)

Windows wildcards

In some cases, p4 commands using unquoted filepatterns with a combination of depot
syntax and wildcards, such as:

p4 files //depot/*

can result in a delayed response on Windows. You can prevent the delay by putting
double quotes around the file pattern, like so:

p4 files “//depot/*”

The cause of the problem is the p4 command’s use of a Windows function to expand
wildcards. When quotes are not used, the function interprets //depot as a networked
computer path and spends time in a futile search for a machine on the network named
depot.

DNS lookups and the hosts file

On Windows, the %SystemRoot%\system32\drivers\etc\hosts file can be used to
hardcode IP address-hostname pairs. You may be able to work around DNS problems by
adding entries to this file.

The corresponding UNIX file is /etc/hosts.

Location of the “p4” executable

If none of the above diagnostic steps explains the sluggish response time, it’s possible that
the p4 executable itself is on a networked file system which is performing very poorly. To
check this, try running:

p4 -V

This merely prints out the version information, without attempting any network access. If
you get a slow response, network access to the p4 executable itself may be the problem.
Copying or downloading a copy of p4 onto a local filesystem should improve response
times.

Note This test is only valid for Release 99.1 and newer servers. In releases prior
to 99.1, the server always did a reverse name lookup, whether the request
was coming from p4 info or P4win
Perforce 2002.1 System Administrator’s Guide 95

Chapter 7: Tuning Perforce for Performance
Preventing Server Swamp

Generally, Perforce’s performance depends on the number of files a user tries to
manipulate in a single command invocation, not the size of the depot. That is, syncing a
client view of 30 files from a 3,000,000-file depot should not be much slower than syncing
a client view of 30 files from a 30-file depot.

The number of files affected by a single command is largely determined by:

• p4 command line arguments (or selected folders in the case of GUI operations).

Without arguments, most commands will operate on, or at least refer to, all files in the
view.

• Client views, branch views, label views, and protections.

Because commands without arguments operate on all files in the view, it follows that
the use of unrestricted views and unlimited protections can result in commands
operating on all files in the depot.

When the server answers a request, it locks down the database for the duration of the
computation phase. For normal operations, this is a successful strategy, as it can “get in
and out” quickly enough to avoid a backlog of requests. Abnormally large requests,
however, can take seconds, sometimes even minutes. If frustrated users hit CTRL-C and
retry, the problem gets even worse; the server consumes more memory and responds
even more slowly.

At sites with very large depots, unrestricted views and unqualified commands will make
a Perforce server work much harder than it needs to. Users and administrators can ease
load on their servers by:

• Using “tight” views

• Assigning protections

• Limiting maxresults

• Writing efficient scripts

Using tight views

The following “loose” view is trivial to set up but could invite trouble on a very large
depot:

//depot/... //workspace/...
96 Perforce 2002.1 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
In the loose view, the entire depot was mapped into the client workspace; for most users,
this can be “tightened” considerably. The following view, for example, is restricted to
specific areas of the depot:

Client views, in particular, but also branch views and label views, should also be set up to
give users just enough scope to do the work they need to do.

Client, branch, and label views are set by the Perforce superuser or by individual users
with the p4 client, p4 branch, and p4 label commands respectively.

Two of the techniques for script optimization (described in “Using branch views” on
page 101 and “The temporary client trick” on page 102) rely on similar techniques. By
limiting the size of the view available to a command, fewer commands need to be run,
and when run, the commands require fewer resources.

Assigning protections

Protections (see “Administering Perforce: Protections” on page 61) are actually another
type of Perforce view. Protections are set with the p4 protect command and control
which depot files can be affected by commands run by users.

Unlike client, branch, and label views, however, the views used by protections can be set
only by Perforce superusers. (Protections also control read and write permission to depot
files, but the permission levels themselves have no impact on server performance.) By
assigning protections in Perforce, a Perforce superuser can effectively limit the size of a
user’s view, even if the user is using “loose” client specifications.

Protections can be assigned to either users or groups. For example:

Perforce groups are created by superusers with the p4 group command. Not only do they
make it easier to assign protections, but they provide useful fail-safe mechanisms in the
form of maxresults and maxscanrows, described in the next section.

//depot/main/srv/devA/... //workspace/main/srv/devA/...
//depot/main/drv/lport/... //workspace/main/dvr/lport/...
//depot/rel2.0/srv/devA/bin/... //workspace/rel2.0/srv/devA/bin/...
//depot/qa/s6test/dvr/... //workspace/qa/s6test/dvr/...

write user sam * //depot/admin/...
write group rocketdev * //depot/rocket/main/...
write group rocketrel2 * //depot/rocket/rel2.0/...
Perforce 2002.1 System Administrator’s Guide 97

Chapter 7: Tuning Perforce for Performance
Limiting database queries

Each Perforce group has an associated maxresults and maxscanrows value. The default for
each is “unlimited”, but a superuser can use p4 group to limit it for any given group.

Users in such groups are unable to run any commands which affect more database rows
than the group’s maxresults limit. (For most commands, the number of database rows
affected is roughly equal to the number of files affected.)

Like maxresults, maxscanrows prevents certain user commands from placing excessive
demands on the server. (For most commands, the number of rows that could be scanned
is roughly equal to the number of files affected, multiplied by the average number of
revisions per file in the depot.)

To set these limits, fill in the Maxresults: or Maxscanrows: field in the p4 group form. If
a user is listed in multiple groups, the highest of the maxresults (or maxscanrows) limits
(but not including the default “unlimited” setting) for those groups is taken as the user’s
maxresults (or maxscanrows) value.

