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Abstract. We consider classes of Pell equations of the form ¢?—dy?=c where d=a®+4
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1. Introduction

The purpose of this paper is to collect together results concerning the solutions
of the Pell equations 22— (a2 £4)y? = 44, 22— (a’+4)y? = £1, 2>—(a®£1)y*> = +4
and 2% — (a? £ 1)y? = +1. We show that the solutions to these Pell equations can
all be expressed in terms of Lucas sequences Up(a,+1) and Vj(a,+1) of E. Lucas
20), 21].

The solutions of the Pell equations z? — (a? + 4)y? = £a, 2% — (a® —4)y* =
5—2a, 22— (a®>—-4)y? =2—a and 2?— (a? — 1)y? =2 —2a can also be
represented as Lucas sequences. This is more difficult to prove however and will be
shown in a subsequent paper.

The above Pell equations are important to logicians since the sequences of
solutions have many elegant divisibility properties which make them useful for
diophantine representation of recursively enumerable sets. The above mentioned
Pell equations can be found in the papers Y. Matiyasevich [22], [25], M. Davis
[1], J. Robinson [26], [27], [28], M. Davis, H. Putnam, J. Robinson [3] and Davis,
Matiyasevich and Robinson [2]. Also in the author’s papers [4], [5], [6], [7], and in
Jones and Matiyasevich [8], [10]. The above Pell equations also have application
to the problem of singlefold diophantine representation of recursively enumerable
sets. See Matiyasevich [25] for an explanation, also the paper of Sun Zhiwei [29]
and Jones and Matiyasevich [8], [9].

Let A and B be integers with A > 1 and B = 1. Put D = A% —4B. The Pell
equation,

(1) VZ— DU? = 44,
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is closely connected with the Lucas identity,
(2) V2 - DU? = 4B"

which is satisfied by the Lucas sequences U, and V,,. In the theory developed by
E. Lucas [20], [21] and D. H. Lehmer [18], [19], the sequences U, = U,(4, B)
and V,, = V,, (A, B) satisfying equation (2) are definable as second order linear
recurrences:

(3) Vo=2 Vi=A4A, Voo = AV, — BV,

(4) Up=0, Uy =1, Unyy = AUpyq — BU,.

The Lucas sequences V,, and U, satisfy a large number of other identities as

well. We shall need:

(5) (i) g1 = AVu+ DU,, (i) 2,41 = AU, + Vp,

(6) (i) 2BVn_1 = AV, — DU,,  (ii) 2BUn_y = AU, — Vj,.

The above four identities are easy to derive, by induction on n, from the recurrence
equations (3) and (4). Using identity (5) (i) it is then easy to show that U, and
V,, satisfy the Lucas identity (2). For plainly V,2 — DU2 = 4B" holds for n = 0.
Suppose it holds for n. By (5) (i),

4v2, —4DUZ. | = (AV, + DU, )? — D(AU, +V,, )

= A?V2 4 D?U2 — DA?U2 — DV;2 = (A — D)V,2 — (A? = D)DU?

=4BV? —4BDU? = 4B(V,2 — DU?) = 4B4B" = 16B" .
Hence the Lucas identity (2) holds for n 4+ 1 and so by induction (2) holds for all
n > 0.
One of the main theorems we shall need is that all solutions of V? —DU? = +4
are given by the Lucas sequences V = V,,(A, B) and U = U, (A4, B). And we shall

need to know exactly for which pairs (A, B) this holds. We therefore give a careful
proof and an exact statement. We will prove the theorem in the following form:

Theorem 1.1. Suppose D = A2 —4B, B = 1 and 3B + 5 < 2A. Then for all
nonnegative integers U and V,

VE-DU? =44 <= (@Fn>0)[V =V,(A,B) and U =U,(4, B)]
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Before giving the proof we mention that the purpose of the hypothesis 3B+5 <
2A is to exclude some pairs such as B = 1 and A = 3 for which the theorem does not
hold, yet include others such as B = —1 and A = 1 for which it does hold. If B =1
and A = 3, then D = 5. 22 — 5y? = —4 has infinitely many nonnegative integer
solutions (x,y). But they are not all of the form z = V,,(3,1) and y = U,,(3,1). For
example the solution (z,y) = (1,1) is not of the form # = V,,(3,1) and y = U, (3, 1).
Rather z = V,(1,-1) and y = U,(1,—1) where n = 1. (x,y) lies within the
Fibonacci sequence.