Example: Effect of setting maxresults and maxscanrows:

As an administrator, you wish members of the group rocketdev to be limited to operations
of 20,000 files or less, and to scan no more than 100,000 revisions:

Suppose that Ruth has an unrestricted (“loose”) client view. When she types:
p4 sync

her sync command is rejected if the depot contains more than 20,000 files. She can work
around this limitation either by restricting her client view, or, if she needs all of the files in the
view, by syncing smaller sets of files at a time, like so:

p4 sync //depot/projA/...
p4 sync //depot/projB/...

Either way, she’ll get her files, but without tying up the server to process a single extremely
large command.

If Ruth tries a command that scans every revision of every file, such as:
p4 filelog //depot/projA/...

Group: rocketdev
Maxresults: 20000
Maxscanrows: 100000
Users:
 bill
 ruth
 sandy
98 Perforce 2002.1 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
and there are less than 20,000 files, but more than 100,000 revisions (perhaps the projA
directory contains 8000 files, each of which has 20 revisions), the maxresults limit will not
apply, but the maxscanrows limit will.

To remove any limits on the number of result lines processed (or database rows scanned)
for a particular group, set the Maxresults: or Maxscanrows: value for that group to
unlimited.

As these limitations can make life difficult for your users, do not use them unless you find
that certain operations are slowing down your server. The Maxresults: value should
never be less than 10,000, since certain operations performed by P4Win, the Perforce
Windows client, may require a Maxresults: value of between 5,000 and 8,000. Similarly,
Maxscanrows should rarely need to be set below 50,000.

For more information, including a comparison of Perforce commands and the number of
files they affect, type:

p4 help maxresults
p4 help maxscanrows

from the command line.

Maxresults and maxscanrows for users in multiple groups

As mentioned earlier, if a user is listed in multiple groups, the highest maxresults limit of
all the groups a user belongs to is the limit that affects the user. The default value of
“unlimited” is not a limit; if a user is in a group where maxresults is set to “unlimited”,
he or she is still limited by the highest maxresults (or maxscanrows) limit of the other
groups of which he or she is a member. A user’s commands are truly unlimited only when
the user belongs to no groups, or when all of the groups of which the user is a member
have their maxresults set to “unlimited”

A side effect of this is that you can’t create a group that assigns “unlimited” maxresults
values to superusers, because if any of the users in such a group were to belong to another
group, the “unlimited” limit from the superuser group would also apply to them. You
can get around this by assigning a very high maxresults limit to your superusers group.

For example:

(The largest possible maxresults or maxscanrows limit is platform-dependent; on most
platforms, this is a 32-bit integer.)

Group: superusers
Maxresults: 10000000
Maxscanrows: 100000000
Perforce 2002.1 System Administrator’s Guide 99

Chapter 7: Tuning Perforce for Performance
Scripting efficiently

The Perforce command-line interface, p4, allows you to do anything in a script that you
can do interactively. The Perforce server can process commands far faster than users can
issue them, so in an all-interactive environment, response time is excellent. However, p4
commands issued by scripts -- triggers, review daemons, or command wrappers, for
example -- can cause performance problems if you haven’t paid attention to their
efficiency. This is not because p4 commands are inherently inefficient, but because the
way one invokes p4 as an interactive user isn’t necessarily suitable for repeated iterations.

This section points out some common efficiency problems and solutions.

Iterating through files

Each Perforce command issued causes a connection thread to be created and a p4d

subprocess to be started. Reducing the number of Perforce commands your script runs is
the first step to making it more efficient.

To this end, scripts should never iterate through files running Perforce commands when
they can accomplish the same thing by running one Perforce command on a list of files
and iterating through the command results.

For example, try an approach like this:
for i in `p4 diff2 path1/... path2/...`
do
 [process diff output]
done

Instead of this:
for i in `p4 files path1/...`
do
 p4 diff2 path1/$i path2/$i
 [process diff output]
done

Using list input files

Any Perforce command that accepts a list of files as a command line argument can also
read the same argument list from a file. Scripts can make use of the list input file feature
by building up a list of files first, then passing the list file to p4 -x.

For example, if your script currently does something like:
for components in foo bar ola
do
 p4 edit ${component}.h
done
100 Perforce 2002.1 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
a more efficient alternative would be:
for components in foo bar ola
do
 echo ${component}.h >> LISTFILE
done
p4 -x LISTFILE edit

The -x flag instructs p4 to read arguments, one per line, from the named file. If the file is
specified as “-” (a dash), the standard input is read.

Using branch views

Branch views can be used with p4 integrate or p4 diff2 to reduce the number of
Perforce command invocations. For example, if you have a script that runs:

p4 diff2 pathA/src/... pathB/src/...
p4 diff2 pathA/tests/... pathB/tests/...
p4 diff2 pathA/doc/... pathB/doc/...

you can make it more efficient by creating a branch view that looks like this:

and replacing the three commands with one:
p4 diff2 -b pathA-pathB

Limiting label references

Repeated references to large labels can be particularly costly. Commands that refer to files
using labels as revisions will scan the whole label once for each file argument. To keep
from hogging the Perforce server, your script should get the labeled files from the server,
then scan the output for the files it needs.

For example, this:
p4 files path/...@label | egrep “path/foo.h|path/bar.h|path/ola.c”

will impose a lighter load on the Perforce server than either this:
p4 files path/foo.h@label path/bar.h@label path/ola.h@label

or this:
p4 files path/foo.h@label
p4 files path/bar.h@label
p4 files path/ola.h@label

The “temporary client” trick described below may also reduce the number of times you
have to refer to files by label.

Branch: pathA-pathB
View:
 pathA/src/... pathB/src/...
 pathA/tests/... pathB/tests/...
 pathA/doc/... pathB/doc/...
Perforce 2002.1 System Administrator’s Guide 101

Chapter 7: Tuning Perforce for Performance
The temporary client trick

Most Perforce commands can process all the files in the current client view with a single
command line argument. By making use of a temporary client view that contains the files
on which you want to work, you may be able to reduce the number of commands you
have to run, and/or to reduce the number of file arguments you need to give each
command.

For instance, suppose your script runs these commands:
p4 sync pathA/src/...@label
p4 sync pathB/tests/...@label
p4 sync pathC/doc/...@label

You can combine the command invocations and reduce the three label scans to one by
using a client spec that looks like:

and running:
p4 -c XY-temp sync @label

Checkpoints for Database Tree Rebalancing

Perforce’s internal database stores its data in structures called Bayer trees, more
commonly referred to as B-trees. While B-trees are a very common way to structure data
for rapid access, over time the process of adding and deleting elements to and from the
trees can eventually lead to imbalances in the data structure.

Eventually, the tree may become sufficiently unbalanced that performance is negatively
affected. The Perforce checkpoint and restore processes re-create the trees in a balanced
manner, and consequently, you may see some increase in server performance following a
restoration from a checkpoint.

Rebalancing the trees is normally only useful if the database files have become more than
about 10 times the size of the checkpoint. Given the length of time required for the trees to
become unbalanced during normal Perforce use, we expect that the majority of sites will
never need to restore the database from a checkpoint (that is, rebalance the trees) for
performance reasons.

Client: XY-temp
View:
 pathA/src/... //XY-temp/pathA/src/...
 pathB/tests/... //XY-temp/pathB/tests/...
 pathC/doc/... //XY-temp/pathC/doc/...
102 Perforce 2002.1 System Administrator’s Guide

Chapter 8 Perforce and Windows
This chapter describes certain information of specific interest to administrators who set up
and maintain Perforce servers on Windows.

Using the Perforce installer

The Perforce installer program, perforce.exe, gives you the option to install either as a
user (the Perforce client), a typical administrator (Perforce installed as a Windows
service), a custom administrator (Perforce installed as a service with additional
customization options), or to uninstall Perforce from your system.

If you have Administrator privileges, it is usually best to install Perforce as a service. If
you don’t, install it as a server.

Under Windows 2000 or higher, you need Administrator privileges to install Perforce as a
service, and Power User privileges to install Perforce as a server.

Upgrade notes

The Perforce installer also automatically upgrades all types of Perforce servers (or
services), even versions prior to 97.3. The upgrade process is extremely conservative; if
anything fails at any step in the upgrade process, the installer will stop the upgrade, and
you will still be able to use your old server (or service).

Installation options

When you invoke the installer, it presents an initial screen that lists the revisions of the
Perforce software you’re about to install. You are offered the choice between:

• a user install,

• a typical Administrator install,

• a customized Administrator install, or

• uninstalling Perforce.

Note Unless otherwise specified, the material presented here applies equally to
Windows NT and Windows 2000.
Perforce 2002.1 System Administrator’s Guide 103

Chapter 8: Perforce and Windows
User install

The “user install” installs only the Perforce command-line client (p4.exe), Windows
client (P4Win), and (optionally) the third-party SCM plug-in. If you are running on
Windows 95 or Windows 98, this will be the only installation option available to you.
Under Windows 2000 or higher, this option requires Power User privileges.

You are prompted to specify the location of the client executables, the port (P4PORT) on
which the client should attempt to contact the Perforce server, the default editor, and the
default username.

When specifying the port for the client to use, don’t forget to include the hostname in the
form hostname:port. See “Telling Perforce client programs which port to talk to” on
page 13 for details on P4PORT.

If the installer detects older versions of Perforce client or server software on the machine,
you are given the option to rename the old executables to prevent PATH-dependent
conflicts.

Administrator typical

The “typical administrator install” allows the installation of both client and server
software for Perforce. This option requires administrator privileges.

You are prompted to specify the directory for the client and server executables, the port
on the local machine where the Perforce server or service will listen to client requests
(P4PORT), the default editor, and the default username.

The installer selects default locations for the P4LOG error log file and the journal file. If an
earlier version of Perforce was installed on the machine, these locations are based on those
already in use.

If you have Administrator privileges, the installer installs Perforce and configures it to run
as an auto-starting service. The service is set up and started after the installation is
complete, and automatically restarts whenever the machine is rebooted. If you do not
have Administrator privileges, a shortcut to run Perforce as a server is placed into your
Start menu.

If the installer detects older versions of Perforce client or server software on the machine,
you are given the option to rename the old executables to prevent PATH-dependent
conflicts.

Administrator custom

The “custom administrator install” allows the installation of both client and server
software for Perforce. This option requires administrator privileges.
104 Perforce 2002.1 System Administrator’s Guide

Chapter 8: Perforce and Windows
As with the typical administrator install, you are prompted to specify the location of client
and server executables, the port on the local machine where the Perforce server or service
will listen to client requests, the default editor, and the default username.

Unlike the typical administrator install, you are allowed to optionally specify separate
directories for the client and server executables, as well as server root, server port, and
whether to set up Perforce as an auto-starting (or non-auto-starting) service or server
process. The locations of any existing P4LOG file and journal file are displayed for
reference, and may be changed later using p4 set.

If you try to install a Perforce service while another Perforce server is running, you will
see the error message:

Setup has determined that a Perforce Server could be running. Please
shut down all Perforce Servers before continuing the installation.

Failure to shut down the running Perforce server(s) will result in conflicts between the
newly installed service and the existing server.

As with the other installation options, if the installer detects older versions of Perforce
client or server software on the machine, you are given the option to rename the old
executables to prevent PATH-dependent conflicts.

Uninstalling Perforce

Should you wish to remove Perforce from a Windows machine, run perforce.exe and
select the Uninstall option. This option requires administrator privileges.

The uninstall procedure removes everything except your server data; the Perforce server,
service, and client executables, registry keys, and service entries are all deleted. The
database and depot files in your server root, however, are always preserved.