Care is therefore necessary in the statement of Theorem 1.1. Not only can
Theorem 1.1 fail to hold when B = 1 and A = 3, the result can fail to hold when
we try to generalize it beyond |B| = 1. Consider for example the case of B = 2.
If A =4, then D = A2 —4B = 8 Now V = 20 and U = 7 is a solution of
V2 —8U2? = 4B'. But VYn 20 # V,,(4,2) and VYn 7 # U,(4,2). Thus Theorem 1.1
does not hold for B =2 and A = 4.

2. Descent

Our main tool in the proof we shall give here of Theorem 1.1 will be Fermat’s
method of descent. We will apply the method to equation (1). We will need the
following lemmas:

Lemma 2.1. (Parity Lemma) Suppose A is a positive integer and |B| = 1.

If A is even: V,,(A, B) is even, and U,(A, B) Is even iff 2|n.

IFAisodd: V(A B) = Uy(A,B) (mod 2), and V,,(A, B) and U, (A, B) are even
iff 3|n.

Proof. By induction on n using equations (3) and (4).

Lemma 2.2, Foralln >0, V3,(1,—-1) = V,(3,41) and Usa,(1,—1) = U,(3,41),
(n=01,2...)

Proof. The proof of this for V, is the same as that for U, so we shall give
only the proof for U,. For this we use induction on n. If n = 0 or n = 1, then
Usn(1,=1) = Un(3,1) and Us(ny1)(1,—=1) = Upn41(3,1). Suppose these hold for n
and n+41. By (4), Usnt2)(1,—1) = Uznqa(1, =1) = Usny3(1, =1)+Uznq2(1, —1) =
Usny2(1, =1) + Uspy1(1, =1) + Uspyo(1, 1) =

Umt2(1,=1) + Uzpq2(1, =1) — Uy (1, —1) + Uzpy2(1,-1) =

3Uzny2(l,=1) = U2y (1, =1) = 3Usz(ng1)(1, =1) = Uan (1, 1) =

3Un4+1(3,1) = Un(3,1) = Upy2(3,1).

Lemma 2.3. Let A and V be non-negative integers. Then

FV?—A? =48 then A=1and V =3.



78 James P. Jones

FV?—-A? = _8 then A=3and V = 1.

Proof. 1< |V2— A% <8 = 1<|V-A|(V+A4)<8 =1<V+A<S. Hence,
if V2?—A* =48, then A=1and V=3.If V> — A% = —8, then A=3and V = 1.

Lemma 2.4.

(Descent Lemma) Suppose D = A? —4B, B=41, B+2< Aand U and V
are integers such that 0 <V, 2< U and V2 —DU? = 4+4. f V' and U’ are defined
by

AV — DU AU -V
. ’_ .. r_
(7) (Z) V - 2B ’ (Zl) U 2B ’

then V'’ and U’ are integers and satisfy V'2 — DU’? = +4B. Also V' and U’ satisfy
8) () 2V = AV' + DU, (i) 2U = AU' + V.
Furthermore 1 < V' and 1 < U’ < U.

Proof. First we show that 2 < V. Since D = A2 — 4B, B=+1 and B+2 < A,
5 < D. Since 2 < U we have 4 < U? and so 4U? < 502 +4 < DU%* +4 = V2.
Therefore 2U < V.