Windows services vs. Windows servers

To run any task as a Windows server, a user account must be logged in, as shortcuts in a
user’s Startup folder cannot be run until that user logs in. A Windows service, on the
other hand, is invoked automatically at boot time, and runs regardless of whether or not a
user is logged in to the machine.

Throughout most of the documentation set, the terms “Perforce server” or “p4d” are used
to refer to “the process at the back end that manages the database and responds to
requests from Perforce clients”. Under Windows, this can lead to ambiguity; the back-end
process can run as either a service (p4s.exe, which runs as a thread) or as a server
(p4d.exe, which runs as a regular process). From a Windows administrator’s point of
view, these are important distinctions. Consequently, the terminology used in this chapter
uses the more precise definitions.
Perforce 2002.1 System Administrator’s Guide 105

Chapter 8: Perforce and Windows
The Perforce service (p4s.exe) and the Perforce server (p4d.exe) executables are copies
of each other; they are identical apart from their filenames. When run, they use the first
three characters of the name with which they were invoked (that is, either p4s or p4d) to
determine their behavior. For example, invoking copies named p4smyserver.exe or
p4dmyservice.exe will invoke a service and a server, respectively.

Starting and stopping the Perforce service

If Perforce was installed as a service, a user with Administrator privileges can start and
stop it using the Services applet in the Control Panel.

If you are running at Release 99.2 or above, you can also use the command:
p4 admin stop

to stop the Perforce service.

Starting and stopping the Perforce server

If Perforce was installed as a server, there should be a “Perforce Server” shortcut in your
Start menu. To start the server, double-click on the shortcut. To stop the server, right-click
on the “Perforce Server” button in the taskbar and select “Close”.

You can also start the Perforce server manually from an MS-DOS window. The server
executable, p4d.exe, is normally found in your P4ROOT directory. To start the server, first
make sure your current P4ROOT, P4PORT, P4LOG, and P4JOURNAL settings are correct, then
run:%P4ROOT%\p4d

If you want to start a server using settings different than those set by P4ROOT, P4PORT,
P4LOG, or P4JOURNAL, you can use p4d command line flags. For example:

c:\test\p4d -r c:\test -p 1999 -L c:\test\log -J c:\test\journal

will start a Perforce server process with a root directory of c:\test, listening to port 1999,
logging errors to c:\test\log, and with a journal file of c:\test\journal.

Note that p4d command line flags are case sensitive.

If you are running at Release 99.2 or above, use the following command:
p4 admin stop

to stop the Perforce server.

Note If you are running Release 99.1 or earlier, type Ctrl-C in the MS-DOS
window, or simply Close the MS-DOS window.

Although this works in all versions of Perforce, this method of shutting
down the server is not necessarily “clean”, and with the availability of the
p4 admin stop command in 99.2, is no longer recommended.
106 Perforce 2002.1 System Administrator’s Guide

Chapter 8: Perforce and Windows
Installing the Perforce service on a network drive

By default, the Perforce service runs under the local System account. Because the System
account has no network access, a real userid and password are required in order to make
the Perforce service work if the metadata and depot files are stored on a network drive.

If you are installing your server root on a network drive, the Perforce installer
(perforce.exe) requests a valid combination of userid and password at the time of
installation. This user must have administrator privileges. (The service will also run as
this user, rather than System)

While the Perforce NT service will run reliably using a network drive as the server root,
there is still a marked performance penalty due to of increased network traffic and slower
file access. For this reason, we recommend that the depot files and Perforce database be on
a drive local to the machine on which the Perforce service is running.

Multiple Perforce services under Windows

By default, the Perforce installer for Windows installs a single Perforce server as a single
service. If you wish to host more than one Perforce installation on the same machine (for
instance, one for production and one for testing), then the additional Perforce servers
must be started manually.

You can, however, install additional services to start up additional Perforce servers (that
is, running as Windows services) automatically.

If your intent is to set up multiple services to increase the number of users you support
without purchasing more user licenses, you are violating the terms of your Perforce
License Agreement.

Before you begin, you should read and understand “Windows configuration parameter
precedence” on page 108. Once you understand the precedence of environment variables
in determining Perforce configuration, you’ll find setting up multiple Perforce services to
be straightforward. To add a new service, you need to:

1. Create a new directory for the Perforce service.

2. Copy the server executable, service executable, and your license file into this
directory.

3. Create the new Perforce service using the svcinst.exe utility, as described in the
example below.

4. Set up the environment variables and start the new service.

Note You must download Perforce 99.1/10994 or a later release in order to use
this procedure.
Perforce 2002.1 System Administrator’s Guide 107

Chapter 8: Perforce and Windows
We recommend that you install your first Perforce service using the Perforce installer.
This first service will be called “Perforce” and its server root directory will contain a few
files which are required for the other Perforce services.

Example: Adding a second Perforce service.

You wish to create a second Perforce service with a root in C:\p4root2 and a service name of
“Perforce2”. You’re running Release 99.1/10994 or greater, and the svcinst executable is
in the server root of his first Perforce NT service, which is in C:\perforce.

Verify that your p4d.exe executable is at Release 99.1/10994 or greater:
p4d -V

(We’ll assume the revision level is correct; if not, you’d have to download a newer version
from http://www.perforce.com and upgrade the server before continuing.)

Create a P4ROOT directory for the new service:
mkdir c:\p4root2

Copy the server executables - both p4d.exe (the server) and p4s.exe (the service) - and
your license file into the new directory:

copy c:\perforce\p4d.exe c:\p4root2
copy c:\perforce\p4d.exe c:\p4root2\p4s.exe
copy c:\perforce\license c:\p4root2\license

Use svcinst.exe, (the service installer) to create the “Perforce2” service:
svcinst create -n Perforce2 -e c:\p4root2\p4s.exe -a

After the “Perforce2” service has been created, set the service parameters for the
“Perforce2” service:

p4 set -S Perforce2 P4ROOT=c:\p4root2
p4 set -S Perforce2 P4PORT=1667
p4 set -S Perforce2 P4LOG=log2
p4 set -S Perforce2 P4JOURNAL=journal2

Finally, use the service installer to start the “Perforce2” service:
svcinst start -n Perforce2.