Next we show that V’ and U’ are integers. D = A2 —4B = D = A2 = A
(mod 2). Also V2 — DU? = 44 = V? = A2U? (mod 2) = V = AU (mod 2).
Hence AU—V =0 (mod 2) and so U’ is an integer. Also since V = AU (mod 2)
and D= A (mod 2), AV — DU = A2U — AU = AU — AU =0 (mod 2) so V' is
an integer.

Next we show that (V')? — D(U’)? = +4B. From the definitions of V/ and U’
we have

AV —DUR (AU — V)
pa_ppe = UV ZDUP AU =V
A2V2 - DV2 - DA2U? 4+ DU

4B?
(42 = D)(V2—DU?) _ (4B)(:4) _ %4 _
4B? 4B? B

Next we show that 2V = AV’/ 4+ DU’ and 2U = AU’ + V. From the definitions of
V/ and U’,

AV DU AUV AV DV _V(A*-D) V4B

! o —_ —_
AVI+DU =4 2B 2B 2B 2B - 2B =2
Also

AU — AV — D AU - D A2 —D 4B
AU 4V = A U V+ V U: U U:U( ):U — o

2B 2B 2B 2B 2B
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Next we show that 1 < U’/ < U. VZ2—DU? =44 = (A2 —4B)U? - V? = F4 =
APU? V2 = 4BU?F4 = (AU —V)(AU +V) = 4AB(U2F B). Since 2BU’ = AU~V
= 2BU'(AU + V) = 4B(U2 F B) = U'(AU + V) = U2 F B) = 20U° F 2B, we

have

) 202 -2 U,_2U2:F2B 0242  2Ur 42
AUV = AU+V —AU4V — U+V’

using B+2< A= 1< A. Since 2<U = 2<2U% = 0 < 2U? — 2, equation (9)
= 0 < U’'. Hence 1 < U’. Now we can show U’ < U. Using 2U < V, shown earlier,
2U <V = 3U <U+V.Also 2<U = 2< U2 Hence by (9),

2 2 2 2
AU° +2) 20742 204U _

10 U' <
(10) - U+Vv — 33U - 3U

U.

Therefore U’ < U. Finally we can show that 1 < V'. Since V' = (AV — DU)/2B,

we have

AUV —DU? AUV —-V2+4 AUV -V?

2B = "+£2B.
2B 2B 2B * Vot

11) UV =

Since 1 < U’ and 4 < 2U <V, we have 2 < 4+£2B < 2U£2B <2UU’'42B <
VU £2B = UV’ by (11). Hence 2 < UV’ and so 1 < V’. This completes the proof

of the Descent Lemma.

Proof of Theorem 1.1. Suppose 3B + 5 < 2A. In the direction < Theorem
1.1 has already been proven by our establishing identity (2). For the direction =
we use the Descent Lemma and induction on U. Suppose 0 < U, 0 < V and
V2_DU? =44 IfU =0, then V2 =44 = V2 =4 = V =2 and so we can
let n = 0. Suppose U = 1. Then V2 — DU? = £4 = V? — (A2 —4B) = 4+4 =
V2 — A% = 44 — 4B. We consider two cases:

Case 1. B = —1. Here we have V? — A2 =0 or V? — A2 = 8. If V2 — A% = (), then
V = A and so we can let n = 1 since V4(A,B) = A=V and U1(A,B) =1="T.
If V? — A% = 8, then by Lemma 2.3, A =1 and V = 3 so we can let n = 2 since
Va(A,B) = A2 —2B =3=V and U2(A,B) = A=1=1U.

Case 2. B = +1. Here V> —A? =0 or V2 — A% = —8. If V? — A2 = —8, then by
Lemma 2. 3, A =3 and V = 1. Since B = 1, A = 3 contradicts 3B+5 < 2A. Hence
V2 — A% = (. In this case V = A and so we can let n = 1 since V3(4,B) = A=V
and U; =1="U.

Now we can suppose 2 < U and that the implication = of Theorem 1. 1 holds
for all pairs V’, U’ such that 0 < U/ < U and 0 < V’. Since B = £1, the
hypothesis 3B + 5 < 2A implies B + 2 < A and so we can apply the Descent
lemma. Define V' and U’ from V and U as indicated in the Descent Lemma:

V' = (AV — DU)/2B and U’ = (AU — V)/2B. The Descent Lemma then asserts
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that V' and U’ are integers, 1 < V', 1 < U’ < U and V> — DU'* = 44. Hence
by the induction hypothesis In > 0 such that V' =V, (A, B) and U’ = U, (A, B).
Consequently using equations (8) in the Descent Lemma and identity (5) (i) we
have, 2V = AV'+ DU’ = AV, +DU,, = 2V, 41 and so V = V,,41. By (8) and identity
(5) (ii) we also have 2U = AU+ V' = AU, +V,, = 2Up41 and so U = Up41. Thus
the mmplication = holds for /. By induction the implication = holds for all U.
Thus Theorem 1. 1 is proved.

Corollary 2.5. If4 < A, B =1, D = A% — 4, then V? — DU? = —4 has no
solutions U, V.

Proof. Of course this follows mmmediately from Theorem 1. 1 and Lucas Identity
(2). But there is a more interesting proof using the Descent Lemma: Suppose 4 < A,
B =+41and D = A% — 4 Then B+ 2 < A so we can use the Descent Lemma.
Suppose VZ — DU? = —4 for some V, U. Let (V,U) be the pair with smallest U
such that 0 <V and 0 < U. Then U # 0. By Lemma 2. 3, U = 1 would imply
A = 3. Hence 2 < U and so by the Descent Lemma 3V’, U’ such that 1 < V7,
1 < U’ < U and V?— DU? = —4. But this contradicts the original choice of U and
V. Thus V and U such that V2 — DU? = —4 do not exist.

Remark. If A = 3, then V2 — (A2 — 4)U? = —4 does have solutions, e.g. V =1
and U = 1.

Corollary 2.6. If 4 < A, then 22 — (a® — 4)y*> = —4 has no solutions.

Corollary 2.7. If4 < A, then all solutions of r? — (a® — 4)y? = +4 are given by
z="Vi(a,+1) and y = Us(a,+1), (1 =0,1,2,...).

Corollary 2.8. If1 < A, then all solutions of 22 — (a® +4)y? = —4 are given by
2 =Vat1(a,—1) and y = Uszti1(a,-1), (i =0,1,2,...).

Corollary 2.9. (Matiyasevich equation [22]) If 1 < A, then all solutions of x? —
(a® + 4)y? = +4 are given by x = Va;(a,—1) and y = Us(a,—1), (i =0,1,2,...).

Remark. In [22] Y. V. Matiyasevich used the above equation z* — (a® +4)y* = 4
with @ = 1, to solve Hilbert’s Tenth Problem. (I.e. he used the sequence of Fibonacci
numbers with even subscripts, Uz (1, —1) = U;(3,1).)

3. Solutions of Pell equations with d = a> £ 4 and ¢ = +1.

In this section we give the solutions of Pell equations of the form z? — (a? £
4)y? = £1.
Lemma 3.1. If4 < a, then 2? — (a® — 4)y? = —1 has no solutions.

Proof. Suppose 4 < a and 2% — (a? — 4)y? = —1. Multiplying by 4 we obtain
(22)? — (a® — 4)(2y)* = —4, which, since 4 < a, has no solutions by Corollary 2.6.
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Remark. If ¢ = 3, then 2% — (¢? — 4)y> = —1 has infinitely many solutions,
z = Veiya(l, —1)/2 and y = Usita(1, —1)/2 (¢ =0,1,2,...). This is shown by the

next theorem since a? —4 =5 =12 + 4.