The second service is now running, and both services will start automatically the next time
you reboot.

Windows configuration parameter precedence

Under Windows, Perforce configuration parameters may be set in many different ways.
When a Perforce client program (such as p4 or P4Win), or a Perforce server program (p4d)
starts up, it reads its configuration parameters according to the following precedence:

1. The program’s command line flags have the highest precedence.
108 Perforce 2002.1 System Administrator’s Guide

Chapter 8: Perforce and Windows
2. The P4CONFIG file, if P4CONFIG is set.

3. User environment variables.

4. System environment variables.

5. The Perforce user registry (set by p4 set).

6. The Perforce system registry (set by p4 set -s).

As of Release 99.1/10994, when a Perforce service (p4s) starts up, it reads its configuration
parameters from the environment according to the following precedence:

1. Windows service parameters (set by p4 set -S servicename) have the highest
precedence.

2. System environment variables.

3. The Perforce system registry (set by p4 set -s).

User environment variables can be set with any of the following:

• The MS-DOS set command.

• The AUTOEXEC.BAT file.

• Control Panel>System>Environment>User Variables

System environment variables can be set with:

• Control Panel>System>Environment>System Variables

Resolving Windows-related instabilities

There are many large sites running Perforce on Windows without incident. There are also
sites in which Perforce service or server installation appears to be unstable; the server dies
mysteriously, the service can’t be started, and in extreme cases the system crashes. In most
of these cases, this is an indication of recent changes to the machine or a corrupted
operating system.

While not all Perforce failures are caused by OS-level problems, a number of symptoms
may indicate the OS is at fault. Examples include: the system crashing, the Perforce server
exiting without any error in its log and without Windows indicating that the server
crashed, or the Perforce NT service not starting properly.

Many of these problems may be resolved by installing Service Packs. A machine running
NT 4.0 with Service Pack 6 and a plain VGA video driver is very stable.

In particular, Perforce support personnel have also found that many sites have been able
to reduce or eliminate OS-level instability problems by re-installing NT Service Pack 6;
Perforce 2002.1 System Administrator’s Guide 109

Chapter 8: Perforce and Windows
consequently, we recommend that SP6 be installed on any NT system running the Perforce
server or service.

In some cases, installing third-party software after installing a Service Pack can overwrite
critical files installed by the service pack; reinstalling your most-recently installed service
pack will often correct these problems. If you’ve installed another application after your
last service pack, and server stability appears affected since the installation, consider
reinstalling the service pack.

As a last resort, it may pay to install Perforce on another system to see if the same failures
occur, or even to reinstall the OS and Perforce on the faulty system.

Users having trouble with P4EDITOR or P4DIFF

Your Windows users may experience difficulties using the command line version of the
Perforce client (p4.exe) if they use the P4EDITOR or P4DIFF environment variables.

The reason for this is that Perforce clients sometimes use the DOS shell (cmd.exe) to start
programs such as user-specified editors or diff utilities. Unfortunately, the DOS shell
knows that when a Windows command is run (such as a GUI-based editor like
notepad.exe), it doesn’t have to wait for the command to complete before terminating.
When this happens, the Perforce client then mistakenly believes that the command has
finished, and attempts to continue processing, often deleting the temporary files that the
editor or diff utility had been using, leading to errors about temporary files not being
found, or other strange behavior.

You can get around this problem in two ways:

• Unset the environment variable SHELL. Perforce clients under Windows only use
cmd.exe when SHELL is set, otherwise they call spawn() and wait for the Windows
programs to complete.

• Set the P4EDITOR or P4DIFF variable to the name of a DOS batch file, whose contents are
the command:

start /wait program %1 %2

where program is the name of the editor or diff utility you wish to invoke. The /wait
flag instructs the system to wait for the editor or diff utility to terminate, and the
Perforce client will then behave properly.

Some Windows editors (most notably, Wordpad) do not behave properly, even when
instructed to wait. There is presently no workaround for such programs.
110 Perforce 2002.1 System Administrator’s Guide

Appendix A Perforce Server (p4d)
Reference
Synopsis

Invoke the Perforce server or perform checkpoint/journaling (system administration)
tasks.

Syntax
p4d [options]
p4d.exe [options]
p4s.exe [options]
p4d -j [-z] [args ...]

Description

The first three forms of the command invoke the Perforce background process (“Perforce
server”). The fourth form of the command is used for system administration tasks.

On UNIX and MacOS X, the executable is p4d.

On Windows, the executable is p4d.exe (running as a server) or p4s.exe (running as a
service).

Exit Status

After successful startup, p4d does not normally exit. It merely outputs the startup
message

Perforce server starting...

and runs in the background.

On failed startup, p4d returns a nonzero error code.

Also, if invoked with any of the -j checkpointing and/or journalling flags, p4d exits with
a nonzero error code if any error occurs.

Options
Flag Meaning

-d Run as a daemon (in the background)

-f Run as a single-threaded (non-forking) process

-i Run from inetd on UNIX

-q Run quietly (no startup messages)
Perforce 2002.1 System Administrator’s Guide 111

Appendix A: Perforce Server (p4d) Reference
Usage Notes

• On all systems, journaling is enabled by default. If P4JOURNAL is unset when a server
starts, the default location for the journal is $P4ROOT/journal. If you wish to manually
disable journaling, you must explicitly set P4JOURNAL to off.

• Take checkpoints and truncate the journal often, preferably as part of your nightly
backup process.

• Checkpointing and journaling preserve only your Perforce metadata (data about your
stored files). The stored files themselves (the files containing your source code) reside
under P4ROOT and must be also be backed up as part of your regular backup procedure.