Theorem 3.2. If 1< a and a is odd, then all solutions of z? — (a® + 4)y* = —1
are given by ¥ = w and y = W’ (i=0,1,2,...).

Proof. Using Corollary 2.8, since 1 < a, we have z? — (a? +4)y? = -1 <
(22)? — (a® + 4)(2y)? = —4 <= 22 = V(a,—1) and 2y = Uy, (a, —1) for some odd
n. As a is odd, by the Parity Lemma 2|V}, (a,—1) and 2|U, (a,—1) <= 3|n. 3|n and
nisodd <= Jin=6i+3 (i=012.. )

Lemma 3.3. For any even integer a, x? — (a? + 4)y? = —1 has no solutions.
Proof. Suppose a is even. Then 4/a? = 4/a? — 4. But 22 # —1 (mod 4).

Theorem 3.4. If 4 < a and a is even, then all solutions of x? — (a® — 4)y® = +1
are given by « = w and y = W, (i=0,1,2,...).

Proof. Using Corollary 2.7, since 4 < a, we have z? — (a? — 4)y? = +1 <—
(22)2 —(a? —4)(2y)? = +4 <= 3T n >0, 2z = V,,(a,+1) and 2y = U, (a, +1). Since
2|a, the Parity Lemma implies 2|V, (a,+1) and 2|U,(a, +1) <= 2n, ie. n = 2i,
(i=0,1,2..)

Theorem 3.5. If 3 < a and a is odd, then all solutions of z* — (a® — 4)y* = +1
are given by ¥ = w and y = W, (i=0,1,2,...).

Proof. Suppose 3 < aand ais odd. 22—(a?—4)y? = +1 <= (22)*—(a?—4)(2y)? =
+4. If 3 < a, then by Corollary 2.7, 2z = V,(a,+1) and 2y = U,(a,+1), where,
by the Parity Lemma, n = 3i, (i = 0,1,2,...). If 3 = a, then, since a? —4 =5 =
12 + 4, Corollary 2.9, = 2z = Va;(1,—1) and 2y = Us;(1, —1), where j = 3i, (i =
0,1,2,...) by the Parity Lemma, so that z = Vg(1,—1)/2 and y = Ug(1,-1)/2,
(i =10,1,2,...). However by Lemma 2.2, V5 (1, -1) = V5(3,41) and Ug(1,-1) =
Us;(3,+41), (¢ =10,1,2,...) as required

Theorem 3.6. If2 < a and a is even, then all solutions of x? — (a? +4)y? = +1

are given by ¥ = V2’(a )a.ndy: W’ (i=0,1,2,...).

Proof. By Corollary 2.9, since 1 < a, we have 2% — (a? + 4)y? = +1 < (22)% —
(a®> +4)(2y)? = +4 <= 22 = V, (¢, —1) and 2y = U, (a, —1) for some even n. Since
2la and n is even, the Parity Lemma implies 2|V}, (a, —1) and 2|U, (¢, —1).

Theorem 3.7. If 1< a and a is odd, then all solutions of z* — (a® 4+ 4)y* = +1

are given bya:—ve’(a Y and y= W’ (1=10,1,2,...).

Proof. By Corollary 2.9, since 1 < a, we have 2% — (a? + 4)y? = +1 < (22)% —
(a®> +4)(2y)? = +4 <= 22 = V, (¢, —1) and 2y = U, (a, —1) for some even n. Since
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a is odd, the Parity Lemma implies 2|V, (a, —1) and 2|U, (a,—1) <= 3|n. 2|n and
3In <= 6|n. Hence n =6¢ ({ =0,1,2,...).

4. Solutions of Pell equations with d = a* 4+ 1 and ¢ = +1.

In this section we consider solutions of Pell equations of the form 2% — (a? £
Dy? = £1.

Lemma 4.1. If2 < a, then 2? — (a® — 1)y? = —1 has no solutions.
Proof. Suppose 2 < a and 2% — (a? — 1)y? = —1. Multiplying by 4 we obtain
(22)? — ((2a)* — 4)y* = —4. Since 4 < 2a, this equation has no solutions by

Corollary 2. 6.
[Another proof is also possible. Let d = a? — 1. The continued fraction expansion
of Vdis v/d =[a—1; T, 2a — 2] with period length 2 (even). Hence 2> — dy® = —1

is unsolvable.]

Theorem 4.2. (Julia Robinson’s equation [26], [27]) If 2 < a, then all solutions of
22—(a®?—1)y? = +1 are given by « = W andy = U;(2a,41), (i =0,1,2,...).

Proof. Suppose 2 < a. Using Corollary 2.7, since 4 < 2a we have 2% — (a? —

Dy? = 41 <= (22)2 — ((2a)* = 4)y? = +4 < I n > 0, 22 = V,(2a,+1) and
y = Up(2a,+1). Since 2a is even, the Parity Lemma implies V,(2a,+1) is even.
Hence 2|V, (2a,+1).

Theorem 4.3. If 1 < a, then all solutions of % — (a® + 1)y* = +1 are given by
w= Y2007 and y = Uy(2a,-1), (i=0,1,2,...).

Proof. Using Corollary 2.9, since 1 < 2a, we have 22 — (a2 + 1)y? = +1 <
(22)? — ((2¢)? +4)y* = +4 <= 22 = V,,(2a, —1) and y = U, (2a, —1) for some even
n,n=2i, (i =0,1,2,...). Since 2a is even, the Parity Lemma implies 2|V}, (2a, —1).

Theorem 4.4. If 1 < a, then all solutions of % — (a® + 1)y*> = —1 are given by
p=YurCol) g oy = Uyy(2a,-1), (i=0,1,2,...).

Proof. Using Corollary 2.8, since 1 < 2a, we have 22 — (a2 + 1)y? = -1 <
(22)? — ((2a)* +4)y? = —4 <= 22 = V,,(2a,-1) and y = U,(2a, —1) for some odd
n,n=2+1 (i =0,1,2,...). The Parity Lemma implies 2|V, (2a, —1), since 2qa is
even.
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5. Solutions of Pell equations with d = a> £ 1 and ¢ = +4.

In this section we consider solutions of Pell equations of the form 2% — (a? £
Dy? = +4.

Lemma 5.1. If2<a, a# 3 and #? — (a? — 1)y? = 44, then y is even.

Proof. Let d = a?> — 1. Suppose 2 < a, a # 3 and 2% — dy* = +4. If a is
even, then 4|a® and so d = —1 (mod 4). Hence z? — dy*> = +4 = 22 + y> = 0
(mod 4) = y = =0 (mod 2). Therefore we can suppose ¢ is odd and 5 < a.
Then 4|d and so « is even. Suppose y is odd, and without loss of generality that y
is the least such odd y > 0. Since 3 < a, (a —1)2 < a? =5 < a?+3 < (a + 1)
Hence d & 4 is not a square and so y # 1. Therefore 2 < y. Let 2’/ = ax — dy and
vy = ay — z. Then

' —dy? = (ax — dy)* — d(ay — x)? = (a® — d)r? — d(a® — d)y? = 2% — dy* = +4.

Hence (2',y') is also a solution. Since z is even and ¢ and y are both odd, ¥ is
odd. Now 5<aand 2<y = 22 (1 —a) < +4 < y? <—
27 —2ay? <4<yt = ¥ -2y’ < -y +4< 0 =
a2y2 — 2ay2 + y2 < a2y2 — y2 +4< a2y2 <=
(a®> = 2a + 1)y* < (@® = D)y +4 < a’y® <
(a-12yY <2’<d®y’ < (@-ly<z<ay <

0<ay—2x < y<=0<9y <y Butsince /> — dy? = £4 and y is odd, this
contradicts the choice of y. Hence no such odd y exists.