-s Run p4d.exe as an NT service (equivalent to running p4s.exe)

-xu Run database upgrades and exit.

-xi Irreversibly reconfigure the Perforce server (and its metadata) to
operate in internationalized mode. Do not use this flag unless you
know you require internationalized mode. See the Release Notes for
details.

-jc [prefix] Journal-create; checkpoint and save/truncate journal.

-jd [file] Journal-checkpoint; create checkpoint without saving/truncating
journal.

-jj [prefix] Journal-only; save and truncate journal without checkpointing.

-jr file Journal-restore; restore metadata from a checkpoint and/or journal
file.

-z Compress (in gzip format) checkpoints and journals.

-h, -? Print help message.

-V Print server version.

-J journal Specify a journal file. Overrides P4JOURNAL setting. Default is
journal.

-L log Specify a log file. Overrides P4LOG setting. Default is stderr.

-p port Specify a port to listen to. Overrides P4PORT. Default 1666.

-r root Specify the server root directory. Overrides P4ROOT. Default is
current working directory.

-v debuglevel Set server trace flags. Overrides value P4DEBUG setting. Default is
null.

Flag Meaning
112 Perforce 2002.1 System Administrator’s Guide

Appendix A: Perforce Server (p4d) Reference
• If your users are using triggers, don’t use the -f (non-forking mode) flag; the Perforce
server needs to be able to spawn copies of itself (“fork”) in order to run trigger scripts.

• After a hardware failure, the flags required for restoring your metadata from your
checkpoint and journal files may vary, depending on whether or not data was
corrupted.

• Because restorations from backups involving loss of files under P4ROOT often require
the journal file, we strongly recommend that the journal file reside on a separate
filesystem from P4ROOT. This way, in the event of corruption the filesystem containing
P4ROOT, the journal is likely to remain accessible.

• The database upgrade flag (-xu) is may require considerable disk space. See the Release
Notes and the section “Important Notes for 2001.1 and later” on page 16 if upgrading to
2001.1 or later from a 2000.2 or earlier server.

Related Commands
To start the server, listening to port
1999, with journaling enabled and
written to journalfile.

p4d -d -p 1999 -J /opt/p4d/journalfile

To checkpoint a server with a non-
default journal file, the -J argument
(or the environment variable
P4JOURNAL) must match the journal
file specified when the server was
started.

Checkpoint with:

p4d -jc -J /p4d/jfile

or

P4JOURNAL=/p4d/jfile ; export P4JOURNAL
p4d -jc -J

To create a compressed checkpoint
from a server with files in directory
P4ROOT

p4d -r $P4ROOT -z -jc

To create a compressed checkpoint
with a user-specified prefix of “ckp”
from a server with files in directory
P4ROOT

p4d -r $P4ROOT -z -jc ckp

To restore metadata from a
checkpoint named checkpoint.3

for a server with root directory
P4ROOT

p4d -r $P4ROOT -jr checkpoint.3

To restore metadata from a
compressed checkpoint named
checkpoint.3.gz for a server with
root directory P4ROOT

p4d -r $P4ROOT -z -jr checkpoint.3.gz
Perforce 2002.1 System Administrator’s Guide 113

Appendix A: Perforce Server (p4d) Reference
114 Perforce 2002.1 System Administrator’s Guide

Index
A
access level

and protections 62
access levels 62
administrator

privilege required 107
allocating disk space 20
AppleSingle 30
arguments

passing to triggers 86
automated checkpoints 27
automating Perforce 40
B
backing up 31
backup

procedures 31
recovery procedures 33

branches
namespace 59

buffering
of input/output in scripts 90

C
can 106
case-sensitivity

and cross-platform development 23
UNIX and Windows 23, 50

change review 87
changelist numbers

pending vs. submitted changelists 90
changelists

deleting 43
editing 43
validating 83

checkpoint
as part of backup script 31
creating 26
creation of, automating 27
defined 26
ensuring completion of 32

failed 27
introduced 25
managing disk space 20
when to call support 27

checkpoints
creating with p4 admin 27, 31

client
and port 13

clients
namespace 59

commands
forcing 45

CPU
and performance 93

CR/LF conversion 54
creating checkpoints 26
creating users 39
creation of users

preventing 40
cross-platform development

and case sensitivity 23
D
daemon

change review 87
daemons 83, 87–89

changelist numbers 90
creating 88

database files 52
defined 25
where stored 25

db.* files 25
debugging

with server tracing 52
defect tracking

integrating with Perforce 80
deleting

changelists 43
depots 59
files, permanently 42
Perforce 2002.1 System Administrator’s Guide 115

Index
user groups 67
deleting users 41
depot

and Mac file formats 30
depot files

see versioned files 30
depots

defined 25
defining 57
deleting 59
listing 59
local 57
mapping field 58
multiple 55
namespace 59
remote 55, 59
remote, defining 58

disabling journaling 29
disk

performance 92
sizing 92

disk space
allocating 20
and server trace flags 52
freeing up 42
required for upgrade 16

DNS
and performance 94, 95

drives
and db.*and journal file 19

E
editing

changelists 43
editor

Wordpad, limitation 110
error logging 23
error messages

and p4 verify 43
example

specifying journal files 29
exclusionary mappings

and protections 65

F
fields

of job template 72
file formats

AppleSingle 30
file names

mapping to file types 44
file specification

and protections 62
file types

mapping to file names 44
files

access to, limiting 65
database 25
left open by users, reverting 41
matching Perforce file types to file names