Lemma 5.2. If1<a, a#2 and z? — (a? + 1)y? = 44, then y is even.

Proof. Let d = a®+ 1. Suppose 1 < a, a # 2 and z? — dy*> = 4. If a is odd, then
a’? = (mod 4) and so d = 2 (mod 4). Hence 2% — dy? = £4 = 2% + 2% =
(mod 4) > y=2=0 (mod 2). Consequently we can suppose a is even and since
a # 2, that 4 < a. Suppose y is odd and y is the least such odd y > 0. Since d is
odd and y is odd, « nmst be odd. Since 2 < a, (a —1)? < a? -3 < a?+5 < (a+1)?2
so that d +4 is not a square and hence y # 1. Thus 2 < y. Put 2’ = dy — ax and
Y = = — ay. As in the proof of Lemma 5.1, 2/ — dy/? = 44. Since ¥ = = — ay, =
is odd and a is even, 3 is odd. Now 2 < cand 2 <y = —y? < 34 < 2ay® <
0<y?t+4<2ay? +y° —

P <y +yi£4<a®yP 4 2y + 47 =
a?y? < (a® + D)y £4< (a+ 1)y <

AP <’ <(a+1)’y <= ay<z<(a+l)y <
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0<z—ay<y <0<y <y Butsince 2> — dy’? = 44 and ¥ is odd, this
contradicts the choice of y. Hence no such odd y exists.

Theorem 5.3. If 2 < a and a # 3, then all solutions of x? — (a® — 1)y*> = +4 are
given by # = V;(2a,4+1) and y = 2U;(2a,+1), ({1 =0,1,2,...).

Proof. Suppose 2 < a, a # 3 and 2?2 — (a? — 1)y*> = +4. By Lemma 5.1, 2|y. Let
y=2u. 22— (a? —1)y? = +4 <= 22 — (a? — 1)4u? = +4 <= 22 — ((2a)* —4)u? =
+4 <— = = V;(2a,+1) and u = U;(2a,+1) for some 4, by Corollary 2.7, since
4 < 2a.

Theorem 5.4. If 1< a and a # 2, then all solutions of x? — (a® + 1)y* = +4 are
given by © = V2;(2a,—1) and y = 2U3;(2a,-1), ({ = 0,1,2,...).

Proof. Suppose 1 < a, a # 2 and z? — (¢ + 1)y? = +4. By Lemma 5.2, 2|y. Let
y=2u. 22— (a?+1)y? = +4 <= 22— (a? + 1)4u? = +4 <= 22 — ((2a)* +4)u? =
+4 <= x = V2(2a,—1) and v = Uy (2a, —1) for some ¢, ({ = 0,1,...), by Corollary
2.9, since 1 < 2a.

Theorem 5.5. If 1< a and a # 2, then all solutions of 2 — (a® + 1)y*> = —4 are
given by @ = Vai41(2a,—1) and y = 2Uz;11(2a,-1), (1 = 0,1,2,...).

Proof. Suppose 1 < a, a # 2 and z? — (a® + 1)y? = —4. By Lemma 5.2, 2|y. Let
y=2u. 22— (a®?+1)y? = -4 <= 22— (a® +1)4u? = —4 <= 2> —((2a)* +4)u? =
—4 <— v = Voi41(2a,-1) and v = Uzi+1(2a,—1) for some ¢, (i = 0,1,...), by
Corollary 2.8, since 1 < 2a.

Theorem 5.6. If2 < a and a # 3, then z* — (a? — 1)y? = —4 has no solutions.

Proof. Suppose 2 < a, a # 3 and z? — (a® — 1)y? = —4. By Lemma 5.1, 2|y. Let
y = 2u. Then 2% —(a® —1)y? = -4 = 22— (a? = 1)4u? = -4 = 2?2 —((2a)? —4)u? =
—4. But this equation has no solutions by Corollary 2.6, since 4 < 2a.
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