44
permanent deletion of 42
subscribing to 88
verification of 43
versioned 25

filesystems
and performance 92
large 21
NFS-mounted, caveats 21, 92

firewall
defined 47
running Perforce through 46

flags
-f to force 45
server, listed 111

G
groups

and protections 62, 66
and subgroups 66
deleting 67
editing 66
of users 66

H
hostname

changing your server’s 55
hosts

and protections 62
116 Perforce 2002.1 System Administrator’s Guide

Index
hosts file
on Windows and UNIX 95

I
-i

and inetd 49
automating job submissions 80
automating user creation 40

inetd 49, 111
installing

on network drives 22
on NFS filesystems 21, 92
on UNIX 11
on Windows 15
on Windows network drives 107

IP address
changing your server’s 55
servers and P4PORT 49

IP forwarding
and ssh 47

J
job fields

data types 74
job specification 71–77

and comments 76
and superusers 71
default format 71
defining fields 73
extended example 78
warnings 77

job template
default 71
fields of 72
viewing 72

jobs
comments in 76
other defect tracking systems 80

journal
defined 28
introduced 25
managing size of 20
where to store 20

journal file
specifying 112

store on separate drive 19
journaling

disabling 29
L
label

namespace 59
licensing information 18
limitations

on information passed to triggers 86
triggers, workaround for 85
Wordpad 110

list access level 62
listing

depot names 59
local depots 57
log file

specifying 112
M
Mac

and file formats 30
Macintosh

OS X 11
mappings

and depots 58
maxresults

and multiple groups 99
and P4Win 99
and performance 98
use of 98

maxscanresults
and performance 98
use of 98

maxscanrows
and multiple groups 99
and P4Win 99

MD5 signatures 43
memory

and performance 91
requirements 91

metadata
see database files 25, 52

moving servers 52
across architectures 53
Perforce 2002.1 System Administrator’s Guide 117

Index
between Windows and UNIX 54
new hostname 55
new IP address 55
same architecture 53

multiple depots 55
and users 60

multiple triggers
on one file 85

N
naming

depots 59
network

and performance 93, 94
problems, diagnosing 94

network drives
and triggers 87
and Windows 22

network interface
directing server to listen to specific 49

NFS
and installation 21, 92

non-forking 111
O
obliterating files 42
open access level 63
operating systems

and large filesystem support 21
OS X

and UNIX 11
P
p4 admin

and Windows 16, 106
creating checkpoints 27, 31
stopping server with 14, 34, 35

p4 jobspec

warnings 77
p4 set -s

setting variables for Windows services
109

p4 triggers

form 84
p4 typemap 44
p4 verify 43

use of 31
p4d

-f option, and triggers 86
flags, listed 111
security 22, 87
specifying journal file 112
specifying log file 112
specifying port 112
specifying server root 112
specifying trace flags 112

p4d.exe 15
P4DEBUG 112
P4JOURNAL 112
P4LOG 112
P4PORT

and client 13
and server 13, 112
IP addresses and your server 49

P4ROOT 12, 112
p4s.exe 15
passwords

setting 20, 39
PDF files

and p4 typemap 44
Perforce

uninstalling 105
Perforce clients

and P4PORT 13
Perforce server

and P4PORT 13
and triggers 84
and Windows network drives 22
installing under NFS 21, 92
moving to another machine 52
running from inetd 49
UNIX UPGRADE 17
upgrading 16
upgrading under Windows 18
verifying 43
vs. service 15

Perforce service
vs. server 15

perforce.exe 15
118 Perforce 2002.1 System Administrator’s Guide

Index
performance
and memory 91
and scripts 100
and wildcards under Windows 95
CPU 93
network 93
preventing server swamp 96
slow, diagnosing 94

permissions
see protections 64

port
for client 13
for server 13
specifying 112

ports
running out of TCP/IP 93

pre-submit triggers
see triggers 83

privileges
administrator 107

protections 61–68
algorithm for applying 67
and commands 68
and groups 66
and performance 97
and superusers 61
commands affected by 68
default 64
exclusionary 65
multiple 64
schemes for defining 63

protections table 61
python 87
R
RAM

and performance 91
read access level 62
recovery

procedures 33
remote depots 55

and virtual users 59
defining 58

resetting passwords 39

review access level 63
revision range

and obliterate 42
rich text

and p4 typemap 45
root

must not run p4d 22, 87
S
scripting

buffering standard in/output 90
guidelines for efficient 100
with -i 40

scripting Perforce 83–89
secure shell 47
security

and passwords 20
p4d must have minimal privileges 22, 87
preventing user impersonation 19

server
and triggers 84
backing up 31
forking, and triggers 86
licensing 18
migrating 52
port 13
recovery 33
root, specifying 112
running from inetd 49
running in background 111
running single-threaded 111
specifying journal file 112
specifying log file 112
specifying port 112
stopping on Windows 106
stopping with p4 admin 14, 34, 35
trace flags 52
upgrading 16
verifying 43
vs. service 15
Windows 15

server flags
listed 111

server root
Perforce 2002.1 System Administrator’s Guide 119

Index
and P4ROOT 12
creating 12
defined 12
specifying 112

server upgrade
UNIX 17
Windows 18

setting passwords 20, 39
single-threaded 111
ssh 47
standard input/output

buffering 90
stopping server

on Windows 106
with p4 admin 14, 34, 35

subgroups
and groups 66

submission, validating 83
super access level 63
superuser

and triggers 84
force flag 45
Perforce, defining 19

superusers
and job specifications 71
and protections 61

symbolic links
and disk space 20

T
TCP/IP

and port number 13
running out of ports 93

technical support
when to call 27

template
job, default 71

trace flags
specifying 112

triggers 83–86
and Windows 87
arguments, passing to 86
defined 83
form 84

limitation 85
multiple, on one file 85
naming 84
ordering 85
script, specifying arguments to 84
security and p4d 22, 87
server must be able to fork 86
single, on multiple filespecs 86

troubleshooting
slow response times 94

type mapping 44
U
umask(1) 12
uninstalling Perforce 105
UNIX

/etc/hosts file 95
and case-sensitivity 51
upgrading a server 17

upgrading
server 16

users
access control by groups 66
and multiple depots 60
and protections 62
creating 39
deleting 41
files, limiting access to 65
nonexistent 41
preventing creation of 40
preventing impersonation of 19
resetting passwords 39
virtual, and remote depots 59

V
validation, of changelists 83
variables

setting for a Windows service 109
verifying server integrity 43
version information

clients and servers 19
versioned files 52

defined 25
format and location of 30
introduced 25
120 Perforce 2002.1 System Administrator’s Guide

Index
where stored 25
view

scope of, and performance 96
W
warnings

and job specifications 77
database changes on upgrade 16, 17
disk space and upgrade 16
obliterating files 42
security and p4d 22, 87

wildcards
and protections 62
and Windows performance 95

Windows
and case-sensitivity 23, 51
and p4 admin 16
and server upgrade 18
hosts file 95
installer 15
installing on network drive 22, 107
server 15
service, setting variables in 109
stopping server 106
triggers and network drives 87

Wordpad
limitation 110

wrappers 83
write access level 63
Perforce 2002.1 System Administrator’s Guide 121

Index
122 Perforce 2002.1 System Administrator’s Guide

	Table of Contents
	Preface About This Manual
	Please Give Us Feedback

	Chapter 1 Welcome to Perforce: Installing and Upgrading
	Getting Perforce
	Installing Perforce on UNIX
	Download the files and make them executable
	Create a Perforce server root directory
	Telling the Perforce server which port to listen to
	Telling Perforce client programs which port to talk to
	Starting the Perforce server
	Stopping the Perforce server

	Installing Perforce on Windows
	Terminology note: Windows services and servers
	Starting and stopping Perforce on Windows

	Upgrading a Perforce Server
	Using old client programs with a new server
	Important Notes for 2001.1 and later
	UNIX upgrades
	Windows upgrades

	Installation and Administration Tips
	Release and license information
	Observe proper backup procedures
	Use separate physical drives for server root and journal
	Use protections and passwords
	Allocate disk space for anticipated growth
	Managing disk space after installation
	Large filesystem support
	UNIX and NFS support
	Windows: Username and password required for network drives
	UNIX: Run p4d as a non-privileged user
	Logging errors
	Case sensitivity issues
	Tune for performance

	Chapter 2 Supporting Perforce: Backup and Recovery
	Backup and Recovery Concepts
	Checkpoint files
	Journal files
	Versioned files

	Backup Procedures
	Recovery Procedures
	Database corruption, versioned files unaffected
	Both database and versioned files lost or damaged
	Ensuring system integrity after any restoration

	Chapter 3 Administering Perforce: Superuser Tasks
	Basic Perforce Administration
	Resetting user passwords
	Creating new users
	Preventing creation of new users
	Deleting obsolete users
	Reverting files left open by obsolete users
	Reclaiming disk space by obliterating files
	Deleting changelists and editing changelist descriptions
	File verification by signature
	Defining filetypes with p4 typemap
	Forcing operations with the -f flag

	Advanced Perforce Administration
	Running Perforce through a firewall
	Specifying IP addresses in P4PORT
	Running from inetd on UNIX
	Case sensitivity and multi-platform development
	Perforce server trace flags

	Migrating to a new machine
	Moving your versioned files and Perforce database
	Changing the IP address of your server
	Changing the hostname of your server

	Using Multiple Depots
	Remote depot notes
	Defining new depots
	Other depot operations
	Limiting access from other servers
	Users working with multiple depots

	Chapter 4 Administering Perforce: Protections
	When Should Protections Be Set?
	Setting Protections with “p4 protect”
	The permission lines’ five fields
	Access levels
	Which users should receive which permissions?
	Default protections
	Interpreting multiple permission lines
	Exclusionary protections

	Granting Access to Groups of Users
	Creating and editing groups
	Groups and protections
	Deleting groups

	How Protections are Implemented
	Access Levels Required by Perforce Commands

	Chapter 5 Customizing Perforce: Job Specifications
	The Default Perforce Job Template
	The Job Template’s Fields
	The Fields: field
	The Presets: field
	The Values: fields
	The Comments: field

	Caveats, Warnings, and Recommendations
	Example: A Custom Template
	Working with third-party defect tracking systems
	Using P4DTI - Perforce Defect Tracking Integration
	Building your own integration
	Getting more information

	Chapter 6 Scripting Perforce: Daemons and Triggers
	Triggers
	Using triggers
	Triggers and security
	Triggers and Windows

	Daemons
	Perforce’s change review daemon
	Creating other daemons
	Commands used by daemons
	Daemons and counters
	Scripting and buffering

	Chapter 7 Tuning Perforce for Performance
	Tuning for Performance
	Memory
	Filesystem performance
	Disk space allocation
	Network
	CPU

	Diagnosing Slow Response Times
	Hostname vs. IP address
	Try p4 info vs. P4Win
	Windows wildcards
	DNS lookups and the hosts file
	Location of the “p4” executable

	Preventing Server Swamp
	Using tight views
	Assigning protections
	Limiting database queries
	Scripting efficiently

	Checkpoints for Database Tree Rebalancing

	Chapter 8 Perforce and Windows
	Using the Perforce installer
	Upgrade notes
	Installation options

	Windows services vs. Windows servers
	Starting and stopping the Perforce service
	Starting and stopping the Perforce server
	Installing the Perforce service on a network drive

	Multiple Perforce services under Windows
	Windows configuration parameter precedence
	Resolving Windows-related instabilities
	Users having trouble with P4EDITOR or P4DIFF

	Appendix A Perforce Server (p4d) Reference
	Synopsis
	Syntax
	Description
	Exit Status
	Options
	Usage Notes
	Related Commands

	Index

